(暑假一日一练)2020九年级数学上册第二十二章二次函数22.3实际问题与二次函数同步练习(新版)新人教版
人教版 九年级数学上册 22.3实际问题与二次函数 同步优化训练(五)(含答案)
22.3实际问题与二次函数同步优化训练(五)1.某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:55 60 65 70销售单价x(元/千克)销售量y(千克)70 60 50 40 (1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?2.2020年新冠肺炎疫情期间,部分药店趁机将口罩涨价,经调查发现某药店某月(按30天计)前5天的某型号口罩销售价格p(元/只)和销量q(只)与第x天的关系如下表:第x天 1 2 3 4 5销售价格p2 3 4 5 6(元/只)销量q(只)70 75 80 85 90物价部门发现这种乱象后,统一规定各药店该型号口罩的销售价格不得高于1元/只,该药店从第6天起将该型号口罩的价格调整为1元/只.据统计,该药店从第6天起销量q (只)与第x天的关系为q=﹣2x2+80x﹣200 (6≤x≤30,且x为整数),已知该型号口罩的进货价格为0.5元/只.(1)直接写出该药店该月前5天的销售价格p与x和销量q与x之间的函数关系式;(2)求该药店该月销售该型号口罩获得的利润W(元)与x的函数关系式,并判断第几天的利润最大;(3)物价部门为了进一步加强市场整顿,对此药店在这个月销售该型号口罩的过程中获得的正常利润之外的非法所得部分处以m倍的罚款,若罚款金额不低于2000元,则m 的取值范围为.3.因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y(桶)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利润=销售价﹣进价)4.某公司分别在A,B两城生产同种产品,共100件.A城生产产品的总成本y(万元)与产品数量x(件)之间具有函数关系y=ax2+bx.当x=10时,y=400;当x=20时,y=1000.B城生产产品的每件成本为70万元.(1)求a,b的值;(2)当A,B两城生产这批产品的总成本的和最少时,求A,B两城各生产多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,直接写出A,B两城总运费的和的最小值(用含有m的式子表示).5.某公司生产A型活动板房成本是每个425元.图①表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.(1)按如图①所示的直角坐标系,抛物线可以用y=kx2+m(k≠0)表示.求该抛物线的函数表达式;(2)现将A型活动板房改造为B型活动板房.如图②,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户的成本为50元/m2.已知GM=2m,求每个B型活动板房的成本是多少?(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本)(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B型活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w(元)最大?最大利润是多少?6.某工厂计划在每个生产周期内生产并销售完某型设备,设备的生产成本为10万元/件.(1)如图,设第x(0<x≤20)个生产周期设备售价z万元/件,z与x之间的关系用图中的函数图象表示.求z关于x的函数解析式(写出x的范围).(2)设第x个生产周期生产并销售的设备为y件,y与x满足关系式y=5x+40(0<x ≤20).在(1)的条件下,工厂第几个生产周期创造的利润最大?最大为多少万元?(利润=收入﹣成本)7.已知某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为1.8元/千克,每次购买配料需支付运费236元.每次购买来的配料还需支付保管费用,其标准如下:7天以内(含7天),无论重量多少,均按10元/天支付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/千克支付.(1)当9天购买一次配料时,分别写出该厂第8天和第9天剩余配料的重量;(2)当9天购买一次配料时,求该厂用于配料的保管费用P是多少元?(3)设该厂x天购买一次配料,求该厂在这x天中用于配料的总费用y(元)关于x的函数关系式,并求该厂多少天购买一次配料才能使平均每天支付的费用最少?[提示:(x>0)].8.星光中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1)若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围;(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于88平方米时,试结合函数图象,直接写出x的取值范围.9.商场对某种商品进行市场调查,1至6月份该种商品的销售情况如下:①销售成本p(元/千克)与销售月份x的关系如图所示:②销售收入q(元/千克)与销售月份x满足;③销售量m(千克)与销售月份x满足m=100x+200;试解决以下问题:(1)根据图形,求p与x之间的函数关系式;(2)求该种商品每月的销售利润y(元)与销售月份x的函数关系式,并求出哪个月的销售利润最大?10.我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x万元,可获得利润P=(万元).当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x万元,可获利润(万元).(1)若不进行开发,求5年所获利润的最大值是多少?(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?(3)根据(1)、(2)该方案是否具有实施价值?参考答案1.解:(1)设y与x之间的函数表达式为y=kx+b(k≠0),将表中数据(55,70)、(60,60)代入得:,解得:.∴y与x之间的函数表达式为y=﹣2x+180.(2)由题意得:(x﹣50)(﹣2x+180)=600,整理得:x2﹣140x+4800=0,解得x1=60,x2=80.答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克.(3)设当天的销售利润为w元,则:w=(x﹣50)(﹣2x+180)=﹣2(x﹣70)2+800,∵﹣2<0,∴当x=70时,w最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.2.解:(1)根据表格数据可知:前5天的某型号口罩销售价格p(元/只)和销量q(只)与第x天的关系为:p=x+1,1≤x≤5且x为整数;q=5x+65,1≤x≤5且x为整数;(2)当1≤x≤5且x为整数时,W=(x+1﹣0.5)(5x+65)=5x2+x+;当6≤x≤30且x为整数时,W=(1﹣0.5)(﹣2x2+80x﹣200)=﹣x2+40x﹣100.即有W=,当1≤x≤5且x为整数时,售价,销量均随x的增大而增大,故当x=5时,W有最大值为:495元;当6≤x≤30且x为整数时,W═﹣x2+40x﹣100=﹣(x﹣20)2+300,故当x=20时,W有最大值为:300元;由495>300,可知:第5天时利润最大为495元.(3)根据题意可知:获得的正常利润之外的非法所得部分为:(2﹣1)×70+(3﹣1)×75+(4﹣1)×80+(5﹣1)×85+(6﹣1)×90=1250(元),∴1250m≥2000,解得m≥.则m的取值范围为m≥.故答案为:m≥.3.解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(60,100)、(70,80)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣2x+220;(2)设药店每天获得的利润为w元,由题意得:w=(x﹣50)(﹣2x+220)=﹣2(x﹣80)2+1800,∵﹣2<0,函数有最大值,∴当x=80时,w有最大值,此时最大值是1800,故销售单价定为80元时,该药店每天获得的利润最大,最大利润1800元.4.解:(1)由题意得:,解得:.∴a=1,b=30;(2)由(1)得:y=x2+30x,设A,B两城生产这批产品的总成本为w,则w=x2+30x+70(100﹣x)=x2﹣40x+7000,=(x﹣20)2+6600,∵a=1>0,由二次函数的性质可知,当x=20时,w取得最小值,最小值为6600万元,此时100﹣20=80.答:A城生产20件,B城生产80件;(3)设从A城运往C地的产品数量为n件,A,B两城总运费的和为P,则从A城运往D地的产品数量为(20﹣n)件,从B城运往C地的产品数量为(90﹣n)件,从B城运往D地的产品数量为(10﹣20+n)件,由题意得:,解得10≤n≤20,∴P=mn+3(20﹣n)+(90﹣n)+2(10﹣20+n),整理得:P=(m﹣2)n+130,根据一次函数的性质分以下两种情况:①当0<m≤2,10≤n≤20时,P随n的增大而减小,则n=20时,P取最小值,最小值为20(m﹣2)+130=20m+90;②当m>2,10≤n≤20时,P随n的增大而增大,则n=10时,P取最小值,最小值为10(m﹣2)+130=10m+110.答:0<m≤2时,A,B两城总运费的和为(20m+90)万元;当m>2时,A,B两城总运费的和为(10m+110)万元.5.解:(1)∵长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.∴OH=AB=3,∴EO=EH﹣OH=4﹣3=1,∴E(0,1),D(2,0),∴该抛物线的函数表达式为:y=kx2+1,把点D(2,0)代入,得k=﹣,∴该抛物线的函数表达式为:y=﹣x2+1;(2)∵GM=2,∴OM=OG=1,∴当x=1时,y=,∴N(1,),∴MN=,∴S矩形MNFG=MN•GM=×2=,∴每个B型活动板房的成本是:425+×50=500(元).答:每个B型活动板房的成本是500元;(3)根据题意,得w=(n﹣500)[100+]=﹣2(n﹣600)2+20000,∵每月最多能生产160个B型活动板房,∴100+≤160,解得n≥620,∵﹣2<0,∴n≥620时,w随n的增大而减小,∴当n=620时,w有最大值为19200元.答:公司将销售单价n(元)定为620元时,每月销售B型活动板房所获利润w(元)最大,最大利润是19200元.6.解:(1)由图可知,当0<x≤12时,z=16,当12<x≤20时,z是关于x的一次函数,设z=kx+b,则解得:∴z=﹣x+19,∴z关于x的函数解析式为z=(2)设第x个生产周期工厂创造的利润为w万元,①当0<x≤12时,w=(16﹣10)×(5x+40)=30x+240,∴由一次函数的性质可知,当x=12时,w最大值=30×12+240=600(万元);②当12<x≤20时,w=(﹣x+19﹣10)(5x+40)=﹣x2+35x+360=﹣(x﹣14)2+605,因为﹣<0,∴当x=14时,w最大值=605(万元).综上所述,工厂第14个生产周期创造的利润最大,最大是605万元.7.(1)解:第8天剩余配料200×9﹣200×7=400(千克),第9天剩余配料200×9﹣200×8=200(千克),答:该厂第8天和第9天剩余配料的重量分别是400千克,200千克.(2)解:当9天购买一次时,该厂用于配料的保管费用P=70+0.03×200×(1+2)=88(元),答:当9天购买一次配料时,求该厂用于配料的保管费用P是88元.(3)解:①当x≤7时,y=360x+10x+236=370x+236;②当x>7时,y=360x+236+70+6[(x﹣7)+(x﹣8)+…+2+1],=3x2+321x+432.∴设该厂x天购买一次配料平均每天支付的费用为W元当x≤7时,W=,当x>7时,W=,当x≤7时,当且仅当x=7时,W有最小值(元),当x>7时=,∴当x=12时W有最小值393元,答:该厂在这x天中用于配料的总费用y(元)关于x的函数关系式是y=370x+236(x ≤7)y=3x2+321x+432(x>7),该厂12天购买一次配料才能使平均每天支付的费用最少.8.解:(1)y=30﹣2x(6≤x<15).(2)设矩形苗圃园的面积为S则S=xy=x(30﹣2x)=﹣2x2+30x,∴S=﹣2(x﹣7.5)2+112.5,由(1)知,6≤x<15,∴当x=7.5时,S最大值=112.5,即当矩形苗圃园垂直于墙的一边的长为7.5米时,这个苗圃园的面积最大,这个最大值为112.5.(3)∵这个苗圃园的面积不小于88平方米,即﹣2(x﹣7.5)2+112.5≥88,∴4≤x≤11,由(1)可知6≤x<15,∴x的取值范围为6≤x≤11.9.解:(1)根据图形,知p与x之间的关系符合一次函数,故可设为p=kx+b,∴,解得:,∴p与x的函数关系式为p=﹣x+10;(2)根据题意得:月销售利润y=(q﹣p)m=[(﹣x+15)﹣(﹣x+10)](100x+200),化简得:y=﹣50x2+400x+1000=﹣50(x﹣4)2+1800,∴4月份的销售利润最大.10.解:(1)∵每投入x万元,可获得利润P=﹣(x﹣60)2+41(万元),∴当x=60时,所获利润最大,最大值为41万元,∴若不进行开发,5年所获利润的最大值是:41×5=205(万元);(2)前两年:0≤x≤50,此时因为P随x的增大而增大,所以x=50时,P值最大,即这两年的获利最大为:2×[﹣(50﹣60)2+41]=80(万元),后三年:设每年获利y,设当地投资额为a,则外地投资额为100﹣a,∴Q=﹣[100﹣(100﹣a)]2+[100﹣(100﹣a)]+160=﹣a2+a+160,∴y=P+Q=[﹣(a﹣60)2+41]+[﹣a2+a+160]=﹣a2+60a+165=﹣(a ﹣30)2+1065,∴当a=30时,y最大且为1065,∴这三年的获利最大为1065×3=3195(万元),∴5年所获利润(扣除修路后)的最大值是:80+3195=3275(万元).(3)有很大的实施价值.规划后5年总利润为3275万元,不实施规划方案仅为205万元,故具有很大的实施价值.。
人教版九年级上册数学 22.3实际问题与二次函数练习
人教版九年级上册数学22.3实际问题与二次函数练习选择题用一条长为40cm的绳子围成一个面积为acm2的长方形,a的值不可能为A.20 B.40? ? C.100 D.120【答案】D.【解析】试题分析:设围成面积为acm2的长方形的长为xcm,由长方形的周长公式得出宽为(40÷2-x)cm,根据长方形的面积公式列出方程x(40÷2-x)=a,整理得x2-20x+a=0,由△=400-4a≥0,求出a≤100,即可求解.试题解析:设围成面积为acm2的长方形的长为xcm,则宽为(40÷2-x)cm,依题意,得x(40÷2-x)=a,整理,得x2-20x+a=0,∵△=400-4a≥0,解得a≤100,故选D.选择题用长8 m的铝合金条制成使窗户的透光面积最大的矩形窗框(如图),那么这个窗户的最大透光面积是(? )A. m2B. m2C. m2D. 4m2【答案】C【解析】试题分析:设窗的高度为xm,宽为m,则根据矩形面积公式列出二次函数求函数值的最大值即可.解:设窗的高度为xm,则宽为m,故S= ,∴.∴当x=2m时,S最大值为m2.故选C.选择题如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A. B.C. D.【答案】B【解析】试题分析:①x≤1时,两个三角形重叠面积为小三角形的面积,∴y==;②当1<x≤2时,重叠三角形的边长为2?x,高为,y==;③当x=2时,两个三角形没有重叠的部分,即重叠面积为0,故选B.填空题如图,利用一面墙(墙的长度不超过45 m),用80 m长的篱笆围一个矩形场地.当AD=______ m时,矩形场地的面积最大,最大值为______.【答案】? 20? 800m2【解析】试题分析:根据题意可以列出矩形场地的面积,从而可以得到当AD为多少时,矩形场地的面积最大,求出相应的最大值.解:设AB得长为xm,矩形场地的面积是: ,∴当x=40时, =20,矩形场地的面积最大,最大值是800m2,故答案为:20,800m2.填空题如图,在△ABC中,∠B=90°,AB=8 cm,BC=6 cm,点P从点A 开始沿AB向B点以2 cm/s的速度移动,点Q从点B开始沿BC向C 点以1 cm/s的速度移动,如果P,Q分别从A,B同时出发,当△PBQ 的面积为最大时,运动时间t为______s.【答案】2s【解析】试题分析:用含t的代数式表示出PB、QB再根据三角形的面积公式计算.解:根据题意得三角形面积为:S=(8?2t)t=?t2+4t=?(t?2)2+4,∴当t=2时,△PBQ的面积最大为4cm2.故答案为:2s.填空题将一根长为20 cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是______cm2.【答案】cm2【解析】试题分析:设一段铁丝的长度为x,另一段为(20?x),则边长分别为,(20?x),则S==,∴由函数当x=10cm时,S最小,为12.5cm2.故答案为:12.5.解答题某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体形.其中,抽屉底面周长为180cm,高为20cm.请通过计算说明,当底面的宽x为何值时,抽屉的体积y最大?最大为多少?(材质及其厚度等暂忽略不计).【答案】当抽屉底面宽为45cm时,抽屉的体积最大,最大体积为40500cm3【解析】解:已知抽屉底面宽为x cm,则底面长为180÷2-x=(90-x)cm.由题意得:。
人教版九年级数学上册22.3实际问题与二次函数同步练习题含答案
人教版九年级数学上册22.3实际问题与二次函数同步练习题一.选择题(共10小题)1.二次函数y=﹣x2﹣8x+c的最大值为0,则c的值等于()A.4B.﹣4C.﹣16D.162.二次函数y=ax2+bx+a(a≠0)的最大值是零,则代数式|a|+化简结果为()A.a B.1C.﹣a D.03.已知一个三角形的面积S与底边x的关系是S=x2﹣2x+6,要使S有最小值,则x的值为()A.1B.2C.﹣1D.54.已知:抛物线y=x2﹣6x+c的最小值为1,那么c的值是()A.10B.9C.8D.75.在半径为4的圆中,挖去一个边长为xcm的正方形,剩下部分面积为ycm2,则关于y与x之间函数关系式为()A.y=πx2﹣4x B.y=16π﹣x2C.y=16﹣x2D.y=x2﹣4x6.已知正方形ABCD,设AB=x,则正方形的面积y与x之间的函数关系式为()A.y=4x B.y=x2C.x=D.7.某产品进货单价为9元,按10一件售出时,能售100件,如果这种商品每涨价1元,其销售量就减少10件,设每件产品涨x元,所获利润为y元,可得函数关系式为()A.y=﹣10x2+110x+10B.y=﹣10x2+100xC.y=﹣10x2+100x+110D.y=﹣10x2+90x+1008.某乡镇企业现在年产值是15万元,如果每增加100元投资,一年增加250元产值,那么总产值y(万元)与新增加的投资额x(万元)之间函数关系为()A.y=25x+15B.y=2.5x+1.5C.y=2.5x+15D.y=25x+1.59.用长为12m的铝合金型材做一个形状如图所示的矩形窗框,则做成的窗框的最大透光面积为()A.4m2B.6m2C.12m2D.16m210.直角三角形两直角边之和为定值,其面积S与一直角边x之间的函数关系大致图象是下列中的()A.B.C.D.二.填空题(共7小题)11.若二次函数y=kx2+k2﹣3有最大值1,则k的值是.12.二次函数y=2x2﹣2x+6的最小值是.13.一根长为40cm的铁丝,把它弯成一个矩形框,设矩形的长为xcm,矩形的面积为y(cm2),试写出y与x的函数关系式:.(注意标注自变量x的取值范围)14.正方形的边长是x,面积是A,请写出A与x的关系式:.它与y=x2的图象有什么不同?.15.你知道吗?平时我们在跳绳时,绳甩到最高处的形状可近似地看为抛物线,如图,正在甩绳的甲、乙两名学生拿绳的手间距离为4m,距地面均为1m,学生丙、丁分别站在距甲拿绳的手水平距离1m、2.5m处,绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高1.5m,则学生丁的身高为m(建立的平面直角坐标系如图所示).16.周长为13cm的矩形铁板上剪去一个等边三角形(这个等边三角形的一边是矩形的宽),则矩形宽为cm,长为cm时,剩下的面积最大,这个最大面积是.17.已知二次函数y=x2﹣2(m﹣1)x+m2﹣2m﹣3的图象与函数y=﹣x2+6x的图象交于y 轴一点,则m=.三.解答题(共8小题)18.y=﹣2x2+4x+1,且2≤x≤4,求y的最大值,如有最小值,再求出最小值.19.如图,将两张长为8,宽为2的矩形纸条交叉放置.(1)求证:重叠部分的图形是菱形;(2)求重叠部分图形的周长的最大值和最小值.(要求画图、推理、计算)20.用一根长为40cm的铁丝围成一个半径为r的扇形,求扇形的面积y与它的半径r之间的函数关系式,这个函数是二次函数吗?请写出半径r的取值范围.21.如图,某涵洞的截面是抛物线的一部分,现水面宽AB=1.6m,涵洞顶点O到水面的距离为2.4m,求涵洞所在抛物线的解析式.22.学开车的人不仅需要熟悉交通规则、掌握驾驶要领,还要掌握为使车子停止前进而刹车后汽车继续滑行的距离.资料显示,当路况良好、路面于燥时,刹车后汽车滑行的距离与车速之间的对应关系如表所示:(1)绘制汽车滑行的距离s(单位:m)相对于车速v(单位:km/h)的图象.(2)证明汽车滑行的距离s(单位:m)及车速v(单位:km/h)之间有如下的关系:s=v(3)利用以上信息估计上表所未填出的车速及所对应的汽车滑行的距离.(4)在路况不良时,表中的滑行距离须分别修正为45,72,105,144及189m,在这种情况下,(2)中的函数关系应如何调整?23.如图,一位运动员推铅球,铅球运行高度y m与水平距离x m之间的函数关系式是y=﹣x2+x+.问:此运动员能把铅球推出多远?24.如图,一元二次方程x2+2x﹣3=0的两根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x 轴的两个交点C,B的横坐标,且此抛物线过点A(3,6).(1)求此二次函数的解析式;(2)设此抛物线的顶点为P,对称轴与线段AC相交于点G,则P点坐标为,G 点坐标为;(3)在x轴上有一动点M,当MG+MA取得最小值时,求点M的坐标.25.如图,抛物线y=﹣x2+4x﹣3与坐标轴交与A、B、C三点,点M在线段BC上,将线段OM绕O点逆时针旋转90゜,点M的对应点N恰好落在第一象限的抛物线上,求N 点的坐标.人教版九年级数学上册22.3实际问题与二次函数同步练习题参考答案一.选择题(共10小题)1.二次函数y=﹣x2﹣8x+c的最大值为0,则c的值等于()A.4B.﹣4C.﹣16D.16【解答】解:y=﹣x2﹣8x+c=﹣(x﹣4)2+16+c,∵最大值为0,∴16+c=0,解得c=﹣16.故选:C.2.二次函数y=ax2+bx+a(a≠0)的最大值是零,则代数式|a|+化简结果为()A.a B.1C.﹣a D.0【解答】解:因为函数的最大值是0,所以=0,则|a|+=|a|=﹣a.故选:C.3.已知一个三角形的面积S与底边x的关系是S=x2﹣2x+6,要使S有最小值,则x的值为()A.1B.2C.﹣1D.5【解答】解:∵S=x2﹣2x+6=(x﹣1)2+5,∴当x=1时,S有最小值5.故选:A.4.已知:抛物线y=x2﹣6x+c的最小值为1,那么c的值是()A.10B.9C.8D.7【解答】解:因为二次函数y=x2﹣6x+c的最小值为1,所以==1,解得c=10.故选:A.5.在半径为4的圆中,挖去一个边长为xcm的正方形,剩下部分面积为ycm2,则关于y与x之间函数关系式为()A.y=πx2﹣4x B.y=16π﹣x2C.y=16﹣x2D.y=x2﹣4x【解答】解:圆面积是16π,正方形面积是x2,则函数关系式是:y=16π﹣x2.故选:B.6.已知正方形ABCD,设AB=x,则正方形的面积y与x之间的函数关系式为()A.y=4x B.y=x2C.x=D.【解答】解:由正方形面积公式得:y=x2.故选:B.7.某产品进货单价为9元,按10一件售出时,能售100件,如果这种商品每涨价1元,其销售量就减少10件,设每件产品涨x元,所获利润为y元,可得函数关系式为()A.y=﹣10x2+110x+10B.y=﹣10x2+100xC.y=﹣10x2+100x+110D.y=﹣10x2+90x+100【解答】解:由题意,得y=(10+x﹣9)(100﹣10x),y=﹣10x2+90x+100.故选:D.8.某乡镇企业现在年产值是15万元,如果每增加100元投资,一年增加250元产值,那么总产值y(万元)与新增加的投资额x(万元)之间函数关系为()A.y=25x+15B.y=2.5x+1.5C.y=2.5x+15D.y=25x+1.5【解答】解:新增加的投资额x万元,则增加产值万元.这函数关系式是:y=2.5x+15.故选:C.9.用长为12m的铝合金型材做一个形状如图所示的矩形窗框,则做成的窗框的最大透光面积为()A.4m2B.6m2C.12m2D.16m2【解答】解:设窗框的长为x,∴宽为,∴y=x,即y=﹣x2+4x,∵<0∴y有最大值,即:y最大===6m2.故选:B.10.直角三角形两直角边之和为定值,其面积S与一直角边x之间的函数关系大致图象是下列中的()A.B.C.D.【解答】解:设直角三角形两直角边之和为a,其中一直角边为x,则另一直角边为(a ﹣x).根据三角形面积公式则有:y=ax﹣x2,以上是二次函数的表达式,图象是一条抛物线,故选B.二.填空题(共7小题)11.若二次函数y=kx2+k2﹣3有最大值1,则k的值是﹣2.【解答】解:∵二次函数y=kx2+k2﹣3有最大值1,∴k<0,k2﹣3=1,解得,k=﹣2,故答案为:﹣2.12.二次函数y=2x2﹣2x+6的最小值是.【解答】解:y=2x2﹣2x+6=2(x2﹣x)+6=2(x﹣)2+,可见,二次函数的最小值为.故答案为.13.一根长为40cm的铁丝,把它弯成一个矩形框,设矩形的长为xcm,矩形的面积为y(cm2),试写出y与x的函数关系式:y=﹣x2+20x(10≤x<20).(注意标注自变量x的取值范围)【解答】解:矩形的另一边长是:(20﹣x)cm;则面积y=x(20﹣x)=﹣x2+20x,根据线段为正值可得到:x>0,20﹣x>0,20﹣x≤x,解得10≤x<20.故答案为:y=﹣x2+20x(10≤x<20).14.正方形的边长是x,面积是A,请写出A与x的关系式:A=x2.它与y=x2的图象有什么不同?它与y=x2的图象完全一样.【解答】解:∵正方形的边长是x,面积是A,∴A与x的关系式为:A=x2,∴它与y=x2的图象完全一样.故答案为:A=x2,它与y=x2的图象完全一样.15.你知道吗?平时我们在跳绳时,绳甩到最高处的形状可近似地看为抛物线,如图,正在甩绳的甲、乙两名学生拿绳的手间距离为4m,距地面均为1m,学生丙、丁分别站在距甲拿绳的手水平距离1m、2.5m处,绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高1.5m,则学生丁的身高为m(建立的平面直角坐标系如图所示).【解答】解:设所求的函数的解析式为y=ax2+bx+c,由已知,函数的图象过(﹣1,1),(0,1.5),(3,1)三点,易求其解析式为y=﹣x2+x+,∵丁头顶的横坐标为1.5,∴代入其解析式可求得其纵坐标为m.16.周长为13cm的矩形铁板上剪去一个等边三角形(这个等边三角形的一边是矩形的宽),则矩形宽为cm,长为cm时,剩下的面积最大,这个最大面积是(4﹣).【解答】解:设矩形的宽为x,长为(﹣x),则剪去三角形后剩下的面积为(﹣x)x﹣x•x,经整理,得:y=x2+x,当x==4﹣时,y取得最大值,y最大=(4﹣),此时长为(+).17.已知二次函数y=x2﹣2(m﹣1)x+m2﹣2m﹣3的图象与函数y=﹣x2+6x的图象交于y 轴一点,则m=﹣1或3.【解答】解:依题意,在y=﹣x2+6x中,x=0时,y=0;在y=x2﹣2(m﹣1)x+m2﹣2m﹣3中,x=0时,y=m2﹣2m﹣3=0;即m2﹣2m﹣3=0,解得m=﹣1或3.三.解答题(共8小题)18.y=﹣2x2+4x+1,且2≤x≤4,求y的最大值,如有最小值,再求出最小值.【解答】解:当x=2时,y=1,当x=2时,y=﹣15,又∵y=﹣2x2+4x+1=﹣2(x﹣1)2+3.∴x=1时,y最大值=3,综上所述若2≤x≤4时,y=﹣2x2+4x+1的最大值是1、最小值是﹣15.19.如图,将两张长为8,宽为2的矩形纸条交叉放置.(1)求证:重叠部分的图形是菱形;(2)求重叠部分图形的周长的最大值和最小值.(要求画图、推理、计算)【解答】(1)证明:过点A作AE⊥BC于E,AF⊥CD于F,∵两条纸条宽度相同(对边平行),∴AB∥CD,AD∥BC,AE=AF,∴四边形ABCD是平行四边形,∵S▱ABCD=BC•AE=CD•AF,又∵AE=AF,∴BC=CD,∴四边形ABCD是菱形;(2)解:当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,由勾股定理:x2=(8﹣x)2+22,得:4x=17,即菱形的最大周长为17cm.当两张纸条如图所示放置时,即是正方形时取得最小值为:2×4=8.20.用一根长为40cm的铁丝围成一个半径为r的扇形,求扇形的面积y与它的半径r之间的函数关系式,这个函数是二次函数吗?请写出半径r的取值范围.【解答】解:∵用一根长为40cm的铁丝围成一个半径为r的扇形,∴扇形的弧长为:(40﹣2r)cm,∴扇形的面积y与它的半径r之间的函数关系式为:y=r(40﹣2r)=﹣r2+20r,此函数是二次函数,<r<20.21.如图,某涵洞的截面是抛物线的一部分,现水面宽AB=1.6m,涵洞顶点O到水面的距离为2.4m,求涵洞所在抛物线的解析式.【解答】解:根据题意得:A (﹣0.8,﹣2.4),设涵洞所在抛物线解析式为y =ax 2,把x =﹣0.8,y =﹣2.4代入得:a =﹣, 则涵洞所在抛物线解析式为y =﹣x 2.22.学开车的人不仅需要熟悉交通规则、掌握驾驶要领,还要掌握为使车子停止前进而刹车后汽车继续滑行的距离.资料显示,当路况良好、路面于燥时,刹车后汽车滑行的距离与车速之间的对应关系如表所示:(1)绘制汽车滑行的距离s (单位:m )相对于车速v (单位:km /h )的图象.(2)证明汽车滑行的距离s (单位:m )及车速v (单位:km /h )之间有如下的关系: s =v (3)利用以上信息估计上表所未填出的车速及所对应的汽车滑行的距离.(4)在路况不良时,表中的滑行距离须分别修正为 45,72,105,144及189m ,在这种情况下,(2)中的函数关系应如何调整?【解答】解:(1)如图,(2)设函数解析式为y =av 2+bv +c ,代入(48,22.5),(64,36),(80,52.5)得,,解得,函数解析式为s=v,因此汽车滑行的距离s(单位:m)及车速v(单位:km/h)之间有如下的关系:s=v;(3)如表:(4)在路况不良时,表中的滑行距离须分别修正后的数据恰好是对应原数据的2倍,因此将(2)中的每一项对乘以2即可,所得关系式为s=v+.23.如图,一位运动员推铅球,铅球运行高度y m与水平距离x m之间的函数关系式是y=﹣x2+x+.问:此运动员能把铅球推出多远?【解答】解:令y=﹣x2+x+=0,整理得:x2﹣8x﹣20=0,(x﹣10)(x+2)=0,解得x1=10,x2=﹣2(舍去),答:该运动员此次掷铅球的成绩是10m.24.如图,一元二次方程x2+2x﹣3=0的两根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x 轴的两个交点C,B的横坐标,且此抛物线过点A(3,6).(1)求此二次函数的解析式;(2)设此抛物线的顶点为P,对称轴与线段AC相交于点G,则P点坐标为(﹣1,﹣2),G点坐标为(﹣1,2);(3)在x轴上有一动点M,当MG+MA取得最小值时,求点M的坐标.【解答】解:(1)解方程x2+2x﹣3=0得x1=﹣3,x2=1.∴抛物线与x轴的两个交点坐标为:C(﹣3,0),B(1,0),设抛物线的解析式为y=a(x+3)(x﹣1).∵A(3,6)在抛物线上,∴6=a(3+3)•(3﹣1),∴a=,∴抛物线解析式为y=x2+x﹣.(2)由y=x2+x﹣=(x+1)2﹣2,∴抛物线顶点P的坐标为(﹣1,﹣2),对称轴方程为x=﹣1.设直线AC的解析式为y=kx+b,∵A(3,6),C(﹣3,0)在该直线上,∴,∴直线AC的解析式为:y=x+3.将x=﹣1代入y=x+3得y=2,∴G点坐标为(﹣1,2).(3)作A关于x轴的对称点A′(3,﹣6),连接A′G,A′G与x轴交于点M即为所求的点.设直线A′G的解析式为y=kx+b.∴,∴直线A′G的解析式为y=﹣2x,令x=0,则y=0.∴M点坐标为(0,0).25.如图,抛物线y=﹣x2+4x﹣3与坐标轴交与A、B、C三点,点M在线段BC上,将线段OM绕O点逆时针旋转90゜,点M的对应点N恰好落在第一象限的抛物线上,求N 点的坐标.【解答】解:∵y=﹣x2+4x﹣3=﹣(x﹣3)(x﹣1),∴抛物线和x轴交于A(1,0),B(3,0)两点,当x=0时,y=﹣3,∴抛物线与y轴交于C(0,﹣3),对称轴为x==2,顶点纵坐标y=﹣4+4×2﹣3=1,顶点坐标D(2,1),∴OC=OB,∴△OBC是等腰直角三角形,∴∠OCB=∠OBC=45°,连结MN,BN.则OM=ON,∵∠COB=∠MOA=90°,∴∠COB﹣∠MOB=∠MON﹣∠MOB,∴∠COM=∠BON,在△OCM与△OBN中,,∴△OCM≌△OBN(SAS),∴∠OCB=∠OBN=45°,∴∠NBC=90°,由B(3,0),C(0,﹣3)可得直线BC解析式为:y=x﹣3,设直线BN的解析式为y=﹣x+m,由B(3,0),可得﹣3+m=0,解得m=3,则直线BN的解析式为y=﹣x+3,联立抛物线和直线解析式可得,解得或(不合题意,舍去)∴N坐标为:N(2,1).。
九年级数学上册第二十二章《二次函数》22.3实际问题与二次函数第3课时建立适当坐标系解决实际问题试
2018年秋九年级数学上册第二十二章《二次函数》22.3 实际问题与二次函数第3课时建立适当坐标系解决实际问题试题(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年秋九年级数学上册第二十二章《二次函数》22.3 实际问题与二次函数第3课时建立适当坐标系解决实际问题试题(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年秋九年级数学上册第二十二章《二次函数》22.3 实际问题与二次函数第3课时建立适当坐标系解决实际问题试题(新版)新人教版的全部内容。
第3课时建立适当坐标系解决实际问题知识要点基础练知识点1“抛物线”型建筑问题1。
某涵洞是抛物线形,它的截面如图所示。
现测得水面宽AB=4 m,涵洞顶点O到水面的距离为1 m,根据图中的平面直角坐标系,你可推断点A的坐标是(2,—1),点B的坐标为(—2,—1),则涵洞所在的抛物线的解析式为y=-x2.2.如图,一桥拱呈抛物线状,桥的最大高度是16米,跨度是40米,在线段AB上离中心M处5米的地方,桥的高度是15米。
知识点2“抛物线”型运动问题3.小明学习了这节课后,课下竖直向上抛一个小球做实验,小球上升的高度h(m)与运动时间t(s)的函数解析式为h=at2+bt,图象如图所示,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是(B)A。
第3秒 B.第3.9秒C.第4.5秒D。
第6。
5秒4。
某市府广场喷泉的喷嘴安装在平地上.有一喷嘴喷出的水流呈抛物线状,喷出的水流高度y (m)与喷出水流离喷嘴的水平距离x(m)之间满足y=—x2+2x.(1)喷嘴喷出的水流的最大高度是多少?(2)喷嘴喷出水流的最远距离是多少?解:y=—x2+2x=—(x—2)2+2。
(含答案)九年级数学人教版上册课时练第22章《22.3 实际问题与二次函数》(1)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练第22章二次函数22.3实际问题与二次函数一、选择题(本大题共15小题,共45分)1.用60m长的篱笆围成矩形场地,矩形的面积S随着矩形的一边长L的变化而变化,要使矩形的面积最大,L的长度应为()A.63B.15 C.20 D.1032.如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120∘.若新建墙BC与CD总长为12m,则该梯形储料场ABCD的最大面积是()2A.182B.1832C.2432D.45323.把一个边长为3cm的正方形的各边长都增加x cm,则正方形增加的面积y(cm2)与x(cm)之间的函数表达式是()A.=(+3)2B.=2+6+6C.=2+6D.=24.为了节省材料,某工厂利用岸堤MN(岸堤足够长)为一边,用总长为80米的材料围成一个由三块面积相等的小长方形组成的长方形ABCD区域(如图),若BC=(x+20)米,则下列4个结论:AB=(10-1.5x)米;BC=2CF;AE=2BE;长方形ABCD的最大面积为300平方米.其中正确结论的序号是()A. ① ②B. ① ③C. ② ③D. ③ ④5.某种服装的销售利润y(万元)与销售数量x(万件)之间满足函数解析式y=-22+4x+5,则利润的()A.最大值为5万元B.最大值为7万元C.最小值为5万元D.最小值为7万元6.某商店销售某种商品所获得的利润y(元)与所卖的件数x(件)之间的关系是y=-2+1000x-200000,则当0<x⩽450时,销售该商品所获得的最大利润为()A.2500元B.47500元C.50000元D.250000元7.某服装店将进价为每件100元的服装按每件x(x>100)元出售,每天可销售(200-x)件,若想获得最大利润,则x应定为()A.150B.160C.170D.1808.一件工艺品的进价为100元,标价135元出售,每天可售出100件,根据销售统计,一件工艺品每降价1元,则每天可多售出4件,要使每天获得的利润最大,则每件需降价()A.3.6元B.5元C.10元D.12元9.某超市对进货价为10元/千克的某种苹果的销售情况进行统计,发现每天的销售量y(千克)与销售价x(元/千克)存在一次函数关系,如图所示,最大利润是()A.180元B.220元C.190元D.200元10.某涵洞的截面是抛物线形状,如图所示的平面直角坐标系中,抛物线对应的函数解析式为y=-142,当涵洞水面宽AB为16m时,涵洞顶点O至水面的距离为()A.−6 B.12 C.16 D.24 11.河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为=−1252,当水面离桥拱顶的高度DO是4时,这时水面宽度AB为()A.−20B.10C.20D.−1012.北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊杆,拉索与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点.拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,则此抛物线型钢拱的函数解析式为()A.=266752B.=−266752 C.=1313502 D.=−131350213.如图是拱形大桥的示意图,桥拱与桥面的交点为O ,B ,以点O 为原点,水平直线OB 为x 轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线y =-1400(−80)2+16,桥拱与桥墩AC 的交点C 恰好在水面,且AC ⊥x 轴.若OA =10米,则桥面离水面的高度AC 为()A.16940米 B.174米 C.16740米 D.154米14.如图所示的是跳水运动员10m 跳台跳水的运动轨迹,运动员从10m 高A 处的跳台上跳出,运动轨迹成抛物线状(抛物线所在平面与跳台墙面垂直).若运动员的最高点M 离墙1m ,离水面403m ,则运动员落水点B 离墙的距离OB 是()15.A.2 B.3 C.4 D.5 16.某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y =-x 2+4x (单位:米)的一部分,则水喷出的最大高度是()A.4米B.3米C.2米D.1米二、填空题(本大题共3小题,共9分)17.如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB=m时,矩形土地ABCD的面积最大.18.19.已知一个直角三角形两直角边的和为20cm,则这个直角三角形的最大面积为2.20.某商场降价销售一批名牌衬衫,已知所获利润y(元)与降价金额x(元)之间满足函数关系式y=-22+60x+800,则获利最多为元.三、解答题(本大题共10小题,共66分)21.某农场拟建两间矩形种牛饲养室,饲养室的一面靠现有墙(墙长>50m),中间用一道墙隔开(如图),已知计划中的建筑材料可建围墙的总长为50m,设中间隔墙长为x(m),总占地面积为y(2).(墙的厚度忽略不计)22.(1)求y关于x的函数解析式和自变量的取值范围.(2)请给出一种设计方案,使两间饲养室的占地总面积最大,并求出这个最大面积.23.某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x米,面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围.(2)设计费能达到24000元吗?为什么?(3)当x是多少时,设计费最多?最多是多少元?24.如图,在矩形ABCD中,AB=10cm,AD=8cm,点P从点A出发沿AB以2cm/s的速度向终点B运动,同时点Q从点B出发沿BC以1cm/s的速度向终点C运动,它们其中一点到达终点后就都停止运动.25.(1)几秒后,点P,D的距离是点P,Q的距离的2倍.(2)几秒后,△DPQ的面积达到最小,最小面积为多少?26.将进货价为70元/件的某种商品按零售价100元/件出售时每天能卖出20件.已知这种商品的零售价在一定范围内每降低1元,其日销售量就增加1件,为了促销决定对其降价x元销售,则每件的利润为____________元,每日的销售量为____________件,每日的利润y=____________(写出自变量的取值范围),所以当每件降价____________元时,每日获得的利润最大,为____________元.27.28.29.30.31.32.33.34.“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降低1元,则每月可多销售5条.设每条裤子的售价为x元(x为正整数),每月的销售量为y条.(1)直接写出y与x的函数关系式.(2)设该网店每月获得的利润为w元,当销售单价为多少元时,每月获得的利润最大?最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生,为了保证捐款后每月利润不低于3800元,且让消费者得到最大的实惠,则该休闲裤的销售单价应定为____________元.35.某商场销售一款成本为40元的可控温杯,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y=-x+120.36.(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额-成本);37.(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?38.39.40.41.42.43.44.45.在乡村振兴政策的帮扶下,某农户欲通过电商平台销售自家农产品,已知这种产品的成本价为10元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)之间大致有如下关系:w=-4x+80.设这种产品每天的销售利润为y(元).(1)当销售价定为多少时,每天销售的利润最大?最大利润是多少?(2)如果物价部门规定这种产品的销售价不得高于20元/千克,该农户要想每天获得84元的销售利润,销售价应定为多少?46.如图,有一座抛物线型拱桥,桥下面在正常水位时AB宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.47.(1)在如图所示的平面直角坐标系中,求抛物线的解析式.(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?48.如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图2+bx+c表示,且抛物线上的点中所示的平面直角坐标系,抛物线可以用y=-16m.C到墙面OB的水平距离为3m,到地面OA的距离为17249.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离.(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等.如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?50.如图,一个横截面为抛物线形的隧道,其底部的宽AB为8m,拱高为4m,该隧道为双向车道,且两车道之间有0.4m的隔离带,一辆宽为2m的货车要安全通过这条隧道,需保持其顶部与隧道间有不少于0.5m的空隙,按如图所示方式建立平面直角坐标系.51.52.(1)求该抛物线对应的函数关系式;(2)通过计算说明该货车能安全通过的最大高度.2.C3.C4.D5.B6.B7.A8.B9.D10.C11.C12.B13.B14.B15.A16.15017.5018.125019.解:(1)y=x(50-3x)=-32+50x,(0<x<503).(2)y=-32+50x=-3(−253)2+6253,当x=253时,max=6253,253m,平行于墙的围墙长度为25m,6253m2.20.解:(1)∵矩形的一边长为x米,周长为16米,∴另一边长为(8-x)米.∴S=x(8-x)=-2+8x(0<x<8).理由:当设计费为24000元时,广告牌的面积为24000÷2000=12(平方米),即-2+8x=12,解得x=2或x=6.∵x=2和x=6在0<x<8范围内,∴设计费能达到24000元.(3)∵S=-2+8x=-(−4)2+16,0<x<8,∴当x=4时,最大=16.则16×2000=32000(元).∴当x=4时,设计费最多,最多是32000元.21.解:(1)3秒后,点P,D的距离是点P,Q的距离的2倍.(2)4秒后△DPQ的面积最小,最小面积为242.22.解:(30-x),(20+x),-2+10x+600(0≤x≤30,且x为整数),5,625.23.解:(1)由题意,得y=100+5(80-x)=-5x+500.(2)由题意,得w=y(x-40)=(-5x+500)(x-40)=-52+700x-20000=-5(−70)2+4500.∵a=-5<0,∴当x=70时,w有最大值,最大=4500.(3)60.24.解:(1)根据题意得S=y(x-40)=(-x+120)(x-40)=-x2+160x-4800;(2)∵S=-x2+160x-4800=-(x-80)2+1600,∴当x=80时,S取得最大值,最大值为1600,答:当销售单价定为80元时,该公司每天获取的利润最大,最大利润是1600元.25.解:(1)根据题意可得y=w(x-10)=(x-10)(-4x+80)=-42+120x-800=-4(−15)2+100,∴当x=15时,y有最大值,为100.故当销售价定为15元/千克时,每天最大销售利润为100元.(2)当y=84时,可得84=-42+120x-800,整理,得2-30x+221=0,解得1=13,2=17.经检验,符合题意.故当销售价定为13元/千克或17元/千克时,该农户每天可获得销售利润84元.26.解:(1)设所求抛物线的解析式为y=2(a≠0).由CD=10m,可设D(5,b).∵AB=20m,水位上升3m就达到警戒线CD,∴B(10,b-3).把点D,B的坐标分别代入y=2,得25=,100=−3,解得=−125,=−1.∴y=-1252.(2)∵b=-1,∴拱桥顶O到CD的距离为1m.∴10.2=5(小时).∴再持续5小时到达拱桥顶.27.解:(1)由题意,得点B的坐标为(0,4),点C的坐标为(3,172),∴,=−16×32+3+.解得=2,=4.∴该抛物线的函数关系式为y=-162+2x+4.∵y=-162+2x+4=-16(−6)2+10,∴拱顶D到地面OA的距离为10m.(2)当x=6+4=10时,y=-162+2x+4=-16×102+2×10+4=223>6,∴这辆货车能安全通过.(3)当y=8时,-162+2x+4=8,即2-12x+24=0,∴1=6+23,2=6-23.∴两排灯的水平距离最小是6+23-(6-23)=43(m).28.解:(1)由题意得:A(-4,0),C(0,4),设抛物线的解析式为y=2+k(a≠0),则16+=0,=4,解得=−14=4,∴抛物线对应的函数关系式为y=-142+4.(2)2+0.42=2.2,当x=2.2时,y=-14×2.22+4=2.79,2.79-0.5=2.29(m).答:该货车能够安全通过的最大高度为2.29m.。
第22章二次函数22.3实际问题与二次函数第一节同步练习2020-2021学年人教版九年级数学上册
2020-2021学年数学人教版九年级上册第二十二章二次函数第一节22.3实际问题与二次函数同步练习一、单选题1.已知抛物线y=ax2+bx+c(a≠0)与x轴的交点为A(1,0)和B(3,0),点P1(x1,y1),P2(x2,y2)是抛物线上不同于A,B的两个点,记△P1AB的面积为S1,△P2AB的面积为S2,。
有下列结论:①当x1>x2+2时,S1>S2;②当x1<2−x2时,S1<S2;③当|x1−2|>|x2−2|>1时,S1>S2;④当|x1−2|>|x2+2|>1时,S1<S2。
其中正确结论的个数是A. 1B. 2C. 3D. 42.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,每人的单价就降低10元,若这个旅行社要获得最大营业额,此时旅行团人数为()人A. 56B. 55C. 54D. 533.便民商店经营一种商品,在销售过程中,发现一周利润y(元)与每件销售价x(元)之间的关系满足y=-2(x-20)2+1558,由于某种原因,价格只能15≤x≤22,那么一周可获得最大利润是()A. 20B. 1508C. 1550D. 15584.在中考体育训练期间,小宇对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系式为y=−110x2+35x+85,由此可知小宇此次实心球训练的成绩为()A. 85米 B. 8米 C. 10米 D. 2米5.某超市一月份的营业额是100万元,月平均增加的百分率相同,第一季度的总营业额是364万元,若设月平均增长的百分率是x,那么可列出的方程是()A. 100(1+x)2=364;B. 100+100(1+x)+100(1+x)2=364;C. 100(1+2x)=364;D. 100+100(1+x)+100(1+2x)=364.6.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球抛出3秒时达到最高点;②小球从抛出到落地经过的路程是80m;③小球的高度h=20时,t=1s或5s.④小球抛出2秒后的高度是35m.其中正确的有()A. ①②B. ②③C. ①③④D. ①②③7.如图所示,将一根长2m的铁丝首尾相接围成矩形,则矩形的面积与其一边满足的函数关系是()A. 正比例函数关系B. 一次函数关系C. 二次函数关系D. 反比例函数关系8.某广场有一个小型喷泉,水流从垂直于地面的水管OA喷出,OA长为1.5m.水流在各个方向上沿形状相同的抛物线路径落到地面上,某方向上抛物线路径的形状如图所示,落点B到O的距离为3m.建立平面直角坐标系,水流喷出的高度y(m)与水平距离x(m)之间近似满足函数关系y=ax2+x+c(a≠0),则水流喷出的最大高度为()A. 1mB. 32m C. 138m D. 2m9.某公司今年10月的营业额为2500万元,按计划12月的营业额要达到3600万元,求该公司11,12两个月营业额的月平均增长率.设该公司11,12两个月营业额的月平均增长率为x,则可列方程为()A. 2500(1+x)2=3600B. 3600(1+x)2=2500C. 2500(1+2x)=3600D. 2500(1+x2)=360010.如图,预防新冠肺炎疫情期间,某校在校门口用塑料膜围成-一个临时隔离区,隔离区一面靠长为5m的墙,隔离区分成两个区域,中间用塑料膜隔开。
人教版九年级上册数学 22.3 实际问题与二次函数 课时训练(含答案)
人教版九年级数学22.3 实际问题与二次函数课时训练一、选择题1. 某广场有一喷水池,水从地面喷出,以水平地面为x轴,出水点为原点,建立如图所示的平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是()A.4米B.3米C.2米D.1米2. (2020·山西)竖直上抛物体离地面的高度h(m)与运动时间t(s)之间的关系可以近似地用公式h=-5t2+v0t+h0表示,其中h0 (m)是物体抛出时离地面的高度,v0(m/s)是物体抛出时的速度.某人将一个小球从距地面1.5m的高处以20m/s的速度竖直向上抛出,小球达到的离地面的最大高度为()A.23.5m B.22.5m C.21.5m D.20.5m3. 如图,在△ABC中,∠C=90°,AB=10 cm,BC=8 cm,点P从点A沿AC 向点C以1 cm/s的速度运动,同时点Q从点C沿CB向点B以2 cm/s的速度运动(点Q运动到点B时,两点同时停止运动),在运动过程中,四边形P ABQ的面积的最小值为()A.19 cm2B.16 cm2C.15 cm2D.12 cm24. 如图,△ABC是直角三角形,∠A=90°,AB=8 cm,AC=6 cm,点P从点A 出发,沿AB方向以2 cm/s的速度向点B运动;同时点Q从点A出发,沿AC 方向以1 cm/s的速度向点C运动,当其中一个动点到达终点时,另一个动点也停止运动,则四边形BCQP面积的最小值是()A .8 cm 2B .16 cm 2C .24 cm 2D .32 cm 25. (2020·长沙)“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把焦脆而不糊的豆腐块数的百分比称为“可食用率”,在特定条件下,“可食用率”p 与加工煎炸的时间t (单位:分钟)近似满足函数关系式:c bt at p ++=2(0 a ,a ,b ,c 为常数),如图纪录了三次实验数据,根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为 ·································································· ( ) A .3.50分钟B .4.05分钟C .3.75分钟D .4.25分钟6. 如图,将一个小球从斜坡上的点O 处抛出,小球的抛出路线可以用二次函数y=4x -12x 2刻画,斜坡可以用一次函数y =12x 刻画,下列结论错误的是()A .当小球抛出高度达到7.5 m 时,小球距点O 的水平距离为3 mB .小球距点O 的水平距离超过4 m 后呈下降趋势C .小球落地点距点O 的水平距离为7 mD .小球距点O 的水平距离为2.5 m 和5.5 m 时的高度相同7. 在羽毛球比赛中,羽毛球的运动路线可以看作是抛物线y =-14x 2+bx +c 的一部分(如图),其中出球点B 离地面点O 的距离是1 m ,球落地点A 到点O 的距离是4 m ,那么这条抛物线的解析式是( )A .y =-14x 2+34x +1B .y =-14x 2+34x -1C .y =-14x 2-34x +1D .y =-14x 2-34x -18. 一位篮球运动员在距离篮圈中心水平距离4 m 处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5 m 时,达到最大高度3.5 m ,然后准确落入篮筐内.已知篮圈中心距离地面高度为3.05 m ,在如图 (示意图)所示的平面直角坐标系中,下列说法正确的是( )A .此抛物线的解析式是y =-15x 2+3.5 B .篮圈中心的坐标是(4,3.05) C .此抛物线的顶点坐标是(3.5,0) D .篮球出手时离地面的高度是2 m二、填空题9. 某商店从厂家以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品的售价为a 元,则可卖出(350-10a )件.但物价部门限定每件商品加价不能超过进价的40%,若商店想获得最大利润,则每件商品的价格应定为________元.10. 如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF分开.已知篱笆的总长为900 m(篱笆的厚度忽略不计),当AB =________m 时,矩形ABCD 的面积最大.11. 已知一个直角三角形两直角边长的和为30,则这个直角三角形的面积最大为________.12. 某大学生利用业余时间销售一种进价为60元/件的文化衫,前期了解并整理了销售这种文化衫的相关信息如下:(1)月销量y(件)与售价x(元/件)的关系满足y=-2x+400;(2)工商部门限制售价x满足70≤x≤150(计算月利润时不考虑其他成本).给出下列结论:①这种文化衫的月销量最小为100件;②这种文化衫的月销量最大为260件;③销售这种文化衫的月利润最小为2600元;④销售这种文化衫的月利润最大为9000元.其中正确的是________.(把所有正确结论的序号都填上)13. 如图所示是一座抛物线形拱桥,当水面宽为12 m时,桥拱顶部离水面4 m,以水平方向为x轴,建立平面直角坐标系.若选取点A为坐标原点时的抛物线解析式为y=-19(x-6)2+4,则选取点B为坐标原点时的抛物线解析式为________________.14. 某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m宽的门.已知计划中的材料可建墙体总长为27 m,则能建成的饲养室总占地面积最大为________m2.15. 飞机着落后滑行的距离s(单位:米)关于滑行时间t(单位:秒)的函数解析式是s=60t-32t2,则飞机着落后滑行的最长时间为________秒.16. 如图,小明的父亲在相距2 m的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高度都是2.5 m,绳子自然下垂呈抛物线状,身高1 m的小明距较近的那棵树0.5 m时,头部刚好接触到绳子,则绳子的最低点到地面的距离为________m.三、解答题17. (2020·营口)某超市销售一款“免洗洗手液”,这款“免洗洗手液”的成本价为每瓶16元,当销售单价定为20元时,每天可售出80瓶.根据市场行情,现决定降价销售.市场调查反映:销售单价每降低0.5元,则每天可多售出20瓶(销售单价不低于成本价),若设这款“免洗洗手液”的销售单价为x(元),每天的销售量为y(瓶).(1)求每天的销售量y(瓶)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款“免洗洗手液”每天的销售利润最大,最大利润为多少元?18. 某商场销售一批名牌衬衫,每件进价为300元,若每件售价为420元,则平均每天可售出20件.经调查发现,每件衬衫每降价10元,商场平均每天可多售出1件,为了扩大销售,增加盈利,减少库存,商场决定采取适当的降价措施.设每件衬衫降价x元.(1)每件衬衫的盈利为多少?(2)用含x的代数式表示每天可售出的衬衫件数.(3)若商场每天要盈利1920元,请你帮助商场算一算,每件衬衫应降价多少元?(4)这次降价活动中,1920元是最高日盈利吗?若是,请说明理由;若不是,试求最高日盈利值.19. (2020·新疆)某超市销售A、B两款保温杯,已知B款保温杯的销售单价比A款保温杯多10元,用480元购买B款保温杯的数量与用360元购买A款保温杯的数量相同.(1)A、B两款保温杯的销售单价各是多少元?(2)由于需求量大,A、B两款保温杯很快售完,该超市计划再次购进这两款保温杯共120个,且A款保温杯的数量不少于B款保温杯数量的两倍.若A款保温杯的销售单价不变,B款保温杯的销售单价降低10%,两款保温杯的进价每个均为20元,应如何进货才能使这批保温杯的销售利润最大,最大利润是多少元?20. (2020·南京)小明和小丽先后从A地出发沿同一直道去B地.设小丽出发第x min时,小丽、小明离B地的距离分别为y1m、y2m.y1与x之间的函数表达式是y1=-180x+2250,y2与x之间的函数表达式是y2=-10x2-100x+2000.(1)小丽出发时,小明离A地的距离为________m.(2)小丽出发至小明到达B地这段时间内,两人何时相距最近?最近距离是多少?21. (2020·安顺)2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y(人)与时间x(分钟)的变化情况,数据如(1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出y与x之间的函数关系式;(2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?人教版 九年级数学 22.3 实际问题与二次函数课时训练-答案一、选择题1. 【答案】A [解析] y =-(x 2-4x +4)+4=-(x -2)2+4,∴水喷出的最大高度是4米.2. 【答案】C【解析】本题考查二次函数的实际应用.依题意,得h 0=1.5m ,v 0=20m/s ,∴高度h (m )与运动时间t (s )之间的关系可以近似地表示为h =-5t 2+20t +1.5=-5(t -2)2+21.5,所以某人将一个小球从距地面1.5m 的高处以20m/s 的速度竖直向上抛出,小球达到的离地面的最大高度为21.5m ,故选C.3. 【答案】C[解析] 在Rt △ABC 中,∠C =90°,AB =10 cm ,BC =8 cm ,∴AC =AB 2-BC 2=6 cm.设运动时间为t s(0<t≤4),则PC =(6-t)cm ,CQ =2t cm , ∴S四边形PABQ=S △ABC -S △CPQ =12AC·BC -12PC·CQ =12×6×8-12(6-t)×2t =t 2-6t +24=(t -3)2+15,∴当t =3时,四边形PABQ 的面积取得最小值,最小值为15 cm 2. 故选C.4. 【答案】A[解析] 设运动时间为t s ,四边形BCQP 的面积为S m 2,则S =AB ·AC 2-AP ·AQ 2=8×62-2t ×t 2=-t 2+24. ∵点P 从点A 出发,沿AB 方向以2 m/s 的速度向点B 运动,同时点Q 从点A 出发,沿AC 方向以1 cm/s 的速度向点C 运动,当其中一个动点到达终点时,另一个动点也停止运动,8÷2=4,6÷1=6, ∴0<t ≤4,∴当t =4时,S 取得最小值,最小值为-42+24=8(cm 2).5. 【答案】C【解析】本题考查了二次函数实际应用问题,根据题意,题中的“可食用率”p 应该是最大时为最佳时间,所以先把图中三个点代入c bt at p ++=2,可得到a ,b ,c 的三元一次方程组⎪⎩⎪⎨⎧c b a c b a c b a ++=++=++=5256.04169.0398.0,解得⎪⎩⎪⎨⎧9.15.12.0=-==-c b a ,所以p 应该最大时()75.32.025.12=-=-=-⨯a b t ,因此本题选C .y =7.5,得4x -12x 2=7.5.解得x 1=3,x 2=5.可见选项A12(x -4)2+8,∴对称轴为直线x =4,当x >4时,y 随x 正确.12x ,解得⎩⎨⎧x =0,y =0或⎩⎪⎨⎪⎧x =7,y =72.∴抛物线与直线的交点坐标为(0,0),⎝ ⎛⎭⎪⎫7,72,可见选项C 正确.由对称性可知选项D 正确.综上所述,只有选项A 中的结论是错误的,故选A.7. 【答案】A [解析] A ,B 两点的坐标分别为(4,0),(0,1),把(4,0),(0,1)分别代入y=-14x 2+bx +c ,求出b ,c 的值即可.8. 【答案】A[解析] ∵抛物线的顶点坐标为(0,3.5),∴可设抛物线的函数解析式为y =ax 2+3.5.∵篮圈中心(1.5,3.05)在抛物线上,∴3.05=a×1.52+3.5.解得a =-15.∴y =-15x 2+3.5.可见选项A 正确.由图示知,篮圈中心的坐标是(1.5,3.05),可见选项B 错误. 由图示知,此抛物线的顶点坐标是(0,3.5),可见选项C 错误.将x =-2.5代入抛物线的解析式,得y =-15×(-2.5)2+3.5=2.25,∴这次跳投时,球出手处离地面2.25 m 可见选项D 错误. 故选A.二、填空题9. 【答案】28 [解析] 设商店所获利润为y 元.根据题意,得 y =(a -21)(350-10a)=-10a 2+560a -7350=-10(a -28)2+490, 即当a =28时,可获得最大利润.又21×(1+40%)=21×1.4=29.4,而28<29.4,所以a =28符合要求. 故商店应把每件商品的价格定为28元,此时可获得最大利润.10. 【答案】150[解析] 设AB =x m ,则AB =EF =CD =x m ,所以AD =BC =12(900-3x)m.设矩形ABCD 的面积为y m 2,则y =x·12(900-3x)=-32x 2+450x(0<x <300).由于二次项系数小于0,所以y 有最大值,且当x =-b2a =-4502×(-32)=150时,函数y 取得最大值.故当AB =150 m 矩形ABCD 的面积最大.11. 【答案】225212. 【答案】①②③[解析] 由题意知,当70≤x≤150时,y =-2x +400,∵-2<0,∴y 随x 的增大而减小,∴当x =150时,y 取得最小值,最小值为100,故①正确; 当x =70时,y 取得最大值,最大值为260,故②正确; 设销售这种文化衫的月利润为W 元,则W =(x -60)(-2x +400)=-2(x -130)2+9800, ∵70≤x≤150,∴当x =70时,W 取得最小值,最小值为-2(70-130)2+9800=2600,故③正确;当x =130时,W 取得最大值,最大值为9800,故④错误. 故答案为①②③.13. 【答案】y =-19(x +6)2+414. 【答案】75[解析] 设与墙垂直的一边的长为x m ,则与墙平行的一边的长为27-(3x -1)+2=(30-3x)m.因此饲养室总占地面积S =x(30-3x)=-3x 2+30x ,∴当x =-302×(-3)=5时,S 最大,S最大值=-3×52+30×5=75.故能建成的饲养室总占地面积最大为75 m 2.15. 【答案】20 [解析] 滑行的最长时间实际上是求顶点的横坐标.∵s =60t -32t2=-32(t -20)2+600,∴当t =20时,s 的最大值为600.16. 【答案】0.5 [解析] 以抛物线的对称轴为纵轴,向上为正,以对称轴与地面的交点为坐标原点建立平面直角坐标系,则抛物线的解析式可设为y =ax 2+h.由于抛物线经过点(1,2.5)和(-0.5,1),于是求得a =2,h =0.5.三、解答题17. 【答案】解:(1)y=80+20×200.5x,∴y=-40x+880;(2)设每天的销售利润为w 元,则w=(-40x+880)(x -16)=-40(x -19)2+360,∵a=-40<0,∴二次函数图象开口向下,∴w 有最大值,∴x=19时,w 最大,此时w 最大=360元,答:当销售单价为19元时,每天的销售利润最大,最大利润为360元.【解析】(1)根据“销售单价每降低0.5元,则每天可多售出20瓶”得出销售量y 与销售单价x 的关系式;(2)设每天的销售利润为w 元,根据利润=(每瓶售价-每瓶成本)×销售数量,得出w 与x 之间的函数关系式,再利用二次函数的性质求得最大利润.18. 【答案】解:(1)由题意可得每件衬衫的盈利为420-300-x =(120-x)元. (2)每天可售出的衬衫件数为20+x10×1=(0.1x +20)件.(3)由题意可得(0.1x +20)(120-x)=1920, 解得x 1=-120(舍去),x 2=40. 答:每件衬衫应降价40元.(4)这次降价活动中,1920元不是最高日盈利.设日盈利为w 元,则w =(0.1x +20)(120-x)=-0.1(x +40)2+2560,∴当x>-40时,w 随x 的增大而减小.∵x≥0,∴当x =0时,w 取得最大值,此时w =2400,即最高日盈利值是2400元.19. 【答案】解:(1)设A 款保温杯的销售单价是x 元,根据题意得360x =48010x +,解得x =30.经检验,x =30是分式方程的解.x +10=40.答:A 、B 两款保温杯的销售单价分别是30元,40元.(2)设再次购进a 个A 款保温杯,(120-a)个B 款保温杯,此时所获利润为w 元,则W =(30-20)a +[40×(1-10%)-20](120-a)=-6a +1 920,∴W 是a 的一次函数.∵-6<0,∴W 随a 的增大而减小.由题意得a≥2(120-a),解得a≥80.∴当a =80时,W 最大,最大为-6×80+1 920=1 440(元),此时120-a =40.答:购进80个A 款保温杯,40个B 款保温杯才能使这批保温杯的销售利润最大,最大利润是多少1 440元.20. 【答案】(1)250.(2)设小丽出发第x min 时,两人相距sm ,则s =-180x +2250-(-10x 2-100x +2000),即s =-10x 2-80x +250,其中,0≤x ≤10.因此当x =-80210-⨯=4时,s 有最小值=()241025080410⨯⨯--⨯=90. 也就是说,当小丽出发第4min 时,两人相距最近,最近距离是90m.21. 【答案】(1)根据表中数据的变化趋势可知:①当09x ≤≤时,y 是x 的二次函数.∵当0x =时,0y =,∴二次函数的关系式可设为2y ax bx =+. 当1x =时,170y =;当3x =时,450y =.将它们分别代入关系式得17045093a b a b =+⎧⎨=+⎩解得10180a b =-⎧⎨=⎩.∴二次函数的关系式为210180y x x =-+.将表格内的其他各组对应值代入此关系式,均满足.②当915x <≤时,810y =.∴y 与x 的关系式为210180,(09)810,(915)x x x y x ⎧-+≤≤=⎨<≤⎩.(2)设第x 分钟时的排队人数是W ,根据题意,得21018040,09,4081040,915x x x x W y x xx ⎧-+-≤≤=-=⎨-<≤⎩ ①当09x ≤≤时,221014010(7)490W x x x =-+=--+.∴当7x =时,490W =最大. ②当915x <≤时,81040W x =-,W 随x 的增大而减小,∴210450W ≤<. ∴排队人数最多时是490人.要全部考生都完成体温检测,根据题意,得81040=0x -,解得20.25x =.∴排队人数最多时是490人,全部考生都完成体温检测需要20.25分钟.(3)设从一开始就应该增加m 个检测点,根据题意,得1220(2)810m ⨯+≥,解得318m ≥.∵m 是整数,∴318m ≥的最小整数是2.∴一开始就应该至少增加2个检测点. 【解析】 (1)利用初中所学的函数关系,可以从反比例函数、一次函数(含正比例函数)、二次函数的顺序思考问题.显然,不是反比例函数,根据变化规律,在前9分钟,可以看到,符合二次函数.利用待定系数法求出函数解析式210180y x x =-+.9~15分钟y 值没有变化,y=810;(2)当09x ≤≤时,每分钟每个检测点检测20人,因此,每分钟一共检测40人. x 分钟检测了40x 人.所以排队人数为2210180-4010140y x x x x x =-+=-+,化成顶点式210(7)490W x =--+,得出当x=7时,最多有490人;当915x <≤时,排队人数81040W x =-,利用一次函数的增减性即w 随x 的增大而减少,得到当x=9时,w 最大=450<490.进而得出结论;(3)设从一开始就应该增加m 个检测点,则有(m+2)个检测点,每分钟可以检测20(m+2)个人,要求在12分钟内全部考生完成检测,因此在12分钟内检测的人数不少于总人数810人,由此建立不等式解决问题.。
人教版九年级数学上册第22章《 二次函数:22.3.2 利用二次函数求实际中最值问题》
22.3 实际问题与二次函数
22.3.2 利用二次函数求实际中最值问题
第二十二章 二次函数
运用二次函数的代数模型表示实际问题时,实际 上是根据实际问题中常量与变量的关系,构造出 y=ax2+bx+c,y=a(x-h)2+k或y=a(x-x1)(x-x2)等二次函 数模型,为运用二次函数的性质解决实际问题奠定基 础.
第二十二章 二次函数
(2)在降价的情况下,最大利润是多少?请你参考(1)的讨 论,自己写出答案.
解:设降价x元时利润最大, 则每星期可多卖20x件,实际卖出(300+20x)件, 销售额为(60-x)(300+20x)元,买进商品需付 40(300+20x)元, 因此,得利润 y=(60-x)(300+20x)-40(300+20x), 即y=-20x2+100x+6000(0≤x≤20), 当x=2.5时,y最大, 也就是说,在降价的情况下,降价2.5元, 即定价57.5元时,利润最大,最大利润是6125元.
分析:调整价格包括涨价和降价两种情况.我们先 来看涨价的情况.
第二十二章 二次函数
(1)设每件涨价x元,则每星期售出商品的利润y随之变
化.我们先来确定y随x变化的函数解析式.涨价x元时,
每星期少卖_1_0_x__件,实际卖出(_3_0_0_-__1_0_x_)_件,销售额 为_(_6_0_+__x_)_(_3_0_0_-__1_0_x_)元,买进商品需付_4_0_(_3_0_0_-__1_0_x_)
第二十二章 二次函数
【例1】某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日 租金为400元时,可全部租出;当每辆车的日租金每增 加50元时,未租出的车将增加1辆;公司平均每日的各 项支出共4 800元.设公司每日租出x辆车,日收益为y 元,(日收益=日租金收入-平均每日各项支出). (1)公司每日租出x辆车时,每辆车的日租金为 (_1__4_0_0_-__5_0_x_)_(_0_≤__x_≤__2_0_)_元(用含x的代数式表示); (2)求租赁公司日收益y(元)与每日租出汽车的辆数x之 间的函数关系式.
九年级数学上册第二十二章二次函数22.3实际问题与二次函数第1课时二次函数与图形面积教案(新版)新人教版
22.3 第1课时 二次函数与图形面积01 教学目标1.会求二次函数y =ax 2+bx +c 的最小(大)值.2.能从实际问题中分析、找出变量之间的二次函数关系,并能利用二次函数及性质解决与面积有关的最小(大)值问题.02 预习反馈阅读教材P 49~50(探究1),完成下列问题.1.一般地,当a >0时,抛物线y =ax 2+bx +c 的顶点是最低点,也就是说,当x =-b 2a 时,二次函数y =ax 2+bx +c 有最小值4ac -b 24a;当a <0时,抛物线y =ax 2+bx +c 的顶点是最高点,也就是说,当x =-b 2a 时,二次函数y =ax 2+bx +c 有最大值4ac -b 24a.2.从地面竖直向上抛出一小球,小球的高度h(单位:m )与小球的运动时间t(单位:s )之间的关系式是h =30t -5t 2(0≤t≤6),其图象如图所示.(1)小球运动的时间是3s 时,小球最高; (2)小球运动中的最大高度是45m .3.一个直角三角形的两条直角边长的和为20 cm ,其中一直角边长为x cm ,面积为y cm 2,则y 与x 的函数的关系式是y =12x(20-x),当x =10时,面积y 最大,为50cm 2.03 新课讲授例1 (教材P49探究)用总长为60 m 的篱笆围成矩形场地,矩形面积S 随矩形一边长l 的变化而变化.当l 是多少米时,场地的面积S 最大?【思路点拨】 先写出S 关于l 的函数解析式,再求出使S 最大的l 值.【解答】 ∵矩形场地的周长是60 m ,一边长为l m ,则另一边长为(602-l )m ,∴场地的面积S =l (602-l )=-l 2+30l (0<l <30).∴当l =-b 2a =-302×(-1)=15时,S 有最大值4ac -b 24a =-3024×(-1)=225.答:当l 是15 m 时,场地的面积S 最大.【点拨】 在实际问题中,求函数的解析式时,一定要标注自变量的取值范围,同时在求函数的最值时,一定要注意顶点的横坐标是否在自变量的取值范围内.【跟踪训练1】 (22.3第1课时习题)如图,假设篱笆(虚线部分)的长度为16 m ,则所围成矩形ABCD 的最大面积是(C)A .60 m 2B .63 m 2C .64 m 2D .66 m 2例2 (教材P49探究的变式)如图,用长为6 m 的铝合金条制成一个“日”字形窗框,已知窗框的宽为x m ,窗户的透光面积为y m 2(铝合金条的宽度不计).(1)求出y 与x 的函数关系式;【思路点拨】由题意可知,窗户的透光面积为长方形,根据长方形的面积公式即可得到y 和x 的函数关系式.【解答】 ∵大长方形的周长为6 m ,宽为x m , ∴长为6-3x2m.∴y =x ·(6-3x )2=-32x 2+3x (0<x <2).【点拨】 求y 与x 的函数关系式时,一定不能漏掉自变量的取值范围.(2)如何安排窗框的长和宽,才能使得窗户的透光面积最大?并求出此时的最大面积. 【思路点拨】 由(1)中的函数关系可知,y 和x 是二次函数关系,根据二次函数的性质即可得到最大面积.【解答】 由(1)可知,y 和x 是二次函数关系. ∵a =-32<0,∴函数有最大值.当x =-32×(-32)=1时,y 最大=32 m 2,此时6-3x2=1.5.答:窗框的长和宽分别为1.5 m 和1 m 时,才能使得窗户的透光面积最大,此时的最大面积为1.5 m 2.【点拨】 要考虑x =1是不是在自变量的取值范围内.【跟踪训练2】 如图,点C 是线段AB 上的一点,AB =1,分别以AC 和CB 为一边作正方形,用S 表示这两个正方形的面积之和,下列判断正确的是(A )A .当C 是AB 的中点时,S 最小 B .当C 是AB 的中点时,S 最大 C .当C 为AB 的三等分点时,S 最小D .当C 是AB 的三等分点时,S 最大04 巩固训练1.为搞好环保,某公司准备修建一个长方体的污水处理池,池底矩形的周长为100 m ,则池底的最大面积是(B )A .600 m 2B .625 m 2C .650 m 2D .675m 22.如图,利用一面墙(墙的长度不超过45 m ),用80 m 长的篱笆围成一个矩形场地,当AD =20m 时,矩形场地的面积最大,最大面积为800m 2.3.(22.3第1课时习题)手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60 cm ,菱形的面积S (单位:cm 2)随其中一条对角线的长x (单位:cm)的变化而变化.(1)请直接写出S 与x 之间的函数关系式(不要求写出自变量x 的取值范围); (2)当x 是多少时,菱形风筝面积S 最大?最大面积是多少? 解:(1)S =-12x 2+30x .(2)∵S =-12x 2+30x =-12(x -30)2+450,且a =-12<0,∴当x =30时,S 有最大值,最大值为450.即当x 为30 cm 时,菱形风筝的面积最大,最大面积是450 cm 2.05 课堂小结1.主要学习了如何将实际问题转化为数学问题,特别是如何利用二次函数的有关性质解决实际问题的方法.2.利用二次函数解决实际问题时,根据面积公式等关系写出二次函数表达式是解决问题的关键.。
九年级数学上册 第二十二章《二次函数》22.3 实际问题与二次函数 第1课时 几何图形的面积问题试题
22.3实际问题与二次函数第1课时几何图形的面积问题知识要点基础练知识点利用二次函数求图形面积的最值1.用长60 m的篱笆围成一个矩形花园,则围成的花园的最大面积为(D)A.150 m2B.175 m2C.200 m2D.225 m22.已知一个直角三角形两直角边之和为20 cm2,则这个直角三角形的最大面积为(B)A.25 cm2B.50 cm2C.100 cm2D.不确定3.如图,用总长度为12米的不锈钢材料设计成如图所示的外观为矩形的框架,所有横档和竖档分别与AD,AB平行,则矩形框架ABCD的最大面积为4平方米.4.手工课上,小明准备做个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60 cm,菱形的面积为S,随其中一条对角线的长x的变化而变化.(1)求S与x之间的函数解析式.(不要求写出取值范围)(2)当x是多少时,菱形风筝的面积S最大?最大的面积是多少?解:(1)S=x(60-x)=-x2+30x.(2)由(1)得S=-x2+30x=-(x-30)2+450,故当x是30 cm时,菱形风筝的面积S最大,最大的面积是450 cm2.综合能力提升练5.合肥寿春中学劳动课上,老师让学生利用成直角的墙角(墙足够长),用10 m长的栅栏围成一个矩形的小花园,花园的面积S m2与它一边长a m的函数解析式是S=-a2+10a ,面积S 的最大值是25.6.如图,在△ABC中,∠B=90°,AB=8 cm,BC=6 cm,点P从点A开始沿AB向B点以2 cm/s的速度移动,点Q从点B开始沿BC向C点以1 cm/s的速度移动,如果P,Q分别从A,B同时出发,当△PBQ的面积为最大时,运动时间t为2s.7.(衢州中考)某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50 m),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48 m,则这三间长方形种牛饲养室的总占地面积的最大值为144 m2.8.如图,有一块边长为a的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中虚线折起,做成一个无盖的直三棱柱纸盒,若该纸盒侧面积的最大值是 cm2,则a的值为3cm.9.在美化校园的活动中,巢湖一中初三一班的兴趣小组利用如图所示的直角墙角(两边足够长),用32 m长的藤条圈成一个长方形的花圃ABCD(藤条只围AB,BC两边),设AB=x m.(1)若花圃的面积为252 m2,求x的值;(2)正好在P处有一棵桃树与墙CD,AD的距离分别是17 m和8 m,如果把将这棵桃树围在花圃内(含边界,不考虑树的粗细),老师让学生算一下花圃面积的最大值是多少?解:(1)因为AB=x,则BC=32-x,所以x(32-x)=252,解得x1=14,x2=18,故x的值为14 m或18 m.(2)因为AB=x,所以BC=32-x,所以S=x(32-x)=-x2+32x=-(x-16)2+256,因为在P处有一棵桃树与墙CD,AD的距离分别是17 m和8 m,所以,所以8≤x≤15,所以当x=15时,S取到最大值为S=-(15-16)2+256=255,故花圃面积S的最大值为255 m2.10.如图所示,在矩形ABCD中,AB=6 cm,BC=12 cm,点P从点A出发,沿AB边向点B以1 cm/s 的速度移动,同时点Q从点B出发,沿BC边向点C以2 cm/s的速度移动,如果P,Q两点在分别到达B,C两点后就停止移动,回答下列问题:(1)运动开始后第多少秒时,△PBQ的面积等于8 cm2.(2)设运动开始后第t秒时,五边形PQCDA的面积为S cm2,写出S与t的函数解析式,并指出自变量t的取值范围.(3)t为何值时S最小?求出S的最小值.解:(1)设x秒后△PBQ的面积等于8 cm2.则AP=x,QB=2x,∴PB=6-x,∴×(6-x)×2x=8,解得x1=2,x2=4.运动开始后第2秒或第4秒时△PBQ的面积等于8 cm2.(2)第t秒时,AP=t cm,PB=(6-t) cm,BQ=2t cm,∴S△PBQ=·(6-t)·2t=-t2+6t.∵S矩形ABCD=6×12=72,∴S=72-S△PBQ=t2-6t+72(0≤t≤6).(3)∵S=t2-6t+72=(t-3)2+63,∴当t=3秒时,S有最小值63 cm2.11.工人师傅用一块长为10 dm,宽为6 dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12 dm2时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?解:(1)如图所示:设裁掉的正方形的边长为x dm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2 dm,底面积为12 dm2.(2)因为长不大于宽的五倍,所以10-2x≤5(6-2x),解得0<x≤2.5,设总费用为w元,由题意可知w=0.5×2x(16-4x)+2(10-2x)(6-2x)=4x2-48x+120=4(x-6)2-24,因为对称轴为x=6,开口向上,所以当0<x≤2.5时,w随x的增大而减小,所以当x=2.5时,w有最小值,最小值为25元,答:当裁掉边长为2.5 dm的正方形时,总费用最低,最低费用为25元.拓展探究突破练12.(安徽中考)为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域面积相等.设BC的长度是x米,矩形区域ABCD的面积为y平方米.(1)求y与x之间的函数解析式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?解:(1)设AE=a,由题意得AE·AD=2BE·BC,AD=BC,∴BE=a,AB=a.由题意得2x+3a+2·a=80,∴a=20-x.∴y=AB·BC=a·x=x,即y=-x2+30x(0<x<40).(2)∵y=-x2+30x=-(x-20)2+300,∴当x=20时,y有最大值,最大值是300平方米.13.如图,一面利用墙,用篱笆围成一个外形为矩形的花圃,花圃的面积为S平方米,平行于院墙的一边长为x米.(1)若院墙可利用最大长度为10米,篱笆长为24米,花圃中间用一道篱笆间隔成两个小矩形,求S与x之间函数关系.(2)在(1)的条件下,围成的花圃面积为45平方米时,求AB的长.能否围成面积比45平方米更大的花圃?如果能,应该怎么围?如果不能请说明理由.(3)当院墙可利用最大长度为40米,篱笆长为77米,中间建n道篱笆间隔成小矩形,当这些小矩形为正方形,且x为正整数时,请直接写出一组满足条件的x,n的值.解:(1)由题意得:S=x×=-x2+8x(0<x≤10).(2)由S=-x2+8x=45,解得x1=15(舍去),x2=9,所以x=9,AB==5,又S=-x2+8x=-(x-12)2+48,0<x≤10,因为当x≤10时,S随x的增大而增大,所以当x=10米时,S最大,为平方米>45平方米,所以平行于院墙的一边长为10米时,就能围成面积比45平方米更大的花圃.(3)根据题意可得,则n=4,x=35或n=2,x=33.如有侵权请联系告知删除,感谢你们的配合!。
人教版九年级数学上册课时练 第二十二章 二次函数 22.3 实际问题与二次函数
人教版九年级数学上册课时练 第二十二章 二次函数 22.3 实际问题与二次函数一、选择题1.如图,四边形ABCD 中,90BAD ACB ∠=∠=,AB AD =,4AC BC =,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是( )A .2225y x =B .2425y x =C .225y x =D .245y x =2.如图,图中是抛物线形拱桥,当拱顶离水面2m 时水面宽4m .水面下降1m ,水面宽度为( )A .mB .C mD m3.如图为某菜农搭建的一个横截面为抛物线的大棚,有关尺寸如图所示,某菜农身高1.6米,则他在不弯腰的情况下在大棚内左右活动的范围是( )A 米 BC .1.6米D .0.8米4.某一商人进货价便宜8%,而售价不变,那么他的利润率(按进货价而定)可由目前x 增加到(x+10%),则x 是( ) A .12%B .15%C .30%D .50%5.某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y (件)与销售单价x (元/件)之间的函数关系式为y=–4x+440,要获得最大利润,该商品的售价应定为 A .60元 B .70元 C .80元 D .90元6.太阳影子定位技术是通过分析视频中物体的太阳影子变化,确定视频拍摄地点的一种方法.为了确定视频拍摄地的经度,我们需要对比视频中影子最短的时刻与同一天东经120度影子最短的时刻.在一定条件下,直杆的太阳影子长度(l 单位:米)与时刻(t 单位:时)的关系满足函数关系2(l at bt c a b c ,,=++是常数),如图记录了三个时刻的数据,根据上述函数模型和记录的数据,则该地影子最短时,最接近的时刻t 是))A.12.75 B .13 C .13.33 D .13.57.如图,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)片备用,当截取的矩形面积最大时,矩形两边长x 、y 应分别为( )A .10x =,14y =B .14x =,10y =C .12x =,15y =D .15x =,12y =8.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA ,O 恰为水面中心,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA 的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y (m )与水平距离x (m )之间的关系式是2y x 2x 3=-++,则下列结论:(1)柱子OA 的高度为3m ;(2)喷出的水流距柱子1m 处达到最大高度;(3)喷出的水流距水平面的最大高度是4m ;(4)水池的半径至少要3m 才能使喷出的水流不至于落在池外.其中正确的有( )A .1个B .2个C .3个D .49.若()0f x >,符号 ()baf x dx ⎰表示函数()y f x =的图象与过点(),0a ,(),0b 且和x 轴垂直的直线及x 轴围成图形的面积.如图,21(1)x dx +⎰表示梯形ABCD 的面积.设212A dx x =⎰,21(3)B x dx =-+⎰,22137()22C x x dx =-+⎰,则A ,B ,C 中最大的是( )A .AB .BC .CD .无法比较10.如图,抛物线21322y x x =--与直线2y x =-交于A 、B 两点(点A 在点B 的左侧),动点P 从A 点出发,先到达抛物线的对称轴上的某点E ,再到达x 轴上的某点F ,最后运动到点.B 若使点P 运动的总路径最短,则点P 运动的总路径的长为( )A B C .52 D .53二、填空题11.如图,抛物线212y x =经过平移得到抛物线2122y x x =-,其对称轴与两段抛物线所围成的阴影部分的面积为____.12.如图,正方形EFGH 的顶点在边长为2的正方形的边上.若设AE x =,正方形EFGH 的面积为y ,则y 与x 的函数关系为______ .13.如图,在平面直角坐标系中,正方形ABCD 的顶点A 、B 的坐标分别为(0,2)、(1,0),顶点C 在函数y =13x 2+bx -1的图象上,将正方形ABCD 沿x 轴正方向平移后得到正方形A′B′C′D′,点D 的对应点D′落在抛物线上,则点D 与其对应点D′之间的距离为 ______.14.丰都县某中学为培养学生综合实践能力,开展了一系列综合实践活动,有一次财商训练活动中,小明同学准备去集市批发两种商品用于活动中交易.预先了解到A 、B 两种商品的价格之和为27元,小明计划购买B 商品的数量比A 商品的数量多2件,但一共不超过25件,且每样不少于3件,但小明去购买时发现A 商品正打九折销售,而B 商品的价格提高了20%,小明决定将A 、B 产品的购买数量对调,这样实际花费只比计划多8元,已知价格和购买数量均为整数,则小明购买两种商品实际花费为_____元.15.如图,一座抛物线型拱桥,桥下水面宽度是4m 时,拱高为2m ,一艘木船宽2m.要能顺利从桥下通过,船顶点与桥拱之间的间隔应不少于0.3m ,那么木船的高不得超过 ______m.三、解答题16.如图1,地面BD 上两根等长立柱AB ,CD 之间有一根绳子可看成抛物线y =0.1x 2﹣0.8x +5. (1)求绳子最低点离地面的距离;(2)因实际需要,在离AB 为5米的位置处用一根立柱MN 撑起绳子(如图2),使左边抛物线F 1的最低点距MN 为1米,离地面2米,求MN 的长;(3)将立柱MN 的长度提升为5米,通过调整MN 的位置,使抛物线F 2对应函数的二次项系数始终为13.设MN 离AB 的距离为m ,抛物线F 2的顶点离地面距离为k ,但2≤k ≤3时,求m 的取值范围.17.网络销售已经成为一种热门的销售方式为了减少农产品的库存,我市市长亲自在某网络平台上进行直播销售大别山牌板栗.为提高大家购买的积极性,直播时,板栗公司每天拿出2000元现金,作为红包发给购买者.已知该板栗的成本价格为6元/kg ,每日销售量(kg)y 与销售单价x (元/kg )满足关系式:1005000y x =-+.经销售发现,销售单价不低于成本价格且不高于30元/kg .当每日销售量不低于4000kg 时,每千克成本将降低1元设板栗公司销售该板栗的日获利为W (元).(1)请求出日获利W 与销售单价x 之间的函数关系式(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元?(3)当40000W ≥元时,网络平台将向板栗公可收取a 元/kg(4)a <的相关费用,若此时日获利的最大值为42100元,求a 的值.18.如图,抛物线21144y x x c =++与x 轴的负半轴交于点A ,与y 轴交于点B ,连结AB ,点C (6,152)在抛物线上,直线AC 与y 轴交于点D(1)求c 的值及直线AC 的函数表达式;(2)点P 在x 轴正半轴上,点Q 在y 轴正半轴上,连结PQ 与直线AC 交于点M ,连结MO 并延长交AB 于点N ,若M 为PQ 的中点.①求证:APM AON ∽)②设点M 的横坐标为m ,求AN 的长(用含m 的代数式表示).19.某企业接到一批产品的生产任务,按要求必须在15天内完成.已知每件产品的售价为65元,工人甲第x 天生产的产品数量为y 件,y 与x 满足如下关系: y=8(05)510(515)x x x x ≤≤⎧⎨+<≤⎩.)1)工人甲第几天生产的产品数量为80件?)2)设第x 天(0≤x≤15)生产的产品成本为P 元/件,P 与x 的函数图象如图,工人甲第x 天创造的利润为W 元. ①求P 与x 的函数关系式;②求W 与x 的函数关系式,并求出第几天时,利润最大,最大利润是多少?20.已知在平面直角坐标系xOy 中,O 为坐标原点,线段AB 的两个端点A(0)2))B(1)0)分别在y 轴和x 轴的正半轴上,点C 为线段AB 的中点.现将线段BA 绕点B 按顺时针方向旋转90°得到线段BD ,抛物线y)ax 2)bx)c(a≠0)经过点D)如图,若该抛物线经过原点O ,且a))13. (1)求点D 的坐标及该抛物线的解析式;(2)连结CD)问:在抛物线上是否存在点P ,使得∠POB 与∠BCD 互余?若存在,请求出所有满足条件的点P 的坐标;若不存在,请说明理由.21.某企业为打入国际市场,决定从A 、B 两种产品中只选择一种进行投资生产.已知投资生产这两种产品的有关数据如下表:(单位:万美元)其中年固定成本与年生产的件数无关,m 为待定常数,其值由生产A 产品的原材料价格决定,预计68m ≤≤.另外,年销售x 件B 产品时需上交20.05x 万美元的特别关税.假设生产出来的产品都能在当年销售出去.()1写出该厂分别投资生产A 、B 两种产品的年利润1y ,2y 与生产相应产品的件数x 之间的函数关系并指明其自变量取值范围;()2如何投资才可获得最大年利润?请你做出规划.22.如图()1,在平面直角坐标系中,抛物线23y ax bx a =+-经过()1,0A -、()0,3B 两点,与x 轴交于另一点C ,顶点为D .()1求该抛物线的解析式及点C 、D 的坐标;()2经过点B 、D 两点的直线与x 轴交于点E ,若点F 是抛物线上一点,以A 、B 、E 、F 为顶点的四边形是平行四边形,求点F 的坐标;()3如图()()22,3P 是抛物线上的点,Q 是直线AP 上方的抛物线上一动点,求APQ 的最大面积和此时Q 点的坐标.23.如图,抛物线()220y ax ax c a =-+≠与y 轴交于点()0,4C ,与x 轴交于点A 、B ,点A 坐标为()4,0.()1求该抛物线的解析式;()2抛物线的顶点为N ,在x 轴上找一点K ,使CK KN +最小,并求出点K 的坐标; ()3点Q 是线段AB 上的动点,过点Q 作//QE AC ,交BC 于点E ,连接CQ .当CQE 的面积最大时,求点Q 的坐标;()4若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为()2,0.问:是否存在这样的直线l ,使得ODF 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.【参考答案】1.C 2.A 3.B 4.B 5.C 6.C 7.D 8.D 9.C 10.A 11.412.2244y x x =-+ 13.2 14.312. 15.1.216.(1)175米;(2)3516米;(3)2≤m ≤8﹣. 17.(1)22100550027000(610)100560032000(1030)x x x w x x x ⎧-+-≤≤=⎨-+-<≤⎩;(2)当销售单价定为28元时,日获利最大,且最大为46400元;(3)2a =18.(1)c=-3; 直线AC 的表达式为:y=34x+3))2)①略;②52024m m ++19.(1)第14天))2)①P)40(05)35(515)x x x ≤≤⎧⎨+<≤⎩)②W)2200(05)5140300(515)x x x x x ≤≤⎧⎨-++<≤⎩)第14天时,利润最大,最大利润为1280元.20.)1)D 点的坐标是(3)1))y ))13x 2)43x ))2)在抛物线上存在点P 1(52)54))P 2(112))114),使得∠POB 与∠BCD互余.21.()()11?1020y m x =--,()0200x ≤≤,220.051040y x x =-+-,()0120x ≤≤;()2当67.6m ≤<时,投资生产A 产品200件可获得最大年利润;当7.6m =时,生产A 产品与生产B 产品均可获得最大年利润;当7.68m <≤时,投资生产B 产品100件可获得最大年利润.22.(1)()()3,01,4C D ,;(2)()2,3F ;(3)当12a =时,PQA S 的最大面积为278, 此时115,24Q ⎛⎫⎪⎝⎭. 23.(1)2142y x x =-++;(2)点K 的坐标为8,017⎛⎫ ⎪⎝⎭;(3)。
九年级数学: 22.3实际问题与二次函数 最大利润问题练习题含答案
人教版数学九级上册第二十二章二次函数 22.3 实际问题与二次函数最大利润问题专题练习题1.服装店将进价为100元的服装按x元出售,每天可销售(200-x)件,若想获得最大利润,则x应定为( )A.150元 B.160元 C.170元 D.180元2.某产品进货单价为9元,按10元一件出售时,能售出50件.若每件每涨价1元,销售量就减少10件,则该产品能获得的最大利润为( )A.50元 B.80元 C.90元 D.100元3.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间的函数关系式为y=-n2+14n -24,则该企业一年中应停产的月份是( )A.1月、2月、3月 B.2月、3月、4月C.1月、2月、12月 D.1月、11月、12月4.将进货价为70元/件的某种商品按零售价100元/件出售时每天能卖出20件,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1件.为了获得最大利润决定降价x元,则单件的利润为元,每日的销售量为件,每日的利润y=,所以每件降价____元时,每日获得的利润最大为____元.5.已知某人卖盒饭的盒数x(盒)与所获利润y(元)满足关系式y=-x2+1200x-357600,则当卖出盒饭数量为____盒时,获得最大利润是____元.6. 我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资与收益的关系为:每投入x万元,可获得利润P=-1100(x-60)2+41.每年最多可投入100万元的销售投资,则5年所获利润的最大值是.7. 某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降价1元,每天就可多售出5件,但要求销售单价不得低于成本.求销售单价为多少元时,每天的销售利润最大?最大利润是多少?8. 一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg,且不高于180元/kg,经销一段时间后得到如下数据:设y与x的关系是我们所学过的某一种函数关系.(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)9.某租赁公司拥有20辆小型汽车,公司平均每日的各项支出共6250元,当每辆车的日租金为500元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆.根据以上材料解答下列问题:设公司每日租出x 辆车时,日收益为y 元(日收益=日租金收入-平均每日各项支出).(1)公司每日租出x 辆车时,每辆车的日租金收入为 元;(用含x 的代数式表示)(2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?(3)当每日租出多少辆时,租赁公司的日收益才能盈利?10.某宾馆有50个房间供游客居住,当每个房间定价120元时,房间会全部住满,当每个房间每天的定价每增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每个房间定价增加10x 元(x 为整数).(1)直接写出每天游客居住的房间数量y 与x 的函数关系式;(2)设宾馆每天的利润为W 元,当每间房价定价为多少元时,宾馆每天所获利润最大,最大利润是多少?(3)某日,宾馆了解当天的住宿情况,得到以下信息:①当日所获利润不低于5000元;②宾馆为游客居住的房间共支出费用没有超过600元;③每个房间刚好住满2人.问:这天宾馆入住的游客人数最少有多少人?11.某企业接到一批粽子生产任务,按要求在19天内完成,约定这批粽子的出厂价为每只4元,为按时完成任务,该企业招收了新工人,设新工人李红第x 天生产的粽子数量为y 只,y 与x 满足如下关系:y =⎩⎪⎨⎪⎧32x (0≤x≤5),20x +60(5<x≤19). (1)李红第几天生产的粽子数量为260只?(2)如图,设第x 天生产的每只粽子的成本是p 元,p 与x 之间的关系可用图中的函数图象来刻画,若李红第x 天创造的利润为w 元,求w 与x 之间的函数解析式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价-成本)答案:1---3 ACC4. (30-x) (20+x) -x 2+10x +600 5 6255. 600 24006. 205万元7. 解:设每天的销售利润为y 元,销售单价为x 元,则y =(x -50)=-5(x -80)2+4500,∵a =-5<0,50≤x ≤100,∴当x =80时,y 最大值=45008. 解:(1)y =-0.5x +160(120≤x ≤180)(2)设销售利润为W 元,则W =(x -80)(-0.5x +160)=-12(x -200)2+7200,∵a =-12<0, ∴当x<200时,y 随x 的增大而增大,∴当x =180时,W 最大=-12(180-200)2+7200=7000, 则当销售单价为180元时,销售利润最大,最大利润是7000元9. (1) 1500-50x(2)由题意可知,租赁公司的日收益为y =x(1500-50x)-6250=-50(x -15)2+5000,∵-15<0,当x =15时,租赁公司日收益最大,最大是5000元(3)由题意得-50(x -15)2+5000>0,解得5<x<25,∵x ≤20,∴5<x ≤20,即当每日租出至少6辆时,租赁公司的日收益才能盈利10. 解:(1)根据题意得y =50-x(0≤x ≤50,且x 为整数)(2)W =(120+10x -20)(50-x)=-10x 2+400x +5000=-10(x -20)2+9000,∵a =-10<0,∴当x =20时,W 最大值=9000,则当每间房价定价为320元时,宾馆每天所获利润最大,最大利润是9000元(3)由题意得⎩⎪⎨⎪⎧-10(x -20)2+9000≥5000,20(-x +50)≤600,解得20≤x≤40, ∵房间数y =50-x ,又∵-1<0,∴当x =40时,y 的值最小,这天宾馆入住的游客人数最少,最少人数为2y =2(-x +50)=20(人)11. 解:(1)设李红第x 天生产的粽子数量为260只,根据题意得20x +60=260,解得x =10,则李红第10天生产的粽子数量为260只(2)根据图象得当0≤x≤9时,p =2;当9<x≤19时,可求解析式为p =110x +1110, ①当0≤x≤5时,w =(4-2)·32x=64x ,x =5时w 的最大值为320;②当5<x≤9时,w =(4-2)·(20x+60)=40x +120,x =9时w 的最大值为480;③当9<x≤19时,w=·(20x+60)=-2x2+52x+174=-2(x-13)2+512,x=13时w 的最大值为512.综上所述,第13天的利润最大,最大利润是512元。
九年级数学上册第二十二章二次函数22.3实际问题与二次函数同步练习新版新人教版
.3 实际问题与二次函数学校:___________姓名:___________班级:___________一.选择题(共15小题)1.一台机器原价50万元,如果每年的折旧率是x,两年后这台机器的价格为y万元,则y 与x的函数关系式为()A.y=50(1﹣x)2B.y=50(1﹣2x)C.y=50﹣x2D.y=50(1x)22.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为,由此可知铅球能到达的最大高度()A.10m B.3m C.4m D.2m或10m3.国家决定对某药品价格分两次降价,若设平均每次降价的百分率为x,该药品原价为18元,降价后的价格为y元,则y与x的函数关系式为()A.y=36(1﹣x) B.y=36(1x)C.y=18(1﹣x)2D.y=18(1x2)4.如图,一边靠墙(墙有足够长其它三边用12m长的篱笆围成一个矩形(ABCD)花园,这个花园的最大面积是()A.16m2B.12 m2C.18 m2D.以上都不对5.在比赛中,某次羽毛球的运动路线可以看作是抛物线y=﹣x2bxc的一部分(如图其中出球点B离地面O点的距离是1m,球落地点A到O点的距离是4m,那么这条抛物线的解析式是()A.y=﹣x2 x1 B.y=﹣x2 x﹣1C.y=﹣x2﹣x1 D.y=﹣x2﹣x﹣16.某农产品市场经销一种销售成本为40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨一元,月销售量就减少10千克.设销售单价为每千克x元,月销售利润为y元,则y与x的函数关系式为()A.y=(x﹣40)(500﹣10x)B.y=(x﹣40)(10x﹣500)C.y=(x﹣40)[500﹣10(x﹣50)] D.y=(x﹣40)[500﹣10(50﹣x)]7.某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y(件)与销售单价x(元/件)之间的函数关系式为y=﹣4x440,要获得最大利润,该商品的售价应定为()A.60元B.70元C.80元D.90元8.如图,图中是抛物线形拱桥,当拱顶离水面2m时水面宽4m.水面下降1m,水面宽度为()A.2m B.2m C. m D. m9.如图,排球运动员站在点O处练习发球,将球从D点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2h.已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是()A.球不会过网B.球会过球网但不会出界C.球会过球网并会出界D.无法确定10.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA的任一平面上,建立平面直角坐标系(如图水流喷出的高度y(m)与水平距离x(m)之间的关系式是y=﹣xx3,则下列结论:(1)柱子OA的高度为3m;(2)喷出的水流距柱子1m处达到最大高度;(3)喷出的水流距水平面的最大高度是4m;(4)水池的半径至少要3m才能使喷出的水流不至于落在池外.其中正确的有()A.1个B.2个C.3个D.411.如图,抛物线m:y=ax2b(a<0,b>0)与x轴于点A、B(点A在点B的左侧与y轴交于点C.将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为C1,与x轴的另一个交点为A1.若四边形AC1A1C为矩形,则a,b应满足的关系式为()A.ab=﹣2 B.ab=﹣3 C.ab=﹣4 D.ab=﹣512.如图所示是一个抛物线形桥拱的示意图,在所给出的平面直角坐标系中,当水位在AB 位置时,水面宽度为10m,此时水面到桥拱的距离是4m,则抛物线的函数关系式为()A.y=B.y=﹣C.y=﹣D.y=13.抛物线y=x2﹣2x﹣15,y=4x﹣23,交于A、B点(A在B的左侧动点P从A点出发,先到达抛物线的对称轴上的某点E再到达x轴上的某点F,最后运动到点B.若使点P动的总路径最短,则点P运动的总路径的长为()A.10B.7C.5D.814.标枪飞行的路线是一条抛物线,不考虑空气阻力,标枪距离地面的高度h(单位:m)与标枪被掷出后经过的时间t(单位:s)之间的关系如下表:t 0 1 2 3 4 5 6 7 …h 0 8 14 18 20 20 18 14 …下列结论:①标枪距离地面的最大高度大于20m;②标枪飞行路线的对称轴是直线t=;③标枪被掷出9s时落地;④标枪被掷出1.5s时,距离地面的高度是11m,其中正确结论的个数是()A.1 B.2 C.3 D.415.小明以二次函数y=2x2﹣4x8的图象为灵感为“2017北京房山国际葡萄酒大赛”设计了一款杯子,如图为杯子的设计稿,若AB=4,DE=3,则杯子的高CE为()A.14 B.11 C.6 D.3二.填空题(共8小题)16.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t ﹣.在飞机着陆滑行中,最后4s滑行的距离是m.17.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x)件,若使利润最大,则每件商品的售价应为元.18.如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计当AB= m时,矩形土地ABCD的面积最大.19.用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长20m,当矩形的长、宽各取某个特定的值时,菜园的面积最大,这个最大面积是m2.20.某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为 1.8m,他在不弯腰的情况下,在棚内的横向活动范围是m.21.某商店购进一批单价为8元的商品,如果按每件10元出售,那么每天可销售100件.经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件,为使每天所获销售利润最大,销售单价应定为元..某快递十月份快递件数是10万件,如果该第四季度每个月快递件数的增长率都为x(x>0十二月份的快递件数为y万件,那么y关于x的函数解析式是.23.如图,隧道的截面由抛物线和长方形构成.长方形的长为12m,宽为5m,抛物线的最高点C离路面AA1的距离为8m,过AA1的中点O建立如图所示的直角坐标系.则该抛物线的函数表达式为三.解答题(共6小题)24.某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.25.绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x (kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?26.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.27.如图,抛物线y=ax2bx(a<0)过点E(10,0矩形ABCD的边AB在线段OE上(点A在点B的左边点C,D在抛物线上.设A(t,0当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.28.鹏鹏童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销,该店决定降价销售,经市场调查反应:每降价1元,每星期可多卖10件.已知该款童装每件成本30元.设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式(不求自变量的取值范围);(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少?(3)①当每件童装售价定为多少元时,该店一星期可获得3910元的利润?②若该店每星期想要获得不低于3910元的利润,则每星期至少要销售该款童装多少件?29.某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.参考答案与试题解析一.选择题(共15小题)1.解:二年后的价格是为:50×(1﹣x)×(1﹣x)=60(1﹣x)2,则函数解析式是:y=50(1﹣x)2.故选:A.2.解:∵铅球行进高度y(m)与水平距离x(m)之间的关系为y=﹣(x﹣4)23,∴抛物线的顶点坐标为(4,3∴铅球能到达的最大高度为3m,故选:B.3.解:原价为18,第一次降价后的价格是18×(1﹣x);第二次降价是在第一次降价后的价格的基础上降价的为:18×(1﹣x)×(1﹣x)=18(1﹣x)2.则函数解析式是:y=18(1﹣x)2.故选:C.4.解:设与墙垂直的矩形的边长为xm,则这个花园的面积是:S=x(12﹣2x)=﹣2x212x=﹣2(x﹣3)218,∴当x=3时,S取得最大值,此时S=18,故选:C.5.解:∵出球点B离地面O点的距离是1m,球落地点A到O点的距离是4m,∴B点的坐标为:(0,1A点坐标为(4,0将两点代入解析式得:,解得:,∴这条抛物线的解析式是:y=﹣x2x1.故选:A.6.解:设销售单价为每千克x元,月销售利润为y元,则y与x的函数关系式为:y=(x﹣40)[500﹣10(x﹣50)].故选:C.7.解:设销售该商品每月所获总利润为w,则w=(x﹣50)(﹣4x440)=﹣4x2640x﹣000=﹣4(x﹣80)23600,∴当x=80时,w取得最大值,最大值为3600,即售价为80元/件时,销售该商品所获利润最大,故选:C.8.解:建立如图所示直角坐标系:可设这条抛物线为y=ax2,把点(2,﹣2)代入,得﹣2=a×,解得:a=﹣,∴y=﹣x2,当y=﹣3时,﹣x2=﹣3.解得:x=±∴水面下降1m,水面宽度为2m.故选:A.9.解:(1)∵球与O点的水平距离为6m时,达到最高2.6m,∴抛物线为y=a(x﹣6).6过点,∵抛物线y=a(x﹣6).6过点(0,2∴2=a(0﹣6).6,解得:a=﹣,故y与x的关系式为:y=﹣(x﹣6).6,当x=9时,y=﹣(x﹣6).6=2.45>2.43,所以球能过球网;当y=0时,﹣(x﹣6).6=0,解得:x1=62>18,x2=6﹣2(舍去)故会出界.10.解:∵y=﹣xx3=﹣(x﹣1)24,∴当x=0时,y=3,即OA=3m,故(1)正确,当x=1时,y取得最大值,此时y=4,故(2)和(3)正确,当y=0时,x=3或x=﹣1(舍去故(4)正确,故选:D.11.解:令x=0,得:y=b.∴C(0,b).令y=0,得:ax2b=0,∴x=±,∴A(﹣,0B(,0 ∴AB=2,BC==.要使平行四边形AC1A1C是矩形,必须满足AB=BC,∴2=.∴4×(﹣)=b2﹣,∴ab=﹣3.∴a,b应满足关系式ab=﹣3.故选:B.12.解:依题意设抛物线解析式y=ax2,把B(5,﹣4)代入解析式,得﹣4=a×52,解得a=﹣,所以y=﹣x2.故选:C.13.∵抛物线y=x2﹣2x﹣15与直线y=4x﹣23交于A、B两点,∴x2﹣2x﹣15=4x﹣23,解得:x=2或x=4,当x=2时,y=4x﹣23=﹣15,当x=4时,y=4x﹣23=﹣7,∴点A的坐标为(2,﹣15点B的坐标为(4,﹣7∵抛物线对称轴方程为:x=﹣作点A关于抛物线的对称轴x=1的对称点A′,作点B关于x轴的对称点B′,连接A′B′,则直线A′B′与对称轴(直线x=1)的交点是E,与x轴的交点是F,∴BF=B′F,AE=A′E,∴点P运动的最短总路径是AEEFFB=A′EEFFB′=A′B′,延长BB′,AA′相交于C,∴A′C=4,B′C=715=,∴A′B′==10.∴点P运动的总路径的长为10.故选:A.14.解:由题意,抛物线的解析式为h=at(t﹣9把(1,8)代入可得a=﹣1,∴h=﹣t29t=﹣(t﹣4.5)0.25,∴足球距离地面的最大高度为20.25m,故①正确,∴抛物线的对称轴t=4.5,故②正确,∵t=9时,h=0,∴足球被踢出9s时落地,故③正确,∵t=1.5时,h=11.25,故④错误.∴正确的有①②③,故选:C.15.解:∵y=2x2﹣4x8=2(x﹣1)26,∴抛物线顶点D的坐标为(1,6∵AB=4,∴B点的横坐标为x=3,把x=3代入y=2x2﹣4x8,得到y=14,∴CD=14﹣6=8,∴CE=CDDE=83=11.故选:B.二.填空题(共8小题)16.解:当y取得最大值时,飞机停下来,则y=60t﹣1.5t2=﹣1.5(t﹣20)2600,此时t=20,飞机着陆后滑行600米才能停下来.因此t的取值范围是0≤t≤20;即当t=16时,y=576,所以600﹣576=24(米)故答案是:24.17.解:设利润为w元,则w=(x﹣20)(30﹣x)=﹣(x﹣25)5,∵20≤x≤30,∴当x=25时,二次函数有最大值25,故答案是:25.18.解:(1)设AB=xm,则BC=(900﹣3x由题意可得,S=AB×BC=x×(900﹣3x)=﹣(x2﹣300x)=﹣(x﹣150)233750 ∴当x=150时,S取得最大值,此时,S=33750,∴AB=150m,故答案为:150.19.解:设矩形的长为xm,则宽为m,菜园的面积S=x=﹣x215x=﹣(x﹣15)2,(0<x≤20)∵当x<15时,S随x的增大而增大,∴当x=15时,S最大值=m2,故答案为:.20.解:设抛物线的解析式为:y=ax2b,由图得知:点(0,2.4(3,0)在抛物线上,∴,解得:,∴抛物线的解析式为:y=﹣x.4,∵菜农的身高为1.8m,即y=1.8,则1.8=﹣x.4,解得:x=(负值舍去)故他在不弯腰的情况下,横向活动范围是:3米,故答案为:3.21.解:设销售单价为x元,利润为w元,w=(x﹣8)[100﹣(x﹣10)×10]=﹣10x80x﹣1600=﹣10(x﹣14)2360,∴当x=14时,w取得最大值,此时w=360,故答案为:14..解:根据题意得:y=10(x1)2,故答案为:y=10(x1)223.解:由题意可得,点C的坐标为(0,8点B的坐标为(﹣6,5设此抛物线的解析式为y=ax28,5=a×(﹣6)28,解得,a=,∴此抛物线的解析式为y=x28,故答案为:y=x28.三.解答题(共6小题)24.解:(1)由题意得:200﹣10×(52﹣50)=200﹣20=180(件故答案为:180;(2)由题意得:y=(x﹣40)[200﹣10(x﹣50)]=﹣10x21100x﹣28000=﹣10(x﹣55)250∴每件销售价为55元时,获得最大利润;最大利润为50元.25.解:(1)设y1与x之间的函数关系式为y1=kxb,∵经过点(0,168)与(180,60∴,解得:,∴产品销售价y1(元)与产量x(kg)之间的函数关系式为y1=﹣x168(0≤x≤180);(2)由题意,可得当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mxn,∵直线y2=mxn经过点(50,70)与(130,54∴,解得,∴当50<x<130时,y2=﹣x80.综上所述,生产成本y2(元)与产量x(kg)之间的函数关系式为y2=;(3)设产量为xkg时,获得的利润为W元,①当0≤x≤50时,W=x(﹣x168﹣70)=﹣(x﹣)2,∴当x=50时,W的值最大,最大值为3400;②当50<x<130时,W=x[(﹣x168)﹣(﹣x80)]=﹣(x﹣110)24840,∴当x=110时,W的值最大,最大值为4840;③当130≤x≤180时,W=x(﹣x168﹣54)=﹣(x﹣95)25415,∴当x=130时,W的值最大,最大值为4680.因此当该产品产量为110kg时,获得的利润最大,最大值为4840元.26.解:(1)由题意得:,解得:.故y与x之间的函数关系式为:y=﹣10x700,(2)由题意,得﹣10x700≥240,解得x≤46,设利润为w=(x﹣30)y=(x﹣30)(﹣10x700w=﹣10x21000x﹣21000=﹣10(x﹣50)24000,∵﹣10<0,∴x<50时,w随x的增大而增大,∴x=46时,w大=﹣10(46﹣50)24000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w﹣150=﹣10x21000x﹣21000﹣150=3600,﹣10(x﹣50)2=﹣250,x﹣50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.27.解:(1)设抛物线解析式为y=ax(x﹣10∵当t=2时,AD=4,∴点D的坐标为(2,4∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣,抛物线的函数表达式为y=﹣x2x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣t2t,∴矩形ABCD的周长=2(ABAD)=2[(10﹣2t)(﹣t2t)]=﹣t2t20=﹣(t﹣1)2,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4 ∴矩形ABCD对角线的交点P的坐标为(5,2当平移后的抛物线过点A时,点H的坐标为(4,4此时GH不能将矩形面积平分;当平移后的抛物线过点C时,点G的坐标为(6,0此时GH也不能将矩形面积平分;∴当G、H中有一点落在线段AD或BC上时,直线GH不可能将矩形的面积平分,当点G、H分别落在线段AB、DC上时,直线GH过点P必平分矩形ABCD的面积,∵AB∥CD,∴线段OD平移后得到的线段GH,∴线段OD的中点Q平移后的对应点是P,在△OBD中,PQ是中位线,∴PQ=OB=4,所以抛物线向右平移的距离是4个单位.28.解:(1)y=10010(60﹣x)=﹣10x700.(2)设每星期利润为W元,W=(x﹣30)(﹣10x700)=﹣10(x﹣50)24000.∴x=50时,W最大值=4000.∴每件售价定为50元时,每星期的销售利润最大,最大利润4000元.(3)①由题意:﹣10(x﹣50)24000=3910解得:x=53或47,∴当每件童装售价定为53元或47元时,该店一星期可获得3910元的利润.②由题意::﹣10(x﹣50)24000≥3910,解得:47≤x≤53,∵y=10010(60﹣x)=﹣10x700.170≤y≤230,∴每星期至少要销售该款童装170件.29.解:(1)设水柱所在抛物线(第一象限部分)的函数表达式为y=a(x﹣3)25(a≠0 将(8,0)代入y=a(x﹣3)25,得:25a5=0,解得:a=﹣,∴水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣3)25(0<x<8).(2)当y=1.8时,有﹣(x﹣3)25=1.8,解得:x1=﹣1,x2=7,∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内.(3)当x=0时,y=﹣(x﹣3)25=.设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2bx,∵该函数图象过点(16,0∴0=﹣×16216b,解得:b=3,∴改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x23x=﹣(x﹣)2.∴扩建改造后喷水池水柱的最大高度为米.。
人教版九年级数学上册第二十二章二次函数《22.3实际问题与二次函数》第1课时教案
人教版九年级数学上册第二十二章二次函数《22.3实际问题与二次函数》第1课时教案一. 教材分析人教版九年级数学上册第二十二章二次函数《22.3实际问题与二次函数》第1课时主要介绍了二次函数在实际问题中的应用。
这部分内容是对前面学习的二次函数知识的巩固和拓展,通过实际问题引导学生将理论知识和实际应用相结合,提高解决问题的能力。
教材通过丰富的例题和练习题,帮助学生掌握二次函数在实际问题中的运用方法。
二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有了初步的了解。
但是,将二次函数应用于实际问题中,解决实际问题对学生来说还是一个挑战。
因此,在教学过程中,需要关注学生对知识的掌握程度,以及他们在解决实际问题时的思维方式和方法。
三. 教学目标1.了解二次函数在实际问题中的应用。
2.能够将实际问题转化为二次函数问题,利用二次函数解决实际问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.掌握二次函数在实际问题中的应用。
2.将实际问题转化为二次函数问题。
五. 教学方法采用问题驱动的教学方法,通过引导学生解决实际问题,让学生理解和掌握二次函数在实际问题中的应用。
同时,运用讨论法、案例分析法等,激发学生的学习兴趣,提高学生的参与度。
六. 教学准备1.准备相关的实际问题案例。
2.准备PPT,展示二次函数在实际问题中的应用。
七. 教学过程1.导入(5分钟)通过一个简单的实际问题引出本节课的主题,激发学生的兴趣。
例如:一个农场计划种植两种作物,种植面积一定的条件下,如何安排两种作物的种植面积,使得总收益最大?2.呈现(10分钟)呈现实际问题,引导学生认识到实际问题可以通过二次函数来解决。
通过PPT展示实际问题的图像,让学生观察和分析图像,理解二次函数在实际问题中的应用。
3.操练(10分钟)让学生分组讨论,尝试将实际问题转化为二次函数问题。
每组选择一个实际问题,分析问题中的变量关系,列出二次函数的表达式。
人教版九年级数学上册《22.3 实际问题与二次函数应用题》同步练习题-附带参考答案
人教版九年级数学上册《22.3 实际问题与二次函数应用题》同步练习题-附带参考答案学校:___________班级:___________姓名:___________考号:___________1.如图,用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长为18m,这个矩形的长,宽各为多少时,菜园的面积最大,最大面积是多少?2.正常水位时,抛物线拱桥下的水面宽为20m,水面上升3m达到该地警戒水位时,桥下水面宽为10m.(1)在恰当的平面直角坐标系中求出水面到桥孔顶部的距离y(m)与水面宽x(m)之间的函数关系式;(2)如果水位以0.2m/h的速度持续上涨,那么达到警戒水位后,再过多长时间此桥孔将被淹没?3.某商场试销一种成本为30元的文化衫,经试销发现,若每件按34元的价格销售,每天能卖出36件;若每件按39元的价格销售,每天能卖出21件.假定每天销售件数y(件)是销售价格x(元)的一次函数.(1)直接写出y与x之间的函数关系式.(2)在不积压且不考虑其他因素的情况下,每件的销售价格定为多少元时,才能使每天获得的利润P最大?4.如图,二次函数y=-x2+bx+3的图象与x轴的一个交点为A(4,0),与y轴交于点B.(1)求此二次函数的表达式,以及点B的坐标.(2)在x轴的正半轴上是否存在点P,使得△PAB是以AB为底边的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.5.近年来国家倡导“电动车,上牌照,保安全,戴头盔”.某头盔专卖店购进一批单价为36元的头盔.在销售中,通过分析销售情况发现这种头盔的月销售量y(个)与售价x(元/个)(42≤x≤72)满足函数关系y=−2x+200.专卖店的优惠活动:若购买一个这种头盔,就赠送一个成本为6元的头盔面罩.(1)设专卖店在优惠活动期间,月销售利润为w元,求w与x之间的函数解析式;(2)嘉嘉说:“在优惠活动期间,该专卖店的月销售的最大利润能达到1700元.”请判断嘉嘉的说法是否正确,并说明理由.6.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y (千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?7.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25米)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长40米的栅栏围成(如图),设绿化带的边BC长为x米,绿化带的面积为y 平方米.(1)求y与x之间的函数关系式,并直接写出自变量x的取值范围;(2)当x为何值时,满足条件的绿化带面积最大?最大面积是多少?8.某公司生产某种皮衣,每件成本为200元.据公司往年数据分析预测,今年12月份的日销售量s(件)与时间t(天)的关系如图.前20天每天的价格m1(元/件)与时间t(天)的函数关系式m1=2.5t+250(1≤t≤20且t为整数),第21天到月底每天的价格m2(元/件)与时间t(天)的函数关系式m2=-5t+400(21≤t≤31且t为整数).(1)求s与t之间的函数关系式;(2)求预测12月份中哪一天的日销售利润最大,最大利润是多少?(3)根据疫情情况,在实际销售的前20天中,该公司决定每销售一件衣服就捐赠10a元(a<4)给红十字会.公司要求在前20天中,每天扣除捐款后的日销售利润随时间t(天)的增大而增大,问第10天时,日销售利润能不能超过3600元,请说明理由.9.某化工材料经销公司购进一种化工原料若干千克价格为每千克30元物价部门规定其销售单价不高于每千克60元,不低于每千克30元经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100在销售过程中,每天还要支付其他费用450元。
人教版九年级上册数学22.3实际问题与二次函数(喷水问题)同步训练(含答案)
人教版九年级上册数学22.3实际问题与二次函数(喷水问题)同步训练(含答案)人教版九年级上册数学22.3实际问题与二次函数(喷水问题)同步训练一、单选题1.某景点的“喷水巨龙”口中C处的水流量抛物线形,该水流喷出的高度y(m)与水平距离x(m)之间的关系如图所示,D为该水流的最高点,,垂足为A.已知,,则该水流距水平面的最大高度AD的长度为()A.B.C.D.2.如图,一个移动喷灌架喷射出的水流可以近似地看成抛物线,喷水头的高度(即的长度)是1米.当喷射出的水流距离喷水头米时,达到最大高度米,水流喷射的最远水平距离是()A.6米B.1米C.5米D.4米3.某广场有一个小型喷泉,水流从垂直于地面的水管喷出,长为.水流在各个方向上沿形状相同的抛物线路径落到地面上,某方向上抛物线路径的形状如图所示,落点到的距离为.建立平面直角坐标系,水流喷出的高度与水平距离之间近似满足函数关系,则水流喷出的最大高度为()A.B.C.D.4.某地要建造一个圆形喷水池,在水池上都垂直于地面安装一个柱子恰为水面中心,安置在柱子顶端处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,在过的任一平面上,建立平面直角坐标系(如图),水流喷出的高度与水平距离之间的关系式是,则下列结论错误的是()A.柱子的高度为B.喷出的水流距柱子处达到最大高度C.喷出的水流距水平面的最大高度是D.水池的半径至少要才能使喷出的水流不至于落在池外5.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千,拴绳子的地方距地面都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为()A.0.5米B.米C.米D.0.85米6.如图,始终盛满水的圆柱体水桶水面离地面的高度为20cm,如果在离水面竖直距离为h(单位:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系式为.如果想通过垫高水桶,使射出水的最大射程增加10cm,则小孔离水面的距离是()A.14cm B.15cm C.16cm D.18cm7.如图,池中心竖直水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管的长为()A.2.1m B.2.2m C.2.3m D.2.25m8.广场上水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度y(米)关于水珠和喷头的水平距离(米)的函数解析式是,那么水珠的高度达到最大时,水珠与喷头的水平距离是()A.1米B.2米C.5米D.6米二、填空题9.要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安装一个喷水头,使喷出的抛物线形水柱如图所示.现以水管与地面交点为原点,原点与水柱落地处所在直线为轴,水管所在直线为轴,建立直角坐标系,喷出的抛物线水柱对应的函数解析式是,则水管长为.10.广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度y(米)关于水珠和喷头的水平距离x(米)的函数解析式是,那么水珠达到的最大高度为米.11.某游乐园有一圆形喷水池(如图),中心立柱AM上有一喷水头A,其喷出的水柱距池中心3米处达到最高,最远落点到中心M的距离为9米,距立柱4米处地面上有一射灯C,现将喷水头A向上移动1.5米至点B(其余条件均不变),若此时水柱最高处D与A,C在同一直线上,则水柱最远落点到中心M的距离增加了米.12.某幢建筑物,从5米高的窗口A用水管向外喷水,喷的水流呈抛物线的最高点M离墙1米,离地面米,则水流下落点B离墙距离是米.13.如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端点安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为处达到最高,高度为,水柱落地处离池中心距离为,则水管的长度是.14.如图,在喷水池的中心A处竖直安装一个水管AB,水管的顶端B处有一个喷水孔,喷出的抛物线形水柱在与池中心A的水平距离为1m处达到最高点C,高度为3m,水柱落地点D离池中心A处3m,则水管AB的长为m.15.某广场有一个半径8米的圆形喷水池,喷水池的周边有一圈喷水头(喷水头高度忽略不计),各方向喷出的水柱恰好在喷水池中心的装饰物的顶端处汇合,水柱离中心点3米处达最高5米,如图所示建立平面直角坐标系.王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8的他站立时必须在离水池中心点米以内.16.消防员的水枪喷出的水流可以用抛物线来描述,已知水流的最大高度为,则的值为.三、解答题17.一名运动员在高的跳台进行跳水,身体(看成一点)在空中的运动轨迹是一条抛物线,运动员离水面的高度与离起跳点A的水平距离之间的函数关系如图所示,运动员离起跳点A的水平距离为时达到最高点,当运动员离起跳点A的水平距离为时离水面的距离为.(1)求y关于x的函数表达式;(2)求运动员从起跳点到入水点的水平距离的长.18.一个圆形喷水池的上都竖直安装了一个柱形喷水装置,A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.建立平面直角坐标系如图所示,的高度为,水柱在距喷水头A水平距离处达到最高,最高点距地面.(1)求抛物线的表达式;(2)身高的小明在水柱下方运动,当他的头顶恰好接触到水柱时,求他到喷水头A的水平距离.19.某游乐场的圆形喷水池中心有一喷水管,从点A向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为轴,点为原点建立平面直角坐标系(单位长度为),点A在轴上,水柱所在的抛物线(第一象限部分)的函数表达式为.(1)求喷水管高.(2)身高为的小明站在距离喷水管的地方,他会被水喷到吗?20.如图,抛物线,是某喷水器喷出的水抽象而成,抛物线由抛物线向左平移得到,把汽车横截面抽象为矩形,其中米,米,米,抛物线表达式为,,且点A,,,,均在坐标轴上.(1)求抛物线表达式.(2)求点的坐标.(3)要使喷水器喷出的水能洒到整个汽车,记长为米,直接写出的取值范围.参考答案:1.C2.C3.D4.C5.A6.B7.D8.B9.10.611.12.313.14.15.716.±217.(1)y关于x的函数表达式为;(2)运动员从起跳点到入水点的水平距离的长为.18.(1)(2)或19.(1)(2)不会20.(1)(2)(3)答案第2页,共2页。
人教版九年级上册数学实际问题与二次函数(销售问题)训练含答案
人教版九年级上册数学22.3实际问题与二次函数(销售问题)训练一、单选题1.某种手链工艺品每串的盈利与手链上的珍珠个数有一定的关系:每串3粒珍珠时,平均每粒珍珠盈利40元;若每串增加一粒珍珠,则每粒珍珠盈利就减少5元.要使每串手链的盈利达到150元,每串应增加多少粒珍珠?设每串增加x 粒珍珠,则下列方程正确的是( ).A .()()1405150x x +-=B .()()4035150x x +-=C .()()3405150x x +-=D .()()3405150x x ++=2.某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为( ).A .20%;B .40%;C .18%;D .36%.3.一水果商某次按一定价格购进一批苹果,销售过程中有20%的苹果正常损耗.则该水果商按一定售价卖完苹果正好不亏不赚,则售价应该在定价基础上加价(本题不考虑税收等其他因素)( )A .50%B .40%C .25%D .20%4.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,商场采取了降价措施,假设在一 定范围内,村衫的单价每降1元,商场平均每天可多售出2件,如果降价后商场销售这批衬衫每天盈利1250 元,衬杉的单价降了x 元,那么下面所列的方程正确的是( )A .(20)(402)1250x x +-=B .(20)(40)1250x x +-=C .(202)(402)1250x x +-=D .(202)(40)1250x x +-=5.某市楼盘准备以每平方米12000元的均价对外销售,由于近期国务院有关房地产的新政策出台后购房者持币观望.为了加快资金回笼,房地产开发商对价格经过连续两次下调,决定以每平米10500元的均价开盘销售,问:平均每次下调的百分率是多少?设平均每次下调的百分率为x ,根据题意列方程为( )A .212000(1)10500x -=B .12000(1)10500x x -⋅=C .21200010500x =D .212000(1%)10500x -=6.一件产品原来每件的成本是1000元,由于连续两次降低成本,现在的成本是810元,则平均每次降低成本()A.8.5%B.9%C.9.5%D.10%7.某文化衫经过两次涨价,每件零售价由81元提高到100元.已知两次涨价的百分率都为x,根据题意,可得方程()A.81(1+x)2=100B.81(1﹣x)2=100C.81(1+x%)2=100D.81(1+2x)=1008.某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元,每提高一个档次,每件利润增加2元,但一天产量减少5件.若生产的产品一天的总利润为1120元,且同一天所生产的产品为同一档次,则该产品的质量档次是()A.6B.8C.10D.12二、填空题9.某电子产品每件原价为800,首次降价的百分率为x,第二次降价的百分率为2x,那么经过两次降价后每件的价格为________元(用x的代数式表示).10.某西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低________元.11.商场服装柜在销售中发现:某童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装共盈利1200元,设每件童装降价x元,那么应满足的方程是________.12.某水果批发商场经销一种水果,如果每千克盈利6元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.现该商场要保证每天盈利1600元,同时又要顾客得到实惠,那么每千克应涨价_____元.13.某个体户以50 000元的资金经商,在第一年中获得一定的利润,已知这50 000元资金加上第一年的利润在一起在第二年的共得利润2 612.50元,而且第二年的利润比第一年利润多0.5%,设第一年的利润率为x,根据题意列出的方程为____________.14.某商品的利润为每件10元时,能卖500件,已知该商品每涨价1元,其销售量就要减少10件,为了赚8000元利润,设涨价为x元,应列方程为_____.15.某玩具商店出售一种“小猪佩奇”玩具,平均每天可销售50个,每个盈利36元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,若每个玩具降价1元,平均每天可多售出5个,商店要想平均每天销售这种玩具盈利2400元,则每个玩具应降价多少元?设每个玩具应降价x元,可列方程为_____.16.某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查表明:这种台灯的售价每上涨2元,其销售量就将减少10个.为了实现平均每月10000元的销售利润.设这种台灯的售价为x元,则可列方程________.三、解答题17.商店销售某种商品,每件进货价为50元,当销售价为100元时,平均每天可售出20件,为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,调查发现,销售单价每降低一元,平均每天可多售出两件。
22.3 实际问题与二次函数(第3课时) 人教版数学九年级上册练习(含答案)
22.3实际问题与二次函数(第3课时)一、选择题(共4小题)1.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小腾同学画出了“鹊桥”函数y=|x2﹣2x﹣3|的图象(如图所示),并写出下列四个结论:其中正确结论的个数是( )①图象与坐标轴的交点为(﹣1,0)和(3,0);②当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大;③当x=1时,函数有最大值是4;④函数与直线y=m有4个公共点,则m的取值范围是0<m<4.A.1B.2C.3D.42.小明周末前往游乐园游玩,他乘坐了摩天轮,摩天轮转一圈,他离地面高度y(m)与旋转时x(s)之间的关系可以近似地用y=﹣x2+bx+c来刻画.如图记录了该摩天轮旋转时x(s)和离地面高度y(m)的三组数据,根据上述函数模型和数据,可以推断出:当小明乘坐此摩天轮离地面最高时,需要的时间为( )A.172s B.175s C.180s D.186s3.如图,有一个截面边缘为抛物线型的水泥门洞.门洞内的地面宽度为8m,两侧距地面4m 高处各有一盏灯,两灯间的水平距离为6m,则这个门洞内部顶端离地面的距离为( )A.B.8C.D.7.54.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2﹣2x﹣3|的图象(如图所示),并写出下列四个结论:其中正确结论的个数是( )①图象具有对称性,对称轴是直线x=1;②当﹣1<x<1或x>3时,函数值随x值的增大而增大;③当x=﹣1或x=3时,函数的最小值是0;④当x=1时,函数的最大值是4.A.4B.3C.2D.1二、填空题(共2小题)5.如图是足球守门员在O处开出一记手抛高球后足球在空中运动到落地的过程,它是一条经过A,M,C三点的抛物线.其中A点离地面1.4米,M点是足球运动过程中的最高点,离地面3.2米,离守门员的水平距离为6米,点C是球落地时的第一点.那么足球第一次落地点C距守门员的水平距离为 米.6.如图,单孔拱桥的形状近似抛物线形,建立如图所示的平面直角坐标系,在正常水位时,水面宽度OA为12m,拱桥的最高点B到水面OA的距离为6m.则抛物线的解析式为 .三、解答题(共1小题)7.某园林专业户计划投资种植树木及花卉,根据市场调查与预测,图1是种植树木的利润y 与投资量x成正比例关系,图2是种植花卉的利润y与投资量x成二次函数关系.(注:利润与投资量的单位:万元)(1)分别根据投资种植树木及花卉的图象l1.l2,求利润y关于投资量x的函数关系式;(2)如果这位专业户共投入10万元资金种树木和花卉,其中投入x(x>0)万元种植花卉,那么他至少获得多少利润?(3)在(2)的基础上要保证获利在20万元以上,该园林专业户应怎样投资?参考答案一、选择题(共4小题)1.解:①∵(﹣1,0),(3,0)和(0,3)坐标都满足函数y=|x2﹣2x﹣3|,∴①是错误的;②根据函数的图象和性质,发现当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大,因此②是正确的;③由图象可知,当x<﹣1时,函数值随x的减小而增大,当x>3时,函数值随x的增大而增大,均存在大于顶点坐标的函数值,故当x=1时的函数值4并非最大值,故③错误.④由图象可知,函数与直线y=m有4个公共点,则m的取值范围是0<m<4,故④正确.故选:B.2.解:把(160,60),(190,67.5)分别代入y=﹣x2+bx+c得,,解得,∴抛物线的解析式为y=﹣x2+9x﹣700,∴该铅球飞行到最高点时,需要的时间为﹣=180(s),故选:C.3.解:建立如图所示的平面直角坐标系,由题意可知各点的坐标,A(﹣4,0),B(4,0),D(﹣3,4).设抛物线的解析式为:y=ax2+c(a≠0),把B(4,0),D(﹣3,4)代入,得:,解得:,∴该抛物线的解析式为:y=﹣x2+,则C(0,).∴这个门洞内部顶端离地面的距离为m,故选:A.4.解:观察图象可知,图象具有对称性,对称轴是直线x=﹣=1,故①正确;令|x2﹣2x﹣3|=0可得x2﹣2x﹣3=0,∴(x+1)(x﹣3)=0,∴x1=﹣1,x2=3,∴(﹣1,0)和(3,0)是函数图象与x轴的交点坐标,又对称轴是直线x=1,∴当﹣1<x<1或x>3时,函数值y随x值的增大而增大,故②正确;由图象可知(﹣1,0)和(3,0)是函数图象的最低点,则当x=﹣1或x=3时,函数最小值是0,故③正确;由图象可知,当x<﹣1时,函数值随x的减小而增大,当x>3时,函数值随x的增大而增大,均存在大于顶点坐标的函数值,故当x=1时的函数值4并非最大值,故④错误.综上,只有④错误.故选:B.二、填空题(共2小题)5.解:设抛物线的解析式为y=a(x﹣6)2+3.2,将点A(0,1.4)代入,得:36a+3.2=1.4,解得:a=﹣0.05,则抛物线的解析式为y=﹣0.05(x﹣6)2+3.2;当y=0时,﹣0.05(x﹣6)2+3.2=0,解得:x1=﹣2(舍),x2=14,所以足球第一次落地点C距守门员14米.故答案为:14.6.解:∵水面宽度OA为12m,拱桥的最高点B到水面OA的距离为6m.∴B(6,6),A(12,0),设抛物线的解析式为y=a(x﹣6)2+6,∴y=a(12﹣6)2+6,∴0=a•62+6,解得a=﹣,∴抛物线的解析式为y=﹣(x﹣6)2+6;故答案为:y=﹣(x﹣6)2+6.三、解答题(共1小题)7.解:(1)设l1:y=kx,∵函数y=kx的图象过(1,2),∴2=k⋅1,k=2,故l1中y与x的函数关系式是y=2x(x≥0),∵该抛物线的顶点是原点,∴设l2:y=ax2,由图2,函数y=ax2的图象过(2,2),∴2=a⋅22,解得:a=,故l2中y与x的函数关系式是:y=x2(x≥0);(2)因为投入x万元(0<x≤10)种植花卉,则投入(10﹣x)万元种植树木,,∵a=>0,0<x≤10,∴当x=2时,w的最小值是18,他至少获得18万元的利润.(3)根据题意,当w=20时,,解得:x=0(不合题意舍),x=4,∴至少获得20万元利润,则x=4,∵在2≤x≤10的范图内w随x的增大而增大,∴w>20,只需要x>4,所以保证获利在20万元以上,该园林专业户应投资花卉种植超过4万元.。
人教版九年级上册数学22 3实际问题与二次函数 同步练习(含答案)
人教版九年级上册数学22.3实际问题与二次函数同步练习一、单选题1.共享单车为市民出行带来了方便,某单车公司第一个月投放a 辆单车,计划第三个月投放单车y 辆,若第二个月的增长率是x ,第三个月的增长率是第二个月的两倍,那么y 与x 的函数关系是 ( ) A .()()112y a x x =++ B .()21y a x =+ C .()221y a x =+ D .22y x a =+2.某商场经营一种小商品,已知进购时单价是20元.调查发现:当销售单价是30元时,月销售量为240件,而销售单价每上涨1元,月销售量就减少10件,但每件商品的售价不能高于40元.当月销售利润最大时,销售单价为( )A .35元B .36元C .37元D .36或37元 3.抛物线22y x x =+-与x 轴交于A 、B 两点,A 点在B 点左侧,与y 轴交于点C .若点E 在x 轴上,点P 在抛物线上,且以A 、C 、E 、P 为顶点的四边形是平行四边形,则符合条件的点E 有( )A .1个B .2个C .3个D .4个 4.飞机着陆后滑行的距离s (单位:m )与滑行的时间t (单位:s )的函数解析式是260 1.5s t t =-,那么飞机着陆后滑行多长时间才能停下来.( ) A .10s B .20s C .30s D .40s 5.某市为解决当地教育“大班额”问题,计划用三年时间完成对相关学校的扩建,2019年市政府已投资5亿人民币,若每年投资的增长率相同,预计2021年投资额达到y 亿元人民币,设每年投资的增长率为x ,则可得( )A .5(12)y x =+B .25y x =C .()251y x =+D .()251y x =+ 6.如图,若被击打的小球飞行高度h (单位:)m 与飞行时间t (单位:)s 具有函数关系为2205h t t =-,则小球从飞出到落地的所用时间为( )A.3s B.4s C.5s D.6s7.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m.若水面再下降1.5m,水面宽度为()m.8.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千,拴绳子的地方距地面都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为()二、填空题面宽为12m,这时水面离桥拱顶端的高度是____________________.10.半径是2的圆,如果半径增加x 时,增加的面积s 与x 之间的关系表达式为__________. 11.如图,用一段长为10米的篱笆围成一个一边靠墙(墙的长度不限)的长方形菜园ABCD ,设AB 为x 米,则菜园的面积y (平方米)与x (米)的关系式为______.(不要求写出自变量x 的取值范围)12.一个涵洞成抛物线形,它的截面如图,当水面宽AB =1.6米时,涵洞顶点与水面的距离为2.4m .涵洞所在抛物线的解析式是_____________.13.足球被从地面上踢起,它距地面的高度h (m )可用公式h =-4.9t 2+19.6t 来表示,其中t (s )表示足球被踢出后经过的时间,则球在______s 后落地.14.从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度y (单位:m )与它距离喷头的水平距离x (单位:m )之间满足函数关系式2241y x x =-++,喷出水珠的最大高度是______m .15.某商场经营一种小商品,已知购进时单价是20元.调查发现:当销售单价是30元时,月销售量为280件.而销售单价每上涨1元,月销售量就减少10件,当月销售利润最大时,销售单价为___________元.16.如图,一座悬索桥的桥面OA与主悬钢索MN之间用垂直钢索连接,主悬钢索是抛物线形状,两端到桥面的距离OM与AN相等.小强骑自行车从桥的一端0沿直线匀速穿过桥面到达另一端A,当他行驶18秒时和28秒时所在地方的主悬钢索的高度相同,那么他通过整个桥面OA共需_____________秒.三、解答题17.某大型超市购进一款热销的消毒洗衣液,由于原材料价格上涨,今年每瓶洗衣液的进价比去年每瓶洗衣液的进价上涨4元,今年用1440元购进这款洗衣液的数量与去年用1200元购进这款洗衣液的数量相同.当每瓶洗衣液的现售价为36元时,每周可卖出600瓶,为了能薄利多销.该超市决定降价销售,经市场调查发现,这种洗衣液的售价每降价1元,每周的销量可增加100瓶,规定这种消毒洗衣液每瓶的售价不低于进价.(1)求今年这款消毒洗衣液每瓶进价是多少元;(2)当这款消毒洗衣液每瓶的售价定为多少元时,这款洗衣液每周的销售利润最大?最大利润是多少元?18.某学校为美化学校环境,打造绿色校园,决定用篱笆围成一个一面靠墙(墙足够长)的矩形花园,用一道篱笆把花园分为A,B两块(如图所示),花园里种满牡丹和芍药,学校已定购篱笆120米.(1)设计一个使花园面积最大的方案,并求出其最大面积;(2)在花园面积最大的条件下,A ,B 两块内分别种植牡丹和芍药,每平方米种植2株,知牡丹每株售价25元,芍药每株售价15元,学校计划购买费用不超过5万元,求最多可以购买多少株牡丹?19.国庆假期期间,某酒店有20个房间供游客居住,当每个房间每天的定价为100元时,房间恰好全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,酒店需对每个房间每天支出20元的各种费用,设每间房间定价x 元()100x ≥.(1)每天有游客居住的房间数为__________(用含x 的代数式表示);(2)当每间房价为多少元时,酒店当天的利润为1800元?(3)当每间房价定为多少元时,酒店的利润m (元)最大,最大利润是多少?20.如图是某隧道截面示意图,它是由抛物线和长方形构成,已知12OA =米,4OB =米,抛物线顶点D 到地面OA 的垂直距离为10米,以OA 所在直线为x 轴,以OB 所在直线为y 轴建立直角坐标系,(1)求抛物线的解析式;(2)一辆特殊货运汽车载着一个长方体集装箱,集装箱宽为4米,最高处与地面距离为6米,隧道内设双向行车道,双向行车道间隔距离为2米,交通部门规定,车载货物顶部距离隧道壁的竖直距离不少于0.5米,才能安全B通行,问这辆特殊货车能否安全通过隧道?参考答案:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22.3 实际问题与二次函数学校:___________姓名:___________班级:___________一.选择题(共15小题)1.一台机器原价50万元,如果每年的折旧率是x,两年后这台机器的价格为y万元,则y 与x的函数关系式为()A.y=50(1﹣x)2B.y=50(1﹣2x)C.y=50﹣x2D.y=50(1+x)22.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为,由此可知铅球能到达的最大高度()A.10m B.3m C.4m D.2m或10m3.国家决定对某药品价格分两次降价,若设平均每次降价的百分率为x,该药品原价为18元,降价后的价格为y元,则y与x的函数关系式为()A.y=36(1﹣x) B.y=36(1+x)C.y=18(1﹣x)2D.y=18(1+x2)4.如图,一边靠墙(墙有足够长),其它三边用12m长的篱笆围成一个矩形(ABCD)花园,这个花园的最大面积是()A.16m2B.12 m2C.18 m2D.以上都不对5.在比赛中,某次羽毛球的运动路线可以看作是抛物线y=﹣x2+bx+c的一部分(如图),其中出球点B离地面O点的距离是1m,球落地点A到O点的距离是4m,那么这条抛物线的解析式是()A.y=﹣x2+ x+1 B.y=﹣x2+ x﹣1C.y=﹣x2﹣x+1 D.y=﹣x2﹣x﹣16.某农产品市场经销一种销售成本为40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨一元,月销售量就减少10千克.设销售单价为每千克x元,月销售利润为y元,则y与x的函数关系式为()A.y=(x﹣40)(500﹣10x)B.y=(x﹣40)(10x﹣500)C.y=(x﹣40)[500﹣10(x﹣50)] D.y=(x﹣40)[500﹣10(50﹣x)]7.某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y(件)与销售单价x(元/件)之间的函数关系式为y=﹣4x+440,要获得最大利润,该商品的售价应定为()A.60元B.70元C.80元D.90元8.如图,图中是抛物线形拱桥,当拱顶离水面2m时水面宽4m.水面下降1m,水面宽度为()A.2m B.2m C. m D. m9.如图,排球运动员站在点O处练习发球,将球从D点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是()A.球不会过网B.球会过球网但不会出界C.球会过球网并会出界D.无法确定10.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x (m)之间的关系式是y=﹣x2+2x+3,则下列结论:(1)柱子OA的高度为3m;(2)喷出的水流距柱子1m处达到最大高度;(3)喷出的水流距水平面的最大高度是4m;(4)水池的半径至少要3m才能使喷出的水流不至于落在池外.其中正确的有()A.1个B.2个C.3个D.411.如图,抛物线m:y=ax2+b(a<0,b>0)与x轴于点A、B(点A在点B的左侧),与y 轴交于点C.将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为C1,与x轴的另一个交点为A1.若四边形AC1A1C为矩形,则a,b应满足的关系式为()A.ab=﹣2 B.ab=﹣3 C.ab=﹣4 D.ab=﹣512.如图所示是一个抛物线形桥拱的示意图,在所给出的平面直角坐标系中,当水位在AB 位置时,水面宽度为10m,此时水面到桥拱的距离是4m,则抛物线的函数关系式为()A.y=B.y=﹣C.y=﹣D.y=13.抛物线y=x2﹣2x﹣15,y=4x﹣23,交于A、B点(A在B的左侧),动点P从A点出发,先到达抛物线的对称轴上的某点E再到达x轴上的某点F,最后运动到点B.若使点P动的总路径最短,则点P运动的总路径的长为()A.10B.7C.5D.814.标枪飞行的路线是一条抛物线,不考虑空气阻力,标枪距离地面的高度h(单位:m)与标枪被掷出后经过的时间t(单位:s)之间的关系如下表:t 0 1 2 3 4 5 6 7 …h 0 8 14 18 20 20 18 14 …下列结论:①标枪距离地面的最大高度大于20m;②标枪飞行路线的对称轴是直线t=;③标枪被掷出9s时落地;④标枪被掷出1.5s时,距离地面的高度是11m,其中正确结论的个数是()A.1 B.2 C.3 D.415.小明以二次函数y=2x2﹣4x+8的图象为灵感为“2017北京房山国际葡萄酒大赛”设计了一款杯子,如图为杯子的设计稿,若AB=4,DE=3,则杯子的高CE为()A.14 B.11 C.6 D.3二.填空题(共8小题)16.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t ﹣.在飞机着陆滑行中,最后4s滑行的距离是m.17.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x)件,若使利润最大,则每件商品的售价应为元.18.如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB= m时,矩形土地ABCD的面积最大.19.用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长20m,当矩形的长、宽各取某个特定的值时,菜园的面积最大,这个最大面积是m2.20.某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为 1.8m,他在不弯腰的情况下,在棚内的横向活动范围是m.21.某商店购进一批单价为8元的商品,如果按每件10元出售,那么每天可销售100件.经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件,为使每天所获销售利润最大,销售单价应定为元.22.某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为x(x>0),十二月份的快递件数为y万件,那么y关于x的函数解析式是.23.如图,隧道的截面由抛物线和长方形构成.长方形的长为12m,宽为5m,抛物线的最高点C离路面AA1的距离为8m,过AA1的中点O建立如图所示的直角坐标系.则该抛物线的函数表达式为三.解答题(共6小题)24.某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.25.绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x (kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?26.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.27.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.28.鹏鹏童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销,该店决定降价销售,经市场调查反应:每降价1元,每星期可多卖10件.已知该款童装每件成本30元.设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式(不求自变量的取值范围);(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少?(3)①当每件童装售价定为多少元时,该店一星期可获得3910元的利润?②若该店每星期想要获得不低于3910元的利润,则每星期至少要销售该款童装多少件?29.某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.参考答案与试题解析一.选择题(共15小题)1.解:二年后的价格是为:50×(1﹣x)×(1﹣x)=60(1﹣x)2,则函数解析式是:y=50(1﹣x)2.故选:A.2.解:∵铅球行进高度y(m)与水平距离x(m)之间的关系为y=﹣(x﹣4)2+3,∴抛物线的顶点坐标为(4,3),∴铅球能到达的最大高度为3m,故选:B.3.解:原价为18,第一次降价后的价格是18×(1﹣x);第二次降价是在第一次降价后的价格的基础上降价的为:18×(1﹣x)×(1﹣x)=18(1﹣x)2.则函数解析式是:y=18(1﹣x)2.故选:C.4.解:设与墙垂直的矩形的边长为xm,则这个花园的面积是:S=x(12﹣2x)=﹣2x2+12x=﹣2(x﹣3)2+18,∴当x=3时,S取得最大值,此时S=18,故选:C.5.解:∵出球点B离地面O点的距离是1m,球落地点A到O点的距离是4m,∴B点的坐标为:(0,1),A点坐标为(4,0),将两点代入解析式得:,解得:,∴这条抛物线的解析式是:y=﹣x2+x+1.故选:A.6.解:设销售单价为每千克x元,月销售利润为y元,则y与x的函数关系式为:y=(x﹣40)[500﹣10(x﹣50)].故选:C.7.解:设销售该商品每月所获总利润为w,则w=(x﹣50)(﹣4x+440)=﹣4x2+640x﹣22000=﹣4(x﹣80)2+3600,∴当x=80时,w取得最大值,最大值为3600,即售价为80元/件时,销售该商品所获利润最大,故选:C.8.解:建立如图所示直角坐标系:可设这条抛物线为y=ax2,把点(2,﹣2)代入,得﹣2=a×22,解得:a=﹣,∴y=﹣x2,当y=﹣3时,﹣x2=﹣3.解得:x=±∴水面下降1m,水面宽度为2m.故选:A.9.解:(1)∵球与O点的水平距离为6m时,达到最高2.6m,∴抛物线为y=a(x﹣6)2+2.6过点,∵抛物线y=a(x﹣6)2+2.6过点(0,2),∴2=a(0﹣6)2+2.6,解得:a=﹣,故y与x的关系式为:y=﹣(x﹣6)2+2.6,当x=9时,y=﹣(x﹣6)2+2.6=2.45>2.43,所以球能过球网;当y=0时,﹣(x﹣6)2+2.6=0,解得:x1=6+2>18,x2=6﹣2(舍去)故会出界.10.解:∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴当x=0时,y=3,即OA=3m,故(1)正确,当x=1时,y取得最大值,此时y=4,故(2)和(3)正确,当y=0时,x=3或x=﹣1(舍去),故(4)正确,故选:D.11.解:令x=0,得:y=b.∴C(0,b).令y=0,得:ax2+b=0,∴x=±,∴A(﹣,0),B(,0),∴AB=2,BC==.要使平行四边形AC1A1C是矩形,必须满足AB=BC,∴2=.∴4×(﹣)=b2﹣,∴ab=﹣3.∴a,b应满足关系式ab=﹣3.故选:B.12.解:依题意设抛物线解析式y=ax2,把B(5,﹣4)代入解析式,得﹣4=a×52,解得a=﹣,所以y=﹣x2.故选:C.13.∵抛物线y=x2﹣2x﹣15与直线y=4x﹣23交于A、B两点,∴x2﹣2x﹣15=4x﹣23,解得:x=2或x=4,当x=2时,y=4x﹣23=﹣15,当x=4时,y=4x﹣23=﹣7,∴点A的坐标为(2,﹣15),点B的坐标为(4,﹣7),∵抛物线对称轴方程为:x=﹣作点A关于抛物线的对称轴x=1的对称点A′,作点B关于x轴的对称点B′,连接A′B′,则直线A′B′与对称轴(直线x=1)的交点是E,与x轴的交点是F,∴BF=B′F,AE=A′E,∴点P运动的最短总路径是AE+EF+FB=A′E+EF+FB′=A′B′,延长BB′,AA′相交于C,∴A′C=4,B′C=7+15=22,∴A′B′==10.∴点P运动的总路径的长为10.故选:A.14.解:由题意,抛物线的解析式为h=at(t﹣9),把(1,8)代入可得a=﹣1,∴h=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m,故①正确,∴抛物线的对称轴t=4.5,故②正确,∵t=9时,h=0,∴足球被踢出9s时落地,故③正确,∵t=1.5时,h=11.25,故④错误.∴正确的有①②③,故选:C.15.解:∵y=2x2﹣4x+8=2(x﹣1)2+6,∴抛物线顶点D的坐标为(1,6),∵AB=4,∴B点的横坐标为x=3,把x=3代入y=2x2﹣4x+8,得到y=14,∴CD=14﹣6=8,∴CE=CD+DE=8+3=11.故选:B.二.填空题(共8小题)16.解:当y取得最大值时,飞机停下来,则y=60t﹣1.5t2=﹣1.5(t﹣20)2+600,此时t=20,飞机着陆后滑行600米才能停下来.因此t的取值范围是0≤t≤20;即当t=16时,y=576,所以600﹣576=24(米)故答案是:24.17.解:设利润为w元,则w=(x﹣20)(30﹣x)=﹣(x﹣25)2+25,∵20≤x≤30,∴当x=25时,二次函数有最大值25,故答案是:25.18.解:(1)设AB=xm,则BC=(900﹣3x),由题意可得,S=AB×BC=x×(900﹣3x)=﹣(x2﹣300x)=﹣(x﹣150)2+33750 ∴当x=150时,S取得最大值,此时,S=33750,∴AB=150m,故答案为:150.19.解:设矩形的长为xm,则宽为m,菜园的面积S=x=﹣x2+15x=﹣(x﹣15)2+,(0<x≤20)∵当x<15时,S随x的增大而增大,∴当x=15时,S最大值=m2,故答案为:.20.解:设抛物线的解析式为:y=ax2+b,由图得知:点(0,2.4),(3,0)在抛物线上,∴,解得:,∴抛物线的解析式为:y=﹣x2+2.4,∵菜农的身高为1.8m,即y=1.8,则1.8=﹣x2+2.4,解得:x=(负值舍去)故他在不弯腰的情况下,横向活动范围是:3米,故答案为:3.21.解:设销售单价为x元,利润为w元,w=(x﹣8)[100﹣(x﹣10)×10]=﹣10x2+280x﹣1600=﹣10(x﹣14)2+360,∴当x=14时,w取得最大值,此时w=360,故答案为:14.22.解:根据题意得:y=10(x+1)2,故答案为:y=10(x+1)223.解:由题意可得,点C的坐标为(0,8),点B的坐标为(﹣6,5),设此抛物线的解析式为y=ax2+8,5=a×(﹣6)2+8,解得,a=,∴此抛物线的解析式为y=x2+8,故答案为:y=x2+8.三.解答题(共6小题)24.解:(1)由题意得:200﹣10×(52﹣50)=200﹣20=180(件),故答案为:180;(2)由题意得:y=(x﹣40)[200﹣10(x﹣50)]=﹣10x2+1100x﹣28000=﹣10(x﹣55)2+2250∴每件销售价为55元时,获得最大利润;最大利润为2250元.25.解:(1)设y1与x之间的函数关系式为y1=kx+b,∵经过点(0,168)与(180,60),∴,解得:,∴产品销售价y1(元)与产量x(kg)之间的函数关系式为y1=﹣x+168(0≤x≤180);(2)由题意,可得当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,∵直线y2=mx+n经过点(50,70)与(130,54),∴,解得,∴当50<x<130时,y2=﹣x+80.综上所述,生产成本y2(元)与产量x(kg)之间的函数关系式为y2=;(3)设产量为xkg时,获得的利润为W元,①当0≤x≤50时,W=x(﹣x+168﹣70)=﹣(x﹣)2+,∴当x=50时,W的值最大,最大值为3400;②当50<x<130时,W=x[(﹣x+168)﹣(﹣x+80)]=﹣(x﹣110)2+4840,∴当x=110时,W的值最大,最大值为4840;③当130≤x≤180时,W=x(﹣x+168﹣54)=﹣(x﹣95)2+5415,∴当x=130时,W的值最大,最大值为4680.因此当该产品产量为110kg时,获得的利润最大,最大值为4840元.26.解:(1)由题意得:,解得:.故y与x之间的函数关系式为:y=﹣10x+700,(2)由题意,得﹣10x+700≥240,解得x≤46,设利润为w=(x﹣30)y=(x﹣30)(﹣10x+700),w=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,∵﹣10<0,∴x<50时,w随x的增大而增大,∴x=46时,w大=﹣10(46﹣50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w﹣150=﹣10x2+1000x﹣21000﹣150=3600,﹣10(x﹣50)2=﹣250,x﹣50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.27.解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣,抛物线的函数表达式为y=﹣x2+x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣t2+t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;∴当G、H中有一点落在线段AD或BC上时,直线GH不可能将矩形的面积平分,当点G、H分别落在线段AB、DC上时,直线GH过点P必平分矩形ABCD的面积,∵AB∥CD,∴线段OD平移后得到的线段GH,∴线段OD的中点Q平移后的对应点是P,在△OBD中,PQ是中位线,∴PQ=OB=4,所以抛物线向右平移的距离是4个单位.28.解:(1)y=100+10(60﹣x)=﹣10x+700.(2)设每星期利润为W元,W=(x﹣30)(﹣10x+700)=﹣10(x﹣50)2+4000.∴x=50时,W最大值=4000.∴每件售价定为50元时,每星期的销售利润最大,最大利润4000元.(3)①由题意:﹣10(x﹣50)2+4000=3910解得:x=53或47,∴当每件童装售价定为53元或47元时,该店一星期可获得3910元的利润.②由题意::﹣10(x﹣50)2+4000≥3910,解得:47≤x≤53,∵y=100+10(60﹣x)=﹣10x+700.170≤y≤230,∴每星期至少要销售该款童装170件.29.解:(1)设水柱所在抛物线(第一象限部分)的函数表达式为y=a(x﹣3)2+5(a≠0),将(8,0)代入y=a(x﹣3)2+5,得:25a+5=0,解得:a=﹣,∴水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣3)2+5(0<x<8).(2)当y=1.8时,有﹣(x﹣3)2+5=1.8,解得:x1=﹣1,x2=7,∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内.(3)当x=0时,y=﹣(x﹣3)2+5=.设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+bx+,∵该函数图象过点(16,0),∴0=﹣×162+16b+,解得:b=3,∴改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+3x+=﹣(x﹣)2+.∴扩建改造后喷水池水柱的最大高度为米.。