初中数学常见几何基本模型及结论
(完整版)初中数学九大几何模型
初中数学九大几何模型一、手拉手模型 ----旋转型全等D(1)等边三角形OOC ECA图 1BA图 2【条件】:△ OAB 和△ OCD 均为等边三角形;【结论】:①△ OAC ≌△ OBD ;②∠ AEB=60°;③ OE 均分∠ AEDD(2)等腰直角三角形OCEABA图 1D EBDOECB图 2【条件】:△ OAB 和△ OCD 均为等腰直角三角形;【结论】:①△ OAC ≌△ OBD ;②∠ AEB=90°;③ OE 均分∠ AED(3)顶角相等的两任意等腰三角形DOOC【条件】:△ OAB 和△ OCD 均为等腰三角形;DE且∠ COD=∠AOBE【结论】:①△ OAC ≌△ OBD ; C②∠ AEB=∠AOB ;③OE 均分∠ AEDA 图 1BA图 2 BO O二、模型二:手拉手模型----旋转型相似(1)一般情况D【条件】: CD ∥ AB ,CD将△ OCD 旋转至右图的地址A B 【结论】:①右图中△ OCD ∽△ OAB →→→△ OAC ∽△ OBD ;②延长 AC 交 BD 于点 E ,必有∠ BEC=∠ BOAO(2)特别情况C D【条件】:CD ∥ AB ,∠ AOB=90°将△ OCD 旋转至右图的地址A B【结论】:①右图中△ OCD ∽△ OAB →→→△ OAC ∽△ OBD ; ②延长 AC 交 BD 于点 E ,必有∠ BEC=∠ BOA ;③ BDOD OB tan ∠ OCD ;④ BD ⊥AC ; ACOC OA⑤连接 AD 、 BC ,必有 AD 2BC222;⑥ S △BCDABCD三、模型三、对角互补模型(1)全等型 -90 °【条件】:①∠ AOB=∠ DCE=90°;② OC 均分∠ AOBECABDOCEA B1AC BD 2 ACDOE B图 1【结论】:① CD=CE ;② OD+OE= 2 OC ;③ S △DCES△OCDS△OCE1 OC 2A2证明提示:CM①作垂直,如图 2,证明△ CDM ≌△ CEND②过点 C 作 CF ⊥ OC ,如图 3,证明△ ODC ≌△ FEC※当∠ DCE 的一边交 AO 的延长线于 D 时(如图 4):ON EB图 2以上三个结论:① CD=CE ;② OE-OD= 2 OC ;A1OC 2AMC③S△OCES△OCD2CDONBEO图 3 EF BD图 4(2)全等型 -120 °【条件】:①∠ AOB=2∠ DCE=120°;② OC均分∠ AOB【结论】:① CD=CE;② OD+OE=OC;③S△DCE S△OCD S△OCE 3 OC24证明提示:①可参照“全等型-90 °”证法一;②如右以下图:在OB上取一点F,使 OF=OC,证明△ OCF为等边三角形。
初中几何48个模型及题型讲解
初中几何48个模型及题型讲解一、直线和角1. 平行线和垂直线的性质平行线的性质包括对应角相等、内错角相等、同旁内角相等,垂直线的性质包括互补角相等、邻补角相等等等。
2. 直线的夹角与邻角两条直线之间的夹角等于它的补角,夹角的补角叫相邻角。
3. 同位角与对顶角同位角相等、对顶角相等。
4. 角的大小关系锐角、直角、钝角的大小关系。
5. 角和角度角的性质包括平分角等。
6. 角的运算法则相等角相加还是相等角;补角与角补加为90°。
7. 顶角和底角的性质同位角相等、顶底角相等。
二、等腰三角形、等边三角形1. 等腰三角形的性质两底角相等,两底边相等等。
2. 等边三角形的性质三边相等、三角也相等等等三、全等三角形1. 全等三角形的基本判定条件AAA、SAS、SSS、ASA四种判定条件。
2. 全等三角形的性质全等三角形的对应边和对应角相等等等。
四、相似三角形1. 相似三角形的基本判定条件AA、SAS、SSS、AAS四种判定条件。
2. 相似三角形的性质相似三角形的对应边成比例,对应角相等等等。
五、直角三角形1. 直角三角形的性质勾股定理、边角关系、三边关系等。
2. 解直角三角形的基本方法利用三角函数解决实际问题等。
六、三角形的面积1. 三角形的面积计算公式面积公式S=1/2×底×高等。
2. 多边形的面积计算公式正多边形、梯形、平行四边形、菱形等多边形的面积公式。
七、四边形1. 平行四边形的性质对角线互相平分等。
2. 矩形的性质对角相等、对边相等等。
3. 菱形的性质对角相等、对边相等、对角平分等。
4. 正方形的性质矩形和菱形的结合。
五、圆1. 圆的基本概念圆心、圆周、半径、直径等。
2. 圆的周长和面积周长C=2πr,面积S=πr^2等。
3. 圆中角和弧的关系圆心角、圆周角、同弧对应角等。
4. 切线与切点切线与圆相切于一个点等。
六、坐标系1. 直角坐标系和平面直角坐标系横坐标和纵坐标等。
初中数学必会的12个几何模型精解精编(222页Word)
中考数学几何模型1:截长补短模型有一类几何题其命题主要是证明三条线段长度的“和”或"差”及其比例关系. 这一类题目一般可以采取“截长”或“补短”的方法来进行求解. 所谓“截长”,就是将三者中最长的那条线段一分为二,使其中的一条线段与已知线段相等,然后证明其中的另一段与已知的另一段的大小关系. 所谓“补短”,就是将一个已知的较短的线段延长至与另一个已知的较短的长度相等. 然后求出延长后的线段与最长的已知线段的关系. 有的是采取截长补短后,使之构成某种特定的三角形进行求解.例题1如图,AB∥CD,BE平分∠ABC,CE平分∠BCD,若E在AD上.求证:(1)BE⊥CE;(2)BC=AB+CD.【解析】证明:如图所示:(1)∵BE、CE分别是∠ABC和∠BCD的平分线,∴∠1=∠2,∠3=∠4,又∵AB∥CD,∴∠1+∠2+∠3+∠4=180°,∴∠2+∠3=90°,∴∠BEC=90°,∴BE⊥CE.(2)在BC上取点F,使BF=BA,连接EF.在△ABE和△FBE中,,∴△ABE≌△FBE(SAS),∴∠A=∠5.∵AB∥CD,∴∠A+∠D=180°,∴∠5+∠D=180,∵∠5+∠6=180°,∴∠6=∠D,在△CDE和△CFE中,,∴△CDE≌△CFE(AAS),∴CF=CD.∵BC=BF+CF,∴BC=AB+CD,变式1已知△ABC的内角平分线AD交BC于D,∠B=2∠C. 求证:AB+BD=AC.答案:略例题2已知△ABC中,∠A=60°,BD,CE分别平分∠ABC和∠ACB,BD、CE交于点O,试判断BE,CD,BC的数量关系,并说明理由.【解析】在BC上取点G使得CG=CD,∵∠BOC=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣60°)=120°,∴∠BOE=∠COD=60°,∵在△COD和△COG中,,∴△COD≌△COG(SAS),∴∠COG=∠COD=60°,∴∠BOG=120°﹣60°=60°=∠BOE,在△BOE和△BOG中,,∴△BOE≌△BOG(ASA),∴BE=BG,∴BE+CD=BG+CG=BC.变式2已知:△ABC中,AB=AC,D为△ABC外一点,且∠ABD=60°,∠ADB=90°﹣∠BDC.试判断线段CD、BD与AB之间有怎样的数量关系?并证明你的结论.【解析】AB=BD+CD,理由是:延长CD到E,使DE=BD,连接AE,∵∠ADB=90°﹣∠BDC,∴∠ADE=180°﹣(90°﹣)﹣∠BDC=90°﹣,∴∠ADB=∠ADE,在△ABD和△AED中,∴△ABD≌△AED(SAS),∴∠E=∠ABD=60°,AB=AE,∵AB=AC,∴AE=AC,∴△ACE是等边三角形,∴AB=CE=CD+DE=BD+CD.例题3如图,在五边形ABCDE中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°,求证:DA平分∠CDE【解析】连接AC,延长DE到F,使EF=BC,连接AF,∵BC+DE=CD,EF+DE=DF,∴CD=FD,∵∠ABC+∠AED=180°,∠AEF+∠AED=180°,∴∠ABC=∠AEF,在△ABC和△AEF中,,∴△ABC≌△AEF(SAS),∴AC=AF,在△ACD和△AFD中,,∴△ACD≌△AFD(SSS)∴∠ADC=∠ADF,即AD平分∠CDE变式3如图,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,M是AB延长线上一点,N是CA延长线上一点,且∠MDN=60°.试探究BM、MN、CN之间的数量关系,并给出证明.【解析】CN=MN+BM(微信公众号:数学三剑客)证明:在CN上截取点E,使CE=BM,连接DE,∵△ABC为等边三角形,∴∠ACB=∠ABC=60°,又△BDC为等腰三角形,且∠BDC=120°,∴BD=DC,∠DBC=∠BCD=30°,∴∠ABD=∠ABC+∠DBC=∠ACB+∠BCD=∠ECD=90°,在△MBD和△ECD中,,∴△MBD≌△ECD(SAS),∴MD=DE,∠MDB=∠EDC,又∵∠MDN=60°,∠BDC=120°,∴∠EDN=∠BDC﹣(∠BDN+∠EDC)=∠BDC﹣(∠BDN+∠MDB)=∠BDC﹣∠MDN=120°﹣60°=60°,∴∠MDN=∠EDN,在△MND与△END中,,∴△MND≌△END(SAS),∴MN=NE,∴CN=NE+CE=MN+BM例题4在四边形ABDE中,C是BD边的中点.(1)如图(1),若AC平分∠BAE,∠ACE=90°,则线段AE、AB、DE的长度满足的数量关系为AE=AB+DE;(直接写出答案)(2)如图(2),AC平分∠BAE,EC平分∠AED,若∠ACE=120°,则线段AB、BD、DE、AE的长度满足怎样的数量关系?写出结论并证明;(3)如图(3),BD=8,AB=2,DE=8,若ACE=135°,则线段AE长度的最大值是10+4.(直接写出答案).【解析】(1)AE=AB+DE;(2)猜想:AE=AB+DE+BD.证明:在AE上取点F,使AF=AB,连结CF,在AE上取点G,使EG=ED,连结CG.∵C是BD边的中点,∴CB=CD=BD.∵AC平分∠BAE,∴∠BAC=∠F AC.在△ACB和△ACF中,,∴△ACB≌△ACF(SAS),∴CF=CB,∴∠BCA=∠FCA.同理可证:CD=CG,∴∠DCE=∠GCE.∵CB=CD,∴CG=CF∵∠ACE=120°,∴∠BCA+∠DCE=180°﹣120°=60°.∴∠FCA+∠GCE=60°.∴∠FCG=60°.∴△FGC是等边三角形.∴FG=FC=BD.∵AE=AF+EG+FG.∴AE=AB+DE+BD.(3)作B关于AC的对称点F,D关于EC的对称点G,连接AF,FC,CG,EG,FG.∵C是BD边的中点,∴CB=CD=BD.∵△ACB≌△ACF(SAS),∴CF=CB,∴∠BCA=∠FCA.同理可证:CD=CG,∴∠DCE=∠GCE∵CB=CD,∴CG=CF∵∠ACE=135°,∴∠BCA+∠DCE=180°﹣135°=45°.∴∠FCA+∠GCE=45°.∴∠FCG=90°.∴△FGC是等腰直角三角形.∴FC=BD.∵BD=8,∴FC=4,∴FG=4.∵AE=AB+4+DE.∵AB=2,DE=8,∴AE≤AF+FG+EG=10+4.∴当A、F、G、E共线时AE的值最大2,最大值为10+4.故答案为:10+4.例题5在△ABC中,∠BAC=90°.(1)如图1,直线l是BC的垂直平分线,请在图1中画出点A关于直线l的对称点A′,连接A′C,A′B,A′C与AB交于点E;(2)将图1中的直线A′B沿着EC方向平移,与直线EC交于点D,与直线BC交于点F,过点F作直线AB的垂线,垂足为点H.①如图2,若点D在线段EC上,请猜想线段FH,DF,AC之间的数量关系,并证明;②若点D在线段EC的延长线上,直接写出线段FH,DF,AC之间的数量关系.【解析】(1)如图1(2)①DF+FH=CA,证明:如图2,过点F作FG⊥CA于点G,∵FH⊥BA于H,∠A=90°,FG⊥CA,∴∠A=∠FGA=∠FHA=90°,∴四边形HFGA为矩形.∴FH=AG,FG∥AB,∴∠GFC=∠EBC,∵直线l是BC的垂直平分线,∴BE=EC,∴∠EBC=∠ECB,由(1)和平移可知,∠ECB=∠EBC=∠GFC,∠FDC=∠A=90°,∴∠FDC=∠FGC=90°.∵在△FGC和△CDF中∴△FGC≌△CDF,∴CG=FD,∴DF+FH=GC+AG,即DF+FH=AC;②解:FH﹣DF=AC,理由是:过F作FH⊥BA于H,过点C作CG⊥FH于G,∵FH⊥BA于H,∠BAC=90°,CG⊥FH,∴∠CAH=∠CGH=∠FHA=90°,∴四边形ACGH为矩形.∴AC=GH,CG∥AB,∴∠GCF=∠EBC,∵直线l是BC的垂直平分线,∴BE=EC,∴∠EBC=∠ECB=∠FCD,∴∠GCF=∠FCD,由(1)和平移可知,∠FDC=∠A=90°,∴∠FDC=∠FGC=90°.∵在△FGC和△CDF中∴△FGC≌△CDF,∴FG=FD,∵FH﹣FG=GH,∴FH﹣DF=AC.例题6如图1,在△ABC中,∠ACB=2∠B,∠BAC的平分线AO交BC于点D,点H为AO上一动点,过点H作直线l⊥AO于H,分别交直线AB、AC、BC、于点N、E、M.(1)当直线l经过点C时(如图2),求证:BN=CD;(2)当M是BC中点时,写出CE和CD之间的等量关系,并加以证明;(3)请直接写出BN、CE、CD之间的等量关系.【解析】(1)证明:连接ND,如图2所示:∵AO平分∠BAC,∴∠BAD=∠CAD,∵直线l⊥AO于H,∴∠AHN=∠AHE=90°,∴∠ANH=∠AEH,∴AN=AC,∴NH=CH,∴AH是线段NC的中垂线,∴DN=DC,∴∠DNH=∠DCH,∴∠AND=∠ACB,∵∠AND=∠B+∠BDN,∠ACB=2∠B,∴∠B=∠BDN,∴BN=DN,∴BN=DC;(2)解:当M是BC中点时,CE和CD之间的等量关系为CD=2CE,理由如下:过点C作CN'⊥AO交AB于N',过点C作CG∥AB交直线l于点G,如图3所示:由(1)得:BN'=CD,AN'=AC,AN=AE,∴∠ANE=∠AEN,NN'=CE,∴∠ANE=∠CGE,∠B=∠BCG,∴∠CGE=∠AEN,∴CG=CE,∵M是BC中点,∴BM=CM,在△BNM和△CGM中,,∴△BNM≌△CGM(ASA),∴BN=CG,∴BN=CE,∴CD=BN'=NN'+BN=2CE;(3)解:BN、CE、CD之间的等量关系:当点M在线段BC上时,CD=BN+CE;理由如下:过点C作CN'⊥AO交AB于N',如图3所示:由(2)得:NN'=CE,CD=BN'=BN+CE;当点M在BC的延长线上时,CD=BN﹣CE;理由如下:过点C作CN'⊥AO交AB于N',如图4所示:同(2)得:NN'=CE,CD=BN'=BN﹣CE;当点M在CB的延长线上时,CD=CE﹣BN;理由如下:过点C作CN'⊥AO交AB于N',如图5所示:同(2)得:NN'=CE,CD=BN'=CE﹣BN.【练习1】如图,在△ABC中,∠BAC=60°,AD是∠BAC的平分线,且AC=AB+BD,求∠ABC的度数.【解析】如图,在AC上截取AE=AB,∵AD平分∠BAC,∴∠BAD=∠CAD,在△ABD和△AED中,,∴△ABD≌△AED(SAS),∴BD=DE,∠B=∠AED,∵AC=AE+CE,AC=AB+BD,∴CE=BD,∴CE=DE,∴∠C=∠CDE,即∠B=2∠C,在△ABC中,∠BAC+∠B+∠C=180°,∴60°+2∠C+∠C=180°,解得∠C=40°,∴∠ABC=2×40°=80°.【练习2】如图,在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F,试探究线段AB与AF,CF之间的数量关系,并证明你的结论.【练习3】如图,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角∠NDM,角的两边分别交AB、AC边于M、N两点,连接MN.试探究BM、MN、CN之间的数量关系,并加以证明.【解析】探究结论:BM+CN=NM.证明:延长AC至E,使CE=BM,连接DE,∵△BDC是顶角∠BDC=120°的等腰三角形,△ABC是等边三角形,∴∠BCD=30°,∴∠ABD=∠ACD=90°,即∠ABD=∠DCE=90°,∴在△DCE和△DBM中,∴R t△DCE≌R t△DBM(SAS),∴∠BDM=∠CDE,又∵∠BDC=120°,∠MDN=60°,∴∠BDM+∠NDC=∠BDC﹣∠MDN=60°,∴∠CDE+∠NDC=60°,即∠NDE=60°,∴∠MDN=∠NDE=60°∴DM=DE(上面已经全等)在△DMN和△DEN中,∴△DMN≌△DEN(S A S),∴BM+CN=NM.【练习4】如图,▱ABCD中,E是BC边的中点,连接AE,F为CD边上一点,且满足∠DF A=2∠BAE.(1)若∠D=105°,∠DAF=35°.求∠F AE的度数;(2)求证:AF=CD+CF.【解析】(1)解:∵∠D=105°,∠DAF=35°,∴∠DF A=180°﹣∠D﹣∠DAF=40°(三角形内角和定理).∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD(平行四边形对边平行且相等).∴∠DF A=∠F AB=40°(两直线平行,内错角相等);∵∠DF A=2∠BAE(已知),∴∠F AB=2∠BAE(等量代换).即∠F AE+∠BAE=2∠BAE.∴∠F AE=∠BAE;∴2∠F AE=40°,∴∠F AE=20°;(2)证明:在AF上截取AG=AB,连接EG,CG.∵∠F AE=∠BAE,AE=AE,∴△AEG≌△AEB.∴EG=BE,∠B=∠AGE;又∵E为BC中点,∴CE=BE.∴EG=EC,∴∠EGC=∠ECG;∵AB∥CD,∴∠B+∠BCD=180°.又∵∠AGE+∠EGF=180°,∠AGE=∠B,∴∠BCF=∠EGF;又∵∠EGC=∠ECG,∴∠FGC=∠FCG,∴FG=FC;又∵AG=AB,AB=CD,∴AF=AG+GF=AB+FC=CD+FC.【练习5】如图所示,在正方形ABCD的边CB的延长线上取点F,连结AF,在AF上取点G,使得AG=AD,连结DG,过点A作AE⊥AF,交DG于点E.(1)若正方形ABCD的边长为4,且AB=2FB,求FG的长;(2)求证:AE+BF=AF.【解析】(1)∵四边形ABCD是正方形,且边长为4,∴∠ABF=90°,AB=AD=4,∵在R t△ABF中,AB=2FB,∴FB=×4=2,∴AF==2,∵AG=AD=4,∴FG=AF﹣AG=2﹣4;(2)证明:在BC上截取BM=AE,连接AM,∵AG=AD,AB=AD,∴AG=AB,∵AE⊥AF,∴∠EAG=∠ABM=90°,在△AGE和△BAM中,,∴△AGE≌△BAM(SAS),∴∠AMB=∠AEG,∠BAM=∠AGD,∵AG=AD,∴∠AGD=∠ADG,∴∠BAM=∠ADG,∵∠BAD=90°,∴∠F AB+∠BAE=∠BAE+∠EAD=90°,∴∠F AB=∠EAD,∴∠AEG=∠EAD+∠ADG=∠F AB+∠BAM=∠F AM,∴∠F AM=∠AMB,∴AF=FM=BF+BM=BF+AE.【练习6】如图,在四边形ABCD中,AB=AD,∠BAD=60°,∠BCD=120°,连接AC,BD交于点E.(1)若BC=CD=2,M为线段AC上一点,且AM:CM=1:2,连接BM,求点C到BM的距离.(2)证明:BC+CD=AC.【解析】(1)∵AB=AD,∠BAD=60°,∴△ABD是等边三角形,∴∠ABD=∠ADB=60°.∵BC=CD,∴△ABC≌△ADC,∴∠BAC=∠DAC=30°,∠ACB=∠ACD=60°.∴∠AEB=∠BEC=90°,∠ABC=90°,∴CE=BC=1,BE=,AC=2BC=4.∵AM:CM=1:2,∴AM=,CM=,∴EM=,在R t△BEM中由勾股定理得BM==.过点C作CF⊥BM于点F.∴.∴,∴CF=.即点C到BM的距离.(2)证明:延长BC到点F,使CF=CB,连接DF,∵AB=AD,∠ABD=60°,∴△ABD是等边三角形,∴∠ADB=60°,AD=BD,∴BC=CD,∴CF=CD.∵∠BCD=120°,∴∠DCF=180°﹣∠BCD=60°,∴△DCF是等边三角形,∴∠CDF=∠ADB=60°,DC=DF,∴∠ADC=∠BDF,又∵AD=BD,∴△ACD≌△BDF,∴AC=BF=BC+CF,即AC=BC+CD.【练习7】如图,在正方形ABCD中,点P是AB的中点,连接DP,过点B作BE⊥DP交DP的延长线于点E,连接AE,过点A作AF⊥AE交DP于点F,连接BF.(1)若AE=2,求EF的长;(2)求证:PF=EP+EB.【解析】(1)∵四边形ABCD是正方形,且BE⊥DP,AF⊥AE,∴AB=AD,∠BAD=∠EAF=∠BEF=90°,∴∠1+∠F AB=∠2+∠F AB=90°,∴∠1=∠2.∵∠3+∠5=∠4+∠6,且∠5=∠6,∴∠3=∠4.在△AEB和△AFD中,∵,∴△AEB≌△AFD,∴AE=AF=2,在R t△EAF中,由勾股定理,得EF==2.(2)过点A作AM⊥EF于M,且∠EAF=90°,AE=AF,∴△EAF为等腰直角三角形.∴AM=MF=EM.∠AME=∠BEF=90°.∵点P是AB的中点,∴AP=BP.在△AMP和△BEP中,∵,∴△AMP≌△BEP,∴BE=AM,EP=MP,∴MF=BE,∴PF=PM+FM=EP+BE.中考数学几何模型2:共顶点模型共顶点模型,亦称“手拉手模型”,是指两个顶角相等的等腰或者等边三角形的顶点重合,两个三角形的两条腰分别构成的两个三角形全等或者相似。
初中常见数学模型几何和证明方法
初中常见数学模型几何和证明方法初中数学中的几何和证明方法是学习数学的重要内容之一。
通过几何学习,学生可以掌握基本的几何概念、性质和定理,进而培养逻辑思维、分析问题和解决问题的能力。
而证明方法则是通过推理和论证的方式验证和证明数学命题的正确性。
下面将对初中常见的几何模型和证明方法进行介绍。
一、几何模型1. 点、线、面:几何学的基本要素是点、线和面。
点是没有大小和形状的,用来表示位置;线是由无数个点组成的,它没有宽度和厚度;面是由无数个线组成的,它有宽度和厚度。
2. 直线和线段:直线是由无数个点组成的,它没有起点和终点;线段是直线的一部分,有起点和终点。
3. 角:角是由两条射线共同起点组成的,可以用度数来表示。
4. 三角形:三角形是由三条线段组成的,它有三个顶点、三条边和三个角。
5. 直角三角形:直角三角形是一个角为90度的三角形,其中的两条边相互垂直。
6. 平行四边形:平行四边形是四边形的一种,它的对边是平行的。
7. 圆:圆是由一个固定点到平面上所有到该点距离相等的点组成的图形。
以上是初中常见的几何模型,通过对这些模型的学习,可以帮助学生理解几何概念和性质,为后续的学习打下基础。
二、证明方法1. 直接证明法:直接证明法是通过一系列逻辑推理,从已知条件出发,推导出结论的过程。
这种证明方法通常可以通过图形、等式等形式来进行。
2. 反证法:反证法是通过假设所要证明的命题不成立,然后通过逻辑推理,推导出一个与已知条件矛盾的结论,从而证明原命题的正确性。
3. 数学归纳法:数学归纳法是通过证明当命题对于某个特定的数成立时,对于下一个数也成立,进而可以推导出对于所有数都成立的结论。
这种证明方法常用于证明与自然数相关的命题。
4. 反证法:反证法是通过假设所要证明的命题不成立,然后通过逻辑推理,推导出一个与已知条件矛盾的结论,从而证明原命题的正确性。
5. 用反证法证明:用反证法证明是指通过假设所要证明的命题不成立,然后推导出一个与已知条件矛盾的结论,从而证明原命题的正确性。
初中几何基础模型赏析——初中生必会的48个模型结论
初中几何基础模型赏析——初中生必会的48个模型结论几何学是一门需要大量练习的学科,而熟练掌握几何模型结论是初中生学好几何学的前提。
以下是初中生必会的48个几何模型结论,希望能够帮助同学们更好地掌握几何学知识。
1. 垂线段定理:垂直于一条直线的所有线段长度相等。
2. 同位角定理:同位角相等。
3. 对顶角定理:对顶角相等。
4. 外角定理:一个三角形的外角等于其余两个内角之和。
5. 内角和定理:一个n边形的内角和为(n-2)×180°。
6. 直角三角形勾股定理:直角三角形两直角边上的平方和等于其斜边上的平方。
7. 等腰三角形底角定理:等腰三角形底角相等。
8. 等腰三角形高角定理:等腰三角形高角相等。
9. 等边三角形角定理:等边三角形三个角都是60°。
10. 等角三角形定理:等角三角形三个角相等。
11. 同弧角定理:在同一圆周上的两个弧所对应的圆心角相等。
12. 弧度制与度数制的转换:1弧度=180°/π。
13. 正弦定理:在任意三角形ABC中,有a/sinA=b/sinB=c/sinC。
14. 余弦定理:在任意三角形ABC中,有a=b+c-2bc cosA。
15. 正切定理:在任意三角形ABC中,有tanA=a/b。
16. 相似三角形定理:相似三角形对应角度相等,对应边比例相等。
17. 切线定理:切线与半径垂直。
18. 弦切角定理:弦切角等于弦所对的圆心角的一半。
19. 弧切角定理:弧切角等于弧所对的圆心角的一半。
20. 环形角定理:在同心圆中,对于同一条弦所对的两个角,小弧所对的角比大弧所对的角小一半。
21. 正多边形的内角定理:正n边形的每个内角大小为(n-2)×180°/n。
22. 正多边形的外角定理:正n边形的每个外角大小为360°/n。
23. 中线定理:三角形三条中线交于一点,且此点到三角形三个顶点距离的平均值等于三角形三个顶点到中点距离的平均值。
初中数学九大几何模型
初中数学九大几何模型一、手拉手模型----旋转型全等(1)等边三角形【条件】:△OAB 和△OCD 均为等边三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形【条件】:△OAB 和△OCD 均为等腰直角三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED (3)顶角相等的两任意等腰三角形【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AEDOABC DE图 1OABC D E图 2OABCDE图 1OABCDE图 2OABC DEOABCD E图 1图 2二、模型二:手拉手模型----旋转型相似 (1)一般情况【条件】:CD ∥AB , 将△OCD 旋转至右图的位置【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA (2)特殊情况【条件】:CD ∥AB ,∠AOB=90°将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ; ③===OAOBOC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有2222CD AB B C AD +=+;⑥BD AC 21S △BCD ⨯=三、模型三、对角互补模型 (1)全等型-90°【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 21S S S =+= 证明提示:①作垂直,如图2,证明△CDM ≌△CEN②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD △OCE OC 21S S =-OB CO ACDEOB CDEOA C DAO BCDE图 1A OBCDE M N 图 2A OBCDEF图 3A O BCDEMN 图 4(2)全等型-120°【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=OC ;③2△OCE △OCD △DCE OC 43S S S =+=证明提示:①可参考“全等型-90°”证法一;②如右下图:在OB 上取一点F ,使OF=OC ,证明△OCF 为等边三角形。
初中数学四十八个几何模型
初中数学四十八个几何模型1. 直线与角直线是任意两点之间的最短路径。
角是由两条射线共享一个端点而形成的图形。
直线与角是几何学的基本概念。
线段是直线上两个点之间的部分。
线段具有长度,可以进行比较。
射线是由一个端点和延伸的直线组成的。
射线有起点,但没有终点,可以无限延伸。
4. 平面与平行线平面是一个没有边界的二维图形。
平行线是在同一个平面上,永远不会相交的直线。
三角形是由三条线段连接而成的图形。
三角形的内角和为180度。
6. 等腰三角形等腰三角形是具有两条边长度相等的三角形。
等腰三角形的底角也相等。
7. 直角三角形直角三角形是具有一个内角为90度的三角形。
直角三角形的斜边是其他两条边的平方和的开方。
8. 锐角三角形锐角三角形是所有内角都小于90度的三角形。
9. 钝角三角形钝角三角形是具有一个内角大于90度的三角形。
10. 正方形正方形是四条边相等且四个角都是直角的四边形。
11. 长方形长方形是具有两对相等且每一对内角都是直角的四边形。
12. 平行四边形平行四边形是具有两对平行边的四边形。
梯形是具有一对平行边的四边形。
梯形的非平行边也可以不等长。
菱形是具有四个边相等且对角线相等的四边形。
圆是具有相同半径的所有点的集合。
圆上任意两点与圆心构成的线段称为弦。
16. 圆心角圆心角是以圆心为顶点的角。
弧是圆上两个点之间的部分。
弦是圆上任意两点之间的线段。
切线是与圆只有一个交点的直线。
弧长是圆上一部分的长度。
扇形是以圆心为顶点的角所对应的圆上的区域。
22. 对称与相似对称是指一个图形通过某条线、点或平面进行折叠后与自身完全重合。
相似是指两个图形的形状相同但大小不同。
23. 二维几何体二维几何体包括平面图形。
24. 立体几何体立体几何体是具有实体和体积的图形。
25. 正方体正方体是六个面都是正方形的立体几何体。
26. 长方体长方体是六个面都是矩形的立体几何体。
27. 正圆柱体正圆柱体是圆和矩形结合形成的立体几何体。
初中几何46种模型大全
初中几何46种模型大全篇一:初中几何46种模型大全引言几何是初中数学的重要分支,其知识点涵盖了平面几何、立体几何、向量等多个方面。
在学习几何时,掌握各种几何模型是非常重要的,这些模型可以帮助我们理解和解决几何问题,提高解题能力。
本文将介绍初中几何中的46种常见的模型,包括它们的名称、定义、性质和应用。
正文1. 正方形模型正方形模型是几何中最基本的模型之一,它是一种边长相等的矩形。
正方形模型的定义如下:在一个平面直角坐标系中,任意两条直角边的平方和等于斜边的平方。
正方形模型的性质有:- 正方形的四条边相等;- 正方形的对角线相等;- 正方形的面积等于其边长的平方。
2. 长方形模型长方形模型是有两个相等的长和两个不相等的宽的英雄。
长方形模型的定义如下:在一个平面直角坐标系中,任意两条直角边的平方和小于斜边的平方。
长方形模型的性质有:- 长方形的两条对角线相等;- 长方形的宽比长大,长比宽大;- 长方形的长和宽相等。
3. 平行线模型平行线模型是相互平行的直线。
平行线模型的定义如下:- 两直线平行,当且仅当它们的对应角相等且且它们的方向相同。
平行线模型的性质有:- 平行线之间有且仅有一个交点;- 平行线上的点的横坐标相等;- 平行线的方向相同。
4. 菱形模型菱形模型是具有四个相等的直角边的矩形。
菱形模型的定义如下:在一个平面直角坐标系中,任意两条直角边的平方和等于斜边的平方,且任意两条边的长度小于第三条边的长度。
菱形模型的性质有:- 菱形的四条边相等;- 菱形的对角线相等;- 菱形的面积等于其四条边长度的平方和。
5. 等腰三角形模型等腰三角形模型是有一个相等的腰部的两个三角形。
等腰三角形模型的定义如下:- 在一个平面直角坐标系中,任意两条直角边的平方和等于斜边的平方。
等腰三角形模型的性质有:- 等腰三角形的两条直角边相等;- 等腰三角形的底角相等;- 等腰三角形的顶角平分线相等。
6. 等边三角形模型等边三角形模型是具有三个相等的边长的三角形。
(完整版)初中数学九大几何模型
初中数学九大几何模型OD ECABAED DOECBABOC ECAEDD图2图 2、手拉手模型 - 旋转型全等D E③OE 平分∠ AED图 2图 1 OABD OAO ②∠ AEB=∠AOB ; 且∠ COD=∠AOB1)等边三角形3)顶角相等的两任意等腰三角形 2)等腰直角三角形图 1图 1C结论】:①△ OAC ≌△ OBD ;C条件】:△ OAB 和△ OCD 均为等边三角形条件】:△ OAB 和△ OCD 均为等腰直角三角形条件】:△ OAB 和△ OCD 均为等腰三角形 结论】:①△ OAC ≌△ OBD ;②∠ AEB=60°;③ OE 平分∠ 结论】:①△ OAC ≌△ OBD ;②∠ AEB=90°;③ OE 平分∠、模型二:手拉手模型 -- 旋转型相似(1)一般情况 【条件】:CD ∥AB , 将△ OCD 旋转至右图的位置 O OD EA A结论】:①右图中△ OCD ∽△ OAB →→→△ OAC ∽△ OBD ;②延长 AC 交 BD 于点 E ,必有∠ BEC=∠ BOA2)特殊情况 条件】:CD ∥ AB ,∠ AOB=90°将△ OCD 旋转至右图的位置 A 结论】:①右图中△ OCD ∽△ OAB →→→△ OAC ∽△ OBD ; ②延长 AC 交 BD 于点 E ,必有∠ BEC=∠ BOA ; ③ A BD C O O C D O O A B tan ∠OCD ;④BD ⊥AC ; ⑤连接 AD 、BC ,必有 AD 2 BC 2 AB 2三、模型三、对角互补模型1)全等型 -90 ° 条件】:①∠ AOB=∠ DCE=90°;② OC 平分∠ AOB结论】:① CD=CE ;② OD+OE= 2 OC ;③ S △DCE CD ;⑥S△BCD证明提示: ①作垂直,如图 2,证明△ CDM ≌△ CEN ②过点 C 作 CF ⊥ OC , 如图 3,证明△ ODC ≌△ FEC ※当∠ DCE 的一边交 AO 的延长线于 D 时(如图 4): S△OCDS以上三个结论:① CD=CE ;② OE-OD= 2 OC ; ③ S △ OCE S △ OCD2)全等型 -120 °条件】:①∠ AOB=2∠ DCE=120°;② OC 平分∠ AOB32 结论】:① CD=CE ;② OD+OE=O ;C ③ S △DCES △OCDS △OCEOC 2 4证明提示:①可参考“全等型 -90 °”证法一;②如右下图:在 OB 上取一点 F ,使 OF=OC ,证明△ OCF 为等边三角形。
初中数学九大几何模型
初中数学九大几何模型一、手拉手模型----旋转型全等(1)等边三角形【条件】:△OAB 和△OCD 均为等边三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形【条件】:△OAB 和△OCD 均为等腰直角三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED (3)顶角相等的两任意等腰三角形【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AEDOABC DE图 1OABC D E图 2OABCDE图 1OACDE图 2OABC DEOABCD E图 1图 2二、模型二:手拉手模型----旋转型相似 (1)一般情况【条件】:CD ∥AB , 将△OCD 旋转至右图的位置【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA (2)特殊情况【条件】:CD ∥AB ,∠AOB=90°将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ; ③===OAOBOC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有2222CD AB B C AD +=+;⑥BD AC 21S △BCD ⨯=三、模型三、对角互补模型 (1)全等型-90°【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 21S S S =+= 证明提示:①作垂直,如图2,证明△CDM ≌△CEN②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD △OCE OC 21S S =-OB COACDEOB CDEOA C DAO BCDE图 1A OBCDE M N 图 2A OBCDEF图 3A O BCDEMN 图 4(2)全等型-120°【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=OC ;③2△OCE △OCD △DCE OC 43S S S =+=证明提示:①可参考“全等型-90°”证法一;②如右下图:在OB 上取一点F ,使OF=OC ,证明△OCF 为等边三角形。
中考数学题中的几何模型
有关“中考数学题”中的几何模型
有关“中考数学题”中的几何模型如下:
1.直角三角形模型:直角三角形是初中数学中常见的几何模型之一,它涉及到勾股定
理、直角三角形的性质等知识点。
在中考数学题中,直角三角形模型通常会出现在与三角形、四边形、圆等相关的题目中。
2.相似三角形模型:相似三角形是初中数学中另一个重要的几何模型,它涉及到相似三
角形的性质、相似三角形的判定条件等知识点。
在中考数学题中,相似三角形模型通常会出现在与三角形、四边形、圆等相关的题目中。
3.梯形模型:梯形是初中数学中常见的几何图形之一,它涉及到梯形的性质、梯形的面
积计算等知识点。
在中考数学题中,梯形模型通常会出现在与四边形、圆等相关的题目中。
4.圆与扇形模型:圆与扇形是初中数学中常见的几何图形之一,它涉及到圆的性质、扇
形的面积计算等知识点。
在中考数学题中,圆与扇形模型通常会出现在与圆、扇形、三角形等相关的题目中。
初中常见几何模型结论
初中常见几何模型结论全文共四篇示例,供读者参考第一篇示例:初中阶段学习几何模型是数学学习的一个重要组成部分,通过学习几何模型可以帮助学生理解几何概念,培养其逻辑思维和空间想象能力。
在初中课本中,涉及到的常见几何模型有三角形、四边形、圆等,学生需要掌握这些模型的性质和结论。
本文将从几何模型的性质和结论入手,详细介绍初中常见几何模型的相关知识。
一、三角形三角形是几何学中的基本图形之一,包括等腰三角形、等边三角形、直角三角形等。
在初中阶段,学生主要需要掌握三角形的性质和定理,如三角形内角和为180度、三角形外角和等于其对应内角等。
还要掌握利用角平分线、垂直平分线等相关知识解决三角形问题。
常见的三角形结论包括:1.等腰三角形的底角相等,等边三角形的三个角都相等。
2.三角形内角和为180度,即三角形的三条边可以围成一个封闭的图形。
3.等腰直角三角形的斜边等于底边的平方和。
二、四边形四边形是指有四条边的多边形,包括矩形、正方形、菱形等。
在初中阶段,学生需要掌握四边形的性质和定理,如内角和、对角线交点的性质、边的性质等。
学生还需要学会利用平行线、垂直线等概念解决四边形问题。
1.矩形的对角线相等且互相垂直。
4.平行四边形的对角线相等、同一条对角线上的内角互补。
三、圆圆是一个重要的几何模型,具有许多独特的性质和特点。
在初中阶段,学生需要掌握圆的周长、面积计算方法,以及圆的心、弦、弧等概念。
学生还需要掌握切线和切于圆的定理,并能够运用这些知识解决有关圆的问题。
1.圆的周长等于其直径乘以π,面积等于半径的平方乘以π。
2.圆的直径、弧、弦之间的关系满足弧长公式、角度公式等。
3.相交圆中的两条切线互相垂直。
4.相交圆的切线与切点处的切线垂直。
总结:通过学习初中常见几何模型的相关知识,可以帮助学生建立对几何概念的深刻理解,培养其解决实际问题的能力和创造力。
在学习几何模型的过程中,学生需要不断巩固掌握相关的性质和定理,灵活运用这些知识解决各种几何问题。
(完整版)初中数学九大几何模型
初中数学九大几何模型一、手拉手模型----旋转型全等(1)等边三角形【条件】:△OAB 和△OCD 均为等边三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形【条件】:△OAB 和△OCD 均为等腰直角三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED (3)顶角相等的两任意等腰三角形【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AEDOABC DE图 1OABC D E图 2OABCDE图 1OABCDE图 2OABC DEOABCD E图 1图 2二、模型二:手拉手模型----旋转型相似 (1)一般情况【条件】:CD ∥AB , 将△OCD 旋转至右图的位置【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA (2)特殊情况【条件】:CD ∥AB ,∠AOB=90°将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ; ③===OAOBOC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有2222CD AB B C AD +=+;⑥BD AC 21S △BCD ⨯=三、模型三、对角互补模型 (1)全等型-90°【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 21S S S =+= 证明提示:①作垂直,如图2,证明△CDM ≌△CEN②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD △OCE OC 21S S =-OB CO ACDEOB CDEOA C DAO BCDE图 1A OBCDE M N 图 2A OBCDEF图 3A O BCDEMN 图 4(2)全等型-120°【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=OC ;③2△OCE △OCD △DCE OC 43S S S =+=证明提示:①可参考“全等型-90°”证法一;②如右下图:在OB 上取一点F ,使OF=OC ,证明△OCF 为等边三角形。
初中数学九大几何模型
初中数学九大几何模型 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】初中数学九大几何模型一、手拉手模型----旋转型全等 (1)等边三角形【条件】:△OAB 和△OCD均为等边三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形【条件】:△OAB 和△OCD 均为等腰直角三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED (3)顶角相等的两任意等腰三角形 【条件】:△OAB 和△OCD 均为等腰三角形;且∠COD=∠AOB【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB; ③OE 平分∠AED二、模型二:手拉手模型----旋转型相似 (1)一般情况【条件】:CD ∥AB , 将△OCD 旋转至右图的位置【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA (2)特殊情况【条件】:CD ∥AB ,∠AOB=90°将△OCD 旋转至右图的位置【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ;O ABCDE 图 1OABC D E图 2OABCDE 图 1O ABCDE图 2OABCDEOCD E图 1图 2OAB CDO BCDEO BCDEOC D③===OAOBOC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有2222CD AB B C AD +=+;⑥BD AC 21S △BCD ⨯= 三、模型三、对角互补模型 (1)全等型-90°【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 21S S S =+= 证明提示:①作垂直,如图2,证明△CDM ≌△CEN②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC※当∠DCE 的一边交AO 的延长线于D 时(如图4):以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD△OCE OC 21S S =-(2)全等型-120°【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=OC ;③2△OCE △OCD △DCE OC 43S S S =+=证明提示:①可参考“全等型-90°”证法一;②如右下图:在OB 上取一点F ,使OF=OC ,证明△OCF 为等边三角形。
初中数学中考常见几何模型
初中数学中考常见几何模型一、手拉手模型----旋转型全等 (1)等边三角形【条件】:△OAB 和△OCD 均为等边三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形【条件】:△OAB 和△OCD 均为等腰直角三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED (3)顶角相等的两任意等腰三角形【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ;③OE 平分∠AED二、模型二:手拉手模型----旋转型相似 (1)一般情况【条件】:CD ∥AB ,将△OCD 旋转至右图的位置OC DE图 1OABCD E图 2OABC DE图 1OACDE图 2OABC DEOCD E图 1图 2OB COCDE【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA (2)特殊情况【条件】:CD ∥AB ,∠AOB=90° 将△OCD 旋转至右图的位置【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ; ③===OAOBOC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有2222CD AB B C AD +=+;⑥BD AC 21S △BCD ⨯=三、模型三、对角互补模型 (1)全等型-90°【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 21S S S =+= 证明提示:①作垂直,如图2,证明△CDM ≌△CEN②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD △OCE OC 21S S =-(2)全等型-120°【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=OC ;③2△OCE △OCD △DCE OC 43S S S =+=证明提示:①可参考“全等型-90°”证法一;②如右下图:在OB 上取一点F ,使OF=OC ,证明△OCF 为等边三角形。
初中数学几何12个解题模型
初中数学几何12个解题模型初中数学几何是一门非常重要的学科,对于提高学生的数学思维能力和解决实际问题的能力具有重要的意义。
在初中数学几何中,我们可以用一些解题模型来帮助我们更好地解决问题。
下面,我们将介绍12个初中数学几何的解题模型。
一、直角三角形的性质。
直角三角形是数学几何中经常使用的一个基本图形,掌握直角三角形的性质对于解决许多几何问题非常有帮助。
二、相似三角形的性质。
相似三角形也是数学几何中应用广泛的一个基本图形,掌握相似三角形的性质可以帮助我们解决许多相似三角形问题。
三、勾股定理。
勾股定理是直角三角形中一个非常重要的定理,它可以用来求解许多三角形的边长和面积。
四、正弦定理。
正弦定理是三角形中另一个非常重要的定理,用来解决三角形中的边和角的关系。
五、余弦定理。
余弦定理也是三角形中一个重要的定理,适合于求解三角形中的边和角的关系。
六、面积公式的运用。
了解各种基本几何图形的面积公式可以方便我们计算这些图形的面积。
七、平移、旋转和翻转。
平移、旋转和翻转是几何中常见的变换方式,可以用来解决各种几何问题。
八、梯形的性质。
梯形是常见的几何图形之一,掌握梯形的性质对于解决许多梯形问题非常有帮助。
九、四边形的性质。
四边形也是常见的几何图形之一,了解各种四边形的性质可以帮助我们更好地解决四边形问题。
十、圆的性质。
圆是几何中重要的一个基本图形,了解圆的性质可以帮助我们更好地解决圆的各种问题。
十一、相交线和平行线的性质。
相交线和平行线是几何中重要的一个概念,掌握这些线的性质可以帮助我们更好地解决几何问题。
十二、三角形的三线定理。
三角形的三线定理是三角形中常用的定理之一,可以用来解决三角形的各种问题。
这些解题模型是初中数学几何中非常重要的一部分,我们在学习数学几何时,需要不断地练习,不断地巩固这些知识点,才能更好地应对各种几何问题。
初中数学八大几何模型归纳
初中数学几何模型总结归纳1.中点模型【模型1】倍长1、倍长中线;2、倍长类中线;3、中点遇平行线延长相交ABCD E ABC DEFEDCBA【模型2】遇多个中点,构造中位线1、直接连接中点;2、连对角线取中点再相连GABCDEFABCD E【例1】在菱形ABCD 和正三角形BEF 中,∠ABC =60°,G 是DF 的中点,连接GC 、GE . (1)如图1,当点E 在BC 边上时,若AB =10,BF =4,求GE 的长;(2)如图2,当点F 在AB 的延长线上时,线段GE 、GC 有怎样的数量和位置关系,写出你的猜想,并给予证明;(3)如图3,当点F 在CB 的延长线上时,(2)问中的关系还成立吗?写出你的猜想,并给予证明.图3图2图1ACDEFGDEFGCDEGABBFCBA【解答】(1)延长EG 交CD 于点H 易证明△CHG ≌△CEG ,则GE =HBEGCFAD(2)延长CG 交AB 于点I ,易证明△BCE ≌△FIE ,则△CEI 是等边三角形,GE =3GC 错误!未找到引用源。
,且GE ⊥GCF(3)EJ【例2】如图,在菱形ABCD 中,点E 、F 分别是BC 、CD 上一点,连接DE 、EF ,且AE =AF ,∠DAE =∠BAF .(1)求证:CE =CF ; (2)若∠ABC =120°,点G 是线段AF 的中点,连接DG 、EG ,求证:DG ⊥EG .GFE DC BAE H GF EDCBA【解答】(1)证明△ABE ≌△ADF 即可;(2)延长DG 与AB 相交于点H ,连接HE ,证明△HBE ≌△EFD 即可【例3】如图,在凹四边形ABCD 中,AB =CD ,E 、F 分别为BC 、AD 的中点,BA 交EF 延长线于G 点,CD 交EF 于H 点,求证:∠BGE =∠CHE . 【解答】取BD 中点可证,如图所示:JA BCDE F GH2.角平分线模型【模型1】构造轴对称【模型2】角平分线遇平行构等腰三角形【例4】如图,平行四边形ABCD 中,AE 平分∠BAD 交BC 边于E ,EF ⊥AE 交边CD 于F 点,交AD 边于H ,延长BA 到G 点,使AG =CF ,连接GF .若BC =7,DF =3,EH =3AE ,则GF 的长为_______.HGFEDCBA【解答】延长FE 、AB 交于点I ,易得CE =CF ,BA =BE ,设CE =x ,则BA =CD =3+x ,BE =7-x , 3+x =7-x ,x =2,AB =BE =5,AE =,作AJ ⊥BC ,连接AC ,求得GF =AC =3JIAB CDEFGH3.手拉手模型【条件】OA =OB ,OC =OD ,∠AOB =∠COD【结论】△OAC ≌△OBD ,∠AEB =∠AOB =∠COD (即都是旋转角);OE 平分∠AEDDC EBAOOABEC D 导角核心图形:八字形CBAO【例5】(2014重庆市A 卷)如图,正方形ABCD 的边长为6,点O 是对角线AC 、BD 的交点,点E 在CD 上,且2DE CE ,连接BE .过点C 作CF ⊥BE ,垂足是F ,连接OF ,则OF 的长为________.FABCOEDDE CBA【例6】如图,△ABC 中,∠BAC =90°,AB =AC ,AD ⊥BC 于点D ,点E 在AC 边上,连接BE ,AG ⊥BE于F ,交BC 于点G ,求∠DFG . GFE DCBAABC【答案】45°【例7】(2014重庆B 卷)如图,在边长为ABCD 中,E 是AB 边上一点,G 是AD 延长线一点,BE =DG ,连接EG ,CF ⊥EG 交EG 于点H ,交AD 于点F ,连接CE 、BH .若BH =8,则FG=_____________.HGDE CBAFABE G【答案】4.邻边相等对角互补模型【模型1】【条件】如图,四边形ABCD 中,AB =AD ,∠BAD +∠BCD =∠ABC +∠ADC =180° 【结论】AC 平分∠BCDEB【模型2】【条件】如图,四边形ABCD 中,AB =AD ,∠BAD =∠BCD =90° 【结论】① ∠ACB =∠ACD =45°; ② BC +CDABCECB【例8】如图,矩形ABCD 中,AB =6,AD =5,G 为CD 中点,DE =DG ,FG ⊥BE 于F ,则DF 为_____.F ABCEDGG DE【例9】如图,正方形ABCD 的边长为3,延长CB 至点M ,使BM =1,连接AM ,过点B 作BN ⊥AM ,垂足为N ,O 是对角线AC 、BD 的交点,连结ON ,则ON 的长为__________. OMN DCBA【例10】如图,正方形ABCD 的面积为64,△BCE 是等边三角形,F 是CE 的中点,AE 、BF 交于点G ,则DG 的长为___________. GFEABCDEC【答案】45.半角模型【模型1】【条件】如图,四边形ABCD 中,AB =AD ,∠BAD +∠BCD =∠ABC +∠ADC =180°,∠EAF =12∠BAD , 点E 在直线BC 上,点F 在直线CD 上 【结论】BE 、DF 、EF 满足截长补短关系FEDCBA【模型2】【条件】如图,在正方形ABCD 中,已知E 、F 分别是边BC 、CD 上的点,且满足∠EAF =45°,AE 、AF 分别与对角线BD 交于点M 、N . 【结论】①BE +DF =EF ; ② ABE ADF AEF S S S ∆∆∆+=;③AH =AB ;④2ECF C AB ∆=;⑤BM 2+DN 2=MN 2;⑥△ANM ∽△DNF ∽△BEM ∽△AEF ∽△BNA ∽△DAM (由AO :AH =AO :AB =1:可得到△ANM 和△AEF 相似比为1)⑦AMN MNFE S S ∆=四边形;⑧△AOM ∽△ADF ;△AON ∽△ABE ;⑨△AEN 为等腰直角三角形,∠AEN =45°,△AFM 为等腰直角三角形,∠AFM =45°;⑩A 、M 、F 、D 四点共圆,A 、B 、E 、N 四点共圆,M 、N 、F 、C 、E 五点共圆.H NM FEDCBA【模型2变形】【条件】在正方形ABCD 中,已知E 、F 分别是CB 、DC 延长线上的点,且满足∠EAF =45° 【结论】BE +EF =DFFEDCB A【模型2变形】【条件】在正方形ABCD 中,已知E 、F 分别是BC 、CD 延长线上的点,且满足∠EAF =45° 【结论】DF +EF =BEAB C DEF【例11】如图,△ABC 和△DEF 是两个全等的等腰直角三角形,∠BAC =∠EDF =90°,△DEF 的顶点E与△ABC 的斜边BC 的中点重合,将△DEF 绕点E 旋转,旋转过程中,线段DE 与线段AB 相交于点P ,射线EF 与线段AB 相交于点G ,与射线CA 相交于点Q .若AQ =12,BP =3,则PG =__________.Q PGD FECBA【解答】连接AE ,题目中有一线三等角模型和半角模型设AC =x ,由△BPC ∽△CEQ 得BP CE =BE CQ , 3/(22x )=22x /(x +12),解得x =12 设PG =y ,由AG 2+BP 2=PG 2得32+(12-3-x )2=x 2,解得x =5【例12】如图,在菱形ABCD 中,AB =BD ,点E 、F 在AB 、AD 上,且AE =DF .连接BF 与DE 交于点G ,连接CG 与BD 交于点H ,若CG =1,则S 四边形BCDQ =__________.HGFED CB A【解答】346.一线三等角模型【条件】∠EDF =∠B =∠C ,且DE =DF 【结论】△BDE ≌△CFDFEDCBA【例13】如图,正方形ABCD 中,点E 、F 、G 分别为AB 、BC 、CD 边上的点,EB =3,GC =4,连接EF 、FG 、GE 恰好构成一个等边三角形,则正方形的边为__________.GA B CDEF【解答】如图,构造一线三等角模型,△EFH ≌△FGI 则BC =BF +CF =HF -BH +FI -CI =GI -BH +HE -CI =733IH F ED C B A G7.弦图模型【条件】正方形内或外互相垂直的四条线段 【结论】新构成了同心的正方形LK JIHGFECDB AHG FEDCBA【例14】如图,点E 为正方形ABCD 边AB 上一点,点F 在DE 的延长线上,AF =AB ,AC 与FD 交于点G ,∠F AB 的平分线交FG 于点H ,过点D 作HA 的垂线交HA 的延长线于点I .若AH =3AI ,FH =22,则DG =__________.I H AGFEDCB【解答】1742【例15】如图,△ABC 中,∠BAC =90°,AB =AC ,AD ⊥BC 于点D ,点E 是AC 中点,连接BE ,作AG ⊥BE 于F ,交BC 于点G ,连接EG ,求证:AG +EG =BE .FE CGDBABC【解答】过点C 作CH ⊥AC 交AG 的延长线于点H ,易证8.最短路径模型【两点之间线段最短】 1、将军饮马Q2、费马点【垂线段最短】【两边之差小于第三边】【例16】如图,矩形ABCD 是一个长为1000米,宽为600米的货场,A 、D 是入口,现拟在货场内建一个收费站P ,在铁路线BC 段上建一个发货站台H ,设铺设公路AP 、DP 以及PH 之长度和为l ,求l 的最小值.【解答】3500600 ,点线为最短.【例17】如图,E 、F 是正方形ABCD 的边AD 上的两个动点,满足AE =DF,连接CF 交BD 于G ,连接BE 交AG 于H ,若正方形的边长为2,则线段DH 长度的最小值为______________________.【解答】如图,取AB 中点P ,连接PH 、PD ,易证PH ≥PD -PH 即DH ≥15-.【例18】如图所示,在矩形ABCD 中,AB =4,AD =24,E 是线段AB 的中点,F 是线段BC 上的动点,△BEF 沿直线EF 翻折到△EF B ',连接B D ',B D '最短为________________.【解答】4【例19】如图1,□ABCD 中,AE ⊥BC 于E ,AE =AD ,EG ⊥AB 于G ,延长GE 、DC 交于点F ,连接AF .(1)若BE =2EC ,AB =13,求AD 的长;(2)求证:EG =BG +FC ;(3)如图2,若AF =25,EF =2,点M 是线段AG 上一动点,连接ME ,将△GME 沿ME 翻折到△ME G ',连接G D ',试求当G D '取得最小值时GM 的长.图1 图2 备用图【解答】(1)3(2)如图所示(3)当DG ′最小时D 、E 、G '三点共线解得43173-=+'=MN N G GMEH【练习1】如图,以正方形的边AB为斜边在正方形内作直角三角形ABE,∠AEB=90°,AC、BD交于O.已知AE、BE的长分别为3、5,求三角形OBE的面积.【解答】25【练习2】问题1:如图1,在等腰梯形ABCD 中,AD∥BC,AB=BC=CD,点M,N分别在AD,CD上,∠MBN21∠ABC,试探究线段MN,AM,CN有怎样的数量关系?请直接写出你的猜想;问题2:如图2,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M,N分别在DA,CD延长线,若∠MBN=12∠ABC仍然成立,请你进一步探究线段MN,AM,CN又有怎么样的关量关系?写出你的猜想,并给予证明。
初中数学几何模型大全及解析
初中数学几何模型大全及解析几何是数学中的重要分支,它研究的是形状、大小、结构和空间关系等内容。
初中数学中的几何部分主要包括平面几何和立体几何两个方面。
为了更好地理解和应用几何知识,我们可以通过各种模型来帮助我们进行学习和解析。
本文将介绍一些常见的初中数学几何模型及其解析,帮助学生更加直观地理解几何概念。
一、平面几何模型1. 平面图形模型平面图形模型可以通过纸片、卡纸或者其他材料制作而成。
例如,矩形模型可以通过两个相等的矩形纸片叠放而成,学生可以直观地观察到矩形的性质,如长宽相等、对角线相等、相邻边互相垂直等。
类似地,三角形、正方形、梯形等不同的图形也可以通过相应的材料来制作模型,帮助学生更好地理解其性质和特点。
2. 折纸模型折纸模型是平面几何中常用的模型之一。
学生可以通过纸张的折叠来制作出不同的图形。
例如,通过将一个正方形纸张对折,可以制作出一个正方形、一个矩形或者一个等边三角形。
通过折纸模型的制作和观察,学生可以更好地理解各种图形的性质,并且锻炼了空间想象能力和手工操作能力。
3. 各类角度模型角度是几何中的重要概念。
为了更好地理解和判断各类角度,可以使用角度模型进行学习和实践。
例如,通过两条相交的直线和一把量角器或者两个相等的直角三角形,可以制作出不同的角度模型,比如直角、锐角和钝角。
通过观察和实践,学生可以深入了解角度的概念和性质,并且能够通过角度模型进行角度测量和判断。
二、立体几何模型1. 空间几何模型立体几何模型可以帮助学生更好地理解和判断空间关系。
例如,通过连接适量的珠子和棍子,可以制作出不同的空间模型,如正方体、长方体、圆柱体等。
这样的模型能够帮助学生深入理解不同立体图形的性质,如面数、棱数和顶点数,并且能够帮助学生进行体积和表面积的计算。
2. 立体切割模型立体切割模型可以将复杂的立体图形简化为多个平面图形的组合。
例如,通过将一个长方体切割成多个长方形和正方形,可以帮助学生更好地理解长方体的各种性质和关系。
初中数学十大模型
初中数学中考总复习几何十大模型1、模型一:“12345”模型
2、模型二:“半角”模型
对称半角模型
旋转半角模型
3、模型三:“角平分线”模型
角平分线定理角平分线+垂线=等腰三角
形
角分线+平行线=等腰三角必呈现
角平分线+垂线=等腰三角形
4、模型四:“手拉手”模型
条件:1、两个等腰三角形;2、顶角相等;3、顶点重合。
结论:1、手相等;2、三角形全等;3、手的夹角相等;
4、顶点连手的交点得平分。
5、模型五:“将军饮马”模型
6、模型六:“中点”模型
【模型1】倍长
1、倍长中线;
2、倍长类中线;
3、中点遇平行延长相交
【模型2】遇多个中点,构造中位线
1.直接连接中点;
2.连对角线取中点再相连
7、模型七:“邻边相等的对角互补”模型
【模型1】
【条件】如图,四边形ABCD中,AB=AD,∠BAD+∠BCD=∠ABC+∠ADC=180°【结论】AC平分∠BCD
【模型2】
【条件】如图,四边形ABCD中,AB=AD,∠BAD=∠BCD=90°
【结论】①∠ACB=∠ACD=45°②BC+CD=V2AC
8、模型八:“一线三角”模型
【条件】∠EDF=∠B=∠C,且DE=DF
【结论】△BDE=△CFD
9、模型九:“弦图”模型
【条件】正方形内或外互相垂直的四条线段
【结论】新构成了同心的正方形
10、模型十:费马点。
初中几何模型及常见结论的总结归纳
初中几何模型及常见结论的总结归纳一、引言在初中数学学习中,几何是一个重要的部分,它不仅涉及到图形的性质和特点,还涉及到一些基本的几何模型和常见结论。
掌握这些模型和结论,有助于更好地理解和应用几何知识,提高解题能力和数学素养。
二、初中几何模型总结1. 全等三角形模型:两个三角形全等,则它们的边相等或角相等。
2. 相似三角形模型:两个三角形相似,则它们的对应边成比例。
3. 直角三角形模型:直角三角形的两个锐角互余。
4. 平行线模型:两直线平行,同位角相等,内错角相等,同旁内角互补。
5. 三角形内角和定理:三角形内角和为180度。
6. 多边形内角和定理:n边形内角和等于(n-2) × 180度。
7. 三角形重心性质模型:三角形的重心是三边中线的交点,重心到顶点的距离是它到对边中点距离的2倍。
三、常见结论归纳1. 等腰三角形的特点:等腰三角形两底角相等,顶角平分线垂直平分底边。
2. 直角三角形的特点:直角三角形斜边上的中线等于斜边的一半;勾股定理的逆定理适用;两个锐角互余。
3. 平行线的判定和性质:平行线的判定主要是依据平行线的定义和两直线夹角相等;平行线的性质主要有两直线平行,同位角相等;三角形内角和定理的推论等。
4. 辅助线常见位置和方法:在添加辅助线时,常常用到截长补短、垂直平分线、对顶角相等、平行线的性质等。
四、应用举例1. 利用全等三角形模型解决实际问题:例如测量旗杆高度或河流宽度等问题,需要用到全等三角形的性质。
2. 利用相似三角形模型解决实际问题:例如测量河对岸的建筑物高度或篮球架高度等问题,需要用到相似三角形的性质。
3. 利用平行线模型解决实际问题:例如求两直线的距离问题,需要用到平行线的判定和性质。
4. 利用勾股定理解决实际问题:例如求斜坡的长度等问题,需要用到勾股定理的性质。
五、总结通过总结归纳初中几何模型和常见结论,可以更好地理解和应用几何知识,提高解题能力和数学素养。
在应用时,需要根据具体情况选择合适的几何模型和结论,并结合辅助线等方法解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八上几何模型归纳“手拉手”模型O【例1(1)如图 1,若α = 90︒ ,则 A C 和 B D 的数量关系是 ,AC 和 B D 的位置关系是; (2)如图2,若α = 60︒ ,AC 和 B D 相交于点 P ,求证:OP 平分 ∠BPC . (3)如图 3 所示,则 A C 与 B D 的数量关系为 ,试用α 表示直线 AC 和B D 所形成的夹 角,则夹角为.(不写证明)AAADPCDPDCBCO B O B图1图2图31 / 8A ECOBM D“帽子”模型常见辅助线做法: ⑴作平行线构造全等 ⑵作垂直构造全等已知 AB =AC ,BE =CF ,EF 交 BC 于 D ,则 DE =DF .已知 A B =AC ,BE =CF ,EF 交 B C 于 D ,1EH ⊥BC 于 H ,则 D H = BC2AAEEBDCBH DCFFy【例2】(2013 年武汉二中,2015 年 81 中月考)如图 1,已知 A (0, a ),B(b,且 a 、 b 满足 a 2 - 4a + 20 = 8b - b 2 . A(1) 求 A 、B 两点的坐标; O By (2) 如图 2,连接 A B ,若 D (0, -6) ,DE ⊥AB 于点 E ,B 、C关于 y 轴对称,M 是线段 DE上的一点,且 DM =AB , 连接 A M ,试判断线段 A C 与 A M 之间的位置和数量关系, 并证明你的结论;x(3)如图 3,在(2)的条件下,若 N 是线段 D M 上的一个动点,P 是 M A 延长线上的一点,且 D N =AP , 连接 P N 交 y 轴于点 Q ,过点 N 作 N H ⊥ y 轴于点 H ,当 N 点在线段 D M 上运动时,△MQH 的面积 是否为定值?若是,请求出这个值;若不是,请说明理由.y帽子模型PA QO MH N Dx夹半角模型的证明核心是“图形的旋转”,以旋转造全等,已知则构造△AEB≌△AFC,进而可以证明△ ADE≌△ADFAB=AC,∠BAC=2∠DAF,EByD xAx+y yFC【例3】(2015 年·二十五中期中)如图,已知A(a,0)、B(0,b),且a、b 满足(a-2)2+|2b-4|=0(1)如图1,求△AOB 的面积(2)如图2,点C在线段A B 上(不与A、B 重合)移动,AB⊥BD,且∠COD=45°,猜想线段A C、BD、CD 之间的数量关系并证明你的结论.(3)如图3,若P为x轴上异于原点O和点A的一个动点,连接P B,将线段P B 绕点P顺时针旋转90°至P E,直线A E 交y轴于点Q,当P点在x轴上移动时,线段B E 和线段B Q 中,请判断哪一条线段长为定值,并求出该定值3 / 8夹半角模型中点垂线模型已知C B=CA,∠ACB=90°,D 是C A 中点,CF⊥BD 于F,交A B 于E,则①∠CDB=∠ADE②DE+CE=BDCDFB E A已知C B=CA,∠ACB=90°,CG=AD,CF⊥BG 于F,交A B 于E,则①∠CGB=∠ADE②DE+CE=BGCGFDB E A【例4】如图,在△ABC 中,∠ABC = 90︒,A B =BC ,A(-4, 0) ,B(0, 2) .(1)如图1,求点C的坐标.(2)如图2,BC 交x 轴于点M,AC 交y 轴于点N,且B M =CM ,求证:∠AMB =∠CMN .(3)如图3,若点A不动,点B在y轴的正半轴上运动时,分别以O B、AB 为直角边在第一、第二象限作等腰直角三角形△BOF 与等腰直角三角形△ABE ,连接E F 交y轴于P点,问当点B在y轴正半轴上移动时,BP 的长度是否变化?若变化说理由,若不变求其值.2已知 AB =AC ,AB ⊥AC ,BE ⊥EF ,CF ⊥EF ,则△ AEB ≌△CFA . 个顶点的坐标,可用三垂直模型求出第三个顶点的坐标.已知等腰直角三角形任意两BECBFCEAFA【例5】在平面直角坐标系中,A (0, 4) ,B 为 x 轴正半轴上一动点,AE 、BF 平分 ∠OAB 、 ∠OBA ,AE 、BF 交于点 P .(1)求 ∠BP A 的度数;(2)过 P 作 P Q ⊥ BF 交x 轴于点 M 交 y 轴于点 Q ,求证: ∠OFM = 1; ∠OAB 2(3)若 B 运动到 (4, 0) ,点 T 为二象限内一点 (2 - 2 , 2)且 T A ⊥ TB ,过 O 作 O S ⊥ BT 于 S ,求 S 点坐标.5 / 8三垂直模型y AF POQ BM ExyAT SBOx请说明理由. DCQPB题型六脚拉脚模型【例6】(2015 部分学校月考)如图,△ACB 为等腰三角形,∠ABC =90°,点 P 在线段 B C 上(不与 B ,C 重合),以 AP 为腰长作等腰直角△P AQ ,QE ⊥AB 与 E (1)求证:△P AB ≌△AQE(2)连 C Q 交 A B 于 M ,若 P C =2PB ,求 PC BMA的值.E CMQP B(3)如图 2,过 Q 作 Q F ⊥AQ 交 A B 的延长线于点 F ,过 P 点作 D P ⊥AP 交 A C 于 D ,连 D F ,当点 P 在 线段B C 上运动时(不与 B ,C,式子 QF - PD 的值会发生变化吗?若不变,求出该值;若变化, FDAF【例7】(2015 年·粮道街中学期中)如图,在平面直角坐标系中,A (0,a )、B (b ,0)、C (c ,0),且a - 2+b - +2 (+c2) = 0 2 (1) 直接写出A 、B 、C 各点的坐标:A 、B、C(2) 过B 作直线 M N ⊥AB ,P 为线段 OC 上的一动点,AP ⊥PH 交直线 M N 于点 H ,证明:P A =PH (3) 在(1)的条件下,若在点 A 处有一个等腰 R t △APQ 绕点 A 旋转,且 AP =PQ ,∠APQ =90°,连接 BQ , 点 G 为 B Q 的中点,试猜想线段 O G 与线段 P G 的数量关系与位置关系,并证明你的结论已知 A E =BE ,AE ⊥BE ,AF =CF ,AF ⊥CF ,O是BC 中点,则OE =OF ,OE ⊥OF .BEAOFC已知△ABE 和△ 则 A H ⊥EF .ACF 均为直角三角形,AE =BE ,AE ⊥BE ,AF =CF ,AF ⊥CF ,若 B D=CD ,FH EA AFHDCBDCBE【例8】在直角坐标系中,A 、B 、C 、D 四点在坐标轴上,如图所示,满足 AO = BO , C O = DO .(1)如图,若 ∠OAD = 30︒ , ∠OBC 的度数;(2)点M 、N 分别是 B C 、AD 的中点,连 O M 、ON ,判断 O M 、ON 的关系; (3)在(2)的条件下,连 A M 、BN ,取 B N 的中点 P ,连 O P .当点 C 、点 D 分别以相同的速度沿着 y∠MAO + ∠POA轴、x 轴向原点O 运动过程中,求证: ∠MON为定值.7 / 8y AC N MBPO D xy A NMC B ODxy A CBO Dx婆罗摩笈多模型-(a - 2)2已知 Rt △ ABC ,∠C=90°,I 是△ ABC 的内心,则IH =CA + CB - AB , I H =CB ⋅ C A2 CA + CB + ABIH=IE=IF=CE=CF ,AE=AH ,BF=BH.BFCIHEA【例9】(12 年江岸期中)在平面直角坐标系中,A (a , b ) AB ⊥y 轴于 B ,AC ⊥x 轴于 C .(1)求△AOC 的面积;在第一象限内,且 a、b 满足条件:b - a = ,(2)如图,E 为线段 O B 上一点,连 A E ,过 A 作 A F ⊥AE 交 x 轴于 F ,连 E F ,ED 平分∠OEF 交 O A 于yD,过D 作 D G ⊥EF 于 G ,求 D G + 1EF 的值; 2内心直角三角形G D B AEOC Fx(3)如图,D 为 x 轴上一点,CD =CA ,E 为线段 O B 上一动点,连 D A 、CE ,F 是线段 C E 的中点,若 BF ⊥FK 交 A D 于 K ,请问∠KBF 的大小是否变化?若不改变,请求其值;若改变,求出变化的范围.yxFB AKEOCD。