【单元测试】2017-2018学年 八年级数学上册 轴对称与等腰三角形 单元检测题 四(含答案)

合集下载

八年级上册数学《轴对称》单元测试卷附答案

八年级上册数学《轴对称》单元测试卷附答案
(2)如图4,若∠A C D=α,则∠AFB=(用含α的式子表示);
(3)将图4中的△A C D绕点C顺时针旋转任意角度(交点F至少在B D、AE中的一条线段上),变成如图5所示的情形,若∠A C D=α,则∠AFB与α的有何数量关系?并给予证明.
24.如图,在平面直角坐标系中,一次函数y=x的图象为直线l.
(B类)已知如图,四边形A B C D中,A B=B C,∠A=∠C,求证:A D=C D.
23.已知点C为线段A B上一点,分别以A C、B C为边在线段A B同侧作△A C D和△B CE,且C A=C D,C B=CE,∠A C D=∠B CE,直线AE与B D交于点F,
(1)如图1,若∠A C D=60°,则∠AFB=;如图2,若∠A C D=90°,则∠AFB=;如图3,若∠A C D=120°,则∠AFB=;
[答案]A
[解析]
[分析]
根据镜面对称的性质,在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.
[详解]由图分析可得题中所给的”20∶15”与”21∶05”成轴对称,这时的时间应是21∶05,故答案选A.
[点睛]本题主要考查了镜面反射的原理与性质,解本题的要点在于应认真观察,注意技巧.
9.如图,△A B C与△A D C关于A C所在的直线对称,∠B C A=35°,∠D=80°,则∠B A D的度数为( )
2.关于”线段、角、正方形、平行四边形、圆”这些图形中,其中是轴对称图形的个数为( )
A.2B.3C.4D.5
[答案]C
[解析]
[分析]
根据轴对称图形的概念即可解答.
[详解]线段、角、正方形、圆是轴对称图形,共4个.
故选C.
[点睛]本题考查了轴对称图形的概念,确定轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.

数学八年级上册《轴对称》单元检测题附答案

数学八年级上册《轴对称》单元检测题附答案
4.如图,直线m∥n,点A在直线m上,点B、C在直线n上,A B=C B,∠1=70°,则∠B A C等于( )
A.40°B.55°C.70°D.110°
[答案]C
[解析]
试题解析:∵m∥n,

∵A B=B C,

故选C.
点睛:平行线的性质:两直线平行,内错角相等.
5.如图,已知DE∥B C,A B=A C,∠1=125°,则∠C的度数是( )
一、选择题(共12小题,总分36分)
1.下列图案是轴对称图形的有 个.
A.1B.2C.3D.4
[答案]B
[解析]
试题分析:根据轴对称图形的概念(延某条直线对折,两部分能够完全重合)可知第一和第四个是轴对称图形.
故选B
考点:轴对称图形
2.点A(-2,5)关于x轴对称的点的坐标是( )
A.(2,5)B.(-2,-5)C.(2,-5)D.(5,-2)
(1)试判定△ODE的形状,并说明你的理由;
(2)线段B D、DE、EC三者有什么关系,写出你的判断过程.
25.如图所示,点O是等边三角形A B C内一点,∠AOB=110°,∠BOC=α,以OC为边作等边三角形OC D,连接A D.
(1)当α=150°时,试判断△AOD 形状,并说明理由;
(2)探究:当A为多少度时,△AOD是等腰三角形?
A. 31°B. 32°C. 59°D. 62°
11.如图,等边三角形A B C与互相平行的直线A,B相交,若∠1=25°,则∠2的大小为( )
A. 25°B. 35°C. 45°D. 55°
12.如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截取B1A2=B1B2,连接A2B2,…按此规律作下去,若∠A1B1O=α,则∠A10B10O=( )

八年级上册数学《轴对称》单元测试(含答案)

八年级上册数学《轴对称》单元测试(含答案)
10.如图, 中, , , 的垂直平分线 交 于 点,交 于 点,则下列结论错误的是()
A. B. C. D.
二、填空题(每小题3分,共24分)
11.一个正五边形的对称轴共____条.
12.如图,在等边△A B C中,A D是高,若A B=6,则C D的长为:_____
13.已知点P(3,-1)关于y轴 对称点Q的坐标是(A+B,1-B),则A B的值为______.
A. B. C. D.
[答案]A
[解析]
[分析]
根据直角三角形的性质得到A B=2B C,根据线段垂直平分线的性质得到D A=D B,根据直角三角形的性质、角平分线的性质判断即可.
[详解]∵∠C=90°,∠A=30°,
∴∠A B C=60°,A B=2B C,
∵DE是A B的垂直平分线,
∴D A=D B,故B正确,不符合题意;
三、解答题(共66分)
19.如图,已知A B=A C,AE平分∠D A C,那么AE∥B C吗?为什么?
20.(8分)如图,在△A B C中,∠C=∠A B C,BE⊥A C,△B DE是正三角形.求∠C的度数.
21.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)在图中 点上标出相应字母A、B、C,并求出△A B C的面积;
5.如图,已知A B=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4,….若∠A=70°,则∠Bn-1AnAn-1的度数为()
A. B. C. D.
[答案]C
[解析]
在△A B A1中,∵∠A=70°,A B=A1B,∴∠B A1A=∠A=70°.
∵A1A2=A1B1,∠B A1A是△A1A2B1的外角,∴∠B1A2A1= =35°.

人教版八年级数学上《第13章轴对称》单元测试题(含答案解析)

人教版八年级数学上《第13章轴对称》单元测试题(含答案解析)

2018年秋人教版八年级上册数学《第13章轴对称》单元测试题一.选择题(共10小题)1.下列图形中为轴对称图形的是()A.B.C.D.2.如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=()A.25°B.45°C.30°D.20°3.如图,在△ABC中,边AB的垂直平分线DE交AB于点E,交BC于点D,若BC =10,AC=6,则△ACD的周长是()A.14B.16C.18D.204.在平面直角坐标系中,点P(2,1)向右平移3个单位得到点P1,点P1关于x轴的对称点是点P2,则点P2的坐标是()A.(5,1)B.(5,﹣1)C.(﹣5,1)D.(﹣5,﹣1)5.已知等腰三角形两边长分别为6cm、2cm,则这个三角形的周长是()A.14cm B.10cm C.14cm或10cm D.12cm6.如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.2条B.3条C.4条D.5条7.在△ABC中,AB=AC,AB的垂直平分线交AB于点D,交直线AC于点E,∠AEB =80°,那么∠EBC等于()A.15°B.25°C.15°或75°D.25°或85°8.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°9.下列三角形,不一定是等边三角形的是()A.有两个角等于60°的三角形B.有一个外角等于120°的等腰三角形C.三个角都相等的三角形D.边上的高也是这边的中线的三角形10.如图:等腰△ABC的底边BC长为6,面积是18,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6B.8C.9D.10二.填空题(共8小题)11.如图,DE是△ABC边AC的垂直平分线,若BC=9,AD=4,则BD=12.如图,△ABC中,∠C=90°,DE是AB的垂直平分线,且BC=8,AC=6,则△ACD的周长为.13.已知点P关于y轴的对称点P1的坐标是(﹣1,2),则点P的坐标是.14.等腰三角形ABC中,∠A=110°,则∠B=°.15.等腰三角形的一个底角比顶角大30°,那么顶角度数为.16.如图:∠EAF=15°,AB=BC=CD,则∠ECD等于°.17.如图,在△ABC中,AB=AC,DE垂直平分AB.若BE⊥AC,AF⊥BC,垂足分别为点E,F,连接EF,则∠EFC=.18.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是.三.解答题(共7小题)19.如图,直线MN和直线DE分别是线段AB,BC的垂直平分线,它们交于P点,请问PA和PC相等吗?请说明理由.20.如图,在△ABC中,∠C=90,DE是AB的垂直平分线,∠CAE=∠B+30°,求∠AEB的度数.21.如图,在直角坐标系中,A(﹣1,5),B(﹣3,0),C(﹣4,3).(1)在图中作出△ABC关于y轴对称的图形△A1B1C1;(2)写出点C1的坐标;(3)求△ABC的面积.22.已知等腰三角形△ABC的一边长为5,周长为22.求△ABC另两边的长.23.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F,求证:AE=AF.24.如图,△ABC中,点O是∠BCA与∠ABC的平分线的交点,过O作与BC平行的直线分别交AB、AC于D、E.已知△ABC的周长为15,BC的长为6,求△ADE的周长.25.如图,在△ABC中,AB=AC,CD垂直AB于D,P为BC上的任意一点,过P点分别作PE⊥AB,PF⊥CA,垂足分别为E,F.①若P为BC边中点,则PE,PF,CD三条线段有何数量关系(写出推理过程)?②若P为线段BC上任意一点,则①中关系还成立吗?③若P为直线BC上任意一点,则PE,PF,CD三条线段间有何数量关系(请直接写出).2018年秋人教版八年级上册数学《第13章轴对称》单元测试题参考答案与试题解析一.选择题(共10小题)1.下列图形中为轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误.故选:C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=()A.25°B.45°C.30°D.20°【分析】首先根据对称的两个图形全等求得∠C的度数,然后在△ABC中利用三角形内角和求解.【解答】解:∠C=∠C'=30°,则△ABC中,∠B=180°﹣105°﹣30°=45°.故选:B.【点评】本题考查了轴对称的性质,理解轴对称的两个图形全等是关键.3.如图,在△ABC中,边AB的垂直平分线DE交AB于点E,交BC于点D,若BC =10,AC=6,则△ACD的周长是()A.14B.16C.18D.20【分析】由AB的垂直平分线DE交AB于E,交BC于D,根据线段垂直平分线的性质,可得AD=BD,继而可得△ACD的周长为:AC+BC,则可求得答案.【解答】解:∵DE是AB的垂直平分线,∴AD=BD,∵AC=6,BC=10,∴△ACD的周长为:AC+CD+AD=AC+CD+BD=AC+BC=6+10=16.故选:B.【点评】此题考查了线段垂直平分线的性质.此题难度不大,注意掌握数形结合思想与转化思想的应用.4.在平面直角坐标系中,点P(2,1)向右平移3个单位得到点P1,点P1关于x轴的对称点是点P2,则点P2的坐标是()A.(5,1)B.(5,﹣1)C.(﹣5,1)D.(﹣5,﹣1)【分析】先根据向右平移3个单位,横坐标加3,纵坐标不变,求出点P1的坐标,再根据关于x轴对称的点,横坐标相同,纵坐标互为相反数解答.【解答】解:∵将点P(2,1)向右平移3个单位得到点P1,∴点P1的坐标是(5,1),∴点P1关于x轴的对称点P2的坐标是(5,﹣1).故选:B.【点评】本题考查了坐标与图形变化﹣平移,以及关于x轴、y轴对称点的坐标的关系,熟练掌握并灵活运用是解题的关键.5.已知等腰三角形两边长分别为6cm、2cm,则这个三角形的周长是()A.14cm B.10cm C.14cm或10cm D.12cm【分析】题目给出等腰三角形有两条边长为6cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:①6cm为腰,2cm为底,此时周长为14cm;②6cm为底,2cm为腰,则两边和小于第三边无法构成三角形,故舍去.∴其周长是14cm.故选:A.【点评】此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握情况.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.6.如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.2条B.3条C.4条D.5条【分析】根据等腰三角形的性质分别利用AB为底以及AB为腰得出符合题意的图形即可.【解答】解:如图所示,当AB=AF=3,BA=BD=3,AB=AE=3,BG=AG时,都能得到符合题意的等腰三角形.故选:C.【点评】此题主要考查了等腰三角形的判定等知识,正确利用图形分类讨论得出等腰三角形是解题关键.7.在△ABC中,AB=AC,AB的垂直平分线交AB于点D,交直线AC于点E,∠AEB =80°,那么∠EBC等于()A.15°B.25°C.15°或75°D.25°或85°【分析】分两种情况:∠BAC为锐角,∠BAC为钝角,根据线段垂直平分线的性质可求出AE=BE,然后根据三角形内角和定理即可解答.【解答】解:如图1,∵DE垂直平分AB,∴AE=BE,∴∠BAC=∠ABE,∵∠AEB=80°,∴∠BAC=∠ABE=50°,∵AB=AC,∴∠ABC==65°,∴∠EBC=∠ABC﹣∠ABE=15°如图2,∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠ABE,∵∠AEB=80°,∴∠BAE=∠EBA=50°,∴∠BAC=130°∵AB=AC,∴∠ABC==25°∴∠EBC=∠EBA+∠ABC=75°故选:C.【点评】此题主要考查线段的垂直平分线及等腰三角形的判定和性质.线段的垂直平分线上的点到线段的两个端点的距离相等.8.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°【分析】先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.【解答】解:∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB﹣∠ECB=15°,故选:A.【点评】此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB是解本题的关键.9.下列三角形,不一定是等边三角形的是()A.有两个角等于60°的三角形B.有一个外角等于120°的等腰三角形C.三个角都相等的三角形D.边上的高也是这边的中线的三角形【分析】分别利用等边三角形的判定方法分析得出即可.【解答】解:A、根据有两个角等于60°的三角形是等边三角形,不合题意,故此选项错误;B、有一个外角等于120°的等腰三角形,则内角为60°的等腰三角形,此三角形是等边三角形,不合题意,故此选项错误;C、三个角都相等的三角形,内角一定为60°是等边三角形,不合题意,故此选项错误;D、边上的高也是这边的中线的三角形,也可能是等腰三角形,故此选项正确.故选:D.【点评】此题主要考查了等边三角形的判定,注意熟练掌握:由定义判定:三条边都相等的三角形是等边三角形.(2)判定定理1:三个角都相等的三角形是等边三角形.(3)判定定理2:有一个角是60°的等腰三角形是等边三角形.10.如图:等腰△ABC的底边BC长为6,面积是18,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6B.8C.9D.10【分析】连接AD,AM,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,MA=MC,推出MC+DM=MA+DM≥AD,故AD的长为BM+MD的最小值,由此即可得出结论.【解答】解:连接AD,MA.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,=BC•AD=×6×AD=18,解得AD=6,∴S△ABC∵EF是线段AC的垂直平分线,∴点A关于直线EF的对称点为点C,MA=MC,∴MC+DM=MA+DM≥AD,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=6+×6=6+3=9.故选:C.【点评】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.二.填空题(共8小题)11.如图,DE是△ABC边AC的垂直平分线,若BC=9,AD=4,则BD=5【分析】根据垂直平分线的性质可得AD=CD,进而求出BD的长度.【解答】解:∵DE是△ABC边AC的垂直平分线,∴AD=CD,∵BC=9,AD=4,∴BD=BC﹣CD=BC﹣AD=9﹣4=5,故答案为:5.【点评】本题考查的是线段垂直平分线的性质,即线段的垂直平分线上的点到线段的两个端点的距离相等.12.如图,△ABC中,∠C=90°,DE是AB的垂直平分线,且BC=8,AC=6,则△ACD的周长为14.【分析】根据线段的垂直平分线的性质得到DA=DB,根据三角形的周长公式计算即可.【解答】解:∵DE是AB的垂直平分线,∴DA=DB,∴△ACD的周长=AC+CD+AD=AC+CD+DB=AC+BC=14,故答案为:14.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.13.已知点P关于y轴的对称点P1的坐标是(﹣1,2),则点P的坐标是(1,2).【分析】直接利用关于y轴对称点的性质得出点P坐标.【解答】解:∵P关于y轴的对称点P1的坐标是(﹣1,2),∴点P坐标是(1,2).故答案是:(1,2).【点评】此题主要.考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.14.等腰三角形ABC中,∠A=110°,则∠B=35°.【分析】根据钝角只能是顶角和等腰三角形的性质求得两个底角即可确定答案.【解答】解:∵等腰三角形中,∠A=110°>90°,∴∠B==35°,故答案为:35.【点评】本题考查了等腰三角形的性质,解题的关键是了解钝角只能是等腰三角形的顶角.15.等腰三角形的一个底角比顶角大30°,那么顶角度数为40°.【分析】设顶角的度数为x,表示出底角的度数.根据三角形内角和定理列方程求解.【解答】解:设顶角的度数为x°,则底角的度数为(x+30)°.根据题意,得x+2(x+30)=180,解得x=40.故答案为:40°.【点评】此题考查等腰三角形性质和三角形内角和定理,属基础题.16.如图:∠EAF=15°,AB=BC=CD,则∠ECD等于45°.【分析】根据等腰三角形的性质以及三角形的外角的性质即可解决问题;【解答】解:∵AB=BC,∴∠BAC=∠BCA=15°,∴∠CBD=∠A+∠BCA=30°,∵CB=CD,∴∠CBD=∠CDB=30°,∴∠ECD=∠A+∠CDB=15°+30°=45°,故答案为45.【点评】本题考查等腰三角形的性质、三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.如图,在△ABC中,AB=AC,DE垂直平分AB.若BE⊥AC,AF⊥BC,垂足分别为点E,F,连接EF,则∠EFC=45°.【分析】先根据线段垂直平分线的性质及BE⊥AC得出△ABE是等腰直角三角形,再由等腰三角形的性质得出∠ABC的度数,由AB=AC,AF⊥BC,可知BF=CF,BF =EF;根据三角形外角的性质即可得出结论.【解答】解:∵DE垂直平分AB,∴AE=BE,∵BE⊥AC,∴△ABE是等腰直角三角形,∴∠BAC=∠ABE=45°,又∵AB=AC,∴∠ABC=(180°﹣∠BAC)=(180°﹣45°)=67.5°,∴∠CBE=∠ABC﹣∠ABE=67.5°﹣45°=22.5°,∵AB=AC,AF⊥BC,∴BF=CF,∴BF=EF;∴∠BEF=∠CBE=22.5°,∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°.故答案为:45°.【点评】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键,同时要熟悉直角三角形中,斜边的中线等于斜边的一半.18.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是9.6.【分析】由等腰三角形的三线合一可得出AD垂直平分BC,过点B作BQ⊥AC于点Q,BQ交AD于点P,则此时PC+PQ取最小值,最小值为BQ的长,在△ABC中,利用面积法可求出BQ的长度,此题得解.【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD垂直平分BC,∴BP=CP.过点B作BQ⊥AC于点Q,BQ交AD于点P,则此时PC+PQ取最小值,最小值为BQ 的长,如图所示.=BC•AD=AC•BQ,∵S△ABC∴BQ===9.6.故答案为:9.6.【点评】本题考查了轴对称﹣最短路线问题、等腰三角形的性质以及三角形的面积,利用点到直线垂直线段最短找出PC+PQ的最小值为BQ是解题的关键.三.解答题(共7小题)19.如图,直线MN和直线DE分别是线段AB,BC的垂直平分线,它们交于P点,请问PA和PC相等吗?请说明理由.【分析】连接PB,根据线段垂直平分线的性质即可得出结论.【解答】解:PA=PC.理由:∵直线MN和直线DE分别是线段AB,BC的垂直平分线,∴PA=PB,PC=PB,∴PA=PC.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上的点到线段两端的距离相等是解答此题的关键.20.如图,在△ABC中,∠C=90,DE是AB的垂直平分线,∠CAE=∠B+30°,求∠AEB的度数.【分析】利用线段垂直平分线的性质计算.【解答】解:已知DE垂直且平分AB⇒AE=BE⇒∠EAB=∠B又因为∠CAE=∠B+30°故∠CAE=∠B+30°=90°﹣2∠B⇒∠B=20°∴∠AEB=180°﹣20°×2=140°.【点评】本题考查的是线段垂直平分线的性质(垂直平分线上任意一点,和线段两端点的距离相等)有关知识,注意角与角之间的转换.21.如图,在直角坐标系中,A(﹣1,5),B(﹣3,0),C(﹣4,3).(1)在图中作出△ABC关于y轴对称的图形△A1B1C1;(2)写出点C1的坐标;(3)求△ABC的面积.【分析】(1)、(2)利用关于y轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(3)用一个矩形的面积减去三个三角形的面积计算△ABC的面积.【解答】解:(1)如图,△A1B1C1为所作;(2)点C1的坐标为(4,3);(3)△ABC的面积=3×5﹣×3×1﹣×3×2﹣×5×2=.【点评】本题考查了作图﹣对称性变换:在画一个图形的轴对称图形时,先从确定一些特殊的对称点开始的,一般的方法是:由已知点出发向所给直线作垂线,并确定垂足;直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;连接这些对称点,就得到原图形的轴对称图形.22.已知等腰三角形△ABC的一边长为5,周长为22.求△ABC另两边的长.【分析】分两种情况:①设AB=AC=5,②设BC=5,根据等腰三角形的性质和三角形的三边关系即可得到结论.【解答】解:∵△ABC是等腰三角形,∴不妨设AB=AC,又∵一边长为5,①设AB=AC=5,∵△ABC的周长为22,∴BC=22﹣5﹣5=12;∵5+5<12,∴不成立(舍);②设BC=5,∵△ABC的周长为22,∴AB=AC=(22﹣5)÷2=8.5,∵8.5+5>8.5,符合题意,∴△ABC另两边长分别为8.5,8.5.【点评】本题考查了等腰三角形的性质,三角形的三边关系,熟练掌握等腰三角形的性质是解题的关键.23.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F,求证:AE=AF.【分析】根据角平分线的定义和余角的性质即可得到结论.【解答】解:∵BF平分∠ABC,∴∠ABF=∠CBF,∵∠BAC=90°,AD⊥BC,∴∠ABF+∠AFB=∠CBF+∠BED=90°,∴∠AFB=∠BED,∵∠AEF=∠BED,∴∠AFE=∠AEF,∴AE=AF.【点评】此题考查了等腰三角形的判定、直角三角形的性质,熟练掌握等腰三角形的性质是解题的关键.24.如图,△ABC中,点O是∠BCA与∠ABC的平分线的交点,过O作与BC平行的直线分别交AB、AC于D、E.已知△ABC的周长为15,BC的长为6,求△ADE的周长.【分析】先利用角平分线的定义和平行线的性质得到∠1=∠2,所以DB=DO,同理可得EO=CE,利用等线段代换得到△ADE的周长=AB+AC,然后利用△ABC的周长为15得到AB+AC=9,从而得到△ADE的周长.【解答】解:∵点O是∠BCA与∠ABC的平分线的交点,∴∠1=∠3,∵DE∥BC,∴∠2=∠3,∴∠1=∠2,∴DB=DO,同理可得EO=CE,∴△ADE的周长=AD+AE+DE=AD+DO+AE+OE=AD+BD+AE+CE=AB+AC,∵△ABC的周长为15,∴AB+AC+BC=15,而BC的长为6,∴AB+AC=9,∴△ADE的周长为9.【点评】本题考查了等腰三角形的判定与性质:等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.也考查了平行线的性质.25.如图,在△ABC中,AB=AC,CD垂直AB于D,P为BC上的任意一点,过P点分别作PE⊥AB,PF⊥CA,垂足分别为E,F.①若P为BC边中点,则PE,PF,CD三条线段有何数量关系(写出推理过程)?②若P为线段BC上任意一点,则①中关系还成立吗?③若P为直线BC上任意一点,则PE,PF,CD三条线段间有何数量关系(请直接写出).【分析】①如图1,连接PA,根据三角形的面积公式列方程即可得到结论;②连接PA ,根据三角形的面积公式即可得到结论;(3)如图2,连接PA ,根据三角形的面积列方程即可得到结论;如图3,过点C 作CG ⊥PE 于G ,根据矩形的性质和全等三角形的性质即可得到结论.【解答】解:(1)CD =PE +PF ,理由:如图1,连接PA ,∵CD ⊥AB 于D ,PE ⊥AB 于E ,PF ⊥AC 于F∵S △ABC =AB ×CD ,S △PAB =AB ×PE ,S △PAC =AC ×PF ,又∵S △ABC =S △PAB +S △PAC∴AB ×CD =AB ×PE +AC ×PF ,∵AB =AC∴CD =PE +PF ;(2)①中关系还成立,理由:连接PA ,∵CD ⊥AB 于D ,PE ⊥AB 于E ,PF ⊥AC 于F∵S △ABC =AB ×CD ,S △PAB =AB ×PE ,S △PAC =AC ×PF ,又∵S △ABC =S △PAB +S △PAC∴AB ×CD =AB ×PE +AC ×PF ,∵AB =AC∴CD =PE +PF ;(3)结论:PE ﹣PF =CD 或PF ﹣PE =CD ,如图2,连接PA ,∵CD ⊥AB 于D ,PE ⊥AB 于E ,PF ⊥AC 于F∵S △ABC =AB ×CD ,S △PAB =AB ×PE ,S △PAC =AC ×PF ,又∵S △ABC =S △PAC ﹣S △PAB∴AB ×CD =AC ×PF +AB ×PE ,∵AB =AC ,∴CD =PF ﹣PE ;如图3,过点C 作CG ⊥PE 于G ,∵PE ⊥AB ,CD ⊥AB ,∴∠CDE=∠DEG=∠EGC=90°.∴四边形CGED为矩形.∴CD=GE,GC∥AB.∴∠GCP=∠B.∵AB=AC,∴∠B=∠ACB.∴∠FCP=∠ACB=∠B=∠GCP.在△PFC和△PGC中,,∴△PFC≌△PGC(AAS),∴PF=PG.∴PE﹣PF=PE﹣PG=GE=CD;【点评】本题考查了等腰三角形的性质;在解决一题多变的时候,基本思路是相同的;注意通过不同的方法计算同一个图形的面积,来进行证明结论的方法,是非常独特的,也是一种很好的方法,注意掌握应用.。

数学八年级上册《轴对称》单元测试题(带答案)

数学八年级上册《轴对称》单元测试题(带答案)
∴∠A=40°.
∵A B=A C,

故选A.
[点睛]此题考查等腰三角形的性质及三角形的内角与外角等知识点的掌握情况.根据已知求得∠A=40°是正确解答本题的关键.
二、填空题
11.请写出两个具有轴对称性的汉字.
[答案]甲、由、中、田、日等(答案不唯一).
[解析]
[分析]
根据轴对称图形的概念,即可写出:甲,日,田等字.
6.已知M(0,2)关于x轴对称的点为N,线段MN的中点坐标是()
A.(0,﹣2)B.(0,0)C.(﹣2,0)D.(0,4)
[答案]B
[解析]
根据轴对称的性质,知线段MN的中点就是原点,即线段MN的中点坐标是(0,0).
故选B
7.在△A B C中,A B=A C,D为B C的中点,则下列结论:①∠B=∠C;②A D⊥B C;③∠B A C=2∠B A D;④A B,A C边上的中线的长相等.其中正确的结论有( )
故答案选:A.
[点睛]本题考查了用坐标表示轴对称的知识点,熟练掌握点关于x轴、y轴对称的点的坐标特点是解题的关键.
3.已知线段A B和点C,D,且C A=C B,D A=D B,那么直线C D是线段A B的( )
A. 垂线B. 平行线
C. 垂直平分线D. 过中点的直线
[答案]C
[解析]
[分析]
由已知C A=C B根据线段垂直平分线的性质的逆定理可得点C在A B的垂直平分线上,同理得点D的位置
[答案]D
[解析]
[分析]
此题中没有明确指出等边三角形的边长是等腰三角形的底边还是腰长,所以我们应该分两种情况进行分析.先求出等边三角形的边长,再分两种情况进行分析求解.
[详解]解:∵等边三角形周长为45Cm,

八年级上册数学《轴对称》单元测试(附答案)

八年级上册数学《轴对称》单元测试(附答案)

人教版八年级上册《轴对称》单元测试卷考试时间:100分钟;总分:120分一、单选题(每小题3分,共30分)1.(2019·江苏南京一中初二期中)下列图形中不是轴对称图形的是( )A .B .C .D .2.(2018·天津初二期中)如果一个三角形一条边上的中点到其它两边距离相等,那么这个三角形一定是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .斜三角形3.(2018·河北初二期中)点P(2,﹣3)关于x 轴的对称点是P 1,P 1关于y 轴的对称点坐标是P 2,则P 2的坐标为( ) A .(2,﹣3) B .(﹣2,3) C .(﹣2,﹣3) D .(﹣3,﹣2)4.(2018·河北初二期中)如图,在△A B C 中,D E 是A C 的垂直平分线,A C =8C m,且△A B D 的周长为14C m,则△A B C 的周长为( )A .15C mB .18C m C .22C mD .25C m5.(2019·江苏初二期中)下列说法中正确的是( )A .两个全等三角形,一定是轴对称的B .两个轴对称的三角形,一定全等C .三角形的一条中线把三角形分成以中线为轴对称的两个图形D .三角形的一条高把三角形分成以高线为轴对称的两个图形6.(2019·江苏初二期中)在如图所示的网格纸中,有A 、B 两个格点,试取格点C ,使得△A B C 是等腰三角形,则这样的格点C 的个数是( )A .4B .6C .8D .107.(2018·天津初二期中)如图,ABC ∆的面积为6,3AC =,现将ABC ∆沿AB 所在直线翻折,使点C 落在射线AD 上的'C 处,P 为射线AD 上的任一点,则线段BP 的长不可能是( )A .3.8B .4C .5.5D .1008.(2019·江苏省盐城市初级中学初二期中)如图,在△A B C 中,A B =A C ,B D =C D ,下列结论不一定正确的是 ( )A .∠B =∠C B .AD ⊥B C C .A D 平分∠B A C D .A B =2B D9.(2019·山东初二期中)如图,在ABC ∆中,13AB AC ==,该三角形的面积为65,点O 是边BC 上任意一点,则点O 分别到边AB ,AC 的距离之和等于( )A .5B .6.5C .9D .1010.(2019·山东初二期中)如图,在Rt ABC ∆中,90B ∠=︒,20C ∠=︒,分别以点A 、C 为圆心,大于12AC 长为半径画弧,两弧相交于点M 、N ,连接MN ,与AC 、BC 分别交于点D 、E ,连接AE .则BAE ∠=( )A .20︒B .40︒C .50︒D .60︒二、填空题(每小题4分,共24分)11.(2018·天津初二期中)若等腰三角形有两条边的长为7C m ,15C m ,则第三边的长为____C m . 12.(2019·北京市三帆中学初二期中)已知:如图,在ABC △中,40B ∠=︒,点D 是BC 边上一点,且AC AD BD ==.则DAC ∠的度数为_____.13.如图,在ABC ∆中,,BO CO 分别是ABC ACB ∠∠,的平分线,且它们相交于点O,//OE AB ,//OF AC ,10BC =,则OEF ∆的周长为_____.14.已知等腰三角形的一个内角为70°,则它的顶角度数为_____.15.(2019·江苏初二期中)如图,直线l 是四边形A B C D 的对称轴,A D ∥B C ,∠D =128°,则∠B 的大小为______°.16.(2019·厦门市梧侣学校初二期中)如图,在ABC ∆中,AB AC =,30C ∠=,DA BA ⊥于点A ,若4CD cm =,则B D =__________.三、解答题一(每小题6分,共18分)17.(2019·呼和浩特市实验中学初二期中)已知等腰ABC ∆中,4AB =,周长是10,求BC 的长. 18.(2019·江西宜春九中初二期中)如图,已知:A B =A D ,B C =C D ,∠A B C =∠A D C ,A C 是否是线段B D 的垂直平分线?请说明理由.19.(2019·江苏初二期中)如右图,已知点P 是线段MN 外一点,请利用直尺和圆规画一点Q ,使得点Q 到M 、N 两点的距离相等,且点Q 与点M 、P 在同一条直线上.(保留作图痕迹)四、解答题二(每小题7分,共21分)20.(2019·江苏南京一中初二期中)在△A B C 中,A B =A C ,∠B A C =120°,A D ⊥B C ,且A D =A B ,∠ED F =60°,且∠ED F 两边分别交边A B ,A C 于点E ,F ,求证:B E =A F .21.(2019·江苏南京一中初二期中)如图所示,A D 为△A B C 的角平分线,D E ⊥A B 于点E ,D F ⊥A C 于点F ,连接EF 交A D 于点O .求证:A D 垂直平分EF .22.(2019·江苏初二期中)如图,△A B C 中,A D ⊥B C ,EF 垂直平分A C ,交A C 于点F,交B C 于点E,且B D=D E .(1)若∠B A E=40°,求∠C 的度数;(2)若△A B C 周长为14C m,A C =6C m,求D C 长.五、解答题三(每小题9分,共27分)23.(2019·江苏南京一中初二期中)如图,在长度为1个单位长度的小正方形组成的正方形中,点A ,B ,C 在小正方形的顶点上.(1)在图中画出与△A B C 关于直线l 成轴对称的△A ′B ′C ′(2)三角形A B C 的面积为 ;(3)在直线l 上找一点P ,使P A +PB 的长最短.24.(2019·山东初二期中)如图,在等腰Rt ABC ∆中,90ACB ∠=︒,AC CB =,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且始终保持AD CE =.连接DE 、DF 、EF .(1)求证:ADF CEF ∆≅∆;(2)试证明DFE ∆是等腰直角三角形;(3)若5AD =,7BE =,求AC 的长.25.(2019·江苏初二期中)如图所示,点O是等边三角形A B C 内一点,∠A OB =100°,∠B OC =α,D 是△AB C 外一点,且△A D C ≌△B OC ,连接OD .(1)求证:△C OD 是等边三角形;(2)当α=150°时,判断△A OD 的形状,并说明理由.(3)探究:当α=_____度时,△A OD 是等腰三角形.参考答案一、单选题(每小题3分,共30分)1.(2019·江苏南京一中初二期中)下列图形中不是轴对称图形的是()A .B .C .D .[答案]A[解析]根据轴对称图形的概念对各选项分析判断即可得解.[详解]A .不是轴对称图形,故本选项符合题意;B .是轴对称图形,故本选项不符合题意;C .是轴对称图形,故本选项不符合题意;D .是轴对称图形,故本选项不符合题意.故选A .[点睛]本题考查了轴对称图形的概念,掌握轴对称图形的概念是解答本题的关键.2.(2018·天津初二期中)如果一个三角形一条边上的中点到其它两边距离相等,那么这个三角形一定是() A .等边三角形 B .等腰三角形 C .直角三角形 D .斜三角形[答案]B[解析]本题根据已知条件可以通过证明三角形全等得出三角形的形状,注意:有效利用“等角对等边”.[详解]如图,∵D E⊥A B ,D F⊥A C ,∴∠B ED =∠D FC =90°,∵在△B D E和△C D F,B D =CD ,D E=D F,∴△D B E≌△D FC (HL),∴∠B =∠C ,∴A B =A C ,∴这个三角形一定是等腰三角形.故选B .[点睛]本题考查等腰三角形的判定;解题中两次运用了全等三角形的判定与性质及等量加等量和相等是比较关健的.3.(2018·河北初二期中)点P(2,﹣3)关于x轴的对称点是P1,P1关于y轴的对称点坐标是P2,则P2的坐标为( )A .(2,﹣3)B .(﹣2,3)C .(﹣2,﹣3)D .(﹣3,﹣2)[答案]B[解析]根据平面直角坐标系中对称点的规律解答即可.[详解]解:点P(2,﹣3)关于x轴的对称点是P1(2,3),P1关于y轴的对称点坐标P2的坐标为(﹣2,3).故选:B .[点睛]本题考查了坐标系中对称点的相关知识,难度不大,属于基本题型,熟知对称点的规律是解题的关键. 4.(2018·河北初二期中)如图,在△A B C 中,D E是A C 的垂直平分线,A C =8C m,且△A B D 的周长为14C m,则△A B C 的周长为( )A .15C mB .18C m C .22C mD .25C m[答案]C[解析]先根据线段垂直平分线的性质得到D A =D C ,再根据三角形的周长公式计算即可.[详解]解:∵D E是A C 的垂直平分线,∴D A =D C ,∵△A B D 的周长为14C m,∴A B +B D +A D =14C m,∴A B +B D +C D =14C m,即A B +B C =14C m,∴△A B C 的周长=A B +B C +A C =22C m,故选:C .[点睛]本题主要考查了线段垂直平分线的性质和三角形周长的计算,属于常考题型,熟练掌握线段垂直平分线的性质是关键.5.(2019·江苏初二期中)下列说法中正确的是( )A .两个全等三角形,一定是轴对称的B .两个轴对称的三角形,一定全等C .三角形的一条中线把三角形分成以中线为轴对称的两个图形D .三角形的一条高把三角形分成以高线为轴对称的两个图形[答案]B[解析]根据轴对称图形的概念对各选项分析判断即可得解.[详解]解:A 、两个全等三角形,一定是轴对称的错误,三角形全等位置上不一定关于某一直线对称,故本选项错误;B 、两个轴对称的三角形,一定全等,正确,故本选项正确;C 、三角形的一条中线把三角形分成以中线为轴对称的两个图形,错误,故本选项错误;D 、三角形的一条高把三角形分成以高线为轴对称的两个图形,错误,故本选项错误.故选:B .[点睛]本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.(2019·江苏初二期中)在如图所示的网格纸中,有A 、B 两个格点,试取格点C ,使得△A B C 是等腰三角形,则这样的格点C 的个数是()A .4B .6C .8D .10[答案]C[解析]分A B 是腰长时,根据网格结构,找出一个小正方形与A 、B 顶点相对的顶点,连接即可得到等腰三角形,A B 是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,A B 垂直平分线上的格点都可以作为点C ,然后相加即可得解.[详解]解:如图,分情况讨论:①A B 为等腰△A B C 的底边时,符合条件的C 点有4个;②A B 为等腰△A B C 其中的一条腰时,符合条件的C 点有4个.故选:C .[点睛]本题考查等腰三角形的判定,解题的关键是掌握等腰三角形的判定,分情况讨论解决.7.(2018·天津初二期中)如图,ABC ∆的面积为6,3AC =,现将ABC ∆沿AB 所在直线翻折,使点C 落在射线AD 上的'C 处,P 为射线AD 上的任一点,则线段BP 的长不可能是( )A .3.8B .4C .5.5D .100[答案]A [解析]过B 作B N ⊥A C 于N ,B M ⊥A D 于M ,根据折叠得出∠C 'A B =∠C A B ,根据角平分线性质得出B N =B M ,根据三角形的面积求出B N ,即可得出点B 到A D 的最短距离是4,得出选项即可.[详解]如图:过B 作B N ⊥A C 于N ,B M ⊥A D 于M .∵将△A B C 沿A B 所在直线翻折,使点C 落在直线A D 上的C '处,∴∠C 'A B =∠C A B ,∴B N =B M . ∵△A B C 的面积等于6,边A C =3,∴12×A C ×B N =6,∴B N =4,∴B M =4,即点B 到A D 的最短距离是4,∴B P 的长不小于4,即只有选项A 的3.8不正确.故选A .[点睛]本题考查了折叠的性质,三角形的面积,角平分线性质的应用,解答此题的关键是求出B 到A D 的最短距离,注意:角平分线上的点到角的两边的距离相等.8.(2019·江苏省盐城市初级中学初二期中)如图,在△A B C 中,A B =A C ,B D =C D ,下列结论不一定正确的是 ( )A .∠B =∠CB .A D ⊥BC C .AD 平分∠B A C D .A B =2B D[答案]D [解析]在△A B C 中,A B =A C ,则△A B C 为等腰三角形,B D =C D ,则A D 为中线,根据等腰三角形的三线合一判断即可.[详解]∵在△A B C 中,A B =A C ,∴△A B C 为等腰三角形,∴∠B =∠C ,∵B D =C D ,∴A D ⊥B C ,A D 平分∠B A C ,不能得到A B =B C ,则无法证明A B =2B D ,故选D .[点睛]本题是对等腰三角形三线合一的考查,熟练掌握等腰三角形的三线合一性质是解决本题的关键. 9.(2019·山东初二期中)如图,在ABC ∆中,13AB AC ==,该三角形的面积为65,点O 是边BC 上任意一点,则点O 分别到边AB ,AC 的距离之和等于( )A .5B .6.5C .9D .10[答案]D [解析]根据等腰三角形的性质和三角形的面积公式解答即可.[详解]连接A O .∵在△A B C 中,A B =A C =13,该三角形的面积为65,∴三角形A B C 的面积=△A B O 的面积+△A C O 的面积=12A B •ON +12A C •OM =12A B •(ON +OM ) ∴12×13×(ON +OM )=65 解得:OM +ON =10.故选D .[点睛]本题考查了等腰三角形的性质,关键是根据等腰三角形的性质和三角形的面积公式解答.10.(2019·山东初二期中)如图,在Rt ABC ∆中,90B ∠=︒,20C ∠=︒,分别以点A 、C 为圆心,大于12AC 长为半径画弧,两弧相交于点M 、N ,连接MN ,与AC 、BC 分别交于点D 、E ,连接AE .则BAE ∠=( )A .20︒B .40︒C .50︒D .60︒[答案]C [解析]根据直角三角形两锐角互余可得∠B A C 的度数,根据题意可知MN 是线段A C 的垂直平分线,根据线段垂直平分线的性质得出A E =C E ,由等边对等角得出∠C A E =∠C =20°,即可得出结论. [详解]∵在Rt △A B C 中,∠B =90°,∠C =20°,∴∠B A C =70°.∵D E 垂直平分A C ,∴A E =C E ,∴∠C A E =∠C =20°,∴∠B A E =50°.故选C .[点睛]本题考查了作图﹣基本作图、线段垂直平分线的性质、等腰三角形的判定与性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.二、填空题(每小题4分,共24分)11.(2018·天津初二期中)若等腰三角形有两条边的长为7C m ,15C m ,则第三边的长为____C m .[答案]37.[解析]由于等腰三角形的两边长分别是7C m,15C m,没有直接告诉哪一条是腰,哪一条是底边,所以有两种情况,分别利用三角形的三边关系与三角形周长的定义求解即可.[详解]①当腰为15C m 时,三角形的周长为:15+15+7=37C m ;②当腰为7C m 时,7+7=14<15,三角形不成立;∴此等腰三角形的周长是37C m .故答案为:37.[点睛]本题考查了等腰三角形的性质与三角形的三边关系,利用分类讨论思想求解是解答本题的关键. 12.(2019·北京市三帆中学初二期中)已知:如图,在ABC △中,40B ∠=︒,点D 是BC 边上一点,且AC AD BD ==.则DAC ∠的度数为_____.[答案]20°[解析]根据等腰三角形的性质得到∠A D C =48°,再根据三角形外角的性质和等腰三角形的性质可求∠B 的度数.[详解]解:∵A D =B D , ∠B =40°, ∴∠B A D =∠B =40°, ∴∠A D C =∠B +∠B A D =80°,∵A C =A D ,∴∠A D C =∠C =80°,∴∠D A C =180°-∠A D C -∠C = 20°,故答案为:20°.[点睛]本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等,熟练掌握等腰三角形的性质是解题的关键.13.如图,在ABC ∆中,,BO CO 分别是ABC ACB ∠∠,的平分线,且它们相交于点O,//OE AB ,//OF AC ,10BC =,则OEF ∆的周长为_____.[答案]10.[解析]先根据角平分线的性质求出∠1=∠2,∠4=∠5,再根据平行线的性质求出∠1=∠3,∠4=∠6,通过等量代换可得,∠2=∠3,∠5=∠6,根据等腰三角形的判定定理及性质可得B E=OE,OF=FC ,即可解答.[详解]解:如图∵,BO CO 分别是ABC ACB ∠∠,的平分线,∴∠1=∠2,∠4=∠5,∵OE ∥A B ,OF ∥A C ,∴∠1=∠3,∠4=∠6,∴∠2=∠3,∠5=∠6,∴B E =OE ,OF =FC ,∴B C =B E +EF +FC =OE +EF +OF ,∵B C =10,∴OF +OE +EF =10∴△OEF 的周长=OF +OE +EF =10.[点睛]本题考查平行线的性质, 角平分线的定义, 等腰三角形的判定与性质.能结合角平分线的性质和平行线的性质判断△OEB 和△OFC 为等腰三角形是解决此题的关键.14.已知等腰三角形的一个内角为70°,则它的顶角度数为_____.[答案]70°或40°.[解析]已知等腰三角形的一个内角为70°,根据等腰三角形的性质可分情况解答:当70°是顶角或者70°是底角两种情况.[详解]此题要分情况考虑:①70°是它的顶角;②70°是它的底角,则顶角是180°−70°×2=40°.故答案为:70°或40°. [点睛]本题考查等腰三角形的性质, 三角形内角和定理.掌握分类讨论思想是解决此题的关键.15.(2019·江苏初二期中)如图,直线l 是四边形A B C D 的对称轴,A D ∥B C ,∠D =128°,则∠B 的大小为______°.[答案]52[解析]先求出C ∠的度数,然后利用对称性求出B[详解]解:∵A D ∥B C ,∴180D C ∠+∠=︒,∴180********C D ∠=︒-∠=-=又∵直线l 是四边形A B C D 的对称轴,∴52C B ∠=∠=故答案为:52.[点睛]主要考查了轴对称的性质及平行线的性质,正确理解相关性质是解答本题的关键.16.(2019·厦门市梧侣学校初二期中)如图,在ABC ∆中,AB AC =,30C ∠=,DA BA ⊥于点A ,若4CD cm =,则B D =__________.[答案]8C m[解析]根据A B =A C ,∠C =30°可得∠B =∠C =30°,∠B A C =120°,所以得出∠D A C =30°,所以A D =C D =4C m,然后在直角三角形A B D 中,30°角对应的直角边等于斜边的一半,所以B D =2A D ,进一步计算即可得出答案.[详解]∵A B =A C ,∠C =30°,∴∠B =∠C =30°,∠B A C =120°,∵DA BA ⊥,∴∠D A C =30°,又∵30C ∠=,∴A D =C D =4C m,在直角三角形A B D 中,∵∠B =30°,∴B D =2A D =8C m.[点睛]本题主要考查了直角三角形以及等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.三、解答题一(每小题6分,共18分)17.(2019·呼和浩特市实验中学初二期中)已知等腰ABC ∆中,4AB =,周长是10,求BC 的长.[答案]2或3或4[解析]根据等腰三角形的腰的情况分类即可.[详解]解:①若A B =A C =4∵ABC ∆周长是10∴B C =10-A B -A C =2,满足三角形的三边关系;②若A C =B C则A C =B C =12(10-A B )=3,满足三角形的三边关系; ③若B C =A B∴此时B C =A B =4∴A C =10-A B -B C =2,满足三角形的三边关系;综上所述:B C 的长是2或3或4[点睛]此题考查的是已知等腰三角形周长求边长,解决此题的关键是根据等腰三角形的腰的情况分类讨论及根据构成三角形的条件判断是否舍取.18.(2019·江西宜春九中初二期中)如图,已知:A B =A D ,B C =C D ,∠A B C =∠A D C ,A C 是否是线段B D 的垂直平分线?请说明理由.[答案]A C 是线段B D 的垂直平分线.具体见解析.[解析]由A B =A D ,B C =C D ,根据线段垂直平分线的判定,可得:点A 在B D 的垂直平分线上,点C 在B D 的垂直平分线上,又由两点确定一条直线,即可证得结论.[详解]A C 是线段B D 的垂直平分线.理由:∵A B =A D ,B C =C D ,∴点A 在B D 的垂直平分线上,点C 在B D 的垂直平分线上,∴A C 是线段B D 的垂直平分线.[点睛]本题考查线段垂直平分线的性质,解题的关键是掌握线段垂直平分线的性质.19.(2019·江苏初二期中)如右图,已知点P是线段MN外一点,请利用直尺和圆规画一点Q,使得点Q到M、N两点的距离相等,且点Q与点M、P在同一条直线上.(保留作图痕迹)[答案]作图见解析[解析]先作出MN的垂直平分线,然后连接P,M两点,并延长交MN的垂直平分线于一点,则交点为所求.[详解]解:先作MN垂直平分l,连接P,M两点,延长PM交l于点Q ,则Q点为所求.[点睛]此题主要考查线段的垂直平分线的作法,熟知线段垂直平分线上到线段两个端点的距离相等是解题关键.四、解答题二(每小题7分,共21分)20.(2019·江苏南京一中初二期中)在△A B C 中,A B =A C ,∠B A C =120°,A D ⊥B C ,且A D =A B ,∠ED F=60°,且∠ED F两边分别交边A B ,A C 于点E,F,求证:B E=A F.[答案]见解析[解析]由等腰三角形三线合一的性质可得∠B A D =∠C A D =60°,由∠B A D =60°,A B =A D 证明△A B D 是等边三角形,得到B D =A D ,再由角的关系得∠A B D =∠D A C ,∠ED B =∠A D F,最后由角边角证明△B D E≌△A D F,由全等三角形的性质即可得出结论.[详解]连接B D ,如图所示:∵A B =A C ,A D ⊥B C ,∴∠B A D =∠C A D =12∠B A C .∵∠B A C =120°,∴∠B A D =∠C A D =60°.∵∠B A D =60°,A B =A D ,∴△A B D 是等边三角形,∴B D =A D ,∠A B D =∠A D B =60°.∵∠D A C =60°,∴∠A B D =∠D A C .∵∠ED B +∠ED A =∠ED A +∠A D F=60°,∴∠ED B =∠FD A .在△B D E与△A D F中,∵EBD DAFAD BDEDB FDA∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△B D E≌△A D F(A SA ),∴B E=A F.[点睛]本题考查了等边三角形的判定与性质,全等三角的判定与性质和角的和差以及等腰三角形的性质,重点掌握全等三角形的判定与性质,难点是作辅助线构建全等三角形.21.(2019·江苏南京一中初二期中)如图所示,A D 为△A B C 的角平分线,D E⊥A B 于点E,D F⊥A C 于点F,连接EF交A D 于点O.求证:A D 垂直平分EF.[答案]见解析[解析]由A D 为△A B C 的角平分线,得到D E=D F,推出∠A EF=∠A FE,得到A E=A F,根据等腰三角形三线合一的性质即可推出结论.[详解]∵A D 为△A B C 的角平分线,D E⊥A B ,D F⊥A C ,∴D E=D F,∠A ED =∠A FD =90°,∴∠D EF=∠D FE,∴∠A EF=∠A FE,∴A E=A F.∵A D 为△A B C 的角平分线,∴A D 垂直平分EF.[点睛]本题考查了角平分线的性质,等腰三角形的判定与性质,解答此题的关键是证A E=A F.22.(2019·江苏初二期中)如图,△A B C 中,A D ⊥B C ,EF垂直平分A C ,交A C 于点F,交B C 于点E,且BD =D E.(1)若∠B A E=40°,求∠C 的度数;(2)若△A B C 周长为14C m,A C =6C m,求D C 长.[答案](1)35°(2)4C m[解析](1)根据线段垂直平分线和等腰三角形性质得出A B =A E=C E,求出∠A EB 和∠C =∠EA C ,即可得出答案;(2)根据已知能推出2D E+2EC =8C m,即可得出答案.[详解](1)∵A D 垂直平分B E,EF垂直平分A C ,∴A B =A E=EC ,∴∠C =∠C A E,∵∠B A E=40°,∴∠A ED =70°,∴∠C =12∠A ED =35°;(2)∵△A B C 周长14C m,A C =6C m,∴A B +B E+EC =8C m,即2D E+2EC =8C m,∴D E+EC =D C =4C m.[点睛]本题考查了等腰三角形的性质,线段垂直平分线性质,三角形外角性质的应用,主要考查学生综合运行性质进行推理和计算的能力.五、解答题三(每小题9分,共27分)23.(2019·江苏南京一中初二期中)如图,在长度为1个单位长度的小正方形组成的正方形中,点A ,B ,C 在小正方形的顶点上.(1)在图中画出与△A B C 关于直线l成轴对称的△A ′B ′C ′(2)三角形A B C 的面积为;(3)在直线l上找一点P,使PA +PB 的长最短.[答案](1)见解析;(2)12.5;(3)见解析[解析](1)根据网格结构找出点A 、B 、C 关于直线l成轴对称的点A '、B '、C '的位置,然后顺次连接即可;(2)利用△A B C 所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解;(3)连接B 与点A 关于直线l的对称点A ',根据轴对称确定最短路线,A 'B 与直线l的交点即为所求的点P的位置.[详解](1)△A 'B 'C '如图所示;(2)S △A B C =6×5﹣12×6×1﹣12×5×5﹣12×4×1=30﹣3﹣12.5﹣2=30﹣17.5=12.5. 故答案为:12.5;(3)如图,点P 即为所求的使P A +PB 的长最短的点.[点睛]本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解答本题的关键. 24.(2019·山东初二期中)如图,在等腰Rt ABC ∆中,90ACB ∠=︒,AC CB =,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且始终保持AD CE =.连接DE 、DF 、EF .(1)求证:ADF CEF ∆≅∆;(2)试证明DFE ∆是等腰直角三角形;(3)若5AD =,7BE =,求AC 的长.[答案](1)证明见解析;(2)证明见解析;(3)12.[解析](1)根据等腰直角三角形的性质等到A F =C F ,∠A =∠FC E ,根据SA S 即可得出结论;(2)由(1)可得:D F =EF ,∠A FD =∠C FE ,进而得出∠D FE =90°,即可得出结论;(3)由(1)可得:A D =C E ,则有A C =B C =C E +B E =A D +B E ,即可得出结论.[详解](1)在等腰直角ABC ∆中,90ACB ∠=︒,AC BC =,∴45A B ∠=∠=︒.又∵F 是AB 中点,∴45ACF FCB ∠=∠=︒,即45A FCE ACF ∠=∠=∠=︒,且AF CF =.在ADF ∆与CEF ∆中,∵AD CE A FCE AF CF =⎧⎪∠=∠⎨⎪=⎩,∴()ADF CEF SAS ∆≅∆;(2)由(1)可知ADF CEF ∆≅∆,∴DF FE =,∴DFE ∆是等腰三角形.又∵AFD CFE ∠=∠,∴AFD DFC CFE DFC ∠+∠=∠+∠,∴AFC DFE ∠=∠.∵90AFC ∠=︒,∴90DFE ∠=︒,∴DFE ∆是等腰直角三角形.(3)由(1)可知ADF CEF ∆≅∆,∴A D =C E .∵A C =B C ,∴A C =B C =C E +B E =A D +B E =5+7=12.[点睛]本题考查了学生对全等三角形的判定与性质和等腰直角三角形的理解和掌握,稍微有点难度,属于中档题.25.(2019·江苏初二期中)如图所示,点O 是等边三角形A B C 内一点,∠A OB =100°,∠B OC =α,D 是△A B C 外一点,且△A D C ≌△B OC ,连接OD .(1)求证:△C OD 是等边三角形;(2)当α=150°时,判断△A OD 的形状,并说明理由.(3)探究:当α=_____度时,△A OD 是等腰三角形.[答案](1)见解析 (2)直角三角形,见解析 (3)100或130或160[解析](1)根据全等三角形的性质得到∠OC B =∠D C A ,C O =C D ,证明∠D C A +∠A C O =60°,根据等边三角形的判定定理证明;(2)根据全等三角形的性质得到∠A D C =∠B OC =150°,结合图形计算即可;(3)分A D =A O 、D A =D O 、OD =A O 三种情况,根据等腰三角形的性质,三角形内角和定理计算.[详解](1)证明:∵△A D C ≌△B OC ,∴∠OC B =∠D C A ,C O=C D ,∵△A B C 是等边三角形,∴∠A C B =60°,即∠OC B +∠A C O=60°,∴∠D C A +∠A C O=60°,又C O=C D ,∴△C OD 是等边三角形;(2)解:∵△A D C ≌△B OC ,∴∠A D C =∠B OC =150°,∵△C OD 是等边三角形,∴∠OD C =60°,∴∠A D O=∠A D C −∠OD C =90°,∠A OD =360°−100°−150°−60°=50°,∴∠OA D =40°,△A OD 是直角三角形;(3)解:当A D =A O时,设∠A OD =∠A D O=x, 则∠A D C =∠A D O+∠OD C =x+60°,∴∠B OC =x+60°,则100°+x+60°+x+60°=360°,解得,x=70°,则α=60°+70°=130°,当D A =D O时,设∠A OD =∠D A O=x,则∠A D O=180°−2x,∴∠A D C =∠A D O+∠OD C =180°−2x+60°, ∴∠B OC =240°−2x,则100°+240°−2x+x+60°=360°,解得,x=40°,则α=240°−2x=160°,当OD =A O时,设∠OA D =∠A D O=x,则∠A D C =∠A D O+∠OD C =x+60°,∴∠B OC =x+60°,则100°+x+60°+180°−2x+60°=360°,解得,x=40°,则α=60°+40°=100°,综上所述,当α为100°或130°或160°时,△A OD 是等腰三角形.[点睛]本题考查的是等边三角形的性质,全等三角形的性质,等腰三角形的判定,掌握全等三角形的性质定理,灵活运用分情况讨论思想是解题的关键.。

数学八年级上册《轴对称》单元测试题(附答案)

数学八年级上册《轴对称》单元测试题(附答案)
A.3B.4C.8D.9
[答案]C
[解析]
[详解]试题解析:设A D=x,∵△A B C是等边三角形,∴∠A=∠B=∠C=60°,∵DE⊥A C于点E,EF⊥B C于点F,FG⊥A B,∴∠A DF=∠DEB=∠EFC=90°,∴BF=2x,∴B D=x,CF=12﹣2x,∴CE=2CF=24﹣4x,∴AE=12﹣CE=4x﹣12,∴A D=2AE=8x﹣24,∵A D+B D=A B,∴x+8x﹣24=12,∴x=4,∴B D=4.A D=A B-B D=12-4=8,故选C.
7.已知点P(5,-2)与点Q关于y轴对称,则Q点的坐标为()
A.(-5,2)B.(-5,-2)C.(5,2)D.(5,-2)
[答案]B
[解析]
[分析]
平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(-x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出Q的对称点的坐标.
A. 3B. 4C. 8D. 9
7.已知点P(5,-2)与点Q关于y轴对称,则Q点的坐标为()
A. (-5,2)B. (-5,-2)C. (5,2)D. (5,-2)
8.如图,在锐角△A B C中,A B=4 ,∠B A C=45°,∠B A C的平分线交B C于点D,M、N分别是A D和A B上的动点,则BM+MN的最小值是()
人教版八年级上册《轴对称》单元测试卷
(时间:120分钟 满分:150分)
一、单选题(共10题;共28分)
1.下列交通标志是轴对称图形的是( )
A. B. C. D.
2.下面的图形中,既是轴对称图形又是中心对称图形的是()
A. B. C. D.
3.如图所示是4×5的方格纸,请在其中选取一个白色的方格并涂黑,使图中阴影部分是一个轴对称图形,这样的涂法有( )

八年级上册数学《轴对称》单元检测题(含答案)

八年级上册数学《轴对称》单元检测题(含答案)
[详解]解:①原三角形是锐角三角形,最大角是72°的情况如图所示:
∠A B C=∠A C B=72°, ∠A=36°,A D=B D=B C;
②原三角形是直角三角形,最大角是90°的情况如图所示:
∠A B C=90°, ∠A=36°,A D=C D=B D;
③原三角形是钝角三角形,最大角是108°的情况如图所示:
如图,过点D作DF⊥A B于F,DG⊥A C的延长线于G,
∵BE、CE分别为∠A B C、∠A C B的平分线,
∴A D为∠B A C的平分线,
∴DF=DG,
∴∠FDG=360°-90°×2-60°=120°,
又∵∠B D C=120°,
∴∠B DF+∠C DF=120°,∠C DG+∠C DF=120°,
11.已知点M(1﹣2m,m﹣1)关于原点的对称点在第一象限,则m的取值范围是_____.
12.若一个等腰三角形中有两边长分别为2和5,则这个等腰三角形的周长为_________.
13.如下图,在Rt△A B C中,∠C=90°,DE垂直平分A B,垂足为E,D在B C上,已知∠C A D=32°,则∠B=_____度.
人教版八年级上册《轴对称》单元测试卷
(时间:120分钟 满分:150分)
一、选择题(共7小题,满分35分,每小题5分)
1.下列体育运动标志中,从图案看不是轴对称图形的有( )个.
A.4B.3C.2D.1
2.在平面直角坐标系中Biblioteka 点(1,1)关于y轴对称的点的坐标是
A (-1,-1)B. (1,-1)C. (-1,1)D. (1,1)
4.已知:如图,在△A B C中,边A B 垂直平分线分别交B C、A B于点G、D,若△AGC的周长为31Cm,A B=20Cm,则△A B C的周长为( )

八年级上册数学《轴对称》单元测试含答案

八年级上册数学《轴对称》单元测试含答案
②70°角为等腰三角形的顶角;
因此这个等腰三角形的顶角为40°或70°.
故选C.
[点睛]考查等腰三角形的性质,注意分类讨论,不要漏解.
11.点P( 2,-3 )关于x轴的对称点是()
A. (-2,3 )B. (2,3)C. (-2,-3 )D. (2,-3 )
[答案]B
[解析]
试题分析:关于x轴对称的两点横坐标相等,纵坐标互为相反数.
①▱A DEF 面积是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由;
②若点M、N、P分别为AE、A D、DE上动点,直接写出MN+MP的最小值.
参考答案
一、填空题
1.已知等腰三角形的周长为20,腰长为x,底边长为y,则y关于x的函数表达式是.
[答案]y=20-2x
[解析]
∵等腰三角形的周长为20,其中腰长为x,底边长为y,
4.等腰三角形的周长为16,其一边长为6,则另两边为.
[答案]6和4或5和5.
[解析]
当腰是6时,则另两边是4,6,且4+6>6,满足三边关系定理;
当底边是6时,另两边长是5,5,5+5>6,满足三边关系定理.
故该等腰三角形的另两边为6和4或5和5.
5.如图,在 中, , , ,则 的长为__________
二、选择题
9.以下微信图标不是轴对称图形的是()
A. B. C. D.
10.已知等腰三角形的一个内角是70°,则这个等腰三角形的顶角为()
A.70°B.40°C.70°或40°D.以上答案都不对
11.点P( 2,-)关于x轴 对称点是( )
A.(-2, 3 )B.(2,3)C.(-2,-3 )D.(2,-3 )

八年级数学人教版上册同步练习5轴对称(单元检测)(解析版)

八年级数学人教版上册同步练习5轴对称(单元检测)(解析版)

13.5轴对称(单元检测)一、单选题(共36分)1.(本题3分)如图所示的正方形网格中,网格线的交点为格点,已知A、B是两个定格点,如果C也是图中的格点,且使得ABC为等腰三角形,则点C的个数是()A.6个B.7个C.8个D.9个【答案】C【分析】分AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.【详解】①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.具体如图所示:故选:C.【点评】本题考查了等腰三角形的判定,熟练掌握网格结构的特点是解题的关键,要注意分AB是腰长与底边两种情况讨论求解.,连结BF,2.(本题3分)如图,AD是ABC的中线,E,F分别是AD和AD延长线上的点,且DE DFCE.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个【答案】C∆≅∆,则可对④进行判断;利用全等三角形的性质可对①进行判【分析】根据“SAS”可证明CDE BDF断;由于AE与DE不能确定相等,则根据三角形面积公式可对②进行判断;根据全等三角形的性质得到∠=∠,则利用平行线的判定方法可对③进行判断.ECD FBD∆的中线,【详解】AD是ABCCD BD∴=,∠=∠,=,CDE BDFDE DF∴∆≅∆,所以④正确;()CDE BDF SAS∴=,所以①正确;CE BF∵与DE不能确定相等,AE∆面积不一定相等,所以②错误;ACE∴∆和CDE∆≅∆,CDE BDF∴∠=∠,ECD FBD∴,所以③正确;BF CE//故选:C.【点评】本题考查了全等三角形的判定,熟悉全等三角形的5种判定方法是解题的关键.3.(本题3分)如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后将落入的球袋是()A.1 号袋B.2 号袋C.3 号袋D.4 号袋【答案】B【分析】根据轴对称的性质画出图形即可得出正确选项.【详解】根据轴对称的性质可知,台球走过的路径为:∴最后落入2号球袋,故选B.【点评】本题考查轴对称图形的定义与判定,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴;画出图形是正确解答本题的关键.4.(本题3分)下列说法中,正确的有()①等腰三角形的两腰相等;②等腰三角形底边上的中线与底边上的高相等;③等腰三角形的两底角相等;④等腰三角形两底角的平分线相等.A.1个B.2个C.3个D.4个【答案】D【解析】分析:等腰三角形中顶角平分线,底边中线及高互相重合,即三线合一,两腰上的角平分线、中线及高都相等.详解:①等腰三角形的两腰相等;正确;②等腰三角形底边上的中线与底边上的高相等;正确;③等腰三角形的两底角相等;正确;④等腰三角形两底角的平分线相等.正确.故选D.点睛:本题主要考查了等腰三角形的性质以及命题与定理的概念,能够熟练掌握.,D是BC中点,下列结论,不一定正确的是()5.(本题3分)如图,△ABC中,AB ACA .AD BC ⊥B .AD 平分BAC ∠ C .2AB BD = D .B C ∠=∠【答案】C 【分析】根据等边对等角和等腰三角形三线合一的性质解答.【详解】∵AB=AC ,∴∠B=∠C ,∵AB=AC ,D 是BC 中点,∴AD 平分∠BAC ,AD ⊥BC ,所以,结论不一定正确的是AB=2BD .故选:C .【点评】本题考查了等腰三角形的性质,主要利用了等边对等角的性质以及等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.6.(本题3分)等腰三角形ABC 中,AB AC =,一边上的中线BD 将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为( )A .7B .7或11C .11D .7或10【答案】B【分析】根据已知条件中的15或12两个部分,哪一部分是腰长与腰长一半的和不明确,则需分两种情况讨论.【详解】根据题意,如图所示:①当AC+12AC=15,解得AC=10,所以底边长=12-12×10=7; ②当AC+12AC=12,解得AC=8, 所以底边长=15-12×8=11. 所以底边长等于7或11.故选:B .【点评】考查了等腰三角形的性质和三角形的三边关系,解题关键抓住在已知条件没有明确给出哪一部分长要一定要想到两种情况,需采用分类进行讨论,还应验证各种情况是否能构成三角形.7.(本题3分)如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 的对称点P 1、P 2,连接P 1,P 2交 OA 于M ,交OB 于N ,若P 1P 2=6,则△PMN 的周长为( )A .4B .5C .6D .7【答案】C【解析】 试题分析:根据对称图形的性质可得:PM=1P M ,PN=2P N ,则△PMN 的周长=PM+MN+PN=1P M+MN+2P N=1P 2P =6.考点:对称的性质8.(本题3分)如果一个三角形的外角平分线与这个三角形一边平行,则这个三角形一定是( ) A .锐角三角形B .等腰三角形C .等边三角形D .等腰直角三角形 【答案】B【分析】可依据题意线作出图形,结合图形利用平行线的性质和角平分线的定义可得∠B=∠A ,利用“等角对等边”可得其为等腰三角形.【详解】如图,DC 平分∠ACE ,且AB ∥CD ,∴∠ACD =∠DCE ,∠A =∠ACD ,∠B =∠DCE ,∴∠B =∠A ,∴△ABC 为等腰三角形.故选B .【点评】本题考查了平行线的性质和等腰三角形的判定,进行角的等量代换是正确解答本题的关键. 9.(本题3分)将点A (2,3)向左平移2个单位长度得到点A’,点A’关于x 轴的对称点是A’’,则点A’’的坐标为( )A .(0,-3)B .(4,-3)C .(4,3)D .(0,3)【答案】A【详解】试题解析:∵点A (2,3)向左平移2个单位长度得到点A′,∴点A′的横坐标为2-2=0,纵坐标不变,即点A′的坐标为(0,3).点A ′关于x 轴的对称点是A ″,则点A ″的坐标为(0,-3).故选A .10.(本题3分)已知,在△ABC 中,AB AC =,如图,(1)分别以B ,C 为圆心,BC 长为半径作弧,两弧交于点D ; (2)作射线AD ,连接BD ,CD .根据以上作图过程及所作图形,下列结论中错误..的是( )A .BAD CAD ∠=∠B .△BCD 是等边三角形C .AD 垂直平分BCD .ABDC S AD BC =【答案】D 【分析】根据作图过程及所作图形可知BD BC CD ==,得出△BCD 是等边三角形;又因为AB AC =,,BD CD AD AD ==,推出ABD ACD ≅,继而得出BAD CAD ∠=∠;根据,BAD CAD ∠=∠,可知AD 为BAC ∠的角平分线,根据三线合一得出AD 垂直平分BC ;四边形ABCD 的面积等于ABD △的面积与ACD △的面积之和,为12AD BC ⋅. 【详解】∵BD BC CD ==∴△BCD 是等边三角形故选项B 正确;∵AB AC =,,BD CD AD AD ==∴ABD ACD ≅∴BAD CAD ∠=∠故选项A 正确;∵BAD CAD ∠=∠,AB AC =∴据三线合一得出AD 垂直平分BC故选项C 正确;∵四边形ABCD 的面积等于ABD △的面积与ACD △的面积之和 ∴12ABCD S AD BC =⋅ 故选项D 错误.故选:D .【点评】本题考查的知识点是等边三角形的判定、全等三角形的判定及性质、线段垂直平分线的判定以及四边形的面积,考查的范围较广,但难度不大.11.(本题3分)如图,在ABC ∆中,4BC =,BD 平分ABC ∠,过点A 作AD BD ⊥于点D ,过点D 作//DE CB ,分别交AB 、AC 于点E 、F ,若2EF DF =,则AB 的长为( )A .10B .8C .7D .6【答案】D【分析】延长AD 、BC 交于点G ,根据三线合一性质推出ABG ∆是等腰三角形,从而可得D 是AG 的中点,E 是AB 的中点,再利用中位线定理即可得.【详解】如图,延长AD 、BC 交于点G∵BD 平分ABC ∠,AD BD ⊥于点D,90ABD GBD ADB GDB ∴∠=∠∠=∠=︒∴BAD G ∠=∠AB BG ∴=,D 是AG 的中点∵//DE BG∴E 是AB 的中点,F 是AC 的中点,DE 是ABG ∆的中位线,EF 是ABC ∆的中位线 ∴12,22EF BC BG DE === 又∵2EF DF =∴1DF =∴3DE EF DF =+=∴26BG DE ==∴6AB =故选:D.【点评】本题考查了等腰三角形的判定定理与性质、中位线定理,通过作辅助线,构造等腰三角形是解题关键.错因分析:容易题.失分原因是对特殊三角形的性质及三角形的重要线段掌握不到位.12.(本题3分)如图,AB ⊥AC ,CD 、BE 分别是△ABC 的角平分线,AG ∥BC ,AG ⊥BG ,下列结论:①∠BAG =2∠ABF ;②BA 平分∠CBG ;③∠ABG =∠ACB ;④∠CFB =135°,其中正确的结论有( )个A.1 B.2 C.3 D.4【答案】C【分析】由已知条件可知∠ABC+∠ACB=90°,又因为CD、BE分别是△ABC的角平分线,所以得到∠FBC+∠FCB=45°,所以求出∠CFB=135°;有平行线的性质可得到:∠ABG=∠ACB,∠BAG=2∠ABF.所以可知选项①③④正确.【详解】∵AB⊥AC.∴∠BAC=90°,∵∠BAC+∠ABC+∠ACB=180°,∴∠ABC+∠ACB=90°∵CD、BE分别是△ABC的角平分线,∴2∠FBC+2∠FCB=90°∴∠FBC+∠FCB=45°∴∠BFC=135°故④正确.∵AG∥BC,∴∠BAG=∠ABC∵∠ABC=2∠ABF∴∠BAG=2∠ABF 故①正确.∵AB⊥AC,∴∠ABC+∠ACB=90°,∵AG⊥BG,∴∠ABG+∠GAB=90°∵∠BAG=∠ABC,∴∠ABG=∠ACB 故③正确.故选C.【点评】本题考查了等腰三角形的判定与性质,平行线的性质.掌握相关的判定定理和性质定理是解题的关键.二、填空题目(共12分)13.(本题3分)如图,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 的方向平移2个单位后,得到A B C ''',连接A C ',则A B C ''的周长为________.【答案】12【分析】根据平移的性质得2BB '=,4A B AB ''==,=60A B C B ∠''∠=︒,则可计算624B C BC BB '=-'=-=,则4A B B C ''='=,可判断A B C ''△为等边三角形,继而可求得A B C ''△的周长.【详解】ABC 平移两个单位得到的A B C ''',2BB ∴'=,AB A B ='',4AB =,6BC =,4A B AB ∴''==,624B C BC BB '=-'=-=,4A B B C ∴''='=,又60B ∠=︒,60A B C ∴∠''=︒,A B C ∴''是等边三角形,A B C ∴''的周长为4312⨯=.故答案为:12.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.14.(本题3分)如图,在Rt △ACB 中,∠ACB =90°,∠A =25°,D 是AB 上一点,将Rt △ABC 沿CD 折叠,使点B 落在AC 边上的B ′处,则∠ADB ′等于_____.【答案】40°.【详解】∵将Rt△ABC沿CD折叠,使点B落在AC边上的B′处,∴∠ACD=∠BCD,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°﹣25°=65°,∴∠BDC=∠B′DC=180°﹣45°﹣65°=70°,∴∠ADB′=180°﹣70°﹣70°=40°.故答案为40°.15.(本题3分)如图,在△ABC中,AB=10,AC=8,∠ABC、∠ACB的平分线相交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.则△AMN的周长为_______.【答案】18【分析】由在△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作MN∥BC,易证得△BOM与△CON是等腰三角形,继而可得△AMN的周长等于AB+AC.【详解】∵在△ABC中,∠ABC、∠ACB的平分线相交于点O,∴∠ABO=∠OBC,∵MN∥BC,∴∠MOB=∠OBC,∴∠ABO=∠MOB,∴BM=OM,同理CN=ON,∴△AMN的周长是:AM+NM+AN=AM+OM+ON+AN=AM+BM+CN+AN=AB+AC=10+8=18.故答案为:18.【点评】本题考查等腰三角形的判定与性质,角平分线的性质,平行线的判定,三角形周长的求法,等量代换等知识点.16.(本题3分)如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若,则BC的长是_____.【解析】【分析】由折叠的性质可知AE=CE,再证明△BCE是等腰三角形即可得到BC=CE,问题得解.【详解】∵AB=AC,∠A=36°,∴∠B=∠ACB=180362︒-︒=72°,∵将△ABC中的∠A沿DE向下翻折,使点A落在点C处,∴AE=CE,∠A=∠ECA=36°,∴∠CEB=72°,∴,【点睛】本题考查了等腰三角形的判断和性质、折叠的性质以及三角形内角和定理的运用,证明△BCE是等腰三角形是解题的关键.三、解答题(共72分)17.(本题8分)用一条长为18的绳子围成一个等腰三角形.(1)若等腰三角形有一条边长为4,它的其它两边是多少?(2)若等腰三角形的三边长都为整数,请直接写出所有能围成的等腰三角形的腰长.【答案】(1)其他两边分别为4和7;(2)y =2时,x =8,y =4时,x =7,y =8时,x =5.【分析】(1)根据等腰三角形的性质即可求出答案.(2)设等腰三角形的三边长为x 、x 、y ,根据题意可知y <9,y 是2的倍数,从而可求出答案.【详解】(1)当等腰三角形的腰长为4,∴底边长为18﹣4×2=10,∵4+4<10,∴4、4、10不能组成三角形,当等腰三角形的底边长为4,∴腰长为(18﹣4)÷2=7,∵4+7>7,∴4、7、7能组成三角形,综上所述,其他两边分别为4和7.(2)设等腰三角形的三边长为x 、x 、y ,由题意可知:2x +y =18,且2x >y ,∴y <9,∵x =18y 2-=9﹣y 2,x 与y 都是整数, ∴y 是2的倍数,∴y =2时,x =8,y =4时,x =7,y =8,x =5.【点评】本题考查等腰三角形,解题的关键是熟练运用等腰三角形的性质,本题属于基础题型. 18.(本题8分)如图,一个四边形纸片ABCD ,90B D ∠=∠=︒,把纸片按如图所示折叠,使点B 落在AD 边上的'B 点,AE 是折痕.(1)判断'B E 与DC 的位置关系,并说明理由;(2)如果130C ∠=︒,求AEB ∠的度数.【答案】(1)B′E ∥DC ,理由见解析;(2)65°【分析】(1)由于AB '是AB 的折叠后形成的,可得90AB E B D ∠'=∠=∠=︒,可得B′E ∥DC ; (2)利用平行线的性质和全等三角形求解.【详解】(1)由于AB '是AB 的折叠后形成的,90AB E B D ∠'=∠=∠=︒,//B E DC ∴';(2)折叠,ABE ∴∆≅△AB E ',AEB AEB ∴∠'=∠,即12AEB BEB ∠=∠', //B E DC ',130BEB C ∴∠'=∠=︒,1652AEB BEB ∴∠=∠'=︒. 【点评】本题考查了三角形全等的判定及性质;把纸片按如图所示折叠,使点B 落在AD 边上的B ′点,则ABE ∆≅△AB E ',利用全等三角形的性质和平行线的性质及判定求解.19.(本题8分)如图,点D ,E 在△ABC 的边BC 上,AB =AC ,AD =AE ,求证:BD =CE.【答案】见解析【分析】如图,过点 A 作 ⊥AP BC 于 P ,根据等腰三角形的三线合一得出BP=PC ,DP=PE ,进而根据等式的性质,由等量减去等量差相等得出BD=CE .【详解】如图,过点A 作⊥AP BC 于 P .∵AB AC =,∴BP PC =;∵AD AE =,∴DP PE =,∴BP DP PC PE -=-,∴BD=CE .【点评】本题考查了等腰三角形的性质,注意:等腰三角形的底边上的高,底边上的中线,顶角的平分线互相重合.20.(本题8分)如图所示,一个四边形纸片ABCD ,∠B=∠D=90°,把纸片按如图所示的方式折叠,使点B 落在AD 边上的B′点,AE 是折痕.(1)试判断B′E 与DC 的位置关系;(2)如果∠C=130°,求∠AEB 的度数.【答案】(1)B 'E//DC ;(2)∠AEB=65°【分析】(1)先由折叠性质可知90AB E B '∠=∠=︒,再由∠D=90°可得AB E D ∠'=∠,进而求解即可; (2)先运用平行线的性质可得130B EB C ∠=∠='︒,再由折叠的性质可得AEB AEB '∠=∠,进而求解即可.【详解】(1)B 'E ∥DC由折叠可知∠A B 'E=∠B=90°∵∠D=90°∴∠A B 'E=∠D∴B 'E ∥DC(2)∵B′E ∥DC∴∠B'EB=∠C=130°由折叠可知∠AEB=∠AE B',∴∠AEB=12∠B'EB=12×130°=65°故答案为:65°【点评】本题主要是折叠的性质以及平行线的判定和性质,根据折叠的性质,找到折叠后相等的角和边;同位角相等,两直线平行,两直线平行,同位角相等.21.(本题8分)如图,点P是∠AOB外的一点,点Q与P关于OA对称,点R与P关于OB对称,直线QR 分别交OA、OB于点M、N,若PM=PN=4,MN=5.(1)求线段QM、QN的长;(2)求线段QR的长.【答案】(1)4,1;(2)5【分析】(1)利用轴对称的性质求出MQ即可解决问题;(2)利用轴对称的性质求出NR即可解决问题.【详解】(1)∵P,Q关于OA对称,∴OA垂直平分线段PQ,∴MQ=MP=4,∵MN=5,∴QN=MN﹣MQ=5﹣4=1.(2)∵P,R关于OB对称,∴OB垂直平分线段PR,∴NR=NP=4,∴QR=QN+NR=1+4=5.【点评】本题考查轴对称的性质,解题的关键是理解题意,熟练掌握轴对称的性质属于中考常考题型. 22.(本题10分)如图,点O 是等边ABC 内一点,AOB 110∠=,BOC α∠=.将BOC 绕点C 逆时针旋转60得ADC ,连接OD .()1求证:DOC 是等边三角形;()2当AO 5=,BO 4=,α150=时,求CO 的长; ()3探究:当α为多少度时,AOD 是等腰三角形.【答案】()1证明见解析;()23CO =;()3125α=、110α=或140α=.【分析】()1由旋转的性质可以知道CO CD =,D 60OC ∠=,可判断COD 是等边三角形; ()2由()1可知D 60OC ∠=,当α150=时,90ADO ADC CDO ∠∠∠=-=,可判断AOD 为直角三角形; ()3?根据AOD 是等腰三角形,推出两腰相等,分三种情况进行讨论,利用旋转和全等的性质即可得出答案. 【详解】()1∵将BOC 绕点C 按顺时针方向旋转60得ADC ,∴BOC ADC ≅,D 60OC ∠=,∴CO CD =.∴COD 是等边三角形;()2∵ADC BOC ≅,∴4DA OB ==,∵COD 是等边三角形,∴60CDO ∠=,又150ADC ∠∠α==,∴90ADO ADC CDO ∠∠∠=-=,∴AOD 为直角三角形.又5AO =,4AD =,∴3OD =,∴3CO OD ==;()3若AOD 是等腰三角形,所以分三种情况:①AOD ADO ∠∠=②ODA OAD ∠∠=③AOD DAO ∠∠=,∵110AOB ∠=,60COD ∠=,∴36011060190BOC AOD AOD ∠∠∠=---=-,而BOC ADC ADO CDO ∠∠∠∠==+,由①AOD ADO ∠∠=可得60BOC AOD ∠∠=+,求得125α=;由②ODA OAD ∠∠=可得11502BOC AOD ∠∠=-求得110α=;由③AOD DAO ∠∠=可得2402BOC AOD ∠∠=-,求得140α=; 综上可知125α=、110α=或140α=.【点评】本题主要考查旋转的性质,全等三角形的判定与性质,等腰(边)三角形的判定与性质,掌握图形的关系是解题的关键.23.(本题10分)如图,在△ABC 中,AB=AC ,∠BAC 和∠ACB 的平分线相交于点D ,∠ADC=125°.求∠ACB 和∠BAC 的度数.【答案】70°、40°.【详解】试题分析:根据等腰三角形三线合一的性质可得AE ⊥BC ,再求出∠CDE ,然后根据直角三角形两锐角互余求出∠DCE ,根据角平分线的定义求出∠ACB ,再根据等腰三角形两底角相等列式进行计算即可求出∠BAC.试题解析:∵AB=AC,AE平分∠BAC,∴AE⊥BC(等腰三角形三线合一),∵∠ADC=125°,∴∠CDE=55°,∴∠DCE=90°﹣∠CDE=35°,又∵CD平分∠ACB,∴∠ACB=2∠DCE=70°,又∵AB=AC,∴∠B=∠ACB=70°,∴∠BAC=180﹣(∠B+∠ACB)=40°.【点睛】本题考查了等腰三角形三线合一的性质,等腰三角形两底角相等的性质,角平分线的定义,是基础题,准确识图并熟记性质是解题的关键.24.(本题12分)已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F,(1)如图1,若∠ACD=60°,则∠AFB=;如图2,若∠ACD=90°,则∠AFB=;如图3,若∠ACD=120°,则∠AFB=;(2)如图4,若∠ACD=α,则∠AFB=(用含α的式子表示);(3)将图4中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),变成如图5所示的情形,若∠ACD=α,则∠AFB与α的有何数量关系?并给予证明.【答案】(1)120°,90°,60°;(2)180°﹣α;(3)∠AFB=180°﹣α,证明详见解析.【分析】(1)如图1,证明△ACE≌△DCB,根据全等三角形的性质可得∠EAC=∠BDC,再根据∠AFB是△ADF的外角求出其度数即可;如图2,证明△ACE≌△DCB,得出∠AEC=∠DBC,又有∠FDE=∠CDB,进而得出∠AFB=90°;如图3,证明△ACE≌△DCB,得出∠EAC=∠BDC,又有∠BDC+∠FBA=180°-∠DCB得到∠FAB+∠FBA=120°,进而求出∠AFB=60°;(2)由∠ACD=∠BCE得到∠ACE=∠DCB,再由三角形的内角和定理得∠CAE=∠CDB,从而得出∠DFA=∠ACD,得到结论∠AFB=180°-α;(3)由∠ACD=∠BCE得到∠ACE=∠DCB,通过证明△ACE≌△DCB得∠CBD=∠CEA,由三角形内角和定理得到结论∠AFB=180°-α.【详解】(1)如图1,CA=CD,∠ACD=60°,所以△ACD是等边三角形.∵CB=CE,∠ACD=∠BCE=60°,所以△ECB是等边三角形.∵AC=DC,∠ACE=∠ACD+∠DCE,∠BCD=∠BCE+∠DCE,又∵∠ACD=∠BCE,∴∠ACE=∠BCD.∵AC=DC,CE=BC,∴△ACE≌△DCB.∴∠EAC=∠BDC.∠AFB是△ADF的外角.∴∠AFB=∠ADF+∠FAD=∠ADC+∠CDB+∠FAD=∠ADC+∠EAC+∠FAD=∠ADC+∠DAC=120°.如图2,∵AC=CD,∠ACE=∠DCB=90°,EC=CB,∴△ACE≌△DCB.∴∠AEC=∠DBC,又∵∠FDE=∠CDB,∠DCB=90°,∴∠EFD=90°.∴∠AFB=90°.如图3,∵∠ACD=∠BCE,∴∠ACD﹣∠DCE=∠BCE﹣∠DCE.∴∠ACE=∠DCB.又∵CA=CD,CE=CB,∴△ACE≌△DCB.∴∠EAC=∠BDC.∵∠BDC+∠FBA=180°﹣∠DCB=180°﹣(180﹣∠ACD)=120°,∴∠FAB+∠FBA=120°.∴∠AFB=60°.故填120°,90°,60°.(2)∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE.∴∠ACE=∠DCB.∴∠CAE=∠CDB.∴∠DFA=∠ACD.∴∠AFB=180°﹣∠DFA=180°﹣∠ACD=180°﹣α.(3)∠AFB=180°﹣α;证明:∵∠ACD=∠BCE=α,则∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB.在△ACE和△DCB中,则△ACE≌△DCB(SAS).则∠CBD=∠CEA,由三角形内角和知∠EFB=∠ECB=α.∠AFB=180°﹣∠EFB=180°﹣α.【点评】本题考查了全等三角形的性质和判定、三角形的外角性质及三角形的内角和定理,熟练运用三角形全等的判定方法证明三角形全等,利用全等三角形的性质解决问题是解决这类题目的基本思路.祝福语祝你考试成功!。

数学八年级上册《轴对称》单元综合测试题(含答案)

数学八年级上册《轴对称》单元综合测试题(含答案)
故答案为100°.
[点睛]此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.
12.如图所示,分别作出点P关于OA,OB的对称点P1、P2,连接P1,P2,分别交OA、OB于点M、N,若P1P2=5Cm,则△PMN的周长为______________.
[答案]5
A -4031B. -1C. 1D. 4031
3.如图,已知△A B C,按以下步骤作图:①分别以B,C为圆心,以大于 B C的长为半径作弧,两弧相交于两点M,N;②作直线MN交A B于点D,连接CD.若C D=A C,∠A=50°,则∠A C B的度数为( )
A. 90°B. 95°C. 105°D. 110°
∴A=2016,B=-2015,
∴A+B=2016-2015=1,
故选C.
[点睛]此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.
3.如图,已知△A B C,按以下步骤作图:①分别以B,C为圆心,以大于 B C的长为半径作弧,两弧相交于两点M,N;②作直线MN交A B于点D,连接CD.若C D=A C,∠A=50°,则∠A C B的度数为( )
A. 4B. 5C. 6D. 7
[答案]C
[解析]
试题分析:根据对称图形的性质可得:PM= M,PN= N,
则△PMN的周长=PM+MN+PN= M+MN+ N= =6.
考点:对称的性质
7.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的△A DH中( )
[详解]解:关于y轴对称的点的坐标特征是纵坐标不变,横坐标互为相反数,

数学八年级上册《轴对称》单元综合测试(附答案)

数学八年级上册《轴对称》单元综合测试(附答案)
[答案]C
[解析]
[分析]
根据等边三角形三线合一得到B D垂直平分C A,所以C D= ,另有 ,从而求出BE的长度.
[详解]解:由于△A B C是等边三角形,则其三边相等,B D也是A C的垂直平分线,即A B=B C=C A=6,A D=D C=3,已知CE=C D,则CE=3.而BE=B C+CE,因此BE=6+3=9.
其中C9本题主要考查等腰三角形的判定,根据题意画圆是解题的关键.
12.室内墙壁上挂一平面镜,小明在平面镜内看到他背后墙上时钟的示数如图所示,则这时的实际时间应是()
A.3:40B.8:20C.3:20D.4:20
[答案]A
[解析]
根据镜面对称的性质,分析可得题中所显示的时刻与3:40成轴对称,所以此时实际时刻为3:40.
故选A.
13.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()
A.1个B.2个C.3个D.3个以上
[答案]D
[解析]
[详解]试解:如图在OA、OB上截取OE=OF=OP,作∠MPN=60°.
∵OP平分∠AOB,
[答案]A
[解析]
[分析]
根据轴对称的定义和性质进行判断.
[详解]A.轴对称图形的对称点不一定在对称轴的两侧,还可以在对称轴上;符合题意
B.两个关于某直线对称的图形一定全等;正确,不符合题意
C.两个成轴对称的图形对应点的连线的垂直平分线是它们的对称轴;正确,不符合题意
D.平面上两个全等 图形不一定关于某直线对称;正确,不符合题意
先根据三角形内角和定理求出底角 度数,再利用直角三角形两锐角互余即可求出.

2017-2018学年八年级数学上册 第十三章 轴对称 微专题 构造等腰三角形技巧(四)截长补短法同步精练 (新版

2017-2018学年八年级数学上册 第十三章 轴对称 微专题 构造等腰三角形技巧(四)截长补短法同步精练 (新版

微专题构造等腰三角形技巧(四)截长补短法【方法技巧】运用截长补短法在构造全等三角形的同时,也可构造出等腰三角形来实现边、角之间的转换.基本图形1:如图1,△ABC中,∠C=36°,CA=CB,∠1=∠2,则CD=AD=AB.基本图形2:如图2,△ABC中,∠C=90°,AC=BC,∠1=∠2,DE⊥AB于点E,则AC =BC=AE,CD=DE=BE.一、90°的等腰三角形1.如图,△ABC中,AC=BC,AD平分∠BAC交BC于点D,若AC+CD=AB,求∠C的度数.(导学号:58024185)【解题过程】解:方法一:(截长法)在AB上截取AE=AC,则△ADC≌△ADE,∴CD=DE.∵AC+CD=AB,∴CD=BE,∴DE=BE.设∠BAC=∠B=x,则∠AED=2x=∠C,∴x+x+2x=180°,x=45°,∴∠ACB=90°;方法二:(补短法)延长AC至M,使CM=CD,连接DM,证△ABD≌△AMD也可解决问题.二、100°的等腰三角形2.如图,△ABC中,AB=AC,∠A=100°,CD平分∠ACB交AB于点D,E为BC上一点,BE=DE.求证:BC=CD+AD.(导学号:58024186)【解题过程】证明:方法一:(截长法)在CB上截取CF=AC,则△ACD≌△FCD,AD=DF,再证∠DEF=80°=∠DFE,∴DF=DE.又易证CD=CE,∴BC=CE+BE=CD+AD;方法二:(作垂线)过D作DM⊥BC于M,作DN⊥AC于N,证△DEM≌△DAN,∴AD=DE=BE,再证CD=CE即可.三、108°的等腰三角形3.如图,△ABC中,CA=CB,∠ACB=108°,BD平分∠ABC交AC于点D,求证:AB=AD+BC.(导学号:58024187)【解题过程】证明:方法一:(截长法),在AB上截取BE=BC,连接DE,△BCD≌△BED,易求∠AED=∠ADE=72°,∴AD=AE,∴AB=BE+AE=BC+AD;方法二:(补短法),延长BC至F,使BF=AB,连接FD,只证AD=DF=CF即可.。

第15章 轴对称图形和等腰三角形数学八年级上册-单元测试卷-沪科版(含答案)

第15章 轴对称图形和等腰三角形数学八年级上册-单元测试卷-沪科版(含答案)

第15章轴对称图形和等腰三角形数学八年级上册-单元测试卷-沪科版(含答案)一、单选题(共15题,共计45分)1、如图,矩形ABCD中,E是AB的中点,将△BCE沿CE翻折,点B落在点F处,tan∠BCE= .设AB=x,△ABF的面积为y,则y与x的函数图象大致为A. B. C. D.2、下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C.D.3、如图,将一个三角形纸片ABC沿过点B的直线折叠,使点C落在AB边上的点E处,折痕为BD,则下列结论一定正确的是()A.AD=BDB.AE=ACC.ED+EB=BDD.AE+CB=AB4、如图,在△ABC中,AB=6,AC=4,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC 分别交AB、AC于M、N,则△AMN的周长为()A.10B.6C.4D.不确定5、如图,折叠长方形纸片ABCD的一边AD,使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,则折痕AE的长为()A. cmB. cmC.12cmD.13 cm6、下列图形中,是轴对称图形的是()A. B. C. D.7、如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF 交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF=.在以上4个结论中,正确的有()A.1  B.2C.3D.48、如图,已知,点P在边上,,点M,N在边上,,若,则()A.8B.6C.5D.39、如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D 恰好落在BC边上的G点处,若矩形面积为4 且∠AFG=60°,GE=2BG,则折痕EF的长为()A.1B.C.2D.10、如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为()A. B.1 C. D.211、如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,以大于BC的长为半径作弧,两弧相交于点M和N ;②作直线MN交AC于点D,连接BD。

八年级上册数学《轴对称》单元综合检测(附答案)

八年级上册数学《轴对称》单元综合检测(附答案)
11.如图,将长方形A B C D对折,得折痕PQ,展开后再沿MN翻折,使点C恰好落在折痕PQ上的点C′处,点D落在D′处,其中M是B C的中点且MN与折痕PQ交于F,连接A C′,B C′,则图中共有等腰三角形的个数是( )
A.1B.2C.3D.4
12. 如图,过边长为1的等边△A B C的边A B上一点P,作PE⊥A C于E,Q为B C延长线上一点,当PA=CQ时,连PQ交A C边于D,则DE的长为()
故选C.
4.如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后将落入的球袋是()
A.1号袋B.2号袋C.3号袋D.4号袋
[答案]B
[解析]
[分析]
根据轴对称的性质画出图形即可得出正确选项.
[详解]解:根据轴对称的性质可知,台球走过的路径为:
(1)请用尺规作图法作出B C的垂直平分线DE,垂足为D,交A C于点E,(保留作图痕迹,不写作法);
(2)请用尺规作图法作出∠C 角平分线CF,交A B于点F,(保留作图痕迹,不写作法);
(3)请用尺规作图法在B C上找出一点P,使△PEF的周长最小.(保留作图痕迹,不写作法).
四、解答题:
20.已知点A(2A-B,5+A),B(2B-1,-A+B).
∴∠NMC=15°+15°=30°,
∴BM所在的直线是△C DM的角平分线,
又∵CM=DM,
∴BM所在的直线垂直平分C D;
(4)根据(2)同理可求∠D A B=105°,∠B C D=75°,
∴∠D A B+∠A B C=180°,
∴A D∥B C,
24.如图点O是等边 内一点, ,∠A C D=∠B CO,OC=C D,

沪科版八年级数学上册 第15章 轴对称图形与等腰三角形 单元测试卷

沪科版八年级数学上册 第15章 轴对称图形与等腰三角形 单元测试卷

1沪科版八年级数学上册 第15章 轴对称图形与等腰三角形单元测试卷满分:150分 时间:120分钟一、选择题(本大题共10小题,每小题4分,共40分) 1.下列体育运动图标中,是轴对称图形的是( )A. B. C. D .2.如图,在△ABC 中,D 是AB 的垂直平分线与BC 的交点,∠CAD =80°,∠C =50°,则∠B 的度数是( ) A .25°B .30°C .40°D .50°(第2题) (第4题) (第5题) (第7题)3.如果一个等腰三角形的两边长为2和5,那么这个三角形的周长是( )A .9B .12C .9或12D .不确定4.如图,已知在等腰三角形ABC 中,AB =AC ,若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是( ) A .AE =ECB .AE =BEC .∠EBC =∠AD .∠EBC =∠ABE5.如图,等腰三角形ABC 的底边BC 长为4,腰长为6,EF 垂直平分AB ,P 为直线EF 上一动点,则BP +CP 的最小值为( ) A .10B .6C .4D .26.下列对△ABC 的判断,错误的是( )A .若∠A ∶∠B ∶∠C =1∶2∶3,则△ABC 是直角三角形 B .若AB =BC ,∠C =50°,则∠B =50°C .若AB =BC ,∠A =60°,则△ABC 是等边三角形D .若∠A =20°,∠C =80°,则△ABC 是等腰三角形27.如图,在钝角三角形ABC 中,∠ABC 为钝角,以点B 为圆心,AB 长为半径画弧,再以点C 为圆心,AC 长为半径画弧,两弧交于点D ,连接AD ,BD ,CD ,CB 的延长线交AD 于点E .下列结论不一定正确的是( ) A .CE 垂直平分AD B .CE 平分∠ACD C .△ABD 是等腰三角形D .△ACD 是等边三角形8.如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,CD 是斜边AB 上的高,AD=3 cm ,则AB 的长度是( ) A .3 cmB .6 cmC .9 cmD .12 cm(第8题) (第9题) (第10题)9.如图,AI 、BI 、CI 分别平分∠BAC 、∠ABC 、∠ACB ,ID ⊥BC ,△ABC 的周长为18,ID =3,则△ABC 的面积为( ) A .18B .30C .24D .2710.如图,Rt △ABC 中,∠C =90°,BG 平分∠ABC ,交AC 于点G ,若CG =1,P 为AB 上一动点,则GP 的最小值为( ) A .1B.12C .2D .无法确定二、填空题(本大题共5小题,每小题5分,共25分)11.若(a -4)2+|b -2|=0,则有两边长为a 、b 的等腰三角形的周长为__________. 12.如图,在△ABC 中,AB =AC ,∠BAC =120°,AD 是BC 边上的中线,且BD =BE ,则∠ADE 是________°.(第12题) (第13题) (第14题)13.如图,已知在等腰三角形ABC 中,AB =AC ,P ,Q 分别是边AC ,AB 上的点,且AP =PQ =QC =BC .则∠PCQ 的度数为________度.14.如图,AB ∥DE ,AB ⊥BC ,BD =BC ,且BD 是∠ABC 的平分线,则∠CDE的度数为__________.15.如图,点D是△ABC(∠C>90°)的三条角平分线的交点,延长AD交BC于点E.(1)若∠BAC=36°,则∠BDC=________°;(2)∠CDE与∠ABD的数量关系是______________.(第15题)三、解答题(本大题共8小题,共85分)16.(9分)如图,在边长为1个单位的小正方形组成的10×10的网格中,给出了格点△ABC(顶点为网格线的交点),l为过网格线的一条直线.(1)作△ABC关于直线l对称的△A1B1C1;(2)求△ABC的面积.(第16题)17.(9分)如图,学校要在两条小路OM和ON之间的S区域规划修建一处“英语角”,按照设计要求,英语角C到两栋教学楼A,B的距离必须相等,到两条小路的距离也必须相等,则“英语角”应修建在什么位置?请在图上标出它的位置.(尺规作图,保留痕迹)3(第17题)18.(9分)如图,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC的周长为13 cm,AC=6 cm,求DC的长.(第18题)19.(9分)如图,四边形ABCD中,AB∥CD,连接BD,E在BD上,连接CE,若∠1=∠2,AB=ED.(第19题) (1)求证:BD=CD;4(2)若∠A=120°,∠BDC=2∠1,求∠DBC的度数.20.(11分)如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于点E,点F在AC上,BD=DF,求证:(1)CF=EB;(2)AB=AF+2EB.(第20题)21.(11分)如图,在△ABC中,E是BC边上的一点,连接AE,BD垂直平分AE,垂足为F,交AC于点D,连接DE.(1)若△ABC的周长为18,△DEC的周长为6,求AB的长;(2)若∠ABC=30°,∠C=45°,求∠CDE的度数.(第21题)522.(13分)在△ABC中,AB=AC,在△ABC的外部作等边三角形ACD,E为AC的中点,连接DE并延长交BC于点F,连接BD.(1) 如图①,若∠BAC=100°,求∠BDF的度数;(2) 如图②,作∠ACB的平分线交AB于点M,交EF于点N;连接BN.①补全图②;②若BN=DN,求证:MB=MN.(第22题)23.(14分)在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.6(1)如图②,当∠C≠90°,AD为∠BAC的平分线时,线段AB,AC,CD又有怎样的数量关系?不需要证明,请直接写出你的猜想;(2)如图③,当AD为△ABC的外角平分线时,线段AB,AC,CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.(第23题)78答案一、1.D 2.A 3.B4.C5.B6.B7.D 8.D9.D 点拨:过点I 作IE ⊥AB 于点E ,IF ⊥AC 于F ,然后根据角平分线上的点到角的两边的距离相等的性质可得ID =IE =IF ,再根据三角形面积公式计算即可得解.10.A 点拨:过点G 作GH ⊥AB 于点H .根据角平分线的性质定理证明GH =GC =1,利用垂线段最短即可解决问题.二、11.10点拨:根据题意得,a -4=0,b -2=0,解得a =4,b =2,①若2是腰长,则底边长为4,三角形的三边长分别是2,2,4,不能组成三角形;②若4是腰长,则底边长为2,三角形的三边长分别是4,4,2,能组成三角形,周长=4+4+2=10.12.1513.360714.157.5°点拨:先利用垂直的定义以及角平分线的定义得出∠ABD =∠DBC=12∠ABC =45°,再根据等腰三角形的性质以及三角形内角和定理求出∠BDC =∠C =180°-45°2=67.5°,然后利用平行线的性质得到∠BDE =180°-∠ABD =135°,最后根据周角的定义即可求出∠CDE .15.(1)108(2)∠CDE +∠ABD =90°点拨:(1)如图,由角平分线的定义得到∠1=∠2,∠3=∠4,再利用三角形内角和定理得到∠BDC =180°-12(∠ABC +∠ACB ),而∠ABC +∠ACB =144°,从而可计算出∠BDC 的度数;(2)利用三角形内角和定理及角平分线的定义得到∠1+∠4+∠CAE =90°,再根据三角形外角性质得到∠CDE =∠CAD +∠4,所以∠1+∠CDE =90°.9(第15题)三、16.解:(1)如图,△A 1B 1C 1为所作.(第16题)(2)S △ABC =3×4-12×2×4-12×1×2-12×2×3=4.17.解:如图所示.作∠NOM 的平分线和线段AB 的中垂线,它们的交点为C ,则点C就是英语角的位置.(第17题)18.解:(1)∵AD ⊥BC ,BD =DE ,∴AB =AE .∵∠BAE =40°,∴∠AED =70°.∵EF 垂直平分AC ,∴AE =EC ,∴∠C =∠CAE .又∵∠AED =∠C +∠CAE ,∴∠C =12∠AED =35°.(2)由(1)知AB =AE =EC .∵△ABC 的周长为13cm ,AC =6cm ,∴AB +BE +EC =7cm ,即2DE +2EC =7cm ,∴DC=DE+EC=3.5cm. 19.(1)证明:∵AB∥CD,∴∠ABD=∠EDC.在△ABD和△EDC中,1=∠2,ABD=∠EDC,=ED,∴△ABD≌△EDC(AAS),∴BD=CD.(2)解:∵△ABD≌△EDC,∴∠DEC=∠A=120°.∵∠BDC=2∠1,∠1=∠2,∴∠BDC=2∠2,∴∠BDC+∠2=2∠2+∠2=60°,∴∠2=20°,∴∠BDC=40°.∵BD=CD,∴∠DBC=∠DCB=12(180°-∠BDC)=12×(180°-40°)=70°. 20.证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC.在Rt△CDF和Rt△EDB中,=BD,=DE,∴Rt△CDF≌Rt△EDB(HL).∴CF=EB.(2)在Rt△ADC和Rt△ADE=DE,=AD,∴Rt△ADC≌Rt△ADE(HL).∴AC=AE,又∵CF=EB,1011∴AB =AE +BE =AC +EB =AF +CF +EB =AF +2EB .21.解:(1)∵BD 是线段AE 的垂直平分线,∴AB =BE ,AD =DE .∵△ABC 的周长为18,△DEC 的周长为6,∴AB +BE +EC +CD +AD =18,CD +EC +DE =CD +CE +AD =6,∴AB +BE =18-6=12,∴AB =6.(2)∵∠ABC =30°,∠C =45°,∴∠BAC =180°-30°-45°=105°.在△BAD 和△BED 中,=BE ,=BD ,=DE ,∴△BAD ≌△BED (SSS ),∴∠BED =∠BAC =105°,∴∠CDE =∠BED -∠C =105°-45°=60°.22.(1)解:∵△ACD 是等边三角形,∴∠CAD =∠ADC =60°,AD =AC .∵E 为AC 的中点,∴∠ADE =12∠ADC =30°.∵AB =AC ,∴AD =AB .∵∠BAD =∠BAC +∠CAD =160°,∴∠ADB =∠ABD =10°,∴∠BDF =∠ADE -∠ADB =20°.(2)①解:补全图形,如图所示.12(第22题)②证明:如图,连接AN .由CM 平分∠ACB ,可设∠ACM =∠BCM =α.∵AB =AC ,∴∠ABC =∠ACB =2α.在等边三角形ACD 中,∵E 为AC 的中点,∴DN ⊥AC ,∴NA =NC ,∴∠NAC =∠NCA =α,∴∠DAN =60°+α.在△ABN 和△ADN 中,=AD ,=DN ,=AN ,∴△ABN ≌△ADN (SSS ),∴∠ABN =∠ADN =30°,∠BAN =∠DAN =60°+α,∴∠BAC =∠BAN +∠NAC =60°+2α.在△ABC 中,∵∠BAC +∠ACB +∠ABC =180°,∴60°+2α+2α+2α=180°,∴α=20°,∴∠NBC =∠ABC -∠ABN =2×20°-30°=10°,∴∠MNB =∠NBC +∠NCB =10°+20°=30°,∴∠MNB =∠MBN ,∴MB =MN .23.解:(1)猜想:AB =AC +CD .(2)猜想:AB +AC =CD .证明:如图,在BA 的延长线上截取AE =AC ,连接ED.(第23题)∵AD平分∠FAC,∴∠EAD=∠CAD.在△EAD与△CAD中,=AC,EAD=∠CAD,=AD,∴△EAD≌△CAD(SAS).∴ED=CD,∠AED=∠ACD.∴∠FED=∠ACB.又∵∠ACB=2∠B,∴∠FED=2∠B.又∵∠FED=∠B+∠EDB,∴∠EDB=∠B.∴EB=ED.∴EA+AB=EB=ED=CD.∴AC+AB=CD.13。

天津市和平区 二十一中学 2017-2018学年 八年级数学上册 轴对称与等腰三角形 单元检测题(含答案)

天津市和平区 二十一中学 2017-2018学年 八年级数学上册 轴对称与等腰三角形 单元检测题(含答案)

2017-2018学年八年级数学上册轴对称与等腰三角形单元检测题一、选择题:1、下列各选项的图形中,不是轴对称图形的是()A B C D2、点P(—2, 3)关于y轴的对称点的坐标是A.(2,3 )B.(-2,—3)C.(—2,3)D.(—3,2)3、下面几何图形中,其中一定是轴对称图形的有 ( )个(1)线段; (2)角;(3)等腰三角形;(4)直角三角形;(5)等腰梯形 ;(6)平行四边形.A.2个 B.3个 C.4个 D.5个4、如图所示,在△ABC中,AD垂直平分扫BC,AC=EC,点B,D,C,E在同一条直线上,则AB+DB 与DE之间的数量关系是()A. AB+DB>DEB. AB+DB<DEC. AB+DB=DED. 无法判断5、(将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是()A. B C. D.6、如图,已知在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若BD+CE=5,则线段DE的长为()A.5 B.6 C.7 D.87、如图,已知线段AB,分别以点A、点B为圆心,以大于AB的长为半径画弧,两弧交于点C和点D,作直线CD,在CD上取两点P、M,连接PA、PB、MA、MB,则下列结论一定正确的是()A.PA=MAB.MA=PEC.PE=BED.PA=PB8、等腰三角形的一个角为50°,则这个等腰三角形的顶角可能为()A.50°B.65°C.80°D.50°或80°9、如图,在Rt△ABC中,∠ACB=90°,∠B=30°,CD是斜边AB上的高,AD=3cm,则AB的长度是()A.3cmB.6cmC.9cmD.12cm10、如图,把△ABC纸片沿DE折叠,当点A落在四边形BCED的外部时,则∠A与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()A.2∠A=∠1﹣∠2 B.3∠A=2(∠1﹣∠2) C.3∠A=2∠1﹣∠2 D.∠A=∠1﹣∠211、如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()A.4.5B.5.5C.6.5D.712、如图,在第1个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是()二、填空题:13、如图是某时刻在镜子中看到准确时钟的情况,则实际时间是14、如图,在△ABC中,AB=AC,AD⊥BC于D点,点E、F分别是AD的三等分点,若△ABC的面积为18,则图中阴影部分面积为_________.15、如图,在Rt△ABC中,∠ACB90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC 边上的点E处.若∠A26°,则∠CDE________.16、光线以如图所示的角度照射到平面镜上,然后在平面镜Ⅰ、Ⅱ间来回反射,已知α=60°,β=50°,则=________.17、如图①是3×3的小方格构成的正方形ABCD,若将其中的两个小方格涂黑,使得涂黑后的整个ABCD图案(含阴影)是轴对称图形,且规定沿正方形ABCD对称轴翻折能重合的图案都视为同一种,比如图②中四幅图就视为同一种,则得到不同的图案共有种.18、如图,已知点P在锐角∠AOB内部,∠AOB=α,在OB边上存在一点D,在OA边上存在一点C,能使PD+DC最小,此时∠PDC=_______.三、解答题:19、如图,在平面直角坐标系中,(1)描出A(- 4,3)B(-1,0)C(-2,3)三点.(2)△ABC的面积是(3)作出△ABC关于x轴的对称图形.20、如图,△ABC中,AB=AC=5,AB的垂直平分线DE交AB、AC于E、D,(1)若△BCD的周长为8,求BC的长;(2)若∠ABD:∠DBC=1:1,求∠A的度数.21、如图,已知P是线段CD的垂直平分线上一点,PC⊥OA,PD⊥OB,垂足为C、D.求证:(1)OC=OD;(2)OP平分∠AOB.22、如图,在△ABC中,°,AD是∠BAC的角平分线,EF垂直平分AD,交BC的延长线于点F.求∠FAC的大小.23、已知ABC中∠BAC=120°,BC=26, AB、AC的垂直平分线分交BC于点E、F与AB、AC分别交于点D、G.求:(1)∠EAF的度数。

八年级上册数学单元测试卷-第15章 轴对称图形和等腰三角形-沪科版(含答案)

八年级上册数学单元测试卷-第15章 轴对称图形和等腰三角形-沪科版(含答案)

八年级上册数学单元测试卷-第15章轴对称图形和等腰三角形-沪科版(含答案)一、单选题(共15题,共计45分)1、如图,P(m,m)是反比例函数y= 在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为()A. B.3 C. D.2、△ABC中,AB=AC, D是BC中点,下列结论中不正确的是()A.∠B=∠CB.AD⊥BCC.AD平分∠BACD.AB=2BD3、如图,在△ABC中,AB的垂直平分线分别交AB,AC于D,E两点,且AC=10,BC=4,则△BCE的周长为()A.6B.14C.24D.254、已知:如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为()A.3:2B.9:4C.2:3D.4:95、在三角形中,到三个顶点的距离相等的点是()A.三条边的垂直平分线的交点B.三条角平分线的交点C.三条中线的交点D.三条高的交点6、如图,△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作MN∥BC,分别交AB,AC 于点M,N,若AB=12,AC=18,BC=24,则△AMN的周长为()A.30B.36C.39D.427、下列图形中既是轴对称图形又是中心对称图形的是()A. B. C. D.8、在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AB,交AC于E.若AB=2,AC=2 ,线段DE的长为()A.2.5B.2.4C.D.9、如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.给出以下结论:①DG=DF;②四边形EFDG是菱形;③EG2= GF×AF;④当AG=6,EG=2 时,BE的长为,其中正确的结论个数是()A.1B.2C.3D.410、在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC于点D,CD=2,则点D到AB的距离是()A.1B.2C.3D.411、如图,已知矩形AOBC的顶点O(0,0),A(0,3),B(4,0),按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OC,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠BOC内交于点F;③作射线OF,交边BC于点G,则点G的坐标为()A.(4,1)B.(4,)C.(4,)D.(4,)12、如图,在△ABC中,∠ACB=90º,AC=BC=1,E、F为线段AB上两动点,且∠ECF=45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.现有以下结论:①AB= ;②AF+BE=EF;③当点E与点B重合时,MH= ;其中正确结论的个数是( )A.0B.1C.2D.313、如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.40°B.45°C.47.5°D.50°14、如图,在平行四边形ABCD中,CE平分∠BCD交AD于点E,已知AE=2,ED=4,则平行四边形ABCD的周长为( )A.16B.18C.20D.2215、如图,是等边三角形,点为边上一点,以为边作等边,连接.若,则长为()A. B. C. D.二、填空题(共10题,共计30分)16、如图,∠A=90°,∠ABC的角平分线交AC于E,AE=3,则E到BC的距离为________.17、如图,在中,,为的内一点,且满足.若,则________ .18、如图,在矩形纸片ABCD中,AB=8,BC=6,点E是AD的中点,点F是AB上一动点.将△AEF沿直线EF折叠,点A落在点A'处.在EF上任取一点G,连接GC,GA',CA’,则△CGA'的周长的最小值为________.19、把一张长方形的纸条折叠,如图所示,EF为折痕,若∠EFB=34°,则∠BFD的度数为________.20、已知等腰三角形的两边长是5和12,则它的周长是________;21、如图,一架梯子斜靠在墙上,梯子与地面的夹角∠B=60°,梯子与墙角的距离BC为3m,则梯子的长AB为________m.22、如图,在△ABC中,∠ACB=75°,∠ABC=45°,分别以点B、C为圆心,大于BC的长为半径作弧,两弧相交于点M、N。

沪科版八年级数学上册《第15章轴对称图形和等腰三角形》单元测试卷-带答案

沪科版八年级数学上册《第15章轴对称图形和等腰三角形》单元测试卷-带答案

沪科版八年级数学上册《第15章轴对称图形和等腰三角形》单元测试卷-带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下面是青岛、济南、郑州、太原四个城市的地铁图标,其中是轴对称图形的是( )A .B .C .D .2.如图,在△ABC 中,△ACB =90°,AD 平分△BAC ,BC =8cm ,点D 到AB 的距离为3cm ,则DB 的值是( )A .3cmB .8cmC .6cmD .5cm3.等腰三角形的一边长为4 cm ,另一边长为9 cm ,则它的周长为( )A .13 cmB .17 cmC .22 cmD .17 cm 或22 cm 4.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .5.如图, AD 是 ABC ∆ 的角平分线20C ∠=︒ , AB BD AC +=将 ABD ∆ 沿 AD 所在直线翻折,点 B 在 AC 边上的落点记为点 E .那么 B ∠ 等于( )A .80︒B .60︒C .40︒D .30︒6.△AOB 的平分线上一点P 到OA 的距离为3,Q 是OB 上任一点,则( )A .PQ >3B .PQ≥3C .PQ <3D .PQ≤37.如图所示,在△ABC 中,AB=AC ,△B=30°,D 为BC 上一点,CD=AD=4,则BC 的长为( )A .10B .12C .14D .168.在ABC 中AC BC <,在BC 上取一点P ,使得PA PB BC +=,则下列尺规作图选项正确的是( )A .B .C .D .9.已知等边△ABC 中AD △BC ,AD =12,若点P 在线段AD 上运动,当 12AP+BP 的值最小时,AP 的长为( ).A .4B .8C .10D .12二、填空题10.若等腰△ABC 的两条边长为6cm 和2cm ,则等腰三角形周长为 cm .11.如图,在四边形ABCD 中,AD△BC ,△C=90°,E 为CD 上一点,分别以EA ,EB 为折痕将两个角(△D ,△C )向内折叠,点C ,D 恰好落在AB 边的点F 处.若AD=2,BC=3,则EF 的长为 .12.如图,在 ABC 中AB AC = 和36ABC ∠=︒ , DE 是线段 AC 的垂直平分线,连接 AE ,若 BE a = , EC b = 则用含有a ,b 的代数式表示 ABC 的周长是 .13.如图,在平面直角坐标系中,直线 AB y x b =-+: 交 y 轴于点 ()A 02,,交 x 轴于点 B ,直线1垂直平分 OB 交 AB 于点 D ,交 x 轴于点 E ,点 P 是直线1上且在第一象限一动点.若 AOP 是等腰三角形,点 P 的坐标是 .三、解答题14.如图, ACD 是等边三角形,若 AB DE = , BC=AE 和 115E ∠=︒ ,求 BAE ∠ 的度数.15.如图,△ABC 中AB 、AC 的垂直平分线分别交BC 于E 、N ,若△EAN=34°,求△BAC 的度数.16.如图,在△ABC 中,已知△ABC=46°,△ACB=80°,延长BC 至D ,使CD=CA ,连接AD ,求△BAD 的度数.17.如图,在△ABC 和△DCB 中,AC 与BD 交于点E ,且AC=BD ,AB=CD.(1)求证:△ABC△△DCB ;(2)若△AEB=70°,求△EBC 的度数.四、综合题18.如图,已知△ABC 是锐角三角形(AB >AC ).(1)请用无刻度直尺和圆规作图:作直线l ,使l 上的各点到B 、C 两点的距离相等;设直线l 与AB 、BC 分别交于点M 、N ,在线段MN 上找一点O ,使点O 到边AB 、BC 的距离相等;(不写作法,保留作图痕迹)(2)在(1)的条件下,若BM =10,BC =12,求ON 的长.19.如图,已知ΔABC 中,CAB ∠的平分线AD 和边BC 的垂直平分线ED 相交于点D ,过点D 作DF AC ⊥交AC 的延长线于点F ,DM AB ⊥于点M求证(1).CF BM =(2)2.AB AC CF -=20.已知:AD 是△ABC 的高,且BD =CD .(1)如图1,求证:△BAD =△CAD ;(2)如图2,点E 在AD 上,连接BE ,将△ABE 沿BE 折叠得到△A ′BE ,A ′B 与AC 相交于点F ,若BE =BC ,求△BFC 的大小;(3)如图3,在(2)的条件下,连接EF ,过点C 作CG △EF ,交EF 的延长线于点G ,若BF =10,EG =6,求线段CF 的长. 21.如图,在等边三角形ABC 中,AD △BC 于点D ,BD =2,以AD 为一边向右作等边三角形ADE .(1)求△ABC 的周长;(2)判断AC 、DE 的位置关系,并给出证明.22.在 ABC 中,若最大内角是最小内角的 n 倍( n 为大于1的整数),则称 ABC 为 n 倍角三角形.例如:在 ABC 中20A ∠=︒ , 40B ∠=︒ 和120C ∠=︒ ,则称 ABC 为6倍角三角形.(1)在 ABC 中 30A ∠=︒ , 60B ∠=︒则 ABC 为 倍角三角形;(2)若一个等腰三角形是4倍角三角形,求最小内角的度数;(3)如图,点 E 在 DF 上, BE 交 AD 于点 C , AB=AD , BAD EAF ∠=∠ 和25B D ∠=∠=︒ , 75F ∠=︒ 找出图中所有的 n 倍角三角形,并写出它是几倍角三角形.答案解析部分1.【答案】B【解析】【解答】解:A 、不是轴对称图形,故此选项不符合题意;B 、是轴对称图形,故此选项符合题意;C 、不是轴对称图形,故此选项不符合题意;D 、不是轴对称图形,故此选项不符合题意;故答案为:B .【分析】根据轴对称图形的定义逐项判断即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年八年级数学上册轴对称与等腰三角形单元检测题
一、选择题:
1、下列各选项的图形中,不是轴对称图形的是()
A B C D
2、点P(—2, 3)关于y轴的对称点的坐标是
A.(2,3 )
B.(-2,—3)
C.(—2,3)
D.(—3,2)
3、下面几何图形中,其中一定是轴对称图形的有 ( )个
(1)线段; (2)角;(3)等腰三角形;(4)直角三角形;(5)等腰梯形 ;(6)平行四边形.
A.2个 B.3个 C.4个 D.5个
4、如图所示,在△ABC中,AD垂直平分扫BC,AC=EC,点B,D,C,E在同一条直线上,则AB+DB 与DE之间的数量关系是()
A. AB+DB>DE
B. AB+DB<DE
C. AB+DB=DE
D. 无法判断
5、(将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是()
A. B C. D.
6、如图,已知在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点
D、E,若BD+CE=5,则线段DE的长为()
A.5 B.6 C.7 D.8
7、如图,已知线段AB,分别以点A、点B为圆心,以大于AB的长为半径画弧,两弧交于点C和点D,作直线CD,在CD上取两点P、M,连接PA、PB、MA、MB,则下列结论一定正确的是()
A.PA=MA
B.MA=PE
C.PE=BE
D.PA=PB
8、等腰三角形的一个角为50°,则这个等腰三角形的顶角可能为()
A.50°
B.65°
C.80°
D.50°或80°
9、如图,在Rt△ABC中,∠ACB=90°,∠B=30°,CD是斜边AB上的高,AD=3cm,则AB的长度是()
A.3cm
B.6cm
C.9cm
D.12cm
10、如图,把△ABC纸片沿DE折叠,当点A落在四边形BCED的外部时,则∠A与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()
A.2∠A=∠1﹣∠2 B.3∠A=2(∠1﹣∠2) C.3∠A=2∠1﹣∠2 D.∠A=∠1﹣∠2
11、如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()
A.4.5
B.5.5
C.6.5
D.7
12、如图,在第1个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是()
二、填空题:
13、如图是某时刻在镜子中看到准确时钟的情况,则实际时间是
14、如图,在△ABC中,AB=AC,AD⊥BC于D点,点E、F分别是AD的三等分点,若△ABC的面积为18,则图中阴影部分面积为_________.
15、如图,在Rt△ABC中,∠ACB90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC 边上的点E处.若∠A26°,则∠CDE________.
16、光线以如图所示的角度照射到平面镜上,然后在平面镜Ⅰ、Ⅱ间来回反射,已知α=60°,β=50°,则=________.
17、如图①是3×3的小方格构成的正方形ABCD,若将其中的两个小方格涂黑,使得涂黑后的整个ABCD图案(含阴影)是轴对称图形,且规定沿正方形ABCD对称轴翻折能重合的图案都视为同一种,比如图②中四幅图就视为同一种,则得到不同的图案共有种.
18、如图,已知点P在锐角∠AOB内部,∠AOB=α,在OB边上存在一点D,在OA边上存在一点C,能使PD+DC最小,此时∠PDC=_______.
三、解答题:
19、如图,在平面直角坐标系中,
(1)描出A(- 4,3)B(-1,0)C(-2,3)三点.
(2)△ABC的面积是
(3)作出△ABC关于x轴的对称图形.
20、如图,△ABC中,AB=AC=5,AB的垂直平分线DE交AB、AC于E、D,
(1)若△BCD的周长为8,求BC的长;
(2)若∠ABD:∠DBC=1:1,求∠A的度数.
21、如图,已知P是线段CD的垂直平分线上一点,PC⊥OA,PD⊥OB,垂足为C、D.
求证:(1)OC=OD;(2)OP平分∠AOB.
22、如图,在△ABC中,°,AD是∠BAC的角平分线,EF垂直平分AD,交BC的延长线于点F.求∠FAC的大小.
23、已知ABC中∠BAC=120°,BC=26, AB、AC的垂直平分线分交BC于点E、F与AB、AC分别交于点D、G.
求:(1)∠EAF的度数。

(2)求△AEF的周长。

24、如图,直线a、b相交于点A,C、E分别是直线b、a上两点且BC⊥a,DE⊥b,点M、N是EC、DB的中点.
求证: MN⊥BD.
25、如图,已知锐角△ABC中,CD、BE分别是AB、AC边上的高,M、N分别是线段BC、DE的中点. (1)求证MN⊥DE.
(2)连结DM,ME,猜想∠A与∠DME之间的关系,并写出推理过程.
(3)若将锐角△ABC变为钝角△ABC,如图,上述(1)(2)中的结论是否都成立,若结论成立,直接回答,不需证明;若结论不成立,说明理由.
参考答案
1、C.
2、A.
3、C.
4、C.
5、B.
6、A.
7、D.
8、D.
9、D.
10、A.
11、A.
12、C.
13、4:40.
14、9.
15、71°.
16、40°.
17、6.
18、2α.
19、(1)如图所示;(2)3;(3)如图所示
20、①3,②36°
21、证明:(1)∵P在CD的垂直平分线上,∴PC=PD.
又∵OP=OP,∴Rt△OPC≌Rt△OPD(HL).∴OC=OD.
(2)由(1)Rt△OPC≌△OPD知∠AOP=∠BOP.
22、解:∵EF垂直平分AD ∴FA=FD ∴∠ADF=∠DAF
又∵∠ADF=∠B+∠BAD,∠DAF=∠FAC+∠DAC,∠BAD=∠DAC ∴∠FAC=∠B=45°23、
24、证明:∵BC⊥a,DE⊥b,点M是EC的中点,∴DM=EC,BM=EC,∴DM=BM,
∵点N是BD的中点,∴MN⊥BD.
25、(1)连结DM,ME可得DM=BC,ME=BC,DM=ME
又N为中点,∴MN⊥DE.
(2)∠DME=180°-2∠A.
(3)结论(1)成立,结论(2)不成立,∠DME=2∠A-180°.。

相关文档
最新文档