三角形边角关系

合集下载

三角形边角关系-第3讲的角与边学

三角形边角关系-第3讲的角与边学

第三讲三角形的角与边一、基础知识本讲重点介绍三角形的边、角不等关系,包括同一个三角形中的边、角不等关系以及不同三角形中的边、角不等关系.1.边与边的关系(1)在同一个三角形中两边之和大于第三边,两边之差小于第三边(三边满足什么条件时,三角形必然存在?);(2)勾股定理:即在直角三角形中两条直角边的平方和等于斜边的平方.2.角与角的关系(1)三角形的内角和为180︒;(2)直角三角形中两锐角互余;(3)三角形的一个外角大于任何一个与它不相邻的内角;(4)三角形的一个外角等于与它不相邻的两内角之和.3.边和角的关系(1)在同一个三角形中,大边对大角,大角对大边;(2)在两个三角形中,如果有两条边对应相等,那么夹角大的所对的边也大;反之也成立,即在两个三角形中,如果有两条边对应相等,那么第三边大,则所对的角也大.4.不等式变形时常用的性质(1)若a>b,c>d,则a+c>b+d;(2)若a>b,c>d,则a-d>b-c;(3)若a>b,c>0,则ac>bc;若a>b,c<0,则ac<bc;(4)若a>b>0,则11 a b <;(5)总量大于任何一个部分量.5.三角形中的不等关系根源:(1)两点之间线段最短;(2)垂线段最短.二、例题第一部分边的问题例1. (★★希望杯训练题)将三边长为a,b,c的三角形记作(a,b,c).写出周长为20,各边长为正整数的所有不同的三角形.例2. (★★★ 2000年希望杯竞赛题)一个三角形的三条边的长分别是a,b,c(a,b,c都是质数),且a+b+c=16,则这个三角形是()A.直角三角形B.等腰三角形C.等边三角形D.直角三角形或等腰三角形例3. (★★★1998年江苏省竞赛题)在不等边三角形中,如果有一条边长等于另两条边长的平均值,那么最大边上的高与最小边上的高的比值的取值范围是( )A.31 4k<<B.113k<<C.12k<< D.112k<<例4. (★★★1997年北京市竞赛题)等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm 两部分,则这个等腰三角形的底边的长为( )A.17cmB.5cmC.17cm或5cmD.无法确定例5. (★★★)如图3-1,已知P为三角形ABC内一点,求证:1()2AB AC BC PA PB PC AB AC BC++<++<++.例6. (★★★第三十二届美国邀请赛试题)不等边三角形ABC的两条高长度为4和12,若第三条高的长也是整数,试求它的长.例7. (★★★)若三角形ABC 的三边长是a,b,c,且满足:444224442244422,,a b c b c b c a a c c a b a b =+-=+-=+-,则ABC ∆是( )A.钝角三角形B.直角三角形C.等腰直角三角形D.等边三角形第二部分 角的问题例8. (★★)如图3-4,在三角形ABC 中,042A ∠= ,ABC ∠和ACB ∠的三等分线分别交于D,E,求BDC ∠的度数.例9. (★★★1999年重庆市竞赛题)三角形的三个内角分别为,,αβγ,且αβγ≥≥,2αγ=.则β的取值范围是( )A.003645β≤≤B.004560β≤≤C.006090β≤≤D.004572β≤≤例10. (★★★)如图3-7,延长四边形ABCD 对边AD,BC 交于F ;DC,AB 交于E,若AED ∠,AFB ∠平分线交于O,求证:1()2EOF EAF BCD ∠=∠+∠第三部分边角综合24,例11. (★★★ 2000年江苏省竞赛题)在锐角三角形ABC中,AB>BC>AC,且最大内角比最小内角大0 的取值范围是( ).则A例12. (★★★★)如图3-2,在三角形ABC中,AB>AC>BC,P为三角形内任意一点,连结AP并延长交BC于点D.求证:(1)AB+AC>AD+BC;(2)AB+AC>AP+BP+CP.例13. (★★★★)如图,在三角形ABC中,角A=90度,AD垂直于BC,求证:AB+AC<AD+BC例14.(★★★★)如图,在三角形ABC中,AC>AB,在CA上截取CD=AB,E,F分别是BC,AD的中点,连接EF 并延长交BA的延长线于G,求证:AF=AG例15. (★★★★★)设三角形的三个内角度数分别为A,B,C,相应的对边长分别为a,b,c,求证:60 aA bB cCa b c︒++≥++三、练习题1. (★★)设m,n,p均为自然数,满足m n p≤≤,且m+n+p=15,试问以m,n,p为边长的三角形有多少个?2.(★★ 1998年山东省竞赛题) 已知三角形三边的长均为整数,其中某两条边长之差为5,若此三角形周长为奇数,则第三边长的最小值为( )** B.7 C.6 D.43.(★★★)一个三角形的周长为偶数,其中的两条边长分别为4和2003,则满足上述条件的三角形的个数为( )A.1个B.3个C.5个D.7个4.(★ 2002,云南省中考题)两根木棒的长分别是7cm和10cm,要选择第三根木棒,将它们钉成一个三角形,若第三根木棒的长是acm,则a的取值范围是( ).5. (★)ABC 的一个内角的大小是040,且A B ∠=∠,那么C ∠的外角的大小是( )A.140︒B.80︒或100︒C.100︒或140︒D.80︒或140︒6. (★★★)如图3-5,在ABC ∆中,90ACB ︒∠=,D,E 为AB 上的两点,若AE=AC,45DCE ︒∠=则图中与BC 等长的线段是( ) A.CD B.BD C.CE D.AE-BE7. (★★★)如图3-6,在ABC ∆中,B ∠的平分线与C ∠的外角平分线相交于D,40D ︒∠=.则A ∠等于( )A.50︒B. 60︒C. 70︒D.80︒8. (★★ 第12届希望杯竞赛题)如图3-9,127.5︒∠=,295︒∠=,338.5︒∠=求4∠的大小.9. (★★★第5届希望杯竞赛题)如图3-8,BE 是ABD ∠的平分线,CF 是ACD ∠的平分线,BE 与CF 交于G,若140BDC ︒∠=,110BGC ︒∠=,求A ∠的度数.10. (★★★★)如图,三角形ABC 中,AB=BC=CA,AE=CD,AD,BE 相交于P,BQ 垂直于AD 于Q ,求证:BP=2PQ课外小故事五枚金币有个叫阿巴格的人生活在内蒙古草原上.有一次,年少的阿巴格和他爸爸在草原上迷了路,阿巴格又累又怕,到最后快走不动了.爸爸就从兜里掏出5枚硬币,把一枚硬币埋在草地里,把其余4枚放在阿巴格的手上,说:“人生有5枚金币,童年、少年、青年、中年、老年各有一枚,你现在才用了一枚,就是埋在草地里的那一枚,你不能把5枚都扔在草原里,你要一点点地用,每一次都用出不同来,这样才不枉人生一世.今天我们一定要走出草原,你将来也一定要走出草原.世界很大,人活着,就要多走些地方,多看看,不要让你的金币没有用就扔掉.”在父亲的鼓励下,那天阿巴格走出了草原.长大后,阿巴格离开了家乡,成了一名优秀的船长.珍惜生命,就能走出挫折的沼泽.。

直角三角形的边角关系

直角三角形的边角关系

直角三角形的边角关系直角三角形是一种特殊的三角形,它的一个角是90度,另外两个角是锐角。

直角三角形的边角关系是指三条边和三个角之间的关系。

边角定义在直角三角形中,我们通常将底边称为底边,直角所对的边称为斜边,另外一个边称为高。

以直角三角形ABC为例,边AB为底边,边AC为高,边BC为斜边。

直角三角形中的两个锐角分别称为锐角A和锐角B。

锐角A位于底边AB的顶点A,锐角B位于直角C的顶点B。

边角关系直角三角形的边角关系非常重要,它们之间存在着多个重要的数学关系。

下面是直角三角形的边角关系的详细介绍:边与角的关系1. 底边与斜边的关系:根据勾股定理,底边的平方加上高的平方等于斜边的平方。

用公式表示为:AB² + AC² = BC²2. 斜边与锐角的关系:在直角三角形中,斜边与锐角的关系可以用三角函数来表示。

以锐角A为例,斜边BC与锐角A的正弦比等于底边AB 与斜边BC的比值,用公式表示为:sin(A) = AB / BC角与角的关系1. 直角和锐角的关系:直角是直角三角形的特殊角,它的度数为90度。

而锐角是小于90度的角。

2. 锐角之间的关系:直角三角形中的两个锐角之和等于90度。

用公式表示为:A +B = 90°边与角之间的关系1. 高与锐角的关系:直角三角形中的高与锐角之间存在正弦和余弦的关系。

以锐角A为例,高AC与锐角A的正弦比等于底边AB与斜边BC的比值,用公式表示为:sin(A) = AC / BC2. 底边与锐角的关系:直角三角形中的底边与锐角之间存在正切关系。

以锐角A 为例,底边AB与锐角A的正切比等于高AC与底边AB的比值,用公式表示为:tan(A) = AC / AB总结直角三角形的边角关系是数学中一种重要的关系,它涉及到边与角之间的联系。

通过掌握这些关系,我们可以在解决三角形相关问题时更加方便和高效。

一个直角三角形中,底边与斜边的关系可以由勾股定理给出,斜边与锐角之间的关系可以用正弦比来表示,高与锐角之间的关系可以用正弦比来表示,底边与锐角的关系可以用正切比来表示。

三角形中的边角关系

三角形中的边角关系

三角形中的边角关系知识点梳理一、 边1、根本概念〔三角形、边、 顶点的定义;三角形的符号表示〕2、按边对三角形的分类:≠⎧⎪⎨⎧⎨⎪⎩⎩不等边三角形三角形腰底等腰三角形等边三角形☆3、三边关系:〔1〕任意两边之和大于第三边 〔2〕任意两边之差小于第三边 验证:两条较短边之和与第三边的关系 二、角1、根本概念〔内角、外角〕2、按角对三角形的分类:⎧⎧⎪⎨⎩⎨⎪⎩锐角三角形斜三角形三角形钝角三角形直角三角形3、三角形的内角和〔1〕三角形三个内角和等于180°; 〔2)直角三角形的两个锐角互余; 〔3〕一个三角形最多3个锐角,最多1个钝角,最多1个直角,最少2个锐角。

三、线1、中线(1) 定义 〔2〕 重心 〔3〕中线是线段 〔4〕 表示方法 2、高线〔1〕定义 〔2〕垂心 (3〕高是线段,垂线是直线 〔4〕表示方法 〔5〕钝角三角形高的画法 3、角平分线〔1〕定义 (2)外心 〔3〕画法 〔4〕表示方法 四、方法技能归纳法在规律探索中的应用。

根底练习第1题-〔1〕 第1题-〔2〕 第1题-〔2〕1、〔1〕以AB 为边的三角形有______________;含∠ACB 的三角形有 ;在△BOC 中,OC 的对角是___________;∠OCB 的对边是___________.〔2〕图〔1〕中三角形的个数是____________;★图〔2〕中三角形的个数是____________。

2、三角形按角分类可以分为〔 〕A .锐角三角形、直角三角形、钝角三角形;B .等腰三角形、等边三角形、不等边三角形;C .直角三角形、等边直角三角形;D .以上答案都不正确3、一个等腰三角形的两边长分别是4和9,那么它的周长是___________________________4、假设三角形的三边长分别为3,4,x -1,那么x 的取值范围是_________________________5、有3cm,6cm,8cm,9cm 长的四条线段,任选其中的三条线段组成一个三角形,那么最多能组成_____个三角形6、,,a b c 是ABC 的三条边,且()()0a b c a b ++-=,那么ABC 是__________三角形7、以下说法正确的选项是_____________________〔1〕等边三角形是等腰三角形; 〔2〕三角形的两边之差大于第三边;〔3〕有两边相等的三角形一定是等腰三角形; 〔4〕一个钝角三角形一定不是等腰三角形。

三角形中的边角关系、命题与证明

三角形中的边角关系、命题与证明

高效学案4、三角形中的重要线段(1)三角形的角平分线:三角形的一个内角的平分线与它的对边相交,连接这个角的顶点和交点之间的线段.(2)三角形的中线:三角形中,连接一个顶点和它所对边的中点的线段叫做三角形的中线.(3)三角形的高:从三角形一个顶点向它的对边作一条垂线,三角形顶点和垂足之间的线段称三角形这条边上的高.三、经典例题【例1】以下列各组线段长为边,能组成三角形的是( )A .1cm ,2cm ,4cmB .8cm ,6cm ,4cmC .12cm ,5cm ,6cmD .2cm ,3cm ,6cm【变式1】两根木棒的长分别为7cm 和10cm ,要选择第三根棒,将它钉成一个三角形框架,那么第三根木棒长x cm 的范围是__________.【变式2】若a 、b 、c 是△ABC 的三边,化简c b a a c b c b a +--+--+--.【变式3】如图,已知P 是△ABC 内一点,连结AP ,PB ,PC .求证:PA+PB+PC >21(AB+AC+BC).【例2】等腰三角形的两边长分别为5 cm 和10 cm ,则此三角形的周长是( )A .15cmB .20cmC .25 cmD .20 cm 或25 cm【例3】已知△ABC 中:(1)∠A=20°,∠B ﹣∠C=40°,则∠B=______;(2)∠A=120°,2∠B+∠C=80°,则∠B=_______;(3)∠B=∠A+40°,∠C=∠B ﹣50°,则∠B=_______;(4)∠A :∠B :∠C=1:3:5,则∠B=_______.E DA 2 1 ABC 【变式】如图把△ABC 纸片沿DE 折叠,当点A 在四边形BCDE 的内部时,则∠A 与∠1、∠2之间有一种数量关系始终保持不变.请试着找出这个规律,你发现的规律是( )A.∠A=∠2+∠1B.2∠A=∠2+∠1C.3∠A=2∠1+∠2D.3∠A=2∠1+2∠2【例4】如图,α、β、γ分别是△ABC 的外角,且α:β:γ= 2:3:4,则α =__________.【变式1】如图,五角星ABCDE ,求E D C B A ∠+∠+∠+∠+∠的度数.【变式2】已知:如图1,线段AB 、CD 相交于点O ,连接AD 、CB ,我们把形如图1的图形称之为“8字形”.试解答下列问题:(1)在图1中,请直接写出∠A 、∠B 、∠C 、∠D 之间的数量关 ;(2)在图2中,若∠D=40°,∠B=36°,∠DAB 和∠BCD 的平分线AP 和CP 相交于点P ,并且与CD 、AB 分别相交于M 、N .利用(1)的结论,试求∠P 的度数;(3)如果图2中∠D 和∠B 为任意角时,其他条件不变,试问∠P 与∠D 、∠B 之间存在着怎样的数量关系?【例5】如图,∆ABC 中,AD 是BC 上的中线,BE 是∆ABD 中AD 边上的中线,若∆ABC 的面积是24,则∆ABE 的面积是________.【例6】如图,在△ABC 中,BE ⊥AC ,BC=5cm ,AC=8cm ,BE=3cm .(1)求△ABC 的面积;(2)画出△ABC 中的BC 边上的高AD ,并求出AD 的值.【例7】已知:如图AB//CD 直线EF 分别交AB 、CD 于点E 、F ,BEF ∠的平分线与DFE ∠的平分线相交于P ,求证 90=∠P .【变式】如图,∠MON=90°,点A ,B 分别在射线OM ,ON 上运动,BE 平分∠NBA ,BE 的反向延长线与∠BAO 的平分线交于点C .∠BAO=45°则∠C 的度数是( )A .30°B .45°C .55°D .60°【例8】如图,△ABC 中,∠B 和∠C 的平分线交于点O ,若∠A=70°,则∠BOC= 度.【变式】认真阅读下面关于三角形内外角平分线所夹的探究片段,完成所提出的问题.探究1:如图1,在△ABC 中,O 是∠ABC 与∠ACB 的平分线BO 和CO 的交点,试分析∠BOC 与∠A 有怎样的关系? 探究2:如图2中,O 是∠ABC 与外角∠ACD 的平分线BO 和CO 的交点,试分析∠BOC 与∠A 有怎样的关系? 探究3:如图3中,O 是外角∠DBC 与外角∠ECB 的平分线BO 和CO 的交点,则∠BOC 与∠A 有怎样的关系?四、方法归纳1、三角形的边的关系,只需验证:两个较短的边之和大于第三边即可.2、三角形的两边长分别为b a ,,则第三边长c 的取值范围是:b a c b a +<<-.3、三角形的几种“心”.(1)重心:三条中线的交点.(2)外心:三边垂直平分线的交点.(3)内心:三条内角平分线的交点.(4)垂心:三条高线的交点.五、课后作业【作业1】1.如图所示,共有_______个三角形,以AD 为一边的三角形有___________________,∠C 是△ADC 的________边的对角,AE 是△ABE 中∠_____的对边.2.一个三角形周长为27cm ,三边长为2:3:4,则最长边为______cm.3.已知在△ABC 中,5=a ,3=b ,那么第三边c 的取值范围是_____________.4.在△ABC 中,2∠A=3∠B=6∠C ,则△ABC 是________三角形.5.在△ABC 中,已知∠B -∠A=5°,∠C -∠B=20°,则∠A=_______.6.如图,在△ABC 中,∠ACB=90°,∠ABC=25°,CD ⊥AB 于D ,则∠ACD =_________.7.等腰三角形周长为14,其中一边长为3,则腰长为________.8.一个三角形有两条边相等,一边长为4cm ,另一边长为9cm ,那么这个三角形的周长是__________.9.在△ABC 中,∠B ,∠C 的平分线交与点O ,若∠BOC=132°,则∠A=________.10.如图,在△ABC 中,D 、E 分别是AB 、AC 边上的点,DE ∥BC ,∠ADE=30°,∠C=120°,则∠A 等于( )A.60°B.45°C.30°D.20°11.如果三角形的一个角等于其他两个角的差,那么这个三角形一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.不确定12.一个三角形的两边长分别为3和7,若第三边长为偶数,则第三边为( )A.4,6B.4,6,8C.6,8D.6,8,1013.能将三角形的面积分成相等的两部分的是( )A.三角形的角平分线B.三角形的中线C.三角形的高线D.以上都不对14.在△ABC 中,若∠A :∠B :∠C=1:2:3,则△ABC 是( )A.锐角三角形B.直角三角形C.钝角三角形D.正三角形15.如图,AD 、AF 分别是△ABC 的高和角平分线,已知∠B=36°,∠C=76°,求∠DAF 数.(提示:先证明∠DAF=21(∠C -∠B ))16.如图,已知I 为△ABC 的内角平分线的交点.求证:∠BIC=90°+21∠A.17.如图,在△ABC 中,∠B = 60°,∠C = 50°,AD 是∠BAC 的平分线,DE 平分∠ADC 交AC 于E ,求∠BDE 的度数.18.如图,在△ABC 中,∠B=∠C ,FD ⊥BC ,DE ⊥AB ,垂足分别为D 、E ,已知∠AFD=150°,求∠EDF 等于多少度?【作业2】1.如图,AD ,BE ,CF 是△ABC 的中线、高、角平分线.则:BD=___=21___;∠___=∠___=90°;∠___=∠___=21∠___. 2.如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,已知AB=6,BC=4,AD=5,则CE=______.3.如图,AD 、AE 分别是△ABC 的中线、高,且AB=5,AC=3,则△ABD 与△ACD 的周长的差是_________,△ACD 与△ABD 的面积关系为__________.第1题 第2题 第3题 第4题 第5题4.如图,△ABC 的周长是21cm ,AB=AC ,中线BD 分△ABC 为两个三角形,且△ABD 的周长比△BCD 的周长大6cm ,则AB= ,BC=_________.5.如图,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且2ABC cm 8=∆S ,则阴影部分的面积等于_________.6.在△ABC 中,若AB=5,AC=2,且三角形周长为偶数,则BC=________.7.△ABC 的三边长是a ,b ,c ,则c b a a c b c b a +++-----=________.第8题 第9题 第10题8.如图,在Rt △ABC 中,∠C=90°,点B 沿CB 所在直线远离C 点移动,下列说法不正确的是( )A.三角形面积随之增大B.∠CAB 的度数随之增大C.边AB 的长度随之增大D.BC 边上的高随之增大9.如图,在△ABC 中,∠B 、∠C 的平分线BE ,CD 相交于点F ,∠ABC=42°,∠A=60°,则∠BFC=( )A.118°B.119°C.120°D.121°10.如图,在△ABC 中,BO ,CO 分别平分∠ABC 和∠ACB ,则∠BOC 与∠A 的大小关系是( )A.∠BOC=2∠AB.∠BOC=90°+∠AC.∠BOC=90°+21∠A D.∠BOC=90°21-∠A11.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④∠BDC=∠BAC.其中正确的结论有()A.1个B.2个C.3个D.4个12.如图,在△ABC中,∠ABC与∠ACB的平分线相交于D,已知∠A=50°,求∠BDC的度数.13.如图,已知BD为∠ABC的平分线,CD为△ABC的外角∠ACE的平分线,CD与BD交于点D,试说明∠A=2∠D.14.如图,已知AB∥CD,EF与AB、CD分别相交于点E、F,∠BEF与∠EFD的平分线相交于点P,求证:EP⊥FP.15.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.16.已知:∠MON=40°,OE 平分∠MON ,点A 、B 、C 分别是射线OM 、OE 、ON 上的动点(A 、B 、C 不与点O 重合),连接AC 交射线OE 于点D .设∠OAC x =°.21(1)如图1,若AB ∥ON ,则①∠ABO 的度数是 ;②当∠BAD=∠ABD 时,=x ;当∠BAD=∠BDA 时,=x .(2)如图2,若AB ⊥OM ,则是否存在这样的x 的值,使得△ADB 中有两个相等的角?若存在,求出x 的值;若不存在,说明理由.第二节:命题与证明一、课堂导入有个学生请教爱因斯坦逻辑学有什么用。

三角形的边角关系.

三角形的边角关系.

三角形的三边关系1.三角形的概念不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.①三角形有三条边,三个内角,三个顶点.②组成三角形的线段叫做三角形的边;③相邻两边所组成的角叫做三角形的内角简称角;④相邻两边的公共端点是三角形的顶点,⑤三角形ABC 用符号表示为△ ABC ,⑥三角形ABC 的边AB 可用边AB 所对的角C的小写字母 c 表示,AC 可用b表示,BC 可用 a 表示.1:三条线段要不在同一直线上,且首尾顺次相接2:三角形是一个封闭的图形;3:△ ABC 是三角形ABC 的符号标记,单独的△没有意义例例 1 图中三角形的个数是( )A.8 B.9 C.10 D.112.三角形的三边关系三角形的任意两边之和大于第三边; 三角形的任意两边之差小于第三边.1:三边关系的依据是:两点之间线段是短2:判断三条线段能否构成三角形的方法:只要满足较小的两条线段之和大于第三条线段,便可构成三角形; 若不满足,则不能构成三角形.3:三角形第三边的取值范围是: 两边之差<第三边<两边之和例1 :已知四组线段的长分别如下,以各组线段为边,能组成三角形的是( )A.1,2,3 B.2,5,8 C.3,4,5 D.4,5,10例2:下列各组条件中,不能组成三角形的是( )A. a+1、a+2、a+3 (a>3)B. 3cm、8cm、10 cmC. 三条线段之比为1:2:3D. 3a、5a、2a+1 (a>1)例3.△ ABC的三边长分别为4、9、x,⑴ 求x 的取值范围;⑵ 求△ ABC 周长的取值范围;⑶ 当x 为偶数时,求x ;⑷ 当△ ABC 的周长为偶数时,求x ;⑸ 若△ ABC 为等腰三角形,求x .课堂练习1.已知长度为2cm,3cm,4cm,5cm 的四条线段,能组成多少个不等边三角形?2.已知等腰三角形的周长是14 cm ,底边与腰的比为 3 : 2 ,求各边的长.3.在ABC中,AB 9,BC 2,并且AC 为奇数,那么ABC的周长是多少?4.如图, D 是ABC内任意一点,BD 延长线与AC 交于 E 点,连结DC.求证:AB AC BD DC .3.三角形的高、中线、角平分线(1 ) 三角形的高:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.注意:①三角形的高是线段;②锐角三角形三条高全在三角形的内部;直角三角形有两条高是直角边,另一条在内部;钝角三角形有两条高在三角形外,另一条在内部。

《锐角三角函数》直角三角形的边角关系

《锐角三角函数》直角三角形的边角关系

锐角三角函数的定义与三角形边的关系
总结词
锐角三角函数的定义与三角形边的关系是密切相关的。锐角三角函数是描述直角三角形中锐角与边之 间的比例关系的函数。
详细描述
锐角三角函数包括正弦函数、余弦函数和正切函数,它们分别表示直角三角形中锐角与边的比例关系 。这些函数可以帮助我们解决与直角三角形相关的问题,例如找到未知边的长度或确定三角形的形状 。
建筑结构设计
建筑结构设计中,利用直 角三角形的边角关系可以 提高建筑物的稳定性和抗 震性能。
工程测量
工程测量中,利用直角三 角形的边角关系可以确定 地形的形状和大小。
航海中如何利用直角三角形定位
航道导航
航海中,利用直角三角形可以计算船只的位置和 航向,以确保航行安全。
海洋资源调查
为了确定海洋资源的分布和位置,利用直角三角 形进行海洋资源调查。
三角形的面积公式
总结词
三角形的面积公式是计算三角形面积的 基本方法,它基于三角形的底和高来计 算面积。
VS
详细描述
三角形的面积公式是:面积 = (底 × 高) / 2。这个公式可以帮助我们计算任何三角 形的面积,只要我们知道三角形的底和高 。这个公式在几何学中非常有用,因为它 可以帮助我们解决与三角形面积相关的问 题。
性质
正切函数随着角度的增加而增加,没有极限值。
02
直角三角形的边角关系
勾股定理
总结词
勾股定理是直角三角形中一个非常重要的边角关系,它表明直角三角形的两条直角边的平方和等于斜边的平方。
详细描述
勾股定理是几何学中一个基本的定理,它告诉我们,如果一个三角形是直角三角形,那么它的两条直角边的平方 和等于斜边的平方。这个定理在解直角三角形的问题中非常有用,因为它可以帮助我们找到未知边的长度。

三角形中的边角关系

三角形中的边角关系

三角形基础知识说明:△ABC中,角A,B,C的对边分别为a,b,c,p为三角形周长的一半,r为内切圆半径,R为外接圆半径,)h a,h b,h c分别为a,b,c边上的高S△ABC表示面积。

1.三角形的定义:三条线段首尾顺次连结所组成的图形,其中各条线段叫做三角形的边,每两条边组成的角叫做三角形的内角(简称三角形的角).2.三角形的元素:三角形的边、角、中线、高线、角平分线、周长、面积等都叫三角形的元素.3.确定三角形的条件:在三角形的元素中,边和角叫做三角形的基本元素,其中角确定三角形的形状(定形),边确定三角形的大小(定量),三角形具有稳定性.确定三角形的条件是:已知三角形的三边(SSS)或两边及其夹角(SAS)或两角及其公共边(ASA)或两角与其中一角的对边(AAS),这也是判断两个三角形全等的主要方法,全等三角形的对应元素都相等.只知三角形的三角大小,不能确定三角形,具有相同大小的三个角的两个三角形是相似关系.4.三角形的“线”与“心”:(1)高线、垂心.(2)中线、重心及其的性质、坐标公式、向量公式及其物理意义、中线长定理.(3)中垂线、外接圆、外心.(4)内角平分线、内切圆、内心、内角平分线定理.(5)外角平分线、旁切圆、旁心、外角平分线定理.(6)中位线、中位线定理、中点三角形及其性质.5.三角形的分类:(1)按边的相等情况分:三边不等的三角形、等腰三角形、等边三角形。

(2)按最大角的情况分:锐角三角形、直角三角形、钝角三角形。

6.等腰三角形的判定与性质、四线合一7.等边三角形的判定与性质、四心合一(中心)8.三角形元素之间的关系:(1)角与角的关系:①内角和定理、②外角定理③角的性质:范围、关系.④最大角、最小角.⑤锐角三角形中任两角的和(2)边与边的关系:两边之和大于第三边,两边之差小于第三边.(“三胞胎”)(3)边与角的关系:(“三胞胎”)①对边与对角的大小关系:在三角形中,大边所对的角也较大,相等两边所对的角也相等,反之也真.②正弦定理:在一个三角形中,各边和它所对角的正弦之比都相等,都等于该三角形外接圆的直径.③余弦定理:在一个三角形中,任何一边的平方都等于其他两边的平方和减去这两边与它们夹角的余弦的乘积的二倍.④射影定理:在一个三角形中,任何两边在第三边上的射影之和都等于第三边.(4)直角三角形的性质:①勾股定理②两个锐角的关系③锐角的三角函数(边与角的联系).④含30º角的直角三角形的性质⑤斜边上的中线长等于斜边长的一半.9.解三角形:根据三角形中已知的元素求其它未知的元素,叫解三角形.10.三角形面积公式:(1)ABC S ∆111222a b c ah bh ch === 111sin sin sin 222ab C ac B bc A === 2sin sin 2sin a B C A =CB A c BC A b sin 2sin sin sin 2sin sin 22== 22sin sin sin R A B C = (sin sin sin )Rr A B C =++4abc R =pr =. (2)若1122(),()AB x ,y AC x ,y ==,则ABC S ∆1212||x x y y =-.(3)若,AB AC ==c b ,则ABC S ∆=.1.正弦定理:(2sin sin sin R Cc B b A a ===R 为△ABC 外接圆半径)。

三角形的边角性质

三角形的边角性质

三角形的边角性质甲内容提要三角形边角性质主要的有:1. 边与边的关系是:任意两边和大于第三边,任意两边差小于第三边,反过来要使三条线段能组成一个三角形,必须任意两条线段的和都大于第三条线段,即最长边必须小于其他两边和。

用式子表示如下:a,b,c 是△ABC 的边长b a c b a b a c a c b c b a +<-⇔⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>+>+>+⇔<推广到任意多边形:任意一边都小于其他各边的和2. 角与角的关系是:三角形三个内角和等于180 ;任意一个外角等于和它不相邻的两个内角和。

推广到任意多边形:四边形内角和=2×180 , 五边形内角和=3×180六边形内角和=4×180 n 边形内角和=(n -2) 1803. 边与角的关系① 在一个三角形中,等边对等角,等角对等边;大边对大角,大角对大边。

② 在直角三角形中,△ABC 中∠C=Rt ∠222c b a =+⇔(勾股定理及逆定理) △ABC 中⇔⎭⎬⎫=∠∠=∠ 30A Rt C a :b :c=1:3:2 △ABC 中⇔⎭⎬⎫=∠∠=∠ 45A Rt C a :b :c=1:1:2 乙例题例1.要使三条线段3a -1,4a+1,12-a 能组成一个三角形求a 的取值范围。

(1988年泉州市初二数学双基赛题)解:根据三角形任意两边和大于第三边,得不等式组 ⎪⎩⎪⎨⎧+>-+-->-++->++-141312131214121413a a a a a a a a a 解得⎪⎩⎪⎨⎧<->>51135.1a a ∴1.5<a<5答当1.5<a<5时,三条线段3a -1,4a+1,12-a 能组成一个三角形例2.如图A B C DAB=x ,AC=y, AD=z 若以AB 和CD 分别绕着点B 和点C 旋转,使点A 和D 重合组成三角形,下列不等式哪些必须满足?① x<2z , ②y<x+2z , ③y<2z 解由已知AB=x, BC=y -x, CD=z -x 要使AB ,BC ,CD 组成三角形,必须满足下列不等式组:⎪⎩⎪⎨⎧>-+-->-+->-+x y z x y x y y z x y z x y x 即⎪⎩⎪⎨⎧>>+>x z y z x z y 2222∴⎪⎪⎪⎩⎪⎪⎪⎨⎧<+<>222z x z x y z y 答y<x+2z 和y<2z 必须满足。

直角三角形边角关系知识点

直角三角形边角关系知识点

直角三角形边角关系知识点
1.两个锐角的和为90度:
在直角三角形中,除了一个直角为90度外,另外两个锐角的和也是90度。

这是因为三角形的内角和为180度,所以剩余的两个角相加等于180度减去直角的度数,即90度。

2.勾股定理:
勾股定理是直角三角形边角关系中的一个重要定理,它表示直角三角形的两条直角边的平方和等于斜边的平方。

具体表达式为:a²+b²=c²
其中,a和b是直角三角形的两条直角边的长度,c是直角三角形的斜边长度。

勾股定理可以用来求解直角三角形中的边长,或者验证一个三边长组成的三角形是否为直角三角形。

3.边角关系的应用:
-求解未知边长:通过已知两边的长度,可以利用勾股定理求解第三条边的长度。

例如,已知直角三角形的一个锐角为30度,斜边的长度为10,求解另外两条边的长度。

-应用于测量:直角三角形的边角关系在测量中广泛应用,尤其是在实际工程测量中。

通过利用已知边长和角度,可以计算出其他未知边长和角度,以帮助进行准确的测量。

-平面几何证明定理:直角三角形的边角关系也可以用于证明平面几
何中的一些定理。

例如,利用勾股定理可以证明勾股数列的性质,或者证
明两条线段垂直等。

总结:
直角三角形的边角关系是直角三角形中两个锐角的和为90度,以及
勾股定理成立。

这些边角关系在数学中有广泛的应用,包括求解未知边长、测量、定理证明等。

熟练掌握直角三角形的边角关系,对于解决相关几何
问题非常重要。

任意三角形边角关系公式

任意三角形边角关系公式

任意三角形边角关系公式在我们的数学世界里,三角形可是个超级重要的角色,特别是涉及到任意三角形的边角关系公式,那更是打开数学大门的一把关键钥匙。

先来说说正弦定理吧。

对于任意一个三角形,它的三条边 a、b、c和它们所对应的角 A、B、C 之间有着这样的关系:a/sinA = b/sinB =c/sinC 。

这个公式就像是一个神奇的魔法咒语,能帮助我们解决好多三角形的问题。

记得有一次,我在课堂上给学生们讲这个定理的时候,有个调皮的小家伙举起手问我:“老师,这公式有啥用啊?”我笑了笑,决定给他举个例子。

我在黑板上画了一个三角形,标上了三条边的长度和两个角的度数,然后问他们:“如果我们只知道其中两条边和一个角,能不能求出其他的边和角呢?”同学们都皱起了眉头,开始思考。

我接着说:“咱们就用这个正弦定理来试试。

”我一步一步地带着他们运用公式进行计算,当最终得出答案的时候,那个调皮的小家伙眼睛都亮了,大声说道:“哇,原来这么神奇!”看着他们恍然大悟的表情,我心里别提多有成就感了。

再说说余弦定理。

它的表达式是 a² = b² + c² - 2bc·cosA ,b² = a² + c²- 2ac·cosB ,c² = a² + b² - 2ab·cosC 。

这几个公式看起来有点复杂,但其实用起来可顺手啦。

有一回,学校组织数学兴趣小组活动,我们一起去测量校园里一个三角形花坛的边长和角度。

同学们拿着尺子、量角器,忙得不亦乐乎。

可是到了计算的时候,大家都有点犯愁。

这时候,我提醒他们可以试试余弦定理。

于是,大家纷纷动手,按照公式认真计算起来。

最后,当我们算出结果,发现和实际测量的误差很小的时候,同学们都兴奋地欢呼起来。

在实际生活中,三角形的边角关系公式也大有用处呢。

比如说,工程师在设计桥梁的时候,需要计算三角形结构的稳定性;建筑师在设计房屋的时候,也会用到这些公式来确保结构的合理性。

三角形边角计算公式

三角形边角计算公式

三角形边角计算公式咱们在数学的世界里,三角形那可是个“常客”,今天就来好好聊聊三角形边角的计算公式。

说起三角形,我想起之前有一次去公园散步,看到几个小朋友在玩拼图游戏,其中就有三角形的拼图。

他们拼得可认真了,还争论着哪个三角形更大,哪个更小。

这让我意识到,对于三角形的理解和计算,从小朋友开始就充满了好奇和探索。

三角形的边角关系中,最基本的公式就是正弦定理和余弦定理啦。

正弦定理是这样的:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径。

用公式表示就是 a/sinA = b/sinB =c/sinC = 2R (其中 R 是三角形外接圆的半径)。

这个定理在解决三角形中的边和角的关系问题时,那可真是“大显身手”。

比如,已知一个三角形的两个角和一条边,要求另外两条边的长度。

这时候,正弦定理就能派上用场。

假设咱们有个三角形 ABC ,已知角A 是 30°,角B 是 60°,边 a 的长度是 5 。

那咱们可以先通过三角形内角和 180°求出角 C 是 90°。

然后根据正弦定理,b/sinB = a/sinA ,即 b / sin60° = 5 / sin30°,通过计算就能得出 b 的长度。

余弦定理也很重要哦!对于任意三角形,有 a² = b² + c² - 2bc·cosA ,b² = a² + c² - 2ac·cosB ,c² = a² + b² - 2ab·cosC 。

举个例子来说,如果知道一个三角形的三条边的长度,想求其中一个角的大小,余弦定理就能帮忙。

比如说有个三角形的三边分别是 a = 3 ,b = 4 ,c = 5 ,要求角 A 的大小。

那咱们就用余弦定理,cosA = (b²+ c² - a²) / (2bc) ,代入数值就能算出 cosA 的值,然后再通过反三角函数就能得出角 A 的度数。

直角三角形的边角关系 (2)

直角三角形的边角关系 (2)

直角三角形的边角关系
在直角三角形中,有三个角,其中一个是直角(90度角),其他两个角为锐角(小于90度)或钝角(大于90度)。

同时,有三条边,其中一条边与直角相对,为斜边,另外
两条边为直角的两条边。

边角关系如下:
1. 斜边(斜边对应的边)是直角三角形中最长的边。

2. 对于一个锐角三角形,直角的两条边与锐角的两条边的
关系为:直角的两条边中,离锐角较近的那条边较长;直
角的两条边中,离锐角较远的那条边较短。

3. 对于一个钝角三角形,直角的两条边与钝角的两条边的关系为:直角的两条边中,离钝角较近的那条边较短;直角的两条边中,离钝角较远的那条边较长。

总结起来,直角三角形中,直角的两条边的长度与其对应的角的大小有关系:离直角较近的那个角对应的边较长,离直角较远的那个角对应的边较短。

而斜边(斜边对应的边)是直角三角形中最长的边。

三角形的边角关系-课件

三角形的边角关系-课件

三条边AB、BC、CA还能用什么方式来表示?
A
b
一般,我们规定:三角形的边可用它对应角的相
c
应小写字母表示。
例如:边AB记做c 边BC记做a, 边CA记做b
B
a
C
(1) (4)
⑵ (3)
(5) (6)
不等边三角形:
三条边互不相等的三角形

等腰三角形:






图1
只有两条边相等的三角形

(按边)
练习题
1、任何三条线段都能组成一个三角形
2、下列四组线段中那些可以组成三角形。
(1)3cm 4cm 5cm (可以)
(2)1cm 2cm 3cm (不可以)
(3)13cm 12cm 15cm (可以)
(4)3cm 4cm 5cm (不可以)
3、已知等腰三角形的两边长分别为8cm,3cm,
则这三角形的ቤተ መጻሕፍቲ ባይዱ长为 ( B )
(3)若将上述边长变为2cm,5cm 则该三角形周长为多少?
解解::若腰因长为为5cm2,周+长C2=5<+55+2,=所12cm以,2,2,5不 能组成三角形,则 腰长为5,周长
解:若腰长为2cm,周长C=2+2+5=9cm
C=5+5+2=12
因为2+2<5,所以,2,2,5不能组成三角形
下列四组线段中哪些可以组成三角形。 (1)3cm 4cm 5cm (可以) (2)1cm 2cm 3cm (不可以) (3)13cm 12cm 15c(m可以) (4)3cm 4cm 8cm (不可以)
已知三角形三边长为3,5,a-2求 a的取值范围?

初一几何三角形的边角关系

初一几何三角形的边角关系

初一几何——三角形的边角关系(一)【学习目标】1.根据三角形、多边形内角和定理计算较复杂图形中的相关角度。

2.充分利用三角形三边关系解决相关问题。

3.学会并掌握双垂直图形。

【知识库】1、三角形的边:三角形三边定理:三角形两边之和大于第三边即:△ABC中,a+b>c,b+c>a,c+a>b(两点之间线段最短)由上式可变形得到:a>c-b,b>a-c,c>b-a即有:三角形的两边之差小于第三边2、高:由三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高。

3、中线:连接三角形的顶点和它对边的中点的线段,称为三角形的中线【规律探索】(北京市竞赛题)如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是().A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)变式:想一想,如果当点A落在四边形BCDE外部时,∠A与∠1、∠2之间又有什么数量关系呢?试画出图形并说明。

【题型精讲】重难点一:三角形的面积。

例一:如图,△ACB中,∠ACB=90°,∠1=∠B.若AC=8,BC=6,AB=10,则CD 的长为.例二:如图,等腰三角形ABC中,两腰AB=AC,点P在底边BC上任意一点,求证:点P到两腰的距离之和等于等腰三角形腰上的高。

(要求画出草图再求证)拓展延伸:已知等边△ABC和点P,设点P到△ABC三边的AB、AC、BC的距离分别是h1,h2,h3,△ABC的高为h,请你探索以下问题:(1)若点P在一边BC上(图1),此时h3=0,问h1、h2与h之间有怎样的数量关系?请说明理由;(2)若当点P在△ABC内(图2),此时h1、h2、h3与h之间有怎样的数量关系?请说明理由;(3)若点P在△ABC外(图3),此时h1、h2、h3与h之间有怎样的数量关系?请说明理由重难点二:三角形的三边关系例三:已知三角形三边分别为2,a-1,4,那么a的取值范围是( )A.1<a<5B.2<a<6C.3<a<7D.4<a<6例四:已知△ABC的周长是12,三边为a、b、c,若b是最大边,确定b的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形中的边角关系、命题与证明检测题一、选择题(每小题3分,共30分)1.(2015·福建泉州)已知△ABC 中,AB =6,BC =4,那么边AC 的长可能是下列哪个值( )A.11B.5C.2D.12. 等腰三角形的两边长分别为5 cm 和10 cm ,则此三角形的周长是( )A .15 cmB .20 cmC .25 cmD .20 cm 或25 cm3. 命题:① 邻补角互补;② 对顶角相等;③ 同旁内角互补;④ 两点之间线段最短; ⑤直线都相等.其中真命题有( )A. 1个B. 2个C. 3个D. 4个4.已知△ABC 中,∠ABC 和∠ACB 的平分线交于点O ,则∠BOC 一定( )A.小于直角B.等于直角C.大于直角D.不能确定5.(2015·福建漳州中考)下列命题中,是假命题的是( )A.对顶角相等B.同旁内角互补C.两点确定一条直线D.角平分线上的点到这个角的两边的距离相等6. 对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是( )A .∠1=50°,∠2=40°B .∠1=50°,∠2=50°C .∠1=∠2=45°D .∠1=40°,∠2=40°7. 不一定在三角形内部的线段是( )A.三角形的角平分线B.三角形的中线C.三角形的高D.以上皆不对8. 如图,A ,B ,C ,D ,E ,F 是平面上的6个点,则∠A +∠B +∠C +∠D +∠E +∠F 的度数是( )A. 180°B.360°C.540°D.720°9. 下面关于基本事实和定理的联系说法不正确的是( )A .基本事实和定理都是真命题B .基本事实就是定理,定理也是基本事实C .基本事实和定理都可以作为推理论证的依据D .基本事实的正确性不需证明,定理的正确性需证明10.(2015·山东滨州)在△ABC 中,∠A ∶∠B ∶∠C =3∶4∶5,则∠C 等于( )A.45°B.60°C.75°D.90°二、填空题(每小题3分,共24分)11.(2015·四川南充中考)如图,点D 在△ABC 边BC 的延长线上, CE 平分∠ACD ,∠A =80°,∠B =40°,则∠ACE 的大小是_____度.第11题图12.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2= 度.13.“两条直线被第三条直线所截,同位角相等”的条件是 ,第12题图第8题图结论是 .14.已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为 .15.设为△ABC 的三边长,则 . 16.如图所示,AB =29,BC =19,AD =20,CD =16,若AC =,则的取值范围为 .17.如图所示,在△ABC 中,∠ABC = ∠ACB ,∠A = 40°,P 是△ABC 内一点,且∠1 = ∠2,则∠BPC =________.18.“直角三角形有两个角是锐角”这个命题的逆命题是 ,它是一个 命题.三、解答题(共46分)19.(6分) 下列句子是命题吗?若是,把它改写成“如果……那么……”的形式,并写出它的逆命题,同时判断原命题和逆命题的真假.(1)一个角的补角比这个角的余角大多少度?(2)垂线段最短,对吗?(3)等角的补角相等.(4)两条直线相交只有一个交点.(5)同旁内角互补.(6)邻补角的角平分线互相垂直.20.(6分)如图所示,在△ABC 中,AB =AC ,AC 上的中线把三角形的周长分为24 cm 和30 cm 的两个部分,求三角形各边的长.BA C D 第16题图 21P CB A 第17题图第20题图 第21题图21.(6分)如图,已知在△ABC中,∠B与∠C的平分线交于点P.(1)当∠A=70°时,求∠BPC的度数;(2)当∠A=112°时,求∠BPC的度数;(3)当∠A= 时,求∠BPC的度数.22.(6分)已知一个三角形有两边长均为,第三边长为,若该三角形的边长都为整数,试判断此三角形的形状.23.(6分)如图所示,武汉有三个车站A、B、C成三角形,一辆公共汽车从B站前往到C站.(1)当汽车运动到点D时,刚好BD=CD,连接线段AD,AD这条线段是什么线段?这样的线段在△ABC中有几条呢?此时有面积相等的三角形吗?(2)汽车继续向前运动,当运动到点E时,发现∠BAE=∠CAE,那么AE这条线段是什么线段呢?在△ABC中,这样的线段又有几条呢?(3)汽车继续向前运动,当运动到点F时,发现∠AFB=∠AFC=90°,则AF是什么线段?这样的线段在△ABC中有几条?第23题图第24题图24.(8分)已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.25.(8分)规定,满足(1)各边互不相等且均为整数,(2)最短边上的高与最长边上的高的比值为整数k,这样的三角形称为比高三角形,其中k叫做比高系数.根据规定解答下列问题:(1)求周长为13的比高系数k的值;(2)写出一个只有4个比高系数的比高三角形的周长.第13章 三角形中的边角关系、命题与证明检测题参考答案1.B 解析:根据三角形的三边关系,得64<AC <6+4,即2<AC <10.所以边AC 的长可能是5.2.C 解析:因为三角形中任何两边的和大于第三边,所以腰长只能是10 cm ,所以此三角形的周长是10+10+5=25(cm ).故选C.3.C 解析:①②④是真命题;对于③,只有两条平行直线被第三条直线截得的同旁内角才互补;对于⑤,直线不能测量长度,所以也不存在两条直线相等的说法,故选C.4.C 解析:因为在△ABC 中,∠ABC +∠ACB <180°,所以所以∠BOC >90°.故选C.5.B 解析:选项B 错误,应为两直线平行,同旁内角互补;其余选项都正确.6.C 解析:当∠1=∠2=45°,∠1+∠2也等于90°.故选C.7. C 解析:因为三角形的中线、角平分线都在三角形的内部,而钝角三角形的高有的在三角形的外部,所以答案选C .8. B 解析:三角形的外角和为360°. 9. B 解析:根据基本事实和定理的定义,可知A ,C ,D 是正确的,B 是错误的.故选B .10. C 解析:∵ ∠A ∶∠B ∶∠C =3∶4∶5,所以∠C =180°×=180°=75°. 即∠C 等于75°.11.60 解析:∵ ACD ∠是△ABC 的一个外角,∴ 8040120ACD A B ∠=∠+∠=︒+︒=︒,∵ CE 平分∠ACD , ∴ 111206022ACE ACD ∠=∠=⨯︒=︒. 12.270 解析:根据题意可知∠1+∠2=180°+180°-90°=360°-90°=270°.13.两条直线被第三条直线所截 同位角相等14.120°或20° 解析:设两个角分别是,4,①当是底角时,根据三角形的内角和定理,得=180°,解得=30°,4=120°,即底角为30°,顶角为120°; ②当是顶角时,则=180°,解得 =20°,从而得到顶角为20°,底角为80°.所以该三角形的顶角为120°或20°.15. 解析:因为为△ABC 的三边长, 所以,, 所以原式=16.10<<36 解析:在△ABC 中,AB -BC <AC <AB +BC ,所以10<<48;在△ADC 中,AD -DC <AC <AD +DC ,所以4<<36.所以10<<36.17.110° 解析:因为∠A =40°,∠ABC = ∠ACB ,所以∠ABC = ∠ACB=(180°-40°)=70°.又因为∠1=∠2,∠1+∠PCB=70°,所以∠2+∠PCB=70°,所以∠BPC=180°-70°=110°.18.有两个角是锐角的三角形是直角三角形假解析:“直角三角形有两个角是锐角”这个命题的逆命题是“有两个角是锐角的三角形是直角三角形”,假设三角形一个角是30°,一个角是45°,有两个角是锐角,但这个三角形不是直角三角形.故是假命题.19.分析:根据命题的定义先判断出哪些是命题,再把命题的题设写在“如果”后面,结论写在“那么”后面.再将题设与结论互换写出它的逆命题.解:对一件事情做出判断的句子是命题,因为(1)(2)是问句,所以(1)(2)不是命题,其余4个都是命题.(3)如果两个角相等,那么它们的补角相等,真命题;逆命题:如果两个角的补角相等,那么这两个角相等,真命题.(4)如果两条直线相交,那么它们只有一个交点,真命题;逆命题:如果两条直线只有一个交点,那么这两条直线相交,真命题.(5)如果两个角是同旁内角,那么它们互补,假命题;逆命题:如果两个角互补,那么这两个角是同旁内角,假命题.(6)如果两条射线是邻补角的角平分线,那么它们互相垂直,真命题;逆命题:如果两条射线垂直,那么这两条射线是邻补角的角平分线,假命题.20.分析:因为BD是中线,所以AD=DC,造成所分两部分不等的原因就在于腰与底的不等,故应分情况讨论.解:设AB=AC=2,则AD=CD=.(1)当AB+AD=30,BC+CD=24时,有2=30,∴=10,2 =20,BC=24-10=14,三边分别为20 cm,20 cm,14 cm.(2)当AB+AD=24,BC+CD=30时,有=24,∴=8,,BC=30-8=22,三边分别为16 cm,16 cm,22 cm.21.解:(1)∵ BP和CP分别是∠B与∠C的平分线,∴∠1=∠2,∠3=∠4.∴∠2+∠4=(180°-∠A)=90°-∠A,∴∠BPC =90°+∠A.∴当∠A=70°时,∠BPC =90°+35°=125°.(2)当∠A=112°时,∠BPC=90°+56°=146°.(3)当∠A=α时,∠BPC=90°+ α.22.分析:已知三角形的三边长,根据三角形的三边关系,列出不等式,再求解.解:根据三角形的三边关系,得<<,0<<6-,0<<.因为3﹣是正整数,所以=1.所以三角形的三边长分别是2,2,2.因此,该三角形是等边三角形.23.分析:(1)由于BD=CD,则点D是BC的中点,AD是中线,三角形的中线把三角形分成两个面积相等的三角形;(2)由于∠BAE=∠CAE,所以AE是三角形的角平分线;(3)由于∠AFB=∠AFC=90°,则AF是三角形的高线.解:(1)AD是△ABC中BC边上的中线,△ABC中有三条中线.此时△ABD与△ADC的面积相等.(2)AE是△ABC中∠BAC的平分线,△ABC中角平分线有三条.(3)AF是△ABC中BC边上的高线,△ABC中有三条高线.24.分析:灵活运用垂直的定义,注意由垂直可得90°角,由90°角可得垂直,结合平行线的判定和性质,只要证得∠ADC=90°,即可得CD⊥AB.证明:∵DG⊥BC,AC⊥BC(已知),∴∠DGB=∠ACB=90°(垂直定义),∴DG∥AC(同位角相等,两直线平行).∴∠2=∠ACD(两直线平行,内错角相等).∵∠1=∠2(已知),∴∠1=∠ACD(等量代换),∴EF∥CD(同位角相等,两直线平行).∴∠AEF=∠ADC(两直线平行,同位角相等).∵EF⊥AB(已知),∴∠AEF=90°(垂直定义),∴∠ADC=90°(等量代换).∴CD⊥AB(垂直定义).25.分析:(1)根据定义结合三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,进行分析;(2)根据比高三角形的知识点结合三角形三边关系的知识点,进行判断只有四个比高系数的三角形的周长.解:(1)根据定义和三角形的三边关系,知此三角形的三边是2,5,6或3,4,6,则k=3或2.(2)如周长为37的三角形,只有四个比高系数,当比高系数为2时,这个三角形三边分别为9,10,18,当比高系数为3时,这个三角形三边分别为6,13,18,当比高系数为6时,这个三角形三边长分别为3,16,18,当比高系数为9时,这个三角形三边分别为2,17,18.。

相关文档
最新文档