小学六年级奥数模拟试题(含答案)
奥数试卷六年级【含答案】
奥数试卷六年级【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 11B. 12C. 13D. 142. 一个等差数列的前三项分别是2、5、8,那么第四项是多少?A. 7B. 10C. 11D. 123. 下列哪个数是质数?A. 21B. 23C. 25D. 274. 一个长方形的长是10厘米,宽是5厘米,那么它的面积是多少平方厘米?A. 15B. 50C. 100D. 1505. 下列哪个图形是平行四边形?A. 正方形B. 长方形C. 三角形D. 圆形二、判断题(每题1分,共5分)1. 2的倍数都是偶数。
()2. 1是质数。
()3. 面积相等的两个图形,它们的形状一定相同。
()4. 一个等差数列的公差是0。
()5. 任何两个奇数的和都是偶数。
()三、填空题(每题1分,共5分)1. 100的因数有:1、2、___、___、10、___、20、___、50、100。
2. 一个等差数列的前三项分别是2、5、8,那么第四项是___。
3. 两个质数的和一定是___数。
4. 一个长方形的长是10厘米,宽是5厘米,那么它的面积是___平方厘米。
5. 下列图形中,___形的对边平行且相等。
四、简答题(每题2分,共10分)1. 请写出前五个质数。
2. 请写出前五个偶数。
3. 请解释什么是等差数列。
4. 请解释什么是面积。
5. 请解释什么是平行四边形。
五、应用题(每题2分,共10分)1. 一个等差数列的前三项分别是2、5、8,请写出这个数列的前五项。
2. 一个长方形的长是10厘米,宽是5厘米,请计算它的周长。
3. 请找出30的所有因数。
4. 请找出100以内的所有质数。
5. 请解释为什么1既不是质数也不是合数。
六、分析题(每题5分,共10分)1. 请分析等差数列的特点。
2. 请分析平行四边形的性质。
七、实践操作题(每题5分,共10分)1. 请画出一个长方形,长是10厘米,宽是5厘米。
小学六年级奥数测试卷【含答案】
小学六年级奥数测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 21B. 34C. 57D. 462. 一个正方形的边长是4厘米,它的面积是?A. 16平方厘米B. 8平方厘米C. 4平方厘米D. 12平方厘米3. 下列哪个数是质数?A. 27B. 29C. 35D. 494. 1千米等于多少米?A. 100米B. 1000米C. 10米D. 10000米5. 一个等腰三角形的底边长是8厘米,腰长是5厘米,这个三角形的周长是?A. 18厘米B. 20厘米C. 22厘米D. 24厘米二、判断题(每题1分,共5分)1. 任何两个奇数相加的和都是偶数。
()2. 一个长方形的长是10厘米,宽是5厘米,它的面积是50平方厘米。
()3. 1吨等于1000克。
()4. 一个等边三角形的三个角都是60度。
()5. 任何数乘以1都等于它本身。
()三、填空题(每题1分,共5分)1. 1小时等于______分钟。
2. 一个长方形的长是8厘米,宽是4厘米,它的面积是______平方厘米。
3. 下列哪个数是合数?______4. 1千米等于______米。
5. 一个等腰三角形的底边长是10厘米,腰长是6厘米,这个三角形的周长是______厘米。
四、简答题(每题2分,共10分)1. 请简述偶数和奇数的定义。
2. 请简述长方形的面积公式。
3. 请简述质数和合数的区别。
4. 请简述等边三角形的性质。
5. 请简述周长的定义。
五、应用题(每题2分,共10分)1. 一个长方形的长是12厘米,宽是6厘米,求这个长方形的面积。
2. 一个等腰三角形的底边长是10厘米,腰长是8厘米,求这个三角形的周长。
3. 1吨等于多少克?4. 一个正方形的边长是5厘米,求这个正方形的面积。
5. 下列哪个数是质数?27、29、35、49六、分析题(每题5分,共10分)1. 请分析并解答下列问题:一个长方形的长是10厘米,宽是5厘米,求这个长方形的周长。
小学六年级奥数题及解答(五篇)
【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。
转化的类型有条件转化、问题转化、关系转化、图形转化等。
以下是⽆忧考整理的《⼩学六年级奥数题及解答(五篇)》相关资料,希望帮助到您。
⼩学六年级奥数题及解答篇⼀ 3箱苹果重45千克.⼀箱梨⽐⼀箱苹果多5千克,3箱梨重多少千克? 考点:整数、⼩数复合应⽤题。
专题:简单应⽤题和⼀般复合应⽤题。
分析:可先求出3箱梨⽐3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量.据此解答 解答:解:45+5×3 =45+15 =60(千克) 答:3箱梨重60千克。
点评:本题的关键是先求出3箱梨⽐3箱苹果多的重量,然后再根据加法的意义求出3箱梨的重量。
⼩学六年级奥数题及解答篇⼆ 题⽬: ⼀块牧场长满了草,每天均匀⽣长。
这块牧场的草可供10头⽜吃40天,供15头⽜吃20天。
可供25头⽜吃多少天? 答案与解析: 假设1头⽜1天吃草的量为1份 (1)每天新⽣的草量为:(10×40-15×20)÷(40-20)=5(份); (2)原来的草量为:10×40-40×5=200(份); (3)安排5头⽜专门吃每天新长出来的草,这块牧场可供25头⽜吃:200÷(25-5)=10(天)。
⼩学六年级奥数题及解答篇三 我⼈民解放军追击⼀股逃窜的敌⼈,敌⼈在下午16点开始从甲地以每⼩时10千⽶的速度逃跑,解放军在晚上22点接到命令,以每⼩时30千⽶的速度开始从⼄地追击。
已知甲⼄两地相距60千⽶,问解放军⼏个⼩时可以追上敌⼈? 解答案与解析:是[10×(22-6)]千⽶,甲⼄两地相距60千⽶。
由此推知 追及时间=[10×(22-6)+60]÷(30-10)=220÷20=11(⼩时) 答:解放军在11⼩时后可以追上敌⼈。
小学六年级奥数题及答案(全面)
小学六年级奥数题及答案(全面)【注意】本文仅供参考学习使用,严禁用于商业目的。
小学六年级奥数题及答案(全面)第一题:计算题1. 求100以内所有偶数的和。
解答:要求100以内所有偶数的和,我们可以从2开始,每次递增2,直到100。
然后将这些偶数相加即可。
2 + 4 + 6 + 8 + ... + 98 + 100 = 2550因此,100以内所有偶数的和为2550。
第二题:几何题2. 在平面直角坐标系内,A(2, 3)和B(-1, -5)为两个点,求线段AB 的长度。
解答:根据两点间距离公式,可以计算出线段AB的长度。
线段AB的长度= √((x2 - x1)² + (y2 - y1)²)代入点的坐标:线段AB的长度= √((-1 - 2)² + (-5 - 3)²)= √((-3)² + (-8)²)= √(9 + 64)= √73因此,线段AB的长度为√73。
第三题:代数题3. 若x² + 5x + 6 的值为15,求x。
解答:根据题意,我们可以列出方程:x² + 5x + 6 = 15将方程转化为标准形式:x² + 5x + 6 - 15 = 0x² + 5x - 9 = 0然后,我们可以使用因式分解或配方法求解此方程。
通过因式分解,可以得到:(x + 3)(x - 2) = 0根据零乘法,我们可以得到两个解:x + 3 = 0 或 x - 2 = 0解方程得到:x = -3 或 x = 2因此,方程的解为x = -3 或 x = 2。
第四题:逻辑题4. 小明、小李、小张三人坐在一个长凳上,从左到右依次是:小明、小李、小张。
已知:- 小明比旁边坐的人大一岁;- 小李比小张大两岁;- 小明的年龄是10岁。
问:小张的年龄是多少岁?解答:根据题意,我们可以列出以下等式:小明的年龄 = 小明旁边坐的人的年龄 + 1小李的年龄 = 小张的年龄 + 2小明的年龄 = 10带入已知条件,我们可以得到以下等式:10 = 小明旁边坐的人的年龄 + 1小李的年龄 = 小张的年龄 + 2根据第一个等式,可以得到:小明旁边坐的人的年龄 = 10 - 1= 9根据第二个等式,可以得到:小张的年龄 = 小李的年龄 - 2此时,我们需要知道小李的年龄。
小学六年级奥数练习题3套(附解答)
小学六年级奥数练习题3套(附解答)姓名:分数:班级:卷一【一】每题10分1、甲乙两车同时从AB两地相对开出。
甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。
求AB两地相距多少千米?解:AB距离=(4.5×5)/(5/11)=49.5千米2、一辆客车和一辆货车分别从甲乙两地同时相向开出。
货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。
甲乙两地相距多少千米?解:客车和货车的速度之比为5:4那么相遇时的路程比=5:4相遇时货车行全程的4/9此时货车行了全程的1/4距离相遇点还有4/9-1/4=7/36那么全程=28/(7/36)=144千米3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。
现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。
求乙绕城一周所需要的时间?解:甲乙速度比=8:6=4:3相遇时乙行了全程的3/7那么4小时就是行全程的4/7所以乙行一周用的时间=4/(4/7)=7小时4、小兔和小猫分别从相距40千米的A、B两地同时相向而行,经过4小时候相聚4千米,再经过多长时间相遇?解:速度和=(40-4)/4=9千米/小时那么还需要4/9小时相遇5、甲、乙两车分别从ab两地开出甲车每小时行50千米乙车每小时行40千米甲车比乙车早1小时到两地相距多少?解:甲车到达终点时,乙车距离终点40×1=40千米甲车比乙车多行40千米那么甲车到达终点用的时间=40/(50-40)=4小时两地距离=40×5=200千米6、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?解:路程差=36×2=72千米速度差=48-36=12千米/小时乙车需要72/12=6小时追上甲7、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0.5千米,求甲、乙两人的速度?解:甲在相遇时实际走了36×1/2+1×2=20千米乙走了36×1/2=18千米那么甲比乙多走20-18=2千米那么相遇时用的时间=2/0.5=4小时所以甲的速度=20/4=5千米/小时乙的速度=5-0.5=4.5千米/小时9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?解:速度和=60+40=100千米/小时分两种情况,没有相遇那么需要时间=(400-100)/100=3小时已经相遇那么需要时间=(400+100)/100=5小时8、甲每小时行驶9千米,乙每小时行驶7千米。
六年级奥数题及答案(五篇)
六年级奥数题及答案(五篇)六年级奥数题及答案 1某造纸厂在100天里共生产2024吨纸,开始阶段,每天只能生产10吨纸.中间阶段由于改进了技术,每天的产量提高了一倍.最后阶段由于购置了新设备,每天的产量又比中间阶段提高了一倍半.已知中间阶段生产天数的2倍比开始阶段多13天,那么最后阶段有几天?中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天六年级奥数题及答案 2从花城到太阳城的公路长12公里.在该路的2千米处有个铁道路口,是每关闭3分钟又开放3分钟的.还有在第4千米及第6千米有交通灯,每亮2分钟红灯后就亮3分钟绿灯.小糊涂驾驶电动车从花城到太阳城,出发时道口刚刚关闭,而那两处交通灯也都刚刚切换成红灯.已知电动车速度是常数,小糊涂既不刹车也不加速,那么在不违反交通规则的情况下,他到达太阳城最快需要多少分钟?答案与解析:画出反映交通灯红绿情况的s-t图,可得出小糊涂的行车图像不与实线相交情况下速度最大可以是0.5千米/分钟,此时恰好经过第6千米的红绿灯由红转绿的点,所以他到达太阳城最快需要24分钟.六年级奥数题及答案 3分母不大于60,分子小于6的'最简真分数有____个?答案与解析:分类讨论:(1)分子是1,分母是2~60的最简真分数有59个:(2)分子是2,分母是3~60,其中非2、的倍数有58-58÷2=29(个);(3)分子是3,分母是4~60,其中非3的倍数有57-57÷3-38(个);(4)分子是4,分母是5~60,其中非2的倍数有56-56÷2-28c个);(5)分子是5,分母是6~60,其中非5的倍数有55-55÷5―44(个).这样,分子小于6,分母不大于60的最简真分数一共有59+29+38+28+44=198(个).六年级奥数题及答案 4甲、乙、丙三人依次相距280米,甲、乙、丙每分钟依次走90米、80米、72米.如果甲、乙、丙同时出发,那么经过几分钟,甲第一次与乙、丙的距离相等?答案与解析:甲与乙、丙的距离相等有两种情况:一种是乙追上丙时;另一种是甲位于乙、丙之间.⑴乙追上丙需:280(80-72)=35(分钟).⑵甲位于乙、丙之间且与乙、丙等距离,我们可以假设有一个丁,他的速度为乙、丙的速度的*均值,即(80+72)2=76(米/分),且开始时丁在乙、丙之间的中点的位置,这样开始时丁与乙、丙的距离相等,而且无论经过多长时间,乙比丁多走的路程与丁比丙多走的路程相等,所以丁与乙、丙的距离也还相等,也就是说丁始终在乙、丙的中点.所以当甲遇上丁时甲与乙、丙的距离相等,而甲与丁相遇时间为:(280+2802)(90-76)=30(分钟).经比较,甲第一次与乙、丙的距离相等需经过30分钟.六年级奥数题及答案 5王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时50千米.如果他想按时返回甲地,他应以多大的速度往回开?答案与解析:本题相当于去的时候速度为每小时50千米,而整个行程的*均速度为每小时60千米,求回来的时候的速度.根据例题中的分析,可以假设甲地到乙地的路程为300千米,那么往返一次需时间__*2=10(小时),现在从甲地到乙地花费了时间__=6(小时),所以从乙地返回到甲地时所用的时间是10-6=4(小时).如果他想按时返回甲地,他应以3004=75(千米/时)的速度往回开.。
小学六年级数学奥数题100题附答案(完整版)
小学六年级数学奥数题100题附答案(完整版)题目1甲、乙两车分别从A、B 两地同时相向而行,在距A 地80 千米处相遇,相遇后两车继续前进,甲车到达B 地、乙车到达A 地后均立即按原路返回,第二次在距B 地60 千米处相遇。
A、B 两地相距多少千米?答案:第一次相遇时,甲、乙两车共行了A、B 两地的距离,其中甲行了80 千米。
第二次相遇时,甲、乙两车共行了A、B 两地距离的3 倍,则甲车行了80×3 = 240 千米。
此时甲行的路程是一个A、B 两地的距离加上60 千米,所以A、B 两地相距240 - 60 = 180 千米。
题目2一项工程,甲单独做12 天完成,乙单独做18 天完成。
两人合作多少天可以完成这项工程的2/3 ?答案:甲的工作效率为1/12,乙的工作效率为1/18,两人合作的工作效率为1/12 + 1/18 = 5/36 。
完成工程的2/3 需要的时间为2/3 ÷5/36 = 24/5 = 4.8 天。
题目3一个分数,分子与分母的和是68,约分后是8/9,原来这个分数是多少?答案:设分子为8x,分母为9x,则8x + 9x = 68,17x = 68,x = 4 。
分子为8×4 = 32,分母为9×4 = 36,原来的分数是32/36 。
题目4在一个周长为62.8 米的圆形花坛周围铺一条 2 米宽的小路,这条小路的面积是多少平方米?答案:花坛的半径:62.8÷3.14÷2 = 10 米加上小路后的半径:10 + 2 = 12 米小路的面积:3.14×(12²- 10²) = 138.16 平方米题目5有浓度为20%的糖水300 克,要使其浓度变为40%,需要加糖多少克?答案:原来糖水中糖的质量:300×20% = 60 克设加糖x 克,(60 + x)÷(300 + x) = 40% ,解得x = 100 克题目6一本书,第一天看了全书的1/4,第二天看了120 页,这时已看的页数与未看的页数比是2:3,这本书共有多少页?答案:已看的页数占全书的2/(2 + 3) = 2/5第二天看的占全书的2/5 - 1/4 = 3/20全书页数:120÷3/20 = 800 页题目7一个长方体的棱长总和是120 厘米,长、宽、高的比是5:3:2,这个长方体的体积是多少立方厘米?答案:一组长、宽、高的和:120÷4 = 30 厘米长:30×5/(5 + 3 + 2) = 15 厘米宽:30×3/(5 + 3 + 2) = 9 厘米高:30×2/(5 + 3 + 2) = 6 厘米体积:15×9×6 = 810 立方厘米题目8甲、乙两个仓库共存粮90 吨,其中甲仓库的存粮是乙仓库的4/5。
小学六年级奥数题及答案【5篇】
小学六年级奥数题及答案【5篇】1.小学六年级奥数题及答案1.有两组数字。
第一组9个数之和是63,第二组的平均数是11,两组所有数的平均数是8。
问:第二组有多少个数字?解:设第二组有x个数,则63+11x=8×(9+x),解得x=3。
2.小明参加了六次测试,第三次和第四次测试的平均分比前两次高2分,比后两次低2分。
如果最后三次平均分比前三次平均分高3分,那么第四次比第三次高多少分?解:第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。
因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。
3.妈妈每四天去一次杂货店,每五天去一次百货商店。
妈妈平均每周去这两家店几次?(用十进制表示)解:每20天去9次,9÷20×7=3.15(次)。
2.小学六年级奥数题及答案1、学校数学竞赛出了A,B,C三道题,至少做对一道的有25人,其中做对A题的有10人,做对B题的有13人,做对C题的有15人。
如果二道题都做对的只有1人,那么只做对两道题和只做对一道题的各有多少人?解:只做对两道题的人数为(10+13+15)-25-2×1=11(人),只做对一道题的人数为25-11-1=13(人)。
2.从五年级的六个班级中选出一个学习、体育、健康先进集体。
有多少种不同的选择结果?解:6*6*6=216种3.大林和小林的漫画不超过50本。
他们每个人拥有漫画书有多少种可能的情况?解:他们一共可能有0~50本书,如果他们共有n本书,则大林可能有书0~n本,也就是说这n本书在两人之间的分配情况共有(n+1)种。
所以不超过50本书的所有可能的分配情况共有1+2+3…+51=1326(种)。
3.小学六年级奥数题及答案1.六年级学生参加学校数学竞赛。
有50道测试题。
评分标准是:答对一题给3分,答错一题给1分,答错一题给1分。
小学六年级奥数试卷(附答案)
小学六年级奥数训练试卷一、计算题:(每题5分,共10分)1、2、(20112123123839+(+)+(++)+……(++……++)233444404040409494794×1.65-20+×20)×47.5×0.8×2.595952095二、填空题(每题5分,共25分)1、如图,三角形ABC 的面积是1,E 是AC 的中点,点D 在BC 上,且BD :DC 1:2,AD 与BE 交于点F .则四边形DFEC 的面积等于.AEBD F C2、某商店将某种DVD 按进价提高35%后,打出“九折优惠酬宾,外送50元出租车费”的广告,结果每台仍旧获利208元,那么每台DVD 的进价是__________元。
3、在除13511,13903及14589时能剩下相同余数的最大整数是_________.4、有5个连续自然数,它们的和为一个平方数,中间三数的和为立方数,则这五个数中最小数的最小值为.5、一个整数乘以13后,积的最后三位数是123,那么,这样的整数中最小是_________。
三、解答题:(1~7题每题5分,8,9,10题每题10分,共65分)1、甲、乙、丙三所小学学生人数的总和为1999,已知甲校学生人数的2倍、乙校学生人数减3、丙校学生人数加4都是相等的。
问:甲、乙、丙各校学生人数是多少?2、钟面上3时过几分,时针和分针离“3”的距离相等,并且在“3”的两旁?3、5个工人加工735个零件,2天加工了135个零件。
已知这2天中有1个人因故请假一天。
照这样的工作效率,如果几天后中无人请假还要多少天才能完成任务?4、小明爷爷的年龄是一个二位数,将此二位数的数字交换得到的数就是小明爸爸的年龄,又知道他们年龄之差是小明年龄的4倍,求小明的年龄。
(注意位值原理的运用)5、在1~100中任意取出两个不同的数相加,其和是偶数的共有多少种不同的取法?6、如果111,B均为正整数,则B最大是多少?=-,A2009A B7、下式中不同的汉字代表1~9种不同的数字,当算式成立时,“中国”这两个汉字所代表的两位数最大是多少?8、如图,直角三角形如果以BC边为轴旋转一周,那么所形成的圆锥的体积为16π,以AC 边为轴旋转一周,那么所形成的圆锥的体积为12π,那么如果以AB为轴旋转一周,那么所形成的几何体的体积是多少?BC A9、铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?10、两袋什锦糖,甲袋有8千克奶糖和12千克水果糖混合而成,乙袋有15千克奶糖和5千克水果糖混合而成。
小学六年级简单奥数练习题及答案
小学六年级简单奥数练习题及答案欢迎参加小学六年级简单奥数练习题。
本次练习题包括选择题和解答题两部分,共计10道题目。
选择题请直接在下面的括号内写出你的答案,解答题请用笔写在本子上。
选择题:1. 已知一辆车每小时行驶60公里,问它行驶1小时半需要多少公里?()。
A. 90公里B. 75公里C. 70公里D. 80公里2. 小明参加了一个自行车比赛,他骑了10km,用时30分钟。
求他的平均速度是多少?()。
A. 15 km/hB. 20 km/hC. 30 km/hD. 35 km/h3. 有一家餐厅共有40张桌子,每张桌子上可以坐6个人,现在有150个顾客,问这家餐厅是否能够容纳所有的顾客?()。
A. 可以B. 不可以4. 如果9个苹果的重量等于3个桔子的重量,那么3个苹果的重量等于几个桔子的重量?()。
A. 1个B. 3个C. 9个D. 27个5. 一个矩形花坛的长是12米,宽是8米,求它的周长和面积分别是多少?()。
A. 周长36米,面积96平方米B. 周长28米,面积96平方米C. 周长24米,面积80平方米D. 周长20米,面积80平方米解答题:6. 小明参加了一个长跑比赛,起点到终点的距离是500米。
他以每分钟3.6米的速度跑完全程,他用了多少时间?请写出详细的计算过程。
7. 一个长方形花坛的长度是15米,宽度是10米,小明要在花坛四周铺上一圈砖,每块砖的尺寸是0.3米×0.6米。
他需要多少块砖?请写出详细的计算过程。
8. 甲数是丙数的两倍,乙数是甲数的一半,丙数是5。
请计算乙数。
9. 某商店有一些苹果,销售员告诉小明:“如果你买3个苹果,还需要付5元;如果你买5个苹果,还需要付9元。
”请问小明购买9个苹果需要付多少元?10. 一个三角形的底边长是8米,高是6米,求它的面积。
请写出计算过程。
答案:1. D2. A3. B4. C5. A6. 500 ÷ 3.6 = 138.88 (分钟)所以,小明用了约138.88分钟。
六年级奥数试题及解析(精选12篇)
六年级奥数试题及解析〔精选12篇〕假设干只同样的盒子排成一列,小聪把42个同样的小球放在这些盒子里然后外出,小明从每支盒子里取出一个小球,然后把这些小球再放到小球数最少的盒子里去.再把盒子重排了一下.小聪回来,仔细查看,没有发现有人动过小球和盒子.问:一共有多少只盒子?分析^p :设原来小球数最少的盒子里装有a只小球,如今增加了b只,由于小聪没有发现有人动过小球和盒子,这说明如今又有了一只装有a个小球的'盒子,而这只盒子里原来装有(a+1)个小球.同样,如今另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球.类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数.所以将42分拆成假设干个连续整数的和,一共有多少种分法,每一种分法有多少个加数,据此解答.解:设原来小球数最少的盒子里装有a只小球,如今增加了b只,由于小聪没有发现有人动过小球和盒子,这说明如今又有了一只装有a个小球的盒子,而这只盒子里原来装有(a+1)个小球.同样,如今另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球.类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数.将42分拆成假设干个连续整数的和,因为42=6×7,故可以看成7个6的和,又(7+5)+(8+4)+(9+3)是6个6,从而42=3+4+5+6+7+8+9,一共有7个加数;又因为42=14×3,故可将42:13+14+15,一共有3个加数;又因为42=21×2,故可将42=9+10+11+12,一共有4个加数.所以原问题有三个解:一共有7只盒子、4只盒子或3只盒子.答:一共有7只、4只或3只盒子.点评:解答此题的关键是将问题归结为把42分拆成假设干个连续整数的和.篇8:六年级奥数模拟试题六年级奥数模拟试题一、填空题。
(完整版)小学六年级奥数题附答案
小学六年级奥数题1。
某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?2.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?3。
甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
这时两人钱相等,求乙的存款4.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%.再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?5。
小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!"小亮说:“你要是能给我你的1/6,我就比你多2个了。
"小明原有玻璃球多少个?6.搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时。
有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?7。
一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?8.股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。
老王10月8日以股票10.65元的价格买进一种科技股票3000股,6月26日以每月13.86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?9.某书店老板去图书批发市场购买某种图书,第一次购书用100元,按该书定价2。
8元出售,很快售完。
第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。
小学六年级奥数模拟试题(含答案)
六年级奥数模拟试题(时间:90分钟总分:100分)一、选择题(每题2分,共20分)1. 如果甲堆煤的重量比乙堆煤少,那么下列说法中正确的有()。
①乙堆的重量比甲堆多20%;②甲、乙两堆重量的比是6:7;③如果从乙堆中取出给甲堆,那么两堆煤的重量就同样多;④甲堆煤占两堆煤总重量的。
A. ①②③B. ①②④C. ①③④D. ②③④2. 钟面上如果分针旋转周,那么时针旋转的度数是()。
A. 15°B. 180°C. 30°D. 60°3. 一个两位数,交换它的十位数字和个位数字,所得的两位数是原数的,则这样的两位数有()。
A. 1个B. 2个C. 4个D. 无数个4. 最小的合数除最小的质数,商是()。
A. 整数B. 循环小数C. 有限小数D. 无限不循环小数5. 从和式中必须去掉()两个分数,才能使余下的分数之和等于1。
A. B. C. D.6. 一辆汽车往返于甲、乙两地,去时用了5小时,回来时速度提高,比去时少用了()小时。
A. B. C. D.7. 如图,算得小红家到公路上的最短路程长为()。
A. 4千米B. 2.4千米C. 3千米D. 3.8千米8. 在一个密封的不透明的袋子里装了两只红球、两只黄球,明明伸手任意抓一只球,抓到红球的机会是()。
A. B. C. D. 不确定9. 一根铁丝剪成两段,第一段长米,第二段占全长的,那么()。
A. 第一段长B. 第二段长C. 无法确定谁长D. 一样长10. 1997个空格排成一行,预先在左边第1格放入一枚棋子,然后甲、乙两人交替走棋。
先甲后乙,每步可向右移1格、2格、3格、4格,规定谁先到最右一格为胜。
甲为了保证获胜,他第一步必须把棋子向右移()。
A. 1格B. 2格C. 3格D. 4格二、填空题(每题2分,共20分)1. 三十亿零八十一万七千零九写作(),四舍五入到万位是()万。
2. 如下图所示,用“十字形”分割正方形。
小学六年级奥数题100道及答案解析(完整版)
小学六年级奥数题100道及答案解析(完整版)1. 一种商品先提价10%,再降价10%,现价与原价相比()A. 提高了B. 降低了C. 不变D. 无法确定答案:B解析:假设原价为100 元,提价10%后价格为100×(1 + 10%) = 110 元,再降价10%,价格为110×(1 - 10%) = 99 元,所以现价比原价降低了。
2. 一个圆的半径扩大3 倍,它的面积扩大()倍。
A. 3B. 6C. 9D. 27答案:C解析:圆的面积= π×半径²,半径扩大3 倍,面积扩大3²= 9 倍。
3. 甲数的2/3 等于乙数的3/4,甲数()乙数。
A. 大于B. 小于C. 等于D. 无法比较答案:A解析:设甲数×2/3 = 乙数×3/4 = 1,可得甲数= 3/2,乙数= 4/3,3/2 > 4/3,所以甲数大于乙数。
4. 把20 克盐放入200 克水中,盐和盐水的比是()A. 1:10B. 1:11C. 10:1D. 11:1答案:B解析:盐20 克,盐水= 20 + 200 = 220 克,盐和盐水的比是20:220 = 1:115. 一个三角形三个内角的度数比是1:2:3,这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定答案:B解析:三个内角分别为180×1/(1 + 2 + 3) = 30°,180×2/(1 + 2 + 3) = 60°,180×3/(1 + 2 + 3) = 90°,是直角三角形。
6. 要反映某地气温变化情况,应绘制()统计图。
A. 条形B. 折线C. 扇形D. 以上都可以答案:B解析:折线统计图能清晰反映数据的变化情况。
7. 一个圆柱和一个圆锥等底等高,它们的体积相差18 立方厘米,圆锥的体积是()立方厘米。
六年级奥数竞赛模拟试题及答案
六年级奥数竞赛模拟试题一.计算:⑴。
=⨯+⋅⋅⋅+⨯+⨯+⨯100991431321211 ⑵。
13471711613122374⨯+⨯+⨯=⑶.222345567566345567+⨯⨯+= ⑷。
4513612812111511016131+++++++=二.填空: ⑴。
甲、乙两数是自然数,如果甲数的65恰好是乙数的41.那么甲、乙两数之和的最小值是 . ⑵。
某班学生参加一次考试,成绩分优、良、及格、不及格四等。
已知该班有21的学生得优,有31的学生得良,有71的学生得及格.如果该班学生人数不超过60人,则该班不及格的学生有人。
⑶。
一条公路,甲队独修24天完成,乙队独修30天完成。
甲乙两队合修若干天后,乙队停工休息,甲队继续修了6天完成,乙队修了 天.⑷。
用0,1,2,3,4,5,6,7,8,9十个数字,能够组成 个没有重复数字的三位数.⑸.“IMO ”是国际数学奥林匹克的缩写,把这三个字母写成三种不同颜色,现有五种不同颜色的笔,按上述要求能写出 _______种不同颜色搭配的“IMO ”。
⑹不定方程172112=+y x 的整数解是 。
⑺一个正方体的表面积是384平方分米,体积是512立方分米,这个正方体棱长的总和是 。
⑻. 把19个边长为2厘米的正方体重叠起来堆成如右图所示的立方体, 这个立方体的表面积是 平方厘米.⑼。
两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距 千米。
⑽.六一班有学生46人,其中会骑自行车的17人,会游泳的14人,既会骑车又会游泳的4人,问两样都不会的有 _人。
⑾.从学校到少年宫有4条东西的马路和3条南北的马路相通(如图),李楠从学校出发,步行到少年宫(只许向东或向南行进),最多有 种走法。
⑿.算出圆内正方形的面积为 。
⒀.如图所求,圆的周长是16。
4厘米,圆的面积与长方形的面积正好相等.图中阴影部分的周长是 厘米。
小学六年级奥数试卷及答案
小学六年级奥数试卷及答案一、选择题(每题2分,共10分)1. 一个数的5倍加上8等于这个数的7倍减去6,这个数是多少?A. 2B. 4C. 6D. 82. 一个长方体的长、宽、高分别是a、b、c,如果长方体的体积是底面积的2倍,那么a、b、c之间满足什么关系?A. a=b=cB. a+b=cC. a=2bD. b=2c3. 一个自然数n,如果它的平方的末尾数字是7,那么n的末尾数字可能是?A. 2B. 3C. 4D. 54. 一个圆的直径是14厘米,它的周长是多少厘米?A. 28B. 31.4C. 43.96D. 475. 一个数列1,3,5,7,9,...,2n-1,这个数列的第20项是多少?A. 39B. 41C. 43D. 45二、填空题(每题2分,共10分)6. 一个数的平方比它本身大99,这个数是_________。
7. 一个直角三角形的两条直角边分别是3厘米和4厘米,它的面积是_________平方厘米。
8. 一个数的3倍与这个数的一半的和是10,这个数是_________。
9. 一个数的5%比这个数的一半少2.4,这个数是_________。
10. 一个数的倒数是1/7,这个数是_________。
三、解答题(每题10分,共30分)11. 一个长方形的长是宽的2倍,如果长和宽都增加5厘米,那么面积增加了多少平方厘米?12. 一个数的3/4加上这个数的1/5等于26,求这个数。
13. 一个水池有一个进水管和一个出水管,单开进水管5小时可注满水池,单开出水管8小时可放完一池水。
如果两个管子同时打开,多少小时可以注满水池?四、应用题(每题15分,共30分)14. 小华和小刚进行百米赛跑,小华每秒跑5米,小刚每秒跑4米。
如果小华让小刚先跑10米,那么小华追上小刚需要多少时间?15. 一个水果店有苹果和梨两种水果,苹果每斤5元,梨每斤4元。
水果店今天卖出了50斤水果,收入了300元。
请问,水果店今天卖出了多少斤苹果?五、附加题(每题20分,共20分)16. 一个数列的前几项是1,1,2,3,5,8,13,...,这个数列的第10项是多少?答案:1. B2. C3. B4. C5. D6. 107. 128. 49. 24 10. 711. 增加45平方厘米 12. 40 13. 40小时14. 5秒 15. 30斤苹果16. 55【注:本试卷为模拟题,仅供参考。
(完整word版)小学六年级奥数题50道题及解答(可直接打印)
练习(一)姓名1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?得分5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)6.学校组织两个课外兴趣小组去郊外活动。
第一小组每小时走4.5千米,第二小组每小时行3.5千米。
两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。
多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。
甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。
甲、乙两队每天共修多少米?9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10.一列火车和一列慢车,同时分别从甲乙两地相对开出。
快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?答案:奥数题解答参考1、想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。
再根据椅子的价钱,就可求得一张桌子的价钱。
解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。
小学六年级奥数题及答案[6篇]
小学六年级奥数题及答案[6篇]1.小学六年级奥数题及答案篇一1、有一份稿件,原计划是5小时打出来,实际上只用了4个小时,工作效率提高了百分之几?答案:25%解析:原计划的工作效率是1/5,实际上的工作效率是1/4,提高了(1/4-1/ 5)÷1/5=25%需要多少分钟?2、甲乙两车分别从A、B两地同时出发,相向而行,3小时相遇后,甲掉头返回A地,乙继续前行。
甲到达A地后掉头往B行驶,半小时后和乙相遇,那么从A到B需要多少分钟?答案:432分钟解析:甲行驶2.5小时的路程,乙用了3.5小时。
所以甲乙的速度比为7:5,走相同路程的时间比是5:7。
那么乙从A到B的时间为3×7/5+3=7.2小时,即432分钟。
2.小学六年级奥数题及答案篇二1、据说人的头发不超过20万跟,如果陕西省有3645万人,根据这些数据,你知道陕西省至少有多少人头发根数一样多吗?答案与解析:人的头发不超过20万根,可看作20万个“抽屉”,3645万人可看作3645万个“元素”,把3645万个“元素”放到20万个“抽屉”中,得到3645÷20=182……5根据抽屉原则的推广规律,可知k+1=183答:陕西省至少有183人的头发根数一样多。
2、已知一个正方形的对角线长8米,求这个正方形的面积是多少?答案与解析:①做正方形的另一条对角线。
得到四个完全相同的等腰直角三角形。
②一个等腰直角三角形的面积是:8÷2=4(直角边)4×4÷2=8(平方米)③四个等腰直角三角形的面积,即正方形的面积。
8×4=32(平方米)3.小学六年级奥数题及答案篇三1、125×(17×8)×4=125×8×4×17=1000×68=680002、375×480+6250×48=480×(375+625)=4800003、25×16×125=25×2×8×125=500004、13×99=13×(100-1)=1300-13=12875、75000÷125÷15=75×1000÷125÷15=75÷15×1000÷125=5×8=406、7900÷4÷25=7900÷(4×25)=797、150×40÷50=150÷50×40=3×40=1208、5600÷(25×7)=56×100÷25÷7=56÷7×100÷25=329、210÷42×6=210÷7÷6×6=3010、39600÷25=396×100÷25=396×4=15844.小学六年级奥数题及答案篇四有三块草地,面积分别是5,15,24亩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级奥数模拟试题(时间:90分钟总分:100分)一、选择题(每题2分,共20分)1. 如果甲堆煤的重量比乙堆煤少,那么下列说法中正确的有()。
①乙堆的重量比甲堆多20%;②甲、乙两堆重量的比是6:7;③如果从乙堆中取出给甲堆,那么两堆煤的重量就同样多;④甲堆煤占两堆煤总重量的。
A. ①②③B. ①②④C. ①③④D. ②③④2. 钟面上如果分针旋转周,那么时针旋转的度数是()。
A. 15°B. 180°C. 30°D. 60°3. 一个两位数,交换它的十位数字和个位数字,所得的两位数是原数的,则这样的两位数有()。
A. 1个B. 2个C. 4个D. 无数个4. 最小的合数除最小的质数,商是()。
A. 整数B. 循环小数C. 有限小数D. 无限不循环小数5. 从和式中必须去掉()两个分数,才能使余下的分数之和等于1。
A. B. C. D.6. 一辆汽车往返于甲、乙两地,去时用了5小时,回来时速度提高,比去时少用了()小时。
A. B. C. D.7. 如图,算得小红家到公路上的最短路程长为()。
A. 4千米B. 2.4千米C. 3千米D. 3.8千米8. 在一个密封的不透明的袋子里装了两只红球、两只黄球,明明伸手任意抓一只球,抓到红球的机会是()。
A. B. C. D. 不确定9. 一根铁丝剪成两段,第一段长米,第二段占全长的,那么()。
A. 第一段长B. 第二段长C. 无法确定谁长D. 一样长10. 1997个空格排成一行,预先在左边第1格放入一枚棋子,然后甲、乙两人交替走棋。
先甲后乙,每步可向右移1格、2格、3格、4格,规定谁先到最右一格为胜。
甲为了保证获胜,他第一步必须把棋子向右移()。
A. 1格B. 2格C. 3格D. 4格二、填空题(每题2分,共20分)1. 三十亿零八十一万七千零九写作(),四舍五入到万位是()万。
2. 如下图所示,用“十字形”分割正方形。
分割一次,分成了4个正方形;分割两次,分成了7个正方形。
如果连续用“十字形”分割20次,分成了()个正方形。
如果分成了361个正方形,共用“十字形”分割了()次。
3. 如图所示,已知∠1=21°,∠2=64°,∠3=35°,则∠4=()。
4. 如图,在2×2的方格中,画一条直线最多可穿过3个方格,那么在12×12的方格中,画一条直线最多可穿过()个方格。
5. 把,,,这四个分数按从小到大的顺序排列是:()<()<()<()。
6. 甲、乙两个长方形,它们的周长相等。
甲的长与宽之比是4:3,乙的长与宽之比是5:6,甲、乙两个长方形的面积之比是()。
7. 从运动场的一端到另一端全长100米,从一端起到另一端止每隔4米插一面小红旗。
现在要改成每隔5米插一面,有()面小红旗不用移动。
8. 现有12个小球,其中有一个次品,若次品比正品重一点,利用一架天平,最少称()次,一定能把次品找到。
9. 已知一个容器内已注满水,有大、中、小三个球,第一次把小球沉入水中,第二次取出小球再将中球沉入水中,第三次取出中球,把小球和大球一起沉入水中,现在知道,第一次溢出的水是第二次的,第三次是第一次的 2.5倍,则大、中、小三球的体积比是()。
10. 学生书店进了一批学生英语辅导书,带有碟片,书和碟片的定价相同,可以单卖。
已知书和碟片的份数比是3:2。
进货时,书需按定价的78%付款,碟片需按定价的82%付款。
卖完这批书学生书店可获利()%。
三、计算题(每题4分,共20分)1. 99999×77778+33333×666662. ++++3. 规定A⊙B=A×B+A+B,那么当(A⊙2)⊙1=29时,A等于几?4. +++++5. 小马虎将乘一个数,误写成 2.08乘一个数,结果与正确答案正好相差 2.08,那么正确的答案应该是多少?四、解答题(前2题每题6分,后4题每题7分,共40分)1. (6分)如图所示,已知点O是圆心,圆中直角三角形的面积是30平方厘米,求圆的面积。
(π取3.14)2. (6分)如图所示,BD、CF将长方形ABCD分成4块,△DFE的面积是4平方厘米,△CDE的面积是6平方厘米。
问:四边形ABEF的面积是多少平方厘米?3. (7分)兄妹二人同时从家里出发去上学,哥哥骑车每分钟行400米,妹妹步行每分钟行100米。
哥哥到校门时,发现忘了带课本,立即沿原路返回,途中与妹妹相遇。
已知家与学校相距1000米,求兄妹二人从出发到相遇共用了多少分钟?4. (7分)一种浓度为30%的新农药,稀释到2%时,灭虫最有效。
那么,用多少千克浓度为30%的农药加多少千克水,才能配成2%的农药150千克?5. (7分)有若干堆围棋棋子,每堆棋子数目一样多,且每堆中白子都占30%。
小明从某一堆中拿走一半棋子,而且拿走的都是黑子,现在白子占所有棋子的40%,那么共有棋子多少堆?6. 单独修一条公路,甲队需100天完成,乙队需150天完成。
甲、乙两队合修50天后,余下的工程由乙队单独做,还需几天才能完成?六年级奥数通用版北京市重点中学招生模拟试题一(上)试卷分析参考答案一、选择题1. C 分析:甲堆煤的重量比乙堆煤少,可以假设甲是5份,乙是6份。
①(6-5)÷5×100%=20%,正确;②很明显甲、乙的重量比是5:6,所以错误;③甲、乙两堆煤的重量差是乙的,所以如果从乙堆中取出给甲堆,那么两堆煤的重量就同样多,正确;④甲堆煤占两堆煤总重量的=,正确。
所以选C。
2. A 分析:每个小格旋转的度数:,分针每分钟转:1个小格,时针每分钟转:个小格,分针旋转了周,经过了30分钟,所以时针旋转的度数为:3. C 分析:,(10a+b)=10b+a,变形为2a=b,两位数分别为12、24、36、48,故选C。
4. C 分析:2÷4=0.5,选C。
5. D 分析:=1,所以去掉的两个分数是和。
6. A 分析:根据比例关系,路程一定,时间与速度成反比。
即:,,,则回来时比去时少用了(小时)。
7. B 分析:3×4÷5=2.4(千米)8. A 分析:2÷(2+2)=,故选A。
9. A 分析:第一段占全长的,全长为:,第二段绳子长:,所以第一段绳子长。
10. A 分析:要想让走最后一步的人胜,则甲必须保证手中的棋子为(1+4)n+1枚,即5n+1枚。
1997=5×399+2,因左边第一格已预先放入一枚棋子,所以第一步只需向右移动1格即可。
二、填空题1. 3000817009 300082 分析:300081∣7009,所以进1为300082万。
2. 61 120 分析:第一次分成4个;第二次分成7个;第三次分成10个;第四次分成13个;由此可知这是一个等差数列,通项公式为。
则分割20次后:(个)。
分为361个是第几项,相当于求项数:(项)。
3. 120°分析:∠4=180°-∠5-∠6;∠1+∠2+∠3=180°-∠5-∠6,所以∠4=∠1+∠2+∠3=21°+64°+35°=120°。
4. 23 分析:在n×n的方格中,一条直线最多能穿过2n-1个方格,12×2-1=23。
5. 分析:=,比其他数都小;=+,=+,=+,所以。
6. 242:245 分析:设甲、乙的长宽之和均为1,则甲的长为,甲的宽为,甲的面积为;乙的长为,乙的宽为,则乙的面积为;甲的面积:乙的面积=。
7. 6 分析:4和5的最小公倍数是20,所以每隔20米的红旗不用移动,即求总长100米时每隔20米需要插多少根小红旗,100÷20+1=6(面)。
8. 3 分析:第一次:可以把12个球平均分为2份,每份6个球,哪边沉一些,次品就在那一堆当中;第二次:把6个球平均分为2份,每份3个球,哪边沉一些,次品就在那一堆当中;第三次:把3个球平均分成3份,如果有一边沉说明那个就是次品,如果天平平衡的话,证明剩下那个没称重的是次品。
9. 11:8:2 分析:第一次溢出的水的体积=小球体积第二次溢出的水的体积=中球体积-小球体积第三次溢出的水的体积=大球体积+小球体积-中球体积第一次=第二次2.5第一次=第三次设小球体积=1,则可求出小球体积=1;中球体积=4;大球体积= 5.5。
则大:中:小=11:8:210. 25.6 分析:设每本书与每张碟片的定价都为100元。
每本书可以赚:元每张碟片可以赚:元则利润率为:三、计算题1. 解:原式=99999×77778+99999×22222=99999×(77778+22222)=99999×100000=99999000002. 解:原式=+++…+==3. A=4 分析:A⊙2=2A+A+2=3A+2,(A⊙2)⊙1=1×(3A+2)+(3A+2)+1=6A+5,6 A+5=29,A=4。
4. 解:利用分数裂项的变形公式+++++5. 解:x-2.08x=2.08,先将化成分数,因为×100=,×10=,所以=,即得x-2.08x =2.08,解得x=234。
所以正确的答案应该是 2.08×234+2.08=488.8。
四、解答题1. 解:在求圆的面积时,有的时候不一定非要求出半径r,我们只要知道即可。
=(平方厘米)(平方厘米)2. 解:根据蝴蝶定理可知所以,,,3. 解:如遇到两人往返或者多次相遇的情况,考虑两个人一共所行的路程和。
两人共行了两个全程:(米)所用时间:(分钟)4. 解:根据浓度十字相乘法可得,设需要浓度为30%的农药x千克,需要水(150-x)千克。
,解得x=10150-10=140(千克)则需要浓度为30%的农药10千克,加水140千克。
5. 解:不妨设共有n堆棋子,则白子总数为30%n;拿走某堆的一半黑子后,所有的棋子还剩下;,n=2所以共有2堆棋子。
6. 解:甲的工作效率:,乙的工作效率:,两队合修50天的工作量:还需天数:(天)。