高三数学二轮复习立体几何选填训练2新人教A版

合集下载

2022高中数学立体几何初步-简单几何体的表面积与体积第2课时球的表面积和体积课后提能训练新人教A版

2022高中数学立体几何初步-简单几何体的表面积与体积第2课时球的表面积和体积课后提能训练新人教A版

第八章 8.3 第2课时A级——基础过关练1.(2021年长春月考)高为1的圆锥内接于半径为1的球,则该圆锥的体积为( ) A. B.C. D.π【答案】B 【解析】根据题意,高为1的圆锥内接于半径为1的球,则圆锥底面圆的半径r=1,则该圆锥的体积为×πr2×h=,故选B.2.已知球的表面积为16π,则它的内接正方体的表面积S的值是( )A.4π B.32C.24 D.12π【答案】B 【解析】设球的内接正方体的棱长为a,由题意知球的半径为2,则3a2=16,所以a2=,正方体的表面积S=6a2=6×=32.故选B.3.用与球心距离为1的平面去截球,所得截面圆的面积为π,则球的表面积为( ) A. B.C.8π D.【答案】C 【解析】设球的半径为R,则截面圆的半径为,∴截面圆的面积为S=π=(R2-1)π=π.∴R2=2.∴球的表面积S=4πR2=8π.4.把一个铁制的底面半径为r,高为h的实心圆锥熔化后铸成一个铁球,则这个铁球的半径为( )A. B.C. D.【答案】C 【解析】设铁球的半径为R,因为πr2h=πR3,所以R=.故选C.5.(2021年成都模拟)将直径为2的半圆绕直径所在的直线旋转半周而形成的曲面所围成的几何体的表面积为( )A.2π B.3πC.4π D.6π【答案】B 【解析】由题意知,该几何体为半球,表面积为大圆面积加上半个球面积,S=π×12+×4×π×12=3π.6.若一个球的表面积与其体积在数值上相等,则此球的半径为________.【答案】3 【解析】设此球的半径为R,则4πR2=πR3,R=3.7.已知各顶点都在一个球面上的正四棱锥的高为3,体积为6,则这个球的表面积为________.【答案】16π 【解析】设正四棱锥的高为h,底面边长为a.由V=a2h=a2=6,得a=.由题意知球心在正四棱锥的高上,设球的半径为r,则(3-r)2+()2=r2,解得r=2,则S球=4πr2=16π.8.已知两个正四棱锥有公共底面,且底面边长为4,两棱锥的所有顶点都在同一个球面上,若这两个正四棱锥的体积之比为1∶2,则该球的表面积为________.【答案】36π 【解析】∵两正四棱锥有公共底,且体积比为1∶2,∴它们的高之比为1∶2,设高分别为h,2h,球的半径为R,则h+2h=3h=2R,∴R=h.又∵底面边长为4,∴R2==+(2)2,解得h=2,∴R=3,∴S球=4πR2=36π.9.某组合体的直观图如图所示,它的中间为圆柱形,左右两端均为半球形,若图中r =1,l=3,试求该组合体的表面积和体积.解:该组合体的表面积S=4πr2+2πrl=4π×12+2π×1×3=10π.该组合体的体积V=πr3+πr2l=π×13+π×12×3=.10.已知过球面上A,B,C三点的截面到球心的距离等于球半径的一半,且AB=18,BC=24,AC=30,求球的表面积和体积.解:因为AB∶BC∶AC=18∶24∶30=3∶4∶5,所以△ABC是直角三角形,∠B=90°.又球心O到截面△ABC的投影O′为截面圆的圆心,也即是Rt△ABC的外接圆的圆心,所以斜边AC为截面圆O′的直径(如图所示).设O′C=r,OC=R,则球半径为R,截面圆半径为r.在Rt△O′CO中,由题设知sin ∠O′CO==,所以∠O′CO=30°,所以=cos 30°=,即R=r,(*)又2r=AC=30⇒r=15,代入(*)得R=10.所以球的表面积为S=4πR2=4π×(10)2=1 200π.球的体积为V=πR3=π×(10)3=4 000π.B级——能力提升练11.已知长方体共顶点的三条棱长分别是3,4,x,且它的8个顶点都在同一个球面上.若这个球的表面积为125π,则x的值为( )A.5 B.6 C.8 D.10【答案】D 【解析】设球的半径为r,则4πr2=125π,∴r2=.又32+42+x2=(2r)2,∴9+16+x2=125,∴x2=100,即x=10.故选D.12.已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的表面积为( )A.153π B.160πC.169π D.360π【答案】C 【解析】由于直三棱柱的底面是直角三角形,所以可以把此三棱柱补成长方体,其体对角线就是外接球的直径,所以球O的半径R==,所以球O的表面积S=4π×=169π,故选C.13.如果一个球的外切圆锥的高是这个球的半径的3倍,则圆锥的侧面积S1和球的表面积S2之比为( )A.4∶3 B.3∶1C.3∶2 D.9∶4【答案】C 【解析】画出轴截面如图所示,设球的半径为r,则OD=r,PO=2r,∠PDO=90°,∴∠CPB=30°.又∠PCB=90°,∴CB=PC=r,PB=2r,∴圆锥的侧面积S1=π×r×2r=6πr2,球的表面积S2=4πr2,∴S1∶S2=3∶2.14.若等边圆柱(轴截面是正方形)、球、正方体的体积相等,则它们的表面积的大小关系是( )A.S球<S圆柱<S正方体 B.S正方体<S球<S圆柱C.S圆柱<S球<S正方体 D.S球<S正方体<S圆柱【答案】A 【解析】设等边圆柱底面圆半径为r,球半径为R,正方体棱长为a,则πr2·2r=πR3=a3,=,=2π.S圆柱=6πr2,S球=4πR2,S正方体=6a2,==·=<1,==·=>1.故选A.15.在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是________.【答案】 【解析】当球的半径最大时,球的体积最大.在直三棱柱内,当球和三个侧面都相切时,因为AB⊥BC,AB=6,BC=8,所以AC=10,底面的内切圆的半径即为此时球的半径r ==2,直径为4>侧棱.所以球的最大直径为3,半径为,此时体积V=.16.(2021年沈阳月考)已知体积为的正三棱锥V-ABC的外接球的球心为O,满足OA+OB+OC=0,则该三棱锥外接球的体积为________.【答案】π 【解析】由题意知,OA+OB=CO,说明正三角形ABC的顶点在球O的大圆上.设球的半径为R,则该三棱锥的底面正三角形ABC的高为,△ABC的边长为R,所以正三棱锥V-ABC的体积为××(R)2×R=,解得R3=4,则该三棱锥外接球的体积为πR3=π.17.已知盛有水的圆柱形容器的内壁底面半径为5 cm,两个直径为5 cm的玻璃小球都浸没于水中.若取出这两个小球,则水面将下降多少厘米?解:设取出小球后,容器中的水面下降了h cm,两个小球的体积为V球=2=(cm3).该体积等于它们在容器中排开水的体积V=52×π·h,所以=π×52×h,解得h=.故取出这两个小球,水面将下降 cm.18.已知一倒置圆锥的母线长为10 cm,底面半径为6 cm.(1)求该圆锥的高;(2)若有一球刚好放进该圆锥(球与圆锥的底面相切)中,求这个球的半径以及此时圆锥剩余空间的体积.解:(1)设圆锥的高为h cm,底面半径为R cm,母线长为l cm,则h===8,所以圆锥的高为8 cm.(2)球放入圆锥后的轴截面如图所示,设球的半径为r cm.易得△OCD∽△ACO1,则=,即=,解得r=3.圆锥剩余空间的体积为圆锥的体积减去球的体积,即V圆锥-V球=×π×62×8-π×33=96π-36π=60π(cm3),故此时圆锥剩余空间的体积为60π cm3.C级——探索创新练19.有三个球,第一个球可内切于正方体,第二个球可与这个正方体的各条棱相切,第三个球可过这个正方体的各个顶点,这三个球的表面积之比为( )A.1∶∶ B.1∶4∶9C.1∶1∶1 D.1∶2∶3【答案】D 【解析】设正方体的棱长为2,则内切球的半径为1,与棱相切的球的半径就是正方体中相对棱的距离的一半,也就是面对角线长的一半为=,外接球的半径为=.∵球的表面积S=4πR2,∴这三个球的表面积之比为4π×1∶4π×2∶4π×3=1∶2∶3.故选D.。

高中数学 人教A版 必修2 第一章 空间几何体 高考复习习题(选择题201-300)含答案解析

高中数学 人教A版 必修2 第一章 空间几何体 高考复习习题(选择题201-300)含答案解析
13.长方体的一个顶点上三条棱长为3、4、5,且它的八个顶点都在一个球面上,这个球的表面积是()
A. B. C.50πD.200π
14.在菱形 中, ,将 沿 折起到 的位置,若二面角 的大小为 ,则三棱锥 的外接球的体积为()
A. B. C. D.
15.已知球的直径 , 是该球球面上的两点, , ,则棱锥 的体积为()
高中数学人教A版必修2第一章空间几何体高考复习习题(选择题201-300)含答案解析
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()
A. +1B. +3
11.在三棱锥 中,底面 是边长为2的正三角形,顶点 在底面 上的射影为 的中心,若 为 的中点,且直线 与底面 所成角的正切值为 ,则三棱锥 外接球的表面积为()
A. B. C. D.
12.已知三棱锥 的每个顶点都在球 的表面上, 底面 ,且二面角 的正切值为4,则球 的表面积为
A. B. C. D.
A. B. C. D.
5.中国古代名词“刍童”原来是草堆的意思,古代用它作为长方体棱台(上、下底面均为矩形额棱台)的专用术语,关于“刍童”体积计算的描述,《九章算术》注曰:“倍上表,下表从之,亦倍小表,上表从之,各以其广乘之,并,以高若深乘之,皆六面一.”其计算方法是:将上底面的长乘二,与下底面的长相加,再与上底面的宽相乘;将下底面的长乘二,与上底面的长相加,再与下底面的宽相乘;把这两个数值相加,与高相乘,再取其六分之一,以此算法,现有上下底面为相似矩形的棱台,相似比为 ,高为3,且上底面的周长为6,则该棱台的体积的最大值是()

新人教A版高中数学必修2课件:立体几何初步的习题课

新人教A版高中数学必修2课件:立体几何初步的习题课

②连接 FO,如图所示. ∵EF∥CO,EF=CO=1,且 CE=1, ∴四边形 CEFO 为菱形.∴CF⊥EO. ∵四边形 ABCD 为正方形,∴BD⊥AC. 又平面 ACEF⊥平面 ABCD, 且平面 ACEF∩平面 ABCD=AC, ∴BD⊥平面 ACEF.∴CF⊥BD. 又 BD∩EO=O,∴CF⊥平面 BDE.
下列结论一定正确的是
()
A.l1⊥l4 B.l1∥l4 C.l1 与 l4 既不垂直也不平行 D.l1 与 l4 的位置关系不确定
解析:如图,在长方体 ABCD-A1B1C1D1 中,记 l1=DD1, l2=DC,l3=DA,若 l4=AA1,满足 l1⊥l2,l2⊥l3,l3⊥ l4,此时 l1∥l4,可以排除选项 A 和 C.若 l4=DC1,也满 足条件,可以排除选项 B. 答案:D
【集训冲关】 如图,在四棱锥 P-ABCD 中,底面 ABCD 是直角梯形,∠DAB =∠ABC=90°,且 AB=BC=2AD=2,侧面 PAB⊥底面 ABCD, △PAB 是等边三角形.(1)求证:BD⊥PC; (2)求二面角 B-PC-D 的大小. 解:(1)证明:如图,取 AB 的中点 O,连接 PO,CO. 因为△PAB 是等边三角形,所以 PO⊥AB. 又侧面 PAB⊥底面 ABCD,所以 PO⊥底面 ABCD. 因为 BD⊂平面 ABCD,所以 PO⊥BD. 又 AB=BC=2AD=2,∠ABC=∠DAB=90°, 所以△DAB≌△OBC.所以∠BCO=∠ABD,所以 BD⊥OC.又 OC⊂平面 POC,PO⊂平面 POC,OC∩PO=O, 所以 BD⊥平面 POC.因为 PC⊂平面 POC,所以 BD⊥PC.
3.如图所示的三棱锥 O-ABC 为长方体的一角.其中 OA,OB,OC

高中数学立体几何初步基本立体图形第2课时旋转体与简单组合体的结构特征课后提能训练新人教A版必修第二册

高中数学立体几何初步基本立体图形第2课时旋转体与简单组合体的结构特征课后提能训练新人教A版必修第二册

第八章 8.1 第2课时A级——基础过关练1.下列几何体中是旋转体的是( )①圆柱;②六棱锥;③正方体;④球体;⑤四面体.A.①和⑤B.①和②C.③和④D.①和④【答案】D【解析】根据旋转体的概念可知,①和④是旋转体.2.图①②中的图形折叠后的图形分别是( )A.圆锥、棱柱B.圆锥、棱锥C.球、棱锥D.圆锥、圆柱【答案】B【解析】根据图①的底面为圆,侧面为扇形,得图①折叠后的图形是圆锥;根据图②的底面为三角形,侧面均为三角形,得图②折叠后的图形是棱锥.3.等腰三角形ABC绕底边上的中线AD所在的直线旋转所得的几何体是( )A.圆台B.圆锥C.圆柱D.球【答案】B【解析】由题意可得AD⊥BC,且BD=CD,所以形成的几何体是圆锥.故选B.4.如图,在日常生活中,常用到的螺母可以看成一个组合体,其结构特征是( )A.一个棱柱中挖去一个棱柱B.一个棱柱中挖去一个圆柱C.一个圆柱中挖去一个棱锥D.一个棱台中挖去一个圆柱【答案】B【解析】一个六棱柱挖去一个等高的圆柱.故选B.5.(多选)如图所示的几何体,关于其结构特征,下列说法正确的是( )A .该几何体是由2个同底的四棱锥组成的几何体B .该几何体有12条棱、6个顶点C .该几何体有8个面,并且各面均为三角形D .该几何体有9个面,其中一个面是四边形,其余各面均为三角形 【答案】ABC【解析】该几何体用平面ABCD 可分割成两个四棱锥,因此它是这两个四棱锥的组合体,因而四边形ABCD 是它的一个截面而不是一个面.故D 说法不正确.故选ABC.6.下列说法正确的是________.①圆台可以由任意一个梯形绕其一边所在直线旋转形成;②在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;③圆柱的任意两条母线平行,圆锥的任意两条母线相交,圆台的任意两条母线延长后相交.【答案】③【解析】①错,圆台是直角梯形绕其直角边所在直线或等腰梯形绕其底边中点的连线所在直线旋转形成的;由母线的定义知②错;③正确.7.(2021年武汉期末)如图是一个几何体的表面展开图形,则这个几何体是________.【答案】圆柱【解析】一个长方形和两个圆折叠后,能围成的几何体是圆柱.8.一个半径为5 cm 的球,被一平面所截,球心到截面圆心的距离为4 cm,则截面圆面积为________cm 2.【答案】9π【解析】设截面圆半径为r cm,则r 2+42=52,所以r =3,所以截面圆面积为9π cm 2. 9.圆台的上底周长是下底周长的13,轴截面面积等于392,母线与底面的夹角为45°,求此圆台的高、母线长及两底面的半径.解:设圆台上、下底面半径分别为r ,R ,母线长为l ,高为h . 由题意,得2πr =13·2πR ,即R =3r .①12(2r +2R )·h =392,即(R +r )h =392.② 又母线与底面的夹角为45°,则h =R -r =22l .③ 联立①②③,得R =21,r =7,h =14,l =14 2.10.已知一个圆锥的底面半径为r ,高为h ,在此圆锥内有一个内接正方体,这个内接正方体的顶点在圆锥的底面和侧面上,求此正方体的棱长.解:作出圆锥的一个纵截面如图所示,其中AB ,AC 为母线,BC 为底面直径,DG ,EF 是正方体的棱,DE ,GF 是正方体的上、下底面的对角线.设正方体的棱长为x ,则DG =EF =x ,DE =GF =2x .依题意,得△ABC ∽△ADE ,∴hh -x=2r 2x,∴x =2rhh +2r,即此正方体的棱长为2rhh +2r.B 级——能力提升练11.已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同一侧,且距离为1,那么这个球的半径是( )A .4B .3C .2D .0.5【答案】B【解析】如图所示,∵两个平行截面的面积分别为5π,8π,∴两个截面圆的半径分别为r 1=5,r 2=2 2.∵球心到两个截面的距离d 1=R 2-r 21,d 2=R 2-r 22,∴d 1-d 2=R 2-5-R 2-8=1,∴R 2=9,∴R =3.12.(多选)对如图中的组合体的结构特征有以下几种说法,其中说法正确的是( )A .由一个长方体割去一个四棱柱所构成的B .由一个长方体与两个四棱柱组合而成的C .由一个长方体挖去一个四棱台所构成的D .由一个长方体与两个四棱台组合而成的【答案】AB【解析】如图,该组合体可由一个长方体割去一个四棱柱所构成,也可以由一个长方体与两个四棱柱组合而成.故选项AB正确.13.用一张长为8,宽为4的矩形硬纸卷成圆柱的侧面,则相应圆柱的底面半径是________.【答案】2π或4π【解析】如图所示,设底面半径为r,若矩形的长8恰好为卷成圆柱底面的周长,则2πr=8,所以r=4π;同理,若矩形的宽4恰好为卷成圆柱的底面周长,则2πr=4,所以r=2π.14.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的高为________.【答案】 3【解析】设圆锥的底面半径为r,母线长为l,则4π=πl2,所以母线长为l=2.所以半圆的弧长为2π,圆锥的底面的周长为2πr=2π,所以底面圆半径r=1.所以该圆锥的高为h =l2-r2=22-12= 3.15.如图所示的几何体是由一个圆柱挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的组合体,现用一个垂直于圆柱底面的平面去截这个组合体,则截面图形可能是________(填序号).【答案】①⑤【解析】当垂直于圆柱底面的平面经过圆锥的顶点时,截面图形如图①;当垂直于圆柱底面的平面不经过圆锥的顶点时,截面图形可能为图⑤.16.圆台的两底面面积分别为1,49,平行于底面的截面面积的2倍等于两底面面积之和,求圆台的高被截面分成的两部分的比.解:将圆台还原为圆锥,如图所示.O 2,O 1,O 分别是圆台上底面、截面和下底面的圆心,V 是圆锥的顶点.令VO 2=h ,O 2O 1=h 1,O 1O =h 2,则⎩⎪⎨⎪⎧h +h 1h =49+121,h +h 1+h 2h =491,所以⎩⎪⎨⎪⎧h 1=4h ,h 2=2h ,即h 1∶h 2=2∶1.故圆台的高被截面分成的两部分的比为2∶1.C 级——探索创新练17.我国古代名著《数书九章》中有云:“今有木长二丈四尺,围之五尺.葛生其下,缠木两周,上与木齐,问葛长几何?”其意思为“圆木长2丈4尺,圆周为5尺,葛藤从圆木的底部开始向上生长,绕圆木两周,刚好与圆木顶部平齐,问葛藤最短长多少尺?”(注:1丈等于10尺)则葛藤最短为( )A .29尺B .24尺C .26尺D .30尺【答案】C【解析】由题意,圆木的侧面展开图是矩形,将圆木侧面展开两次,则一条直角边(即圆木的高)长为24尺,其邻边长为5×2=10(尺),因此葛藤最短为242+102=26(尺).18.如图所示,已知圆锥SO 中,底面半径r =1,母线长l =4,M 为母线SA 上的一个点,且SM =x ,从点M 拉一根绳子,围绕圆锥侧面转到点A .求:(1)绳子的最短长度的平方f (x ); (2)绳子最短时,顶点到绳子的最短距离; (3)f (x )的最大值.解:将圆锥的侧面沿SA 展开在平面上,如图所示,则该图为扇形,且弧AA ′的长度L 就是圆O 的周长,∴L =2πr =2π.∴∠ASM =360°·L 2πl =2π2π×4×360°=90°.(1)由题意知绳子长度的最小值为展开图中的AM ,其值为AM =x 2+16(0≤x ≤4).f (x )=AM 2=x 2+16(0≤x ≤4).(2)绳子最短时,在展开图中作SR ⊥AM ,垂足为R ,则SR 的长度为顶点S 到绳子的最短距离.在△SAM 中,∵S △SAM =12SA ·SM =12AM ·SR ,∴SR =SA ·SM AM =4x x 2+16(0≤x ≤4),即绳子最短时,顶点到绳子的最短距离为4x x 2+16(0≤x ≤4).(3)∵f (x )=x 2+16(0≤x ≤4)是增函数, ∴f (x )的最大值为f (4)=32.。

人教版A版(2019)高中数学必修第二册:第八章 立体几何初步 综合测试(附答案与解析)

人教版A版(2019)高中数学必修第二册:第八章 立体几何初步 综合测试(附答案与解析)

第八章综合测试一、单项选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.对于用斜二测画法画水平放置的图形的直观图来说,下列描述不正确的是( )A .三角形的直观图仍然是一个三角形B .90︒角的直观图为45︒角C .与y 轴平行的线段长度变为原来的一半D .原来平行的线段仍然平行2.已知m 和n 是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中,一定能推出m β⊥的是( )A .αβ∥,且m α⊂B .m n ∥,且n β⊥C .m n ⊥,且n β⊂D .m n ⊥,且n β∥3.圆木长2丈4尺,圆周为5尺,葛藤从圆木的底部开始向上生长,绕圆木两周,刚好顶部与圆木平齐,问葛藤最少长多少尺?这个问题的答案为(注:1丈等于10尺)( )A .29尺B .24尺C .26尺D .30尺4.设,,αβγ为三个不同的平面,,m n 为两条不同的直线,则下列命题中为假命题的是( )A .当αβ⊥时,若βγ∥,则αγ⊥B .当m α⊥,n β⊥时,若αβ∥,则m n ∥C .当m α⊂,n β⊂时,若αβ∥,则,m n 是异面直线D .当m n ∥,n β⊥时,若m α⊂,则αβ⊥5.已知正三棱柱111ABC A B C -的侧棱长为4,底面边长为.若点M 是线段11A C 的中点,则直线BM 与底面ABC 所成角的正切值为( )A .53B .43C .34D .456.如图所示,表面积为 )AB .13πC .23πD7.已知三棱锥P ABC -中,PA =3AB =,4AC =,AB AC ⊥,PA ⊥平面ABC ,则此三棱锥的外接球的内接正方体的体积为( )A .16B .28C .64D .968.如图,在边长为1的正方形ABCD 中,点,E F 分别为边,BC AD 的中点,将ABF △沿BF 所在的直线进行翻折,将CDE △沿DE 所在的直线进行翻折,在翻折过程中,下列说法错误的是( )A .无论翻折到什么位置,A C 、两点都不可能重合B .存在某个位置,使得直线AF 与直线CE 所成的角为60︒C .存在某个位置,使得直线AF 与直线CE 所成的角为90︒D .存在某个位置,使得直线AB 与直线CD 所成的角为90︒9.等体积的球和正方体的表面积的大小关系是( )A .S S 正方体球>B .S S 正方体球<C .S S =正方体球D .无法确定10.1111ABCD A B C D 内有一圆柱,此圆柱恰好以直线1AC ,为轴,则该圆柱侧面积的最大值为( )A .B .CD 二、多项选择题(本大题共2小题,每小题5分,共10分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分)11.下列命题为真命题的是( )A .若两个平面有无数个公共点,则这两个平面重合B .若一个平面经过另一个平面的垂线,那么这两个平面相互垂直C .垂直于同一条直线的两条直线相互平行D .若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面不垂直12.如图所示,在四个正方体中,l 是正方体的一条体对角线,点M N P 、、分别为其所在棱的中点,能得出l ⊥平面MNP 的图形为( )A B C D 三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上)13.已知一圆锥的侧面展开图是半径为2的半圆,则该圆锥的表面积为________,体积为________.(本题第一空2分,第二空3分)14.已知正四棱锥的侧棱长为,侧棱与底面所成的角为60︒,则该四棱锥的高为________.15.如图所示,直线a ∥平面α,点A 在α另一侧,点,,B C D a ∈,线段,,AB AC AD 分别交α于点,,E F G .若44,5,BD CF AF ===,则EC =________.16.如图,在长方形ABCD 中,2AB =,1AD =,E 是CD 的中点,沿AE 将DAE △向上折起,使D 到'D 的位置,且平面'AED ⊥平面ABCE ,则直线'AD 与平面ABC 所成角的正弦值为________.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)一个圆锥形容器和一个圆柱形容器的轴截面如图所示,两容器内所盛液体的体积正好相等,且液面高度h 也相等,用a 将h 表示出来。

高三数学二轮复习教学案——立体几何(2)

高三数学二轮复习教学案——立体几何(2)

高三数学二轮复习教学案——立体几何(2)班级__________姓名_____________学号_________【基础训练】1. 如图,正方体ABCD ­A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.2.三棱锥P -ABC 中,三条侧棱两两垂直,且长度都为1,点E 为BC 上一点,则截面PAE 面积的最小值为_____________.3、已知a 、b 、c 是三条不重合直线,α、β、γ是三个不重合的平面,下列命题:⑴a ∥c ,b ∥c ⇒a ∥b ;⑵a ∥γ,b ∥γ⇒a ∥b ;⑶c ∥α,c ∥β⇒α∥β;⑷γ∥α,β∥α⇒γ∥β;⑸a ∥c ,α∥c ⇒a ∥α;⑹a ∥γ,α∥γ⇒a ∥α。

其中正确的命题是 。

4、已知正方体ABCD -A'B'C'D',则该正方体的体积、四棱锥C'-ABCD 的体积以及该正方体的外接球的体积之比为 _________________.5.. 如图,四棱锥P -ABCD 的底面是边长为3的正方形,侧棱PA ⊥平面ABCD ,点E 在侧棱PC 上,且BE ⊥PC ,若6=BE ,则四棱锥P -ABCD 的体积为 _________ .6. 由曲线22x y =,2||=x 围成的图形绕y 轴旋转一周所得的旋转体的体积为1V ;满足422≤+y x ,1)1(22≥-+y x ,1)1(22≥++y x 的点组成的图形绕y 轴旋转一周所得的旋转体的体积为2V ,则1V :2V = .【典型例题】7. 已知三棱锥P —ABC 中,PC ⊥底面ABC ,AB=BC ,D 、F 分别为AC 、PC 的中点,DE ⊥AP 于E .(1)求证:AP ⊥平面BDE ;(2)求证:平面BDE ⊥平面BDF ;(3)若AE ∶EP=1∶2,求截面BEF 分三棱锥P —ABC 所成两部分的体积比.8. 如图,四棱锥P -ABCD 中,底面ABCD 是一个边长为2的正方形,PA⊥平面ABCD ,且24=PC .M 是PC 的中点,在DM 上有点G ,过G 和AP作平面交平面BDM 于GH .(1)求四棱锥P -ABCD 的体积;(2)求证:AP ∥GH .9. 如图,在棱长均为4的三棱柱111ABC A B C -中,D 、1D分别是BC 和11B C 的中点. (1)求证:11A D ∥平面1AB D ;(2)若平面ABC ⊥平面11BCC B ,160B BC ∠= ,求三棱锥1B ABC -的体积.10. 如图一简单几何体的一个面ABC 内接于圆O ,G ,H 分别是AE ,BC 的中点,AB 是圆O 的直径,四边形DCBE 为平行四边形,且DC ⊥平面ABC .(1)求证:GH //平面ACD ;(2)证明:平面ACD ⊥平面ADE ;(3)若AB =2,BC =1,23tan =∠EAB ,试求该几何体的体积V .。

高中数学第八章立体几何初步 空间点直线平面之间的位置关系课后提能训练新人教A版必修第二册

高中数学第八章立体几何初步 空间点直线平面之间的位置关系课后提能训练新人教A版必修第二册

第八章 8.4 8.4.2A级——基础过关练1.若a和b是异面直线,b和c是异面直线,则a和c的位置关系是( )A.异面或平行B.异面或相交C.异面D.相交、平行或异面【答案】D【解析】异面直线不具有传递性,可以以长方体为载体加以说明,a,b异面,直线c的位置可如图所示.故选D.2.(多选)下列结论正确的是( )A.直线a∥平面α,直线b⊂α,则a∥bB.若a⊂α,b⊄α,则a,b无公共点C.若a⊄α,则a∥α或a与α相交D.若a∩α=A,则a⊄α【答案】CD【解析】结合直线与平面的位置关系可知,AB错误,CD正确.3.已知平面α与平面β,γ都相交,则这三个平面可能的交线有( )A.1条或2条B.2条或3条C.1条或3条D.1条或2条或3条【答案】D【解析】当三个平面两两相交且过同一直线时,它们有1条交线;当平面β和γ平行时,它们的交线有2条;当这三个平面两两相交且不过同一条直线时,它们有3条交线.4.如果点M是两条异面直线外的一点,则过点M且与a,b都平行的平面( )A.只有一个B.恰有两个C.没有或只有一个D.有无数个【答案】C【解析】当点M在过a且与b平行的平面或过b且与a平行的平面内时,这样满足条件的平面没有;当点M不在上述两个平面内时,满足条件的平面只有一个.故选C.5.若三个平面两两相交,且三条交线互相平行,则这三个平面把空间分成( )A.5部分 B.6部分C.7部分D.8部分【答案】C【解析】如图所示,可以将空间划分为7部分.故选C.6.若直线l上有两点到平面α的距离相等,则直线l与平面α的关系是________.【答案】平行或相交【解析】当这两点在α的同侧时,l与α平行;当这两点在α的异侧时,l与α相交.7.若点A∈α,B∉α,C∉α,则平面ABC与平面α的位置关系是________.【答案】相交【解析】∵点A∈α,B∉α,C∉α,∴平面ABC与平面α有公共点,且不重合.∴平面ABC 与平面α的位置关系是相交.8.如图所示,在正方体ABCD-A1B1C1D1中判断下列位置关系:(1)AD1所在直线与平面BCC1的位置关系是________;(2)平面A1BC1与平面ABCD的位置关系是________.【答案】(1)平行(2)相交【解析】(1)AD1所在的直线与平面BCC1没有公共点,所以平行;(2)平面A1BC1与平面ABCD 有公共点B,故相交.9.如图,平面α,β,γ满足α∥β,α∩γ=a,β∩γ=b,判断a与b、a与β的关系并证明你的结论.解:a∥b,a∥β.证明如下:由α∩γ=a知a⊂α且a⊂γ.由β∩γ=b知b⊂β且b⊂γ.因为α∥β,a⊂α,b⊂β,所以a,b无公共点.又因为a⊂γ且b⊂γ,所以a∥b.因为α∥β,所以α与β无公共点.又a⊂α,所以a与β无公共点,所以a∥β.10.三个平面α,β,γ,如果α∥β,γ∩α=a,γ∩β=b,且直线c⊂β,c∥b.(1)判断c与α的位置关系,并说明理由;(2)判断c与a的位置关系,并说明理由.解:(1)c∥α.因为α∥β,所以α与β没有公共点.又c⊂β,所以c与α无公共点,则c∥α.(2)c∥a.因为α∥β,所以α与β没有公共点.又γ∩α=a,γ∩β=b,则a⊂α,b⊂β,且a,b⊂γ,a,b没有公共点.由于a,b都在平面γ内,因此a∥b.又c∥b,所以c∥a.B级——能力提升练11.(多选)以下说法正确的是( )A.三个平面最多可以把空间分成八部分B.若直线a⊂平面α,直线b⊂平面β,则“a与b相交”与“α与β相交”等价C.若α∩β=l,直线a⊂平面α,直线b⊂平面β,且a∩b=P,则P∈lD.若n条直线中任意两条共面,则它们共面【答案】AC【解析】易知A,C正确;对于B,逆推“α与β相交”推不出“a与b相交”,也可能a ∥b;对于D,反例:正方体的侧棱任意两条都共面,但这4条侧棱并不共面,故D错.故选AC.12.在空间四边形ABCD中,E,F分别为对角线AC,BD的中点,则BE与CF( )A.平行B.异面C.相交D.以上均有可能【答案】B【解析】假设BE与CF是共面直线,设此平面为α,则E,F,B,C∈α,所以BF,CE⊂α.而A∈CE,D∈BF,所以A,D∈α,即有A,B,C,D∈α,与ABCD为空间四边形矛盾,所以BE与CF是异面直线.故选B.13.不共面的四个定点到平面α的距离都相等,这样的平面α共有( )A.3个B.4个C.6个D.7个【答案】D【解析】把不共面的四个定点看作四面体的四个顶点,平面α可以分为两类:第一类:如图1所示,四个定点分布在α的一侧1个,另一侧3个,此类中α共有4个.第二类:如图2所示,四个定点分布在α的一侧2个,另一侧2个,此类中α共有3个.故符合题意的平面共有7个.故选D.图1 图214.已知,在梯形ABCD中,AB∥CD,AB⊂平面α,CD⊄平面α,则直线CD与平面α内的任意一条直线m的位置关系是________.【答案】平行或异面【解析】如图,由于ABCD是梯形,AB∥CD,所以AB与CD无公共点.又CD⊄平面α,所以CD与平面α无公共点.当m∥AB时,则m∥DC;当m与AB相交时,则m与DC异面.15.在直三棱柱ABC-A1B1C1中,E,F分别为A1B1,B1C1的中点.求证:平面ACC1A1与平面BEF相交.证明:∵在矩形AA1B1B中,E为A1B1的中点,∴AA1与BE不平行,则AA1,BE的延长线相交于一点,设此点为G.∴G∈AA1,G∈BE.又AA1⊂平面ACC1A1,BE⊂平面BEF,∴G∈平面ACC1A1,G∈平面BEF.∴平面ACC1A1与平面BEF相交.C级——探索创新练16.若四面体CDEF四个面均为正三角形,如图,正方体的底面与四面体CDEF的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n=( )A.6 B.7C.8 D.9【答案】C【解析】因为过F做垂直于CD的平面α垂直平分CD,所以该平面与过AB中点并与AB 垂直的平面β平行,平面β和正方体的4个侧面相交,由于EF和正方体的侧棱不平行,所以它与正方体的六个面所在的平面相交的平面个数为4.同理与CE相交的平面有4个,共8个.故选C.17.如图,在三棱锥A-BCD中,E,F是棱AD上异于A,D的不同两点,G,H是棱BC上异于B,C的不同两点,给出下列说法:①AB与CD为异面直线;②FH与CD,DB均为异面直线;③EG与FH为异面直线;④EG与AB为异面直线.其中正确的说法是________(填序号).【答案】①②③④【解析】因为直线CD⊂平面BCD,直线AB⊄平面BCD,点B∉直线DC,所以AB与CD为异面直线,①正确;同理,②③④正确.。

新教材 人教A版高中数学必修第二册 第八章立体几何初步 课时练习题及章末测验 精选配套习题含解析

新教材 人教A版高中数学必修第二册 第八章立体几何初步 课时练习题及章末测验 精选配套习题含解析

第八章立体几何初步1、棱柱、棱锥、棱台的结构特征................................................................................ - 1 -2、圆柱、圆锥、圆台、球与简单组合体的结构特征................................................ - 7 -3、立体图形的直观图.................................................................................................. - 12 -4、棱柱、棱锥、棱台的表面积和体积...................................................................... - 18 -5、圆柱、圆锥、圆台的表面积和体积...................................................................... - 23 -6、球的表面积和体积.................................................................................................. - 29 -7、平面 ......................................................................................................................... - 35 -8、空间点、直线、平面之间的位置关系.................................................................. - 40 -9、直线与直线平行直线与平面平行...................................................................... - 44 -10、平面与平面平行.................................................................................................... - 49 -11、直线与直线垂直.................................................................................................... - 56 -12、直线与平面垂直.................................................................................................... - 63 -13、平面与平面垂直.................................................................................................... - 70 -章末综合测验................................................................................................................ - 76 -1、棱柱、棱锥、棱台的结构特征一、选择题1.(多选题)观察如下所示的四个几何体,其中判断正确的是()A.①是棱柱B.②不是棱锥C.③不是棱锥D.④是棱台ACD[结合棱柱、棱锥、棱台的定义可知①是棱柱,②是棱锥,④是棱台,③不是棱锥.]2.(多选题)下列说法错误的是()A.有2个面平行,其余各面都是梯形的几何体是棱台B.多面体至少有3个面C.各侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面为平行四边形ABC[选项A错误,反例如图①;一个多面体至少有4个面,如三棱锥有4个面,不存在有3个面的多面体,所以选项B错误;选项C错误,反例如图②,上、下底面是全等的菱形,各侧面是全等的正方形,它不是正方体;根据棱柱的定义,知选项D正确.①②]3.在下列四个平面图形中,每个小四边形皆为正方形,其中可以沿相邻正方形的公共边折叠围成一个正方体的图形是()C[动手将四个选项中的平面图形折叠,看哪一个可以折叠围成正方体即可.]4.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定A[如图.因为有水的部分始终有两个平面平行,而其余各面都易证是平行四边形,因此是棱柱.]5.用一个平面去截一个三棱锥,截面形状是()A.四边形B.三角形C.三角形或四边形D.不可能为四边形C[按如图①所示用一个平面去截三棱锥,截面是三角形;按如图②所示用一个平面去截三棱锥,截面是四边形.①②]二、填空题6.一棱柱有10个顶点,其所有的侧棱长的和为60 cm,则每条侧棱长为________cm.12[该棱柱为五棱柱,共有5条侧棱,每条侧棱长都相等,所以每条侧棱长为12 cm.]7.如图所示,在所有棱长均为1的三棱柱上,有一只蚂蚁从点A出发,围着三棱柱的侧面爬行一周到达点A1,则爬行的最短路程为________.10[将三棱柱沿AA1展开如图所示,则线段AD1即为最短路线,即AD1=AD2+DD21=10.]8.以三棱台的顶点为三棱锥的顶点,这样可以把一个三棱台分成________个三棱锥.3[如图,三棱台可分成三棱锥C1-ABC,三棱锥C1-ABB1,三棱锥A-A1B1C1,共3个.]三、解答题9.如图所示的几何体中,所有棱长都相等,分析此几何体的构成?有几个面、几个顶点、几条棱?[解]这个几何体是由两个同底面的四棱锥组合而成的八面体,有8个面,都是全等的正三角形;有6个顶点;有12条棱.10.试从正方体ABCD-A1B1C1D1的八个顶点中任取若干,连接后构成以下空间几何体,并且用适当的符号表示出来.(1)只有一个面是等边三角形的三棱锥;(2)四个面都是等边三角形的三棱锥;(3)三棱柱.[解](1)如图①所示,三棱锥A1-AB1D1(答案不唯一).(2)如图②所示,三棱锥B1-ACD1(答案不唯一).(3)如图③所示,三棱柱A1B1D1-ABD(答案不唯一).①②③11.由五个面围成的多面体,其中上、下两个面是相似三角形,其余三个面都是梯形,并且这些梯形的腰延长后能相交于一点,则该多面体是() A.三棱柱B.三棱台C.三棱锥D.四棱锥B[该多面体有三个面是梯形,而棱锥最多有一个面是梯形(底面),棱柱最多有两个面是梯形(底面),所以该多面体不是棱柱、棱锥,而是棱台.三个梯形是棱台的侧面,另两个三角形是底面,所以这个棱台是三棱台.]12.如图所示都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是()①②③④A.①②B.②③C.③④D.①④B[在图②③中,⑤不动,把图形折起,则②⑤为对面,①④为对面,③⑥为对面,故图②③完全一样,而图①④则不同.]13.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱的对角线共有________条.10[在上底面选一个顶点,同时在下底面选一个顶点,且这两个顶点不在同一侧面上,这样上底面每个顶点对应两条对角线,所以共有10条.]14.如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A、B、C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点?(3)每个面的三角形面积为多少?[解](1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF为等腰三角形,△PEF为等腰直角三角形,△DPE和△DPF均为直角三角形.(3)S△PEF=12a2,S△DPF=S△DPE=12×2a×a=a2,S△DEF=S正方形ABCD-S△PEF-S△DPF-S△DPE=(2a)2-12a2-a2-a2=32a2.15.如图,在长方体ABCD-A1B1C1D1中,AB=3,BC=4,A1A=5,现有一只甲壳虫从点A出发沿长方体表面爬行到点C1来获取食物,试画出它的最短爬行路线,并求其路程的最小值.[解]把长方体的部分面展开,如图,有三种情况.对甲、乙、丙三种展开图利用勾股定理可得AC1的长分别为90,74,80,由此可见乙是最短线路,所以甲壳虫可以先在长方形ABB1A1内由A到E,再在长方形BCC1B1内由E到C1,也可以先在长方形AA1D1D内由A到F,再在长方形DCC1D1内由F到C1,其最短路程为74.2、圆柱、圆锥、圆台、球与简单组合体的结构特征一、选择题1.下列几何体中是旋转体的是 ( )①圆柱;②六棱锥;③正方体;④球体;⑤四面体.A .①和⑤B .①和②C .③和④D .①和④D [根据旋转体的概念可知,①和④是旋转体.]2.图①②中的图形折叠后的图形分别是( )① ②A .圆锥、棱柱B .圆锥、棱锥C .球、棱锥D .圆锥、圆柱B [根据图①的底面为圆,侧面为扇形,得图①折叠后的图形是圆锥;根据图②的底面为三角形,侧面均为三角形,得图②折叠后的图形是棱锥.]3.圆锥的侧面展开图是直径为a 的半圆面,那么此圆锥的轴截面是( )A .等边三角形B .等腰直角三角形C .顶角为30°等腰三角形D .其他等腰三角形A [设圆锥底面圆的半径为r ,依题意可知2πr =π·a 2,则r =a 4,故轴截面是边长为a 2的等边三角形.]4.如图,在日常生活中,常用到的螺母可以看成一个组合体,其结构特征是( )A .一个棱柱中挖去一个棱柱B .一个棱柱中挖去一个圆柱C .一个圆柱中挖去一个棱锥D .一个棱台中挖去一个圆柱B [一个六棱柱挖去一个等高的圆柱,选B .]5.用长为8,宽为4的矩形做侧面围成一个圆柱,则圆柱的轴截面的面积为( )A .32B .32πC .16πD .8πB [若8为底面周长,则圆柱的高为4,此时圆柱的底面直径为8π,其轴截面的面积为32π;若4为底面周长,则圆柱的高为8,此时圆柱的底面直径为4π,其轴截面的面积为32π.]二、填空题6.如图是一个几何体的表面展开图形,则这个几何体是________.圆柱 [一个长方形和两个圆折叠后,能围成的几何体是圆柱.]7.下列命题中错误的是________.①过球心的截面所截得的圆面的半径等于球的半径;②母线长相等的不同圆锥的轴截面的面积相等;③圆台所有平行于底面的截面都是圆面;④圆锥所有的轴截面都是全等的等腰三角形.② [因为圆锥的母线长一定,根据三角形面积公式,当两条母线的夹角为90°时,圆锥的轴截面面积最大.]8.一个半径为5 cm 的球,被一平面所截,球心到截面圆心的距离为4 cm ,则截面圆面积为________ cm 2.9π [设截面圆半径为r cm ,则r 2+42=52,所以r =3.所以截面圆面积为9π cm 2.]三、解答题9.如图所示,梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕AD所在直线旋转一周时,其他各边旋转围成了一个几何体,试描述该几何体的结构特征.[解]如图所示,旋转所得的几何体是一个圆柱挖去两个圆锥后剩余部分构成的组合体.10.一个圆台的母线长为12 cm,两底面面积分别为4π cm2和25π cm2.求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.[解](1)圆台的轴截面是等腰梯形ABCD(如图所示).由已知可得上底面半径O1A=2(cm),下底面半径OB=5(cm),又因为腰长为12 cm,所以高AM=122-(5-2)2=315(cm).(2)如图所示,延长BA,OO1,CD交于点S,设截得此圆台的圆锥的母线长为l,则由△SAO1∽△SBO可得l-12l=25,解得l=20 (cm),即截得此圆台的圆锥的母线长为20 cm.11. (多选题)对如图中的组合体的结构特征有以下几种说法,其中说法正确的是()A.由一个长方体割去一个四棱柱所构成的B.由一个长方体与两个四棱柱组合而成的C.由一个长方体挖去一个四棱台所构成的D.由一个长方体与两个四棱台组合而成的AB[如图,该组合体可由一个长方体割去一个四棱柱所构成,也可以由一个长方体与两个四棱柱组合而成.故选项AB正确.]12.在正方体ABCD-A′B′C′D′中,P为棱AA′上一动点,Q为底面ABCD上一动点,M是PQ的中点,若点P,Q都运动时,点M构成的点集是一个空间几何体,则这个几何体是()A.棱柱B.棱台C.棱锥D.球的一部分A[由题意知,当P在A′处,Q在AB上运动时,M的轨迹为过AA′的中点,在平面AA′B′B内平行于AB的线段(靠近AA′),当P在A′处,Q在AD上运动时,M的轨迹为过AA′的中点,在平面AA′D′D内平行于AD的线段(靠近AA′), 当Q在B处,P在AA′上运动时,M的轨迹为过AB的中点,在平面AA′B′B内平行于AA′的线段(靠近AB), 当Q在D处,P在AA′上运动时,M的轨迹为过AD的中点,在平面AA′D′D内平行于AA′的线段(靠近AB), 当P在A处,Q在BC上运动时,M 的轨迹为过AB的中点,在平面ABCD内平行于AD的线段(靠近AB), 当P在A处,Q在CD上运动时,M的轨迹为过AD的中点,在平面ABCD内平行于AB的线段(靠近AD), 同理得到:P在A′处,Q在BC上运动;P在A′处,Q在CD上运动;Q在C处,P在AA′上运动;P,Q都在AB,AD,AA′上运动的轨迹.进一步分析其他情形即可得到M的轨迹为棱柱体.故选A.]13.如图所示,已知圆锥SO中,底面半径r=1,母线长l=4,M为母线SA 上的一个点,且SM=x,从点M拉一根绳子,围绕圆锥侧面转到点A.则绳子的最短长度的平方f(x)=________.x2+16(0≤x≤4)[将圆锥的侧面沿SA展开在平面上,如图所示,则该图为扇形,且弧AA′的长度L就是圆O的周长,所以L=2πr=2π,所以∠ASM=Ll=π2.由题意知绳子长度的最小值为展开图中的AM,其值为AM=x2+16 (0≤x≤4).所以f(x)=AM2=x2+16(0≤x≤4).]14.球的两个平行截面的面积分别是5π,8π,两截面间的距离为1,求球的半径.[解]设两个平行截面圆的半径分别为r1,r2,球半径为R.由πr21=5π,得r1= 5.由πr22=8π,得r2=2 2.(1)如图,当两个截面位于球心O的同侧时,有R2-r21-R2-r22=1,即R2-5=1+R2-8,解得R=3.(2)当两个截面位于球心O的异侧时,有R2-5+R2-8=1.此方程无解.由(1)(2)知球的半径为3.15.圆台上底面面积为π,下底面面积为16π,用一个平行于底面的平面去截圆台,该平面自上而下分圆台的高的比为2∶1,求这个截面的面积.[解]圆台的轴截面如图,O1,O2,O3分别为上底面、下底面、截面圆心.过点D作DF⊥AB于点F,交GH于点E.由题意知DO1=1,AO2=4,∴AF=3.∵DE=2EF,∴DF=3EF,∴GEAF=DEDF=23,∴GE=2.∴⊙O3的半径为3.∴这个截面面积为9π.3、立体图形的直观图一、选择题1.(多选题)如图,已知等腰三角形ABC,则如下所示的四个图中,可能是△ABC 的直观图的是()A B C DCD[原等腰三角形画成直观图后,原来的腰长不相等,CD两图分别为在∠x′O′y′成135°和45°的坐标系中的直观图.]2.(多选题)对于用斜二测画法画水平放置的图形的直观图来说,下列描述正确的是()A.三角形的直观图仍然是一个三角形B.90°的角的直观图会变为45°的角C.与y轴平行的线段长度变为原来的一半D.由于选轴的不同,所得的直观图可能不同ACD [对于A ,根据斜二测画法特点知,相交直线的直观图仍是相交直线,因此三角形的直观图仍是一个三角形,故A 正确;对于B,90°的角的直观图会变为45°或135°的角,故B 错误;C ,D 显然正确.]3.把△ABC 按斜二测画法得到△A ′B ′C ′(如图所示),其中B ′O ′=C ′O ′=1,A ′O ′=32,那么△ABC 是一个( )A .等边三角形B .直角三角形C .等腰三角形D .三边互不相等的三角形A [根据斜二测画法还原三角形在直角坐标系中的图形,如图所示:由图易得AB =BC =AC =2,故△ABC 为等边三角形,故选A .]4.一个建筑物上部为四棱锥,下部为长方体,且四棱锥的底面与长方体的上底面尺寸一样,已知长方体的长、宽、高分别为20 m 、5 m 、10 m ,四棱锥的高为8 m ,若按1∶500的比例画出它的直观图,那么直观图中,长方体的长、宽、高和棱锥的高应分别为( )A .4 cm,1 cm,2 cm,1.6 cmB .4 cm,0.5 cm,2 cm,0.8 cmC .4 cm,0.5 cm,2 cm,1.6 cmD .2 cm,0.5 cm,1 cm,0.8 cmC [由比例尺可知长方体的长、宽、高和四棱锥的高分别为4 cm,1 cm,2 cm 和1.6 cm ,再结合斜二测画法,可知直观图的相应尺寸应分别为4 cm,0.5 cm ,2 cm ,1.6 cm.]5.如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A .2+ 2B .1+22C .2+22D .1+2A[画出其相应平面图易求,故选A.]二、填空题6.斜二测画法中,位于平面直角坐标系中的点M(4,4)在直观图中的对应点是M′,则点M′的坐标为________.(4,2)[在x′轴的正方向上取点M1,使O′M1=4,在y′轴上取点M2,使O′M2=2,过M1和M2分别作平行于y′轴和x′轴的直线,则交点就是M′.] 7.水平放置的△ABC的斜二测直观图如图所示,已知A′C′=3,B′C′=2,则AB边上的中线的实际长度为________.2.5[由直观图知,由原平面图形为直角三角形,且AC=A′C′=3,BC=2B′C′=4,计算得AB=5,所求中线长为2.5.]8.水平放置的△ABC在直角坐标系中的直观图如图所示,其中D′是A′C′的中点,且∠ACB≠30°,则原图形中与线段BD的长相等的线段有________条.2[△ABC为直角三角形,因为D为AC中点,所以BD=AD=CD.所以与BD的长相等的线段有2条.]三、解答题9.画出水平放置的四边形OBCD(如图所示)的直观图.[解](1)过点C作CE⊥x轴,垂足为点E,如图①所示,画出对应的x′轴、y′轴,使∠x′O′y′=45°,如图②所示.①②③(2)如图②所示,在x′轴上取点B′,E′,使得O′B′=OB,O′E′=OE;在y′轴上取一点D′,使得O′D′=12OD;过点E′作E′C′∥y′轴,使E′C′=12EC.(3)连接B′C′,C′D′,并擦去x′轴与y′轴及其他一些辅助线,如图③所示,四边形O′B′C′D′就是所求的直观图.10.如图,△A′B′C′是水平放置的平面图形的直观图,试画出原平面图形△ABC.[解](1)画法:过C′,B′分别作y′轴的平行线交x′轴于D′,E′.(2)在直角坐标系xOy中.在x轴上取两点E,D使OE=O′E′,OD=O′D′,再分别过E,D作y轴平行线,取EB=2E′B′,DC=2D′C′.连接OB,OC,BC即求出原△ABC.11.如图所示,△A′O′B′表示水平放置的△AOB的直观图,B′在x′轴上,A′O′和x′轴垂直,且A′O′=2,则△AOB的边OB上的高为()A .2B .4C .2 2D .42D [设△AOB 的边OB 上的高为h ,由题意,得S 原图形=22S 直观图,所以12OB ·h =22×12×2×O ′B ′.因为OB =O ′B ′,所以h =4 2.故选D .]12.已知两个圆锥,底面重合在一起,其中一个圆锥顶点到底面的距离为2 cm ,另一个圆锥顶点到底面的距离为 3 cm ,则其直观图中这两个顶点之间的距离为( )A .2 cmB .3 cmC .2.5 cmD .5 cmD [由题意可知其直观图如图,由图可知两个顶点之间的距离为5 cm.故选D .]13.已知用斜二测画法,画得的正方形的直观图面积为182,则原正方形的面积为________.72 [如图所示,作出正方形OABC 的直观图O ′A ′B ′C ′,作C ′D ′⊥x ′轴于点D ′.S 直观图=O ′A ′×C ′D ′.又S 正方形=OC ×OA . 所以S 正方形S 直观图=OC ×OAO ′A ′×C ′D ′, 又在Rt △O ′D ′C ′中,O ′C ′=2C ′D ′,即C ′D ′=22O ′C ′,结合平面图与直观图的关系可知OA =O ′A ′,OC =2O ′C ′, 所以S 正方形S 直观图=OC ×OA OA ×22O ′C ′=2O ′C ′22O ′C ′=2 2. 又S 直观图=182,所以S 正方形=22×182=72.]14.如图是一个边长为1的正方形A ′B ′C ′D ′,已知该正方形是某个水平放置的四边形用斜二测画法画出的直观图,试画出该四边形的真实图形并求出其面积.[解]四边形ABCD的真实图形如图所示,因为A′C′在水平位置,A′B′C′D′为正方形,所以∠D′A′C′=∠A′C′B′=45°,所以在原四边形ABCD中,AD⊥AC,AC⊥BC,因为AD=2D′A′=2,AC=A′C′=2,=AC·AD=2 2.所以S四边形ABCD15.画出底面是正方形,侧棱均相等的四棱锥的直观图.[解](1)画轴.画x轴、y轴、z轴,使∠xOy=45°,∠xOz=90°,如图①.(2)画底面.以O为中心在xOy平面内画出正方形水平放置的直观图ABCD.(3)画顶点.在Oz轴上截取OP,使OP的长度是原四棱锥的高.(4)成图.连接P A、PB、PC、PD,并擦去辅助线,得四棱锥的直观图如图②.①②4、棱柱、棱锥、棱台的表面积和体积一、选择题1.如图,ABC-A′B′C′是体积为1的棱柱,则四棱锥C-AA′B′B的体积是()A .13 B .12 C .23D .34C [∵V C -A ′B ′C ′=13V ABC -A ′B ′C ′=13,∴V C -AA ′B ′B=1-13=23.] 2.正方体的表面积为96,则正方体的体积为( ) A .48 6 B .64 C .16 D .96[答案] B3.棱锥的一个平行于底面的截面把棱锥的高分成1∶2(从顶点到截面与从截面到底面)两部分,那么这个截面把棱锥的侧面分成两部分的面积之比等于( )A .1∶9B .1∶8C .1∶4D .1∶3 B [两个锥体的侧面积之比为1∶9,小锥体与台体的侧面积之比为1∶8,故选B .]4.若正方体八个顶点中有四个恰好是正四面体的顶点,则正方体的表面积与正四面体的表面积之比是( )A . 3B . 2C .23D .32 A [如图所示,正方体的A ′、C ′、D 、B 的四个顶点可构成一个正四面体,设正方体边长为a ,则正四面体边长为2a . ∴正方体表面积S 1=6a 2, 正四面体表面积为S 2=4×34×(2a )2=23a 2,∴S 1S 2=6a 223a 2= 3.] 5.四棱台的两底面分别是边长为x 和y 的正方形,各侧棱长都相等,高为z ,且侧面积等于两底面积之和,则下列关系式中正确的是( )A .1x =1y +1zB .1y =1x +1zC .1z =1x +1yD .1z =1x +yC [由条件知,各侧面是全等的等腰梯形,设其高为h ′,则根据条件得, ⎩⎪⎨⎪⎧4·x +y 2·h ′=x 2+y 2,z 2+⎝ ⎛⎭⎪⎫y -x 22=h ′2,消去h ′得,4z 2(x +y )2+(y -x )2(y +x )2=(x 2+y 2)2. ∴4z 2(x +y )2=4x 2y 2, ∴z (x +y )=xy , ∴1z =1x +1y .] 二、填空题6.已知一个长方体的三个面的面积分别是2,3,6,则这个长方体的体积为________.6[设长方体从一点出发的三条棱长分别为a ,b ,c ,则⎩⎪⎨⎪⎧ab =2,ac =3,bc =6,三式相乘得(abc )2=6,故长方体的体积V =abc = 6.]7.(一题两空)已知棱长为1,各面均为等边三角形的四面体,则它的表面积是________,体积是________.3 212 [S 表=4×34×12=3, V 体=13×34×12×12-⎝ ⎛⎭⎪⎫33 2=212.]8.如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,则点A 到平面A 1BD 的距离d =________.33a [在三棱锥A 1-ABD 中,AA 1是三棱锥A 1-ABD 的高,AB =AD =AA 1=a ,A 1B =BD =A 1D =2a ,∵V 三棱锥A 1-ABD =V 三棱锥A -A 1BD , ∴13×12a 2×a =13×12×2a ×32×2a ×d , ∴d =33a .∴点A 到平面A 1BD 的距离为33a .] 三、解答题9.已知四面体ABCD 中,AB =CD =13,BC =AD =25,BD =AC =5,求四面体ABCD 的体积.[解] 以四面体的各棱为对角线还原为长方体,如图. 设长方体的长、宽、高分别为x ,y ,z ,则⎩⎨⎧x 2+y 2=13,y 2+z 2=20,x 2+z 2=25,∴⎩⎨⎧x =3,y =2,z =4.∵V D -ABE =13DE ·S △ABE =16V 长方体, 同理,V C -ABF =V D -ACG =V D -BCH =16V 长方体, ∴V 四面体ABCD =V 长方体-4×16V 长方体=13V 长方体. 而V 长方体=2×3×4=24,∴V 四面体ABCD =8.10.如图,已知正三棱锥S -ABC 的侧面积是底面积的2倍,正三棱锥的高SO =3,求此正三棱锥的表面积.[解] 如图,设正三棱锥的底面边长为a ,斜高为h ′,过点O 作OE ⊥AB ,与AB 交于点E ,连接SE ,则SE ⊥AB ,SE =h ′.∵S 侧=2S 底, ∴12·3a ·h ′=34a 2×2. ∴a =3h ′.∵SO ⊥OE ,∴SO 2+OE 2=SE 2. ∴32+⎝ ⎛⎭⎪⎫36×3h ′2=h ′2.∴h ′=23,∴a =3h ′=6.∴S 底=34a 2=34×62=93,S 侧=2S 底=18 3. ∴S 表=S 侧+S 底=183+93=27 3.11.正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为( ) A .3π B .43 C .32πD .1B [如图所示,由图可知,该几何体由两个四棱锥构成,并且这两个四棱锥体积相等.四棱锥的底面为正方形,且边长为2,故底面积为(2)2=2;四棱锥的高为1,故四棱锥的体积为13×2×1=23.则几何体的体积为2×23=43.]12.正三棱锥的底面周长为6,侧面都是直角三角形,则此棱锥的体积为( ) A .423 B . 2 C .223 D .23D [由题意,正三棱锥的底面周长为6,所以正三棱锥的底面边长为2,侧面均为直角三角形,可知侧棱长均为2,三条侧棱两两垂直,所以此三棱锥的体积为13×12×2×2×2=23.]13.(一题两空)已知某几何体是由两个全等的长方体和一个三棱柱组合而成,如图所示,其中长方体的长、宽、高分别为4,3,3,三棱柱底面是直角边分别为4,3的直角三角形,侧棱长为3,则此几何体的体积是________,表面积是________.90 138 [该几何体的体积V =4×6×3+12×4×3×3=90,表面积S =2(4×6+4×3+6×3)-3×3+12×4×3×2+32+42×3+3×4=138.]14.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为4的正方形,EF ∥AB ,EF =2,EF 上任意一点到平面ABCD 的距离均为3,求该多面体的体积.[解] 如图,连接EB ,EC .四棱锥E -ABCD 的体积 V 四棱锥E -ABCD =13×42×3=16. ∵AB =2EF ,EF ∥AB , ∴S △EAB =2S △BEF .∴V 三棱锥F -EBC =V 三棱锥C -EFB =12V 三棱锥C -ABE =12V 三棱锥E -ABC =12×12V 四棱锥E -ABCD =4. ∴多面体的体积V =V 四棱锥E -ABCD +V 三棱锥F -EBC =16+4=20.15.一个正三棱锥P -ABC 的底面边长为a ,高为h .一个正三棱柱A 1B 1C 1-A 0B 0C 0的顶点A 1,B 1,C 1分别在三条棱上,A 0,B 0,C 0分别在底面△ABC 上,何时此三棱柱的侧面积取到最大值?[解] 设三棱锥的底面中心为O ,连接PO (图略),则PO 为三棱锥的高,设A 1,B 1,C 1所在的底面与PO 交于O 1点,则A 1B 1AB =PO 1PO ,令A 1B 1=x ,而PO =h ,则PO 1=ha x ,于是OO 1=h -PO 1=h -h a x =h ⎝ ⎛⎭⎪⎫1-x a .所以所求三棱柱的侧面积为S =3x ·h ⎝ ⎛⎭⎪⎫1-x a =3h a (a -x )x =3h a ⎣⎢⎡⎦⎥⎤a 24-⎝ ⎛⎭⎪⎫x -a 22.当x =a 2时,S 有最大值为34ah ,此时O 1为PO 的中点.5、圆柱、圆锥、圆台的表面积和体积一、选择题1.面积为Q 的正方形,绕其一边旋转一周,则所得几何体的侧面积为( ) A .πQ B .2πQ C .3πQD .4πQB [正方形绕其一边旋转一周,得到的是圆柱,其侧面积为S =2πrl =2π·Q ·Q =2πQ .故选B .]2.一个圆台的母线长等于上、下底面半径和的一半,且侧面积是32π,则母线长为( )A .2B .2 2C .4D .8C[圆台的轴截面如图,由题意知,l=12(r+R),S圆台侧=π(r+R)·l=π·2l·l=32π,∴l=4.]3.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为()A.7B.6C.5D.3A[设圆台较小底面半径为r,则另一底面半径为3r.由S=π(r+3r)·3=84π,解得r=7.]4.已知某圆柱的底面周长为12,高为2,矩形ABCD是该圆柱的轴截面,则在此圆柱侧面上,从A到C的路径中,最短路径的长度为()A.210 B.2 5C.3 D.2A[圆柱的侧面展开图如图,圆柱的侧面展开图是矩形,且矩形的长为12,宽为2,则在此圆柱侧面上从A到C的最短路径为线段AC,AC=22+62=210.故选A.]5.用平行于圆锥底面的平面截圆锥,所得截面面积与底面面积的比是1∶3,这截面把圆锥母线分为两段的比是()A.1∶3 B.1∶ (3-1)C.1∶9 D.3∶2B[由面积比为1∶3,知小圆锥母线与原圆锥母线长之比为1∶3,故截面把圆锥母线分为1∶(3-1)两部分,故选B.]二、填空题6.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________.2 [设圆锥的母线为l ,圆锥底面半径为r ,由题意可知,πrl +πr 2=3π,且πl =2πr .解得r =1,即直径为2.]7.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸) 3 [圆台的轴截面是下底长为12寸,上底长为28寸,高为18寸的等腰梯形,雨水线恰为中位线,故雨水线直径是20寸,所以降水量为π3(102+10×6+62)×9π×142=3(寸).]8.圆台的上、下底面半径分别是10 cm 和20 cm ,它的侧面展开图扇环的圆心角是180°(如图),那么圆台的体积是________.7 000π3 3 cm 3[180°=20-10l ×360°,∴l =20, h =103,V =13π(r 21+r 22+r 1r 2)·h =7 0003π3 (cm 3).] 三、解答题9.若圆锥的表面积是15π,侧面展开图的圆心角是60°,求圆锥的体积. [解] 设圆锥的底面半径为r ,母线为l , 则2πr =13πl ,得l =6r .又S 圆锥=πr 2+πr ·6r =7πr 2=15π,得r =157,圆锥的高h =⎝⎛⎭⎪⎫61572-⎝⎛⎭⎪⎫1572=53,V =13πr 2h =13π×157×53=2537π.10.如图是一个底面直径为20 cm 的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6 cm ,高为20 cm 的圆锥形铅锤,且水面高于圆锥顶部,当铅锤从水中取出后,杯里的水将下降多少?[解] 因为圆锥形铅锤的体积为13×π×⎝ ⎛⎭⎪⎫622×20=60π(cm 3),设水面下降的高度为x cm ,则小圆柱的体积为π⎝ ⎛⎭⎪⎫2022x =100πx .所以有60π=100πx ,解此方程得x =0.6. 故杯里的水将下降0.6 cm.11.已知圆柱的侧面展开图矩形面积为S ,底面周长为C ,它的体积是( ) A .C 34πS B .4πS C 3 C .CS 2πD .SC 4πD [设圆柱底面半径为r ,高为h ,则⎩⎨⎧Ch =S ,C =2πr ,∴r =C 2π,h =S C .∴V =πr 2·h =π⎝ ⎛⎭⎪⎫C 2π2·S C =SC4π.]12.如图,已知底面半径为r 的圆柱被一个平面所截,剩下部分母线长的最大值为a ,最小值为b .那么圆柱被截后剩下部分的体积是________.πr 2(a +b )2 [采取补体方法,相当于一个母线长为a +b 的圆柱截成了两个体积相等的部分,所以剩下部分的体积V =πr 2(a +b )2.]13.(一题两空)圆柱内有一个内接长方体ABCD -A 1B 1C 1D 1,长方体的体对角线长是10 2 cm ,圆柱的侧面展开图为矩形,此矩形的面积是100π cm 2,则圆柱的底面半径为________cm ,高为________cm.5 10 [设圆柱底面半径为r cm ,高为h cm ,如图所示,则圆柱轴截面长方形的对角线长等于它的内接长方体的体对角线长,则:⎩⎨⎧(2r )2+h 2=(102)2,2πrh =100π, 所以⎩⎨⎧r =5,h =10.即圆柱的底面半径为5 cm ,高为10 cm.]14.如图在底面半径为2,母线长为4的圆锥中内接一个高为3的圆柱,求圆柱的表面积.[解] 设圆锥的底面半径为R ,圆柱的底面半径为r ,表面积为S .则R =OC =2,AC =4, AO =42-22=2 3.如图所示,易知△AEB ∽△AOC ,所以AE AO =EB OC ,即323=r 2,所以r =1,S 底=2πr 2=2π,S 侧=2πr ·h =23π. 所以S =S 底+S 侧=2π+23π=(2+23)π.15.某养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪用).已建的仓库的底面直径为12 m ,高为4 m .养路处拟建一个更大的圆锥形仓库,以存放更多食盐.现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积; (2)分别计算按这两种方案所建的仓库的表面积; (3)哪种方案更经济些?[解] (1)设两种方案所建的仓库的体积分别为V 1,V 2.方案一:仓库的底面直径变成16 m ,则其体积V 1=13×π×⎝ ⎛⎭⎪⎫1622×4=2563π(m 3); 方案二:仓库的高变成8 m ,则其体积V 2=13×π×⎝ ⎛⎭⎪⎫1222×8=96π(m 3).(2)设两种方案所建的仓库的表面积分别为S 1,S 2. 方案一:仓库的底面直径变成16 m ,半径为8 m , 此时圆锥的母线长为l 1=82+42=45(m),则仓库的表面积S 1=π×8×(8+45)=(64+325)π(m 2);方案二:仓库的高变成8 m ,此时圆锥的母线长为l 2=82+62=10(m), 则仓库的表面积S 2=π×6×(6+10)=96π(m 2). (3)因为V 2>V 1,S 2<S 1, 所以方案二比方案一更加经济.。

高中数学第八章立体几何初步 直线与直线平行 直线与平面平行课后提能训练新人教A版必修第二册

高中数学第八章立体几何初步 直线与直线平行 直线与平面平行课后提能训练新人教A版必修第二册

第八章 8.5 8.5.1 8.5.2A级——基础过关练1.若两个三角形不在同一平面内,它们的边两两对应平行,那么这两个三角形( ) A.全等B.不可能全等C.仅有一个角相等D.全等或相似【答案】D【解析】由等角定理知,这两个三角形的三个角分别对应相等.2.(多选)下列命题中,错误的有( )A.如果一个角的两边与另一个角的两边分别平行,那么这两个角相等B.如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等C.如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补D.如果两条直线同时平行于第三条直线,那么这两条直线互相平行【答案】AC【解析】这两个角相等或互补,选项A错误;由等角定理知选项B正确;在空间中,这样的两个角大小关系不确定,选项C错误;由基本事实4知选项D正确.3.如图,已知S为四边形ABCD外一点,G,H分别为SB,BD上的点,若GH∥平面SCD,则( )A.GH∥SA B.GH∥SDC.GH∥SC D.以上均有可能【答案】B【解析】因为GH∥平面SCD,GH⊂平面SBD,平面SBD∩平面SCD=SD,所以GH∥SD,显然GH与SA,SC均不平行.故选B.4.直线a∥平面α,α内有n条直线交于一点,则这n条直线中与直线a平行的直线有( )A.0条B.1条C.0条或1条D.无数条【答案】C【解析】过直线a与n条直线的交点作平面β,设平面β与α交于直线b,则a∥b.若所给n条直线中有1条是与b重合的,则此直线与直线a平行,若没有与b重合的,则与直线a 平行的直线有0条.5.梯形ABCD中,AB∥CD,AB⊂平面α,CD⊄平面α,则直线CD与平面α的位置关系是________.【答案】平行【解析】因为AB∥CD,AB⊂平面α,CD⊄平面α,由线面平行的判定定理可得CD∥α.6.给出下列四个命题,其中正确命题的序号是________.①在空间,若两条直线不相交,则它们一定平行;②平行于同一条直线的两条直线平行;③一条直线和两条平行直线的一条相交,那么它也和另一条相交;④空间四条直线a,b,c,d,如果a∥b,c∥d,且a∥d,那么b∥c.【答案】②④【解析】①错,可以异面;②正确,基本事实4;③错误,和另一条可以异面;④正确,由平行直线的传递性可知.7.如图,在正方体ABCD-A1B1C1D1中,BD和B1D1分别是正方形ABCD和A1B1C1D1的对角线.(1)∠DBC的两边与________的两边分别平行且方向相同;(2)∠DBC的两边与________的两边分别平行且方向相反.【答案】(1)∠D1B1C1(2)∠B1D1A1【解析】(1)因为B1D1∥BD,B1C1∥BC且方向相同,所以∠DBC的两边与∠D1B1C1的两边分别平行且方向相同.(2)B1D1∥BD,D1A1∥BC且方向相反,所以∠DBC的两边与∠B1D1A1的两边分别平行且方向相反.8.如图,已知在棱长为a的正方体ABCD-A1B1C1D1中,M,N分别是棱CD,AD的中点.求证:(1)四边形MNA1C1是梯形;(2)∠DNM=∠D1A1C1.证明:(1)如图,连接AC.因为在△ACD中,M,N分别是CD,AD的中点,所以MN是△ACD的中位线.所以MN ∥AC ,MN =12AC .由正方体的性质得AC ∥A 1C 1,AC =A 1C 1.所以MN ∥A 1C 1,且MN =12A 1C 1,即MN ≠A 1C 1.所以四边形MNA 1C 1是梯形. (2)由(1)可知MN ∥A 1C 1.又因为ND ∥A 1D 1,所以∠DNM 与∠D 1A 1C 1相等或互补. 而∠DNM 与∠D 1A 1C 1均为锐角, 所以∠DNM =∠D 1A 1C 1.9.如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱BC ,C 1D 1的中点,求证:EF ∥平面BDD 1B 1.证明:如图,取D 1B 1的中点O ,连接OF ,OB .因为OF 綉12B 1C 1,BE 綉12B 1C 1,所以OF 綉BE .所以四边形OFEB 是平行四边形. 所以EF ∥BO .因为EF ⊄平面BDD 1B 1,BO ⊂平面BDD 1B 1,所以EF ∥平面BDD 1B 1.B 级——能力提升练10.如图所示,在空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 上的点,EH ∥FG ,则EH 与BD 的位置关系是( )A .平行B .相交C .异面D .不确定【答案】A【解析】因为EH ∥FG ,FG ⊂平面BCD ,EH ⊄平面BCD ,所以EH ∥平面BCD .因为EH ⊂平面ABD ,平面ABD ∩平面BCD =BD ,所以EH ∥BD .11.(2021年武汉模拟)对于直线m ,n 和平面α,下面命题中的真命题是( ) A .如果m ⊂α,n ⊄α,m ,n 是异面直线,那么n ∥α B .如果m ⊂α,n 与α相交,那么m ,n 是异面直线 C .如果m ⊂α,n ∥α,m ,n 共面,那么m ∥n D .如果m ∥α,n ∥α,m ,n 共面,那么m ∥n 【答案】C【解析】对于A,如果m ⊂α,n ⊄α,m ,n 是异面直线,则n ∥α或n 与α相交,故A 错误;对于B,如果m ⊂α,n 与α相交,则m ,n 相交或是异面直线,故B 错误;对于C,如果m ⊂α,n ∥α,m ,n 共面,由线面平行的性质定理,可得m ∥n ,故C 正确;对于D,如果m ∥α,n ∥α,m ,n 共面,则m ∥n 或m ,n 相交,故D 错误.12.如图,四棱锥S -ABCD 的所有的棱长都等于2,E 是SA 的中点,过C ,D ,E 三点的平面与SB 交于点F ,则四边形DEFC 的周长为( )A .2+ 3B .3+ 3C .3+2 3D .2+2 3【答案】C【解析】由AB =BC =CD =DA =2,得AB ∥CD ,即AB ∥平面DCFE ,∵平面SAB ∩平面DCFE =EF ,∴AB ∥EF .∵E 是SA 的中点,∴EF =1,DE =CF = 3.∴四边形DEFC 的周长为3+2 3.13.(多选)如图所示,在四面体ABCD 中,M ,N ,P ,Q ,E 分别是AB ,BC ,CD ,AD ,AC 的中点,则下列说法正确的是( )A .M ,N ,P ,Q 四点共面B .∠QME =∠CBDC .△BCD ∽△MEQ D .四边形MNPQ 为矩形【答案】ABC【解析】由条件易得MQ ∥BD ,ME ∥BC ,QE ∥CD ,NP ∥BD ,所以MQ ∥NP .对于A,由MQ ∥NP ,得M ,N ,P ,Q 四点共面,故A 正确;对于B,根据等角定理,得∠QME =∠DBC ,故B 正确;对于C,由等角定理知∠QME =∠DBC ,∠MEQ =∠BCD ,则△BCD ∽△MEQ ,故C 正确;对于D,没有充分理由推证四边形MNPQ 为矩形,故D 不正确.14.(2021年安庆期末)如图,P 为□ABCD 所在平面外一点,E 为AD 的中点,F 为PC 上一点,当PA ∥平面EBF 时,PFFC=________.【答案】12【解析】连接AC 交BE 于G ,连接FG ,因为PA ∥平面EBF ,PA ⊂平面PAC ,平面PAC ∩平面BEF =FG ,所以PA ∥FG ,所以PF FC =AG GC .又因为AD ∥BC ,E 为AD 的中点,所以AG GC =AE BC =12,所以PFFC=12.15.(2021年哈尔滨月考)如图所示,ABCD -A 1B 1C 1D 1是棱长为a 的正方体,M ,N 分别是下底面的棱A 1B 1,B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a3,过P ,M ,N 的平面交上底面于PQ ,Q在CD 上,则PQ =________.【答案】223a【解析】∵MN ∥平面AC ,平面PMN ∩平面AC =PQ ,∴MN ∥PQ .∵MN ∥A 1C 1∥AC ,∴PQ ∥AC .∵AP =a 3,∴DP =DQ =2a 3.∴PQ =2×2a 3=223a .16.在如图所示的几何体中,四边形ABCD 为平行四边形,∠ACB =90°,EF ∥AB ,FG ∥BC ,EG ∥AC ,AB =2EF ,M 是线段AD 的中点,求证:GM ∥平面ABFE .证明:因为EF ∥AB ,FG ∥BC ,EG ∥AC ,∠ACB =90°, 所以△ABC ∽△EFG ,∠EGF =90°. 由于AB =2EF ,因此BC =2FG .如图,连接AF .由于FG ∥BC ,FG =12BC ,在□ABCD 中,M 是线段AD 的中点,则AM ∥BC ,且AM =12BC .因此FG ∥AM 且FG =AM .所以四边形AFGM 为平行四边形. 因此GM ∥FA .又FA ⊂平面ABFE ,GM ⊄平面ABFE , 所以GM ∥平面ABFE .C 级——探索创新练17.如图,在四面体PABC 中,PC ⊥AB ,PA ⊥BC ,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中点.(1)求证:DE ∥平面BCP ; (2)求证:四边形DEFG 为矩形;(3)是否存在点Q ,到四面体PABC 六条棱的中点的距离相等?说明理由. (1)证明:∵D ,E 分别为AP ,AC 的中点,∴DE ∥PC . ∵DE ⊄平面BCP ,PC ⊂平面BCP , ∴DE ∥平面BCP .(2)解:∵D ,E ,F ,G 分别为AP ,AC ,BC ,PB 的中点, ∴DE ∥PC ∥FG ,DG ∥AB ∥EF . ∴四边形DEFG 为平行四边形.∵PC ⊥AB ,∴DE ⊥DG ,∴四边形DEFG 为矩形.(3)解:存在点Q 满足条件,理由如下:连接DF ,EG ,设Q 为EG 的中点,由(2)知DF ∩EG =Q ,且QD =QE =QF =QG =12EG .分别取PC ,AB 的中点M ,N ,连接ME ,EN ,NG ,MG ,MN ,与(2)同理,可证四边形MENG 为矩形,其对角线交点为EG 的中点Q ,且QM =QN =12EG ,∴Q 为满足条件的点.。

《1.1 空间几何体的结构》(同步训练)高中数学必修2_人教A版_2024-2025学年

《1.1 空间几何体的结构》(同步训练)高中数学必修2_人教A版_2024-2025学年

《1.1 空间几何体的结构》同步训练(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、下列几何体中,哪一个是多面体?A、球体B、圆柱C、正方体D、圆锥2、在正方体的一个顶点上,有一个顶点到该顶点所在面的相邻三面的交线所形成的三角形,其内角和是多少?A. 180°B. 270°C. 360°D. 540°3、在长方体的长、宽、高分别为2cm、3cm、4cm的情况下,该长方体的对角线长度是:A. 5cmB. 7cmC. 9cmD. 10cm4、一个圆锥的底面半径为3cm,高为4cm,则其体积为()。

A、12π cm³B、24π cm³C、36π cm³D、48π cm³5、已知正方体ABCD-A1B1C1D1中,点E为棱CC1的中点,点F为棱A1B1上的一点,且BF=BB1,如果AE与EF垂直,则∠EFB=()A.30°B.45°C.60°D.90°6、已知正方体ABCD-A1B1C1D1的棱长为a,则体对角线A1D的长度为:A、√3aB、2√3aC、√6aD、√2a7、一个直三棱柱的底面是一个直角三角形,其中两个直角边的长度分别为3和4,斜边为5。

该直三棱柱的体积是多少?A. 6B. 12C. 18D. 248、正方体的所有棱长均为2厘米,该正方体的对角线长为()A、2√3 厘米B、4√2 厘米C、4√3 厘米D、6√3 厘米二、多选题(本大题有3小题,每小题6分,共18分)1、下列关于空间几何体的说法正确的是()A. 圆柱是由两个平行的圆形底面和一个曲面侧面组成的立体图形。

B. 棱锥的所有侧棱相交于一点,这一点叫做顶点。

C. 球体可以看作是一个半圆绕着它的直径所在的直线旋转一周形成的立体图形。

D. 棱台的上下底面不一定平行。

2、在下列各对几何体中,哪些是全等的关系?A. 正方体和长方体B. 正四面体和正六面体C. 球和圆柱D. 正方体和正方体的一个面E. 正四面体和正方体的一个面3、一个圆柱的底面半径为2,高为4,则该圆柱的侧面积和体积分别为()。

高中数学人教a版(2019)必修第二册《 立体几何初步》测试卷

高中数学人教a版(2019)必修第二册《 立体几何初步》测试卷

人教A 版(2019)必修第二册《第八章 立体几何初步》2022年最热同步卷一.选择题(共15小题)1.如图,在四面体A B C D ,2A BC D ==,2A CB D ==,B CA D ==E ,F 分别是A D ,B C中点.若用一个与直线E F 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( )A B 2C .3D .322.下列说法正确的是( )A .有两个面平行,其余各面都是四边形的几何体叫棱柱B .一个直角三角形绕其一边旋转一周所形成的封闭图形叫圆锥C .棱锥的所有侧面都是三角形D .用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台3.已知直角三角形的两直角边分别为1则该几何体的体积为( )A .4πB .3πC .2πD .π4.如图,某粮仓(粮仓的底部位于地面上)是由圆柱和圆锥构成的,若圆柱的高是圆锥高的2倍,且圆锥的母线长是4,侧面积是4π,则制作这样一个粮仓的用料面积为()A .(4)π+ B .(4)π+ C .(4)πD .(4)π+5.如图,一个水平放置的平面图形的直观图是一个底角为45︒的等腰梯形,已知直观图O A B C '''的面积为4,则该平面图形的面积为()A B .C .D .6.如图所示是水平放置的三角形的直观图,点D 是B C 的中点,且2A BB C ==,A B ,B C分别与y '轴、x '轴平行,则A C D ∆在原图中的对应三角形的面积为()A .2B .1C .2D .87.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的直角梯形,其中2B C A B ==,则原平面图形的面积为()A 2B .C .1D .8.用斜二测画法画水平放置的边长为2的正方形所得的直观图的面积是( )A 2B C .D .9.已知正四棱锥PA B C D-的高为,且2A B=,则正四棱锥P A B C D-的侧面积为()A .B .4C .D .10.已知圆锥的母线长为5,高为4,则这个圆锥的表面积为( )A .21πB .24πC .33πD .39π11.已知一个球的半径为3.则该球内接正六棱锥的体积的最大值为( )A .1B 2C .1D 212.由华裔建筑师贝聿铭设计的巴黎卢浮宫金字塔的形状可视为一个正四棱锥(底面是正方形,侧棱长都相等的四棱锥),四个侧面由673块玻璃拼组而成,塔高21米,底宽34米,则该金字塔的体积为()A .38092mB .34046mC .324276mD .312138m13.蹴鞠(如图所示),又名蹴球,蹴圆,筑球,踢圆等,蹴有用脚蹴、踢、蹋的含义,鞠最早系外包皮革、内实米糠的球.因而蹴鞠就是指古人以脚蹴,蹋、踢皮球的活动,类似今日的足球.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗产名录,已知某鞠的表面上有四个点A,B ,C ,D ,满足5A B C D ==,6B D AC ==,7A DB C ==,则该鞠的表面积为( )A .55πB .60πC .63πD .68π14.已知四棱锥SA B C D-的所有顶点都在半径为(R R 为常数)的一个球面上,底面A B C D是正方形且球心O 到平面A B C D 的距离为1,若此四棱锥体积的最大值为6,则球O 的体积等于( )A .323πB .8πC .16πD .163π15.如图:正三棱锥A B C D-中,30B A D ∠=︒,侧棱2A B=,B D 平行于过点C 的截面11C BD ,则截面11C B D 与正三棱锥AB C D-侧面交线的周长的最小值为()A .2B .C .4D .二.填空题(共10小题)16.若把圆心角为120︒,半径为6的扇形卷成圆锥,则该圆锥的底面半径是 ,侧面积是 .17.如图为A B O ∆水平放置的直观图,其中2O D B D A D ''=''='',且//B D y''轴由图判断原三角形中A B ,O B ,B D ,O D 由小到大的顺序是 .18.某水平放置的平面图形的斜二测直观图是等腰梯形,它是底角为45︒,腰和上底长均为1的等腰梯形,则该平面图形的周长为 .19.已知正四面体SA B C-的棱长为16转动,则该长方体的长和宽形成的长方形的面积的最大值为 . 20.如图,在四棱锥PA B C D-中,P A⊥平面A B C D ,底面A B C D 是直角梯形,//A BC D,A B A D⊥,2C DA DB ===,3P A =,若动点Q 在P A D∆内及边上运动,使得C QD B Q A∠=∠,则三棱锥QA B C-的体积最大值为 .21.如图,在三棱锥P A B C-中,P A⊥平面A B C ,A CB C⊥,2A B=,A P=,则三棱锥PA B C-的外接球的体积为 .22.如图,圆锥的底面直径2A B=,母线长3V A=,点C 在母线V B 上,且1V C=,有一只蚂蚁沿圆锥的侧面从点A 到达点C ,则这只蚂蚁爬行的最短距离是 .23.在棱长为4的正方体1111A B C DA B C D -中,E ,F 分别是B C 和11C D 的中点,经过点A ,E,F 的平面把正方体1111A B C DA B C D -截成两部分,则截面与11B C C B 的交线段长为 . 24.棱长为2的正方体1111A B C DA B C D -中,异面直线1B D 与C D 所成的角的正切值是 ,点D 到平面1A C D 的距离为 . 25.在三棱锥PA B C-中,P A⊥平面A B C ,45P B A∠=︒,60P B C∠=︒,则A B C ∠为 .三.解答题(共5小题)26.如图所示,在边长为6的正三角形A B C 中,E ,F 依次是A B ,A C 的中点,A DB C⊥,E H B C⊥,F GB C⊥,D ,H ,G 为垂足,若将A B D ∆绕A D 旋转一周,求阴影部分形成的几何体的表面积.27.如图,已知P A⊥平面A B C D ,A B C D 为矩形,M 、N 分别为A B 、P C 的中点,P A A D=,2A B =,A D=.(1)求证:平面M P C ⊥平面P C D ; (2)求三棱锥BM N C-的高.28.已知长方体1111A B C D A B C D -,1A A =,22A BB C ==,E 为棱A B 的中点,F 为线段1D C 的中点.(1)求异面直线E F 与1A D 所成角的余弦值; (2)求直线1A D 与平面D E F 所成角的正弦值.29.已知A B C ∆,直线mA C⊥,mB C⊥,求证:mA B⊥.30.如图所示,正方形A B C D 与直角梯形A D E F 所在平面互相垂直,90A D E ∠=︒,//A F D E,22D E D A A F ===.(1)求证:A C ⊥平面B D E ; (2)求证://A C平面B E F ;(3)若A C 与B D 相交于点O ,求四面体B O E F 的体积.人教A 版(2019)必修第二册《第八章 立体几何初步》2022年最热同步卷参考答案与试题解析一.选择题(共15小题)1.如图,在四面体A B C D ,2A BC D ==,2A CB D ==,B CA D ==E ,F 分别是A D ,B C中点.若用一个与直线E F 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( )AB 2C .3D .32【分析】证明E FB C⊥,E FA D⊥,得出截面四边形与A D ,B C 都平行,从而截面为矩形,设Q 为截面与A C 的交点,A Q A Cλ=,用λ表示出截面的面积,根据二次函数性质求出最大值.【解答】解:连接A F ,D F ,2A B A C B D C D ====,F 是B C 的中点,B C A F∴⊥,B CD F⊥,又A FD F F=,B C ∴⊥平面A D F ,又E F⊂平面A D F ,A D ⊂平面A D F ,B C E F∴⊥,B CA D⊥,又B CA D ==2A F D F ∴==,F是A D 的中点,E F A D∴⊥,E F ⊥平面α,//B C α∴,//A D α,设α与棱锥的截面多边形为M N P Q , 则////B C P Q M N ,////A DM Q P N,又B CA D⊥,故P QM Q⊥,∴截面四边形M N P Q 是矩形,设(01)A Q A Cλλ=<<,则P Q B Cλ=,1M Q C Q A DA Cλ==-,P Q ∴=,)Q Mλ=-,∴截面矩形M N P Q 的面积为2136(1)6()22λλλ-=--+,∴当12λ=时,截面面积取得最大值32.故选:D .【点评】本题考查了平面的性质,考查线面平行与垂直的性质,属于中档题. 2.下列说法正确的是()A .有两个面平行,其余各面都是四边形的几何体叫棱柱B .一个直角三角形绕其一边旋转一周所形成的封闭图形叫圆锥C .棱锥的所有侧面都是三角形D .用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台 【分析】举反例判断A ,B ,D 错误,根据棱锥侧棱交于一点判断C .【解答】解:对于A ,棱台的上下底面互相平行,侧面都是四边形,但棱台不是棱柱,故A 错误;对于B ,当旋转轴为直角边时,所得几何体为圆锥,当旋转轴为斜边时,所得几何体为两个圆锥的组合体,故B 错误;对于C ,由于棱锥的所有侧棱都交于一点,故棱锥的侧面都是三角形,故C 正确; 对于D ,当平面与棱锥的底面不平行时,截面与棱锥底面间的几何体不是棱台,故D 错误. 故选:C .【点评】本题考查了空间几何体的结构特征,属于基础题.3.已知直角三角形的两直角边分别为1则该几何体的体积为()A .4πB .3πC .2πD .π【分析】几何体的体积是由上下两个圆锥的体积组成的,它们的底面半径相同,都是直角三角形斜边上的高,利用圆锥体积公式,即可求得结论.【解答】解:如图,1A C =,BC =2A B=,斜边的高为:122⨯÷=,以A C 为母线的圆锥体积213()32A Oπ=, 以B C 为母线的圆锥体积213()32B Oπ=,∴绕斜边旋转一周形成的几何体的体积等于213()322A B ππ=.故选:C .【点评】本小题主要考查圆锥的体积公式以及几何旋转体的知识等基础知识,考查运算求解能力,考查空间想象力,得到这个立体图形是由两个圆锥组成,以及圆锥体积公式求出是解决问题的关键.4.如图,某粮仓(粮仓的底部位于地面上)是由圆柱和圆锥构成的,若圆柱的高是圆锥高的2倍,且圆锥的母线长是4,侧面积是4π,则制作这样一个粮仓的用料面积为()A .(4)π+ B .(4)π+ C .(4)πD .(4)π+【分析】设圆锥的母线为l ,底面半径为r ,高为h ;根据题意列方程求出r 的值,再计算圆柱和圆锥的侧面积之和.【解答】解:设圆锥的母线为l ,底面半径为r ,高为h ;所以4r lππ=,解得1r =,h ==又圆柱的侧面积为22r hπ⋅=,所以制作这样一个粮仓的用料面积为(4)π+.故选:D .【点评】本题考查了圆柱与圆锥的侧面积计算问题,也考查了空间想象能力,是基础题. 5.如图,一个水平放置的平面图形的直观图是一个底角为45︒的等腰梯形,已知直观图O A B C '''的面积为4,则该平面图形的面积为()A B .C .D .【分析】结合S =原图直观图,可得答案.【解答】解:由已知直观图O A B C '''的面积为4,∴原来图形的面积4S=⨯=,故选:C .【点评】本题考查的知识点是斜二测画法,熟练掌握水平放置的图象S =原图观图,是解答的关键.6.如图所示是水平放置的三角形的直观图,点D 是B C 的中点,且2A BB C ==,A B ,B C分别与y '轴、x '轴平行,则A C D ∆在原图中的对应三角形的面积为()A 2B .1C .2D .8【分析】求出直观图面积后,根据S S =原图直观图可得答案.【解答】解:三角形的直观图中点D 是B C 的中点,且2A B B C ==,A B ,B C 分别与y '轴、x '轴平行,122452A B C S s in ∴=⨯⨯⨯︒=直观图,又4S S ===原图直观图,A C D∴∆在原图中的对应三角形的面积为:122S =原图.故选:C .【点评】本题考查的知识点是平面图形的直观图,其中熟练掌握原图面积与直观图面积关系公式S S =原图直观图是解答本题的关键.7.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的直角梯形,其中2B C A B ==,则原平面图形的面积为()A 2B .C .1D .【分析】先确定直观图中的线段长,再确定平面图形中的线段长,从而求得平面图形的面积. 【解答】解:直观图中,45A D C∠=︒,2A BB C ==,D CB C⊥,A D ∴=4D C=,∴原来的平面图形上底长为2,下底为4,高为∴该平面图形的面积为1(24)12+⨯=.故选:C .【点评】本题考查了斜二测画法直观图与平面图形的面积计算问题,是基础题. 8.用斜二测画法画水平放置的边长为2的正方形所得的直观图的面积是( )A 2B C .D .【分析】根据斜二测画法所得的直观图是平面图形,原面积与直观图的面积比为1,由此求出直观图的面积.【解答】解:水平放置的正方形的面积与斜二测画法所得的直观图是一个四边形,两者面积之比为1,由边长为2的正方形的面积为4,所以这个四边形的直观图面积为4÷=.故选:B .【点评】本题考查了斜二测画法中水平放置的平面图形与原图形面积比问题,是基础题.9.已知正四棱锥PA B C D-的高为,且2A B=,则正四棱锥PA B C D-的侧面积为()A .B .4C .D .【分析】利用勾股定理计算侧面三角形的高,再计算侧面积.【解答】解:设P 在底面A B C D 上的射影为O ,则O 为底面正方形A B C D 的中心, 取C D 的中点E ,连接O E ,则112O EA B ==,P E ∴==,P C P D=,P E C D∴⊥,∴正四棱锥PA B C D-的侧面积为14422P C DS ∆=⨯⨯⨯=,故选:D .【点评】本题考查棱锥的结构特征与侧面积计算,属于基础题. 10.已知圆锥的母线长为5,高为4,则这个圆锥的表面积为( )A .21πB .24πC .33πD .39π【分析】首先根据勾股定理求得底面半径,则可以得到底面周长,然后利用扇形的面积公式即可求解.【解答】解:圆锥的母线长为5,高为4,底面半径是:3,则底面周长是6π, 则圆锥的侧面积是:165152ππ⨯⨯=,底面积为9π,则表面积为15924πππ+=.故选:B .【点评】考查了圆锥的计算.正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长. 11.已知一个球的半径为3.则该球内接正六棱锥的体积的最大值为( )A .1B 2C .1D 2【分析】过P 作P M ⊥底面A B C D E F ,取O 为球心,设A B a=,P Mh=,求解直角三角形可得226a h h=-,求出正六棱锥的底面积,代入棱锥体积公式,再由基本不等式求最值.【解答】解:如图,过P 作P M⊥底面A B C D E F ,取O 为球心,设A Ba=,P Mh=,在R t D O M ∆中,222(3)3ha-+=,226a h h∴=-,(06)h <<,∴正六棱锥的体积为2116322Vh=⨯⨯⨯23122(6)(122)()12443h h hh h h h ++-=-=⋅-=…当且仅当122hh=-,即4h=时上式等号成立.故该球名为如果获得六棱锥的体积的最大值为1.故选:C .【点评】本题考查球内接多面体体积最值的求法,考查空间中线线、线面、面面间的位置关系、训练利用基本不等式求最值等基础知识,是中档题.12.由华裔建筑师贝聿铭设计的巴黎卢浮宫金字塔的形状可视为一个正四棱锥(底面是正方形,侧棱长都相等的四棱锥),四个侧面由673块玻璃拼组而成,塔高21米,底宽34米,则该金字塔的体积为()A .38092mB .34046mC .324276mD .312138m【分析】由题意可得正四棱锥的底面边长与高,代入棱锥体积公式求解. 【解答】解:如图, 四棱锥P A B C D-,P O⊥底面A B C D ,21P Om=,34A Bm=,则3134342180923P A B C DV m-=⨯⨯⨯=,故选:A .【点评】本题考查棱锥体积的求法,是基础的计算题.13.蹴鞠(如图所示),又名蹴球,蹴圆,筑球,踢圆等,蹴有用脚蹴、踢、蹋的含义,鞠最早系外包皮革、内实米糠的球.因而蹴鞠就是指古人以脚蹴,蹋、踢皮球的活动,类似今日的足球.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗产名录,已知某鞠的表面上有四个点A,B ,C ,D ,满足5A B C D ==,6B D AC ==,7A DB C ==,则该鞠的表面积为( )A .55πB .60πC .63πD .68π【分析】扩展几何体为长方体,求解外接球的半径,然后求解该“鞠”的表面积. 【解答】解:因为A BC D=,B DA C=,A DB C=,所以可以把A ,B ,C ,D 四点放到长方体的四个顶点上,则该长方体的体对角线就是“鞠”的直径.设该长方体的长、宽、高分别为x ,y ,z , “鞠”的半径为R ,则2222(2)R x y z=++. 因为2225x y+=,2236x z+=,2249y z+=,所以21105584R ==,所以2455SR ππ==.故选:A .【点评】本题考查空间几何体的外接球的表面积的求法,考查转化思想以及计算能力. 14.已知四棱锥SA B C D-的所有顶点都在半径为(R R 为常数)的一个球面上,底面A B C D是正方形且球心O 到平面A B C D 的距离为1,若此四棱锥体积的最大值为6,则球O 的体积等于( )A .323πB .8πC .16πD .163π【分析】当此四棱锥体积取得最大值时,四棱锥为正四棱锥,根据该四棱锥的最大体积为6,确定球的半径为R ,从而可求球的体积.【解答】解:如图,可得A C =2A BA C ==,此四棱锥的体积最大值212(1)(1)(1)633A B C D V S R RR =+=-+= 整理可得:3219R RR +--=,即可得2(2)(35)0RRR -++=.解得2R=.则球O 的体积等于343233Rππ=,故选:A .【点评】本题考查球内接多面体,球的表面积,解题的关键是确定球的半径,再利用公式求解.15.如图:正三棱锥AB C D-中,30B A D ∠=︒,侧棱2A B=,B D 平行于过点C 的截面11C BD ,则截面11C B D 与正三棱锥AB C D-侧面交线的周长的最小值为()A .2B .C .4D .【分析】首先,展开三棱锥,然后,两点间的连接线C C '即是截面周长的最小值,然后,求解其距离即可.【解答】解:把正三棱锥AB C D-的侧面展开,两点间的连接线C C '即是截面周长的最小值. 正三棱锥AB C D-中,30B A D∠=︒,所以A CA C ⊥',2A B=,C C ∴'=∴截面周长最小值是C C '=.故选:D .【点评】本题重点考查了空间中的距离最值问题,属于中档题.注意等价转化思想的灵活运用.二.填空题(共10小题)16.若把圆心角为120︒,半径为6的扇形卷成圆锥,则该圆锥的底面半径是 2 ,侧面积是 .【分析】根据圆锥底面的周长等于扇形的弧长,列方程求出圆锥的底面半径. 利用扇形的面积求出圆锥的侧面积. 【解答】解:设圆锥底面的半径为r ,则120226360r ππ=⨯⨯,解得2r=,所以该圆锥的底面半径是2. 圆锥的侧面积是2120612360S ππ=⋅⋅=圆锥侧.故答案为:2,12π.【点评】本题考查了圆锥的侧面展开图是扇形的应用问题,是基础题. 17.如图为A B O ∆水平放置的直观图,其中2O D B D A D ''=''='',且//B D y''轴由图判断原三角形中A B ,O B ,B D ,O D 由小到大的顺序是O D B D A B B O<<< .【分析】利用直观图,求出原图对应的边长,写出结果即可. 【解答】解:设22A D ''=,则直观图的平面图形为:A B =B O=4B D=,2O D=.原三角形中A B ,B O ,B D ,O D 由小到大的顺序O D B D A B B O<<<.故答案为:O DB D A B B O<<<.【点评】本题考查斜二测平面图形的直观图的画法,以及数据关系,基本知识的考查. 18.某水平放置的平面图形的斜二测直观图是等腰梯形,它是底角为45︒,腰和上底长均为1的等腰梯形,则该平面图形的周长为4+【分析】根据题意画出图形,结合图形得出原来的平面图形的上底与下底、高和腰长,即可求出它的周长. 【解答】解:根据题意画出图形,如图所示;原来的平面图形是直角梯形,上底是1,下底是1+2=,所以它的周长是1214+++=++.故答案为:4+【点评】本题考查了平面图形的直观图的画法与应用问题,是基础题19.已知正四面体SA B C-的棱长为1,如果一个高为6的长方体能在该正四面体内任意转动,则该长方体的长和宽形成的长方形的面积的最大值为 124.【分析】计算棱锥内切球的半径,令长方体体对角线长小于或等于内切球的直径,根据基本不等式求出长方体底面积的最大值.【解答】解:设S 在平面A B C 上的射影为O ,则O 为A B C ∆的中心,延长A O 交B C 于D ,则D 为B C 的中点,正四面体棱长为1,2A D ∴=,233A OA D ==,3S O ∴==,∴正四面体的体积为11113322312S A B C A B C V S S O -∆==⨯⨯⨯=,表面积为144122A B C S S ∆==⨯⨯⨯=表,设正四面体SA B C-的内切球半径为R ,则1312R ⨯=,解得12R=设长方体的长和宽分别为x ,y ,=626R =,22112xy ∴+…,221224xy x y +∴剟,当且仅当12xy ==时取等号.故答案为:124【点评】本题考查棱锥与球的位置关系,考查基本不等式的应用,属于中档题. 20.如图,在四棱锥PA B C D-中,P A⊥平面A B C D ,底面A B C D 是直角梯形,//A BC D,A B A D⊥,2C DA DB ===,3P A =,若动点Q 在P A D∆内及边上运动,使得C QD B Q A∠=∠,则三棱锥QA B C-的体积最大值为 3 .【分析】证明A BQ A⊥,C DQ D⊥,由C Q DB Q A∠=∠,结合C DB=,可得Q DA=,由平面解析几何知识求得Q 到A D 建立的最大值,再由棱锥体积公式求解. 【解答】解:底面A B C D 是直角梯形,//A B C D,A BA D⊥,C DA B∴⊥,又P A ⊥平面A B C D ,P A ⊂平面P A D ,∴平面P A D ⊥平面A B C D ,则A B⊥平面P A D ,C D⊥平面P A D , 连接Q A ,Q D ,则A B Q A⊥,C DQ D⊥,由C Q DB Q A∠=∠,得tan tan C Q DB Q A∠=∠,则A B C D Q AQ D=,2C D B=,Q D A=,2A D =,在平面P A D 内,以D A 所在直线为x 轴,D A 的垂直平分线为y 轴建立平面直角坐标系,则(1,0)D -,(1,0)A ,设(,)Q x y ,由Q DA=,得222Q D Q A=,即2222(1)2(1)2xyx y++=-+,整理得:22610x y x +-+=,取1x =,可得2y=,得Q 在P A D ∆内距离A D 的最大值为2,此时Q 在P A 上,11222A B C S A B A D ∆=⨯⨯=⨯⨯=,∴三棱锥QA B C -的体积最大值为1233V =⨯=.3【点评】本题考查多面体体积最值的求法,考查空间想象能力与思维能力,考查运算求解能力,是中档题.21.如图,在三棱锥P A B C-中,P A⊥平面A B C ,A CB C⊥,2A B=,A P=,则三棱锥PA B C-的外接球的体积为 92π .【分析】以A C ,B C ,P A 为长宽高构建长方体,则长方体的外接球就是三棱锥P A B C-的外接球,由此能求出三棱锥PA B C-的外接球的体积.【解答】解:在三棱锥PA B C-中,P A⊥平面A B C ,A CB C⊥,∴以A C ,B C ,P A 为长宽高构建长方体,则长方体的外接球就是三棱锥PA B C-的外接球,∴三棱锥P A B C-的外接球的半径1322R=⋅=,∴三棱锥PA B C-的外接球的体积为:334439()3322S Rπππ==⨯=.故答案为:92π.【点评】本题考查三棱锥的外接球的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是基础题. 22.如图,圆锥的底面直径2A B=,母线长3V A=,点C 在母线V B 上,且1V C=,有一只蚂蚁沿圆锥的侧面从点A 到达点C【分析】要求蚂蚁爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:由题意知,底面圆的直径为2,故底面周长等于2π, 设圆锥的侧面展开后的扇形圆心角为α, 根据底面周长等于展开后扇形的弧长得,23πα=,解得:23πα=, 23A V A π∴∠'=,则13π∠=,过C 作C FV A⊥,C为V B 的三等分点,3B V =,1V C ∴=, 160∠=︒,30V C F ∴∠=︒,12F V ∴=,22234C FC V V F∴=-=,3A V =,12F V =,52A F ∴=,在R t A F C ∆中,利用勾股定理得:2227A C A FF C=+=,则A C=【点评】考查了平面展开-最短路径问题,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把圆锥的侧面展开成扇形,“化曲面为平面”,用勾股定理解决. 23.在棱长为4的正方体1111A B C DA B C D -中,E ,F 分别是B C 和11C D 的中点,经过点A ,E,F 的平面把正方体1111A B C D A B C D -截成两部分,则截面与11B C C B 的交线段长为103.【分析】首先利用平行线的相交的应用和成比例问题的应用,求出C P 的长,进一步利用勾股定理的应用求出结果. 【解答】解:如图所示:过点F 作//F H A E交11A D 于H ,易知11D H=,所以点H 为11A D 的四等分点, 所以11114D H A D =过点E 作//E PA H交1C C 于点P ,则△1A A H P C E ∆∽, 所以11A A C P A HC E=,解得83C P=.所以截面与11B C C B的交线段长为103P E ==.故答案为:103.【点评】本题考查的知识要点:截面的交线,平行线成比例,主要考查学生的运算能力和转换能力及思维能力,属于基础题, 24.棱长为2的正方体1111A B C DA B C D -中,异面直线1B D 与C D点D 到平面1A C D 的距离为 .【分析】以D 为原点,D A 为x 轴,D C 为y 轴,1D D 为z 轴,建立空间直角坐标系,利用向量法能求出异面直线1B D 与C D 所成的角的正切值和点D 到平面1A C D 的距离.【解答】解:以D 为原点,D A 为x 轴,D C 为y 轴,1D D 为z 轴,建立空间直角坐标系, 则(2B ,2,0),1(0D ,0,2),(0C ,2,0),(0D ,0,0),1(2B D =-,2-,2),(0C D=,2-,0),设异面直线1B D 与C D 所成角为θ, 则11||c o s ||||1243B D CD B D C D θ===,sin θ∴==,s in ta n c o s θθθ==∴异面直线1B D 与C D(2A ,0,0),(2A C=-,2,0),1(2A D =-,0,2),(2A D=-,0,0),设平面1A C D 的法向量(n x=,y ,)z ,则1220220n A C x y n A D x z ⎧=-+=⎪⎨=-+=⎪⎩,取1x=,得(1n =,1,1),∴点D 到平面1A C D的距离为||2||33n A D dn ===.3【点评】本题考查异面直线所成角的正切值、点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题. 25.在三棱锥P A B C-中,P A ⊥平面A B C ,45P B A ∠=︒,60P B C ∠=︒,则A B C ∠为4π.【分析】作P M B C⊥于点M ,连接A M ,设A Bx=,由已知可求P A x=,利用勾股定理可求P B =,利用三角函数的定义可求2B M =,由已知利用线面垂直的判定和性质可得B M A M⊥,进而可求c o s 2B M A B CA B∠==,结合A B C ∠为三角形内角,可求A B C∠的值.【解答】解:如图,作P M B C⊥于点M ,连接A M ,设A B x=,因为在三棱锥P A B C-中,P A⊥平面A B C ,45P B A∠=︒,60P B C ∠=︒,所以P Ax=,P B==,因为60P B C ∠=︒,P MB C⊥,所以12c o s 22B M P B P B C x=∠==,因为P A ⊥平面A B C ,B M⊂平面A B C ,所以B M A P⊥,又P MB C⊥,P MA P P=,所以B M ⊥平面P A M ,又AM⊂平面P A M,所以B M A M⊥,所以2c o s 2x B M A B CA Bx∠===,由于A B C ∠为三角形内角, 所以4A B C π∠=.故答案为:4π.【点评】本题主要考查了勾股定理,三角函数的定义,线面垂直的判定和性质在解三角形中的应用,考查了数形结合思想和转化思想,作辅助线P M B C⊥于点M 是解题的关键,属于中档题.三.解答题(共5小题)26.如图所示,在边长为6的正三角形A B C 中,E ,F 依次是A B ,A C 的中点,A DB C⊥,E H B C⊥,F GB C⊥,D ,H ,G 为垂足,若将A B D ∆绕A D 旋转一周,求阴影部分形成的几何体的表面积.【分析】所得几何体为圆锥中挖去一个圆柱,然后利用公式求出即可. 【解答】解:所形成几何体是一个圆锥挖去一个圆柱,由题意可知圆柱的底面半径为322,圆锥底面半径为3,母线为6,所以32222S π=⨯⨯=圆柱侧,233627S πππ=⨯+⨯⨯=圆锥表,所以所求几何体的表面积为272SS S π=+=+圆锥表圆柱侧.【点评】本题主要考查旋转体的表面积计算,属于基础题. 27.如图,已知P A⊥平面A B C D ,A B C D 为矩形,M 、N 分别为A B 、P C 的中点,P A A D=,2A B =,A D=.(1)求证:平面M P C ⊥平面P C D ; (2)求三棱锥BM N C-的高.【分析】(1)取P D 中点为G ,连接N G ,A G ,M 、N 分别为A B 、P C 的中点,证明A M N G是平行四边形,//M N A G,推出//M N平面P A D ,得到//M NA G,证明A GP C⊥,A G P D⊥,推出A G⊥平面P D C ,得到M N⊥平面P D C ,然后证明平面M P C ⊥平面P C D ,(2)利用B M N CN M B CV V --=,转化求解点B 到平面M N C 的距离.【解答】(1)证明:取P D 中点为G ,连接N G ,A G ,M 、N 分别为A B 、P C 的中点,//N G C D∴,12N GC D=,//A MC D,12A MC D=,A M N G ∴是平行四边形,//M NA G,A G ⊂平面P A D ,M N ⊂/平面P A D ,//M N ∴平面P A D//M N A G∴,P M M C ==,N 为P C 中点,M N P C∴⊥,即A GP C⊥, G为P D 的中点,A P A D=,A G P D∴⊥,且P DPC P=,A G ⊥平面P D C ,M N ∴⊥平面P D C ,M N ⊂平面M P C ,∴平面M P C⊥平面P C D ,(2)解:1132B M N CN M B C M B CV V S P A--∆==,1222M B C S B C B M ∆==1222M N CS M N N C ∆==,则点B 到平面M N C 的距离为122hP A ==.【点评】本题考查平面与平面垂直以及直线与平面平行的判断定理的应用,空间点线面距离的求法,等体积法的应用,是中档题. 28.已知长方体1111A B C D A B C D -,1A A =,22A BB C ==,E 为棱A B 的中点,F 为线段1D C 的中点.(1)求异面直线E F 与1A D 所成角的余弦值; (2)求直线1A D 与平面D E F 所成角的正弦值.【分析】(1)以D 为原点,以D A 、D C 、1D D 分别为x 轴,y 轴,z 轴建立空间直角坐标系.利用向量法能求出异面直线E F 与1A D 所成角的余弦值.(2)求出面D E F 的法向量,利用向量法能求出直线1A D 与平面D E F 所成角的正弦值. 【解答】解:(1)以D 为原点,以D A 、D C 、1D D 分别为x 轴,y 轴,z 轴建立空间直角坐标系.则(1E ,1,0),(0F ,12,(1A ,0,0),1(0D ,0则(1E F=-,0,)2,1(1A D =-,0,直线E F 与1A D 所成角为θ,则115||c o s 14||||744EF A D E F A D θ===.故异面直线E F 与1A D 14.(2)(1D E=,1,0),(0D F=,12,1(1A D =-,0,设面D E F 的法向量为(nx=,y ,)z ,则0302D E n x y D F n y ⎧=+=⎪⎨=+=⎪⎩,令2z=,可得(3,2)n=-,设直线1A D与平面D E F 所成角为θ,则11||3s in 20||||410A D n A D n θ===,所以直线1A D 与平面D E F 20.【点评】本题考查异面直线所成角的余弦值、线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题. 29.已知A B C ∆,直线mA C⊥,mB C⊥,求证:mA B⊥.【分析】根据线面垂直的判定定理证明m ⊥平面A B C ,再得出m A B⊥.【解答】证明:m A C⊥,mB C⊥,A C ⊂平面A B C ,B C⊂平面A B C ,且A C B CC =,m ∴⊥平面A B C ,又A B ⊂平面A B C , m A B∴⊥.【点评】本题考查了线面垂直的判定定理,线面垂直的性质,属于基础题.30.如图所示,正方形A B C D 与直角梯形A D E F 所在平面互相垂直,90A D E ∠=︒,//A F D E,22D E D A A F ===.(1)求证:A C ⊥平面B D E ; (2)求证://A C平面B E F ;(3)若A C 与B D 相交于点O ,求四面体B O E F 的体积.【分析】(1)由已知利用平面与平面垂直的性质可得E D A C⊥,再由四边形A B C D 是正方形,得A CB D⊥,利用直线与平面垂直的判定可得A C⊥平面B D E ;(2)取E B 中点G ,连接O G ,F G ,证明A O G F 为平行四边形,可得//A C F G,再由直线与平面平行的判定可得//A C 面E FB ;(3)证明A B⊥平面A D E F ,求出三棱锥B D E F-的体积,结合O 为B D 的中点,可得四面体B O E F 的体积.【解答】证明:(1)平面A B C D⊥平面A D E F ,平面A B C D ⋂平面A D E FA D=E D A D ⊥,E D⊂平面A D E F ,E D ∴⊥面A B C D ,得E D A C⊥,又四边形A B C D 是正方形,A C B D∴⊥,又B DE D D=,A C ∴⊥平面B D E ;证明:(2)取E B 中点G ,连接O G ,F G ,O,G 分别为B D ,B E 的中点,//O GD E∴,12O GD E=,又//A F D E,12A F D E=,//A F O G ∴且A FO G=,则四边形A O G F 为平行四边形,得//A CF G,A C ⊂/平面E F B ,F G ⊂平面E F B ,//A C ∴面E FB ;解:(3)平面A B C D⊥平面A D E F ,A B A D⊥,A B ∴⊥平面A D E F .//A F D E,90A D E ∠=︒,22D ED A A F ===,D E F∴∆的面积为122D E FS E D A D ∆=⨯⨯=,∴四面体B D E F 的体积11422333D E F VS A B ∆=⨯=⨯⨯=,又O 是B D 中点,∴12O D E F B D E FV V --=,则1223B O E FB D E F V V -==.【点评】本题考查直线与平面平行、直线与平面垂直的判定,考查空间想象能力与思维能力,训练了利用等体积法求多面体的体积,是中档题.。

2022秋高中数学第八章立体几何初步-平面课后提能训练新人教A版必修第二册

2022秋高中数学第八章立体几何初步-平面课后提能训练新人教A版必修第二册

第八章 8.4 8.4.1A级——基础过关练1.已知点A,直线a,平面α,以下命题表述正确的个数是( )①A∈a,a⊄α⇒A∉α;②A∈a,a∈α⇒A∈α;③A∉a,a⊂α⇒A∉α;④A∈a,a⊂α⇒A⊂α.A.0 B.1 C.2 D.3【答案】A 【解析】①不正确,如a∩α=A;②不正确,∵“a∈α”表述错误;③不正确,如图所示,A∉a,a⊂α,但A∈α;④不正确,“A⊂α”表述错误.故选A.2.(2021年郑州模拟)(多选)下列命题中正确的是( )A.三角形是平面图形B.四边形是平面图形C.四边相等的四边形是平面图形D.圆是平面图形【答案】AD 【解析】根据基本事实1可知AD正确,BC错误.故选AD.3.若两个平面有三个公共点,则这两个平面( )A.相交 B.重合C.相交或重合 D.以上都不对【答案】C 【解析】若三点在同一条直线上,则这两个平面相交或重合;若三点不共线,则这两个平面重合.4.(多选)以下命题中错误的是( )A.不共面的四点中,其中任意三点不共线B.若点A,B,C,D共面,点A,B,C,E共面,则点A,B,C,D,E共面C.若直线a,b共面,直线a,c共面,则直线b,c共面D.依次首尾相接的四条线段必共面【答案】BCD 【解析】对A,假设其中有三点共线,则该直线和直线外的另一点确定一个平面,这与四点不共面矛盾,故其中任意三点不共线,所以A正确;对B,如图,两个相交平面有三个公共点A,B,C,但A,B,C,D,E不共面;C显然不正确;D不正确,因为此时所得的四边形的四条边可以不在一个平面上,如空间四边形.故选BCD.5.三条两两平行的直线可以确定平面的个数为( )A.0 B.1C.0或1 D.1或3【答案】D 【解析】当三条直线是同一平面内的平行直线时,确定一个平面.当三条直线是三棱柱侧棱所在的直线时,确定三个平面.故选D.6.设平面α与平面β相交于l,直线a⊂α,直线b⊂β,a∩b=M,则M________l.【答案】∈ 【解析】因为a∩b=M,a⊂α,b⊂β,所以M∈α,M∈β.又因为α∩β=l,所以M∈l.7.如图,在长方体ABCD-A1B1C1D1的所有棱中,既与AB共面,又与CC1共面的棱有________条.【答案】5 【解析】由题图可知,既与AB共面又与CC1共面的棱有CD,BC,BB1,AA1,C1D1共5条.8.已知平面α与平面β、平面γ都相交,则这三个平面可能的交线有________条.【答案】1或2或3 【解析】当β与γ相交时,若α过β与γ的交线,有1条交线;若α不过β与γ的交线,有3条交线.当β与γ平行时,有2条交线.9.已知:A∈l,B∈l,C∈l,D∉l,如图所示.求证:直线AD,BD,CD共面.证明:因为D∉l,所以l与D可以确定平面α.因为A∈l,所以A∈α.又D∈α,所以AD⊂α.同理,BD⊂α,CD⊂α.所以AD,BD,CD在同一平面α内,即它们共面.10.求证:三棱台A1B1C1-ABC三条侧棱延长后相交于一点.证明:如图,延长AA1,BB1.设AA1∩BB1=P,又BB1⊂平面BC1,∴P∈平面BC1,AA1⊂平面AC1.∴P∈平面AC1.∴P为平面BC1和面AC1的公共点.又∵平面BC1∩平面AC1=CC1,∴P∈CC1,即AA1,BB1,CC1延长后交于一点P.B级——能力提升练11.空间四点A,B,C,D共面但不共线,那么这四点中( )A.必有三点共线 B.必有三点不共线C.至少有三点共线 D.不可能有三点共线【答案】B 【解析】若AB∥CD,则AB,CD共面,但A,B,C,D任何三点都不共线,故排除A,C;若直线l与直线外一点A在同一平面内,且B,C,D三点在直线l上,则可排除D.故选B.12.(2021年郴州月考)设P1,P2,P3,P4为空间中的四个不同点,则“P1,P2,P3,P4中有三点在同一条直线上”是“P1,P2,P3,P4在同一个平面内”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】A 【解析】由过一条直线和直线外一点有且只有一个平面,可得P1,P2,P3,P4在同一个平面内,故充分条件成立.由过两条平行直线有且只有一个平面可得,当P1∈l1,P2∈l1,P3∈l2,P4∈l2,l1∥l2时,P1,P2,P3,P4在同一个平面内,但P1,P2,P3,P4中无三点共线,故必要条件不成立.故选A.13.(2021年焦作模拟)(多选)如图,ABCD-A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是( )A.A,M,O三点共线 B.A,M,O,A1四点共面C.A,O,C,M四点共面 D.B,B1,O,M四点共面【答案】ABC 【解析】因为A,M,O三点既在平面AB1D1内,又在平面AA1C内,故A,M,O三点共线,从而易知ABC均正确.14.如图,若直线l与平面α相交于点O,且A∈l,B∈l,C∈α,D∈α,AC∥BD,则O,C,D三点的位置关系是________.【答案】共线 【解析】∵AC∥BD,∴AC与BD确定一个平面,记作平面β,则α∩β=CD.∵l∩α=O,∴O∈α.又∵O∈AB⊂β,∴O∈直线CD.∴O,C,D三点共线.15.如图,在正方体ABCD-A1B1C1D1中,平面A1CC1与平面BDC1的交线是_____ ___.【答案】C1M 【解析】因为C1∈平面A1CC1,且C1∈平面BDC1,同时M∈平面A1CC1,且M∈平面BDC1,所以平面A1CC1与平面BDC1的交线是C1M.16.如图,已知直线a∥b∥c,l∩a=A,l∩b=B,l∩c=C.求证:直线a,b,c和l共面.证明:∵a∥b,∴a,b确定一个平面α.∵A∈a,B∈b,∴A∈α,B∈α.∴a,b,l都在平面α内,即b在a,l确定的平面内.同理可证c在a,l确定的平面内.∵过a与l只能确定一个平面,∴a,b,c,l共面于a,l确定的平面.17.已知正方体ABCD-A1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD=P,A1C1∩EF=Q.求证:(1)D,B,E,F四点共面;(2)若A1C交平面DBFE于R点,则P,Q,R三点共线.证明:(1)易知EF是△D1B1C1的中位线,∴EF∥B1D1.在正方体AC1中,B1D1∥BD,∴EF∥BD.∴EF,BD确定一个平面,即D,B,E,F四点共面.(2)正方体AC1中,设平面A1ACC1确定的平面为α,平面BDEF为β.∵Q∈A1C1,∴Q∈α.又Q∈EF,∴Q∈β.则Q是α与β的公共点.同理P是α与β的公共点,∴α∩β=PQ.又A1C∩β=R,∴R∈A1C.∴R∈α,且R∈β,则R∈PQ.故P,Q,R三点共线.C级——探索创新练18.在四面体ABCD中,作截面PQR.若PQ,CB的延长线交于点M,RQ,DB的延长线交于点N,RP,DC的延长线交于点K.求证:M,N,K三点共线.证明:∵M∈PQ,PQ⊂面PQR,M∈BC,BC⊂面BCD,∴M是平面PQR与平面BCD的一个公共点.即M在平面PQR与平面BCD的交线上.同理可证N,K也在该交线上.∴M,N,K三点共线.。

高中数学第八章立体几何初步测评习题含解析第二册

高中数学第八章立体几何初步测评习题含解析第二册

第八章测评(时间:120分钟满分:150分)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1。

如图所示,△A’O’B'表示水平放置的△AOB的直观图,B’在x’轴上,A'O’与x’轴垂直,且A’O’=2,则△AOB的边OB上的高为()A.2B.4 C。

2 D.4△AOB的边OB上的高为h,因为S原图形=2S直观图,所以×OB×h=2×O’B'×2,又OB=O’B',所以h=4.2。

如图,一圆锥的母线长为4,其侧面积为4π,则这个圆锥的体积为()A。

B.C。

πD。

π,此扇形的半径R=4,设其弧长为l,侧面积为扇形的面积,所以扇形的面积S1=Rl=4π,解得弧长l=2π,所以圆锥的底面周长为2π,由此可知底面半径r=1,所以底面面积为S=π,圆锥的高为h=,故圆锥的体积V=Sh=π.3。

在等腰直角三角形ABC中,AB=BC=1,M为AC的中点,沿BM把它折成二面角,折后A与C的距离为1,则二面角C—BM—A的大小为()A。

30°B。

60°C.90°D.120°,由A'B=BC=1,∠A’BC=90°知A'C=.∵M为A’C的中点,∴MC=AM=,且CM⊥BM,AM⊥BM,∴∠CMA为二面角C-BM—A的平面角。

∵AC=1,MC=MA=,∴∠CMA=90°,故选C。

4.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,则四边形ABCD绕AD所在直线旋转一周所成几何体的表面积为()A.(60+4)πB。

(60+8)πC.(56+8)πD。

(56+4)πABCD绕AD所在直线旋转一周所成的几何体,如图.S表面=S圆台下底面+S圆台侧面+S圆锥侧面=π+π(r1+r2)l2+πr1l1=π×52+π×(2+5)×5+π×2×2=(60+4)π.故选A.5。

第八章立体几何初步综合复习题-2021-2022学年高二下学期数学人教A版(2019)必修第二册

第八章立体几何初步综合复习题-2021-2022学年高二下学期数学人教A版(2019)必修第二册

第八章立体几何初步综合复习题一、选择题1.已知空间中不过同一点的三条直线l,m,n.则“l,m,n共面”是“l,m,n两两相交”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.如果PA,PB,PC两两垂直,那么点P在平面ABC内的投影一定是△ABC( )A.重心B.内心C.外心D.垂心3.给出下列命题:(1)若一条直线与两条直线都相交,那么这三条直线共面;(2)若三条直线两两平行,那么这三条直线共面;(3)若直线a与直线b异面,直线b与直线c异面,那么直线a与直线c异面;(4)若直线a与直线b垂直,直线b与直线c垂直,那么直线a与直线c平行;其中正确的命题个数有( )A.0个B.1个C.2个D.3个4.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为( )A.9πB.22π3C.28π3D.34π35.若正四棱锥的侧面积等于12√34,底面边长为6,则棱锥的高等于( )A.4B.5C.6D.76.下列四个正方体中,A,B,C为正方体所在棱的中点,则能得出平面ABC∥平面DEF的是( )A.B.C.D.7.如图,平面α∩平面β=l,A,B∈α,C∈β,C∉l,直线AB∩l=D,过A,B,C三点确定的平面为γ,则平面γ,β的交线必过( )A.点A B.点BC.点C,但不过点D D.点C和点D8.若一个四面体的四个侧面是全等的三角形,则称这样的四面体为“完美四面体”,现给出四个不同的四面体A k B k C k D k(k=1,2,3,4),记△A k B k C k的三个内角分别为A k,B k,C k,其中一定不是“完美四面体”的为( )A.A1:B1:C1=3:5:7B.sinA2:sinB2:sinC2=3:5:7C.cosA3:cosB3:cosC3=3:5:7D.tanA4:tanB4:tanC4=3:5:7二、多选题9.下列说法正确的是( )A.一个棱锥至少有四个面B.如果四棱锥的底面是正方形,那么这个四棱锥的四条侧棱都相等C.五棱锥只有五条棱D.用与底面平行的平面去截三棱锥,得到的截面三角形和底面三角形相似10.a,b,c是空间中的三条直线,下列说法中正确的是( )A.若a∥b,b∥c,则a∥cB.若a与b相交,b与c相交,则a与c也相交C.若a,b分别在两个相交平面内,则这两条直线可能平行、相交或异面D.若a与c相交,b与c异面,则a与b异面11.在正方体ABCD−AʹBʹCʹDʹ中,过体对角线BDʹ的一个平面交AAʹ于E、交CCʹ于F,则以下结论中正确的是( )A.四边形BFDʹE一定是平行四边形B.四边形BFDʹE有可能是正方形C.四边形BFDʹE有可能是菱形D.四边形BFDʹE在底面的投影一定是正方形12.如图,在正四棱锥S−ABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN(不包含端点)上运动时,下列四个结论中恒成立的为( )A.EP⊥AC B.EP∥BDC.EP∥平面SBD D.EP⊥平面SAC三、填空题13.如图所示,已知多面体ABCDEFG中,AB,AC,AD两两互相垂直,平面ABC∥平面DEFG,平面BEF∥平面ADGC,AB=AD=DG=2,AC=EF=1,则该多面体的体积为.14.已知三棱锥P−ABC的侧棱PA,PB,PC两两垂直,且长度均为1,若该棱锥的四个顶点都在球O的表面上,则球O的表面积为.15.我国古代数学名著《九章算术》中将底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”,现有一“阳马”如图所示,PA⊥平面ABCD,PA=4,AB=√3,AD=1,则该“阳马”外接球的表面积为.16.已知a,b为异面直线,且a,b所成的角为40∘,过空间一点作直线c,直线c与a,b均异面,且所成的角均为θ.若这样的直线c共有四条,则θ的取值范围为.三、解答题17.已知P是平面ABC外一点,PA⊥平面ABC,AC⊥BC,求证:PC⊥BC.18.如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上的一点,且PA=AC,求二面角P−BC−A的大小.19.如图,已知在棱长为a的正方体A1B1C1D1−ABCD中,M,N分别是棱CD,AD的中点.求证:(1) 四边形MNA1C1是梯形;(2) ∠DNM=∠D1A1C1.20.如图,正方形ABCD所在平面与三角形CDE所在平面相交于CD,AE⊥平面CDE,且AE=1,AB=2.(1) 求证:AB⊥平面ADE;(2) 求凸多面体ABCDE的体积.21.如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,BC=EF=1,AE=√6,DE=3,∠BAD=60∘,G为BC的中点.(1) 求证:FG∥平面BED;(2) 求证:平面BED⊥平面AED;(3) 求直线EF与平面BED所成角的正弦值.22.如图,在四棱锥P−ABCD中,底面ABCD为菱形,∠BAD=60∘,Q为AD的中点,(1) 若PA=PD,求证:平面PQB⊥平面PAD;(2) 点M在线段PC上,PM=tPC,试确定实数t的值,使得PA∥平面MQB;(3) 在(2)的条件下,若平面PAD⊥平面ABCD,PA=AD=PD=2,求二面角M−BQ−C的大小.。

高中数学 第三章《空间向量与立体几何》同步练习二 新人教A版选修2-1

高中数学 第三章《空间向量与立体几何》同步练习二 新人教A版选修2-1

空间向量与立体几何一选择题:1. 下列说法中正确的是(B )A. 若∣a ∣=∣b ∣,则a ,b 的长度相同,方向相反或相同;B. 若a 与b 是相反向量,则∣a ∣=∣b ∣;C. 空间向量的减法满足结合律;D. 在四边形ABCD 中,一定有AB AD AC +=.2. 已知向量a ,b 是两个非零向量,00,a b 是与a ,b 同方向的单位向量,那么下列各式正确的是( D )A. 00a b =B. 00a b =或00a b =-C. 01a =D. ∣0a ∣=∣0b ∣3. 在四边形ABCD 中,若AC AB AD =+,则四边形是( D ) A. 矩形 B. 菱形 C. 正方形 D. 平行四边形4. 下列说法正确的是( D ) A. 零向量没有方向B. 空间向量不可以平行移动C. 如果两个向量不相同,那么它们的长度不相等D. 同向且等长的有向线段表示同一向量 5.以下四个命题中正确的是( C )A.空间的任何一个向量都可用其他三个向量表示B.若{→a ,→b ,→c }为空间向量的一组基底,则{→a +→b ,→b +→c ,→c -→a }构成空间向量的另一组基底C.△ABC 为直角三角形的充要条件为→AB ·→AC =0D.任何三个不共线的向量都可构成空间向量的一组基底6. 在平行六面体ABCD -A 1B 1C 1D 1中,与向量→A 1B 1模相等的向量有(C ) A .7个 B .3个C .5个D .6个7.如图所示,在正方体ABCD -A 1B 1C 1D 1中,下列各式中运算结果为向量AC 1→的是( D )①(AB →+BC →)+CC 1→;②(AA 1→+A 1D 1→)+D 1C 1→; ③(AB →+BB 1→)+B 1C 1→;④(AA 1→+A 1B 1→)+B 1C 1→. A .①③ B .②④ C .③④D .①②③④8. 对于向量a 、b 、c 和实数λ,下列命题中的真命题是( B ) A 若a ·b =0,则a =0或b =0 B 若λa =0,则λ=0或a =0 C 若a 2=b 2,则a =b 或a =-b D 若a ·b =a ·c ,则b =c9.P 为正六边形ABCDEF 外一点,O 为ABCDEF 的中心则→PA +→PB +→PC +→PD +→PE +→PF 等于( C ) A.→PO B.3→PO C.6→PO D.→0 10. 下列说法正确的是( A )A.a 与非零向量b 共线,b 与c 共线,则a 与c 共线B. 任意两个相等向量不一定共线C. 任意两个共线向量相等D. 若向量a 与b 共线,则a b λ=11. 将边长为1的正方形ABCD 沿角线BD 折成直二面角,若点P 满足→BP =12→BA -12→BC +→BD ,则|→BP|的值为( D )A.32B.2C.10-24D.9412.已知平行六面体''''ABCD A B C D -,M 是AC 与BD 交点,若',,AB a AD b AA c ===,则与'B M 相等的向量是( A )A. 11-22a b c -+;B. 11-22a b c +;C. 1122a b c -+;D. 1122a b c --+.13. 下列等式中,使M,A,B,C 四点共面的个数是( B )①;OM OA OB OC =--②111;532OM OA OB OC =++③0;MA MB MC ++=④0OM OA OB OC +++=.A. 1B. 2C. 3D. 414. 在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( A ). A .0 B.1 C. 2 D. 3 15. 下列命题中:①若0a b •=,则a ,b 中至少一个为0 ②若a 0≠且a b a c •=•,则b c = ③()()a b c a b c ••=••④22(32)(32)94a b a b a b +•-=-正确有个数为( B )A. 0个B. 1个C. 2个D. 3个 16. 已知1e 和2e 是两个单位向量,夹角为3π,则下面向量中与212e e -垂直的是( C ) A. 12e e + B. 12e e - C. 1e D. 2e17.若a =123(,,)a a a ,b =123(,,)b b b ,则312123a a ab b b ==是//a b 的( A )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不不要条件18已知()()1,0,0,0,1,1A B -,OA OB λ+与OB 的夹角为120°,则λ的值为( C )A. D. 19.若()()2,2,0,3,2,a x b x x ==-,且,a b 的夹角为钝角,则x 的取值范围是( A )A. 4x <-B. 40x -<<C. 04x <<D. 4x >20.已知 ()()1,2,,,1,2a y b x =-=, 且(2)//(2)a b a b +-,则( B )A. 1,13x y ==B. 1,42x y ==-C. 12,4x y ==- D. 1,1x y ==-21. 已知两非零向量e 1,e 2不共线,设a =λe 1+μe 2(λ、μ∈R 且λ2+μ2≠0),则( D ) A .a ∥e 1 B .a ∥e 2 C .a 与e 1,e 2共面D .以上三种情况均有可能22正方体ABCD -A ′B ′C ′D ′中,向量AB ′→与BC ′→的夹角是( C )A .30° B .45° C .60°D .90°23设A ,B ,C ,D 是空间不共面的四点,且满足A B →·A C →=0,A C →·A D →=0,A B →·A D →=0,则△BCD 是( B )A .钝角三角形B .锐角三角形C .直角三角形D .不确定24.平行六面体ABCD -A 1B 1C 1D 1中,AB =1,AD =2,AA 1=3,∠BAD =90°,∠BAA 1=∠DAA 1=60°,则AC 1的长为 ( D )A.13B.43C.33D.2325. 已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ=( D ) A. 627 B. 637 C. 647 D. 65726 若a 、b 均为非零向量,则||||⋅=a b a b 是a 与b 共线的( A ) A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分又不必要条件 27.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为( B )A .2B .3C .4D .528 已知a +b +c =0,|a |=2,|b |=3,|c |=a 与b 之间的夹角,a b <>为( C )A .30°B .45°C .60°D .以上都不对29 .已知()()1,1,0,1,0,2,a b ==-且ka b +与2a b -互相垂直,则k 的值是(D )A. .1B. 15C. 35D. 7530.若A )12,5,(--x x x ,B )2,2,1(x x -+,当B A取最小值时,x 的值等于( C )A .19B .78-C .78D .141931.空间四边形OABC 中,OB OC =,3AOB AOC π∠=∠=,则cos <,OA BC >的值是(D )A .21 B .22 C .-21D .032.已知(1,2,3)OA =,(2,1,2)OB =,(1,1,2)OP =,点Q 在直线OP 上运动,则当QA QB ⋅取得最小值时,点Q 的坐标为 ( C ) (A).131(,,)243(B)123(,,)234(C)448(,,)333(D)447(,,)333二填空题:33.已知ABCD ,顶点A(1,0,0),B(0,1,0),C(0,0,2)则顶点D 的坐标为_____.(1,-1,2) 34.Rt ABC 中,,∠BAC=90°, A(2,1,1),B(1,1,2), C(x,0,1)则x=______2 35已知A(3,5,-7),B(-2,4,3),则AB 在坐标平面yoz 上的射影的长度为_____101 36已知正方形ABCD 的边长为1,AB →=a ,BC →=b ,AC →=c ,则|a +b +c|等于________. 3 37已知O 是空间任一点,A 、B 、C 、D 四点满足任三点均不共线,但四点共面,且OA →=2xBO →+3yCO →+4zDO →, 则2x +3y +4z =____138.已知A ,B ,C 三点共线,则对空间任一点O ,存在三个不为0的实数λ,m ,n ,使λOA →+mOB →+nOC →=0,那么λ+m +n 的值为________. 139.已知矩形ABCD ,P 为平面ABCD 外一点,M 、N 分别为BC 、PD 的中点,且满足M N →=xAB →+yAD →+zAP →则实数x ,y ,z 的值分别为________.-1,0,1240.在空间四边形ABCD 中,A B →·C D →+B C →·A D →+C A →·B D →=________→0.41.已知|a|=32,|b|=4,a 与b 的夹角为135°,m =a +b ,n =a +λb ,则m ⊥n ,则λ=________.11642.若向量)2,3,6(),4,2,4(-=-=b a,则(23)(2)a b a b -+=__________________。

(新教材)人教A版高中数学必修第二册学案 立体几何导学案含含配套练习答案

(新教材)人教A版高中数学必修第二册学案   立体几何导学案含含配套练习答案

8.1基本立体图形第1课时棱柱、棱锥、棱台的结构特征考点学习目标核心素养棱柱的结构特征理解棱柱的定义,知道棱柱的结构特征,并能识别直观想象棱锥、棱台的结构特征理解棱锥、棱台的定义,知道棱锥、棱台的结构特征,并能识别直观想象应用几何体的平面展开图能将棱柱、棱锥、棱台的表面展开成平面图形直观想象问题导学预习教材P97-P100的内容,思考以下问题:1.空间几何体的定义是什么?2.空间几何体分为哪几类?3.常见的多面体有哪些?4.棱柱、棱锥、棱台有哪些结构特征?1.空间几何体的定义及分类(1)定义:如果只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.(2)分类:常见的空间几何体有多面体与旋转体两类.2.空间几何体类别定义图示多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点旋转体一条平面曲线(包括直线)绕它所在平面内的这条定直线旋转所形成的曲面叫做旋转面,封闭的旋转面围成的几何体叫做旋转体.这条定直线叫做旋转体的轴3.棱柱、棱锥、棱台的结构特征结构特征及分类图形及记法棱柱结构特征(1)有两个面(底面)互相平行(2)其余各面都是四边形(3)相邻两个四边形的公共边都互相平行记作棱柱ABCDEF­A′B′C′D′E′F′分类按底面多边形的边数分为三棱柱、四棱柱…续表结构特征及分类图形及记法棱锥结构特征(1)有一个面(底面)是多边形(2)其余各面(侧面)都是有一个公共顶点的三角形记作棱锥S-ABCD 分类按底面多边形的边数分为三棱锥、四棱锥……棱台结构特征(1)上下底面互相平行,且是相似图形(2)各侧棱延长线相交于一点(或用一个平行于棱锥底面的平面去截棱锥,底面与截面之间那部分多面体叫做棱台)记作棱台ABCD-A′B′C′D′分类由三棱锥、四棱锥、五棱锥……截得的棱台分别为三棱台、四棱台、五棱台……(1)棱柱、棱锥、棱台的关系在运动变化的观点下,棱柱、棱锥、棱台之间的关系可以用下图表示出来(以三棱柱、三棱锥、三棱台为例).(2)各种棱柱之间的关系 ①棱柱的分类棱柱⎩⎪⎨⎪⎧直棱柱⎩⎪⎨⎪⎧正棱柱(底面为正多边形)一般的直棱柱斜棱柱②常见的几种四棱柱之间的转化关系判断(正确的打“√”,错误的打“×”) (1)棱柱的侧面都是平行四边形.( )(2)用一个平面去截棱锥,底面和截面之间的部分叫棱台. ( ) (3)将棱台的各侧棱延长可交于一点.( ) 答案:(1)√ (2)× (3)√下面多面体中,是棱柱的有( )A .1个B .2个C .3个D .4个解析:选D.根据棱柱的定义进行判定知,这4个都满足. 下面四个几何体中,是棱台的是( )解析:选C.A 项中的几何体是棱柱.B 项中的几何体是棱锥;D 项中的几何体的棱AA ′,BB′,CC′,DD′没有交于一点,则D项中的几何体不是棱台;很明显C项中的几何体是棱台.在三棱锥A-BCD中,可以当作棱锥底面的三角形的个数为()A.1 B.2C.3 D.4解析:选D.每个面都可作为底面,有4个.下列说法正确的有________.(填序号)①棱锥的侧面为三角形,且所有侧面都有一个公共点;②棱台的侧面有的是平行四边形,有的是梯形;③棱台的侧棱所在直线均相交于同一点.解析:棱锥是由棱柱的一个底面收缩为一个点而得到的几何体,因而其侧面均是三角形,且所有侧面都有一个公共点,故①对.棱台是棱锥被平行于底面的平面所截后,截面与底面之间的部分,因而其侧面均是梯形,且所有的侧棱延长后均相交于一点(即原棱锥的顶点),故②错,③对.因而正确的有①③.答案:①③棱柱的结构特征下列关于棱柱的说法:①所有的面都是平行四边形;②每一个面都不会是三角形;③两底面平行,并且各侧棱也平行;④被平面截成的两部分可以都是棱柱.其中正确说法的序号是__________.【解析】①错误,棱柱的底面不一定是平行四边形;②错误,棱柱的底面可以是三角形;③正确,由棱柱的定义易知;④正确,棱柱可以被平行于底面的平面截成两个棱柱,所以正确说法的序号是③④.【答案】③④棱柱结构特征的辨析技巧(1)扣定义:判定一个几何体是否是棱柱的关键是棱柱的定义.①看“面”,即观察这个多面体是否有两个互相平行的面,其余各面都是四边形;②看“线”,即观察每相邻两个四边形的公共边是否平行.(2)举反例:通过举反例,如与常见几何体或实物模型、图片等不吻合,给予排除.1.下列命题中正确的是()A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫棱柱的底面C.棱柱的侧面都是平行四边形,而底面不是平行四边形D.棱柱的侧棱都相等,侧面是平行四边形解析:选D.由棱柱的定义可知,选D.2.如图所示的三棱柱ABC-A1B1C1,其中E,F,G,H是三棱柱对应边上的中点,过此四点作截面EFGH,把三棱柱分成两部分,各部分形成的几何体是棱柱吗?如果是,是几棱柱,并用符号表示;如果不是,请说明理由.解:截面以上的几何体是三棱柱AEF-A1HG,截面以下的几何体是四棱柱BEFC-B1HGC1.棱锥、棱台的结构特征下列关于棱锥、棱台的说法:①用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;②棱台的侧面一定不会是平行四边形;③棱锥的侧面只能是三角形;④由四个面围成的封闭图形只能是三棱锥;⑤棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________.【解析】①错误,若平面不与棱锥底面平行,用这个平面去截棱锥,棱锥底面和截面之间的部分不是棱台.②正确,棱台的侧面一定是梯形,而不是平行四边形.③正确,由棱锥的定义知棱锥的侧面只能是三角形.④正确,由四个面围成的封闭图形只能是三棱锥.⑤错误,如图所示四棱锥被平面截成的两部分都是棱锥.所以正确说法的序号为②③④.【答案】②③④判断棱锥、棱台形状的两种方法(1)举反例法结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点1.棱台不具有的性质是()A.两底面相似B.侧面都是梯形C.侧棱长都相等D.侧棱延长后相交于一点解析:选C.由棱台的概念(棱台的产生过程)可知A,B,D都是棱台具有的性质,而侧棱长不一定相等.2.下列说法中,正确的是()①棱锥的各个侧面都是三角形;②有一个面是多边形,其余各面都是三角形,由这些面围成的几何体是棱锥;③四面体的任何一个面都可以作为棱锥的底面;④棱锥的各侧棱长相等.A.①②B.①③C.②③D.②④解析:选B.由棱锥的定义,知棱锥的各侧面都是三角形,故①正确;有一个面是多边形,其余各面都是三角形,如果这些三角形没有一个公共顶点,那么这个几何体就不是棱锥,故②错;四面体就是由四个三角形所围成的封闭几何体,因此以四面体的任何一个面作底面的几何体都是三棱锥,故③正确;棱锥的侧棱长可以相等,也可以不相等,故④错.空间几何体的平面展开图(1)水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的平面展开图(图中数字写在正方体的外表面上),若图中的“2”在正方体的上面,则这个正方体的下面是()A.1 B.9C.快D.乐(2)如图是三个几何体的侧面展开图,请问各是什么几何体?【解】(1)选 B.由题意,将正方体的展开图还原成正方体,“1”与“乐”相对,“2”与“9”相对,“0”与“快”相对,所以下面是“9”.(2)题图①中,有5个平行四边形,而且还有两个全等的五边形,符合棱柱的特点;题图②中,有5个三角形,且具有共同的顶点,还有一个五边形,符合棱锥的特点;题图③中,有3个梯形,且其腰的延长线交于一点,还有两个相似的三角形,符合棱台的特点,把侧面展开图还原为原几何体,如图所示:所以①为五棱柱,②为五棱锥,③为三棱台.多面体展开图问题的解题策略(1)绘制展开图:绘制多面体的平面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其平面展开图.(2)由展开图复原几何体:若是给出多面体的平面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推,同一个几何体的平面展开图可能是不一样的,也就是说,一个多面体可有多个平面展开图.1.某同学制作了一个对面图案均相同的正方体礼品盒,如图所示,则这个正方体礼品盒的平面展开图应该为()解析:选A.其展开图是沿盒子的棱剪开,无论从哪条棱剪开,剪开的相邻面在展开图中可以不相邻,但未剪开的相邻面在展开图中一定相邻.相同的图案是盒子上相对的面,展开后不能相邻.2.根据如图所示的几何体的表面展开图,画出立体图形.解:如图是以四边形ABCD为底面,P为顶点的四棱锥.其图形如图所示.1.下面的几何体中是棱柱的有()A.3个B.4个C.5个D.6个解析:选C.棱柱有三个特征:(1)有两个面相互平行.(2)其余各面是四边形.(3)侧棱相互平行.本题所给几何体中⑥⑦不符合棱柱的三个特征,而①②③④⑤符合,故选C.2.下面图形中,为棱锥的是()A.①③B.③④C.①②④D.①②解析:选C.根据棱锥的定义和结构特征可以判断,①②是棱锥,③不是棱锥,④是棱锥.故选C.3.有一个多面体,共有四个面围成,每一个面都是三角形,则这个几何体为()A.四棱柱B.四棱锥C.三棱柱D.三棱锥解析:选D.根据棱锥的定义可知该几何体是三棱锥.4.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为__________cm.解析:因为棱柱有10个顶点,所以棱柱为五棱柱,共有五条侧棱,所以侧棱长为60 5=12(cm).答案:125.画一个三棱台,再把它分成:(1)一个三棱柱和另一个多面体.(2)三个三棱锥,并用字母表示.解:画三棱台一定要利用三棱锥.(1)如图①所示,三棱柱是棱柱A′B′C′­AB″C″,另一个多面体是B′C′C″B″BC.(2)如图②所示,三个三棱锥分别是A′­ABC,B′­A′BC,C′­A′B′C.[A基础达标]1.下列说法正确的是()A.棱柱的底面一定是平行四边形B.棱锥的底面一定是三角形C.棱锥被平面分成的两部分不可能都是棱锥D.棱柱被平面分成的两部分可能都是棱柱解析:选D.棱柱和棱锥的底面可以是任意多边形,故选项A、B均不正确;可沿棱锥的侧棱将其分割成两个棱锥,故C错误;用平行于棱柱底面的平面可将棱柱分割成两个棱柱.2.具备下列条件的多面体是棱台的是()A .两底面是相似多边形的多面体B .侧面是梯形的多面体C .两底面平行的多面体D .两底面平行,侧棱延长后交于一点的多面体解析:选D.由棱台的定义可知,棱台的两底面平行,侧棱延长后交于一点. 3.如图,能推断这个几何体可能是三棱台的是( )A .A 1B 1=2,AB =3,B 1C 1=3,BC =4B .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =3 C .A 1B 1=1,AB =2,B 1C 1=1.5,BC =3,A 1C 1=2,AC =4D .AB =A 1B 1,BC =B 1C 1,CA =C 1A 1解析:选C.根据棱台是由棱锥截成的进行判断.选项A 中A 1B 1AB ≠B 1C 1BC ,故A 不正确;选项B 中B 1C 1BC ≠A 1C 1AC ,故B 不正确;选项C 中A 1B 1AB =B 1C 1BC =A 1C 1AC,故C 正确;选项D 中满足这个条件的可能是一个三棱柱,不是三棱台.故选C.4.一个棱锥的各棱长都相等,那么这个棱锥一定不是( ) A .三棱锥 B .四棱锥 C .五棱锥D .六棱锥解析:选D.由题意可知,每个侧面均为等边三角形,每个侧面的顶角均为60°,如果是六棱锥,因为6×60°=360°,所以顶点会在底面上,因此不是六棱锥.5.下列图形中,不能折成三棱柱的是( )解析:选C.C 中,两个底面均在上面,因此不能折成三棱柱,其余均能折成三棱柱. 6.四棱柱有________条侧棱,________个顶点.解析:四棱柱有4条侧棱,8个顶点(可以结合正方体观察求得). 答案:4 87.一个棱台至少有________个面,面数最少的棱台有________个顶点,有________条棱. 解析:面数最少的棱台是三棱台,共有5个面,6个顶点,9条棱. 答案:5 6 98.在下面的四个平面图形中,是侧棱都相等的四面体的展开图的为__________.(填序号)解析:由于③④中的图组不成四面体,只有①②可以.答案:①②9.根据下列关于空间几何体的描述,说出几何体的名称:(1)由6个平行四边形围成的几何体;(2)由7个面围成的几何体,其中一个面是六边形,其余6个面都是有一个公共顶点的三角形;(3)由5个面围成的几何体,其中上、下两个面是相似三角形,其余3个面都是梯形,并且这些梯形的腰延长后能相交于一点.解:(1)这是一个上、下底面是平行四边形,4个侧面也是平行四边形的四棱柱.(2)这是一个六棱锥.(3)这是一个三棱台.10.画出如图所示的几何体的表面展开图.解:表面展开图如图所示:(答案不唯一)[B能力提升]11.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱共有对角线()A.20条B.15条C.12条D.10条解析:选D.如图,在五棱柱ABCDE A1B1C1D1E1中,从顶点A出发的对角线有两条:AC1,AD1,同理从B,C,D,E点出发的对角线均有两条,共有2×5=10(条).12.一个三棱锥,如果它的底面是直角三角形,那么它的三个侧面()A.至多有一个是直角三角形B.至多有两个是直角三角形C.可能都是直角三角形D.必然都是非直角三角形解析:选C.注意到答案特征是研究侧面最多有几个直角三角形,这是一道开放性试题,需要研究在什么情况下侧面的直角三角形最多.在如图所示的长方体中,三棱锥A­A1C1D1的三个侧面都是直角三角形.13.长方体ABCD-A1B1C1D1的长、宽、高分别为3,2,1,从A到C1沿长方体的表面的最短距离为________.解析:结合长方体的三种展开图不难求得AC1的长分别是:32,25,26,显然最小值是3 2.答案:3 214.如图,已知长方体ABCD-A1B1C1D1.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCEF把这个长方体分成两部分,各部分几何体的形状是什么?解:(1)是棱柱.是四棱柱.因为长方体中相对的两个面是平行的,其余的每个面都是矩形(四边形),且每相邻的两个矩形的公共边都平行,符合棱柱的结构特征,所以是棱柱.(2)各部分几何体都是棱柱,分别为棱柱BB1F­CC1E和棱柱ABF A1­DCED1.[C拓展探究]15.如图,在一个长方体的容器中装有少量水,现在将容器绕着其底部的一条棱倾斜,在倾斜的过程中:(1)水面的形状不断变化,可能是矩形,也可能变成不是矩形的平行四边形,对吗?(2)水的形状也不断变化,可以是棱柱,也可能变为棱台或棱锥,对吗?(3)如果倾斜时,不是绕着底部的一条棱,而是绕着其底部的一个顶点,试着讨论水面和水的形状.解:(1)不对,水面的形状就是用一个与棱(倾斜时固定不动的棱)平行的平面截长方体时截面的形状,因而是矩形,不可能是其他非矩形的平行四边形.(2)不对,水的形状就是用与棱(将长方体倾斜时固定不动的棱)平行的平面将长方体截去一部分后,剩余部分的几何体是棱柱,水比较少时,是三棱柱,水多时,可能是四棱柱;但不可能是棱台或棱锥.(3)用任意一个平面去截长方体,其截面形状可以是三角形,四边形,五边形,六边形,因而水面的形状可以是三角形,四边形,五边形,六边形;水的形状可以是棱锥,棱柱,但不可能是棱台.第2课时圆柱、圆锥、圆台、球、简单组合体的结构特征考点学习目标核心素养圆柱、圆锥、圆台、球的概念理解圆柱、圆锥、圆台、球的定义,知道这四种几何体的结构特征,能够识别和区分这些几何体直观想象简单组合体的结构特征了解简单组合体的概念和基本形式直观想象旋转体中的计算问题会根据旋转体的几何体特征进行相关运算直观想象、数学运算问题导学预习教材P101-P104的内容,思考以下问题:1.常见的旋转体有哪些?是怎样形成的?2.这些旋转体有哪些结构特征?它们之间有什么关系?3.这些旋转体的侧面展开图和轴截面分别是什么图形?1.圆柱、圆锥、圆台和球的结构特征(1)圆柱的结构特征定义以矩形的一边所在直线为旋转轴,其余三边旋转一周形成的面所围成的旋转体图示及相关概念轴:旋转轴叫做圆柱的轴底面:垂直于轴的边旋转而成的圆面侧面:平行于轴的边旋转而成的曲面母线:无论旋转到什么位置,平行于轴的边柱体:圆柱和棱柱统称为柱体■名师点拨(1)圆柱有无数条母线,它们平行且相等.(2)平行于底面的截面是与底面大小相同的圆,如图1所示.(3)过轴的截面(轴截面)都是全等的矩形,如图2所示.(4)过任意两条母线的截面是矩形,如图3所示.(2)圆锥的结构特征定义以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转一周形成的面所围成的旋转体图示及相关概念轴:旋转轴叫做圆锥的轴底面:垂直于轴的边旋转而成的圆面侧面:直角三角形的斜边旋转而成的曲面母线:无论旋转到什么位置,不垂直于轴的边锥体:圆锥和棱锥统称为锥体(1)圆锥有无数条母线,它们有公共点即圆锥的顶点,且长度相等.(2)平行于底面的截面都是圆,如图1所示.(3)过轴的截面是全等的等腰三角形,如图2所示.(4)过任意两条母线的截面是等腰三角形,如图3所示.(3)圆台的结构特征定义用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分图示及相关概念轴:圆锥的轴底面:圆锥的底面和截面侧面:圆锥的侧面在底面和截面之间的部分母线:圆锥的母线在底面与截面之间的部分台体:圆台和棱台统称为台体■名师点拨(1)圆台有无数条母线,且长度相等,延长后相交于一点.(2)平行于底面的截面是圆,如图1所示.(3)过轴的截面是全等的等腰梯形,如图2所示.(4)过任意两条母线的截面是等腰梯形,如图3所示.(4)球的结构特征定义以半圆的直径所在直线为旋转轴,旋转一周形成的曲面叫做球面,球面所围成的旋转体叫做球体,简称球图示及相关概念球心:半圆的圆心半径:半圆的半径直径:半圆的直径■名师点拨(1)球心和截面圆心的连线垂直于截面.(2)球心到截面的距离d与球的半径R及截面圆的半径r有如下关系:r=R2-d2.2.简单组合体(1)概念由简单几何体组合而成的几何体叫做简单组合体.(2)两种构成形式①由简单几何体拼接而成;②由简单几何体截去或挖去一部分而成.判断(正确的打“√”,错误的打“×”)(1)直角三角形绕一边所在直线旋转得到的旋转体是圆锥.()(2)夹在圆柱的两个平行截面间的几何体是一圆柱.()(3)半圆绕其直径所在直线旋转一周形成球.()(4)圆柱、圆锥、圆台的底面都是圆面.()答案:(1)×(2)×(3)×(4)√下列几何体中不是旋转体的是()解析:选D.由旋转体的概念可知,选项D不是旋转体.过圆锥的轴作截面,则截面形状一定是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形答案:B可以旋转得到如图的图形的是()解析:选A.题图所示几何体上面是圆锥,下面是圆台,故平面图形应是由一个直角三角形和一个直角梯形构成.指出图中的几何体是由哪些简单几何体构成的.解:①是由一个圆锥和一个圆柱组合而成的;②是由一个圆柱和两个圆台组合而成的;③是由一个三棱柱和一个四棱柱组合而成的.圆柱、圆锥、圆台、球的概念(1)给出下列说法:①圆柱的底面是圆面;②经过圆柱任意两条母线的截面是一个矩形面;③圆台的任意两条母线的延长线可能相交,也可能不相交;④夹在圆柱的两个截面间的几何体还是一个旋转体.其中说法正确的是________.(2)给出以下说法:①球的半径是球面上任意一点与球心所连线段的长;②球的直径是球面上任意两点间所连线段的长;③用一个平面截一个球,得到的截面可以是一个正方形;④过圆柱轴的平面截圆柱所得截面形状是矩形.其中正确说法的序号是________.【解析】(1)①正确,圆柱的底面是圆面;②正确,如图所示,经过圆柱任意两条母线的截面是一个矩形面;③不正确,圆台的母线延长相交于一点;④不正确,圆柱夹在两个平行于底面的截面间的几何体才是旋转体.(2)根据球的定义知,①正确;②不正确,因为球的直径必过球心;③不正确,因为球的任何截面都是圆面;④正确.【答案】(1)①②(2)①④(1)判断简单旋转体结构特征的方法①明确由哪个平面图形旋转而成;②明确旋转轴是哪条直线.(2)简单旋转体的轴截面及其应用①简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量;②在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.判断下列各命题是否正确.(1)一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几何体是圆台;(2)圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形;(3)到定点的距离等于定长的点的集合是球.解:(1)错误.直角梯形绕下底所在直线旋转一周所形成的几何体是由一个圆柱与一个圆锥组成的简单组合体,如图所示.(2)正确.(3)错误.应为球面.简单组合体的结构特征如图所示的几何体是由下面哪一个平面图形旋转而形成的()【解析】该几何体自上而下由圆锥、圆台、圆台、圆柱组合而成,故应选A.【答案】 A[变条件、变问法]若将本例选项B中的平面图形旋转一周,试说出它形成的几何体的结构特征.解:①是直角三角形,旋转后形成圆锥;②是直角梯形,旋转后形成圆台;③是矩形,旋转后形成圆柱,所以旋转后形成的几何体如图所示.通过观察可知,该几何体是由一个圆锥、一个圆台和一个圆柱自上而下拼接而成的.不规则平面图形旋转形成几何体的结构特征的分析策略(1)分割:首先要对原平面图形适当分割,一般分割成矩形、梯形、三角形或圆(半圆或四分之一圆)等基本图形.(2)定形:然后结合圆柱、圆锥、圆台、球的形成过程进行分析.已知AB是直角梯形ABCD中与底边垂直的腰,如图所示.分别以AB,BC,CD,DA所在的直线为轴旋转,试说明所得几何体的结构特征.解:(1)以AB 边所在的直线为轴旋转所得旋转体是圆台,如图①所示.(2)以BC 边所在的直线为轴旋转所得旋转体是一个组合体:下部为圆柱,上部为圆锥,如图②所示.(3)以CD 边所在的直线为轴旋转所得旋转体为一个组合体:上部为圆锥,下部为圆台,再挖去一个小圆锥,如图③所示.(4)以AD 边所在的直线为轴旋转所得旋转体是一个组合体:一个圆柱上部挖去一个圆锥,如图④所示.旋转体中的计算问题如图所示,用一个平行于圆锥SO 底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm ,求圆台O ′O 的母线长.【解】 设圆台的母线长为l cm ,由截得的圆台上、下底面面积之比为1∶16,可设截得的圆台的上、下底面的半径分别为r cm ,4r cm.过轴SO 作截面,如图所示,则△SO ′A ′∽△SOA ,SA ′=3 cm. 所以SA ′SA =O ′A ′OA ,所以33+l =r 4r =14.解得l =9,即圆台O ′O 的母线长为9 cm.解决旋转体中计算问题的方法用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,列出相关几何变量的方程(组)而解得.。

2021届高二新题数学人教A版2019专题01空间向量与立体几何(选择题、填

2021届高二新题数学人教A版2019专题01空间向量与立体几何(选择题、填

2021届高二新题数学人教A版2019专题01,空间向量与立体几何(选择题、填空题)(9月解析版)题专题01空间向量与立体几何(选择题、填空题)一、单选题1.(江苏省南通市如东县2019-2020学年高一下学期期末数学试题)在长方体1111ABCDABCD中,2ABBC,11AA,则直线1BC与平面11BBDD所成角的正弦值为A.63B.102C.155D.105【答案】D【分析】由题意,由于图形中已经出现了两两垂直的三条直线,所以可以利用空间向量的方法求解直线与平面所成的夹角.【解析】以D点为坐标原点,以1,,DADCDD所在的直线为x轴、y轴、z轴,建立空间直角坐标系,则1(2,0,0),(2,2,0),(0,2,0),ABCC(0,2,1),1(2,0,1),(2,2,0),BCACA C为平面11BBDD的一个法向量.1410cos,558BCAC.直线1BC与平面11BBDD所成角的正弦值为105.故选D.【点睛】此题重点考查了利用空间向量,抓住直线与平面所成的角与该直线的方向向量与平面的法向量的夹角之间的关系,利用向量方法解决立体几何问题.2.(广东省广州市八区2019-2020学年高二下学期期末教学质量检测数学试题)如图,在平行六面体ABCDABCD中,AC 与BD的交点为O,点M在BC上,且2BMMC,则下列向量中与OM相等的向量是A.172263ABADAA B.151263ABADAA C.112263ABADAA D.111263ABADAA【答案】C【分析】在平行六面体ABCDABCD中,根据空间向量加法合成法则,对向量OM进行线性表示即可【解析】因为2BMMC,所以23BMBC,在平行六面体ABCDABCD中,OMOBBM"23OBBC"12()23DBADAA"12()()23ABADADAA 112263ABADAA,故选C【点睛】此题考查了空间向量的加法运算问题,解题时应结合图形进行解答,属于基础题.3.(河南省驻马店市2019-2020学年高二下学期期末考试数学(理)试题)若两条不重合直线1l和2l的方向向量分别为11,0,1-,22,0,2,则1l和2l的位置关系是A.平行B.相交C.垂直D.不确定【答案】A【分析】由212v,可知两直线的位置关系是平行的【解析】因为两条不重合直线1l和2l的方向向量分别为11,0,1-,22,0,2,所以212v,即2与1v共线,所以两条不重合直线1l和2l的位置关系是平行,故选A【点睛】此题考查了直线的方向向量,共线向量,两直线平行的判定,属于基础题.4.(河南省商丘市回民中学2019-2020学年高二期末考试数学(理)试题)已知向量1,1,01,0,2ab,且2kabab与互相垂直,则k的值是A.75B.2C.53D.1【答案】A【分析】由向量垂直,可得对应向量数量积为0,从而可求出结果.【解析】因为1,1,01,0,2ab,,所以1ab,25ab,,又2kabab与互相垂直,所以20kabab,即22220kakababb,即4250kk,所以75k;故选A【点睛】本题主要考查向量的数量积的坐标运算,属于基础题型.5.(江西省南昌市八一中学2019-2020学年高二下学期期末考试数学(理)试题),,abc为空间向量的一组基底,则下列各项中,能构成空间向量的基底的一组向量是A.,,aabab B.,,bababC.,,cabab D.,,2ababab【答案】C【分析】空间的一组基底,必须是不共面的三个向量,利用向量共面的充要条件可证明A,B,D三个选项中的向量均为共面向量,利用反证法可证明C 选项中的向量不共面【解析】对于A,因为()()2ababa,所以,,aabab共面,不能构成基底,排除A,对于B,因为)()2ababb(,所以,,babab共面,不能构成基底,排除B,对于D,312()()22ababab,所以,,2ababab共面,不能构成基底,排除D,对于C,若,,cabab共面,则()()()()cababab,则,,abc共面,与,,abc为空间向量的一组基底相矛盾,故,,cabab可以构成空间向量的一组基底,故选C【点睛】此题考查了空间向量基本定理,向量共面的充要条件等基础知识,判断向量是否共面是解决此题的关键,属于基础题.6.(江苏省泰州市2019-2020学年高一下学期期末(重考卷)数学试题)点P(1,2,3)关于xOy平面的对称点的坐标为A.(-1,2,3)B.(1,-2,-3)C.(-1,-2,-3)D.(1,2,-3)【答案】D【分析】关于xOy平面对称的点的,xy坐标不变,只有z坐标相反.【解析】点P(1,2,3)关于xOy平面的对称点的坐标为(1,2,)3.故选D.【点睛】本题考查空间直角坐标系,考查空间上点关于坐标平面对称或关于坐标轴对称问题,属于简单题.7.(河南省开封市第二十五中学2019-2020学年高一下学期期末考试数学试题)在空间直角坐标系Oxyz中,记点1,2,3A在xOz平面内的正投影为点B,则OB A.5B.10C.13D.14【答案】B【分析】求出B点坐标,然后计算OB.【解析】点1,2,3A在xOz平面内的正投影为点(1,0,3)B,则2210310OB.故选B.【点睛】本题考查空间点在坐标平面上的投影,考查空间两点间距离.属于基础题.8.(浙江省湖州市2019-2020学年高二上学期期中数学试题)在正方体1111ABCDABCD 中,异面直线AC与1BD所成的角为A.6B.4C.3D.2【答案】D【分析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线AC与1BD所成的角.【解析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为1,则A(1,0,0),C(0,1,0),D(0,0,0),B1(1,1,1),AC=(﹣1,1,0),1BD=(﹣1,﹣1,﹣1),设异面直线AC与B1D所成的角为,则cos =11||||||ACBDACBD=0,=2.异面直线AC与B1D所成的角为2.故选D.【点睛】本题考查异面直线所成角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.9.(浙江省绍兴市鲁迅中学2019-2020学年高二上学期期中数学试题)如图,长方体1111ABCDABCD中,14AAAB,2AD,E、F、G分别是1DD、AB、1CC的中点,则异面直线1AE与GF所成角的余弦值是A.0B.105C.22D.155【答案】A【分析】建立空间直角坐标系,表示1,AEGF,然后利用空间向量的夹角公式计算即可.【解析】如图12,0,40,0,2,2,2,0,0,4,2AEFG,所以12,0,2,2,2,2AEGF所以异面直线1AE与GF所成角的余弦值110AEGFAEGF故选A【点睛】本题考查异面直线所成角的余弦值,利用向量的方法,便于计算,将几何问题代数化,属基础题.10.(吉林省长春市农安县实验中学2019-2020学年高一下学期期末考试数学试题)点A(3,-2,4)关于点(0,1,-3)的对称点的坐标是A.(-3,4,-10)B.(-3,2,-4)C.311(,,)222D.(6,-5,11)【答案】A【解析】A(3,-2,4)关于点(0,1,-3)的对称点的坐标是(023,122,324)(3,4,10),选A.11.(福建省莆田第七中学2019-2020学年高二上学期期末考试数学试题)若向量,ab的坐标满足2,1,2ab,4,3,2ab,则ab等于A.5B.5C.7D.1【答案】B【分析】直接利用向量的关系式,求出向量a、b的坐标,再根据向量数量积运算公式求解即可.【解析】因为2,1,2ab,4,3,2ab,两式相加得22,4,0a,解得1,2,0a,3,1,2b,所以1321025ab,故选B.【点睛】本题主要考查空间向量的基本运算,数量积的坐标运算,考查了计算能力,属于基础题.12.(上海市上海交通大学附属中学2019-2020学年高二下学期期末数学试题)在平行六面体1111ABCDABCD中,M为11AC与11BD的交点,若,ABaADb,1AAc,则与BM相等的向量是A.1122abc B.1122abc C.1122abc D.1122abc 【答案】D【分析】根据空间向量的线性运算,用,,abc作基底表示BM即可得解.【解析】根据空间向量的线性运算可知11BMBBBM11112AABD1111112AABAAD112AAAB AD因为,ABaADb,1AAc,则112AAABAD1122abc即1122BMabc,故选D.【点睛】本题考查了空间向量的线性运算,用基底表示向量,属于基础题.13.(黑龙江省海林市朝鲜族中学2019-2020学年高一下学期期末考试数学试题)在空间直角坐标系中,点(1,3,5)P关于xOy面对称的点的坐标是()A.(1,3,5)B.(1,3,5)C.(1,3,5)D.(1,3,5)【答案】C 【解析】1,3,5P关于xOy面对称的点为1,3,514.(江西省南昌市八一中学2019-2020学年高二下学期期末考试数学(理)试题)如图,空间四边形OABC中,,,OAaOBbOCc,且2OMMA,BNNC,则MN A.221332abc B.111222abc C.211322abc D.12 1232abc【答案】C【分析】根据MNONOM,再由2OMMA,BNNC,得到2211,3322aOMOAONOBOCcb,求解.【解析】因为MNONOM,又因为2211,3322aOMOAONOBOCcb,所以211322MNabc.故选C【点睛】本题主要考查平面向量的线性运算,还考查了运算求解的能力,属于基础题.15.(江西省南昌市八一中学2019-2020学年高二下学期期末考试数学(理)试题)设,xyR,向量(,1,1),b(1,,1),c(2,4,2)axy,,cacb P,则||ab A.22B.10C.3D.4【答案】C【分析】根据,cacb P,结合向量的坐标运算可求得参数,xy的值,再结合向量的加法与模长运算即可求解【解析】,241,2,(1,2,1)bcyyb P,,ac214+ 20,acx1x,(1,1,1),(2,1,2)aab,222||2(1)23ab,故选C.【点睛】本题考查空间向量的坐标运算,属于基础题16.(河北省石家庄市第二中学2019-2020学年高一下学期期末数学试题)在正方体1111ABCDABCD中,MN,分别为AD,11CD的中点,O为侧面11BCCB的中心,则异面直线MN与1OD所成角的余弦值为()A.16B.14C.16D.14【答案】A【分析】以D为坐标原点,分别以1,,DADCDD所在直线为,,xyz轴建立空间直角坐标系,设正方体的棱长为2,求出1MNOD,的坐标,由数量积求夹角公式求解.【解析】如图,以D为坐标原点,分别以1,,DADCDD 所在直线为,,xyz轴建立空间直角坐标系.设正方体的棱长为2,则1100,012,121,002MNOD,,,,,,,,,11,1,2,1,2,1MNOD.则11111cos,666MNODMNODMNOD.异面直线MN与1OD所成角的余弦值为16,故选A.【点睛】本题考查利用空间向量求解异面直线所成角,关键是正确标出所用点的坐标,是中档题.17.(新疆实验中学2019-2020学年高二下学期期末考试数学试题)长方体1111ABCDABCD中12,1ABAAAD,E为1CC的中点,则异面直线1BC与AE所成角的余弦值为A.1010B.3010C.21510D.31010【答案】B【解析】建立坐标系如图所示.则A(1,0,0),E(0,2,1),B(1,2,0),C1(0,2,2),1BC=(-1,0,2),AE=(-1,2,1).cos〈1BC,AE〉==3010.所以异面直线BC1与AE所成角的余弦值为3010.18.(湖北省黄石市第二中学2019-2020学年高二下学期5月月考数学(理)试题)已知空间中三点A(0,1,0),B(2,2,0),C (-1,3,1),则A.AB与AC是共线向量B.AB的单位向量是1,1,0C.AB与BC夹角的余弦值是5511D.平面ABC的一个法向量是1,2.5【答案】D【分析】分别根据两个向量的坐标运算,单位向量的定义和两向量的夹角公式,及法向量的求法,逐一判定,即可得到答案.【解析】由题意,对于A中,2,1,0,1,2,1ABAC,所以ABAC,则AB与AC不是共线向量,所以不正确;对于B中,因为2,1,0AB,所以AB的单位向量为255,,055或255,,055,所以是错误的;对于C中,向量2,1,0,3,1,1ABAC,所以55cos,11ABBCABBCABBC,所以是错误的;对于D中,设平面ABC的一个法向量是,,nxyz,因为2,1,0,1,2,1ABAC,所以200200xynABxyznAC,令1x,所以平面ABC的一个法向量为125n,,,所以是正确的,故选D.【点睛】本题主要考查了向量的坐标运算,两个向量的夹角公式以及共线向量的定义和平面法向量的求解,其中解答中熟记向量的基本概念和向量的运算公式是解答本题的关键,着重考查了推理与运算能力,属于基础题.19.(福建省莆田第七中学2019-2020学年高二上学期期末考试数学试题)如图,平行六面体中1111ABCDABCD中,各条棱长均为1,共顶点A的三条棱两两所成的角为60,则对角线1BD的长为A.1B.2C.3D.2【答案】B【分析】在平行六面体中1111ABCDABCD中,利用空间向量的加法运算得到11BDBABBBC,再根据模的求法,结合各条棱长均为1,共顶点A的三条棱两两所成的角为60,由2211BDBABBBC222111222BABBBCBABBBCBABBBC求解.【解析】在平行六面体中1111ABCDABCD中,因为各条棱长均为1,共顶点A的三条棱两两所成的角为60,所以111111cos120,11cos6022BABBBABCBCBB,所以11BDBABBBC,所以2211BDBABBBC,222111222BABBBCBABBBCBABBBC,113+22+2222,所以12BD,故选B【点睛】本题主要考查空间向量的运算以及向量模的求法,还考查了运算求解的能力,属于中档题.20.(黑龙江省哈尔滨市第三中学校2020届高三第二次模拟考试数学(理)试题)已知四面体ABCD中,AB,BC,BD两两垂直,2BCBD,AB与平面ACD所成角的正切值为12,则点B到平面ACD 的距离为A.32B.233C.55D.255【答案】D【分析】首先以B为原点,BC,BD,BA分别为x,y,z轴建立空间直角坐标系,BAt=,根据AB与平面ACD所成角的正切值为12得到2t,再求B到平面ACD 的距离即可.【解析】以B为原点,BC,BD,BA分别为x,y,z轴建立空间直角坐标系,如图所示:设BAt=,0t,0,0,0B,2,0,0C,0,2,0D,()0,0,At.()0,0,ABt=-,()2,0,CAt=-,()2,2,0CD=-.设平面ACD的法向量,,nxyz,则20220nCAxtznCDxy,令1x,得1y,2zt,故21,1,nt.因为直线AB与平面ACD所成角的正切值为12,所以直线AB与平面ACD所成角的正弦值为55.即2255211ABnABntt,解得2t.所以平面ACD的法向量21,1,2n,故B到平面ACD 的距离为22551112ABndn.故选D【点睛】本题主要考查向量法求点到面的距离,同时考查线面成角问题,属于中档题.21.(山东省济南莱芜市第一中学2019-2020学年高二下学期第一次质量检测数学试题)在棱长为1的正方体1111ABCDABCD中,点M为棱1CC 的中点,则直线1BM与平面11ADM所成角的正弦值是A.215B.25C.35D.45【答案】B【分析】通过建立空间直角坐标系,求出平面的法向量,进而求出线面角的正弦值.【解析】建立如图所示的空间直角坐标系,则1111(1,0,1),(0,0,1),(0,1,),(1,1,1)2ADMB11(1,0,0)AD,11(0,1,)2DM,11(1,0,)2MB设平面11ADM的法向量为(,,)mxyz则1110=01002xADmyzDMm令1y可得2z,所以(0,1,2)m设直线1BM与平面11ADM所成角为,1112sin5552mMBmMB故选B【点睛】本题考查了空间中的角线面角的求法,考查了空间想象能力和数学运算技能,属于一般题目.22.(四川省叙州区第二中学2019-2020学年高二下学期期末模拟考试数学(文)试题)一个四面体的四个顶点在空间直角坐标系Oxyz中的坐标分别是0,0,0,1,2,0,0,2,2,3,0,1,则该四面体中以yOz平面为投影面的正视图的面积为A.3B.52C.2D.72【答案】A【解析】根据平行投影的知识可知:该四面体中以yOz平面为投影面的正视图为一个上底为1,下底为2,高为2的直角梯形,所以面积为3.23.(四川省内江市2020届高三高考数学(理科)三模试题)如图该几何体由半圆柱体与直三棱柱构成,半圆柱体底面直径BC=4,AB=AC,BAC=90,D为半圆弧的中点,若异面直线BD和AB1所成角的余弦值为23,则该几何体的体积为A.16+8B.32+16C.32+8D.16+16【答案】A【分析】建立空间直角坐标系,利用异面直线BD和1AB所成的角的余弦值计算出该几何体的高,由此计算出该几何体的体积.【解析】设D在底面半圆上的射影为1D,连接1AD交BC于O,设1111ADBCO.依题意半圆柱体底面直径4,,90BCABACBAC,D为半圆弧的中点,所以1111,ADBCADBC且1,OO分别是下底面、上底面半圆的圆心.连接1OO,则1OO与上下底面垂直,所以11,,OOOBOOOAOAOB,以1,,OBOAOO为,,xyz轴建立空间直角坐标系,设几何体的高为0hh,则12,0,0,0,2,,0,2,0,2,0,BDhABh,所以12,2,,2,2,BDhABh,由于异面直线BD和1AB 所成的角的余弦值为23,所以212212388BDABhBDABhh,即2222,16,483hhhh.所以几何体的体积为2112442416822.故选A【点睛】本小题主要考查根据线线角求其它量,考查几何体体积的求法,属于中档题.24.(吉林省长春市2020届高考数学二模试卷(文科))在正方体1111ABCDABCD中,点E,F,G分别为棱11AD,1DD,11AB的中点,给出下列命题:①1ACEG;②//GCED;③1BF平面1BGC;④EF和1BB成角为4.正确命题的个数是A.0B.1C.2D.3【答案】C【分析】建立空间直角坐标系,利用向量的方法对四个命题逐一分析,由此得出正确命题的个数.【解析】设正方体边长为2,建立空间直角坐标系如下图所示,12,0,0,0,2,2,2,1,2ACG,10,2,0,1,0,2,0,0,0,2,2,2,0,0,1,2,2,0CEDBFB.①,112,2,2,1,1,0,2200ACEGACEG,所以1ACEG,故①正确.②,2,1,2,1,0,2GCED,不存在实数使GCED,故//GCED不成立,故②错误.③,112,2,1,0,1,2,2,0,2BFBGBC,1110,20BFBGBFBC,故1BF平面1BGC不成立,故③错误.④,11,0,1,0,0,2EFBB,设EF和1BB成角为,则1122cos222EFBBEFBB,由于0,2,所以4,故④正确.综上所述,正确的命题有2个.故选C【点睛】本小题主要考查空间线线、线面位置关系的向量判断方法,考查运算求解能力,属于中档题.25.(浙江省台州市书生中学2020届高三下学期高考模拟数学试题)如图,三棱锥VABC的侧棱长都相等,底面ABC与侧面VAC都是以AC为斜边的等腰直角三角形,E为线段AC的中点,F为直线AB上的动点,若平面VEF与平面VBC所成锐二面角的平面角为,则cos的最大值是A.33B.23C.53D.63【答案】D【分析】连接BE,以E为原点,EB 为x轴,EC为y轴,EV为z轴,建立空间直角坐标系,求出平面VBC的一个法向量m,平面VEF的一个法向量n,利用cosmnmn即可求解.【解析】底面ABC与侧面VAC都是以AC为斜边的等腰直角三角形,则RtABCRtVAC,所以VAVCBABC设2VAVCBABCVB,由E为线段AC的中点,则2VEBV,由222VEBEVB,所以VEEB,以E为原点,EB为x轴,EC为y 轴,EV为z轴,建立空间直角坐标系,如图所示:则0,2,0C,2,0,0B,0,0,2V,设,2,0Fxx,0,2,2VC,2,0,2VB,0,0,2EV,,2,2VFxx,设平面VBC的一个法向量111,,mxyz,则00mVCmVB,即1111220220yzxz,令11x,则11y,11z,所以1,1,1m.设平面VEF的一个法向量222,,nxyz,则00nEVnVF,即222220220zxxxyz,解得20z,令21y,则221xx,所以21,1,0nx,平面VEF与平面VBC所成锐二面角的平面角为,则22cos22232mnxmnxx,将分子、分母同除以1x,可得2222322226626xxxx令2226626632fxxxx,当22x时,min3fx,则cos的最大值为:2633.故选D【点睛】本题考查了空间向量法求二面角、考查了基本运算求解能力,解题的关键是建立恰当的空间直角坐标系,属于中档题.26.(陕西省渭南市大荔县2019-2020学年高一下学期期末数学试题)已知MN是正方体内切球的一条直径,点P在正方体表面上运动,正方体的棱长是2,则PMPN的取值范围为A.0,4B.0,2C.1,4D.1,2【答案】B【分析】利用向量的线性运算和数量积运算律可将所求数量积化为21PO,根据正方体的特点可确定PO的最大值和最小值,代入即可得到所求范围.【解析】设正方体内切球的球心为O,则1OMON,2PMPNPOOMPOONPOPOOMONOMON,MN为球O的直径,0OMON,1OMON,21PMPNPO,又P在正方体表面上移动,当P为正方体顶点时,PO最大,最大值为3;当P为内切球与正方体的切点时,PO最小,最小值为1,210,2PO,即PMPN的取值范围为0,2.故选B.【点睛】本题考查向量数量积的取值范围的求解问题,关键是能够通过向量的线性运算将问题转化为向量模长的取值范围的求解问题.27.(河南省新乡市2020届高三年级第三次模拟考试数学(理科)试题)连续掷三次骰子,先后得到的点数分别为x,y,z,那么点(,,)Pxyz到原点O的距离不超过3的概率为A.427B.7216C.1172D.16【答案】B【分析】根据空间中两点间的距离公式结合古典概型的概率公式,即可得出答案.【解析】点(,,)Pxyz到原点O的距离不超过3,则2223xyz,即2229xyz连续掷三次骰子,得到的点的坐标共有666216个其中(1,1,1),(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,2,1),(2,1,2)满足条件则点(,,)Pxyz到原点O的距离不超过3的概率为7216P故选B 【点睛】本题主要考查了古典概型概率公式的应用,涉及了空间中两点间距离公式的应用,属于中档题.28.(浙江省2020届高三下学期强基联考数学试题)已知非负实数x,y,z满足01xyz,则有序实数对,,xyz围成几何体的体积为A.12B.13C.16D.以上都不对【答案】C【分析】由已知条件可知有序实数对围成几何体为三棱锥,由棱锥体积公式可得结果.【解析】若01x,01y,01z,则有序实数对,,xyz围成几何体是棱长为1的正方体1111ABCDABCD,若非负实数x,y,z满足01xyz,有序实数对,,xyz围成几何体为三棱锥111BDCD,则111111=111=326BDCDV,故选C【点睛】本题考查空间向量和锥体体积公式的应用,考查空间想象能力和分析推理能力,属于中档题.29.(浙江省舟山中学2020届高三下学期6月高考仿真模拟数学试题)在正四面体DABC(所有棱长均相等的三棱锥)中,点E 在棱AB上,满足2AEEB,点F为线段AC上的动点.设直线DE与平面DBF所成的角为,则A.存在某个位置,使得DEBF B.存在某个位置,使得4FDB C.存在某个位置,使得平面DEF平面DACD.存在某个位置,使得6【答案】C【分析】设正四面体DABC的底面中心为点O,连接DO,则DO平面ABC,以点O为坐标原点,OB、OD所在直线分别为x、z轴建立空间直角坐标系,设正四面体DABC的棱长为2,然后利用空间向量法逐一分析求解可得结果.【解析】如下图所示,设正四面体DABC的底面中心为点O,连接DO,则DO平面ABC,以点O为坐标原点,OB、OD所在直线分别为x、z轴建立空间直角坐标系,设正四面体DABC的棱长为2,则3,1,03A、23,0,03B、3,1,03C、260,0,3D、31,,033E,设3,,03F,其中11,对于A选项,若存在某个位置使得DEBF,3126,,333DE,3,,0BF,1103DEBF,解得3,不合乎题意,A选项错误;对于B选项,若存在某个位置使得4FDB,326,,33DF,2326,0,33DB,22212cos,2323DFDBDFDBDFDB,该方程无解,B选项错误;对于C选项,设平面DAC的一个法向量为111,,mxyz,326,1,33DA,326,1,33DC,由111111326033326033mDAxyzmDCxyz,取11z,得22,0,1m,设平面DEF的一个法向量为222,,nxyz,3126,,333DE,326,,33DF,由22222231260333326033nDExyznDFxyz,取46y,则2262,46,31n,若存在某个位置,使得平面DEF平面DAC,则2190mn,解得31,17,合乎题意,C选项正确;对于D选项,设平面DBF的一个法向量为333,,uxyz,2326,0,33DB,326,,33DF,由333332326033326033uDBxzuDFxyz,令z,则2,6,u,若存在某个位置,使得6,即22612131sincos,6227272363uDEuDEuDE,整理得254120,162400,该方程无解,D选项错误.故选C.【点评】本题考查利用空间向量法求解空间角以及利用空间向量法处理动点问题,计算量大,属于难题.30.(浙江省杭州市2019-2020学年高二下学期期末教学质量检测数学试题)如图,直三棱柱111ABCABC的底面是边长为6的等边三角形,侧棱长为2,E是棱BC上的动点,F是棱11BC 上靠近1C点的三分点,M是棱1CC上的动点,则二面角AFME的正切值不可..能.是A.3155B.2155C.6D.5【答案】B【分析】建立空间直角坐标系,求得二面角AFME的余弦值,进而求得二面角AFME的正切值,求得正切值的最小值,由此判断出正确选项.【解析】取BC 的中点O,连接OA,根据等边三角形的性质可知OABC,根据直三棱柱的性质,以O为原点建立如图所示的空间直角坐标系.则0,33,0,1,0,2AF,设3,0,02Mtt.则1,33,2,2,0,2AFFMt.设平面AMF的一个法向量为,,mxyz,则3320220mAFxyzmFMxtz,令1y,得633363,1,66tmtt.平面FME的一个法向量是0,1,0n,所以22216cos,28120252633363166mntmnmnttttt,所以2sin,1cos,mnmn222710821628120252tttt,所以二面角AFME的正切值为22sin,271082166cos,mnttfttmn211540216 2766tt.因为02t,所以111466t,216125405结合二次函数的性质可知当1165t时,ft有最小值为11315540216272555;当1166t时,ft有最大值为11540216276366,所以315,65ft,所以二面角AFME的正切值不可能是2155.故选B.【点睛】本小题主要考查二面角的求法,考查数形结合的数学思想方法,属于难题.二、多选题31.(辽宁省葫芦岛市2019-2020学年高二上学期期末数学试题)若1,,2a,2,1,1b,a与b的夹角为120,则的值为(A.17B.-17C.-1D.1【答案】AC【分析】求出ab,以及,ab,代入夹角公式cos,ababab即可求出.【解析】由已知224ab,22145,4116ab,241cos120256abab,解得17或1,故选AC.【点睛】本题考查向量夹角公式的应用,是基础题.32.(江苏省南京市秦淮中学2019-2020学年高二(美术班)上学期期末数学试题)对于任意非零向量111,,axyz,222,,bxyz,以下说法错误的有()A.若ab,则1212120xxyyzz B.若//abrr,则111222xyzxyz C.121212222222111222cos,xxyyzzxyzazbxyD.若1111xyz,则a为单位向量【答案】BD【分析】利用空间向量数量积的坐标运算可判断A、C选项的正误;利用空间共线向量的坐标表示可判断B选项的正误;利用空间向量模的坐标公式可判断D选项的正误.综合可得出结论.【解析】对于A选项,因为ab,则1212120abxxyyzz,A选项正确;对于B选项,若20x,且20y,20z,若//abrr,但分式12xx无意义,B选项错误;对于C选项,由空间向量数量积的坐标运算可知121212222222111222cos,xxyyzzxyzazbxy,C 选项正确;对于D选项,若1111xyz,则2221113a,此时,a不是单位向量,D选项错误.故选BD.【点睛】本题考查空间向量的坐标运算,涉及空间共线向量的坐标表示和数量积的坐标运算,考查计算能力,属于基础题.33.(江苏省苏州市2019-2020学年高二上学期期末数学试题)已知向量abbcac,3,0,1b,1,5,3c,下列等式中正确的是A.abcbc B.abcabc C.2222abc abc D.abcabc【答案】BCD【分析】根据坐标求出3030abacbc,根据向量的运算法则即可判定.【解析】由题3030bc,所以0abbcac0,0abcbc不相等,所以A选项错误;0abcabcabbcabac,所以abcabc,所以B选项正确;2222222222abcabcabbcacabc,所以C选项正确;2222222222abcabcabbcacabc,即22abcabc,abcabc,所以D选项正确.故选BCD【点睛】此题考查空间向量的运算,根据运算法则进行运算化简即可.34.(江苏省连云港市2019-2020学年高二上学期期末数学试题)已知点P是△A BC所在的平面外一点,若AB=(﹣2,1,4),AP=(1,﹣2,1),AC=(4,2,0),则A.APABB.APBPC.BC=53D.AP//BC【答案】AC【分析】根据向量的定义,平行,垂直和模长的定义可以对每个选项逐个判断,进而得出答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何选填训练21已知直线m 、n 和平面α、β,若α⊥β,α∩β=m ,n ⊂α,要使n ⊥β,则应增加的条件是A. m ∥nB. n ⊥mC.n ∥αD. n ⊥α【答案】B【解析】本题主要考查空间直线与平面、平面与平面的位置关系 . 属于基础知识、基本运算的考查. 已知直线m 、n 和平面α、β,若α⊥β,α∩β=m ,n ⊂α,应增加的条件n ⊥m ,才能使得n ⊥β。

2已知体积为3的正三棱柱(底面是正三角形且侧棱垂直底面)的三视图如图所示,则此三棱柱的高为A.31B.32C.1D.34 【答案】C【解析】本题主要考查正棱柱的体积、空间几何体的三视图. 属于基础知识、基本运算的考查.2,设正三棱柱的高为h ,则有1212h h =⨯⇒= 3设α是空间中的一个平面,,,l m n 是三条不同的直线,则下列命题中正确的是()A .若,,,,m n l m l n l ααα⊂⊂⊥⊥⊥则;B .若,,,//m n l n l m αα⊂⊥⊥则;C .若//,,l m m n αα⊥⊥,则//;l mD .若,,//;l m l n n m ⊥⊥则 【答案】 C【解析】本题主要考查空间直线与直线,直线与平面、平面与平面的有关知识. 属于基础知识、基本运算的考查.,,,,m n l m l n αα⊂⊂⊥⊥需要m n A = 才有l α⊥,A 错误.若,,,m n l n αα⊂⊥⊥l 与m 可能平行、相交、也可能异面,B 错误.若,,l m l n ⊥⊥l 与m 可能平行、相交、也可能异面,D 错误.4—个空间几何体的三视图如图所示,则该几何体的表面积为A. 48B.C.D. 80【答案】C【解析】本题主要空间几何体的三视图和棱柱的表面积计算公式 . 属于基础知识、基本运算的考查. 由三视图可知几何体是一个平放的直棱柱,底面是上底为2,下底为4,高为4的直角梯形,棱柱的高为4,因此梯形的周长为+6 该几何体的表面积为 5若,,αβγ是三个互不重合的平面,l 是一条直线,则下列命题中正确的是() A .若,,//l l αββα⊥⊥则 B .若,//,l l αβαβ⊥⊥则C .若,l αβ与的所成角相等,则//αβD .若l 上有两个点到α的距离相等,则//l α 【答案】B【解析】若,//,l l αβαβ⊥⊥则,此推理符合平面与平面垂直的判定;6正四棱锥S ABCD -E 为SA 中点,则异面直线BE 与SC 所成的角是()A 、30°B 、45° C、60°D 、90°【答案】C【解析】取AC 中点F,2EF BF AE AEF ===∆中,由余弦定理得01cos ,602BEF BEF ∠=∠=. 7如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,底面是边长为2的正三角形,侧棱长为3,则1BB 与平面11AB C 所成的角为()ABC 1B 1A 1C A. 6π B. 4π C. 3π D. 2π 【答案】A 【解析】利用等积法求B 到平面11C AB 的距离d 。

1111C AB B C BB A V V --=,求出23=d ,6,21sin πθθ==8一个几何体的三视图如右图所示,则该几何体的体积为( )ABCD 【答案】A【解析】几何体可以拼接成高为2的正三棱柱,212213V =⨯-⨯9在正方体!111D C B A ABCD -中,Q P N M 、、、分别是1111CC D C AA AB 、、、的中点,给出以下四个结论:①1AC MN ⊥; ②1AC //平面MNPQ ; ③1AC 与PM 相交; ④1NC 与PM 异面其中正确结论的序号是 .【答案】(1)(3)(4)【解析】由图形可以观察出1AC 与平面MNPQ 相交于正方体中心10设α、β、γ是三个互不重合的平面,m n 、是两条不重合的直线,则下列命题中正确的是()A .,αββγαγ⊥⊥⊥若,则B .//,,//,//m m m αββαβ⊄若则C .,//m m αβαβ⊥⊥若,则D .//,//,m n m n αβαβ⊥⊥若,则【答案】B【解析】因为//,,//,//m m m αββαβ⊄若则,此推理符合线面平行的判定定理。

11已知长方体从同一顶点出发的三条棱的长分别为1、2、3,则这个长方体的外接球的表面积为 .【答案】14π【解析】因长方体对角线长为2r =2414S r ππ==.12一个正方体的展开图如图所示,A 、B 、C 、D 为原正方体的顶点,则在原来的正方体中A.CD AB //B. AB 与CD 相交C.CD AB ⊥D. AB 与CD 所成的角为 60【答案】D 【解析】将平面展开图还原成几何体,易知AB 与CD 所成的角为 60,选D 。

13右图是一个空间几何体的三视图,则该几何体的表面积是 .【答案】π+16【解析】由三视图可知原几何体是一个长方体中挖去半球体,故所求表面积为4814216S πππ=+⨯+-+=+。

14已知 、 为不重合的两个平面,直线m ,那么 m ⊥ 是 ⊥ 的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】由线面垂直的判定定理可知:直线m ,m ⊥ ,一定有 ⊥ ,反之,直线m , ⊥ ,则m ⊥ 不一定成立,选 。

15一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为①长方形;②正方形;③圆;④椭圆.其中正确的是()A .①②B .②③C .③④D .①④【答案】B【解析】由三视图的成图原则可知,正视图、侧视图的宽度不一样,故俯视图②正方形;③圆,选B 。

16在三棱锥A-BCD 中,AB=CD=6,AC=BD=AD=BC=5,则该三棱锥的外接球的表面积为.【答案】43π.【解析】构造一个长方体,因为对棱垂直,故底面可看成一个正方形,不妨设长宽高为,,a a c,则a c ==三棱锥的外接球即为长方体的外接球,其直径为体对角线,即2r ==所求表面积为2443S r ππ==。

17已知正三棱柱'''ABC A B C -的正(主)视图和侧(左)视图如图所示. 设,'''ABC A B C ∆∆的中心分别是,'O O ,现将此三棱柱绕直线'OO 旋转,射线OA 旋转所成的角为x 弧度(x 可以取到任意一个实数),对应的俯视图的面积为()S x ,则函数()S x 的最大值为 ;最小正周期为.侧(左)视图正(主)视图说明:“三棱柱绕直线'OO 旋转”包括逆时针方向和顺时针方向,逆时针方向旋转时,OA 旋转所成的角为正角,顺时针方向旋转时,OA 旋转所成的角为负角.【答案】8;3π 【解析】由三视图还原可知,原几何体是一个正三棱柱横放的状态,则俯视图对应的是一个矩形,由旋转的过程可知()S x 取得最大值时俯视图投影的长为4,宽为2的矩形,即max ()8S x =,又每旋转3π个单位又回到初始状态,故周期为3π。

18三棱柱的直观图和三视图(主视图和俯视图是正方形,左视图是等腰直角三角形)如图所示, 则这个三棱柱的全面积等于( )A .12+B .6+C .8+ D .4【答案】A【解析】由三视图的数据可知,三棱柱的全面积为1222(222122s =⨯⨯⨯+++⨯=+,选A 。

19在正方体ABCD —A 1B 1C 1D 1中,直线BD 1与平面A 1B 1CD 所成角的正切值是。

【答案】【解析】本题主要考查空间几何体的线面关系和直线与平面所成角的概念. 属于基础知识、基本运算的考查.连接1B C 交BC 于O ,则1BC B C ⊥,又AB BC ⊥,所以1B C ABCD ⊥平面,连接1D O ,则1BDO ∠就是直线BD 1与平面A 1B 1CD 所成角。

不妨设正方体棱长为1,则1BD,2BO =,12D O =, 在1Rt BD O ∆中,11tan BO BD O D O ∠==. 20一个几何体的三视图如图所示,则此几何体的体积为 .【答案】312【解析】几何体是斜四棱柱,底面是边长为3、4的矩形,高等于,3所以34V Sh ==⨯=21若某一几何体的视图与侧视图均为边长是1的正方形,且其体积为12,则该几何体的俯视图可以是()【答案】C【解析】因为几何体的正视图与侧视图均为边长是1的正方形,且其体积为12,几何体可以是三棱柱。

22设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( )A .23a πB .26a πC .212a πD .224a π【答案】B【解析】由题意,球的直径是长方体的对角线,所以2264,62a r S a r ππ===23四棱锥P ABCD -的顶点P 在底面ABCD 上的投影恰好是A ,其正视图与侧视图都是腰长为a 的等腰直角三角形。

则在四棱锥P ABCD -的任意两个顶点的连线中,互相垂直的异面直线共有______对.【答案】6 【解析】因为四棱锥P ABCD -的顶点P 在底面ABCD 上的投影恰好是A ,其正视图与侧视图都是腰长为a 的等腰直角三角形,,,,PD AB CD PA BC PA ⊥⊥⊥,,,PB AD PC BD PA BD ⊥⊥⊥共6对;24下列命题中,错误的是( )(A )一条直线与两个平行平面中的一个相交,则必与另一个平面相交(B )平行于同一平面的两个不同平面平行(C )若直线l 不平行平面α,则在平面α内不存在与l 平行的直线(D )如果平面α不垂直平面β,那么平面α内一定不存在直线垂直于平面β【答案】C【解析】C 错,直线l 不平行平面α,可能直线l 在平面α内,故在平面α内不存在与l 平行的直线。

25如图是一个组合几何体的三视图,则该几何体的体积是.【答案】π12836+【解析】由三视图还原可知该几何体是一个组合体,下面是一个圆柱,上面是一个三棱柱,故所求体积为 1346168361282V ππ=⨯⨯⨯+⨯=+。

26已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是A.34000cm 3 B.38000cm 3 C.32000cm D.34000cm【答案】B 【解析】由三视图还原可知原几何体是一个四棱锥,所求体积为180004002033V =⨯⨯=,选B。

27已知a 、b 、c 为三条不重合的直线,下面有三个结论:①若c a b a ⊥⊥,则b ∥c ;②若c a b a ⊥⊥,则b ⊥c ;③若a ∥,b b ⊥c 则c a ⊥.其中正确的个数为A .0个B .1个C . 2个D . 3个【答案】B【解析】①不对,b ,c 可能异面;②不对,b ,c 可能平行;③对,选B。

相关文档
最新文档