新人教版数学八上优秀教案:课题学习最短路径问题教案
课题学习--最短路径问题 优秀教案
课题学习---最短路径问题游戏规则发生了变化,如图,则小明按怎样的路线跑,去捡哪个位置的球,才能最快拿到球跑到终点处?问题1:前面我们已经解决了A、B两点在直线两侧的最短问题,下面请同学们思考并尝试,若这两点居于直线的同侧,该怎样找到那样的点P,使得AP与BP的和最小?问题2:若找到了那样的点,请证明结论的正确性(化异侧为同侧)点点l求.证明:如图,在直线上取一点P质,AP=PAB=AP+PB=AP+PB.由此可知:点距离最短学以致用(将军饮马)传说在古罗马时代的亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位将军专程去拜访他,向他请教一个百思不得其解的问题.A边岸的同侧该怎样走才能使路程最短?据说当时海伦略加思索就解决了它们,你知道问题的答案吗?l小明终点现如今,将军遇到了新的问题,你能够替代海伦帮助将军解决这个问题吗?(造桥选址问题)将军从图中的A 地出发,到一条笔直的河边l 饮马,然后淌水到B 地(要求淌水的距离最短).问到河边什么地方饮马并淌水可使他所走的路线全程最短?问题3:本问题又变成了点在直线两侧的问题,但一条直线拓宽成了一条河,请同学们思考,要饮马并淌水过河,饮马点M应选在何处,才能使从A到B的路径AMNB最短?问题4:如何证明你的结论?如图,由于河岸宽度是固定的,淌水的路径最短要与河岸垂直,因此路径AMNB中的MN的长度是固定的. 因此要使AM+MN+NB的值最小,只需AM+NB的值最小即可.如图,几何画板验证,然后使用逻辑推理问题探究经验基础上,把问题引向深入,使得平移变换自然呈现,进一步体现图形变换在最短路径问题中的价值。
课题学习最短路径问题教案人教版八年级数学上册
13.4课题学习最短路径问题【教学目标】1.知识与技能:通过对最短路径的探索,进一步理解和掌握两点之间线段最短和垂线段最短的性质.2.过程与方法:让学生经历运用所学知识解决问题的过程,培养学生解决问题的能力,掌握探索最短路径的思想方法.3.情感态度与价值观:在数学学习活动中,获得成功的体验,树立自信心.【教学重难点】重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题,培养学生解决实际问题的能力;难点:如何利用轴对称将最短路径问题转化为线段和最小问题.【教学方法】情境学习法、探究实践法.【教学过程】新课导入:创设情境,提出问题:问题1:如图,连接A,B两点的所有连线中,哪条最短?为什么?答:②最短,因为两点之间,线段最短问题2:如图,点P是直线l外一点,点P与该直线l上各点连接的所有线段中,哪条最短?为什么?答:PC最短,因为垂线段最短.“两点的所有连线中,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称之为最短路径问题.本节将利用数学知识探究数学史的著名的“牧马人饮马问题”及“造桥选址问题”.深入学习最短路径问题.由复习相关问题入手,为后面学习做好铺垫.新课讲授:(一)牧人饮马问题问题:如图,牧马人从点A地出发,到一条笔直的河边l饮马,然后到B地,牧马人到河边的什么地方饮马,可使所走的路径最短?把实际问题抽象为数学作图问题:在直线l上求作一点C,使AC+BC最短问题.动手探究:探究1:现在假设点A,B分别是直线l异侧的两个点,如何在l上找到一个点,使得这个点到点A,点B的距离的和最短?解:连接AB,与直线l相交于一点C.根据是“两点之间,线段最短”,可知这个交点即为所求.探究2:如果点A,B分别是直线l同侧的两个点,如何将点B“移”到l的另一侧B′处,满足直线l上的任意一点C,都保持CB与CB′的长度相等?作法:(1)作点B关于直线l的对称点B′;(2)连接AB′,与直线l相交于点C.则点C即为所求.探究3:你能用所学的知识证明AC +BC最短吗?证明:如图,在直线l上任取一点C′(与点C不重合),连接AC′,BC′,B′C′.由轴对称的性质知,BC =B′C,BC′=B′C′.②AC +BC= AC +B′C = AB′,② AC′+BC′= AC′+B′C′.在②AB′C′中,AB′<AC′+B′C′,②AC +BC<AC′+BC′.即AC +BC最短.例1:如图,已知点D,点E分别是等边三角形ABC中BC,AB边的中点,AD=5,点F是AD边上的动点,求BF+EF的最小值.解:△ABC为等边三角形,点D是BC边的中点,∴AD⊥BC,AB=BC,BD=CD,∴点B与点C关于直线AD对称.∵点F 在AD 上,∴BF =CF ,∴BF +EF =CF +EF ,∴连接CE ,线段CE 的长即为BF +EF 的最小值.∵当CE ⊥AB 时,CE 最小,∴当CE ⊥AB 时,BF +EF 的最小值.∵12AB ·CE =12BC ·AD ,∴CE =AD =5, ∴BF +EF 的最小值是5.归纳结论:求线段和的最小值问题:找准对称点是关键,而后将求线段长的和转化为求某一线段的长,而再根据已知条件求解.(二)造桥选址问题活动探究:如图,A 和B 两地在一条河的两岸,现要在河上造一座桥MN .桥造在何处可使从A 到B 的路径AMNB 最短(假定河的两岸是平行的直线,桥要与河垂直)?抽象出数学习题思考:N 在直线b 的什么位置时,AM +MN +NB 最小?由于河岸宽度是固定的,因此当AM +NB 最小时,AM +MN +NB 最小.AM 沿与河岸垂直的方向平移,点M 移到点N ,点A 移到点A ′,则AA ′ = MN ,AM + NB = A ′N + NB . 这样问题就转化为:当点N 在直线b 的什么位置时, A ′N +NB 最小?如图,连接A ′B 与b 相交于N ,N 点即为所求.试说明桥建在M ′N ′上时,从A 到B 的路径AMNB 增大.(两点之间线段最短)例2:如图,荆州古城河在CC ′处直角转弯,河宽相同,从A 处到B 处,须经两座桥:DD ′,EE ′(桥宽不计),设护城河以及两座桥都是东西、南北方向的,怎样架桥可使ADD ′E ′EB 的路程最短?解:作AF ②CD ,且AF =河宽,作BG ②CE ,且BG =河宽,连接GF ,与河岸相交于E ′,D ′.作DD ′,EE ′即为桥.理由:由作图法可知,AF //DD ′,AF =DD ′,则四边形AFD ′D 为平行四边形,于是AD =FD ′, 同理,BE =GE ′,由两点之间线段最短可知,GF最小.归纳结论:在解决最短路径问题时,我们通常利用轴对称、平移等变换把未知问题转化为已解决的问题,从而作出最短路径的选择.课堂练习:A地出发,先到草地边某一处牧马,再到河边饮马,然后回到B处,请画出最短路径.解:如图所示,AP+PQ+BQ最短.2.(1)如图②,在AB直线一侧C,D两点,在AB上找一点P,使C,D,P三点组成的三角形的周长最短,找出此点并说明理由.(2)如图②,在②AOB内部有一点P,是否在OA,OB上分别存在点E,F,使得E,F,P三点组成的三角形的周长最短,找出E,F两点,并说明理由.(3)如图②,在②AOB内部有两点M,N,是否在OA,OB上分别存在点E,F,使得E,F,M,N,四点组成的四边形的周长最短,找出E,F两点,并说明理由.答案:课堂小结:说一说哪些问题是线段最短问题.说一说牧民饮马问题的解决方法和原理.说一下造桥选址类问题的解决方法和原理.作业布置:1.如图,在直角坐标系中,点A,B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A,B,C三点不在同一条直线上,当△ABC的周长最小时点C的坐标是()A.(0,3)B.(0,2)C.(0,1)D.(0,0)答案:A2.完成本节配套习题.【板书设计】最短路径问题的解题原理:线段公理和垂线段最短.最短路径问题的分类:饮马问题和造桥选址问题.饮马问题的解题方法:轴对称知识+线段公理.造桥选址问题的解题方法:关键是将固定线段“桥”平移.【课后反思】创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容,教学时,根据本课内容特点,尽可能的让学生动手实践,通过探索交流获取作图方法.。
人教版八年级数学上册教案:13.4课题学习最短路径问题
今天我们在课堂上探讨了最短路径问题,这节课下来,我发现学生们对这个话题非常感兴趣,也提出了很多有深度的问题。他们在分组讨论和实验操作环节表现得积极主动,这让我感到很欣慰。
在讲授过程中,我注意到有些学生在理解线段连接法、射线连接法时还存在一定的困难。这让我意识到,对于这些难点知识,我需要通过更多的实例和讲解来帮助学生消化吸收。在今后的教学中,我会尽量用更直观、更生动的方式来进行讲解,让学生更好地理解这些概念。
2.教学难点
a.理解线段、射线、直线在实际问题中的运用,尤其是它们在不同情境下的适用性;
b.掌握求解最短路径的数学方法,特别是射线连接法的应用,学生容易在此处产生混淆;
c.将数学知识应用于实际问题的转化能力,如何将实际问题抽象成数学模型,进而求解;
d.学生在解决最短路径问题时,可能会忽略考虑所有可能的路径,导致无法找到最优解。
举例:讲解射线连接法时,难点在于如何确定射线的方向以及如何找到从一点出发经过其他点到达另一点的最短路径。此时,教师可以通过具体实例和图示,引导学生理解并掌握这一方法。
另外,针对难点c,教师可以设计一些实际案例,如地图上的最短路线、工程项目中的最短管道布置等,指导学生如何将问题抽象成数学模型,并运用所学知识求解。通过这种方法,帮助学生克服将实际问题转化为数学模型的难点。
3.重点难点解析:在讲授过程中,我会特别强调线段连接法、射线连接法这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解如何在不同情况下选择合适的方法求解最短路径。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与最短路径相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示线段连接法、射线连接法的基本原理。
人教版八年级数学上册13.4课题学习最短路径问题优秀教学案例
4.鼓励学生在课后进行深入研究,不断提高自己的数学素养。
五、案例亮点
1.生活实例引入:通过引入实际生活中的最短路径问题,如旅行路线规划、物流配送等,使学生能够直观地理解最短路径问题的意义和应用,提高学生的学习兴趣。
3.教师引导学生运用坐标系、函数、图论等知识,分析问题、解决问题。
(三)小组合作
1.学生分组进行讨论,培养学生的团队合作意识。
2.教师组织小组间的交流与分享,促进学生间的互帮互助。
3.教师巡回指导,针对不同小组的特点进行针对性指导。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,总结最短路径问题的解决方法。
人教版八年级数学上册13.4课题学习最短路径问题优秀教学案例
一、案例背景
本节内容为“人教版八年级数学上册13.4课题学习最短路径问题”,是在学生已经掌握了平面直角坐标系、一次函数和二次函数等基础知识的基础上进行学习的。通过对最短路径问题的探究,旨在培养学生的逻辑思维能力、空间想象能力和解决问题的能力。
3.组织学生探讨、交流最短路径问题的解决方法,培养学生合作学习的能力。
4.引导学生运用图论中的最短路径算法解决实际问题,提高学生运用所学知识解决实际问题的能力。
5.对学生进行评价,了解学生对最短路径问题的理解和运用程度,及时进行教学调整。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习数学的积极性。
2.设计具有挑战性和吸引力的数学问题,激发学生的求知欲。
3.创设轻松、愉快的学习氛围,使学生在课堂上敢于发表自己的观点,培养学生的创新精神。
(二)问题导向
1.引导学生提出问题,如“如何找到两点之间的最短路径?”、“最短路径问题在实际生活中有哪些应用?”等。
人教版数学八年级上册13.4最短路径问题优秀教学案例
2.组织学生进行课堂展示,让他们分享自己的学习心得和解决问题的方法,培养他们的表达能力和沟通能力。
3.教师对学生的学习过程和结果进行评价,关注他们的进步和成长,激发他们的学习动力。
(五)作业小结
1.布置具有实践性和拓展性的作业,让学生运用所学知识解决实际问题,提高他们的应用能力。
2.要求学生在作业中总结最短路径问题的解决方法,培养他们的归纳总结能力。
3.教师对学生的学习过程和结果进行评价,关注他们的进步和成长,激发他们的学习动力。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示实际,激发他们的学习兴趣。
2.设计具有挑战性和趣味性的实例,让学生在解决问题的过程中,自然引入最短路径问题的概念和方法。
3.创设合作交流的氛围,让学生在小组内共同探讨问题,激发他们的思考和创造力。
(二)讲授新知
1.引导学生关注最短路径问题的本质,即寻找两点间的最优路径,让学生在解决问题的过程中,自然而然地掌握相关知识。
2.通过提问、设疑等方式,引导学生思考最短路径问题的解决方法,激发他们的求知欲和好奇心。
3.讲解最短路径问题的解决方法,如坐标系法、动态规划法、图论等,让学生了解多种解决思路。
3.教师及时批改作业,给予学生反馈,帮助他们发现不足,提高学习效果。
本节课的教学内容与过程注重知识的传授、方法的训练和情感的培养,充分体现了教育的人文关怀和学生的全面发展。通过本节课的学习,学生将更好地掌握最短路径问题的解决方法,提高他们的数学素养和实际应用能力,为未来的学习和生活打下坚实基础。
最新人教版初中八年级上册数学《课题学习最短路径问题》精品教案
13.4 课题学习最短路径问题【知识与技能】1.了解最短路径问题.2.掌握解决最短路径问题的方法.【过程与方法】通过解决最短路径问题的过程培养学生分析问题的能力.【情感态度】通过对最短路径问题的学习,增强应用数学知识解决实际问题的信心.【教学重点】解决最短路径问题.【教学难点】最短路径的选择.一、情景导入,初步认识问题1 如图,牧马人从A地出发,到一条笔直的河边l饮马,然后到B地.牧马人到河边的什么地方饮马,可使所走的路径最短?问题2 如图,A和B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处可使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直.)【教学说明】(1)C为直线l上的一个动点,那么,上面的问题可以转化为:当点C在l的什么位置时,AC与CB的和最小.作出点B关于l的对称点B′,连接AB′,线段AB′与直线l的交点C的位置即为所求.(2)N为直线b上的一个动点,MN垂直于直线b,交直线a于点M,这样,上面的问题可以转化为下面的问题:当点N在直线b的什么位置时,AM+MN+NB最小?将AM沿与河岸垂直方向平移,移动距离为河宽,则A点移到A′点,连接A′B,线段A′B与直线b的交点N的位置即为所求,即在点N处造桥MN.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知例要在燃气管道l上修建一个泵站,分别向A、B两镇供气,泵站修在管道的什么地方,可使所用的输气管道最短?【分析】本问题就是要在l上找一点C,使AC与CB的和最小.设B′是B关于直线l的对称点,本问题也就是要使AC与CB′的和最小.在连接AB′的线中,线段AB′最短.因此,线段AB′与直线l的交点C的位置即为所求.【教学说明】解决最短路径问题通常运用的知识有“过直线作已知点的对称点”,“两点的所有连线中,线段最短”等.三、师生互动,课堂小结这节课主要学习了最短路径问题,让学生相互交流体会与收获,并总结本课所学知识.完成练习册中本课时的练习.本课时教学时要尽量创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容,教学时,根据本课内容特点,可依据其学科知识间联系调动课堂气氛,培养学生学习兴趣.非常感谢!您浏览到此文档。
人教版八年级数学上册13.4最短路径问题优秀教学案例
4.多媒体教学手段:利用多媒体教学手段,如图片、视频等,展示实际问题情境,让学生更直观地感受到问题的背景和意义,提高学习效果。
在现实生活中,最短路径问题具有广泛的应用,如道路规划、网络路由等。因此,本节课的教学案例将以实际问题为背景,引导学生运用数学知识解决实际问题,培养学生的数学应用意识。
为了提高教学效果,本节课将采用小组合作、讨论交流的教学方法,让学生在探讨最短路径问题的过程中,提高自主学习能力和合作意识。同时,教师将以引导者、组织者的角色参与教学,为学生提供必要的帮助和指导,确保教学活动的顺利进行。
(三)小组合作
1.教师将学生分成小组,鼓励学生进行合作交流,共同探讨最短路径问题的解决方法。
2.教师引导学生进行小组讨论,鼓励学生分享自己的思路和观点,培养学生的合作意识和团队精神。
3.教师巡回指导,参与小组讨论,为学生提供必要的帮助和指导,确保每个学生都能参与到教学活动中来。
(四)反思与评价
1.教师引导学生进行自我反思,总结自己在解决最短路径问题过程中的思路和方法,找出自己的不足之处。
3.教师介绍迪杰斯特拉算法和贝尔曼-福特算法,讲解这两种算法的原理和步骤,并通过示例进行演示。
4.教师引入动态规划思想,讲解如何运用动态规划解决最短路径问题,并给出动态规划解决最短路径问题的步骤。
(三)学生小组讨论
1.教师将学生分成小组,并提出讨论问题,如“比较迪杰斯特拉算法和贝尔曼-福特算法的优缺点”、“如何运用动态规划解决最短路径问题?”等。
2.利用多媒体教学手段,展示实际问题情境,让学生直观地感受到最短路径问题的重要性和实用性。
人教版八年级数学上册教学设计:13.4 课题学习 最短路径问题
人教版八年级数学上册教学设计:13.4 课题学习最短路径问题一. 教材分析人教版八年级数学上册第十三章第四节“课题学习最短路径问题”主要是让学生了解最短路径问题的背景和意义,掌握利用图的性质和算法求解最短路径问题的方法。
通过本节课的学习,学生能够将所学的图的知识应用到实际问题中,提高解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了图的基本概念和相关性质,如顶点、边、连通性等。
同时,学生也学习了一定的算法知识,如排序、查找等。
因此,学生在学习本节课时,能够将已有的知识和经验与最短路径问题相结合,通过自主探究和合作交流,理解并掌握最短路径问题的求解方法。
三. 教学目标1.了解最短路径问题的背景和意义,能运用图的性质和算法求解最短路径问题。
2.提高学生将实际问题转化为数学问题的能力,培养学生的逻辑思维和解决问题的能力。
3.增强学生合作交流的意识,提高学生的团队协作能力。
四. 教学重难点1.教学重点:最短路径问题的求解方法及其应用。
2.教学难点:理解并掌握最短路径问题的求解算法,能够灵活运用到实际问题中。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.算法教学法:以算法为主线,引导学生了解和掌握最短路径问题的求解方法。
3.合作学习法:学生进行小组讨论和合作交流,共同解决问题,提高团队协作能力。
六. 教学准备1.准备相关实际问题的案例,如城市间的道路网络、网络通信等。
2.准备算法教学的PPT,以便在课堂上进行讲解和演示。
3.准备练习题和拓展题,以便进行课堂练习和课后巩固。
七. 教学过程1.导入(5分钟)通过展示实际问题案例,如城市间的道路网络,引导学生了解最短路径问题的背景和意义。
提问:如何找到两点之间的最短路径?引发学生的思考和兴趣。
2.呈现(10分钟)讲解最短路径问题的求解方法,如迪杰斯特拉算法、贝尔曼-福特算法等。
通过PPT演示算法的具体步骤和过程,让学生清晰地了解算法的原理和应用。
人教版八年级上册数学 13.4 课题学习 最短路径问题 优秀教案
13.4 课题学习 最短路径问题1.能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想.(重点) 2.利用轴对称将最短路径问题转化为“两点之间,线段最短”问题.(难点) 一、情境导入相传,古希腊有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短?二、合作探究 探究点:最短路径问题 【类型一】 两点的所有连线中,线段最短 如图所示,在河a 两岸有A 、B 两个村庄,现在要在河上修建一座大桥,为方便交通,要使桥到这两村庄的距离之和最短,应在河上哪一点修建才能满足要求?(画出图形,做出说明)解析:利用两点之间线段最短得出答案.解:如图所示,连接AB 交直线a 于点P ,此时桥到这两村庄的距离之和最短.理由:两点之间线段最短.方法总结:求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.【类型二】 运用轴对称解决距离最短问题在图中直线l 上找到一点M ,使它到A ,B 两点的距离和最小.解析:先确定其中一个点关于直线l 的对称点,然后连接对称点和另一个点,与直线l 的交点M 即为所求的点.解:如图所示:(1)作点B 关于直线l 的对称点B ′;(2)连接AB ′交直线l 于点M ;(3)点M 即为所求的点.方法总结:利用轴对称解决最值问题应注意题目要求,根据轴对称的性质、利用三角形的三边关系求解. 【类型三】最短路径选址问题 如图,小河边有两个村庄A ,B ,要在河边建一自来水厂向A 村与B 村供水.(1)若要使厂址到A ,B 两村的距离相等,则应选择在哪建厂(要求:保留作图痕迹,写出必要的文字说明)? (2)若要使厂址到A ,B两村的水管最短,应建在什么地方?解析:(1)欲求到A 、B 两村的距离相等,即作出AB 的垂直平分线与EF 的交点即可,交点即为厂址所在位置;(2)利用轴对称求最短路线的方法是作出A 点关于直线EF 的对称点A ′,再连接A ′B 交EF 于点N ,即可得出答案.解:(1)作出AB 的垂直平分线与EF 的交点M ,交点M 即为厂址所在位置;(2)如图所示:作A 点关于直线EF 的对称点A ′,再连接A ′B 交EF 于点N ,点N 即为所求.【类型四】 运用轴对称解决距离之差最大问题如图所示,A ,B 两点在直线l 的两侧,在l 上找一点C ,使点C 到点A、B 的距离之差最大.解析:此题的突破点是作点A (或B )关于直线l 的对称点A ′(或B ′),作直线A ′B (AB ′)与直线l 交于点C ,把问题转化为三角形任意两边之差小于第三边来解决.解:如图所示,以直线l 为对称轴,作点A 关于直线l 的对称点A ′,A ′B 的连线交l 于点C ,则点C 即为所求.理由:在直线l 上任找一点C ′(异于点C ),连接CA ,C ′A ,C ′A ′,C ′B .因为点A ,A ′关于直线l 对称,所以l 为线段AA ′的垂直平分线,则有CA =CA ′,所以CA -CB =CA ′-CB =A ′B .又因为点C ′在l 上,所以C ′A =C ′A ′.在△A ′BC ′中,C ′A -C ′B =C ′A ′-C ′B <A ′B ,所以C ′A ′-C ′B <CA -CB .方法总结:如果两点在一条直线的同侧,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决.三、板书设计课题学习 最短路径问题1.求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.2.求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.通过本节课进一步体会数学与自然及人类社会的密切联系,了解数学的价值.在互动交流活动中,学习从不同角度理解问题,寻求解决问题的方法,并有效地解决问题.体会在解决问题中与他人合作的重要性.体会运用数学的思维方式观察、分析现实社会,解决日常生活中和其他学科中的问题,增强应用数学的意识.。
人教版数学八年级上册《13.4 课题学习 最短路径问题》教学设计2
人教版数学八年级上册《13.4 课题学习最短路径问题》教学设计2一. 教材分析《人教版数学八年级上册》第13.4课题学习“最短路径问题”是本册内容的一个重要组成部分。
本节课主要让学生了解最短路径问题的背景和应用,掌握利用图的性质和简单的图算法解决最短路径问题的方法。
通过本节课的学习,学生能够进一步提高分析问题和解决问题的能力,培养逻辑思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了图的相关知识,如图的定义、图的表示方法、图的性质等。
同时,学生也了解了一些简单的算法,如深度优先搜索、广度优先搜索等。
但部分学生对这些知识的掌握程度不够扎实,对算法的理解也相对模糊。
因此,在教学过程中,需要关注这部分学生的学习情况,引导他们更好地理解和掌握本节课的内容。
三. 教学目标1.了解最短路径问题的背景和应用,理解最短路径的概念。
2.掌握利用图的性质和简单的图算法解决最短路径问题的方法。
3.培养学生的逻辑思维能力和问题解决能力。
四. 教学重难点1.教学重点:最短路径问题的解决方法,如迪杰斯特拉算法、贝尔曼-福特算法等。
2.教学难点:算法的原理和实现,以及如何将实际问题转化为最短路径问题。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.案例教学法:分析具体的最短路径问题案例,让学生直观地了解问题的解决过程。
3.算法分析法:引导学生分析算法的原理和实现,提高学生的逻辑思维能力。
4.小组合作学习:鼓励学生分组讨论和合作解决问题,培养学生的团队协作能力。
六. 教学准备1.教学课件:制作课件,展示最短路径问题的背景、应用和解决方法。
2.案例材料:准备一些具体的最短路径问题案例,供学生分析和讨论。
3.编程环境:为学生提供编程环境,以便他们在课堂上实践算法。
七. 教学过程1.导入(5分钟)利用课件展示最短路径问题的背景和应用,如地图导航、网络通信等。
引导学生关注最短路径问题,激发学生的学习兴趣。
八年级数学上册 13.4 课题学习 最短路径问题教学设计 (新版)新人教版
八年级数学上册 13.4 课题学习最短路径问题教学设计(新版)新人教版一. 教材分析“课题学习最短路径问题”是人教版八年级数学上册第13.4节的内容。
这部分内容主要让学生了解最短路径问题的实际应用,学会使用图论中的最短路径算法来解决实际问题。
教材通过引入一个实际问题,引导学生探讨并找出解决问题的方法,从而培养学生解决问题的能力和兴趣。
二. 学情分析八年级的学生已经掌握了图论的基本知识,如图的定义、图的表示方法等。
但是,对于图的最短路径问题,学生可能还没有直观的理解和认识。
因此,在教学过程中,教师需要结合学生的已有知识,通过实例讲解、动手操作等方式,帮助学生理解和掌握最短路径问题。
三. 教学目标1.知识与技能目标:让学生了解最短路径问题的实际应用,学会使用图论中的最短路径算法来解决实际问题。
2.过程与方法目标:通过探讨实际问题,培养学生解决问题的能力和兴趣。
3.情感态度与价值观目标:培养学生对数学的热爱,提高学生解决实际问题的能力。
四. 教学重难点1.教学重点:最短路径问题的实际应用,图论中的最短路径算法。
2.教学难点:如何引导学生从实际问题中抽象出最短路径问题,并运用图论知识解决。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.实例讲解法:通过具体的实例,讲解最短路径问题的解决方法,帮助学生理解和掌握。
3.动手操作法:让学生亲自动手操作,加深对最短路径问题的理解。
六. 教学准备1.教学素材:准备一些实际问题的案例,以及相关的图论知识介绍。
2.教学工具:多媒体教学设备,如PPT等。
3.学生活动:让学生提前预习相关内容,了解图论的基本知识。
七. 教学过程1.导入(5分钟)通过一个实际问题引入最短路径问题,激发学生的学习兴趣。
例如,讲解从一个城市到另一个城市,如何找到最短的路线。
2.呈现(15分钟)讲解最短路径问题的定义,以及图论中最短路径算法的基本原理。
通过PPT等教学工具,展示相关的知识点,让学生直观地了解最短路径问题。
八年级数学人教版上册13.4课题学习最短路径问题(第一课时)优秀教学案例
(五)作业小结
1.作业布置:布置一些有关最短路径问题的课后作业,让学生进一步巩固所学知识,提高解决问题的能力。
2.作业反馈:对学生的作业进行及时批改和反馈,指出其中的错误和不足,给予肯定和建议。
3.课后拓展:鼓励学生参加数学竞赛、研究性学习等活动,拓宽视野,培养创新精神。同时,关注学生在学习过程中的情感态度和价值观的培养,引导他们关爱他人、乐于助人,形成良好的品德素养。
2.利用多媒体展示典型实例,让学生更好地理解和掌握最短路径问题的解决方法。
3.鼓励学生积极参与课堂讨论,培养他们的合作精神和团队意识。
4.注重个体差异,给予学生个性化的指导,帮助他们在原有基础上得到提高。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,让他们感受到数学在生活中的实际应用,提高学生学习数学的积极性。
4.反思与评价:引导学生进行自我反思和同伴评价,培养学生的批判性思维和自我改进的能力。同时,教师对学生的学习过程和结果进行评价,注重鼓励性评价,激发学生的学习兴趣和自信心。
5.课后拓展与情感态度培养:布置相关的课后作业,让学生进一步巩固所学知识,提高解决问题的能力。同时,关注学生在学习过程中的情感态度和价值观的培养,引导他们关爱他人、乐于助人,形成良好的品德素养。
五、案例亮点
1.生活情境导入:通过生活情境导入新课,使学生能够直观地感受到最短路径问题的实际意义,激发学生的学习兴趣和积极性。
2.多媒体辅助教学:利用多媒体展示典型的最短路径问题实例,使抽象的问题具体化、形象化,有助于学生更好地理解和掌握知识。
3.问题导向与小组合作:提出具有挑战性的问题,引导学生进行小组讨论和合作交流,培养学生的团队协作能力和解决问题的能力。
13.4课题学习-最短路径问题 教案 2022-2023学年度人教版八年级数学上册
13.4课题学习-最短路径问题教案一、教学目标1.了解最短路径问题的基本概念和特点;2.掌握最短路径问题相关的算法和求解方法;3.能够灵活运用最短路径问题的算法解决实际问题。
二、教学重点1.最短路径问题的基本概念和特点;2.最短路径问题的相关算法和求解方法。
三、教学难点能够灵活运用最短路径问题的算法解决实际问题。
四、教学内容1. 最短路径问题的概念和特点最短路径问题是图论中的一个经典问题,主要是求解两点之间经过路径长度最短的问题。
最短路径问题的特点有:•可以用图来表示,顶点表示路径的起点和终点,边表示路径;•可以是有向图或无向图;•边上可以有权值,表示路径长度。
2. 最短路径问题的相关算法和求解方法最短路径问题有多种求解方法和算法,常用的有以下几种:2.1. 迪杰斯特拉算法迪杰斯特拉算法是一种用于求解单源最短路径问题的算法。
它的基本思想是从起点开始,逐步扩展最短路径,直到到达终点。
迪杰斯特拉算法的步骤如下:1.初始化起点到各个顶点的最短距离,起点到起点的最短距离为0,其他顶点的最短距离为无穷大;2.选择一个未访问且距离起点最近的顶点,标记为已访问;3.更新当前顶点的邻居顶点的最短距离,如果经过当前顶点到达邻居顶点的距离小于邻居顶点当前的最短距离,则更新最短距离;4.重复步骤2和步骤3,直到所有顶点都被访问。
2.2. 弗洛伊德算法弗洛伊德算法是一种用于求解多源最短路径问题的算法。
它的基本思想是通过计算任意两个顶点之间的最短路径,来得到整个图的最短路径。
弗洛伊德算法的步骤如下:1.初始化距离矩阵,如果两个顶点之间存在边,则距离为边的权值,否则距离为无穷大;2.对于每个顶点对(i, j),尝试经过某个中间顶点k来更新距离,如果从i到j的距离大于从i到k再到j的距离,则更新距离;3.重复步骤2,直到所有顶点对的最短路径都被计算。
2.3. 贝尔曼-福特算法贝尔曼-福特算法是一种用于求解单源最短路径问题的算法。
八年级数学人教版上册13.4最短路径问题(第一课时)优秀教学案例
(一)知识与技能
1.理解最短路径问题的实际应用背景,认识到最短路径问题在生活中的重要性。
2.掌握利用图的性质寻找最短路径的方法,能够运用所学知识解决实际问题。
3.了解最短路径问题的基本概念,如路径、权重、最短路径等。
4.学会使用图论中的算法求解最短路径问题,如迪杰斯特拉算法。
(二)过程与方法
四、教学内容与过程
(一)导入新课
1.生活情境引入:通过展示城市交通网络图,引导学生关注实际生活中的最短路径问题,激发学生的学习兴趣。
2.创设问题情境:提出问题:“如何在城市交通网络中找到从一个地点到另一个地点的最短路径?”引导学生思考和提出解决问题的方法。
(二)讲授新知
1.图的基本概念:介绍图的定义、图的节点和边等基本概念,为学生理解最短路径问题打下基础。
5.知识拓展与延伸:在教学过程中,不仅关注学生对知识的掌握程度,还注重引导学生思考最短路径问题在其他领域的应用,激发学生的学习兴趣和拓展思维。通过知识拓展与延伸,学生能够更好地将所学知识应用于实际生活中,提高他们的数学应用能力。
在教学过程中,我以城市交通网络为背景,设计了一系列具有挑战性的问题,引导学生从实际情境中发现问题、提出问题,激发学生的探究兴趣。同时,我充分发挥学生的主体作用,组织学生进行合作探究,引导他们通过画图、讨论等方式,寻找解决问题的策略。
在教学评价方面,我注重过程性评价与终结性评价相结合,不仅关注学生对知识的掌握程度,更注重培养学生的数学思维能力和解决问题的能力。通过本节课的教学,使学生能够运用所学的知识解决实际生活中的最短路径问题,提高他们的数学应用意识。
3.评价原则:评价应具有客观性、发展性、指导性,能够激发学生的学习动力和自我提升意识。
人教版八年级上册13.4课题学习-最短路径问题教案
课题:13.4课题学习最短路径问题教学内容最短路径问题教学目标知识与技能:通过对最短路径问题的探索,进一步理解和掌握两点之间线段最短和垂线段最短.过程与方法:让学生经历运用所学知识解决问题的过程,培养学生解决问题的能力,掌握探索最短路径问题的思想和方法.情感、态度与价值观:在数学教学活动中获得成功的体验,树立自信心,激发学生的学习兴趣,让学生感受数学与现实生活的密切联系.教学重点应用所学知识解决最短路径问题.教学难点选择合理的方法解决问题.教学方法合作交流,讲练结合.教学准备多媒体课件,三角板.教学过程设计设计意图教学过程一、复习引入(1)两点所连的线中,最短.(2)连接直线外一点与已知直线上各点的所有线段中,最短.我们研究过以上这两个问题,我们称它们为最短路径问题.同学们通过讨论下面两个问题,可以体会如何运用所学知识选择最短路径.(揭示课题)二、新知探究问题1首先我们来研究河边饮马问题.(河边饮马问题)如图所示,牧马人从A地出发,到一条笔直的河边l饮马,然后到B地.牧马人到河边的什么地方饮马,可使所走的路径最短?现在假设点A,B分别是直线l异侧的两个点,如何在l上找到一个点,使得这个点到点A,点B的距离的和最短?连接AB,与直线l相交于一点,根据“两点之间,线段最短”,可知这个交点即为所求.【思考】如果点A,B分别是直线l同侧的两个点,又应该如何解决?复习旧知,为新课学习提供理论依据.讨论交流.(1)牧马人到笔直的河边饮马,河边可以近似看成一条直线,假设到C点饮马,要保证所走的路径最短和哪些线段有关?(2)要利用我们学过的哪些知识?要经过怎样的图形变换转移到一条线段上?分组交流合作,在小组内达成共识的基础上,推选代表进行板演.幻灯片演示画法,指导学生证明AB'=AC+BC.(B,B'两点关于直线l对称)如果在直线上另外任取一点C',连接AC',BC',B'C'.怎样证明AC+CB<AC'+C'B?讨论交流完成.【总结方法】找出其中某一点关于直线的对称点,连接对称点与另一点,与直线的交点即为所求,证明时要利用三角形三边的关系来证明.(造桥选址问题)如图所示,A和B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处可使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直.)我们可以把河的两岸看成两条平行线a和b,思考:(1)要保证路径最短就是要使哪些线段的和最小?(2)无论点M,N在什么位置,MN的长度是否发生变化?为什么?合作交流.结合学生讨论的结果,强调MN为定值,问题的关键就是要保证AM+NB的和最小.阅读教材第87页,合作交流思路展示教材图13.4 - 9的证明过程.证明AM+MN+NB<AM'+M'N'+N'B.证明:因为A'B<A'N'+N'B,所以A'N+NB<AM'+N'B.又因为AM=A'N,所以AM+NB<A'M+N'B.又MN=M'N',所以AM+MN+NB<AM'+M'N'+N'B.三、课堂小结最短路径问题,常用的方法是借助轴对称的知识转化,利用“两点之间,线段最短”来求线段和的最小值,从而解决最短路径问题.四、课堂练习1.如图所示,直线m表示一条河,点M,N表示两个村庄,欲在m上的某处修建一个给水站,向两个村庄供水,现有如图所示的四种铺设管道的方案,图中实线表示铺设的管道,则所需管道最短的方案是()解析:作点M关于直线m的对称点P',连接NP'交直线m 于P.根据两点之间,线段最短,可知选项D铺设的管道最短.故选D.2.如图(1)所示,在旷野上,一个人骑着马从A到B,半路上他必须先到河岸l的P点让马饮水,然后再到河岸m的Q点让马再次饮水,最后到达B点,他应该如何选择饮马地点P,Q,才能使所走路程AP+PQ+QB为最短(假设河岸l,m为直线)?(1)(2)解:如图(2)所示,作A点关于直线l的对称点A',B点关于直。
人教版八年级数学上册13.4《最短路径问题》优秀教学案例
1.教师将学生分成若干小组,每组选择一个最短路径问题进行研究和探究;
2.引导学生相互讨论、交流,共同解决问题,培养学生的团队协作能力和沟通能力;
3.教师巡回指导,针对不同小组的问题,提供适当的帮助和指导,促进学生的思考和发展。
(四)总结归纳
1.教师引导学生对自己的学习过程进行反思,总结自己在解决问题过程中的优点和不足;
人教版八年级数学上册13.4《最短路径问题》优秀教学案例
一、案例背景
本节课为人教版八年级数学上册13.4《最短路径问题》,是在学生已经掌握了平面直角坐标系、一次函数和二次函数等知识的基础上进行学习的。八年级的学生思维活跃,好奇心强,具备一定的探究能力,但同时在学习过程中容易忽视数学与实际生活的联系,对最短路径问题的理解停留在理论层面。因此,本节课的教学案例旨在通过生活实例,引导学生感受最短路径问题在实际生活中的应用,培养学生解决实际问题的能力,提高学生的数学素养。
2.组织学生进行评价,让学生互相评价,提高学生的自我认知和评价能力;
3.教师对学生的学习过程和结果进行评价,关注学生的全面发展,给予极的反馈和鼓励。
(五)作业小结
1.教师布置与本节课相关的基础性作业和拓展性作业,巩固学生对最短路径问题的理解和掌握;
2.鼓励学生运用所学知识解决实际生活中的最短路径问题,提高学生的数学应用意识;
三、教学策略
(一)情景创设
1.利用多媒体展示实际生活中的最短路径问题,如快递员送快递、旅行家规划旅行路线等,让学生感受到最短路径问题在现实生活中的重要性;
2.设计具有挑战性的问题,如学校到图书馆的最短路径是什么?引导学生思考并尝试解决;
3.创设情境,让学生扮演不同角色,如导演、导游等,规划最短路径,提高学生的参与度和积极性。
新人教版八年级数学上【教案】课题学习 最短路径问题
新人教版八年级数学上【教案】课题学习最短路径问题课题学习最短路径问题【教学目标】教学知识点能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用;感悟转化思想.能力训练要求在将实际问题抽象成几何图形的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.情感与价值观要求通过有趣的问题提高学习数学的兴趣.在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有所用的数学.【教学重难点】重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题.难点:如何利用轴对称将最短路径问题转化为线段和最小问题.突破难点的方法:利用轴对称性质,作任意已知点的对称点,连接对称点和已知点,得到一条线段,利用两点之间线段最短来解决.【教学过程】一、创设情景引入课题师:前面我们研究过一些关于“两点的所有连线中,线段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称它们为最短路径问题.现实生活中经常涉及到选择最短路径的问题,本节将利用数学知识探究数学史中著名的“将军饮马问题”.(板书)课题学生思考教师展示问题,并观察图片,获得感性认识.二、自主探究合作交流建构新知追问1:观察思考,抽象为数学问题这是一个实际问题,你打算首先做什么?活动1:思考画图、得出数学问题将A,B 两地抽象为两个点,将河l 抽象为一条直线.追问2 你能用自己的语言说明这个问题的意思, 并把它抽象为数学问题吗?师生活动:学生尝试回答, 并互相补充,最后达成共识:(1)从A 地出发,到河边l 饮马,然后到B 地; (2)在河边饮马的地点有无穷多处,把这些地点与A,B 连接起来的两条线段的长度之和,就是从A 地到饮马地点,再回到B 地的路程之和;(3)现在的问题是怎样找出使两条线段长度之和为最短的直线l上的点.设C 为直线上的一个动点,上面的问题就转化为:当点C 在l 的什么位置时,AC 与CB 的和最小(如图).强调:将最短路径问题抽象为“线段和最小问题”活动2:尝试解决数学问题问题1 : 如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?追问1 你能利用轴对称的有关知识,找到上问中符合条件的点B'吗?点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的问题2 如图,什么位置时,AC 与CB的和最小?师生活动:学生独立思考,画图分析,并尝试回答,互相补充教师可作如下提示如果学生有困难,作法:(1)作点B 关于直线l 的对称点B';(2)连接AB',与直线l 相交于点C,则点C 即为所求.如图所示:问题3 你能用所学的知识证明AC +BC最短吗?教师展示:证明:如图,在直线l 上任取一点C'(与点C 不重合),连接AC',BC',B'C'.由轴对称的性质知,BC =B'C,BC'=B'C'.AC +BC= AC +B'C = AB',AC'+BC'= AC'+B'C'.在?AC'B'中,AC'+B'C'>AB',当只有在C点位置时,AC+BC最短.方法提炼:将最短路径问题抽象为“线段和最小问题”.问题4练习如图,一个旅游船从大桥AB 的P 处前往山脚下的Q 处接游客,然后将游客送往河岸BC 上,再返回P 处,请画出旅游船的最短路径.基本思路:由于两点之间线段最短,所以首先可连接PQ,线段PQ 为旅游船最短路径中的必经线路.将河岸抽象为一条直线BC,这样问题就转化为“点P,Q 在直线BC 的同侧,如何在BC上找到一点R,使PR与QR 的和最小”.问题5 造桥选址问题如图,A和B两地在一条河的两岸,现要在河上造一座桥MN.桥建在何处才能使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直)思维分析:1.如图假定任选位置造桥MN,连接AM和BN,从A到B的路径是AM+MN+BN,那么怎样确定什么情况下最短呢?2.利用线段公理解决问题:我们遇到了什么障碍呢?思维点拨:在不改变AM+MN+BN的前提下把桥转化到一侧呢?什么图形变换能帮助我们呢?(估计有以下方法)1.把A平移到岸边.2.把B平移到岸边.3.把桥平移到和A相连.4.把桥平移到和B相连.教师:上述方法都能做到使AM+MN+BN不变呢?请检验.1、2两种方法改变了.怎样调整呢?把A或B分别向下或上平移一个桥长,那么怎样确定桥的位置呢?问题解决:如图,平移A到A,使AA等于河宽,连接AB交河岸于N.作桥MN,此时111路径AM+MN+BN最短. 理由:另任作桥MN,连接AM,BN,AN. 由平移性质可111111 知,AM=AN,AA=MN=MN,AM=AN. AM+MN+BN转化为AA+AB,而111111111AM+MN+BN 转化为AA+AN+BN. 在?ANB中,由线段公理知AN+BN>AB.11111111111111因此AM+MN+BN> AM+MN+BN,如图所示: 1111三、巩固训练)基础训练 (一1.最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点.(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.如图所示,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短,这时先作点B关于直线l的对称点B',则点C是直线l与AB'的交点.2.如图,A和B两地之间有两条河,现要在两条河上各造一座桥MN和PQ.桥分别建在何处才能使从A到B的路径最短?(假定河的两岸是平行的直线,桥要与河岸垂直)如图,问题中所走总路径是AM+MN+NP+PQ+QB.桥MN和PQ在中间,且方向不能改变,仍无法直接利用“两点之间,线段最短”解决问题,只有利用平移变换转移到两侧或同一侧.平移的方法有三种:两个桥长都平移到A点处、都平移到B点处、MN平移到A点处,PQ平移到B点处.)变式训练 (二如图,小河边有两个村庄A,B,要在河边建一自来水厂向A村与B村供水.(1)若要使厂部到A,B村的距离相等,则应选择在哪建厂?(2)若要使厂部到A,B两村的水管最短,应建在什么地方?(三)综合训练茅坪民族中学八(2)班举行文艺晚会,桌子摆成如图a所示两直排(图中的AO,BO),AO桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短?图a 图b四、反思小结(1)本节课研究问题的基本过程是什么?(2)轴对称在所研究问题中起什么作用?解决问题中,我们应用了哪些数学思想方法?你还有哪些收获?五、作业布置课本93页第15题.。
人教版八年级上册数学13.4课题学习最短路径问题优秀教学案例
(三)情感态度与价值观
1.让学生在解决实际问题的过程中,体验数学的乐趣,提高学生学习数学的兴趣。
2.培养学生面对困难时积极思考、勇于挑战的精神,增强学生的自信心。
3.使学生认识到数学在生活中的重要性,培养学生的数学应用意识和社会责任感。
三、教学重难点
2.跨学科教学:结合其他学科的知识,如地理、信息技术等,拓宽学生的知识视野,培养学生的综合能力。
六、教学资源
1.教材:人教版八年级上册数学教材。
2.辅助材料:相关的最短路径问题的案例、练习题和拓展问题。
3.现代教育技术:多媒体课件、网络资源等。
七、教学评价
1.学生评价:通过学生的课堂表现、作业完成情况和练习成绩等方面进行评价。
(二)讲授新知
在导入新课后,我会开始讲解最短路径问题的相关知识。首先,我会向学生们介绍最短路径问题的定义,让学生们明白什么是最短路径。接着,我会讲解解决最短路径问题的基本方法,如坐标系法、函数法等。在讲解的过程中,我会结合具体的例子,让学生们更直观地理解这些方法。
(三)学生小组讨论
在讲授完新知识后,我会让学生们进行小组讨论。我会给每个小组提供一个实际问题,让他们运用所学知识,合作解决这个最短路径问题。这样的讨论,可以培养学生的团队合作精神,也可以让学生们在实践中加深对知识的理解和应用。
3.互动评价:小组之间进行互动评价,相互学习和提高。
(四)反思与评价
1.自我反思:引导学生对自己的学习过程进行反思,发现自身的优点和不足,制定改进措施。
2.同伴评价:学生之间相互评价,给予意见和建议,促进共同进步。
3.教师评价:教师对学生的学习情况进行评价,关注学生的个体差异,给予鼓励和指导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.4 课题学习 最短路径问题
教学目标:
1、能利用轴对称解决简单的最短路径问题.
2、体会图形的变化在解决最值问题中的作用.
3、感悟转化思想.
学习重点:
利用轴对称将最短路径问题转化为“两点之
间,线 段最短”问题.
教学过程
一、探索新知
问题1 相传,古希腊亚历山大里亚城里有一
位久负盛名的学者,名叫海伦.有一天,一位将
军专程拜访海伦,求教一个百思不得其解的问题:
从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短?精通数学、物理学的海伦稍加思索,利用轴对称的知识回答了这个问题.这个问题后来被称为“将军饮马问题”.你能将这个问题抽象为数学问题吗?
追问2 你能用自己的语言说明这个问题的意思,并把它抽象为数学问题吗?
(1)从A 地出发,到河边l 饮马,然后到B 地; (2)在河边饮马的地点有无穷多处,把这些地点与A , B 连接起来的两条线段的长度之和,就是从A 地到饮马地点,再回到B 地的路程之和;
(3)现在的问题是怎样找出使两条线段长度之和为最 短的直线l 上的点.设C 为直线上的一个动点,上
面的问题就转化为:当点C 在l 的什么位置时, AC 与
CB 的和最小(如图).
B ¡¤ ¡¤ A l B A
l
问题2 如图,点A ,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?
追问1 对于问题2,如何将点B “移”到l 的另一侧B ′处,满足直线l 上的任意一点 C ,都保持CB 与CB ′的长度相等?
追问2 你能利用轴对称的有关知识,找到上问中符合条件的点B ′吗?
问题2 如图,点A ,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置
时,AC 与CB 的和最小?
作法: (1)作点B 关于直线l 的对称 点B ′;
(2)连接AB ′,与直线l 相交 于点C . 则点C 即为所求. 问题3 你能用所学的知识证明AC +BC 最短吗?
证明:如图,在直线l 上任取一点C ′(与点C 不重合),连接AC ′,BC ′,B ′C ′.由轴对称的性质知,
BC =B ′C ,BC ′=B ′C ′.
∴ AC +BC
= AC +B ′C = AB ′,
AC ′+BC ′
= AC ′+B ′C ′.
追问1 证明AC +BC 最短时,为什么要在直线l 上任取一点C ′(与点C 不重合),证明AC +BC
B ¡¤ l A
¡¤ B C
<AC ′+BC ′?这里的“C ′”的作用是什么? C 不重合)与A ,B 两点的距离和都大于AC +BC ,就说明AC + BC 最小.
追问2 回顾前面的探究过程,我们是通过怎样的过程、借助什么解决问题的?
二、练习 如图,一个旅游船从大桥AB 的P 处前往山脚下的Q 处接游客,然后将游客送往河岸BC 上,再返回P 处,请画出旅游船的最短路径.
基本思路: 由于两点之间线段最短,所以首先可连接PQ ,线段PQ 为旅游船最短路径中的必经线路.将河岸抽象为一条直线BC ,这样问题就转化为“点P ,Q 在直线BC 的同侧,如何在BC 上找到一点R ,使PR 与QR 的和最小”.
三、归纳小结
1、本节课研究问题的基本过程是什么?
2、轴对称在所研究问题中起什么作用?
四、布置作业
教科书P93复习题13第15题 A
B C
Q
山 河岸
大桥。