光的干涉

合集下载

大学物理_光的干涉

大学物理_光的干涉


d

x x r1 P · x r2 0
x0
x I
D
明纹 暗纹
D k , x k k , k 0,1,2 … d D ( 2k 1) , x( 2 k 1) ( 2k 1) 2 2d
D 条纹间距: x d
10
条纹特点: (1)一系列平行的明暗相间的条纹; (2) 不太大时条纹等间距; (3)中间级次低,两边级次高; r2 r1 (某条纹级次 = 该条纹相应的 之值) 明纹: k ,k =1,2…(整数级)
M1 反射镜

M2 M3
遥远星体相应的d0 几至十几米。
S1
S2 M4
迈克耳孙巧妙地用四块反 射镜增大了双缝的缝间距。


屏上条纹消失时,M1M4
间的距离就是d0。 猎户座 星 nm (橙色),
迈克耳孙测星干涉仪
1920年12月测得: d0 3.07m 。 由此得到: 9 570 10 1.22 2 103 rad 0.047 33 d0 3.07
一. 光源(light source) 光源的最基本发光单元是分子、原子。
能级跃迁辐射 E2

波列
= (E2-E1)/h
E1

波列长 L = c
2
1. 普通光源:自发辐射
间歇:随机(相位、振动方向均随机)
· ·
独立(不同原子发的光) 独立(同一原子先后发的光)
2. 激光光源:受激辐射
= (E2-E1) / h
I
合成光强
-1N 0M 0N 0L +1L
x
x
D x d
27

光的干涉现象

光的干涉现象

光的干涉现象光的干涉现象是光学中重要而又有趣的现象之一。

它揭示了光的波动性质,并深化了人们对光的理解。

本文将通过对光的干涉现象的介绍和实例分析,探讨其原理、应用以及对科学研究和技术发展的影响。

一、光的干涉现象简介光的干涉现象指的是两束或多束光波相互叠加产生的干涉条纹现象。

当两束光波的相位差满足某一特定条件时,它们在空间中会相互干涉。

干涉的结果是光的强弱发生变化,形成了明暗相间的条纹。

在光的干涉现象中,存在两种类型的干涉:同态干涉和非同态干涉。

同态干涉是指两束来自同一光源的光波相互叠加产生的干涉现象,如杨氏双缝干涉和牛顿环等。

非同态干涉是指两束或多束不同光源的光波相互叠加产生的干涉现象,如薄膜干涉和透明薄板干涉等。

二、光的干涉现象原理光的干涉现象可以用波的叠加原理解释。

当两束光波相遇并叠加时,它们的电场强度相互叠加,形成一个新的电场强度分布。

而光的亮暗程度与电场强度的平方成正比,因此,新的电场强度分布也决定了光的亮暗程度。

在同态干涉中,双缝干涉是最典型的实例。

当一束光通过一个有两个细缝的屏幕时,射到屏幕后,光波会分成两束继续传播。

这两束光波在屏幕后再次相遇并叠加,产生干涉现象。

干涉的结果是在屏幕上形成一系列明暗相间的条纹,称为干涉条纹。

三、光的干涉现象应用光的干涉现象在科学研究和技术应用中具有重要意义。

以下是一些常见的应用。

1. 干涉测量:利用光的干涉现象,可以进行高精度的测量。

例如,通过测量干涉条纹的间距和光波的波长,可以计算出被测物体的长度或形状。

2. 光学薄膜:通过在透明介质表面上涂敷一层薄膜,可以利用薄膜的干涉现象来改变光的反射和透射性质。

这在光学元件的设计和制造中有广泛的应用。

3. 涡旋光:涡旋光是一种具有自旋角动量的光。

通过制造特殊形状的相位板,可以实现光的幅度和相位的分离,产生具有涡旋光性质的光束。

涡旋光在光学通信和光学显微镜等领域有重要应用。

4. 光学干涉仪器:干涉仪器是利用光的干涉现象设计和制造的仪器。

光的干涉(Interference of Optics)

光的干涉(Interference of Optics)

1.3 由单色光波叠加所形成的干涉图样(Interference pattern resulted from superposition of monochromatic wave)
2.相位差和光程差 (2)若初相位差为零,则
r2 r1 ( ) v2 v1 2 c c ( r2 r1 ) v2 v1 2 (n2r2 n1r1 )
第一章 光的干涉(Interference of Optics)
1.3 由单色光波叠加所形成的干涉图样(Interference pattern resulted from superposition of monochromatic wave)
1.现象与解释
如图所示实验: 实验结果:等间距的明暗交替 的条纹。若用光度计测量,则
2.相位差和光程差
当r0>>d时,P点获得清晰的干涉图样。它 取决于相干项。在P点任意时刻的相位差为
包含二项:
r2 r1 ( ) ( 01 02 ) v2 v1
(1)初相位差 01 02 为讨论简单起见,使 01 02,实验中可用 透镜实现。
第一章 光的干涉(Interference of Optics)
(2 j )
I ( I 1 I 2 ) 2 I1 I 2
I 4I1
(2 j 1)
I ( I1 I 2 )2
I 0
第一章 光的干涉(Interference of Optics)
1.3 由单色光波叠加所形成的干涉图样(Interference pattern resulted from superposition of monochromatic wave)

什么是光的干涉

什么是光的干涉

什么是光的干涉光的干涉是一种光学现象,指的是两个或多个光波相互作用而产生的干涉效应。

当两束光波相遇时,它们会相互干涉并形成干涉图样,这是由于光的波动性质所致。

光的干涉现象在自然界和科学研究中有着广泛的应用。

1. 光的波动性质光既具有粒子性也具有波动性,光的波动性是光的干涉现象的基础。

光波的传播速度是有限的,它会沿着直线传播,并在传播过程中产生交迭、叠加和干涉。

2. 干涉的条件光的干涉需要满足两个基本条件:一是光源必须是相干光源,即光源发出的光波具有相同的频率、相位和振幅;二是光波必须在空间中交迭或叠加。

3. 干涉的类型光的干涉可以分为两类:一是光的干涉分为建设性干涉和破坏性干涉,二是光的干涉又可以分为薄膜干涉、杨氏双缝干涉、杨氏双缝干涉、菲涅尔双棱镜干涉等多种类型。

4. 建设性干涉和破坏性干涉当两束光波相遇且波峰与波峰相重叠(或波谷与波谷相重叠)时,它们会产生建设性干涉,此时干涉图样中会出现明亮的干涉条纹,光强增强;相反,当波峰与波谷相重叠时,它们会产生破坏性干涉,此时干涉图样中会出现暗淡的干涉条纹,光强减弱或消失。

5. 薄膜干涉薄膜干涉是指光在由两个介质分界面分离的薄膜上反射和透射产生的干涉现象。

当光波从一个介质射入到另一个介质时,会发生反射和透射。

光的反射和透射在介质的界面上发生相位差,不同相位差会导致干涉效应。

薄膜干涉常用于衬底上的光学薄膜和光学元件的设计。

6. 杨氏双缝干涉杨氏双缝干涉是一种经典的干涉实验,由英国科学家杨恩斯提出。

它通过将光通过两个狭缝,让光波以波前偏斜的方式形成干涉条纹。

杨氏双缝干涉实验证明了光的波动性和光的干涉现象,为光的本质提供了重要的证据。

7. 菲涅尔双棱镜干涉菲涅尔双棱镜干涉是将平行光通过两个类似楔形棱镜所形成的干涉图样。

这种干涉实验是由法国科学家菲涅尔提出的,可以用来测量光的波长和探测光的相位差。

菲涅尔双棱镜干涉被广泛应用于光学检测、波长测量和多种光学仪器的设计中。

大学物理光的干涉

大学物理光的干涉

干涉在光谱分析中的应用
干涉滤光片
利用光的干涉原理,设计出具有特定光谱透过率 的滤光片,用于光谱分析和图像增强。
傅里叶变换光谱仪
通过干涉原理,将复杂的光谱分解为简单的干涉 图样,便于分析物质的成分和结构。
原子干涉仪
利用原子在空间中的干涉现象,测量原子波长和 原子能级,用于原子结构和量子力学的研究。
干涉在全息摄影中的应用
大学物理光的干涉
目录
CONTENTS
• 光的干涉基本理论 • 干涉现象的实验验证 • 光的干涉的应用 • 光的干涉的深入研究
01 光的干涉基本理论
CHAPTER
光的波动性
01
光的波动性描述了光在空间中传播的方式,类似于水波在液体 中的传播。
02
光的波动性表现为光在传播过程中产生的振动和波动,这些振
动和波动具有特定的频率和波长。
光的波动性是理解光的干涉、衍射等光学现象的基础。
03
波的干涉
波的干涉是指两个或多个波在空间中相遇时,它们相互叠加产生新的波动现象。
当两个波的相位相同,即它们的振动方向一致时,它们会产生相长干涉,导致波峰 叠加和波谷叠加。
当两个波的相位相反,即它们的振动方向相反时,它们会产生相消干涉,导致波峰 抵消和波谷抵消。
量子通信、量子计算等领域。
03
量子纠缠的实验验证
科学家们通过实验验证了光子纠缠现象的存在,如著02
03
光的相干性
光的偏振
干涉现象的产生是由于两束光的 波前相干,即它们的相位差恒定。
光波的电场和磁场在垂直于传播 方向上的振动方向称为光的偏振 态。
光子纠缠现象
01
光子纠缠
当两个或多个光子相互作用后,它们的状态变得相互关联,即一个光子

光的干涉现象

光的干涉现象

光的干涉现象光的干涉现象是光学中的一种重要现象,它是指两束或多束光波相互叠加时所产生的干涉效应。

这种现象能够揭示光的波动性质,为我们深入研究光学提供了重要的实验依据。

本文将从光的干涉原理、干涉模式以及干涉在实际应用中的重要性等方面进行探讨。

一、光的干涉原理光的干涉现象是基于光的波动性质而产生的。

根据互相干涉的光波传播规律,我们可以将干涉现象分为两类:构造干涉和疏进建立。

1. 构造干涉构造干涉是指两束相干光波叠加后形成明暗交替的干涉条纹的现象。

这种干涉是由于光波在空间中的干涉途程有差异而产生的。

当两个光波的光程差为整数倍波长时,它们相互加强,形成明亮的条纹;而当光程差为半整数倍波长时,它们相互抵消,形成暗纹。

著名的双缝干涉实验就是一个典型的构造干涉现象。

2. 疏进建立疏进建立是指当两束光波相交时,它们在交叉区域内相互干涉而产生的干涉现象。

在这种干涉中,光的传播路径并不造成干涉途程差异,而主要取决于光波在交叉区域内的相位差。

当光波的相位差为奇数倍π时,交叉区域会出现暗纹;而相位差为偶数倍π时,会出现明纹。

著名的杨氏双缝干涉实验正是一种疏迷新建的干涉现象。

二、干涉模式光的干涉现象可分为几种常见的模式,每种模式都有自己独特的特点和应用。

1. Young's 双缝干涉由托马斯·杨提出的Young's 双缝干涉是一种经典的构造干涉模式。

它利用了两个相隔较远的狭缝,使光波通过后产生干涉,从而形成明暗条纹。

这种干涉模式常用于电子显微镜和各类干涉仪器。

2. Michelson 干涉仪Michelson 干涉仪是一种基于疏进建立干涉的仪器,常用于精确测量光的波长、折射率、长度等参数。

它利用半透镜和半反射镜构成干涉仪的臂,通过调节一臂的光程,观察干涉条纹的变化,从而获得精确的测量结果。

3. 薄膜干涉薄膜干涉是一种在厚度为波长级别的薄膜上发生的干涉现象。

这种干涉模式广泛应用于光学涂层、薄膜制备和表面形貌测量等领域。

光的干涉

光的干涉

洛埃镜
S1 d S2 M
E'
E
洛埃镜
此处为暗纹—半波损失
M为反射镜,S1为狭缝光源,它发出的光波一部分以接近于 为反射镜, 为狭缝光源, 为反射镜 90˚的入射角掠射于反射镜上,经反射到达屏幕 上,另一部 的入射角掠射于反射镜上, 的入射角掠射于反射镜上 经反射到达屏幕E上 分直接射到屏幕上。 可看作两个相干光源。 分直接射到屏幕上。S1和S2可看作两个相干光源。 处于位置 若光屏E处于位置 ,从光路上看,由S1和S2发出的光到达接 光屏 处于位置E',从光路上看, 触处的路程相等,该处应该出现明条纹。 触处的路程相等,该处应该出现明条纹。但实验结果这里出现 的是暗条纹,说明反射光在该处出现了大小为π的相位变化 的相位变化, 的是暗条纹,说明反射光在该处出现了大小为 的相位变化, 这种现象称为“半波损失” 这种现象称为“半波损失”。
例题 4-4:
干涉现象应用于射电天文学: 干涉现象应用于射电天文学:将微波检测器安装在海平面上 h = 20m处。 处 当发射频率为ν= 60 MHz 的射电星从海面升起时,检测器收到来自星体和 当发射频率为 的射电星从海面升起时, 海面反射的电波干涉信号。求当第一个极大出现时, 海面反射的电波干涉信号。求当第一个极大出现时,射电星体相对于地平 线的仰角θ= 线的仰角 ?
获得相干光的基本方法是将光源上同一点发出的光设法 获得相干光的基本方法是将光源上同一点发出的光设法 同一点 一分为二” 然后再使这两部分光叠加起来, “一分为二”,然后再使这两部分光叠加起来,由于这两 部分光实际上都是来自同一发光原子 同一次发光, 同一发光原子的 部分光实际上都是来自同一发光原子的同一次发光,即每 一个光波列都分为两个频率相同、振动方向相同、 一个光波列都分为两个频率相同、振动方向相同、相位差 恒定的波列,因而这两部分光满足相干条件。 恒定的波列,因而这两部分光满足相干条件。 获得相干光的方法: 获得相干光的方法: ⑴使用单色光源(如:钠光灯、激光器等); 使用单色光源( 钠光灯、激光器等); ⑵将一个分子单次发出的光波分为两个部分: 将一个分子单次发出的光波分为两个部分: 分波面法 分振幅(强度) 分振幅(强度)法

光的干涉现象

光的干涉现象

光的干涉现象光是一种电磁波,当两束或多束光波相遇时,会发生干涉现象。

干涉现象是一种光的波动性质的表现,它揭示了光的波粒二象性的重要特征,同时在实践中也具有广泛的应用。

本文将就光的干涉现象展开探讨。

1. 干涉现象的基本原理干涉现象的产生是由于光波是波动性质的体现。

当两束光波相遇时,它们的电磁波幅度会叠加。

如果波峰与波峰相遇,波谷与波谷相遇,则会形成加强的干涉条纹,称为构造性干涉;相反,如果波峰与波谷相遇,则会形成减弱或者彼此抵消的干涉条纹,称为破坏性干涉。

这种干涉现象的形成和叠加原理密切相关。

2. 杨氏双缝干涉实验杨氏双缝干涉实验是阐明光的干涉现象的重要实验之一。

实验设备由一个狭缝和两个狭缝组成。

当通过这两个缝中间垂直照射光源时,会在屏幕上形成一系列明暗相间的干涉条纹,这是由于两束光线的干涉造成的。

这个实验充分证明了光的波动性质和叠加原理,并且可以通过观察干涉条纹的位置和间距来测量光的波长。

3. 光的干涉现象的应用光的干涉现象不仅仅是一种物理现象,它在实际应用中也具有广泛的价值。

a. 干涉测量技术:光的干涉现象可以用于测量非常小的长度尺度,比如测量薄膜厚度、测量微小物体的位移等。

利用干涉技术,可以提高测量精度,用于制造业、科学研究等领域。

b. 光的多波束干涉:除了双缝干涉实验,光的干涉还可以通过多个光源产生干涉现象。

这种多波束干涉被广泛应用于光学仪器的设计和构造,比如光栅、干涉仪、调制器等。

c. 光的波导干涉:光的干涉现象在光波导器件中得到广泛应用。

通过构造光波导的材料和结构,可以实现光的传输、控制和调制,并且能够利用干涉效应实现光的分光和合束,以及光的激光功率调制。

4. 光的干涉现象的未来发展随着科技的不断进步和发展,光的干涉现象在更广泛的领域将会得到应用和发展。

特别是在光通信、光计算和光存储等领域,光的干涉现象将会发挥重要的作用。

例如,基于光的干涉原理设计的光计算和光存储器件可以大大提高计算和存储的速度和容量。

第12章光的干涉

第12章光的干涉

反射光光程 nr 2
λ
2

思考: 与杨氏双缝实验比 干涉条纹有哪些相 同、不同之处?
δ
双镜
M1
s
P
L
s1 θ
d
s2
C
M2
d'
12.3
光的时空相干性
λ ν
一、光的非单色性
1、理想的单色光 2、实际光束: 准单色光
波列长L=τ c
Io
Io 2 0
I
λ
λo
Δλ
光强降到一半时曲线的 宽度—— 谱线宽度 Δλ
Δx14 = x4 − x1 =
d Δx14 λ= D ( k 4 − k1 )
d
( k 4 − k1 ) λ
0 .2 × 7 .5 λ= = 500 nm 1000 × 3
(2)当λ =600nm 时,相邻两明纹间的距离为
1000 D −4 Δx = λ = × 6 × 10 = 3.0mm 0.2 d
E = Eo cos ωt ( ) z E = E0 cos[ω (t − ) ] u π
波强(平均能流密度)
光矢量
2
r E
1 ∫ cos ωtdt = 2 π 0
1
1 2 I = E0 2
2.光程
光程差
波程
L1 = n1 r1 光程
L2 = n 2 r2 光程
经多种介质时 若介质不均匀
• P
r1
1、普通光源:自发辐射
· ·
独立(不同原子发的光) 独立(同一原子先后发的光)
结论: 普通光源发光具有独立性、随机性、间歇性
(1)一个分子(或原子)在一段时间内发出一列光波, 发光时间持续约10-8~10-10s. (间歇性) (2)同一分子在不同时刻所发光的频率、振动方 向不一定相同。(随机性、独立性) (3)各分子在同一时刻所发光的频率、振动方 向、相位也不一定相同.(独立性、随机性)

高中物理光的干涉

高中物理光的干涉

高中物理光的干涉干涉是光学中的一个重要现象,它解释了光的波动性以及光的相互作用。

光的干涉可以分为干涉条纹和干涉色彩两大类,这些现象在我们的日常生活中随处可见。

本文将对光的干涉现象进行深入探讨,并介绍一些相关的实验和应用。

一、干涉条纹干涉条纹是光的干涉现象最常见的表现形式之一。

当两束光波之间存在相位差,并在一个区域内相互叠加时,我们就能够观察到干涉条纹的出现。

其中,最经典的实验是杨氏双缝实验。

杨氏双缝实验是杨振宁于1801年首次进行的实验,通过在光源和屏幕之间设置两个狭缝,可以观察到一系列明暗相间的干涉条纹。

这些条纹的出现是由于两个狭缝所发出的光波相遇时产生的干涉效应。

干涉条纹的出现可以通过光的波动性来解释。

当两个光波在同一点相遇时,如果它们的波峰或波谷处于同相位,那么它们将相互增强,形成明亮的区域;相反,如果它们的波峰或波谷处于反相位,那么它们将相互抵消,形成暗淡的区域。

通过对干涉条纹的观察,我们可以推断出光的波长和两个光波的相位差。

二、干涉色彩干涉色彩是另一种常见的光的干涉现象,它通过光的波动性和干涉效应产生。

当光波经过一个或多个介质之后,其波长、频率和相位会发生变化,从而产生不同的颜色。

干涉色彩的观察往往需要借助于干涉仪器,如牛顿环和薄膜干涉。

牛顿环实验是一种通过凸透镜和平板玻璃组成的干涉仪器。

当光线通过一个凸透镜和一个平板玻璃时,由于光线的相位差和干涉效应的作用,我们可以观察到一系列彩色的环形条纹。

这些彩色条纹的出现可以用来研究光的干涉性质,以及材料的厚度和折射率。

薄膜干涉是基于薄膜的厚度和介质折射率的干涉效应。

当光线通过一个薄膜时,由于反射和折射的干涉,我们可以观察到一系列明亮的彩色条纹。

这些条纹的颜色和强度可以用来推断薄膜的厚度和材料的折射率。

三、应用领域光的干涉现象在很多领域都有着重要的应用价值。

在光栅领域,光的干涉可以用来制造光栅,用于光学仪器的测量和分析。

例如,通过控制光线的干涉条纹,可以制造出高精度的光栅,用于分光仪、光谱仪等仪器。

光的干涉

光的干涉

光_的_干_涉一、杨氏干涉实验1.物理史实1801年,英国物理学家托马斯·杨成功地观察到了光的干涉现象,开始让人们认识到光的波动性。

2.双缝干涉实验(1)实验过程:让一束平行的完全相同的单色光投射到一个有两条狭缝的挡板上,两狭缝相距很近,两狭缝就成了两个波源,它们的频率、相位和振动方向总是相同的,两个光源发出的光在挡板后面的空间互相叠加发生干涉。

(2)实验现象:在屏上得到明暗相间的条纹。

(3)实验结论:证明光是一种波。

3.双缝干涉的装置示意图实验装置如图13­3­1所示,有光源、单缝、双缝和光屏。

图13­3­14.单缝屏的作用获得一个线光源,使光源有唯一的频率和振动情况。

5.双缝屏的作用平行光照射到单缝S上,又照到双缝S1、S2上,这样一束光被分成两束频率相同和振动情况完全一致的相干光。

二、光发生干涉的条件1.干涉条件两列光的频率相同、振动方向相同、相位差恒定。

2.相干光源发出的光能够产生干涉的两个光源。

3.一般情况下很难观察到光的干涉现象的原因由于不同光源发出的光的频率一般不同,即使是同一光源,它的不同部位发出的光也不一定有相同的频率和恒定的相位差,故一般情况下不易观察到光的干涉现象。

三、屏上某处出现亮、暗条纹的条件频率相同的两列波在同一点引起的振动的叠加,如亮条纹处某点同时参与的两个振动步调总是一致,即振动方向总是相同;暗条纹处振动步调总相反。

具体产生亮、暗条纹的条件为:(1)亮条纹的条件:屏上某点P 到两条缝S 1和S 2的路程差正好是波长的整数倍或半波长的偶数倍。

即:|PS 1-PS 2|=k λ=2k λ2(k =0,1,2,3……) k =0时,PS 1=PS 2,此时P 点位于屏上的O 处,为亮条纹,此处的条纹叫中央亮条纹或零级亮条纹。

k 为亮条纹的级次。

(2)暗条纹的条件:屏上某点P 到两条缝S 1和S 2的路程差正好是半波长的奇数倍。

第十一章光的干涉

第十一章光的干涉

cos
2

d D
x

当 x m D 时 d
有最大值:I MAX

4I0 , 为亮条纹;
x

m
D d
,
I
MAX
4I0
当 x (m 1 ) D 时 2d
x (m 1 ) D , 2d
有最小值:IMIN 0, 为暗条纹;
其中:m 0,1, 2,

k2
)

r有关。
产生干涉的方法
实际光源发光的特点: 不同的點發出的不同波列是不相干的, 即使是同一點不同時刻發射的不同波列之間也是不相干的, 而只有同一波列相遇疊加才滿足相干條件,產生干涉。
产生干涉的方法:分波面法和分振幅法。分波面法是将 一个波列的波面分成两部分或几部分,由这每一部分 发出的波再相遇时,必然满足相干条件,杨氏干涉就 属于这种方法。分振幅法是设法将一束光的振幅(光 强)分成若干部分,当这些不同部分的光波相遇时就 会产生干涉,这是一种比较常见的获得相干光、产生 干涉的方法,平行平板产生的干涉就属于这种方法。
强I不在是
I1和I
的简单和。
2
光波的干涉条件



E1 A1 cos(k1 r1 t ), E2 A2 cos(k2 r2 t )
则 I I1 I2 A1 A2 cos



(k1 k2 ) r
4、条纹间隔(垂直入射 )

注意 : h 与 的关系。
(2) 当n 1时,相邻波长对的h是 2。 若平板锲角为时 :
e h 2nh
(3) 如果条纹的横向偏移量为e, 则对应的m为:m e e 此时高度变化为:H e 2n e

光的干涉

光的干涉

3、关于光在竖直肥皂液薄膜上产生的干涉现象,下列说 法中正确的是( A、 )C A.干涉条纹的产生是由于光在薄膜前后两表面发生反射, 形成的两列光波叠加的结果 B.若出现明暗相间的条纹相互平行,说明肥皂膜的厚度是 均匀的
C.用绿色光照射薄膜产生的干涉条纹间距比黄光照射间距
小 D.薄膜上的干涉条纹基本上是竖直的
3 2
五、薄膜干涉 肥皂泡看起来常常是彩 色的,雨后公路积水上 面漂浮的油膜,看起来 也是彩色的。这些现象 是怎样形成的呢?
观察肥皂薄膜上干涉条纹
1.薄膜干涉的成因
如图所示,竖直放置的肥皂薄膜由于
受到重力的作用,下面厚、上面薄.因 此,在薄膜上不同的地方,从膜的前、 后表面反射的两列光波叠加,在某些位 置,这两列波叠加后互相加强,出现亮 条纹;在另一些地方,叠加后互相削弱, 出现暗条纹.故在单色光照射下,就出
暗条纹形成的原因
双缝 屏幕
取P点上方的点Q1,与两个狭缝S1、 S2路程差δ= Q1 S2- Q1 S1=λ/2 当其中一条光传来的是波峰,另 一条传来的就是波谷,其中一条 光传来的是波谷,另一条传来的 一定是波峰,Q1点总是波峰与波 谷相遇,振幅最小,Q1点总是振 动减弱的地方,故出现暗纹。
S1 S2
3λ/2
δ= 3λ/2
以此类推
当光程差δ= 半波长的奇数倍时出现暗纹
双缝
屏幕
Q3 第三暗纹 Q2 第二暗纹
δ=5λ/2
δ=3λ/2 δ=λ/2 δ=λ/2
S1 S2
Q 1 第一暗纹
Q1 / 第一暗纹 Q2 / 第二暗纹 Q3 / 第三暗纹
δ=3λ/2 δ=5λ/2
总结规律
(1)空间的某点距离光源S1 和S2的路程差为0、1 λ、2 λ、3 λ、等波长的整数倍 (半波长的偶数倍)时,该点 为振动加强点。 (2)空间的某点距离光 源S1和S2的路程差为λ /2、3 λ/2、5λ/2、等 半波长的奇数倍时,该点 为振动减弱点。

大学物理12光的干涉

大学物理12光的干涉
第十二章 光的干涉
S1
Sd
S2
杨氏双缝实验
§12-1 光源 光的特性
2.分振幅法:利用光在两种介质分界面 上的反射光和透射光作为相干光
iD
n1
e
A
C n2 n1
B
n1
薄膜干涉
第十二章 光的干涉
§12-1 光源 光的特性
§12-2 双缝干涉
一、杨氏双缝实验 1.装置原理
S1
Sd
S2
第十二章 光的干涉
第十二章 光的干涉
§12-3 光程与光程差
三、反射光的相位突变和附加光程差
1、n1 n2 n3 或 n1 n2 n3 无附加光程差
12
i
n1
e
n2
n3
2、n1 n2 n3 或 n1 n2 n3 1’ 2’
有附加光程差 2
3、对于折射光,无任何相位突变
第十二章 光的干涉
§12-3 光程与光程差
§12-2 双缝干涉
2.干涉明暗条纹的位置
r1
S1
S d
r2
波程差
S2
r2 r1
D
P
x
0
r2
r1
d sin
d
tan
d
x D
第十二章 光的干涉
§12-2 双缝干涉
d
x D
k 极大
(2k 1) 极小
2
干涉明暗条纹的位置
d x
D
x
k
D
d
2k 1
D
2d
明纹 暗纹
其中 k 0, 1, 2, 3
实际中,i 0
2n2e '
明纹和暗纹条件
2n2e

光的干涉现象

光的干涉现象

光的干涉现象1.双缝干涉(1)光能够发生干涉的条件:两光的频率相同,振动步调相同.(2)双缝干涉形成的条纹是等间距的,两相邻亮条纹或相邻暗条纹间距离与波长成正比,即Δx=ldλ.(3)用白光照射双缝时,形成的干涉条纹的特点:中央为白条纹,两侧为彩色条纹.2.亮暗条纹的判断方法(1)如图1所示,光源S1、S2发出的光到屏上某点的路程差r2-r1=kλ(k=0,1,2…)时,光屏上出现亮条纹.图1(2)光的路程差r2-r1=(2k+1)λ2(k=0,1,2…)时,光屏上出现暗条纹.3.条纹间距:Δx=ldλ,其中l是双缝到光屏的距离,d是双缝间的距离,λ是光波的波长.4.薄膜干涉(1)形成:如图2所示,竖直的肥皂薄膜,由于重力的作用,形成上薄下厚的楔形.光照射到薄膜上时,在膜的前表面AA′和后表面BB′分别反射回来,形成两列频率相同的光波,并且叠加.图2(2)亮、暗条纹的判断①在P1、P2处,两个表面反射回来的两列光波的路程差Δr等于波长的整数倍,即Δr=nλ(n =1,2,3…),薄膜上出现亮条纹.②在Q 处,两列反射回来的光波的路程差Δr 等于半波长的奇数倍,即Δr =(2n +1)λ2(n =0,1,2,3…),薄膜上出现暗条纹.(3)薄膜干涉的应用干涉法检查平面如图3所示,两板之间形成一楔形空气膜,用单色光从上向下照射,如果被检查平面是平整光滑的,我们会观察到平行且等间距的明暗相间的条纹;若被检查平面不平整,则干涉条纹发生弯曲.图3例1 如图4所示,在双缝干涉实验中,S 1和S 2为双缝,P 是光屏上的一点,已知P 点与S 1和S 2距离之差为2.1×10-6 m ,今分别用A 、B 两种单色光在空气中做双缝干涉实验,问P 点是亮条纹还是暗条纹?图4(1)已知A 光在折射率为n =1.5的介质中波长为4×10-7 m ;(2)已知B 光在某种介质中波长为3.15×10-7 m ,当B 光从这种介质射向空气时,临界角为37°(sin 37°=0.6,cos 37°=0.8);(3)若用A 光照射时,把其中一条缝遮住,试分析光屏上能观察到的现象.答案 (1)暗条纹 (2)亮条纹 (3)见解析解析 (1)设A 光在空气中波长为λ1,在介质中波长为λ2,由n =c v =λ1λ2得 λ1=nλ2=1.5×4×10-7 m =6×10-7 m根据路程差Δx =2.1×10-6 m所以N 1=Δx λ1=2.1×10-6 m 6×10-7 m=3.5 由此可知,从S 1和S 2到P 点的路程差Δx 是波长λ1的3.5倍,所以P 点为暗条纹.(2)根据临界角与折射率的关系sin C =1n 得n =1sin 37°=53由此可知,B 光在空气中波长λ3为λ3=nλ介=53×3.15×10-7 m =5.25×10-7 m 所以N 2=Δx λ3=2.1×10-6 m 5.25×10-7 m=4 可见,用B 光做光源,P 点为亮条纹.(3)光屏上仍出现明暗相间的条纹,但中央条纹最宽最亮,两边条纹变窄变暗. 练习题1.劈尖干涉是一种薄膜干涉,其装置如图5甲所示,将一块平板玻璃放置在另一平板玻璃上,在一端夹入两张纸片,从而在两玻璃表面之间形成一个劈形空气薄膜.当光垂直入射后,从上往下看到的干涉条纹如图乙所示,干涉条纹有如下特点:图5(1)任意一条亮条纹或暗条纹所在位置下面的薄膜厚度相等;(2)任意相邻亮条纹和暗条纹所对应的薄膜厚度差恒定.现若在图甲的装置中抽去一张纸片,则当光垂直入射到新的劈形空气薄膜后,从上往下观察到的干涉条纹( )A .变疏B .变密C .不变D .消失答案 A解析 如图所示,若抽去一张纸片,则三角截面空气层的倾角变小,则干涉条纹变疏,A 正确.2.一束白光在真空中通过双缝后在屏上观察到的干涉条纹,除中央白色亮条纹外,两侧还有彩色条纹,其原因是( )A .各色光的波长不同,因而各色光分别产生的干涉条纹的间距不同B.各色光的速度不同,因而各色光分别产生的干涉条纹的间距不同C.各色光的强度不同,因而各色光分别产生的干涉条纹的间距不同D.上述说法都不正确答案A解析白光包含各种颜色的光,它们的波长不同,在相同条件下做双缝干涉实验时,它们的干涉条纹间距不同,所以在中央亮条纹两侧出现彩色条纹,A正确.。

光的干涉--知识点

光的干涉--知识点

光的干涉、用双缝干涉测波长、衍射现象一、知识点梳理 1、光的干涉现象:频率相同,振动方向一致,相差恒定(步调差恒定)的两束光, 在相遇的区域出现了稳定相间的加强区域和减弱区域的现象。

(1)产生干涉的条件:①若S 1、S 2光振动情况完全相同,则符合λδn x dLr r ==-=12,(n =0、1、2、3…)时,出现亮条纹; ②若符合2)12(12λδ+==-=n x d L r r ,((n=0,1,2,3…)时, 出现暗条纹。

相邻亮条纹(或相邻暗条纹)之间的中央间距为λdLx =∆。

(2)熟悉条纹特点中央为明条纹,两边等间距对称分布明暗相间条纹。

2. 用双缝干涉测量光的波长原理:两个相邻的亮纹或暗条纹的中心间距是Δx =l λ/d 测波长为:λ=d ·Δx /l(1)观察双缝干涉图样:只改变缝宽,用不同的色光来做,改变屏与缝的间距看条纹间距的变化 单色光:形成明暗相间的条纹。

白光:中央亮条纹的边缘处出现了彩色条纹。

这是因为白光是由不同颜色的单色光复合而成的,而不同色光的波长不同,在狭缝间的距离和狭缝与屏的距离不变的条件下,光波的波长越长,各条纹之间的距离越大,条纹间距与光波的波长成正比。

各色光在双缝的中垂线上均为亮条纹,故各色光重合为白色。

(2)测定单色光的波长:双缝间距是已知的,测屏到双缝的距离l ,测相邻两条亮纹间的距离x ∆,测出n 个亮纹间的距离a ,则两个相邻亮条纹间距:1-=∆n a x3.光的色散:不同的颜色的光,波长不同在双缝干涉实验中,各种颜色的光都会发生干涉现象,用不同色光做实验,条纹间距是不同的,说明:不同颜色的光,波长不同。

含有多种颜色的光被分解为单色光的现象叫光的色散。

各种色光按其波长的有序排列就是光谱。

从红光→紫光,光波的波长逐渐变小。

4.薄膜干涉中的色散现象如图:把这层液膜当做一个平面镜,用它观察灯焰的像:是液膜前后两个反射的光形成的,与双缝干涉的情况相同,在膜上不同位置,来自前后两个面的反射光用图中实虚线来代表两列光,所走的路程差不同。

光的干涉

光的干涉
解:光程差:
e
e0 空气
2n(e e0 )
1 2
干涉减弱条件:
(2k 1) k 0,1, 2,…
2
23
又: e r 2
2R
则:
r
R n
(k
2e0
)
R(k 2e0) (空气)
24
牛顿环的应用
实用的观测公式:
r2 km
rk2
mR
n
mR(空气)
测透镜球面的半径 R :
已知 , 测 m、rk+m、rk,可得R 。 测波长 :
同一个入射角值。
② 等厚干涉(等厚条纹)
i 常数(光沿同一方向入射到薄膜上)
同一条(级次相同)干涉条纹对应同
一个厚度值。
3
几种典型的薄膜干涉
一. 劈尖(wedge film)(劈形膜)
夹角很小的两个平面所构成的薄膜叫劈尖。
S·*
单色平行光
1
n
n
反射光2 2 反射光1
Ae
:104 ~ 105 rad 1、2两束反射光
成空气劈尖,当单色光垂直入射时,产生等厚干涉
条纹。如果滚柱之间的距离L变小,则在L范围内干
涉条纹的( B )
(A)数目减少,间距变大。
(B)数目不变,间距变小。
(C)数目增大,间距变小。
(D)数目减少,间距不变。
L
15
例2( )用波长 500nm 的单色光垂直照射
在由两块玻璃板(一端刚好接触成为劈棱)
反之则反。
5.膜厚变化时条纹的移动
薄膜上表面上移
k+1
· k
·· · k-1
k
移动后条纹位置
移动前条纹位置

光的干涉现象的解释与计算

光的干涉现象的解释与计算

光的干涉现象的解释与计算光的干涉现象是指当两束或多束光波经过叠加时产生的干涉现象。

这种现象是由光的波动性质所引起的,它揭示了光波的波动性和波动现象的一些重要特性。

本文将解释光的干涉现象的原理,并介绍了几种常见的干涉计算方法。

一、光的干涉原理光的干涉是基于波的相干性原理,即两束或多束光波的相位关系会影响它们的叠加结果。

当两束光波的相位差为整数倍的波长时,它们达到叠加增强的状态,称为相长干涉;而当相位差为半整数倍的波长时,它们达到叠加减弱的状态,称为相消干涉。

干涉现象的发生需要满足一定的条件,例如光源的相干性和光的干涉程度等。

二、干涉计算方法(一)双缝干涉计算:双缝干涉是最经典的光的干涉实验之一,它的计算方法可以通过以下公式进行表达:I = I1 + I2 + 2√(I1×I2)×cos(δ)其中,I代表干涉图案的强度,I1和I2分别表示通过两个独立缝隙的光线的强度,δ是相位差。

通过这个公式,我们可以计算出不同干涉条件下的干涉图案的强度分布情况。

(二)杨氏双缝干涉计算:杨氏双缝干涉是一种经典的干涉实验,它使用的是一束单色光通过两个狭缝形成的干涉条纹。

在这种情况下,干涉计算方法可以用以下公式表示:y = λL/d其中,y代表干涉条纹的间距,λ是光的波长,L是光的传播距离,d是两个缝隙之间的距离。

通过这个公式,我们可以计算出干涉条纹之间的间距。

(三)薄膜干涉计算:薄膜干涉是一种基于薄膜的光学现象,在这种情况下,干涉计算方法可以用以下公式表示:2nt = (m + 1/2)λ其中,nt是薄膜的等效厚度,m是干涉条纹的次序,λ是光的波长。

通过这个公式,我们可以计算出薄膜干涉的条纹间距和薄膜厚度之间的关系。

(四)光栅干涉计算:光栅是一种具有周期性结构的光学元件,它可以产生多束光波的干涉现象。

光栅干涉的计算方法可以用以下公式表示:dsinθ = mλ其中,d是光栅的周期,θ是入射角度,m是干涉条纹的次序,λ是光的波长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
D
d
x
x D
x 1 d
③ D、d 一定时,由条纹间距可算出单色光的波长。 d d 方法二: x 方法一: x D kD ④ 条纹越向外侧级次越高
6
5)若用白光照射,在屏幕上可以得到彩色干涉条纹
x
D ( 2k 1) d 2
D k d
d
[2( k 1) 1]D ( 2k 1)D D x 2d 2d d
相邻明纹与相邻暗纹的间距都相同, 平行等距明暗相间的直条纹。
5
2. 双缝干涉条纹的特点 ①条纹分布: 与缝平行的明暗相间的条纹对称分布于中心 o 点 两侧。 ② 条纹间距: 相邻明纹和相邻暗纹等间距,与条纹级次无关。
10
④光源S位置改变:
•S下移时,零级明纹上移,干涉 条纹整体向上平移;
•S上移时,干涉条纹整体向下平 移,条纹间距不变。
11
4.总结
①光源S位置改变: •S下移时,零级明纹上移,干涉条纹整体向上平移; •S上移时,干涉条纹整体向下平移,条纹间距不变。 ②双缝间距d 改变: •当d 增大时,Δx 减小,零级明纹位置不变,条纹变紧密; •当d 减小时,Δx 增大,条纹变稀疏。 ③双缝与屏幕间距D 改变:
2
s
s1
d o


r1

D
B
p
2 1
r2
x
o
0
1 2
s2
D d
sin tan x D
x d D
k 干涉加强
( 2k 1)
x r2 r1 d sin d D

k 0,1,2,
2
干涉减弱 k 0,1,2,
x
D ( 2k 1) d 2
l
ek
θ
ek+
1
l=
2n θ
劈尖公式
当θ 很小时
讨论:
l= 2 n sin θ
1. 利用劈尖可以测量微小角度 θ, 微小厚度及照射光的波长。 2. 问题:在尖端是暗纹还是明纹? 3. δ =δ (e ) 光程差是介质厚度的函数。
等厚干涉:对于同一级干涉条纹, 具有相同的介质厚度。
4. 干涉条纹的变动与n、 、θ的关系。
一. 劈尖(劈形膜)
夹角很小的两个平面所构成的薄膜在平行光照 104 ~ 105 rad) 下薄膜上表面出现条纹 (:
S ·
光线1
单色平行光

n n
1
2
光线2 A
1、2两束光 来自同一束 入射光,它 们可以产生 干涉 。
·

e
36
n (设n > n )
10 ~ 10 rad
4 5
[r2 ( n2 1)t 2 ] [r1 (n1 1)t 2 ] (B)
t1
S1 S2
r1 t2 n2 r2
P
n1
(C)( r2 n2 t 2 ) ( r1 n1t1 ) (D) n2 t 2 n1t1
答案B
30
31
32
例 、 用很薄的云母片(n=1.58) 覆盖在 双缝实验中的一条缝上,这时屏幕上的零级 明条纹移到原来的第七级明条纹的位置上, 试问此云 如果入射光波长为 =550 nm。 母片的厚度为多少? r2
2) 若入射光的波长为600nm,求相邻两明纹间的距离。
解 (1) x D k , k
k 0 , 1, 2, Байду номын сангаас D x14 x4 x1 k4 k1 d d x14 500nm
D k4 k1
D x 3.0 mm d
式中0为真空中的波长
27
附加光程差对干涉条纹有些什么影响?
S1
r1
r2
o S1
r1
r2
结论
o

S2
o,
S2
o
放玻片后0级明纹移到何处? 即与δ=0 何处 对应的条纹移到
上盖上移
下盖下移
28
r2 (n 1) t r1
k 0
0
r2 r1 (n 1)t r1
1.在相同的时间内,一束波长为 的单 色光在空气中和在玻璃中
14
例: 在双缝干涉实验中,屏幕E上的P点处是明条纹.若将 缝S2盖住,并在 S1S2 连线的垂直平分面处放一反射镜 M,如图所示,则此时 (A) P 点处仍为明条纹. (B) P 点处为暗条纹. (C) 不能确定P点处是明条纹还是暗条纹. (D) 无干涉条纹.
解 由于在原来光程差上多(少) 了半个波长,所以P点处为暗 条纹。
r2
第一列波从 S1 p经历的光程 r 1
第二列波从 S2 p 经历的光程
( r2 t ) nt
P点的光程差
δ ( r2 r1 ) ( n 1)t
δ ( n 1)t 附加光程差
26
r1
S1
S2
P
n
t
r2
光程差 2 P点 相位差 0
2 0
D 条纹间距 x d
•当D 减小时,Δx 减小,零级明纹位置不变,条纹变紧密; •当D 增大时,Δx 增大,条纹变稀疏。
④入射光波长改变: •当λ增大时,Δx 增大,条纹变稀疏; •当λ减小时,Δx 减小,条纹变紧密。
12
例:以单色光垂直照射到相距为0.2mm的双缝上,双 缝与屏幕的垂直距离为1m。 1) 从 第 一 级 明 纹 到 同 侧 的 第 四 级 明 纹 的 距 离 为 7.5mm,求单色光的波长;
D k d
明纹 暗纹
k 0,1,2,
3
k D 明纹位置: x k d k=0时: x0 0
2
零级明纹位于屏幕中央,只有一条。 D k=1时: x1
d
1
0
1
一级明纹有两条,对称分布在屏幕 中央两侧。 其它各级明纹都有两条,且对称分布。 暗纹位置: x k ( 2k 1)
平移:
相邻两条纹之间 的光程差相差 λ , 对应的劈尖膜厚 度相差为:
2n 当膜厚增加λ/ 2n 的 距离时,上下表面的反 射光的光程差增加一个 λ,条纹移动一级。 ek 1 ek

如果观察到某处干涉条纹(明纹或暗纹)移过了N 条,即表明劈尖膜的厚度增加了 Nλ/2n 。 40

41

S1 S2
1
2
n1
P
n2
24
解 相位差
2πr2
2

2πr1
1

0 0 2π (n2 r2 n1r1 ) 0

2πn2 r2

2πn1r1
计算通过不同介质的相干光的相位差, 可不用 介质中的波长, 而统一采用真空中的波长计算。
25
2、光程差

S1
S2
r1
P
n
t
( 2)
13
例 :在杨氏双缝干涉中,已知:
d=0.2mm; D=1.0m; λ1=400nm; λ2=600nm。
λ1暗纹中心与λ2明纹中心第一次重合在何处?
k D 明纹位置: x k 解: d D 暗纹位置: x k ( 2k 1)
2d
1 D D 重合点必须满足:x (k1 ) 1 k2 2 2 d d 1 2 k1 k2 k1 0.5 1.5k2 2 1 k1 k2 1 所以 D x k2 2 3 103 m d
同一厚度e对应同一级条纹---等厚干涉
相邻两条纹的间距:(以暗纹为例)
e n ( ) + 2 = 2 k +1 2 δ =2 ( ) k 1 + e k = k e k+1 = 2n 2n e k+1 e k = 2n l sinθ = e k+1 e k
l= 2 n sin θ
1、双缝干涉条纹的位置 实 验 装 置
s
s1
d o
r1


B
p
r2
x
o
s2
D d
D
在P点的合光强: I I1 I 2 2 I1 I 2 cos 两个子波源在P点引起的光振动的位相差为:

2

(r2 r1 )
1

2

( r2 r1 )
2


r20 r10
r2 r1
D 7 d
34
S1
2.1
薄膜干涉的两种条纹
1)等厚干涉 当入射角固定时,对于波长一定的入射 光,光程差只取决于薄膜的厚度,相同 厚度的地方对应相同的光程差,出现同 一级条纹。 2)等倾干涉 当薄膜的厚度均匀时,光程差只取决于入 射光的角度,相同倾角的光线光程差相同
35
薄膜干涉 (一) —— 等厚条纹
2
D
2d
4
各级暗纹都有两条,对称分布在屏幕中央两侧。
条纹间距:
x
a. 相邻明纹间距:x
d d b. 相邻暗纹间距:x
x
xk 1 xk D ( k 1)D kD

D ( 2k 1) d 2
D k d
明纹
暗纹
k 0,1,2,

xk 1 xk
(A) 传播的路程相等,走过的光程相等. (B) 传播的路程相等,走过的光程不相等. (C) 传播的路程不相等,走过的光程相等. (D) 传播的路程不相等,走过的光程不相等.
答案C
29
2. 如图, S1、 S2是两个相干光源,它们到 P点的距 离分别为 r1 和 r2 .路径 S1P 垂直穿过一块厚度为 t1 , 折射率为n1的介质板,路径S2P垂直穿过厚度为t2, 折射率为n2的另一介质板,其余部分可看作真空, 这两条路径的光程差等于 (A)( r2 n2 t 2 ) ( r1 n1t1 )
相关文档
最新文档