沪科版数学八年级数学上册综合测试卷(含答案)

合集下载

沪科版数学八年级数学上册综合测试卷含答案

沪科版数学八年级数学上册综合测试卷含答案

八年级数学第一学期综合测试卷10440 分)小题,每小题一、选择题(本题共分,满分1aA(2a12a)a )+、已知的值是…………………………………(是整数,点在第二象限,则+,A1 B0 C1 D2 ..-..2A2mn5mB2n1mnymn )(轴对称,+则)和点(、-,-+的值为…………如果点、)(-关于,3n=1 Dm= C1n=3 m=5 m=3 58Am=n= Bn= ,-.,--..,,-.-3x )、下列函数中,自变量的取值范围选取错误的是………………………………………………(2B y=2xAx ..取全体实数中,xx1的所有实数≠-取中,Cxx2 的所有实数取中,≥.Dxx3 的所有实数取.中,≥-45Ct1所(件)关于时间、幸福村办工厂,今年前个月生产某种产品的总量(月)的函数图象如图)示,则该厂对这种产品来说………………………………………………………………………(A1345 两月每月生产总量逐月减少月每月生产总量逐月增加,月至、.B13453 月持平.,月至两月每月生产量与月每月生产总量逐月增加,C1345 两月停止生产.月至、月每月生产总量逐月增加,D1345 两月均停止生产月每月生产总量不变,、.月至5y=axby=abxabab0 ))图象是……(≠是常数,且,(与正比例函数+、下图中表示一次函数.AB..CD..63812aa )-(,则、设三角形三边之长分别为,的取值范围为……………………………………,a>2D5a<2<a<5 2 5<a<B 36<a<A C或-..--.--.-77ADEFADADBFCE。

的中线,,,延长线上的点,且分别是,连结、如图和,是ABC△DF?DE CEBFABDACDBFCEBDFCDE。

其中正确;②△∥和△≌△面积相等;③下列说法:①;④△=)的有( A. 1 B. 2 C. 3 D. 4 个个个个8AD=AEBE=CDADB=AEC=100BAE=708,,下列结论错误的是………………,°,如图、°,???)(A. ABEACDB. ABDACEC. DAE=40D. C=30 °≌△°∠△∠△≌△9 )、下列语句是命题点是………………………………………………………………………………(A B 、多么希望国际金融危机能早日结束啊、我真希望我们国家今年不要再发生自然灾害了C DH1N1 ”流感吗、你知道如何预防“、钓鱼岛自古就是我国领土不容许别国霸占BC,BD10 10为折痕,则的度数为………(、将一张长方形纸片按如图)所示的方式折叠,CBD∠ A. 60 B. 75 C. 90 D. 95 °°°°4520 分)二、填空题(本题共小题,每小题分,满分11ykxb11x<0y 。

沪科版八年级数学上册试题 期末综合测试卷(含解析)

沪科版八年级数学上册试题 期末综合测试卷(含解析)

期末综合测试卷一.选择题(共10小题,满分30分,每小题3分)1.在平面直角坐标系中,将点P(3,2)向右平移2个单位长度,再向下平移2个单位长度所得到的点坐标为()A.(1,0)B.(1,4)C.(5,4)D.(5,0)2.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),这个容器的形状是图中的( )A.B.C.D.3.如图,在△ABC中,已知点D,E,F分别为BC,AD,EC的中点,且S=12cm2,则阴影ΔABC部分面积S=( )cm2.A.1B.2C.3D.44.如图,顺次连接同一平面内A,B,C,D四点,已知∠A=40°,∠C=20°,∠ADC=120°,若∠ABC的平分线BE经过点D,则∠ABE的度数为()A.25°B.30°C.35°D.40°5.如图,点P是∠AOB内部一点,点P′,P″分别是点P关于OA,OB的对称点,且P′P″=8cm,则△PMN的周长为()A.5cm B.6cm C.7cm D.8cm6.如图,在△ABC中,AD平分∠BAC,AD⊥BD于点D,DE∥AC交AB于点E,若AB=8,则DE 的长度是()A.6B.2C.3D.47.一辆货车从A地开往B地,一辆小汽车从B地开往A地.同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),s与t 之间的函数关系如图所示.下列说法中正确的有( )①A、B两地相距120千米;②出发1小时,货车与小汽车相遇③出发1.5小时,小汽车比货车多行驶了60千米;④小汽车的速度是货车速度的2倍.A .1个B .2个C .3个D .4个8.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右、向上、向右、向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…,第n 次移动到A n ,则△O A 3A 2022的面积是( )A .504m 2B .10092m 2C .505m 2D .10112m 29.在平面直角坐标系xOy 中,点A (0,2),B (a ,0),C (m ,n ),其中m >a ,a <1,n >0,若△ABC 是等腰直角三角形,且AB =BC ,则m 的取值范围是( )A .0<m <2B .2<m <3C .m <3D .m >310.已知:如图,在△ABC ,△ADE 中,∠BAC =∠DAE =90° ,AB =AC ,AD=AE ,点C 、D 、E 三点在同一直线上,连接BD ,BE ;以下四个结论:①BD=CE ;②∠ACE +∠DBC =45°;③BD ⊥CE ;④∠BAE +∠DAC =180° ;其中结论正确的个数有( )A .1B .2C .3D .4二.填空题(共6小题,满分18分,每小题3分)11.已知AB ∥x 轴,A 的坐标为(3,-2),并且AB=4,则点B 的坐标是____________.12.函数y =(k −1)x −3(k 是常数,k ≠1)的图象上有两个点A (x 1,y 1),B (x 2,y 2),且(x 1−x 2)(y 1−y 2)<0,则k 的取值范围为______.13.在平面直角坐标系中,点A (2,m )在直线y =−2x +1上,点A 关于y 轴对称的点B 恰好落在直线y =kx +1上,则k 的值为___.14.如图,ΔABC 中,∠ACB =90°,AC =6,BC =8.点P 从A 点出发沿A →C →B 路径向终点B点运动;点Q从B点出发沿B→C→A路径向终点A点运动.点P和Q分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动.在某时刻,分别过P和Q作PE⊥l 于E,QF⊥l于F.点P运动________秒时,ΔPEC与ΔQFC全等.15.如图,已知∠MON=30°,点A1,A2,A3,……在射线ON上,点B1,B2,B3,……在射线OM上,ΔA1B1A2,ΔA2B2A3,ΔA3B3A4,……均为等边三角形,若O A1=2,则ΔA6B6A7的边长为___________.16.如图,在四边形ABCD中,AC是四边形的对角线,∠CAD=30°,过点C作CE⊥AB于点E,∠B=2∠BAC,∠ACD+∠BAC=60°,若AB的长度比CD的长度多2,则BE的长为_______________.三.解答题(共9小题,满分72分)17.(6分)已知在△ABC中,∠A、∠B、∠C的对边分别为a、b、c.(1)化简代数式|a+b−c|+|b−a−c|=_______.(2)若∠B=∠A+18°,∠C=∠B+18°,求△ABC的各内角度数;18.如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作∠CBA的角平分线BD,交AC于点D(保留作图痕迹,不要求写作法和证明);(2)在上图中,若BD=10cm,求DC的长19.(6分)已知△ABC三个顶点坐标分别为A(2,5),B(-1,2),C(4,0),在直角坐标系中,正方形网格的单位长度为1.(1)若△ABC内部一点P(a,b),直角坐标系中有点P'(a−3,b−5),请平移△ABC,使点P与点P'重合,画出平移后的△A'B'C';(2)直接写出△A'B'C'的三个顶点的坐标;(3)求出△ABC在平移过程中扫过的面积.20.(8分)已知一次函数y 1=ax+6和y 2=﹣x+b 的图象交于点P (1,2),与坐标轴的交点分别是A 、B 、C 、D .(1)直接写出方程组{ax −y =−6y +x =b的解;(2)求△PCD 的面积;(3)请根据图象直接写出当y 1>y 2时x 的取值范围.21.(8分)如图,在△ABC 中,已知∠1=∠2,BE =CD .(1)证明:AB=AC;(2)AB=5,AE=2,求CE的长.22.(9分)A校和B校分别有库存电脑12台和6台,现决定支援给C校10台和D校8台,从A校运一台电脑到C校的运费是40元,到D校是80元;从B校运一台电脑到C校的运费是30元,到D校是50元.设A校运往C校的电脑为x台,总运费为W元.(1)写出W关于x的函数关系式;(2)从A、B两校调运电脑到C、D两校有多少种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?23.(9分)如图1,在ΔABC中,过点B作BD⊥AB,且BD=AB,连接CD.(问题原型)(1)若∠ACB=90°,且AC=BC=8,过点D作的ΔBCD的BC边上的高DE,易证△ABC≌△BDE,从而得到ΔBCD的面积为______.(变式探究)(2)如图2,若∠ACB=90°,BC=a,用含a的代数式表示△BCD的面积,并说明理由.(拓展应用)(3)如图3,若AB=AC,BC=16,则△BCD的面积为______.24.(10分)(1)如图①,在四边形ABCD中,AB=AD,∠B=∠ADC=90°. E、F分别是BC、CD 上的点,且EF=BE+FD,探究图中∠BAE、∠FAD、∠EAF之间的数量关系.小王同学探究此问题的方法:延长FD到点G,使DG=BE.连接AG.先证明△ABE≌△ADG,再证△AEF≌△AGF,可得出结论,他的结论应是.【灵活运用】(2)如图②,若在四边形ABCD中,AB=AD,∠B+∠D=180°, F、F分别是BC、CD上的点.且EF=BE+FD,上述结论是否仍然成立?请说明理由.【延伸拓展】(3)如图③,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD.若点E在CB的延长线上,点F在CD的延长线上,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.25.(10分)如图,△ABC为等边三角形,点D是△ABC外一点,连接AD,BD,CD,AB与CD 相交于点G,且∠DAC+∠DBC=180°.图1 图2(1)请求出∠ADB的度数;(2)请写出AD,BD,CD之间的数量关系,并说明理由;(3)如图2,点E为CD的中点,连接BE并延长,交AC于点F,当BF与CD的夹角∠FEC=60°时,△ABC的面积为12,直接写出△CEF的面积.答案解析一.选择题1.D【分析】根据“横坐标右移加,左移减;纵坐标上移加,下移减”的规律求解即可.【详解】解:将点P(3,2)向右平移2个单位长度得到(5,2),再向下平移2个单位长度,所得到的点坐标为(5,0).故选:D.2.C【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【详解】解:注水量一定,即随着时间的变化,水面高度变化的快慢不同,与所给容器的底面积有关.A.容器的底面积大,中,小,则函数图象的走势是平缓,稍陡,陡,故此选项不符合题意;B.容器的底面积小,大,中,则函数图象的走势是陡,平缓,稍陡,故此选项不符合题意;C.容器的底面积中,大,小,则函数图象的走势是稍陡,平缓,陡,故此选项符合题意;D.容器的底面积小,中,大,则函数图象的走势是陡,稍陡,平缓,故此选项不符合题意;故选:C.3.C【分析】根据三角形面积公式由点D为BC的中点得到SΔABD =SΔADC=12SΔABC=6,同理得到SΔEBD=SΔEDC=12SΔABD=3,则SΔBEC=6,然后再由点F为EC的中点得到SΔBEF=12SΔBEC=3.【详解】解:∵点D为BC的中点,∴SΔABD =SΔADC=12SΔABC=6,∵点E为AD的中点,∴SΔEBD =SΔEDC=12SΔABD=3,∴SΔBEC =SΔEBD+SΔEDC=6,∵点F为EC的中点,∴SΔBEF =12SΔBEC=3,即阴影部分的面积为3.故选:C.4.B【分析】首先根据三角形的外角性质得∠ADC=∠A+∠C+∠ABC,从而求出∠ABC,最后根据角平分线的定义即可解决问题.【详解】解:∵∠ADE=∠ABD+∠A,∠EDC=∠DBC+∠C,∴∠ADC=∠ADE+∠EDC=∠A+∠C+∠ABC,∴120∘=40∘+20∘+∠ABC,∴∠ABC=60∘,∵BE平分∠ABC,∴∠ABE=12∠ABC=30∘,故选:B.5.D【分析】根据点P′,P″分别是P关于OA,OB的对称点,得到PP′被OA垂直平分,PP″被OB垂直平分,根据线段垂直平分线的性质得到MP=MP′,NP=NP″,即可得出△PMN的周长.【详解】∵点P′,P″分别是P关于OA,OB的对称点,∴PP′被OA垂直平分,PP″被OB垂直平分,∴MP=MP′,NP=NP″,∴△PMN的周长=MN+MP+NP=MN+MP′+NP″=P′P″=8(cm).故选:D.6.D【分析】分别延长AC 、BD 交于点F ,根据角平分线的性质得到∠BAD=∠FAD ,证明△BAD ≌△FAD ,根据全等三角形的性质得到BD=DF ,根据平行线的性质得到BE=ED ,EA=ED ,进一步计算即可求解.【详解】解:分别延长AC 、BD 交于点F ,∵AD 平分∠BAC ,AD ⊥BD ,∴∠BAD=∠FAD ,∠ADB=∠ADF=90°,在△BAD 和△FAD 中,{∠BAD =∠FADAD =AD ∠ADB =∠ADF =90°,∴△BAD ≌△FAD (ASA ),∴∠ABD=∠F ,∵DE ∥AC ,∴∠EDB=∠F ,∠EDA=∠FAD ,∴∠ABD=∠EDB ,∠EDA=∠EAD ,∴BE=ED ,EA=ED ,∴BE=EA=ED ,∴DE=12AB=12×8=4,故选:D .7.D【分析】根据图象中t =0 时,s =120 可得A 、B 两地相距的距离,进而可判断①;根据图象中t =1 时,s =0可判断②;由图象t =1.5 和t =3的实际意义,得到货车和小汽车的速度,从而可判断④;根据路程=速度×时间分别计算出货车与小汽车出发1.5小时后的路程,进而可判断③,于是可得答案.【详解】解:由图象可知,当t=0时,货车、汽车分别在A、B两地,s=120,所以A、B两地相距120千米,故①正确;当t=1时,s=0,表示出发1小时,货车与小汽车相遇,故②正确;根据图象知,汽车行驶1.5小时达到终点A地,货车行驶3小时到达终点B地,故小汽车的速度为:120÷ 1.5=80(千米/小时),货车的速度为:120÷3=40(千米/小时),∴小汽车的速度是货车速度的2倍,故④正确;出发1.5小时货车行驶的路程为:1.5×40=60(千米),小汽车行驶1.5小时达到终点A 地,即小汽车1.5小时行驶路程为120千米,所以出发1.5小时,小汽车比货车多行驶了60千米,故③正确.∴正确的说法有①②③④四个.故选:D.8.B【分析】从O移动到A4作为一个循环,共移动了4次,水平向前移动了2m,则第2020次移动到A2020,此时移动了2020÷4=505个循环,水平向前移动了2×505=1010(m),点A2020的坐标(1010,0),则点A2022的坐标(1011,1),点A3的坐标(2,1),则A3A2022=1009(m),则△OA3A2023的底边为A3A2022,高为1m,则根据三角形面积公式就可以求得.【详解】解:从O移动到A4作为一个循环,共移动了4次,水平向前移动了2m,2023÷4=505…2,∴第2020次移动到A2020,此时移动了2020÷4=505个循环,水平向前移动了2×505=1010(m),∴点A2020的坐标(1010,0),∴点A2022的坐标(1011,1),∵点A3的坐标(2,1),则A3A2022=1009(m),∴△OA3A2022的面积是12×1×1009=10092m2,故选:B.9.B【分析】过点C作CD⊥x轴于D,由“AAS”可证△AOB≌△BDC,可得AO=BD=2,BO=CD=n=a ,即可求解.【详解】解:如图,过点C 作CD ⊥x 轴于D ,∵点A (0,2),∴AO =2,∵△ABC 是等腰直角三角形,且AB =BC ,∴∠ABC =90°=∠AOB =∠BDC ,∴∠ABO+∠CBD =90°∠ABO+∠BAO =90°,∴∠BAO =∠CBD ,在△AOB 和△BDC 中,{∠AOB =∠BDC∠BAO =∠CBD AB =BC,∴△AOB ≌△BDC (AAS ),∴AO =BD =2,BO =CD =n =a ,∴0<a <1,∵OD =OB+BD =2+a =m ,∴2<m <3,故选:B .10.D【分析】①由AB =AC ,AD =AE 利用等式的性质得到夹角相等,从而得出三角形ABD 与三角形ACE 全等,由全等三角形的对应边相等得到BD =CE ,本选项正确;②由三角形ABD 与三角形ACE 全等,得到一对角相等,由等腰直角三角形的性质得到∠ABD+∠DBC =45°,进而得到∠ACE +∠DBC =45° ,本选项正确;③再利用等腰直角三角形的性质及等量代换得到BD⊥CE,本选项正确;④利用周角减去两个直角可得答案;【详解】解:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD 即:∠BAD=∠CAE在△BAD和△CAE中{AB=AC∠BAD=∠CAEAD=AE∴△BAD≌△CAE(SAS)∴BD=CE,本选项正确;②∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°∴∠ABD+∠DBC=45°∵△BAD≌△CAE∴∠ABD=∠ACE∴∠ACE+∠DBC=45°,本选项正确;③∵∠ABD+∠DBC=45°∴∠ACE+∠DBC=45°∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°即:BD⊥CE,本选项正确;④∵∠BAC=∠DAE=90°∴∠BAE+∠DAC=360°−90°−90°=180°,本此选项正确;故选:D.二.填空题11.(-1,-2)或(7,-2)##(7,-2)或(-1,-2)【分析】根据点B与点A的位置关系分类讨论,分别求解即可.【详解】解:∵AB∥x轴,A的坐标为(3,−2),并且AB=4,∴点B的纵坐标为−2,若点B在点A的左侧,则点B的坐标为(3-4,-2)=(-1,-2)若点B在点A的右侧,则点B的坐标为(3+4,-2)=(7,-2)故答案为:(-1,-2)或(7,-2).12.k<1【分析】先根据(x1−x2)(y1−y2)<0可得出{x1−x2>0y1−y2<0或{x1−x2<0y1−y2>0两种情况讨论求解即可.【详解】解:∵点A(x1,y1),B(x2,y2)在函数y=(k−1)x−3(k是常数,k≠1)的图象上,且(x1−x2)(y1−y2)<0,∴{x1−x2>0 y1−y2<0或{x1−x2<0 y1−y2>0∴函数值y随x的增大而减小,∴k−1<0解得,k<1故答案为:k<113.2【分析】根据直线y=−2x+1的解析式求出m,再求出点A关于y轴的对称点,再将对称点带入y=kx+1求出k.【详解】解:点A(2,m)在直线y=−2x+1上,∴m=−3,点 A(2,-3)关于y轴对称的点为(-2,-3),∴−3=−2k+1,∴k=2,故答案为:2.14.1或3.5或12【分析】根据题意分为五种情况,根据全等三角形的性质得出CP=CQ,代入得出关于t的方程,解方程即可.【详解】解:分为五种情况:①如图1,P在AC上,Q在BC上,则PC=6−t,QC=8−3t,∵PE⊥l,QF⊥l,∴∠PEC=∠QFC=90°,∵∠ACB=90°,∴∠EPC+∠PCE=90°,∠PCE+∠QCF=90°,∴∠EPC=∠QCF,∵ΔPCE≅ΔCQF,∴PC=CQ,即6−t=8−3t,t=1;②如图2,P在BC上,Q在AC上,则PC=t−6,QC=3t−8,∵由①知:PC=CQ,∴t−6=3t−8,t=1;t−6<0,即此种情况不符合题意;③当P、Q都在AC上时,如图3,CP=6−t=3t−8,t= 3.5;④当Q到A点停止,P在BC上时,如图4,AC=PC,t−6=6时,解得t=12.⑤P和Q都在BC上的情况不存在,因为P的速度是每秒1,Q的速度是每秒3;答:点P运动1或3.5或12秒时,以P、E、C为顶点的三角形上以O、F、C为顶点的三角形全等.故答案为:1或3.5或12.15.64【分析】由等边三角形的性质得到∠BA1A2=60°,A1B1=A1A2,再由三角形外角的性质求1出∠AB1O=30°,则A1B1=A1A2=O A1,同理得A2B2=A2A3=O A2=2O A1,A3B3=A3A4= 122⋅O A1,A4B4=A4A5=23⋅O A1,由此得出规律A n B n=A n A n+1=2n-1⋅O A1=2n,即可求解.【详解】解:∵ΔAB1A2为等边三角形,1∴∠BA1A2=60°,A1B1=A1A2,1∴∠AB1O=∠B1A1A2-∠MON=60°-30°=30°,1∴∠AB1O=∠MON,1∴AB1=O A1,1∴AB1=A1A2=O A1,1同理可得AB2=A2A3=O A2=2O A1,2∴AB3=A3A4=O A3=2O A2=22⋅O A1,3A4B4=A4A5=O A4=2O A3=23⋅O A1,…∴AB n=A n A n+1=2n-1⋅O A1=2n,n∴ΔAB6A7的边长:A6B6=26=64,6故答案为:64.16.1【分析】在AE上截取EF=BE,连接CF,则CE垂直平分BF,结合题意推出AF=CF,过点F作FM ⊥AC,交AC于点M,过点C作CN⊥AD,交AD的延长线于点N,则有∠AMF=∠N=90°,AC=2AM,进而得出AM=CN,根据题意及三角形外角性质推出∠MAF=∠NCD,利用ASA判定△AFM ≌△CDN,根据全等三角形的性质得到AF=CD,结合题意即可得解.【详解】解:在AE上截取EF=BE,连接CF,∵CE⊥AB,∴CE垂直平分BF,∴BC=FC,∴∠B=∠BFC,∵∠B=2∠BAC,∴∠BFC=2∠BAC,∵∠BFC=∠BAC+∠ACF,∴∠ACF=∠BAC ,∴AF=CF ,过点F 作FM ⊥AC ,交AC 于点M ,过点C 作CN ⊥AD ,交AD 的延长线于点N ,则有∠AMF=∠N=90°,AC=2AM ,∵∠CAD=30°,∠N=90°,∴AC=2CN ,∴AM=CN ,∵∠ACD+∠BAC=60°,∴∠ACD=60°-∠BAC ,∴∠CDN=∠ACD+∠CAD=60°-∠BAC+30°=90°-∠BAC ,∴∠NCD=90°-∠CDN=90°-(90°-∠BAC )=∠BAC ,∴∠MAF=∠NCD ,在△AFM 和△CDN 中,{∠MAF =∠NCDAM =CN ∠AMF =∠N,∴△AFM ≌△CDN (ASA ),∴AF=CD ,∵AB 的长度比CD 的长度多2,∴AB- CD=AB- AF=2BE=2,∴BE=1,故答案为:1.三.解答题17.(1)解:∵在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,∴a +b >c ,b −a <c ,∴a +b −c >0,b −a −c <0,∴|a +b −c|+|b −a −c|=a +b −c −(b −a −c )=a +b −c −b +a +c=2a,故答案为:2a;(2)解:∵∠B=∠A+18°,∠C=∠B+18°,∴∠C=∠A+18°+18°=∠A+36°,∵∠A+∠B+∠C=180°,∴∠A+∠A+18°+∠A+36°=180°,解得∠A=42°,故∠B=42°+18°=60°,∠C=60°+18°=78°,故△ABC的各内角度数分别为42°,60°,78°.18.(1)如图所示:(2)∵△ABC中,∠C=90°,∠A=30°∴∠ABC=90°-∠A=90°-30°=60°∵BD平分∠ABC∴∠DBC=12×60∘=30∘∵△DBC中,∠C=90°,∠CBD=30°∴CD=12BD=12×10=5cm答:CD长5cm19.(1)解:由题意可知,只需要将点A、B、C的坐标分别向左平移3个单位长度,向下平移5个单位长度,画出图形即可,△A'B'C'如图所示:(2)解:坐标内同一个图形中点的坐标的平移方式一致,故A'(−1,0),B'(−4,−3),C'(1,−5)(3)解:如图,△ABC在平移过程中扫过的面积为△ABC的面积与四边形B B'C'C的面积和,即8×10−2×12×3×5−12×2×5−3×3−12×3×3−12×2×5=41.5,即△ABC在平移过程中扫过的面积为41.520.(1)解:∵一次函数y1=ax+6和y2=﹣x+b的图象交于点P(1,2),∴方程组{ax −y =−6y +x =b 的解为{x =1y =2;(2)∵一次函数y 1=ax+6和y 2=﹣x+b 的图象交于点P (1,2),∴{a+6=2−1+b =2 ,解得{a =−4b =3 ,∴y 1=﹣4x+6,y 2=﹣x+3,当y =0时,0=﹣4x +6,解得x =32,当y =0时,0=﹣x+3,解得x =3,∴C (32,0),D (3,0),∴CD =32,∴S △PCD =12×32×2=32.即△PCD 的面积为32;(3)根据图象可知当在P 点左边时y 1>y 2,∴y 1>y 2时x 的取值范围为x <1.21.(1)证明:在△ABE 和△ACD 中,∵{∠A =∠A∠1=∠2BE =CD,∴△ABE ≌△ACD ,∴AB =AC .(2)解:∵△ABE ≌△ACD ,∴AB =AC ,∵AB =5,AE =2,∴CE =AC -AE =5-2=3.22.(1)解:设A校运往C校的电脑为x台,则A校运往D校的电脑为(12−x)台,从B校运往C校的电脑为(10−x)台,运往D校的电脑为8−(12−x)=(x−4)台,由题意得,W=40x+80(12−x)+30(10−x)+50(x−4),=−20x+1060,由{12−x≥010−x≥0x−4≥0解得4≤x≤10,所以,W=1060−20x(4≤x≤10);(2)∵4≤x≤10∴0≤x−4≤6共有7种调运方案,即B到D的可以是0,1,2,3,4,5,6这7种情况.(3)∵k=−20<0,∴W随x的增大而减小,∴当x=10时,W最小,最小值为:−20×10+1060=860元.答:总运费最低方案:A校给C校10台,给D校2台,B校给C校0台,给D校6台,最低运费是860元.23.解:(1)∵在△ABC中,∠ACB=90°,过点B作BD⊥AB且过点D作的△BCD的BC边上的高DE,∴∠DEB=∠ACB =∠ABD =90°∴∠ABC+∠DBE =90°∵∠DBE+∠BDE =90°∴∠ABC =∠BDE .在Rt △ABC 与Rt △BDE 中,{∠ACB =∠DEB ∠ABC =∠BDE AB =BD ∴Rt △ABC ≌Rt △BDE(AAS),DE =CB =8∴S ΔBCD =12CB ⋅DE =12×8×8=32故答案为:32(2)S ΔBCD =12a 2理由:过点D 作DE ⊥CB 延长线于点E ∴∠DEB=∠ACB =90°∵BD ⊥AB ,∠1+∠2=90°∵∠2+∠A =90°∴∠A =∠1.在Rt △ABC 与Rt △BDE 中,{∠ACB =∠DEB ∠A =∠1AB =BD ∴Rt △ABC ≌Rt △BDE(AAS),DE =CB =a ∴S ΔBCD =12CB ⋅DE =12a 2(3)如图3中,∵AB =AC∴BF =12BC =12×8=4.过点A 作AF ⊥BC 与F ,过点D 作DE ⊥BC 的延长线于点E,∴∠AFB=∠E =90°,∴∠FAB+∠ABF =90°.∵∠ABD=90°,∴∠ABF+∠DBE =90°,∴∠FAB =∠EBD .在△AFB 和△BED 中,{∠AFB =∠E∠FAB =∠EBD AB =BD,∴△AFB ≌△BED(AAS),∴BF =DE =4.∵S △BCD =12BC ⋅DE ,∴S △BCD =12×8×4=16∴△BCD 的面积为16.故答案为:1624.解:(1)∠BAE+∠FAD=∠EAF .理由:如图1,延长FD 到点G ,使DG=BE ,连接AG,∵∠B=∠ADF=90°,∠ADG=∠ADF=90°,∴∠B=∠ADG=90°,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;故答案为:∠BAE+∠FAD=∠EAF;(2)仍成立,理由:如图2,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)∠EAF=180°−1∠DAB.2证明:如图3,在DC延长线上取一点G,使得DG=BE,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,又∵AB=AD,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠FAE=∠FAG,∵∠FAE+∠FAG+∠GAE=360°,∴2∠FAE+(∠GAB+∠BAE)=360°,∴2∠FAE+(∠GAB+∠DAG)=360°,即2∠FAE+∠DAB=360°,∴∠EAF=180°−1∠DAB.225.(1)解:∵四边形ACBD,∴∠DAC+∠DBC+∠ADB+∠ACB=360°.∵△ABC为等边三角形,∴∠ACB=60°.又∵∠DAC +∠DBC =180°,∴∠ADB =120°.(2)AD +BD =CD ,理由如下:如图,延长BD 至点H ,使得DH =AD ,连接AH .∵由(1)可知∠ADB =120°,∴∠ADH =60°.又∵DH =AD ,∴△ADH 为等边三角形.∴∠HAD =60°.AD =AH =DH .∵△ABC 为等边三边形,∴∠HAD +∠DAB =∠BAC +∠DAB .即∠HAB =∠DAC .在△HAB 与△DAC 中,{AH =AD ∠HAB =∠DAC AB =AC ∴△HAB ≅△DAC(SAS),∴CD =BH .又∵BH =BD +DH =BD +AD ,∴AD +BD =CD .(3)由(1)可知∠ABD=∠ACG,∵∠DGB=∠AGC,∴∠BDG=∠CAG=60°,∵∠CEF=∠BED=60°,∴△BDE是等边三角形,∴BE=DE,∵DE=EC,∴BE=EC,∵∠BEC=120°,∴∠EBC=∠ECB=30°,∵∠ABC=∠ACB=60°,∴∠ABF=∠CBF=30°,∠ACE=∠BCE=30°,∵BA=BC,∴BF⊥AC,AF=CF,∴EC=2EF,∴BE=2EF,∵△ABC 的面积为12,∴S△CEF =13S△BCF=16S△ABC=2.。

沪科版数学八年级上学期全册综合测试试卷(含答案)

沪科版数学八年级上学期全册综合测试试卷(含答案)

八年级数学试题时间:120分钟 满分150分一、选择题(本题共10小题,每小题4分,满分40分)1.在平面直角坐标系中,点P(-1,4)一定在 ( )A.第一象限B.第二象限C.第三象限D.第四象限2.点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为 ( )A.(-4,3)B.(-3,-4)C.(-3,4)D.(3,-4)3.一次函数y=﹣2x ﹣3不经过 ( ) %A .第一象限 B. 第二象限 C. 第三象限 D. 第四象限4.下列图形中,为轴对称图形的是 ( )5.函数y=21 x 的自变量x 的取值范围是 ( ) ]A .x ≠2 B. x <2 C. x ≥2 D. x >26在△ABC 中,∠A ﹦31∠B ﹦51∠C ,则△ABC 是 ( ) A. 锐角三角形 B. 钝角三角形C. 直角三角形D. 无法确定7.如果一次函数y ﹦kx ﹢b 的图象经过第一象限,且与y 轴负半轴相交,那么( )A. k ﹥0,b ﹥0B. k ﹥0,b ﹤0C. k ﹤0,b ﹥0D. k ﹤0, b ﹤08.如图,直线y ﹦kx ﹢b 交坐标轴于A ,B 两点,则不等式kx ﹢b ﹥0的解集是( )A. x ﹥-2B. x ﹥3C. x ﹤-2D. x ﹤3)9.如图所示,OD=OB,AD∥BC,则全等三角形有()A. 2对B. 3对C. 4对D. 5对|10. 两个一次函数y=-x+5和y=﹣2x+8的图象的交点坐标是()A.(3,2)B.(-3,2)C.(3,-2)D.(-3,-2)得分评卷人二、填空题(本题共4小题,每小题5分,满分20分)11.通过平移把点A(2,-1)移到点A’(2,2),按同样的平移方式,点B(-3,1)移动到点B’,则点B’的坐标是.12.如图所示,将两根钢条A A’、B B’的中点O连在一起,使A A’、B B’可以绕着点O自由转动,就做成了一个测量工具,则A’ B’的长等于内槽宽AB,那么判定△OAB≌△OA’ B’的理由是.13.某地雪灾发生之后,灾区急需帐篷。

八年级数学上册第一学期期末综合测试卷(沪科版 2024年秋)(二)

八年级数学上册第一学期期末综合测试卷(沪科版 2024年秋)(二)

八年级数学上册第一学期期末综合测试卷(沪科版2024年秋)一、选择题(本大题共10小题,每小题4分,满分40分)题序12345678910答案1.下列图形中,是轴对称图形的是()2.下列各点中,位于第二象限内的是()A.(2,1)B.(2,-1)C.(-2,1)D.(-2,-1) 3.已知△ABC的三边长a,b,c满足等式a-b+|2a-b-3|+c-3=0,则△ABC 的形状是()A.钝角三角形B.直角三角形C.不等边三角形D.等边三角形4.如图,点B,D,E,C在同一直线上,△ABD≌△ACE,∠AEC=100°,则∠DAE=()A.10°B.20°C.30°D.80°(第4题)(第5题)5.如图,AB和CD相交于点O,则下列结论正确的是()A.∠DOB<∠B B.∠DOB=∠DC.∠AOC>∠C+∠B D.∠DOB=∠B+∠C6.如图,在等边三角形ABC中,D,E分别是AC,AB的中点,则下列命题中假命题是()A.BF=CF B.BF=CDC.∠BFC=120°D.点F到AB,AC距离相等(第6题)(第7题)7.如图,在Rt△ABC中,∠ACB=90°,根据尺规作图的痕迹,判断以下结论中,错误的是()A.∠BDE=∠BAC B.∠BAD=∠BC.DE=DC D.AE=AC8.对于正比例函数y=kx(k≠0),它的函数值y随x的增大而增大,则一次函数y =kx-k的图象大致是()9.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400m,先到终点的人原地休息.已知甲先出发4min,在整个步行过程中,甲、乙两人间的距离y(m)与甲出发的时间t(min)之间的关系如图所示,下列说法正确的是()A.乙用16min追上甲B.乙追上甲后,再走1500m才到达终点C.甲、乙两人之间的最远距离是300mD.甲到终点时,乙已经在终点处休息了6min(第9题)(第10题)10.如图,已知△ABC的高AD恰好平分边BC,∠B=30°,点P是BA延长线上一动点,点O是线段AD上一动点,且OP=OC,下面的结论:①AO+AP=AB;②△OCP的周长为3CP;③∠APO+∠PCB=90°;④S△ABC=S四边,其中正确个数是()形AOCPA.1B.2C.3D.4二、填空题(本大题共4小题,每小题5分,满分20分)11.如果点A(-3,a)和点B(b,2)关于y轴对称,那么a+b的值是________.12.对于一次函数y1=3x-2和y2=-2x+8,当y1>y2时,x的取值范围是________.13.将两个三角尺如图放置,∠FDE=∠A=90°,∠C=45°,∠E=60°,且点D 在BC上,点B在EF上,AC∥EF,则∠FDC的度数为________.(第13题)(第14题)14.如图,四边形纸片ABCD的面积为10,将其沿过A点的直线折叠,使B落在CD上的点Q处,折痕为AP;再将三角形PCQ、三角形ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.(1)∠DAR的度数是________.(2)若R为AP的三等分点....,则此时三角形AQR的面积是________________________________________________.三、(本大题共2小题,每小题8分,满分16分)15.如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(-2,4),B(-4,2),C(-3,1),按下列要求作图.(1)△ABC关于y轴对称的图形为△A1B1C1(点A,B,C分别对应A1,B1,C1),请画出△A1B1C1;(2)将△A1B1C1向右平移1个单位,再向下平移4个单位得到△A2B2C2,请画出△A2B2C2;(3)求△A2B2C2的面积.(第15题)16.已知y-2与x+3成正比例,且当x=-2时,y=5.(1)求y与x之间的函数表达式;(2)当y=2时,求x的值.四、(本大题共2小题,每小题8分,满分16分)17.数学课上,黄老师出了这样一道题:如图,在△ABC中,AD⊥BC于D,已知CD=AB+BD,求证:∠B=2∠C.小徐的思路是:在CD上截取DE=BD,连接AE.(第17题)请你根据小徐的思路,补全图形并完成剩下的证明过程(数学依据只需注明①②).证明:∵AD⊥BC,DE=DB,∴AB=AE(依据①:________________________________________________),∴∠B=∠AED(依据②:______________)…18.已知:如图,等腰三角形ABC,顶角∠A=36°.(1)在AC上求作一点D,使AD=BD(请用直尺、圆规作图,不写作法,但要保留作图痕迹);(2)求证:△BCD是等腰三角形.(第18题)五、(本大题共2小题,每小题10分,满分20分)19.在学习“利用三角形全等测距离”之后,张老师给同学们布置作业,测量校园内池塘A,B之间的距离(无法直接测量).(第19题)小颖的方案是:先过点A作AB的垂线AM,在AM上找一看得见B的点C,连接BC,过点C作CD⊥CB,且CD=CB,过点D作DE⊥AM,垂足为E,则EC 的长度即为AB的长度.(1)小颖设计的方案你同意吗?并说明理由.(2)如果利用全等三角形去解决这个问题,请你写出和小颖依据不同的方案,并画出图形.20.如图,点B,C分别在射线AM,AN上,点E,F都在∠MAN内部的射线AD上.已知AB=AC,且∠BED=∠CFD=∠BAC.(1)求证:△ABE≌△CAF;(2)试判断EF,BE,CF之间的数量关系,并说明理由.(第20题)六、(本题满分12分)21.如图,在平面直角坐标系中,一次函数y1=kx+b的图象交x轴与y轴分别于点A,B,且OB=2,与直线y2=ax交于P(2,1).(1)函数y1=kx+b和y2=ax的表达式分别为____________________________________________________;(2)点D为直线y1=kx+b上一点,其横坐标为m(0<m<2).过点D作DF⊥x轴于点F,与直线y2=ax交于点E,且DF=2FE,求点D的坐标.(第21题)七、(本题满分12分)22.太平猴魁是一种中国传统名茶,产于安徽黄山市黄山区一带,为尖茶之极品,久享盛名.某公司采购员到黄山市某茶叶市场购买该种茶叶作为公司员工的福利,该市场某商家推出了办会员卡打折销售的两种方案:(凭会员卡只打折一次)办卡费/(元/张)茶叶价格/(元/千克)方案一:黑卡6001000方案二:金卡2001200若该公司此次采购茶叶x千克,按方案一和方案二购买茶叶的总费用分别为y1元,y2元.(1)直接写出y1,y2与x之间的函数表达式:y1=__________,y2=________.(2)如果两种方案所需要的费用相同,该公司采购茶叶多少千克?(3)若该公司预计花费5000元购买此种茶叶,请你通过计算说明哪种方案能购买更多的茶叶.八、(本题满分14分)23.在△ABC中,∠ACB=90°,AC=BC,点D在射线BC上(不与B,C重合),连接AD,过点B作BF⊥AD,垂足为F.(1)如图①,点D在线段BC上,若AF恰好平分∠CAB,探究AC,CD,AB之间的数量关系,并说明理由.(2)如图②,点D在线段BC上,点M是直线BF上的一点,且AF平分∠MAC,探究AC,CD,AM之间的数量关系,并说明理由.(3)若点D在线段BC的延长线上(CD<BC),点M是直线BF上的一点,且AF平分∠MAC,请在图③中画出图形,判断(2)中的结论是否仍然成立?如果成立,说明理由;如果不成立,直接写出正确的结论.(第23题)答案一、1.D 2.C3.D4.B5.D6.B7.B8.C9.D 10.D二、11.512.x >213.165°14.(1)60°(2)109或209思路点睛:若R 为AP 的三等分点,存在两种情况:AR =2PR 或PR =2AR .三、15.解:(1)如图.(2)如图.(第15题)(3)S △A 2B 2C 2=2×3-12×2×2-12×1×3-12×1×1=2.16.解:(1)由y -2与x +3成正比例,可设y -2=k (x +3),把(-2,5)代入得5-2=k (-2+3),解得k =3,∴y -2=3(x +3),整理得y =3x +11.(2)把y =2代入y =3x +11得2=3x +11,解得x =-3.四、17.解:如图.线段的垂直平分线上的点到线段两端点的距离相等;等边对等角∵CD =AB +BD =AE +DE =CE +DE ,∴AE =CE ,∴∠C =∠CAE ,∴∠B =∠AEB =∠C +∠CAE =2∠C .(第17题)(第18题)18.(1)解:如图,点D 为所求.(2)证明:∵AB =AC ,∴∠ABC =∠C =12(180°-36°)=72°.∵DA =DB ,∴∠ABD=∠A=36°,∴∠BDC=∠A+∠ABD=36°+36°=72°,∴∠BDC=∠C,∴△BCD是等腰三角形.五、19.解:(1)同意.理由如下:∵CD⊥CB,AB⊥AM,DE⊥AM,∴∠BAC=∠CED=∠BCD=90°,∴∠ACB+∠ECD=∠ECD+∠EDC=90°,∴∠ACB=∠EDC.在△ABC和△ECD中,BAC=∠CED,ACB=∠EDC,=CD,∴△ABC≌△ECD,∴AB=EC,即EC的长度即为AB的长度.(2)如图,取一点O,使得能从点O到达点A,B,连接AO,OB,分别延长AO,BO到D,E,使得OD=OA,OE=OB,连接DE,然后可通过“SAS”证明△AOB≌△DOE,则DE的长度即为AB的长度.(第19题)20.(1)证明:∵∠BED=∠BAE+∠ABE,∠BAC=∠BAE+∠CAF,∠BED=∠BAC,∴∠ABE=∠CAF,同理得∠BAE=∠ACF,在△ABE和△CAFABE=∠CAF,=CA,BAE=∠ACF,∴△ABE≌△CAF.(2)解:EF+CF=BE.理由如下:∵△ABE≌△CAF,∴AE=CF,BE=AF.∵AE+EF=AF,∴CF+EF=BE.六、21.解:(1)y 1=-12x +2,y 2=12x (2)∵D 点横坐标为m ,D 点在直线y 1=-12x +2上,∴D ,-12m +∵E 点在直线y 2=12x 上,∴E ,12m ∴DF =-12m +2,EF =12m .∵DF =2FE ,∴-12m +2=2×12m ,∴m =43,当m =43时,y =-1×43+2=43.∴D 七、22.解:(1)1000x +600;1200x +200(2)根据题意得1000x +600=1200x +200,解得x =2.答:如果两种方案所需要的费用相同,该公司采购茶叶2千克.(3)按照方案一购买茶叶:1000x +600=5000,解得x =4.4;按照方案二购买茶叶:1200x +200=5000,解得x =4.∵4.4>4,∴按照方案一能购买更多的茶叶.八、23.解:(1)AC +CD =AB .理由如下:如图①,延长AC ,BF 交于点M ,∵AF 平分∠BAC ,∴∠BAF =∠MAF ,又∵∠AFB =∠AFM =90°,AF =AF ,∴△AFB ≌△AFM ,∴AB =AM .∵∠FAM +∠M =90°,∠CBM +∠M =90°,∴∠F AM =∠CBM .∵AC =BC ,∠ACB =∠BCM =90°,∴△ACD ≌△BCM ,∴CD =CM ,∴AB =AM =AC +CM =AC +CD .(第23题)(2)AC+CD=AM.理由如下:如图②,延长AC,BF交于点N,由(1)可知△AFM ≌△AFN,△ACD≌△BCN,∴AM=AN,CD=CN,∴AM=AN=AC+CN=AC+CD.(3)如图③,不成立.CD+AM=AC.。

沪科版八年级数学上册《全等三角形》单元测试题(含答案)

沪科版八年级数学上册《全等三角形》单元测试题(含答案)

沪科版八年级上《全等三角形》综合测试题姓名 班级 得分一、填空题(每题4分,共40分)1、在△ABC 中,AC>BC>AB ,且△ABC ≌△DEF ,则在△DEF 中,______<______<_______(填边)。

2、已知:△ABC ≌△A ′B ′C ′,∠A=∠A ′,∠B=∠B ′,∠C=70°,AB=15cm ,则∠C ′=_________,A ′B ′=__________。

3、如图1,△ABD ≌△BAC ,若AD=BC ,则∠BAD 的对应角是________。

4、如图2,在△ABC 和△FED ,AD=FC ,AB=FE ,当添加条件__________时,就可得到△ABC ≌△FED 。

(只需填写一个你认为正确的条件)5、如图3,在△ABC 中,AB=AC ,AD ⊥BC 于D 点,E 、F 分别为DB 、DC 的中点,则图中共有全等三角形________对。

6、如图4,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是 .7、如图5,△ABC 中,∠C=90°,CD ⊥AB 于点D ,AE 是∠BAC 的平分线,点E 到AB 的距离等于3cm ,则CF= cm.8、如图6,在△ABC 中,AD =DE ,AB =BE ,∠A =80°,则∠CED =_____.9、P 是∠AOB 平分线上一点,CD ⊥OP 于F ,并分别交OA 、OB 于CD ,则CD_____P 点到∠AOB 两边距离之和。

(填“>”,“<”或“=”)10、AD 是△ABC 的边BC 上的中线,AB =12,AC =8,则中线AD 的取值范围是二、选择题:(每小题5分,共30分)11、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等, 其中真命题的个数有( )A 、3个B 、2个C 、1个D 、0个AD ECB图4ABDE 图1 图2 图3图5图612、如图7,已知点E 在△ABC 的外部,点D 在BC 边上, DE 交AC 于F ,若∠1=∠2=∠3,AC=AE ,则有( ) A 、△ABD ≌△AFD B 、△AFE ≌△ADCC 、△AEF ≌△DFCD 、△ABC ≌△ADE13、下列条件中,不能判定△ABC ≌△A ′B ′C ′的是( ) A 、AB=A ′B ′,∠A=∠A ′,AC=A ′C ′B 、AB=A ′B ′,∠A=∠A ′,∠B=∠B ′C 、AB=A ′B ′,∠A=∠A ′,∠C=∠C ′D 、∠A=∠A ′,∠B=∠B ′,∠C=∠C ′ 14、如图8所示,90EF ∠=∠=,B C ∠=∠,AE AF =,结论:①EM FN =;②CD DN =;③FAN EAM ∠=∠;④ACN ABM △≌△.其中正确的有( )A .1个B .2个C .3个D .4个15、全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A 1B 1C 1是全等(合同)三角形,点A 与点A 1对应,点B 与点B 1对应,点C 与点C 1对应,当沿周界A →B →C →A ,及A 1→B 1→A 1环绕时,若运动方向相同,则称它们是真正合同三角形(如图9),若运动方向相反,则称它们是镜面合同三角形(如图10),两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°(如图11),下列各组合同三角形中,是镜面合同三角形的是( )16、如图12,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D , 若BC=64,且BD :CD=9:7,则点D 到AB 边的距离为( ) A 、18 B 、32 C 、28 D 、24三、解答下列各题:(17-18题各8分,19-2280分) 17、如图13,点A 、B 、C 、D AB=DC ,AE//DF ,AE=DF ,求证:EC=FBACD B图12EC BD FA图7图8图1318、如图14,AE 是∠BAC 的平分线,AB=AC 。

沪科版数学八年级上册综合训练50题(含答案)

沪科版数学八年级上册综合训练50题(含答案)

沪科版数学八年级上册综合训练50题含答案(填空、解答题)一、填空题1.平面直角坐标系中,将点P(-2,-3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为______.【答案】(-3,0)【分析】在平面直角坐标系中,点左右平移,则横坐标右加左减,纵坐标不变;点上下平移,则纵坐标上加下减,横坐标不变.根据这个规则即可完成.【详解】解:点P(-2,-3)向左平移1个单位得到点(-3,-3),把点(-3,-3)向上平移3个单位得到点(-3,0),故答案为:(-3,0).【点睛】本题考查平面直角坐标系中点的平移,关键掌握点左右平移和上下平移的坐标特征.2.如图,在ABC中,∠A=60°,∠B=35°,点D、E分别在BC、AC的延长线上,则∠1=____.【答案】85°【分析】由三角形的内角和定理及对顶角相等解答;【详解】解:如图:∠∠A+∠B+∠ACB=180°,∠A=60°,∠B=35°,∠∠ACB=85°,∠∠1=∠ACB =85°,故答案为:85°.【点睛】本题主要考查了三角形的内角和定理,三角形的内角和是180°;牢记定理是解题关键.3.在平面直角坐标系中,已知点()21A ,,直线AB 与x 轴平行,若3AB =,则点B 的坐标为____________. 【答案】(-1,1)或(5,1)【分析】根据直线AB 与x 轴平行,得到点A 、点B 的纵坐标相等都为1,再根据3AB =分两种情况讨论可得到结果.【详解】解:∠直线AB 与x 轴平行,点()21A ,, ∠点B 的纵坐标为1,∠3AB =,∠点B 的横坐标为-1或5,∠点B 的坐标为(-1,1)或(5,1),故答案为:(-1,1)或(5,1).【点睛】本题考查了坐标与图形的性质,解题的关键在于分两种情况讨论. 4.用反证法证明:若内错角不相等,则两直线不平行.证明时可以先假设 ____.【答案】内错角不相等,两直线平行【分析】根据反证法的步骤中,第一步是假设结论不成立,反面成立解答即可.【详解】解:用反证法证明:若内错角不相等,则两直线不平行,证明时可以先假设内错角不相等,两直线平行,故答案为:内错角不相等,两直线平行.【点睛】本题考查的是反证法的应用,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.5.如图,直线l 1∠l 2,AB ∠l 1,垂足为D ,BC 与直线l 2相交于点C ,若∠1=40°,则∠2=__________.【答案】130°【分析】延长AB 交直线l 2于M ,根据直线l 1∠l 2,AB ∠l 1,得到AM ∠直线l 2,推出∠BMC =90°,根据三角形的外角性质得到∠2=∠1+∠BMC ,代入求出即可.【详解】解:延长AB 交直线l 2于M , ∠直线l 1∠l 2,AB ∠l 1,∠AM ∠直线l 2,∠∠BMC =90°,∠∠2=∠1+∠BMC =40°+90°=130°.故答案为:130°.【点睛】本题主要考查对平行线的性质,三角形的外角性质,垂线的定义等知识点的理解和掌握,正确作辅助线并能熟练地运用性质进行计算是解此题的关键. 6.如图是某学校的部分平面示意图,以学校大门A 为原点建立直角坐标系,教学楼所在B 点的坐标为()3,3--,则篮球场所在C 点的坐标为_________.【答案】(1,2)-【分析】根据题意建立直角坐标系可直接得出点C 的坐标.【详解】解:如图所示,以学校大门A 为原点建立直角坐标系,∴点C 的坐标为(1,-2),故答案为:(1,-2).【点睛】题目主要考查坐标与图形的实际应用,理解题意是解题关键.7.已知m 为任意实数,则点()231,1m m --+在第____象限. 【答案】二【分析】根据非负数的性质判断出点M 的横坐标是负数,纵坐标为正数,再根据各象限内点的坐标特征解答.【详解】解:∠m 2≥0,∠-3m 2-1≤-1,∠|m|≥0,∠|m|+1)≥1,∠点(-3m 2-1,|m|+1)第二象限.故答案为:二.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8.如图,一次函数y =kx +b 与正比例函数y =2x 的图象交于点A ,且与y 轴交于点B ,则一次函数y =2x -1与y =kx +b 的图象交点坐标为_____________.【点睛】本题主要考查了两直线相交问题,求出A 点坐标是解答此题的关键. 9.若点P (2a -,3)在y 轴上,则=a ___________. 【答案】2【分析】根据题意点P(2a -,3)在y 轴上,可知其横坐标为0,进而即可得出a 的值.【详解】点P(2a -,3)在y 轴上,则20a -=,解得2a =.故答案为:2.【点睛】本题考查了坐标轴上的点的特点,熟练掌握点在x 轴上其纵坐标为0,点在y 轴上其横坐标为0是解题的关键.10.若点M (a +2,a ﹣3)在x 轴上,则a 的值为_____.【答案】3【分析】根据x 轴上点的纵坐标为0列方程求出a 的值即可.【详解】解:∠点M (a +2,a ﹣3)在x 轴上,∠a ﹣3=0,解得a =3.故答案为:3.【点睛】本题考查了点的坐标,主要利用了x 轴上点的坐标特征构造方程,需熟记轴上点的特征是解题关键.11.Rt ABC △中,90C ∠=︒,2B A ∠=∠,4AB =,则BC =______. 【答案】2【分析】先根据三角形内角和求出∠B +∠A =90°,由2B A ∠=∠,求出∠A 与∠B ,再利用30︒所对直角边是斜边一半即可解题.【详解】解:∠∠C =90︒,∠∠B +∠A =90°,∠2B A ∠=∠,∠3∠A =90°解得∠A =30°,∠∠B =2∠A =60°,∠AB =4,12.某同学带100元钱去买书,已知每册定价8.2元,买书后余下的钱y元和买的册数x之间的关系式是_______________.【答案】y=100-8.2x【分析】根据题意用100减去8.2x即可求解.【详解】解:买书后余下的钱y元和买的册数x之间的关系式为y=100-8.2x.故答案为:y=100-8.2x.【点睛】本题考查了列函数关系式,理解题意是解题的关键.13.小张周末出门时有100元,去文具店购买单价为8元的铅笔作为半期考试奖品,当他购买了x(0<x≤12)支后,还剩y元,写出y与x的关系式是________.【答案】y=100﹣8x(0<x≤12)【分析】根据剩余的钱数等于总钱数减去花去的钱数进行列函数关系式即可.【详解】解:y与x的关系式为:y=100﹣8x(0<x≤12),故答案为:y=100﹣8x(0<x≤12).【点睛】本题主要考查的是函数关系式的有关知识,根据题意找出所求量的等量关系是解答此题的关键.14.有一个一次函数的图象,甲、乙两位同学分别说出了它的一些特点:甲:y随x的增大而减小;乙:当x<0时,y>3.请你写出满足甲、乙两位同学要求的一个一次函数表达式____________.【答案】y=-x+3(答案不唯一).【详解】满足甲的条件,可令k<0,满足乙的条件,可令函数通过(0,3),所以y=-x+3(答案不唯一).15.如图,CE平分∠ACB.且CE∠DB,∠DAB=∠DBA,AC=9,∠CBD的周长为14,则DB的长为_____.【答案】4【分析】由已知易得CD=BC,AD=BD,则AC=CD+BD=9,所以BC=14-9=5,则CD=5,即可求得BD .【详解】解:∠CE 平分∠ACB 且CE ∠DB ,∠∠DCE =∠BCE ,∠CED =∠CEB ,又∠CE =CE ,∠∠CDE ∠∠CBE (ASA ),∠CD =CB ,∠∠DAB =∠DBA ,∠AD =BD ,∠AC =AD +CD =BD +CD =9,又∠∠CBD 的周长为14,∠BC =14﹣9=5,∠CD =5,∠AD =9﹣5=4=BD ,故答案为4.【点睛】此题主要考查等腰三角形的判定和性质,注意认真观察图中各边之间的关系.16.写出一个图象经过点(1,﹣2)的函数的表达式:_____.【答案】2y x =-【分析】设y=kx ,把点(1,﹣2)代入即可(答案不唯一).【详解】设y=kx ,把点(1,﹣2)代入,得k=-2,∠2y x =-(答案不唯一).故答案为2y x =-.【点睛】本题考查了待定系数法求一次函数解析式,利用待定系数法求函数解析式的一般步骤:∠先设出函数解析式的一般形式,如求一次函数的解析式时,先设y =kx +b (k ≠0);∠将已知点的坐标代入所设的解析式,得到关于待定系数的方程或方程组;∠解方程或方程组,求出待定系数的值,进而写出函数解析式.17.如图所示.将△ABC 沿直线DE 折叠后,使点A 与点C 重合,已知BC=6,△BCD 的周长为15,则AB=______.【答案】9【详解】根据轴对称的性质得:AD=CD,所以∠BCD的周长等于BC+BD+CD=BC+BD+AD,即∠BCD的周长等于BC+AB,因为∠BCD的周长等于15,所以BC+AB=15,所以AB=15-6=9,故答案为:9.18.如图,四边形ABCD的对角线AC和BD相交于点E,如果CDE的面积为3,BCE的面积为4,AED的面积为6,那么ABE的面积为______.19.如图,已知∠AOD比∠COD小40°,OB平分∠AOC,则∠BOD=______.【答案】20°【分析】设∠AOD=x°,则∠COD=(x+40)°,∠AOC=(2x+40)°,根据角的和差定义求解即可.20.已知ABC ∆的三边分别为a 、b 、c ,且满足244b b +,则c 的取值范围是___________.21.如图,在ABC 中,,AB AC D =为线段BC 上一动点(不与点B C 、重合),连接,AD 作DAE BAC ∠=∠,且,AD AE =连接CE ,当//,36CE AB BAD ∠=时,DEC ∠=______________________度.【答案】24【分析】由“SAS ”可证∠ABD ∠∠ACE ,可得∠B =∠ACE ,可证∠ABC 是等边三角形,可得∠BAC =∠DAE =∠ACB =∠ACE =60°,即可求解.【详解】解:∠∠DAE =∠BAC ,∠∠BAC-∠CAD=∠DAE-∠CAD,即∠BAD=∠CAE,在∠ABD和∠ACE中AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩,∠∠ABD∠∠ACE(SAS),∠∠B=∠ACE,∠CE∠AB,∠∠BAC=∠ACE,∠∠BAC=∠B,∠AC =BC,∠∠ABC是等边三角形,∠∠BAC=∠DAE=∠ACB=∠ACE=60°,∠∠DAE是等边三角形,∠∠AED=60°,∠∠DEC=180°-36°-60°-60°=24°,故答案为:24.【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,证明∠ABC 是等边三角形是解题的关键.22.已知在钝角∠ABC中,∠ABC=α>90°,∠ACB=β.AD为高,点E在BC上,且∠BAE=13∠BAC,则∠DAE=_________(用含α、β的代数式表示).123.如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE =DF ,连结BF ,CE .下列说法:∠ABD △和ACD 面积相等; ∠∠BAD =∠CAD ;∠BDF CDE ≅;∠//BF CE ;∠CE =AE .其中正确的有_____________ .(把你认为正确的序号都填上)【答案】∠∠∠【分析】∠根据“等底同高”即可得; ∠假设BAD CAD ∠=∠,根据等腰三角形的判定与性质可得ABC 是等腰三角形,从而即可得出结论;∠直接利用三角形全等的判定定理即可得;∠先根据三角形全等的性质可得F DEC ∠=∠,再根据平行线的判定即可得;∠根据三角形全等的性质即可得.【详解】∠AD 是ABC 的中线,BD CD ∴=,又点A 到BD 、CD 的距离相等,∠ABD △和ACD 面积相等,则∠正确;假设BAD CAD ∠=∠,则ABC 是等腰三角形,由题意知,ABC 不一定是等腰三角形,因此,BAD ∠与CAD ∠不一定相等,则∠错误;在BDF 和CDE 中,BD CD BDF CDE DF DE =⎧⎪∠=∠⎨⎪=⎩,()BDF CDE SAS ∴≅,则∠正确;F DEC∴∠=∠,∴,则∠正确;//BF CE≅,BDF CDE∴=,CE不一定等于AE,则∠错误;CE BF综上,正确的有∠∠∠,故答案为:∠∠∠.【点睛】本题考查了三角形全等的判定定理与性质、平行线的判定、等腰三角形的判定与性质等知识点,熟练掌握三角形全等的判定定理与性质是解题关键.24.在平面直角坐标系的第四象限内有一个点M,到x轴的距离为4,到y轴的距离为1,则点M的坐标为_____.【答案】(1,-4)【分析】直接利用点的坐标特点进而分析得出答案.【详解】∠在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为1,∠点M的纵坐标为:-4,横坐标为:1,即点M的坐标为:(1,-4).故答案为:(1,-4).【点睛】此题主要考查了点的坐标,正确掌握第四象限点的坐标特点是解题关键.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).25.同学们在拍照留念的时候最喜欢做一个“V”字型的动作.我们将宽为2cm的长方形如图进行翻折,便可得到一个漂亮的“V”.如果“V”所成的锐角为600,那么折痕PQ 的长是___________.【详解】26.(2016湖北省武汉市)将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x 轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为__________________.⎩27.如图,点D为∠ABC的边AB上一点,且AD=AC,∠B=45°,过D作DE∠AC于E,若四边形BDEC的面积为8,则DE的长为___.【点睛】本题考查了勾股定理,全等三角形的判定和性质,等腰直角三角形的判定和性质,正确的作出辅助线构造等腰直角三角形是解题的关键.28.如果点()312,2P m m --在第三象限,且m 为整数,则P 点关于x 轴对称的点的坐标为______.【答案】()3,1-【分析】根据点P 在第三象限,得到312020m m -<⎧⎨-<⎩,求出m 的值,得到点P 的坐标,由此得到对称点的坐标.【详解】解:∠点()312,2P m m --在第三象限,∠312020m m -<⎧⎨-<⎩, 解得2<m <4,∠m 为整数,∠m =3,∠P (-3,-1),∠P 点关于x 轴对称的点的坐标为()3,1-,故答案为:()3,1-.【点睛】此题考查了象限内点的坐标特点,关于对称轴对称的点的坐标特点,熟记各象限内点的坐标特点是解题的关键.29.三角形三个内角度数之比是1:2:3,最大边长是12,则它的最小边的长是_____.【答案】6【分析】先根据三角形三个内角之比为1:2:3求出各角的度数判断出三角形的形状,再根据含30度角的直角三角形的性质求解.【详解】解:∠三角形三个内角之比为1:2:3,30.如图,点A坐标为(0,4),点B坐标为(4,2).直线BC垂直于y轴于点C.点D 在直线BC上,点B关于直线AD的对称点在y轴上,则点D的坐标为_____.二、解答题31.根据下列条件求解相应函数解析式:(1)直线经过点(45),且与y=2x+3轴无交点;(2)直线的截距为(1.3,2,32.如图,在平面直角坐标系中,ABC的顶点A,B,C的坐标分别为() ()4,3-,1,1.(1)在图中画出ABC 关于y 轴的对称图形,其中A ,B ,C 的对应点分别为1A ,1B ,1C ,并直接写出1B 的坐标;(2)在图中画出以CA 为腰的等腰三角形CAD ,点D 在y 轴左侧的小正方形的顶点上,且CAD 的面积为6. 【答案】(1)图见详解,点1B 的坐标为(4,3)--;(2)图见详解.【分析】(1)根据关于y 轴的对称图形的性质,找到1A ,1B ,1C ,然后连线即可得到111A B C △,据此可得点1B 的坐标;(2)根据以CA 为斜边的直角三角形的面积是3,然后再根据CAD 的面积为6,且CA 为腰,点D 在y 轴左侧的小正方形的顶点上作出图形即可.【详解】(1)如图示,111A B C △为所求,由图可知点1B 的坐标为(4,3)--;(2)如图所示,根据题意,CAD 即为所求.【点睛】本题主要考查作图-轴对称图形,等腰三角形的判定与性质,熟悉相关性质是解题的关键.33.已知y -2与x成正比,且当x=1时,y= -6(1)求y与x之间的函数关系式(2)若点(a,2)在这个函数图象上,求a的值(3)求这个函数图象与x轴,y轴所围成的三角形的面积.11OA OB=24⨯434.如图,平面直角坐标中,三角形ABC 的三个顶点坐标分别为()1,3A ,()2,1B -,()1,2C -.(1)将三角形ABC 先向左平移2个单位,再向下平移3个单位,在平面直角坐标系中画出平移后的三角形A B C ''';(2)写出A ',B ',C '的坐标.【答案】(1)见解析;(2)()10A '-,;()04B '-,;()31C '--, 【分析】(1)分别确定,,A B C 的对应点,,A B C ''',再顺次连接,,A B C '''即可; (2)根据,,A B C '''在坐标系内的位置直接写出坐标即可.【详解】解:(1)如图,A B C '''即为所求作的三角形,(2)根据,,A B C '''在坐标系内的位置可得:()10A '-,;()04B '-,;()31C '--, 【点睛】本题考查的是图形的平移,坐标与图形,掌握平移作图,平移与坐标的变化规律是解题的关键.35.如图,在四边形ABCD 中,连接AC ,AC=BC ,E 是AB 上一点,且有CE=CD ,AD=BE .(1)求证:∠DAC=∠B ;(2)若∠ACB=90°,∠ACE=29°,求∠BCD 的度数.【答案】(1)证明见试题解析;(2)151°.【详解】试题分析:(1)证∠ADC∠∠BEC 即可;(2)由∠ADC∠∠BEC ,得到∠DCA=∠BCE ,从而可以求出∠BCD .试题解析:(1)在∠ADC 和∠BEC 中,∠AC=BC ,CD=CE ,AD=BE ,∠∠ADC∠∠BEC ,∠∠DAC=∠B ;(2)∠∠ADC∠∠BEC ,∠∠DCA=∠BCE ,∠∠ACB=90°,∠ACE=29°,∠∠BCE=90°-29°=61°,∠∠BCD=90°+∠ACD=90°+∠BCE=90° +61° =151°.考点:全等三角形的判定与性质.36.已知一次函数3y x =-+.(1)画出这个函数的图象;(2)求坐标轴所围成的三角形的面积;(3)图象上有两点()11,x y ,()22,x y ,当12x x >时,则1y ______2(y 填>、<或)=..37.一辆汽车的油箱中现有汽油50升,如果不再加油,那么油箱中的余油量y (单位:升)随行驶里程x (单位:千米)的增加而减少,平均每千米的耗油量为0.1升. (1)写出y 与x 之间的函数关系式;(2)汽车最多可行驶多少千米?(3)汽车行驶200千米时,油箱中还有多少油?(4)写出自变量x 的取值范围;【答案】(1)500.1y x =-;(2)500千米;(3)汽车行驶200km 时,油桶中还有30升汽油;(4)0500x ≤≤.【分析】(1)每行程x 千米,耗油0.1x 升,即总油量减少0.1x 升,则油箱中的油剩下(500.1)x 升;(2)剩余油量为0时,行驶的路程最多,代入关系式计算即可;(3)将200x =时,代入第一问中求出的x ,y 的关系式即可得出答案;(4)从实际出发,x 代表的实际意义为行驶里程,所以x 不能为负数,又行驶中的耗油量为0.1x ,不能超过油箱中的汽油量50L .【详解】解:(1)根据题意,每行程x 千米,耗油0.1x 升,即总油量减少0.1x 升, 则油箱中的油剩下(500.1)x 升,y ∴与x 的函数关系式为:500.1y x =-;(2)当0y =时,500.10x ,解得500x =,所以汽车最多可行驶500千米;(3)当200x =时,代入x ,y 的关系式:500.120030y .所以,汽车行驶200km 时,油桶中还有30升汽油;(4)因为x 代表的实际意义为行驶里程,所以x 不能为负数,即0x ;又行驶中的耗油量为0.1x ,不能超过油箱中现有汽油量的值50,即0.150x ≤,解得,500x ≤.综上所述,自变量x 的取值范围是0500x ≤≤.【点睛】本题考查了应用一次函数的知识解决实际问题,读懂题意,能根据题目条件解答解题的关键.38.已知一次函数()2316y m x m =++-,且y 的值随x 值的增大而增大.()1m 的范围;()2若此一次函数又是正比例函数,试m 的值.【答案】(1)3m >- ;(2)m=4. 【分析】根据一次函数的性质即可求出m 的取值范围,然后根据一次函数与正比例函数的定义求出m 的值.【详解】解:()1∵一次函数()2316y m x m =++-,且y 的值随x 值的增大而增大,∴30m +>,得出3m >-.()2又∵此一次函数又是正比例函数,∴2160m -=,解得:4m =±.∵3m >-,∴4m =即为所求,4m =-舍去.【点睛】考查了一次函数的性质及正比例函数的定义,关键是掌握在y=kx+b 中,k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,函数从左到右下降.39.已知等边△ABC 和等边△DBE ,点D 始终在射线AC 上运动.(1)如图1,当点D 在AC 边上时,连接CE ,求证:AD =CE ;(2)如图2,当点D 不在AC 边上而在AC 边的延长线上时,连接CE ,(1)中的结论是否成立,并给予证明.(3)如图3,当点D 不在AC 边上而在AC 边的延长线上时,如果以BD 为斜边作Rt △BDE ,且∠BDE =30°,连接CE 并延长,与AB 的延长线交于F 点,求证:AD =BF . 【答案】(1)见解析;(2)(1)中的结论成立,证明见解析;(3)见解析.【分析】(1)欲证明AD=CE ,只要证明△ABD∠∠CBE 即可.(2)如图2中,倍长BE 到H ,连CH ,DH .首先证明△DBH 是等边三角形,由(1)可知,△ABD∠∠CBH ,推出AD=CH ,∠A=∠HCB=∠ABC=60°,推出BF∠CH ,推出∠F=∠ECH ,再证明△EBF∠∠EHC ,推出BF=CH ,由此即可证明.(3)如图2中,倍长BE 到H ,连CH ,DH .利用(1)中结论可得AD=CH ,再证明BF=CH 即可解决问题.【详解】(1)证明:如图1中,∠∠ABC ,△BDE 都是等边三角形,∠AB =BC ,BD =BE ,∠ABC =∠DBE =60°,∠∠ABD =∠CBE ,在△ABD 和△CBE 中,AB BC ABD CBE BD BE =⎧⎪∠=∠⎨⎪=⎩,∠∠ABD ∠∠CBE (SAS ),∠AD =CE .(2)如图2中,∠∠ABC ,△BDE 都是等边三角形,∠AB =BC ,BD =BE ,∠ABC =∠DBE =60°,∠∠ABD =∠CBE ,在△ABD 和△CBE 中,AB BC ABD CBE BD BE =⎧⎪∠=∠⎨⎪=⎩,∠∠ABD ∠∠CBE (SAS ),∠AD =CE .(3)如图2中,倍长BE 到H ,连CH ,DH .∠BE =EH ,DE ∠BH ,∠DB =DH ,∠BDE =∠HDE =30°,∠∠BDH =60°,∠∠DBH 是等边三角形,由(1)可知,△ABD ∠∠CBH ,∠AD =CH ,∠A =∠HCB =∠ABC =60°,∠BF ∠CH ,∠∠F =∠ECH ,在△EBF 和△EHC 中,BEF CEH F ECH BE EH ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠EBF ∠∠EHC (AAS ),∠BF =CH ,∠AD =BF .【点睛】本题考查了全等三角形的判定和性质、等边三角形的性质、直角三角形30角度性质、锐角三角函数等知识,解题的关键是学会添加辅助线构造全等三角形. 40.某公司购进一种商品的成本为30元/kg ,经市场调研发现,这种商品在未来90天的销售单价p (元/kg )与时间t (天)之间的相关信息如图,销售量y (kg )与时间t (天)之间满足一次函数关系,且对应数据如表,设第t 天销售利润为w (元)(1)分别求出售单价p (元/kg )、销售量y (kg )与时间t (天)之间的函数关系式; (2)问:销售该商品第几天时,当天的销售利润最大?并求出最大利润;【答案】(1)y=﹣2t+200,()()400509050t 90p t t p ⎧=+<<⎪⎨=≤≤⎪⎩;(2)第45天利润最大,最大利润为6050 元.【分析】(1)设y=k 1t+b ,利用待定系数法即可得解,当0<t <50时,设p=k 2t+40,利用待定系数法即可得解,当50≤t≤90时,p=90;(2)利用销量×每千克利润=总利润,得到w 关于t 的函数关系式,然后根据函数性质求得最大值即可.【详解】(1)设y=k 1t+b ,把t=10,y=180;t=30,y=140代入得到:110018030140k b k b +=⎧⎨+=⎩, 解得:12 200k b =-⎧⎨=⎩, ∠y=﹣2t+200;当0<t <50时,设p=k 2t+40,由图象得B (50,90),∠50k+40=90,∠k 2=1,∠p=t+40,当50≤t≤90时,p=90;(2)w=(﹣2t+200)(t+40﹣30)=﹣2t 2+180t+2000=﹣2(t ﹣45)2+6050, 所以当t=45时w 最大值为6050元,w=(﹣2t+120)(90﹣30)=﹣120t+12000,因为﹣120<0,∠w随x增大而减小,所以t=50时,w最大值=6000,综上所述,第45天利润最大,最大利润为6050 元.41.在∠ABC中,AB=AC,D是BC边的中点,M,N分别是AD,AC边上的点.(1)如图1,若B,M,N在一条直线上,且∠ABM=∠BAC=45°,探究BC与AM的数量之间有何等量关系,并说明你的结论;(2)如图2,连接BM,MN,若∠ABM=∠MNC,请说明BM=MN的理由;(3)如图3,若AB=26,BC=20,AD=24,连接MC,MN,直接写出MC+MN最小值.(2)解:理由:如图2,连接CM,∠AB=AC,D是BC边的中点,∠∠ADB=∠ADC=90°,BD=CD=12BC,∠ABC=∠ACB,∠BM=CM,∠∠MBD=∠MCD,∠∠ABC=∠ACB,∠∠ABM=∠ACM,又∠∠ABM=∠MNC,∠∠ACM=∠MNC,∠CM=MN,∠BM=MN;(3)解:如图3,过点B点作BN′∠AC,垂足为N′,交AD于点M′,连接BM,∠AB=AC,点D为BC的中点,∠AD垂直平分BC,∠CM=BM,∠CM+MN=BM+MN,B、M、N三点共线,且BN∠AC时,MC+MN有最小值,此时点N与点N′重合,点M与点M′重合,即BN′为所求的最小值,∠AB=AC=26,BC=20,AD=24,D是BC边上的中点,∠AD∠BC,∠S△ABC=12AC×BN′=12BC×AD,∠12×26×BN′=12×20×24,解得:BN′=24013,∠MC+MN的最小值为24013.42.如图所示,在∠ABC中,∠ABC=45°,CF∠AB于F,BE平分∠ABC,且BE∠AC 于E,与CF相交于点N,D是BC边的中点,连接FD与BE相交于点M(1)求证:AC=BN;(2)求证:AF=MF 【答案】(1)见解析;(2)见解析【分析】(1)证明∠AFC∠∠NFB 即可得到结果;(2)由∠FMN=∠FBM+∠BFM=67.5°,∠FNM=∠NBC+∠BCN=67.5°,推出∠FMN=∠FNM ,即可证明.【详解】解:(1)∠∠ABC=45°,CF∠AB 于F ,∠∠FBC=∠FCB=45°,∠FB=FC ,∠BE∠AC ,∠∠AEB=∠AFC=90°,∠∠A+∠ABE=90°,∠A+∠ACF=90°,∠∠ABE=∠ACF ,在∠AFC 和∠NFB 中,ACF FBN FC BFAFC BFN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠∠AFC∠∠NFB (ASA ),∠AC=BN ;(2)∠FB=FC ,∠BFC=90°,BD=CD ,∠FD∠BC ,∠FD=BD=DC ,∠∠DFB=∠DBF=∠BCF=45°,∠BE 平分∠ABC ,∠∠NBF=∠NBC=22.5°,∠∠FMN=∠FBM+∠BFM=67.5°,∠FNM=∠NBC+∠BCN=67.5°,∠∠FMN=∠FNM ,∠FM=FN ,由(1)知,∠AFC∠∠NFB ,∠AF=FN ,∠FM=AF .【点睛】本题考查全等三角形的判定和性质、等腰直角三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,灵活运用所学知识,属于中考常考题型.43.小明从学校出发,匀速骑行到相距2400米的图书馆,小明出发的同时,同学小阳以每分钟80米的速度从图书馆沿同一条道路步行回学校,两人离学校的路程y (单位:米)与时间x (单位:分钟)的函数图象如图所示.(1)阅读分析题目的文字及图象信息,直接写出能推理得到的三条不同的结论; (2)若小明在图书馆停留5分钟后沿原路按原速返回,请补全小明离学校的路程y 与x 的函数图象;(3)小明从学校出发,经过多长时间在返校途中追上小阳?【答案】(1)∠小明骑车的速度为每分钟240米;∠点C 的坐标为()30,0;∠线段OA 的函数表达式为()240010y x x =≤≤;∠线段BC 是小阳离校的路程与时间的函数图象;(2)见解析;(3)22.5分钟【分析】(1)观察图形分析可得∠小明骑车的速度为每分钟240米;∠点C 的坐标为()30,0;∠线段OA 的函数表达式为()240010y x x =≤≤;∠线段BC 是小阳离校的路程与时间的函数图象.(2)用点D 表休息5分钟后起点,则AD =5,用E 点表示返回学校点E (25,0)补全图象如图所示:(3)设待定系数法求DE 2406000(1525)y x x =-+≤≤与BC 解析式802400y x =-+小明从学校出发在返校途中追上小阳由802400,2406000y x y x =-+⎧⎨=-+⎩,解方程组即可. 【详解】解:(1)答案不唯一,如:∠小明骑车的速度为每分钟240米;∠点C 的坐标为()30,0;∠线段OA 的函数表达式为()240010y x x =≤≤;∠线段BC 是小阳离校的路程与时间的函数图象;(2)用点D 表休息5分钟后起点,则AD =5,∠原路按原速返回,返回时间与去时时间相同,用E 点表示返回学校点E (25,0) 补全图象如图所示:(3)设DE 的表达式为(0)y kx b k =+≠,∠()152400D ,,()25,0E , ∠152400,250.k b k b +=⎧⎨+=⎩解得240,6000.k b =-⎧⎨=⎩∠2406000(1525)y x x =-+≤≤.∠小阳以每分钟80米的速度从图书馆沿同一条道路步行回学校,所用时间2400÷80=30分钟,∠点C (30,0),设BC 解析式为11(0)y k x b k =+≠,代入坐标得1112400300b k b =⎧⎨+=⎩, 解得802400y x =-+,小明从学校出发在返校途中追上小阳,由802400,2406000y x y x =-+⎧⎨=-+⎩, 得22.5,600.x y =⎧⎨=⎩答:小明从学校出发,经过22.5分钟追上小阳.【点睛】本题考查图像获取信息,待定系数法求直线解析式,补画函数图像,利用函数解析式组成方程组求追及时间,掌握图像获取信息,待定系数法求直线解析式,补画函数图像,利用函数解析式组成方程组求追及时间.44.作图题:在方格纸中,画出△ABC关于直线MN对称的△A’B’C’.【答案】答案见解析【分析】分别作A、B、C三点关于直线MN的对称点A′、B′、C′,连接A′B′、B′C′、A′C′即可.【详解】如图所示:∠过点A作AD∠MN,延长AD使A′D= AD;∠过点B作BE∠MN,延长BE使B′E=BE;∠过点C作CF∠MN,延长CF使C′F=C F;∠连接A′B′、B′C′、A′C′即可得到∠ABC关于直线MN对称的∠A′B′C′.【点睛】本题考查了作图﹣轴对称变换,画一个图形的轴对称图形时,一般的方法是:∠由已知点出发向所给直线作垂线,并确定垂足;∠直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;∠连接这些对称点,就得到原图形的轴对称图形.45.如图所示,CD 垂直平分线段,AB AB 平分CAD ∠,求证:AD BC ∥.【答案】见解析【分析】由CD 垂直平分AB ,可得CA CB =,CAB B ∠=∠;又由AB 平分∠CAD ,CAB BAD ∠=∠;由等量代换得B BAD ∠=∠;再由内错角相等,两直线平行,即可完成证明.【详解】证明:∠CD 垂直平分AB ,CA CB ∴=,CAB B ∴∠=∠,AB 平分CAD ∠,CAB BAD ∴∠=∠,B BAD ∴∠=∠,AD BC ∴.【点睛】本题考查了平行线的判定及垂直平分线的性质,熟练掌握性质及判定方法是解题的关键.46.如图,在Rt ABC 中,90ACB ∠=︒,AC BC =,D 是斜边AB 上的一点,AE CD ⊥于E ,BF CD ⊥交CD 的延长线于F .(1)求证:ACE △∠CBF ;(2)求证:AE EF BF =+.【答案】(1)见解析(2)见解析【分析】(1)由“AAS ”可证ACE △∠CBF ;(2)由“AAS ”可证ACE △∠CBF ,可得AE CF =,CE BF =,可得结论. (1)证明:AE CD ⊥,90AEC ∴∠=︒,90ACE CAE ∴∠+∠=︒,90ACE BCF ∠+∠=︒,CAE BCF ∴∠=∠,AE CD ⊥,BF CD ⊥,90AEC BFC ∴∠=∠=︒,在ACE △与CBF 中,CAE BCF AEC BFC AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,ACE ∴∠CBF AAS (); (2)证明:AE CD ⊥,90AEC ∴∠=︒,90ACE CAE ∴∠+∠=︒,90ACE BCF ∠+∠=︒,CAE BCF ∴∠=∠,AE CD ⊥,BF CD ⊥,90AEC BFC ∴∠=∠=︒,在ACE △与CBF 中,AEC BFC CAE BCF AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,ACE ∴∠CBF AAS (), AE CF ∴=,CE BF =,AE EF BF ∴=+.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,掌握全等三角形的判定方法是解题的关键.47.A ,B 两地相距60km ,甲乙两人沿同一条路从A 地前往B 地,甲先出发,图中l 1,l 2表示甲乙两人离A 地的距离y (km )与乙所用时间x (h )之间的关系,请结合图象回答下列问题:(1)图中表示甲离A地的距离y(km)与乙所用时间x(h)之间关系的是_______(填l1或l2);(2)大约在乙先出发_______h后,两人相遇,这时他们离开A地_______km;(3)当其中一人到达B地时,另一人距B地_______km;(4)乙出发多长时间时,甲乙两人刚好相距10km?【答案】(1)l2(2)2;40(3)10(4)乙出发1小时或3小时时,甲乙两人刚好相距10km【分析】(1)由图可直接得到答案;(2)观察两条直线的交点,即可得到答案;(3)由图可得二人速度,即可得到乙到达B地所需时间,从而可得甲到达B地还需要的时间,即可甲距B地的距离;(4)设乙出发t小时,甲乙两人刚好相距10km,分两种情况:当乙未追上甲时:20+10t=20t+10;当乙追上甲后:20+10t+10=20t,分别求解即可.(1)解:由图可知,表示甲离A地的距离y(km)与乙所用时间x(h)之间关系的是l2;故答案为:l2;(2)解:由图可得:大约在乙先出发2h后,两人相遇,这时他们离开A地40km;故答案为:2,40;(3)。

沪科版数学八年级上册 月考检测卷(一)(含答案)

沪科版数学八年级上册  月考检测卷(一)(含答案)

月考检测卷(一)(时间:120分钟满分:150分)题号一二三四五六七八总分得分一、选择题(本大题共10 小题,每小题4分,满分40 分)1.函数y=x+3x−1中,自变量x的取值范围是 ( )A.x≥-3B.x≥-3且x≠1C. x≠1D. x≠-3且x≠12.点P在第四象限,且点P到x轴的距离为3,点P到y轴的距离为2,则点P 的坐标为 ( )A.( -3,-2)B.(3,-2)C.(2,3)D.(2,-3)3.点P(m−1,m+3))在平面直角坐标系的y轴上,则点 P的坐标为( )A.( -4,0)B.(0,-4)C.(4,0)D.(0,4)4.一次函数y=(k+2)x+k²−4的图象经过原点,则k的值为( )A.2B. -2C.2或-2D.35.在平面直角坐标系中,线段A′B′是由线段AB 经过平移得到的,已知点A( -2,1)的对应点为.A′(3,1),点 B 的对应点为.B′(4,0),则点 B 的坐标为 ( )A.(9,0)B.(-1,0)C.(3,-1)D.( -3,-1)6.若一次函数y=(1−3m)x+1的图象经过点A(x₁,y₁)和点B(x₂,y₂),当x₁<x₂时,y₁<y₂,则 m 的取值范围是 ( )A. m<0B. m>0C.m<13D.m>137.一次函数y=2(x-3)的图象在y轴上的截距是 ( )A.2B. -3C. -6D.68.一次函数的图象交x轴于(2,0),交y轴于(0,3),当函数值大于0时,x的取值范围是 ( )A. x>2B. x<2C. x>3D. x<39.如图中表示一次函数 y =mx +n 与正比例函数:y=mnx;(m,n是常数,mn≠0)图象的是( )10.在同一条道路上,甲车从A地到B地,乙车从B地到A 地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是 ( )A.乙先出发的时间为0.5小时B.甲的速度是80 千米/小时C.甲出发0.5 小时后两车相遇D.甲到B 地比乙到A 地早 112小时二、填空题(本大题共4小题,每小题5分,满分20分)11.如果将电影票上“6排3 号”简记为(6,3),那么“9排21 号”可表示为 .12.已知直线y =x --n 与 y =2 x +m 的交点为( -2,3),则方程组 {x−y−n =0,2x−y +m =0的解是 .13.三角形ABC 中 BC 边上的中点为 M ,在把三角形 ABC 向左平移2 个单位,再向上平移3 个单位后,得到三角形A ₁B ₁C ₁的B ₁C ₁边上中点M ₁此时的坐标为(-1,0),则M 点坐标为 .14.已知一次函数y=(m+4)x+2m+2,无论m 取何值时,它的图象恒过的定点P ,则点 P 的坐标为 .若m 为整数,且它的图象不过第四象限,则m 的最小值为 .三、(本大题共2 小题,每小题8分,满分16 分)15.已知一次函数图象经过(3,5)和(-4,-9)两点,求此一次函数的表达式.16.如图,三角形ABC 三个顶点的坐标分别是A(4,3),B(3,1),C(1,2).(1)将三角形ABC 三个顶点的纵坐标都减去5,横坐标不变,分别得到点 A₁,B₁,C₁,,画出三角形.A₁B₁C₁;(2)将三角形ABC 向左平移5个单位,再向下平移5个单位得到三角形 A₂B₂C₂,,画出三角形.A₂B₂C₂.四、(本大题共2 小题,每小题8分,满分16 分)17.在平面直角坐标系中,点A从原点O出发,沿x轴正方向按半圆形弧线不断向前运动,其移动路线如图所示,其中半圆的半径为1 个单位长度,这时点A₁,A₂,A₃,A₄的坐标分别为A₁(0,0),A₂(1,1) ,A₃(2,0),A₄(3,−1),按照这个规律解决下列问题:(1)写出点.A₅,A₆,A₇,A₈的坐标;(2)试写出点.Aₙ的坐标(n是正整数).18.如图,直线y=kx+b分别与x轴、y轴交于点A(−2,0),B(0,3),直线y=1−mx分别与x轴交于点C,与直线AB交于点 D.已知关于x的不等式kx+b>1−mx的解集是x>−45.分别求出k,b,m的值.五、(本大题共2 小题,每小题10 分,满分20 分)19.如图,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|a+2|+b−4=0,点 C的坐标为(0,3).(1)求a,b的值及.S三角形ABC;(2)若点 M在x轴上,且S三角形ACM =13S三角形ABC,试求点 M的坐标.20.在平面直角坐标系中,O 为坐标原点,将三角形 ABC 进行平移,平移后点A,B,C的对应点分别是点D,E,F,点A,B,D,E的坐标分别为(0,a),(0,b),(a,12a),(m−b,12a+4).(1)若a=1,求m的值;(2)若点C(−a,14m+3),其中a>0..直线CE交y轴于点 M,且三角形BEM的面积为1,试探究AF和BF的数量关系,并说明理由.六、(本题满分12 分)21.在平面直角坐标系中,折线y=−|x−2|+1与直线y=kx+2k(k⟩0)如图所示.(1)直线y=kx+2k(k⟩0)与x轴交点的坐标为;(2)请用分段函数的形式表示折线y=−|x−2|+1;(3)若直线y=kx+2k(k⟩0)与折线y=−|x−2|+1有且仅有一个交点,直接写出k的取值范围.七、(本题满分12分)22.某超市准备购进甲、乙两种品牌的文具盒,甲、乙两种文具盒的进价和售价如下表.预计购进乙品牌文具盒的数量y(个)与甲品牌文具盒数量x(个)之间的函数关系如图所示.甲乙进价/元1631售价/元2138(1)求y与x之间的函数表达式;(2)若超市准备用不超过6 300元购进甲、乙两种文具盒,则至少购进多少个甲种文具盒?(3)在(2)的条件下,写出销售所得的利润W(元)与x(个)之间的表达式,并求出获得的最大利润.八、(本题满分14分)23.如图,在平面直角坐标系中,长方形 OABC 的顶点 O 与坐标原点重合,顶点A,C分别在坐标轴上,顶点 B的坐标为(4,2).E为AB 的中点,过点D(6,0)和点 E的直线分别与BC,y轴交于点F,G.(1)求直线 DE 的函数表达式;(2)函数y=mx−1的图象经过点 F且与x轴交于点 H,求出点 F的坐标和m值;(3)在(2)的条件下,求出四边形 OHFG的面积.月考检测卷(一)1. B2. D3. D4. A5. B6. C7. C8. B9. C 10. D11.(9,21) 12.{x =−2,y =3 13.(1,-3) 14.(-2,-6) -115.解:设一次函数的表达式为y=kx+b.∵一次函数的图象经过(3,5)和(-4,9)两点,则有 {3k +b =5,−4k +b =−9.解得 {k =2,b =−1...一次函数的表达式为y=2x-1.16.解:(1)如图,三角形A ₁B ₁C ₁ 即为所求.(2)如图,三角形A ₂B ₂C ₂即为所求.17.解:(1)由图可得,A ₅(4,0),A ₆(5,1),A ₇(6,0),A ₈(7,-1).(2)根据图形可知,点的位置每4个数一个循环,每个点的横坐标为序数减1,纵坐标为0,1,0,-1循环,∴点An 的坐标(n 是正整数)为A(n-1,0)或A(n-1,1)或A(n-1,0)或A(n-1,-1).18.解:∵直线y=kx+b 分别与x 轴、y 轴交于点A( -2,0),B(0,3),∴{−2k +b =0,b =3.解得过点 A ,B 的直线的表达式为 y =32x +3.∵关于x 的不等式kx+b>1-mx 的解集是 x >−45,.点 D 的横坐标为 −45. 将 x =−45代入 y =32x +3,解得 y =95.∴ 点 D 的坐标为 (−54,95).将 x =−45,y =95代入y=1-mx,得 95=1−(−45)m.解得m=1.19.解:(1)∵|a+2|+√b-4=0,∴a+2=0,b-4=0.∴a=-2,b=4.∴点A 的坐标为(-2,0),点B 的坐标为(4,0).又∵点C 的坐标为(0,3),∴AB=|-2-4|=6,CO=3. ∴S 三角形ABC =12AB ⋅CO =12×6×3=9.(2)设点M 的坐标为(x,0),则AM=|x-( -2)|=|x+2|.又: ⋅S 三角形ACM =13S 三角形ABC ,∴12AM ⋅OC =13×9.∴12|x +2|×3=3.∴ |x+2|=2,即x+2=±2,解得x=0或x=-4.故点M 的坐标为(0,0)或(-4,0).20.解:(1)当a=1时,根据三角形ABC 平移得到三角形DEF,点A(0,1),点B(0,b)的对应点分别为点 D (1,12),点 E (m−b ,92),得 {m−b =1,b−92=1−12.解得 {b =5,m =6.故m 的值为6.(2)AF=BF.理由如下:由三角形ABC 平移得到三角形DEF ,点A(0,a),点B(0,b)的对应点分别为点D (a ,12a ),点 E(m−b ,12a +4),得 {a =m−b,①a−12a =b−(12a +4).②由②得b=a+4.③ 把③代入①,得m=2a+4.∴14m +3=12a +4.∴点 C 与点 E 的纵坐标相等.∴CE∥x 轴.∴M (0,12a +4).∴三角形 BEM 的面积 =12BM ⋅EM =1.:a >0,∴BM =a +4−(12a +4)=12a,EM =a.∴14a 2=1.∴a =2.∴点A 的坐标为(0,2),点B 的坐标为(0,6),点 C 的坐标为( -2,5),点 D 的坐标为((2, 12).又∵在平移中,点 F 与点 C 是对应点,点 D 与点 A 是对应点,∴点F 的坐标为(0,4).∴AF=4-2=2,BF=6-4=2.∴AF=BF.21.解:(1)( -2,0)(2)∵函数y=-|x-2|+1,∴当x>2时,|x-2|=x-2.∴函数的表达式为y=-x+2+1=-x+3.当x≤2时,|x-2|=2-x,∴函数的表达式为y=x-2+1=x-1.∴用分段函数的形式表示折线为 y ={x−1(x ≤2),−x +3(x⟩2)(3)k 的取值范围是 k>1或 k =14.22.解:(1)设y 与x 之间的函数表达式为y=kx+b,根据题意,得 {250=50k +b,150k +b.解得∴y 与x 之间的函数表达式为y=-x+300.(2)根据题意,得16x+31(-x+300)≤6300,解得x≥200.∵x 为正整数,∴至少购进200 个甲种文具盒.(3)根据题意,得W=(21-16)x+(38-31)(-x+300)= -2x+2 100.∵k= -2<0,∴W 随x 的增大而减小.23.解:(1)设直线DE 的函数表达式为y=kx+b.∵顶点B 的坐标为(4,2),E 为AB 的中点,∴点E 的坐标为(4,1).∵点D 的坐标为(6,0),将D,E 的坐标代入y=kx+b,得 {0=6k +b,1=4k +b.解得 {k =−12,b =3.直线 DE 的函数表达式为 y =−12x +3.(2)∵点 F 的纵坐标为2,且点 F 在直线 DE 上,∴将y=2代入 y =−12x +3,得 −12x +3=2.解得x=2.∴点F 的坐标为(2,2).∵函数y=mx-1的图象经过点 F,将(2,2)代入y=mx-1,得2m-1=2.解得 m =32.(3)设直线 FH 交y 轴于点 K.对于 y =32x−1,当y=0时, 32x−1=0,解得 x =23,即点H 的坐标为(23,0).∴OH =23.当x=0时,y=-1,即点K 的坐标为(0,-1).∴OK=1.同理可得,点G 的坐标为(0,3),则KG=4.∵长方形OABC 的顶点与O 重合,点B 的坐标为(4,2),∴点C 的坐标为(0.2).∴CF=2.23=113.。

(完整版)沪科版数学八年级数学上册综合测试卷(含答案)

(完整版)沪科版数学八年级数学上册综合测试卷(含答案)

八年级数学第一学期综合测试卷一、选择题(本题共10小题,每小题4分,满分40分)1、已知a是整数,点A(2a+1,2+a)在第二象限,则a的值是…………………………………( )A.-1 B.0 C.1 D.22、如果点A(2m-n,5+m)和点B(2n-1,-m+n)关于y轴对称,则m、n的值为…………( )A.m=-8,n=-5 B.m=3,n=-5 C.m=-1,n=3 D.m=-3,n=13、下列函数中,自变量x的取值范围选取错误的是………………………………………………()A.y=2x2中,x取全体实数 B.中,x取x≠-1的所有实数C.中,x取x≥2的所有实数 D.中,x取x≥-3的所有实数4、幸福村办工厂,今年前5个月生产某种产品的总量C(件)关于时间t(月)的函数图象如图1所示,则该厂对这种产品来说………………………………………………………………………( )A.1月至3月每月生产总量逐月增加,4、5两月每月生产总量逐月减少B.1月至3月每月生产总量逐月增加,4,5两月每月生产量与3月持平C.1月至3月每月生产总量逐月增加,4、5两月停止生产D.1月至3月每月生产总量不变,4、5两月均停止生产5、下图中表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)图象是……( )A .B .C .D .6、设三角形三边之长分别为3,8,1-2a ,则a 的取值范围为……………………………………( )A .-6〈a 〈-3B .-5<a 〈-2C .-2〈a 〈5D .a 〈-5或a>2 7、如图7,AD 是ABC △的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE 。

下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE 。

其中正确的有( ) A 。

1个B 。

2个C. 3个D 。

2019-2020年新沪科版八年级数学上学期期末模拟综合测试卷及答案解析

2019-2020年新沪科版八年级数学上学期期末模拟综合测试卷及答案解析

@三人行,必有我师!@第一学期期末教学质量调研测试卷八年级数学(满分100分,考试时间90分钟)一、填空题(本大题共15题,每题2分,满分30分)1= . 2.方程24x x =的根是 . 3.函数2xy x =+的定义域是 . 4x 的值是 . 5.已知2()1f x x =-,则f = . 6.在实数范围内因式分解:232x x --= .7.已知关于x 的方程2230x x k -+=没有实数根,则k 的取值范围是 . 8.已知1122(,),(,)P x y Q x y 在反比例函数(0)ky k x=>的图像上,若120x x <<,则1y 2y (填“>”“<”或“=”).9.如果正比例函数的图像经过点(2,1)-,那么这个正比例函数的解析式是 . 10.命题“对顶角相等”的逆命题是 . 11.到点(5,0)P -的距离等于4的点的轨迹是 .学校 班级 姓名 学号 座位号………………○………………装………………○………………○………………订………………○………………○………………线………………○………………○………@三人行,必有我师!@12.如图,ABC ∆中,CD AB ⊥于D ,E 是AC 的中点.若6AD =,5DE =,则CD 的长等于.13.如图,在ABC ∆中,56ABC ∠=︒,三角形的外角DAC ∠和ACF ∠的平分线交于点E ,则ABE ∠= 度.14.如图,在Rt ABC ∆中,90BAC ∠=︒,30C ∠=︒,以直角顶点A 为圆心,AB 长为半径画弧交BC 于点D ,过D 作DE AC ⊥于点E .若D E a =,则ABC ∆的周长用含a 的代数式表示为 .15.如图,在长方形ABCD 中,6AB =,8AD =,把长方形ABCD 沿直线MN 翻折,点B 落在边AD 上的E 点处, 若2AE AM =,那么ED 的长等于 .二、选择题(本大题共4题,每题3分,满分12分)161的一个有理化因式是……………………………………………( )BCDM NA (第15题图)ADEBC DABEF AECDB(第12题图)(第13题图)(第14题图)ABC1D117.关于反比例函数2yx=的图像,下列叙述错误的是……………………………………()A.y随x的增大而减小BC.图像关于原点对称D.点(1,2)--18.如图,是一台自动测温记录仪的图像,它反映了某市冬季某天气温T随时间t变化而变化的关系,观察图像得到下列信息,其中错误的是……………………………()A.凌晨4时气温最低为3-℃B.14时气温最高为8℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降19.如图,在平面直角坐标系中,直线AB与x轴交于点(2,0)A-,与x轴夹角为30︒,将ABO∆沿直线AB翻折,点O的对应点C恰好落在双曲线(0)ky kx=≠上,则k的值为………………………………()A.4 B.2-C D.三、简答题(本大题共4题,每题6分,满分24分)20+(第19题图)@三人行,必有我师!@@三人行,必有我师!@@三人行,必有我师!@21.解方程:(21)(1)8(9)1x x x +-=--22.已知关于x 的一元二次方程2(41)(41)0ax a x a -++-=有两个实数根. (1)求a 的取值范围;(2)当a 在允许的取值范围内取最小的整数时,请用配方法解此方程.23.如图,在ABC ∆中,AB AC =,作A D A B ⊥交BC 的延长线于点D ,作A E B D ∥,CE AC ⊥,且AE, CE 相交于点E ,求证:AD CE =.E@三人行,必有我师!@四、解答题(本大题共3题,每题8分,满分24分)24.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药时间x 小时之间函数关系如图所示(当410x ≤≤时,y 与x 成反比例).(1)根据图像分别求出血液中药物浓度上升和下降阶段y 与x 之间的函数关系式; (2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?25.2013年,某市某楼盘以每平方米6500元的均价对外销售,因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年的均价为每平方米5265元.(1)求平均每年下调的百分率;@三人行,必有我师!@(2)假设2016年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,张强的愿望能否实现?(房价每平方米按照均价计算)26.如图,已知在ABC ∆中,90BAC ∠=︒,AB AC =,点D 在边BC 上,作90DAF ∠=︒,且AF AD =,过点F 作EF AD ∥,且EF AF =,联结CF, CE . (1)求证:FC BC ⊥;(2)如果BD AC =,求证:点C 在线段DE 的垂直平分线上.(第26题图)AFEDCB@三人行,必有我师!@27.(本题满分10分)ABC ∆中,AB AC =,60A ∠=︒,点D 是线段BC 的中点,120EDF ∠=︒,DE 与线段AB 相交于点E ,DF 与线段AC (或AC 的延长线)相交于点F . (1)如图1,若DF AC ⊥,垂足为F ,4AB =,求BE 的长;(2)如图2,将(1)中的EDF ∠绕点D 顺时针旋转一定的角度,仍与线段AC 相交于点F .求证:12BE CF AB +=; (3)如图3,将(2)中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交与点F ,作DN AC ⊥于点N ,若DN FN =,求证:)BE CF BE CF +=-.AEB F CD(图1)AEBF CD(图2)A EBFC DN(图3)@三人行,必有我师!@八年级数学答案及评分参考一、填空题:(本大题共15题,每题2分,满分30分)1.62 ; 2. 01=x 42=x ; 3.2-≠x ; 4.1; 5.13+; 6.)217-3)(2173(-+-x x ; 7.31>k ; 8.>; 9.x y 21-=; 10.相等的两个角是对顶角; 11. 以P 为圆心4为半径的圆; 12.8 13. 28度 14.a )326(+ 15.5311- 二、选择题:(本大题共4题,每题3分,满分12分)16.D ; 17.A 18.C ; 19.D 三、简答题(本大题共4题,每题6分,满分24分) 20.解:原式= 6)2448(2213332÷-+-++………………… (3分) =2222213332-+-++…………………………………(2分) =22334+…………………………………………………… (1分) 21.解:18721222--=-+-x x x x …………………………………… (1分) 072722=-+x x ………………………………… (1分)0)92)(8(=-+x x ……………………………………… (2分) 81-=x 292=x …………………………………………………(2分) 22.(1)∵关于x 的一元二次方程2(41)(41)0ax a x a -++-=有两个实数根;@三人行,必有我师!@∴△ []0)14(4)14(2≥--+-=a a a ………………………………… (1分)0416181622≥+-++a a a a112-≥a 121-≥a ………………………………… (1分) 又∵此方程是一元二次方程 ∴0≠a ∴a 的取值范围是0121≠-≥a a 且 ………………………………… (1分) (2)∵0121≠-≥a a 且 ∴ a 的最小的整数为a=1 ………………………………… (1分) ∴原方程为035x 2=+-x413)25(2=-x ………………………………… (1分)21325±=-x 21351+=x 21352-=x ………………………… (1分)23. 证明:∵ AB=AC∴ ∠ABC=∠ACB ……………………………………………… (1分) ∵ AE ∥BD∴ ∠EAC=∠ACB ……………………………………………… (1分) ∴ ∠ABC=∠EAC ……………………………………………… (1分)@三人行,必有我师!@∵AD ⊥AB CE ⊥AC∴ ∠ BAD =∠ACE = 90°………………………………………… (1分) 在△ABD 和△ACE 中⎪⎩⎪⎨⎧∠=∠=∠=∠ACE BAD ACAB CAE ABC ∴CAE ABD ∆≅∆ ……………………………………………… (1分)∴ AD=CE ……………………………………………… (1分)四、解答题(本大题共3题,每题8分,满分24分)24.解:(1)当0≤x≤4时,设直线解析式为:y=kx ,将(4,8)代入得:8=4k ,解得:k=2, …………………………………… (1分)故直线解析式为:y=2x , …………………………………… (1分)当4≤x≤10时,设反比例函数解析式为:y=,将(4,8)代入得:8=,解得:a=32, …………………………………… (1分) 故反比例函数解析式为:y=; ………………………………… (1分)(2)当y=4,则4=2x ,解得:x=2, ……………………………… (1分)当y=4,则4=,解得:x=8, ……………………………… (1分)∵8﹣2=6(小时), ………………………………… (1分) ∴ 血液中药物浓度不低于4微克/毫升的持续时间6小时.…… (1分)@三人行,必有我师!@25. 解:(1)设平均每年下调的百分率为x ……………………………… (1分)根据题意得:6500(1﹣x )2=5265,……………………………… (2分) 解得: 9.01±=-xx 1=0.1=10%, x 2=1.9(舍去), ………………… (1分)答:平均每年下调的百分率为10%; ……………………………… (1分)(2)∵下调的百分率相同,∴2016年的房价为5265×(1﹣10%)=4738.5(元/米2),……… (1分) ∴100平方米的住房总房款为100×4738.5=473850=47.385(万元) (1分) ∵20+30>47.385, ……………………………… (1分) ∴张强的愿望可以实现.26. (1)∵∠BAC=∠DAF=90°∴DAC DAF DAC BAC ∠-∠=∠-∠ 即CAF BAD ∠=∠…… (1分) 又∵AB=AC ,AD=AF ∴△ABD ≌△ACF ∴∠B=∠ACF ……… (1分) ∵∠BAC=90°,AB=AC ∴∠B=∠ACB=45° …………………… (1分) ∴∠ACF=∠B=45°,∴∠BCF=90°∴FC ⊥BC ………………………………………………………… (1分)(2) ∵△ABD ≌△ACF,∴BD=FC又∵BD= AC, ∴AC=FC∴∠CAF=∠CFA …………………………………………………… (1分) ∵∠DAF=90°,EF ∥AD∴∠DAF=∠AFE =90°@三人行,必有我师!@∴∠DAC=∠EFC …………………………………………………… (1分) ∵AD=AF ,EF=AF∴AD=FE ,∴△ADC ≌△FEC ……………………………………………… (1分) ∴CD=CE∴点C 在线段DE 的垂直平分线上。

沪科版数学八年级上册综合训练50题-含答案

沪科版数学八年级上册综合训练50题-含答案

沪科版数学八年级上册综合训练50题含答案(填空、解答题)一、填空题1.如图,在平面直角坐标系中,点O 为坐标原点,若直线26y x =-与x 轴、y 轴分别交于点A ,B , 则AOB 的面积为________.2.如图,直线22y x =--与x 轴交于点A ,与y 轴交于点B ,把直线AB 沿x 轴的正 半轴向右平移2个单位长度后得到直线CD ,则直线CD 的函数解析式是__________.3.在ABC 中,∠A=∠B=∠C ,则ABC 是_________三角形.4.如图,在Rt △ABC 中,∠C=90°,∠CAB 的平分线BC 交BC 于D ,DE 是AB 的垂直平分线,垂足为E ,若BC=3,则DE 的长为___.5.下列给出的是关于某个一次函数的自变量x 及其对应的函数值y 的若干信息,请你根据表格中的相关数据计算:m +n =____________.6.阅读下面的材料:小芸的作法如下:请回答:小芸的作图依据是____________________________________.7.若函数y kx b=+的图象如图所示,则不等式0+>的解集是___________.kx b8.如图,在ABC中,按以下步骤作图:、于点D、E.∠以点B为圆心,任意长为半径作弧,分别交AB BC∠分别以点D、E为圆心,大于1DE的同样长为半径作弧,两弧交于点F.2∠作射线BF 交AC 于点G . 如果23=AB BC ,求ABG BGC S S ∆∆=________.9.函数y ax b =+的图象如图,不等式2ax b +≤的解集为__________.10.一次函数y =x ﹣5的图象与y 轴的交点坐标为 _________.11.已知点P 的坐标为(a +1,5﹣3a ),且它到两个坐标轴的距离相等,则点P 的坐标为_______________.12.如图,长方形纸片ABCD 中AD ∠BC ,AB ∠CD ,∠A =90°,将纸片沿EF 折叠,使顶点C 、D 分别落在点C '、D '处,C 'E 交AF 于点G .若∠CEF =68°,则么∠GFD '=______°.13.已知点()1,3M -,点N 为x 轴上一动点,则MN 的最小值为______. 14.已知点P (m ,2)在第一象限,那么点B (3,﹣m )在第____象限.15.如图,已知,,a b c 分别是Rt ABC △的三条边长,90C ∠=︒,我们把关于x 的形如a by x c c =+的一次函数称为“勾股一次函数”;若点P ⎛ ⎝⎭在“勾股一次函数”的图象上,且Rt ABC △的面积是10,则c 的值是_________.16.如图,在∠ABC 中,AB =17,AC =12,AD 为中线,则∠ABD 与∠ACD 的周长之差=__.17.某下岗职工购进一批货物到集贸市场零售,已知卖出的货物质量x (千克)与售价y (元)的关系如表所示:写出y 关于x 的函数关系式是____________.18.“欢乐跑中国•重庆站”比赛前夕,小刚和小强相约晨练跑步.小刚比小强早1分钟跑步出门,3分钟后他们相遇.两人寒暄2分钟后,决定进行跑步比赛.比赛时小刚的速度始终是180米/分,小强的速度是220米/分.比赛开始10分钟后,因雾霾严重,小强突感身体不适,于是他按原路以出门时的速度返回,直到他们再次相遇.如图所示是小刚、小强之间的距离y (千米)与小刚跑步所用时间x (分钟)之间的函数图象.问小刚从家出发到他们再次相遇时,一共用了__分钟.19.在ABC 中,AB AC =,点D 是ABC 外一点,连接AD 、BD 、CD ,且BD 交AC 于点O ,在BD 上取一点E ,使得AE AD =,EAD BAC ∠=∠,若70ACB ∠=︒,则BDC ∠的度数为 _____.20.已知1(2, 1)A ,2(1, 0)A -,…,(, )k k k A x y ,…,(k 为正整数),且满足111k k x x -=-,11k k y y -=-,则A 2022的坐标为____.21.已知点P (x ,y )位于第四象限,并且x ≤y +4(x ,y 为整数),写出一个符合上述条件的点P 的坐标_________.22.如图,ABC 中,AB AC =,DE 是AB 的垂直平分线,垂足为D ,交AC 于E .若11AB cm =,BCE 的周长为17cm ,则BC=________cm .23.如图,已知1A (1,0),2A (1,﹣1),3A (﹣1,﹣1),4A (﹣1,1),5A (2,1),…,则点2010A 的坐标是________.24.下表分别给出了一次函数y 1=k 1x +b 1与y 2=k 2x +b 2图像上部分点的横坐标x 和纵坐标y 的对应值.则当x ____时,y 1>y 2.25.如图所示,OC 平分AOB ∠,OD 平分COB ∠,90AOD ∠=︒,则BOD ∠=_______︒.26.如图,在∠ABC 中,∠ACB =90°,AC =BC ,∠ABC 的角平分线BE 和∠BAC 的外角平分线AD 相交于点P ,AP 与BC 的延长线交于点D .过点P 作PF ∠AD 交AC 的延长线于点H ,交BC 的延长线于点F ,连接AF 并延长交DH 于点G .下列结论中,正确的是______.(填序号)∠∠APB =45°,∠PF =P A ,∠DG =AP +GH ,∠BD =AH +AB .27.如图,ADC △是45°的直角三角板,ABE 是30°的直角三角板,CD 与BE 交于点F ,则DFB ∠的度数为__________28.如图,在长方形ABCD 中4AB DC ==,5AD BC ==.延长BC 到E ,使2CE =,连接DE .动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA →→→向终点A 运动,设点P 运动的时间为t 秒,存在这样的t ,使DCP 和DCE △全等,则t 的值为______.29.如图,已知∠AOB=90°, ∠COD=90°,OE 为∠BOD 的角平分线,∠BOE=25°,则∠AOC=_____30.已知点A (3,4),点B (﹣1,1),在x 轴上有两动点E 、F ,且EF=1,线段EF 在x 轴上平移,当四边形ABEF 的周长取得最小值时,点E 的坐标为________.二、解答题 31.(1)解方程:2101x x-=+ (2)已知等腰三角形的两边长为5cm 和4cm ,求它的周长.32.如图,BA =BE ,∠A =∠E ,∠ABE =∠CBD ,ED 交BC 于点F ,且∠FBD =∠D . 求证:AC ∠BD .证明:∠∠ABE =∠CBD (已知), ∠∠ABE +∠EBC =∠CBD +∠EBC ( ) 即∠ABC =∠EBD在∠ABC 和∠EBD 中, ___________ABC EBD A E ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠∠ABC ∠∠EBD ( ), ∠∠C =∠D ( ) ∠∠FBD =∠D ,∠∠C = (等量代换), ∠AC ∠BD ( )33.如图,在四边形ABCD 中,AD BC ∥,点E 为对角线BD 上一点,A BEC ∠=∠ ,且AB EC =.(1)求证:ABD ECB ≌;(2)若65BDC ∠=︒,求DBC ∠的度数.34.如图,已知:DE //BC ,CD 是∠ACB 的平分线,∠B =80°,∠A =50°,求:∠EDC 与∠BDC 的度数.35.点O 为直线AB 上一点,过点O 作射线OC ,使∠BOC=65°,将一直角三角板的直角顶点放在点O 处.(1)如图1,将三角板MON 的一边ON 与射线OB 重合时,则∠MOC=__________ (2)如图2,将三角板MON 绕点O 逆时针旋转一定角度,此时OC 是∠MOB 的平分线,求∠BON 和∠CON 的度数.36.如图,射线OB 在钝角AOC ∠的内部,且180,AOB AOC OP ∠+∠=︒分AOB ∠,OQ 平分AOC ∠.(1)当OB 与OQ 重合时,求AOC ∠得度数; (2)若100AOC ∠=︒,求POQ ∠的度数;(3)若AOC n ∠=︒,求POQ ∠的度数(用含n 的代数式表示).37.如图,在等边∠ABC 中,点D ,E 分别在边BC ,AC 上,且AE =CD ,BE 与AD 相交于点P ,BQ 上AD 于点Q .(1)求证:AD =BE ; (2)求∠PBQ 的度数;(3)若PQ =3,PE =1,求AD 的长.38.如图,在平面直角坐标中,∠ABC 各顶点都在小方格的顶点上.(1)画出∠ABC 关于x 轴对称的图形∠A 1B 1C 1;写出∠A 1B 1C 1各顶点坐标A 1 ;B 1 ;C 1(2)在y 轴上找一点P ,使P A +PB 1最短,画出P 点,并写出P 点的坐标 . (3)若网格中的最小正方形边长为1,则∠A 1B 1C 1的面积等于 .39.如图,ABC ∆中,ABC C ∠=∠,BD 是ABC ∠的平分线,48A ∠=,求BDC ∠的度数.40.如图所示,四边形ABCD 中,∠ADC 的角平分线DE 与∠BCD 的角平分线CA 相交于E 点,已知:∠ACB =32°,∠CDE =58°.(1)求∠DEC 的度数; (2)试说明直线AD BC ∥41.如图,已知ABC FED ≅,A ∠和F ∠是对应角,CB 和DE 是对应边,82AF BE =,=.(1)写出其他对应边及对应角;(2)判断AC 与DF 的位置关系,并说明理由. (3)求AB 的长.42.在△ABC 中,∠C>∠B .如图∠,AD∠BC 于点D ,AE 平分∠BAC .(1)如图∠,AD∠BC 于点D ,AE 平分∠BAC ,能猜想出∠DAE 与∠B 、∠C 之间的关系是什么?并说明理由.(2)如图∠,AE 平分∠BAC ,F 为AE 上的一点,且FD∠BC 于点D ,这时∠EFD 与∠B 、∠C 有何数量关系?请说明理由.(3)如图∠,AE 平分∠BAC ,F 为AE 延长线上的一点,FD∠BC 于点D ,请你写出这时∠EFD 与∠B 、∠C 之间的数量关系(只写结论,不必说明理由).43.在ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥于点D ,BE MN ⊥于点E .(1)当直线MN 绕点C 旋转到图(1)的位置时,求证:∠ADC △∠CEB ;∠DE AD BE =+.(2)当直线MN 绕点C 旋转到图(2)、图(3)的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请直接写出这个等量关系.44.如图,在ABC 中,BD 、CE 是边AC 、AB 上的中线,BD 与CE 相交于点O ,N 是OC 的中点.(1)求证:2OC OE =;(2)若1CDN S =△,求ABC 的面积.45.贝贝在银行的信用卡中存入2万元,每次取出500元,若卡内余额为y (元),取钱的次数为x .(利息忽略不计)(1)写出y 与x 之间的函数关系式;(2)求自变量x的取值范围;(3)取多少次钱后,余额为原存款的14?46.水池中有水20m3,12:00时同时打开两个每分钟出水量相等且不变的出水口,12:06时王师傅打开一个每分钟进水量不变的进水口,同时关闭一个出水口,12:14时再关闭另一个出水口,12:20时水池中有水56m3,王师傅的具体记录如下表.设从12:00时起经过tmin池中有水ym3,右图中折线ABCD表示y关于t的函数图象.(1)每个出水口每分钟出水m3,表格中a=;(2)求进水口每分钟的进水量和b 的值;(3)在整个过程中t 为何值时,水池有水16m 3?47.如图,△ABC 是等腰直角三角形,∠BAC =90°,△ACD 是等边三角形,E 为△ABC 内一点,AC =CE ,∠BAE =15°,AD 与CE 相交于点F .(1)求∠DFE 的度数;(2)求证:AE =BE .48.已知两个全等的等腰直角∠ABC 、∠DEF ,其中90ACB DFE ∠=∠=︒,E 为AB 中点,∠DEF 可绕顶点E 旋转,线段DE ,EF 分别交线段CA ,CB (或它们所在直线)于M 、N .(1)如图1,当线段EF 经过∠ABC 的顶点C 时,点N 与点C 重合,线段DE 交AC 于M ,求证:AM MC =;(2)如图2,当线段EF 与线段BC 边交于N 点,线段DE 与线段AC 交于M 点,连MN ,EC ,请探究AM ,MN ,CN 之间的等量关系,并说明理由;(3)如图3,当线段EF 与BC 延长线交于N 点,线段DE 与线段AC 交于M 点,连MN ,EC ,请猜想AM ,MN ,CN 之间的等量关系,不必说明理由.49.已知,在平面直角坐标系中,点A ,B 的坐标分别是(),a a --,(),0b 且20b -=.(1)求a ,b 的值;(2)在坐标轴上是否存在点C ,使三角形ABC 的面积是8?若存在,求出点C 的坐标;若不存在,请说明理由.50.如图,在平面直角坐标系xOy 中,点A (a ,0),B (c ,c ),C (0,c ),且满足(a ﹣c +4)20,P 点从A 点出发沿x 轴正方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴负方向以每秒1个单位长度的速度匀速移动.(1)求点B 的坐标及AO 和BC 位置关系;(2)当P 、Q 分别是线段AO ,OC 上时,连接PB ,QB ,使2PAB QBC S S △△=,求出点P 的坐标;(3)在P 、Q 的运动过程中,当∠CBQ =30°时,请探究∠OPQ 和∠PQB 的数量关系,并说明理由.参考答案:1.9【分析】分别令0x =,0y =,求出A 、B 两点坐标,再利用三角形面积公式即可求出面积.【详解】当0x =时,y =-6,∠B 点坐标为(0,6)-,即6OB =,当0y =时,3x =,∠A 点坐标为(3,0),即3OA =, ∠1136922AOB S OA OB ==⨯⨯=, 故答案为:9.【点睛】本题考查了求一次函数图象与坐标轴形成的三角形的面积,求出一次函数与坐标轴的交点坐标是解题关键.2.22y x =-+【分析】利用“左加右减”的规律解答.【详解】把直线AB :22y x =--沿x 轴的正半轴向右平移2个单位长度后得到直线CD , 则直线CD 的函数解析式是:()22222y x x =---=-+,即22y x =-+.故答案是:22y x =-+.【点睛】本题主要考查了一次函数图象与几何变换,难度不大,掌握平移规律“左加右减,上加下减”即可.3.等边【详解】试题分析:在∠ABC 中,∠A=∠B=∠C ,根据三角形内角和为180°,可得出各角的度数均为60°,即可得到结果.在∠ABC 中,∠A=∠B=∠C ,又∠A+∠B+∠C=180°,所以∠A=∠B=∠C=60°,即∠ABC 为等边三角形.考点:等边三角形的判定,三角形的内角和定理点评:三角形的内角和定理是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.4.1【分析】根据线段垂直平分线的性质得到DA=DB ,得到∠B=∠DAB ,根据角平分线的性质得出∠DAC=∠DAB,从而求出∠B=30°,根据直角三角形的性质计算即可.【详解】解:∠DE是AB的垂直平分线,∠DA=DB,∠∠B=∠DAB,∠AD是∠CAB的平分线,∠∠DAC=∠DAB,∠∠C=90°,∠∠B=30°,∠DE=1BD,2∠AD是∠CAB的平分线,∠C=90°,DE∠AB,∠DE=DC,BD,∠DC=12∠BD=3,∠DC=1,即DE=1,故答案为1.【点睛】本题考查的是线段垂直平分线的性质、角平分线的性质,及直角三角形中30°所对的直角边是斜边的一半,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5.6【分析】根据题意设一次函数关系式为y=kx+b,将(−1,m)、(1,3)、(3,n)代入可得相应的等式,求解后即可得出答案.【详解】解:设一次函数关系式为y=kx+b,将(−1,m)、(1,3)、(3,n)代入得:m=−k+b,k+b=3,n=3k+b,∠m+n=−k+b+3k+b=2k+2b=2×3=6.故答案为:6.【点睛】本题考查一次函数图象上点的坐标特征及待定系数法求函数解析式的知识,比较简单,注意掌握待定系数法的运用.6.到线段两个端点距离相等的点在线段的垂直平分线上;两点确定一条直线.【详解】试题分析:直接利用线段的垂直平分线的性质及直线的性质进而分析得到答案.试题解析:分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于,C D 两点的依据是:到线段两个端点距离相等的点在线段的垂直平分线上.连接CD 的依据是:两点确定一条直线.故答案为到线段两个端点距离相等的点在线段的垂直平分线上,两点确定一条直线. 7.x <2##2x >【分析】根据一次函数的性质,结合函数图象,可以写出不等式0kx b +>的解集.【详解】解:由图象可得,函数y =kx +b 与x 轴的交点为(2,0),y 随x 的增大而减小, ∠不等式kx +b >0的解集是x <2.故答案为:x <2.【点睛】本题主要考查一次函数与一元一次不等式,解答本题的关键是明确题意,利用数形结合的思想解答.8.23【分析】由作图步骤可知BG 为ABC ∠的角平分线,过G 作GM AB ⊥于M ,GN BC ⊥于N ,可得GM GN =,最后运用三角形的面积公式解答即可.【详解】解:如图,过点G 作GM AB ⊥于M ,GN BC ⊥于N .由作图可知,BG 平分ABC ∠,∠GM BA GN BC ⊥⊥,,∠GM GN =, ∠ABGBCG S S ∆∆122132AB GM AB BC BC GN ⨯===⨯, 故答案为:23. 【点睛】本题考查角平分线定理和三角形面积公式的应用,通过作法发现角平分线并灵活应用角平分线定理是解答本题的关键.9.0x ≥【分析】观察函数图形得到当0x ≥时,一次函数y ax b =+的函数值小于或等于2,即2ax b +≤.【详解】解:根据题意得当0x ≥时,2ax b +≤,即不等式2ax b +≤的解集为0x ≥.故答案为:0x ≥.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y =ax +b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.10.(0,﹣5)【分析】代入x =0求出y 值,进而可得出直线与y 轴的交点坐标.【详解】解:当x =0时,y =0﹣5=﹣5,∠一次函数y =x ﹣5的图像与y 轴的交点坐标是(0,﹣5).故答案为:(0,﹣5).【点睛】本题考查了一次函数图像上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式()0y kx b k =+≠是解题关键.11.(4,-4)或(2,2)【分析】根据点P 到两个坐标轴的距离相等可得a +1+5-3a =0或a +1=5-3a ,解方程可得a 的值,进而可得点P 的坐标.【详解】解:由题意得:a +1+5-3a =0或a +1=5-3a ,解得a =3或a =1.故当a =3时,P (4,-4);当a =1时,P (2,2);故答案为:(4,-4)或(2,2).【点睛】此题主要考查了点的坐标,关键是掌握点P 到两个坐标轴的距离相等时,横纵坐标相等或相反数关系.12.44【分析】根据平行线的性质和翻折不变性解答.【详解】解:∠AD //BC ,∠∠DFE =180°−∠CEF =180°−68°=112°,∠∠D ′FE =112°,∠GFE =180°−112°=68°,∠∠GFD ′=112°−68°=44°.故答案为:44.【点睛】本题考查了平行线的性质和翻折不变性,注意观察图形.13.3【分析】如图,过M 点做x 轴的垂线,交x 轴于点N ,MN 的长度即为所求.【详解】解:如图,当MN x ⊥轴时,MN 的长度最小,最小值为3,故答案为:3.【点睛】本题考查平面直角坐标系中点到坐标轴的距离.掌握点到直线上的所有连线中,垂线段最短是解题的关键.14.四【分析】根据点P 在第一象限,即可得到点m 的符号,从而得到-m 的符号,即可得出点B 所在的位置.【详解】点P (m ,2)在第一象限,得m >0.由不等式的性质,得3>0,﹣m <0 那么点B (3,﹣m )在第四象限.故答案为:四.【点睛】此题主要考查点的坐标与象限的关系,解题的关键是熟记各象限对应的点的坐标符号.15.【分析】依据题意得到三个关系式:c ,ab=10,a 2+b 2=c 2,运用完全平方公式即可得到c 的值.【详解】解:∠点(1P 在“勾股一次函数”a b y x c c =+的图象上,把(1P 代入得:a b c c=+,即a b +=, ∠,,a b c 分别是Rt ABC 的三条边长,90C ∠=︒,Rt ABC 的面积为10, ∠1102ab =,222+=a b c ,故20ab =, ∠22()2a b ab c +-=,∠22220c ⎫-⨯=⎪⎪⎝⎭,故24405c =,解得:c =故答案为:【点睛】此类考查了一次函数图象上点的坐标特征以及勾股定理的应用,根据题目中所给的材料结合勾股定理和乘法公式是解答此题的关键.16.5【分析】分别表示出∠ABD 与∠ACD 的周长,再作差即可得出结果.【详解】解:∠AD 是中线,∠BD=DC ,∠AB=17,AC=12,∠C △ABD - C △ACD =AB+AD+BD-AC-AD-DC=AB-AC=5,故答案为:5【点睛】本题考查的是中线的性质,掌握中线的性质是解题的关键.17.y =2.1x【详解】根据表格,易得规律:y=2x+0.1x=2.1x .故答案: 2.1y x = .18.493【详解】分析: 由图象可以看出,0-1min 内,小刚的速度可由距离减小量除以时间求得,1-3min 内,根据等量关系“距离减小量=小刚跑过的路程+小强跑过的路程”可得出小强的速度;由于小刚的速度始终是180米/分,小强的速度开始是220米/分,则他们的速度之差是40米/分,则10分钟相差400米,设再经过t 分钟两人相遇,利用相遇问题得到180t +120t =400,然后求出t 后加上前面的15分钟可得到小刚从家出发到他们再次相遇的时间总和.详解: 小刚比赛前的速度v 1=(540-440)=100(米/分),设小强比赛前的速度为v 2(米/分),根据题意得2×(v 1+v 2)=440,解得v 2=120米/分,小刚的速度始终是180米/分,小强的速度开始为220米/分,他们的速度之差是40米/分,10分钟相差400米,设再经过t 分钟两人相遇,则180t+120t=400,解得t =43(分) 所以小刚从家出发到他们再次相遇时5+10+43=493(分). 故答案为:493. 点睛: 本题考查了一次函数的应用:会利用一次函数图象解决行程问题的数量关系,相遇问题,追击问题的综合应用;解答时灵活运用行程问题的数量关系解答是关键. 19.40︒##40度【分析】根据SAS 证明ABE ACD ≌,再利用全等三角形的性质ABD ACD ∠=∠,然后由三角形的外角性质BOC ABD BAC ∠=∠+∠,BOC ACD BDC ∠=∠+∠,可说明BAC BDC ∠=∠,再利用等腰三角形的性质可求出70ABC ACB ∠=∠=︒,最后利用三角形的内角和解答即可.【详解】解:∠EAD BAC ∠=∠,∠BAC EAC EAD EAC ∠-∠=∠-∠,即BAE CAD ∠=∠,在ABE 和ACD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∠()ABE ACD SAS ≌,∠ABD ACD ∠=∠,∠BOC ∠是ABO 和DCO 的外角,∠BOC ABD BAC ∠=∠+∠,BOC ACD BDC ∠=∠+∠,∠ABD BAC ACD BDC ∠+∠=∠+∠,∠BAC BDC ∠=∠,∠AB AC =,70ACB ∠=︒,∠70ABC ACB ∠=∠=︒,∠180180707040BAC ABC ACB ∠=︒-∠-∠=︒-︒-︒=︒,∠40BDC BAC ∠=∠=︒.故答案为:40︒.【点睛】本题考查了全等三角形的判定与性质,三角形的外角性质,等腰三角形的性质,三角形的内角和等知识.根据全等三角形的判定和性质是解题的关键,也是本题的难点.20.1,02⎛⎫ ⎪⎝⎭##(0.5,0) 【分析】根据111k k x x -=- ,yk =1﹣yk ﹣1,求出前几个点的坐标会发现规律,这些点每6个为一个循环,根据规律求解即可.【详解】解:∵A 1(2,1),A 2(﹣1,0),…,Ak (xk ,yk ),…,(k 为正整数),且满足111k k x x -=-,yk =1﹣yk ﹣1,∴A 3(12,1),A 4(2,0),A 5(﹣1,1),A 6(12,0),A 7(2,1),A 8(﹣1,0),通过以上几个点的坐标可以发现规律,这些点每6个为一个循环,∵2022=6×337,∴A 2022的坐标为(12,0).故答案为:(12,0).【点睛】本题主要考查规律型:点的坐标,读懂题意,准确找出点的坐标规律是解答此题的关键.21.(1,-2)(答案不唯一).【分析】直接利用第四象限内点的坐标特点得出x ,y 的取值范围,进而得出答案.【详解】解:∠点P (x ,y )位于第四象限,并且x≤y+4(x ,y 为整数),∠x >0,y <0,∠当x=1时,1≤y+4,解得:0>y≥-3,∠y 可以为:-2,故写一个符合上述条件的点P 的坐标可以为:(1,-2)(答案不唯一).故答案为(1,-2)(答案不唯一).【点睛】此题主要考查了点的坐标,正确把握横纵坐标的符号是解题关键.22.6【分析】根据垂直平分线的性质可得AE=BE ,即可得出AC=BE+CE ,根据∠BCE 的周长即可得答案.【详解】∠DE 是AB 的垂直平分线,∠AE=BE ,∠AB=AC ,AC=AE+CE ,AB=11,∠BE+CE=AC=11, ∠BCE 的周长为17cm ,∠BC+CE+BE=17,即BC+11=17,解得:BC=6.故答案为:6【点睛】本题考查了线段的垂直平分线性质,熟练掌握垂直平分线上任意一点,到线段两端点的距离相等是解题关键.23.(503,-503)【分析】根据图象得出点的坐标的规律,依据规律求解即可.【详解】解:根据图象得:2A ,6A ,10A 等在第四象限,每四个点循环一次,∠2010÷4=502⋯2,∠2010A 与2A 都在第四象限,横坐标为:(2010-2)÷4+1=503,纵坐标为-503,故答案为:(503,-503).【点睛】题目主要考查坐标与图形,点坐标规律探索,理解题意,找出点的坐标的规律是解题关键.24.>-2【分析】根据待定系数法求出y 1、y 2的函数表达式,再由y 1>y 2解一元一次不等式即可解答.【详解】解:将x =-1,y 1=0,x =-2,y 1=-3代入y 1=k 1x +b 1中,得:1111032k b k b =-+⎧⎨-=-+⎩,解得:1133k b =⎧⎨=⎩,∠y 1=3x +3,将x =-4,y 2=-1,x =-3,y 2=-2代入y 2=k 2x +b 2中,得:22221423k b k b -=-+⎧⎨-=-+⎩,2215k b =-⎧⎨=-⎩, ∠y 2=-x -5,由y 1>y 2得:3x +3>-x -5,解得:x >-2,即当x >-2时,y 1>y 2,故答案为:>-2.【点睛】本题考查待定系数法求一次函数表达式、解一元一次不等式,熟练掌握待定系数法求函数表达式的解法步骤是解答的关键.25.30【分析】直接利用角平分线的定义得出∠BOC=12∠AOB=12(90BOD ︒+∠)=1452BOD ︒+∠,进而得出方程∠BOD=12∠COB=12(1452BOD ︒+∠),从而求出答案. 【详解】解:∠90AOD ∠=︒,∠OC 平分∠AOB , ∠∠BOC=12∠AOB=12(90BOD ︒+∠)=1452BOD ︒+∠, ∠OD 平分COB ∠, ∠∠BOD=12∠COB=12(1452BOD ︒+∠), ∠∠BOD=30°.故答案为:30.【点睛】此题主要考查了角平分线的定义,正确得出关于∠BOD 的方程是解题关键. 26.∠∠∠【分析】∠根据三角形的一个外角等于与它不相邻的两个内角的和与角平分线的定义表示出∠CAP ,再根据角平分线的定义可得∠ABP =12∠ABC ,然后利用三角形的内角和定理整理即可得解;∠先求出∠APB =∠FPB ,再利用“角边角”证明∠ABP 和∠FBP 全等,根据全等三角形对应边相等得到AB =BF ,AP =PF ;∠根据PF ∠AD ,∠ACB =90°,可得AG ∠DH ,然后求出∠ADG =∠DAG =45°,再根据等角对等边可得DG =AG ,再根据等腰直角三角形两腰相等可得GH =GF ,然后求出DG =GH +AF ,根据AFA 可得结论;∠根据直角的关系求出∠AHP =∠FDP ,然后利用“角角边”证明∠AHP 与∠FDP 全等,根据全等三角形对应边相等可得DF =AH .【详解】解:∠∠∠ABC 的角平分线BE 和∠BAC 的外角平分线相交于点P ,∠∠ABP =12∠ABC ,∠CAP =12(90°+∠ABC )=45°+12∠ABC ,在∠ABP 中,∠APB =180°﹣∠BAP ﹣∠ABP =180°﹣(45°+12∠ABC +90°﹣∠ABC )﹣12∠ABC =180°﹣45°﹣12∠ABC ﹣90°+∠ABC ﹣12∠ABC =45°,故∠正确; ∠∠PF ∠AD ,∠APB =45°(已证),∠∠APB =∠FPB =45°,∠PB 为∠ABC 的角平分线,∠∠ABP =∠FBP ,在∠ABP 和∠FBP 中,APB FPB PB PBABP FBP ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠∠ABP ∠∠FBP (ASA ),∠AB =BF ,AP =PF ,故∠正确;∠∠PF ∠AD ,∠ACB =90°,由∠知PD =PH ,∠∠DPH 为等腰直角三角形,∠∠PDH =45°,∠∠P AF =45°,∠AG ∠DH ,∠AP =PF ,PF ∠AD ,∠∠P AF =45°,∠∠ADG =∠DAG =45°,∠DG =AG ,∠∠P AF =45°,AG ∠DH ,∠∠ADG 与∠FGH 都是等腰直角三角形,∠DG =AG ,GH =GF ,∠DG =GH +AF ,∠AFP A ,∠DG+GH ,故∠错误;∠∠∠ACB =90°,PF ∠AD ,∠∠FDP +∠HAP =90°,∠AHP +∠HAP =90°,∠∠AHP =∠FDP ,∠PF ∠AD ,∠∠APH =∠FPD =90°,在∠AHP 与∠FDP 中,AHP FDP APH FPD AP PF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∠∠AHP ∠∠FDP (AAS ),∠DF =AH ,∠BD =DF +BF ,又∠AB =BF ,∠BD =AH +AB ,故∠正确;故答案为:∠∠∠.【点睛】本题考查外角的性质,角平分线的性质,三角形内角和定理,全等三角形的判定与性质,等腰三角形的性质,解题关键是掌握外角的性质,角平分线的性质,三角形内角和定理,全等三角形的判定与性质,等腰三角形的性质.27.15°【分析】根据三角板的性质和三角形外角的性质求解即可.【详解】∠ADC △是45°的直角三角板,ABE 是30°的直角三角板∠4530ADC ABE =︒=︒∠,∠∠ADC ABE DFB =+∠∠∠∠453015DFB ADC ABE =-=︒-︒=︒∠∠∠故答案为:15°.【点睛】本题考查了三角板的角度问题,掌握三角板的性质和三角形外角的性质是解题的关键.28.32或112 【分析】分两种情况进行讨论,根据题意得出522CP t =-=和922DP t =-=,即可求得.【详解】解:当P 在BC 上时,由题意得2BP t =,∠52CP BC BP t =-=-,∠90DCP DCE ∠=∠=︒,CD 为公共边,∠要使DCP DCE ≌,则需CP CE =,如图1所示:∠2CE =,∠522t -=, ∠32t =, 即当32t =时,DCP DCE ≌;当P 在AD 上时,由题意得2BC CD DP t ++=,∠5BC =,4CD =,∠29DP t =-,∠90CDP DCE ∠=∠=︒,CD 为公共边,∠要使DCP CDE ≌,则需DP CE =,如图2所示:即292t-=,∠112t=,即当112t=时,DCP CDE≌;综上所述:当32t=或112t=时,DCP和CDE全等.故答案为:32或112.【点睛】本题考查了全等三角形的判定等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.29.130°【分析】直接利用角平分线的定义结合度分秒换算方法分析得出答案.【详解】解:∠OE为∠BOD的平分线,∠2∠BOE=∠BOD,∠∠BOE=25°,∠∠BOD=50°,∠∠AOB=∠COD=90°,∠AOB+∠COD+∠AOC+∠BOD=360°,∠∠AOC=360°-∠AOB-∠COD-∠BOD,=360°-90°-90°-50°,=130°.【点睛】此题主要考查了角平分线的定义以及度分秒的换算,正确理解相关定义是解题关键.30.(﹣25,0)【详解】如图,过点A作x轴的平行线,并且在这条平行线上截取线段AA′,使AA′=1,作点B关于x轴的对称点B′,连接A′B′,交x轴于点E,在x轴上截取线段EF=1,则此时四边形ABEF的周长最小.∠A(3,4),∠A′(2,4),∠B(-1,1),∠B′(-1,-1).设直线A′B′的解析式为y=kx+b,则241k bk b+=⎧⎨-+=-⎩,解得,k=53,b=23.∠直线A′B′的解析式为y=53x+23,当y=0时,53x+23=0,解得x=-25.故线段EF平移至如图所示位置时,四边形ABEF的周长最小,此时点E的坐标为(-25,0).点睛:本题考查了待定系数法求一次函数的解析式,轴对称-最短路线问题,根据“两点之间,线段最短”确定点E、F的位置是关键,也是难点.31.(1)x=1;(2)三角形的周长为14cm或13cm【分析】(1)先去分母,然后解一元一次方程,最后进行检验即可得;(2)根据题意进行分类讨论:∠当腰长是5cm时,则三角形的三边是5cm,5cm,4cm;∠当腰长是4cm时,三角形的三边是4cm,4cm,5cm;考虑三边能否构成三角形,然后求周长即可得.【详解】(1)解:211x x-=+,方程两边同时乘以:()1x x +得()210x x -+=,210x x --=,1x =检验:1x =时,()10x x +≠,∴1x =是原方程的解;(2)解:等腰三角形的两边长分别为4cm 和5cm ,∠当腰长是5cm 时,则三角形的三边是5cm ,5cm ,4cm ,554+>,满足三角形的三边关系,∴三角形的周长是55414++=(cm );∠当腰长是4cm 时,三角形的三边是4cm ,4cm ,5cm ,445+>,满足三角形的三边关系.∴三角形的周长是54413++=(cm );综上,三角形的周长为14cm 或13cm .【点睛】题目主要考查解分式方程及等腰三角形的定义,三角形三边关系等,理解题意,综合运用这些知识是解题关键.32.答案见解析【分析】结合等式的性质利用ASA 可证∠ABC ∠∠EBD ,由全等三角形对应角相等的性质等量代换可得∠C =∠FBD ,根据内错角相等,两直线平行可得AC ∠BD.【详解】解:∠∠ABE =∠CBD (已知),∠∠ABE +∠EBC =∠CBD +∠EBC (等式的性质),即∠ABC =∠EBD在∠ABC 和∠EBD 中,ABC EBD AB BEA E ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠∠ABC ∠∠EBD (ASA ),∠∠C =∠D ( 全等三角形对应角相等)∠∠FBD =∠D ,∠∠C =∠FBD (等量代换),∠AC ∠BD (内错角相等,两直线平行).故答案为:等式的性质;AB =BE ;ASA ;全等三角形对应角相等;∠FBD ;内错角相等,两直线平行.【点睛】本题主要考查了全等三角形的判定与性质及平行线的判定,熟练的掌握每一步证明的依据是解题的关键.33.(1)见详解(2)50DBC ∠=︒【分析】(1)由“AAS ”可证ABD ECB ≌;(2)由全等三角形的性质可得BD BC =,由等腰三角形的性质可求解.【详解】(1)证明:∠AD BC ∥,∠ADB EBC ∠=∠,在ABD △和ECB 中,A BEC AB ECADB EBC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠ABD ECB ≌(AAS );(2)解:∠ABD ECB ≌,∠BD BC =,∠65BDC BCD ∠=∠=︒,∠50DBC ∠=︒.【点睛】本题考查了全等三角形的判定和性质,平行线的性质以及等腰三角形的性质,还考查学生运用定理进行推理的能力,题目比较典型,难度适中.34.∠BDC =75°,∠EDC =25°【分析】先根据三角形内角和定理求出∠ACB =50°,再由角平分线的定义求出1===252BCD ACD ACB ∠∠∠,则由三角形内角和定理可求出∠BDC =180°-∠B -∠BCD =75°,再由平行线的性质即可得到∠EDC =∠BCD =25°.【详解】解:∠∠A =50°,∠B =80°,∠∠ACB =180°-∠A -∠B =50°,∠CD 平分∠ACB ,∠1===252BCD ACD ACB∠∠∠,∠∠BDC=180°-∠B-∠BCD=75°,∠DE∥BC,∠∠EDC=∠BCD=25°.【点睛】本题主要考查了三角形内角和定理,角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.35.(1)25°;(2)25°.【详解】试题分析:(1)根据∠MON和∠BOC的度数可以算出∠MOC的度数,(2)根据OC是∠MOB的平分线,可求出∠MOC=65°, ∠BOC=65°,因为∠MON=90°,利用角的和差关系可求出: ∠CON=∠MON∥∠MOC=90°∥65°=25°, ∠BON=∠BOC∥∠CON,即∠BON=65°∥25°=40°.试题解析:(1)因为∠MON=90°,∠BOC=65°,所以∠MOC=∠MON-∠BOC=90°-65°=25°.故答案为25°.(2)因为∠BOC=65°,OC是∠MOB的平分线,所以∠MOB=2∠BOC=130°,所以∠BON=∠MOB-∠MON=130°-90°=40°,所以∠CON=∠COB-∠BON=65°-40°=25°.点睛:本题主要考查角的和差关系以及角平分线的定义进行角度的计算,解决本题的关键要学会分析简单的几何图形,弄清角与角之间的和差关系.36.(1)120°;(2)10°;(3)n°-90°【分析】(1)根据角平分线的定义得到AOB=∠BOC=12∠AOC,再结合∠AOB+∠AOC=180°,可得∠AOC的度数;(2)根据∠AOC得到∠AOB,再根据角平分线的定义得到∠AOP=40°和∠AOQ=50°,从而求出∠POQ;(3)根据(2)中的方法和过程求解即可.【详解】解:(1)如图(1),∠OQ平分∠AOC,且点Q与点B重合,∠∠AOB=∠BOC=12∠AOC,。

沪科版数学八年级上学期全册综合测试试卷(含答案)

沪科版数学八年级上学期全册综合测试试卷(含答案)

八年级数学试题时间:120分钟 满分150分一、选择题(本题共10小题,每小题4分,满分40分)1.在平面直角坐标系中,点P(-1,4)一定在 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限2.点P 在第二象限,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为 ( )A.(-4,3)B.(-3,-4)C.(-3,4)D.(3,-4) 3.一次函数y=﹣2x ﹣3不经过 ( ) A .第一象限 B. 第二象限 C. 第三象限 D. 第四象限 4.下列图形中,为轴对称图形的是 ( )5.函数y=21x 的自变量x 的取值围是 ( ) A .x ≠2 B. x <2 C. x ≥2 D. x >26在△ABC 中,∠A ﹦31∠B ﹦51∠C ,则△ABC 是 ( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 无法确定7.如果一次函数y ﹦kx ﹢b 的图象经过第一象限,且与y 轴负半轴相交,那么( ) A. k ﹥0,b ﹥0 B. k ﹥0,b ﹤0 C. k ﹤0,b ﹥0 D. k ﹤0, b ﹤08.如图,直线y ﹦kx ﹢b 交坐标轴于A ,B 两点,则不等式kx ﹢b ﹥0的解集是( ) A. x ﹥-2 B. x ﹥3 C. x ﹤-2 D. x ﹤39.如图所示,OD=OB,AD∥BC,则全等三角形有()A. 2对B. 3对C. 4对D. 5对10. 两个一次函数y=-x+5和y=﹣2x+8的图象的交点坐标是()A.(3,2)B.(-3,2)C.(3,-2)D.(-3,-2)二、填空题(本题共4小题,每小题5分,满分20分)11.通过平移把点A(2,-1)移到点A’(2,2),按同样的平移方式,点B(-3,1)移动到点B’,则点B’的坐标是.12.如图所示,将两根钢条A A’、B B’的中点O连在一起,使A A’、B B’可以绕着点O自由转动,就做成了一个测量工具,则A’ B’的长等于槽宽AB,那么判定△OAB≌△OA’ B’的理由是.13.某地雪灾发生之后,灾区急需帐篷。

沪科版数学八年级数学上册综合测试卷(含答案)

沪科版数学八年级数学上册综合测试卷(含答案)

精心整理八年级数学第一学期综合测试卷一、选择题(本题共10小题,每小题4分,满分40分)1、已知a是整数,点A(2a+1,2+a)在第二象限,则a的值是…………………………………()A2、(A3)A.中,C..41)AB.1月至3月每月生产总量逐月增加,4,5两月每月生产量与3月持平C.1月至3月每月生产总量逐月增加,4、5两月停止生产D.1月至3月每月生产总量不变,4、5两月均停止生产5、下图中表示一次函数y=ax +b 与正比例函数y=abx (a ,b 是常数,且ab ≠0)图象是……( )A .B .C .D .6、 )A 7BF ,。

A.18误的A.9 )A C 10、将一张长方形纸片按如图10所示的方式折叠,BC BD ,为折痕,则CBD ∠的度数为………( )A.60°B.75°C.90°D.95°二、填空题(本题共4小题,每小题5分,满分20分)11、已知一次函数y =kx +b 的图象如图11所示,当x<0时,y 的取值范围是。

12、如图12,点E在AB上,AC=AD,请你添加一个条件,使图中存在全等三角形,所添条件为,你所得到的一对全等三角形是。

13、如图13,△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为。

1415(((16172,18、等腰三角形一腰上的中线把这个三角形的周长分成12cm和9cm,求它的各边长.五、填空题(本题共2小题,每小题10分,满分20分)19、如图所示,AC=BD,AB=DC,求证∠B=∠C。

20、如下图所示,在△ABC中,∠A=40°,∠B=90°,AC的垂直平分线MN分别与AB、AC交于点D、E,求∠BCD的度数。

六、填空题(本题满分12分)21、如图所示,在△ABC和△ABD中,现给出如下三个论断:①AD=BC ②∠C=∠D③∠1=∠2请选择其中两个论断为条件,另一个论断为结论,构造一个命题。

沪科版八年级数学上册全册综合测试

沪科版八年级数学上册全册综合测试

八年级数学综合测试一.选择题(共10小题,满分30分,每小题3分)1.下列计算正确的是()A.(x﹣y)2=x2﹣y2B.2x2+x2=3x2C.(﹣2x2)3=8x6D.x3÷x=x32.下列因式分解正确的是()A.a2﹣2a﹣8=a(a﹣2)﹣8B.a2﹣4b2=(a+4b)(a﹣4b)C.2x3﹣4x2+2x=2x(x2﹣2x)D.x2﹣5x+6=(x﹣2)(x﹣3)3.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()A.5.6×10﹣1B.5.6×10﹣2C.5.6×10﹣3D.0.56×10﹣1 4.在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.5.已知a,b为实数,且ab=1,a≠1,设M=+,N=+,则M,N的大小关系是()A.M>N B.M=N C.M<N D.无法确定6.方程=的解为()A.x=﹣1B.x=5C.x=7D.x=97.已知等腰三角形两边长是8cm和4cm,那么它的周长是()A.12cm B.16cm C.16cm或20cm D.20cm8.如图、点B,F,C,E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后.仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC9.暑假期间,某科幻小说的销售量急剧上升.某书店分别用600元和800元两次购进该小说,第二次购进的数量比第一次多40套,且两次购书时,每套书的进价相同.若设书店第一次购进该科幻小说x套,由题意列方程正确的是()A.B.C.D.10.如图:△ABC是等边三角形,AE=CD,AD,BE相交于点P,BQ⊥AD于Q,PQ=4,PE=1,则AD的长是()A.9B.8C.7D.6二.填空题(共7小题,满分21分,每小题3分)11.计算:若x2+4x﹣2=0,则3(x﹣2)2﹣6(x+1)(x﹣1)值是.12.因式分解:x2y﹣4y3=.13.已知,那么=.14.一个多边形的每一个外角为30°,那么这个多边形的边数为.15.如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=8,则PD的长为.16.如图,在△ABC中,AB=AC,BC=4,面积是12,AC的垂直平分线EF分别交AB,AC边于点E,F.若点D为BC边的中点,点P为线段EF上一动点,则△PCD周长的最小值为.17.如图,△ABC中,∠BAC=75°,BC=7,△ABC的面积为14,D为BC边上一动点(不与B,C重合),将△ABD和△ACD分别沿直线AB,AC翻折得到△ABE与△ACF,那么△AEF的面积最小值为.三.解答题(共2小题,满分12分,每小题6分)18.(6分)先化简,再求值:(x﹣2+)÷,其中x=﹣.19.(6分)解方程:+=﹣1.四.解答题(共1小题,满分8分,每小题8分)20.(8分)如图,△ABC中,A点坐标为(2,4),B点坐标为(﹣3,﹣2),C点坐标为(3,1).(1)在图中画出△ABC关于y轴对称的△A′B′C′(不写画法),并写出点A′,B′,C′的坐标.(2)求△ABC的面积.五.解答题(共1小题,满分8分,每小题8分)21.(8分)刘阿姨到超市购买大米,第一次按原价购买,用了105元,几天后,遇上这种大米8折出售,她用140元又买了一些,两次一共购买了40kg.这种大米的原价是多少?六.解答题(共2小题,满分21分)22.(9分)如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.23.(12分)(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b且填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a、b的式子表示).(2)应用:点A为线段BC外一动点,且BC=4,AB=2,如图2所示,分别以AB,AC 为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且P A=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A.(x﹣y)2=x2﹣2xy+y2,故本选项不合题意;B.2x2+x2=3x2,正确;C.(﹣2x2)3=﹣8x6,故本选项不合题意;D.x3÷x=x2,故本选项不合题意.故选:B.2.解:A、a2﹣2a﹣8=(a﹣4)(a+2),故本选项不符合题意;B、a2﹣4b2=(a+2b)(a﹣2b),故本选项不符合题意;C、2x3﹣4x2+2x=2x(x2﹣2x+1),故本选项不符合题意;D、x2﹣5x+6=(x﹣2)(x﹣3),故本选项符合题意;故选:D.3.解:将0.056用科学记数法表示为5.6×10﹣2,故选:B.4.解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.5.解:由题意可知:M﹣N=+﹣﹣=+==∵ab=1∴M﹣N=0,∴M=N故选:B.6.解:方程的两边同乘(x+5)(x﹣2)得:2(x﹣2)=x+5,解得x=9,经检验,x=9是原方程的解.故选:D.7.解:当腰为4cm时,4+4=8,不能构成三角形,因此这种情况不成立.当腰为8cm时,8<8+4,能构成三角形;此时等腰三角形的周长为8+8+4=20cm.故选:D.8.解:∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∴当AB=DE时,可利用AAS判定△ABC≌△DEF,故A能判断,故A不符合题意;当AC=DF时,可利用AAS判定△ABC≌△DEF,故B能判断,故B不符合题意;当∠A=∠D时,两三角形没有对应边相等,故C不能判断,故C符合题意;当BF=EC时,可得BC=EF,利用ASA可判定△ABC≌△DEF,故D能判断,故D不符合题意;故选:C.9.解:若设书店第一次购进该科幻小说x套,由题意列方程正确的是,故选:C.10.解:∵BQ⊥AD,∴∠BQP=90°,∵AB=AC,∠BAE=∠ACD=60°,AE=CD,∴△ABE≌△ADC(SAS),∴∠ABE=∠CAD,∵∠CAD+∠BAP=60°,∴∠ABE+∠BAP=60°,∴∠BPQ=60°,∴∠PBQ=30°,∴BP=2PQ=2×4=8,∴BE=BP+PE=8+1=9,∵△ABC是等边三角形,∴AB=AC,∠BAE=∠ACD=60°,又∵AE=CD,∵△ABE≌△ADC,∴AD=BE=9,故选:A.二.填空题(共7小题,满分21分,每小题3分)11.解:原式=3(x﹣2)2﹣6(x+1)(x﹣1)=3(x2﹣4x+4)﹣6(x2﹣1)=3x2﹣12x+12﹣6x2+6=﹣3x2﹣12x+18=﹣3(x2+4x)+18∵x2+4x=2,∴原式=﹣3×2+18=1212.解:原式=y(x2﹣4y2)=y(x﹣2y)(x+2y).故答案为:y(x﹣2y)(x+2y).13.解:原式==÷=﹣,由已知得:=1﹣=1﹣,∴可得:﹣=﹣﹣.故答案为:﹣﹣.14.解:多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.15.解:作PE⊥OA于E,∵P是∠AOB平分线上一点,∴∠AOP=∠BOP=15°,∵PC∥OB,∴∠POD=∠OPC,∴∠PCE=∠POC+∠OPC=∠POC+∠POD=∠AOB=30°,∴PE=PC=4,∵P是∠AOB平分线上一点,PD⊥OB,PE⊥OA,∴PD=PE=4,故答案为:4.16.解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得AD=6,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CP+PD的最小值,∴△CDP的周长最短=(CP+PD)+CD=AD+BC=6+×4=6+2=8.故答案为:8.17.解:如图,过E作EG⊥AF,交F A的延长线于G,由折叠可得,AF=AE=AD,∠BAE=∠BAD,∠DAC=∠F AC,又∵∠BAC=75°,∴∠EAF=150°,∴∠EAG=30°,∴EG=AE=AD,当AD⊥BC时,AD最短,∵BC=7,△ABC的面积为14,∴当AD⊥BC时,AD=4=AE=AF,∴△AEF的面积最小值为:AF×EG=×4×2=4,故答案为:4.三.解答题(共2小题,满分12分,每小题6分)18.解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.19.解:两边都乘以(x+1)(x﹣1),得:4﹣(x+2)(x+1)=﹣(x+1)(x﹣1),解得:x=,检验:当x=时,(x+1)(x﹣1)≠0,所以原分式方程的解为x=.四.解答题(共1小题,满分8分,每小题8分)20.解:(1)如图,A′(﹣2,4),B′(3,﹣2),C′(﹣3,1);(2)S△ABC=6×6﹣×5×6﹣×6×3﹣×1×3,=36﹣15﹣9﹣1,=10.五.解答题(共1小题,满分8分,每小题8分)21.解:设这种大米的原价是每千克x元,根据题意,得+=40,解得:x=7.经检验,x=7是原方程的解.答:这种大米的原价是每千克7元.六.解答题(共2小题,满分21分)22.证明:∵CE∥DF,∴∠ACE=∠D,在△ACE和△FDB中,,∴△ACE≌△FDB(SAS),∴AE=FB.23.解:(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,故答案为:CB的延长线上,a+b;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,,∴△CAD≌△EAB,∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=6;(3)连接BM,∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=P A=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=AP=2 ,∴最大值为2 +3;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE=,∴OE=BO﹣AB﹣AE=5﹣3﹣=2﹣,∴P(2﹣,).如图3中,根据对称性可知当点P在第四象限时,P(2﹣,﹣)时,也满足条件.综上所述,满足条件的点P坐标(2﹣,)或(2﹣,﹣),AM的最大值为2+3.。

沪科版八年级数学上册综合测试试题

沪科版八年级数学上册综合测试试题

沪科版八年级数学上册(第11-12章)综合测试试题(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--八年级数学综合测试卷测试范围:第11~12章考试时间:120分钟满分:150分一、选择题(本大题共10小题,每小题4分,满分40分)1.在平面直角坐标系中,点P(x2+2,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.在平面直角坐标系中,第二象限内有一点M,点M到x轴的距离为5,到y 轴的距离为4,则点M的坐标是()A.(5,4)B.(4,5)C.(﹣4,5)D.(﹣5,4)3.如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,﹣1)对应点的坐标为()A.(0,0)B.(1,2)C.(1,3)D.(3,1)第3题图第5题图第9题图4.点P(a,b)在函数y=3x+2的图象上,则代数式6a-2b+1的值等于()A.5 B.3 C.﹣3 D.﹣15.已知a+b>0,ab>0,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是()A.(a,b)B.(﹣a,b)C.(﹣a,﹣b)D.(a,﹣b)6.若m<﹣2,则一次函数y=(m+1)x+1﹣m的图象可能是()A. B.C. D.7.已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(﹣1,2) B.(1,﹣2)C.(2,3) D.(3,4)8.在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y =﹣2x交于点A、B,则△AOB的面积为()A.2 B.3 C.4 D.69.如图,一个弹簧不挂重物时长6 cm,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长y(单位:cm)关于所挂物体质量x(单位:kg)的函数图象如图所示,则图中a的值是()A.3 B.4 C.5 D.610.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),……按这样的运动规律,经过第2021次运动后,动点P的坐标是()A.(2021,0)B.(2020,1)C.(2021,1)D.(2021,2)第10题图第14题图二、填空题(本大题共4小题,每小题5分,满分20分)11.点P(m,2)在第二象限内,则m的值可以是(写出一个即可).12.在函数y=中,自变量x的取值范围是.13.点(﹣,m)和点(2,n)在直线y=2x+b上,则m与n的大小关系是.14.某企业用货车向乡镇运送农用物资,行驶2小时后,天空突然下起大雨,影响车辆行驶速度,货车行驶的路程y(km)与行驶时间x(h)的函数关系如图所示,2小时后货车的速度是km/h.三、(本大题共2小题,每小题8分,满分16分)15.已知一次函数y=kx+b,它的图象经过(1,﹣3),(4,6)两点.(1)求y与x之间的函数关系式;(2)若点(a,3)在这个函数图象上,求a的值.16.已知点P(2m+4,m﹣1),试分别根据下列条件,求出P点的坐标.(1)点P在y轴上;(2)点P在过点A(2,3)且与x轴平行的直线上.四、(本大题共2小题,每小题8分,满分16分)17.已知一次函数y=kx+b的图象经过点(﹣2,5),并且与y轴相交于点P,直线y=﹣x+3与y轴相交于点Q,点Q恰与点P关于x轴对称,求这个一次函数y=kx+b的表达式.18.在平面直角坐标系中,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为:「P」,即「P」=|x|+|y|.(1)求点A(﹣1,3)的勾股值「A」;(2)若点B在第一象限且满足「B」=3,求满足条件的所有B点与坐标轴围成的图形的面积.五、(本大题共2小题,每小题10分,满分20分)19.为迎接新年,某单位组织员工开展娱乐竞赛活动,工会计划购进A、B两种电器共21件作为奖品.已知A种电器每件90元,B种电器每件70元.设购买B种电器x件,购买两种电器所需费用为y元.(1)y关于x的函数关系式为:;(2)若购买B种电器的数量少于A种电器的数量,请给出一种最省费用的方案,并求出该方案所需费用.20.如图,已知直线l1:y1=﹣2x﹣3,直线l2:y2=x+3,l1与l2相交于点P,l1,l2分别与y轴相交于点A,B.(1)求点P的坐标;(2)若y1>y2>0,求x的取值范围;(3)点D(m,0)为x轴上的一个动点,过点D作x轴的垂线分别交l1和l2于点E,F,当EF=3时,求m的值.六、(本题满分12分)21.如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)写出A′、B′、C′的坐标;(2)求出△ABC的面积;(3)点P在y轴上,且△BCP与△ABC的面积相等,求点P的坐标.七、(本题满分12分)22.合肥享有“中国淡水龙虾之都”的美称,甲、乙两家小龙虾美食店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家店都让利酬宾,在人数不超过20人的前提下,付款金额y甲、y乙(单位:元)与人数之间的函数关系如图所示.(1)直接写出y甲,y乙关于x的函数关系式;(2)小王公司想在“龙虾节”期间组织团建,在甲、乙两家店就餐,如何选择甲、乙两家美食店吃小龙虾更省钱?八、(本题满分14分)23.在平面直角坐标系xOy中,△ABC如图所示,点A(﹣3,2),B(1,1),C(0,4).(1)求直线AB的解析式;(2)求△ABC的面积;(3)已知一次函数y=ax+3a+2(a为常数).①求证:一次函数y=ax+3a+2的图象一定经过点A;②若一次函数y=ax+3a+2的图象与线段BC有交点,直接写出a的取值范围.答案1.D 2.C 3.D 4.C 5.B 6.D 7.B 8.B 9.A10.C 解析:观察点的坐标变化可知:第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),第5次接着运动到点(5,1),…按这样的运动规律,发现每个点的横坐标与次数相等,纵坐标是1,0,2,0,4每个数一个循环,因为2021÷4=505……1,所以经过第2021次运动后,动点P的坐标是(2021,1).故选C.11.﹣1(答案不唯一) 12.x> 13.m<n14.65 解析:当x≥2时,设函数解析式为y=kx+b,把(2,156)和(3,221)代入解析式,可得,解得,所以函数解析式为y=65x+26(x≥2),所以2小时后货车的速度是65km/h,或利用图象法,平均速度==65(km/h).故答案为65.15.解:(1)将(1,﹣3),(4,6)代入y=kx+b中,得,解得,∴y与x之间的函数关系式为y=3x﹣6.(4分)(2)把点(a,3)代入y=3x﹣6中,得3a﹣6=3,解得a=3,∴a的值为3.(8分)16.解:(1)令2m+4=0,解得m=﹣2,所以P点的坐标为(0,﹣3).(4分)(2)由题意得点P的纵坐标与点A的纵坐标相等,令m﹣1=3,解得m=4.所以P点的坐标为(12,3).(8分)17.解:由题意可得,点Q的坐标是(0,3),则点P的坐标是(0,﹣3),把(0,﹣3),(﹣2,5)代入一次函数y=kx+b得3,25,bk b解得3,4.bk所以这个一次函数的表达式为y=﹣4x﹣3.(8分)18.解:(1)「A」=|﹣1|+|3|=4.(3分)(2)设B(x,y),由「B」=3且点B在第一象限知,x+y=3(x>0,y>0),即:y=﹣x+3(x>0,y>0).故所有点B与坐标轴围成的图形为如图所示的三角形,故其面积为×3×3=.(8分)19.解:(1)y=﹣20x+1890(4分)(2)∵y=﹣20x+1890,﹣20<0,∴y随x的增大而减小,∴x取最大值时,y最小.∵购买B种电器的数量少于A种电器的数量,∴x<21﹣x,∴x<.∵x为整数,∴x的最大值为10,∴当x=10时,y有最小值,为1690,21﹣x =11.∴使费用最省的方案是购买B种电器10件,A种电器11件,所需费用为1690元.(10分)20.解:(1)根据题意,得,解得,∴点P的坐标为(﹣2,1).(3分)(2)在直线l2:y2=x+3中,令y=0,解得x=﹣3.由图象可知:若y1>y2>0,x的取值范围是﹣3<x<﹣2.(6分)(3)由题意可知E(m,﹣2m﹣3),F(m,m+3).∵EF=3,∴|﹣2m﹣3﹣m﹣3|=3,解得m=﹣3或m=﹣1.(10分)21.解:(1)如图所示,A′(0,4)、B′(﹣1,1)、C′(3,1).(3分)(2)S△ABC=×(3+1)×3=6.(7分)(3)设点P坐标为(0,y),∵BC=4,点P到BC的距离为|y+2|,由题意得×4×|y+2|=6,解得y=1或y=﹣5,∴点P的坐标为(0,1)或(0,﹣5).(12分)22.解:(1)y甲=25x+200,.(6分)(2)当0≤x≤10时,令25x+200=60x,解得x=.当10<x≤20时,令25x+200=600,解得x=16.答:当人数不超过5人时,小王公司应该选择在乙店吃小龙虾更省钱;当人数超过5人且小于16人时,小王公司应该选择在甲店吃小龙虾更省钱;当人数为16人时到两个店的总费用相同;当人数超过16人且不超过20人时,小王公司应该选择在乙店吃小龙虾更省钱.(12分)23.解:(1)设直线AB的解析式是y=kx+b,将点A(﹣3,2),点B(1,1)代入,得,解得,∴直线AB的解析式是1544y x.(4分)(2)设直线AB与y轴的交点为D点,则点D的坐标为,.(8分)(3)①证明:∵y=ax+3a+2=a(x+3)+2,∴y=ax+3a+2必过点(﹣3,2),即必过A点;②把B(1,1)代入y=ax+3a+2得,1=a+3a+2,解得a=﹣;把C(0,4)代入y=ax+3a+2得,4=3a+2,解得a=,∴若一次函数y=ax+3a+2的图象与线段BC有交点,则且a≠0.(14分)。

八年级数学上册第一学期期末综合测试卷(沪科版 24秋)

八年级数学上册第一学期期末综合测试卷(沪科版 24秋)

八年级数学上册第一学期期末综合测试卷(沪科版24秋)一、选择题(本大题共10小题,每小题4分,满分40分)1.围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史.下列由黑、白棋子摆成的图案中,是轴对称图形的是()2.若长度分别为a,4,6的三条线段能组成一个三角形,则a的值可能是() A.1B.2C.5D.113.若一个三角形三个内角度数的比为123,则这个三角形是() A.锐角三角形B.等边三角形C.钝角三角形D.直角三角形4.【2024·合肥包河区模拟】在平面直角坐标系中,将点M(a-3,2a+1)向左平移3个单位后恰好落在y轴上,则点M的坐标是()A.(3,13)B.(3,7)C.(6,7)D.(6,13) 5.【母题:教材P39练习T3】已知正比例函数y=(k2+3)x的图象上两点A(x1,y1),B(x2,y2),且x1>x2,则下列不等式中一定成立的是()A.y1+y2>0B.y1+y2<0C.y1-y2>0D.y1-y2<0 6.【母题:教材P116复习题T1】如图,点F,B,E,C在同一条直线上,点A,D在直线BE的两侧,AC∥DF,CE=FB,添加下列哪个条件后,仍不能判定出△ABC≌△DEF()A.AB=DE B.AB∥DEC.∠A=∠D D.AC=DF7.下列命题中,一定是真命题的是()A.两个锐角对应相等的两个直角三角形全等B.角平分线上的点到这个角两边的距离相等C.等腰三角形的高、中线、角平分线互相重合D.有一个角是40°,且腰相等的两个等腰三角形全等8.如图,O是△ABC的三条角平分线的交点,连接OA,OB,OC,若△OAB,△OBC ,△OAC 的面积分别为S 1,S 2,S 3,则下列关系正确的是()A .S 1>S 2+S 3B .S 1=S 2+S 3C .S 1<S 2+S 3D .无法确定9.如图,在△ABC 中,AB =3,AC =4,EF 垂直平分BC ,交AC 于点D ,交BC于点G ,点P 为直线EF 上的任意一点,则△ABP 周长的最小值是()A .12B .6C .7D .810.甲、乙两车从A 城出发匀速驶向B 城,在整个行驶过程中,两车离开A 城的距离y (km)与甲车行驶的时间t (h)之间的函数关系如图,则下列结论错误的是()①A ,B 两城相距300km ;②甲车比乙车早出发1h ,却晚到1h ;③相遇时乙车行驶了2.5h ;④当甲、乙两车相距50km 时,t 的值为54或56或156或256.A .①②B .②③C .①④D .③④二、填空题(本大题共4小题,每小题5分,满分20分)11.在函数y =x +2x中,自变量x 的取值范围是__________.12.△ABC 是等腰三角形,∠C =80°,则∠A =______________.13.如图,AD 是△ABC 的中线,G 是AD 上的一点,E ,F 分别是CG ,BG 的中点,若△ABC 的面积是24,则阴影部分的面积为________.14.如图,在△ABC 中,∠ACB =90°,AC =7cm ,BC =3cm ,CD 为AB 边上的高.(1)若点E在BC的延长线上,点F在DC的延长线上,且∠ECF=α,则∠A=________(用含α的代数式表示);(2)若点E从点B出发,在直线BC上以每秒2cm的速度运动,过点E作BC的垂线交直线CD于点F,当点E运动____________时,CF=AB.三、(本大题共2小题,每小题8分,满分16分)15.已知y-1与x-3成正比例,当x=4时,y=3.(1)试求y与x的函数关系式,并作出图象;(2)观察图象,直接写出当x为何值时,-3≤y≤7.16.【2024·合肥蜀山区月考】在平面直角坐标系中,点P的坐标为(2m+1,3m+2).(1)若点P在第三象限,求m的取值范围;(2)若点P到两坐标轴的距离相等,求点P的坐标.四、(本大题共2小题,每小题8分,满分16分)17.如图,在△ABC中,AB=4,AC=3,D是BC上的一点,连接AD.设S△ABDS△ACD=k,当AD分别满足下列条件时,求k的值.(1)AD为BC边上的中线;(2)AD为∠BAC的平分线.18.△ABC在平面直角坐标系中的位置如图所示.(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;(3)观察△A1B1C1和△A2B2C2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.五、(本大题共2小题,每小题10分,满分20分)19.“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图①所示的“三等分角仪”能三等分任意一角.如图②,这个“三等分角仪”由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,点C固定,点D,E可在槽中滑动,OC=CD=DE.若∠BDE=72°,求∠AOB的度数.20.因为一次函数y=kx+b与y=-kx+b(k≠0)的图象关于y轴对称,所以我们定义:函数y=kx+b与y=-kx+b(k≠0)互为“镜子”函数.(1)请直接写出函数y=3x-2的“镜子”函数:________________;(2)如图,一对“镜子”函数y=kx+b与y=-kx+b(k≠0)的图象交于点A,且与x轴交于B,C两点,若△ABC是等腰直角三角形,∠BAC=90°,且它的面积是16,求这对“镜子”函数的表达式.六、(本题满分12分)21.如图,DE⊥AB交AB的延长线于点E,DF⊥AC于点F,若BD=CD,BE=CF.(1)求证:AD平分∠BAC.(2)写出AB+AC与AE之间的等量关系,并说明理由.七、(本题满分12分)22.在新区建设中,甲、乙两处工地急需一批挖掘机,甲地需27台,乙地需25台;A,B两公司获知情况后分别调动挖掘机28台和24台,并将其全部调往工地.若从A公司调运一台挖掘机到甲地耗资0.4万元,到乙地耗资0.3万元;从B公司调运一台挖掘机到甲地耗资0.5万元,到乙地耗资0.2万元.设从A公司往甲地调运x台挖掘机,A,B公司将调动的挖掘机全部调往工地共耗资y万元.(1)用含x的代数式填写下表:调往甲地(单位:台)调往乙地(单位:台)A公司x________B公司________________调往甲地耗资(单位:万元)调往乙地耗资(单位:万元) A公司0.4x________B公司________________(2)求y与x之间的函数关系式,并直接写出自变量x的取值范围.(3)若总耗资不超过16.2万元,共有哪几种调运方案?八、(本题满分14分)23.在△ABC和△DCE中,CA=CB,CD=CE,∠CAB=∠CED=α.(1)如图①,将AD,EB延长,延长线相交于点O.①求证:BE=AD;②用含α的代数式表示∠AOB的度数;(2)如图②,当α=45°时,连接BD,AE,作CM⊥AE于点M,延长MC与BD交于点N,求证:N是BD的中点.答案一、1.D2.C3.D4.A5.C6.A7.B8.C9.C点方法:涉及最短距离的问题,一般要考虑线段的基本事实,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.10.D点易错:要特别注意t是甲车行驶的时间及两车的运动状态,分类讨论时要不重不漏.二、11.x≠012.20°或50°或80°点易错:关注∠C是顶角还是底角,同时兼顾∠A,注意分类讨论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学第一学期综合测试卷一、选择题(本题共10小题,每小题4分,满分40分)1、已知a是整数,点A(2a+1,2+a)在第二象限,则a的值是…………………………………()A.-1 B.0 C.1 D.22、如果点A(2m-n,5+m)和点B(2n-1,-m+n)关于y轴对称,则m、n的值为…………()A.m=-8,n=-5 B.m=3,n=-5 C.m=-1,n=3 D.m=-3,n=13、下列函数中,自变量x的取值范围选取错误的是………………………………………………()A.y=2x2中,x取全体实数 B.中,x取x≠-1的所有实数C.中,x取x≥2的所有实数 D.中,x取x≥-3的所有实数4、幸福村办工厂,今年前5个月生产某种产品的总量C(件)关于时间t(月)的函数图象如图1所示,则该厂对这种产品来说………………………………………………………………………()A.1月至3月每月生产总量逐月增加,4、5两月每月生产总量逐月减少B.1月至3月每月生产总量逐月增加,4,5两月每月生产量与3月持平C.1月至3月每月生产总量逐月增加,4、5两月停止生产D.1月至3月每月生产总量不变,4、5两月均停止生产5、下图中表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)图象是……()A .B .C .D .6、设三角形三边之长分别为3,8,1-2a ,则a 的取值范围为……………………………………( )A .-6<a<-3B .-5<a<-2C .-2<a<5D .a<-5或a>27、如图7,AD 是ABC △的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE 。

下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE 。

其中正确的有( ) A. 1个B. 2个C. 3个D. 4个8、如图8,AD=AE ,BE=CD ,∠ADB=∠AEC=100°,∠BAE=70°,下列结论错误的是………………( )A. △ABE ≌△ACDB. △ABD ≌△ACEC. ∠DAE=40°D. ∠C=30°9、下列语句是命题点是………………………………………………………………………………( ) A 、我真希望我们国家今年不要再发生自然灾害了 B 、多么希望国际金融危机能早日结束啊C 、钓鱼岛自古就是我国领土不容许别国霸占D 、你知道如何预防“H1N1”流感吗 10、将一张长方形纸片按如图10所示的方式折叠,BC BD ,为折痕,则CBD ∠的度数为………( ) A. 60°B. 75°C. 90°D. 95°二、填空题(本题共4小题,每小题5分,满分20分)11、已知一次函数y =kx +b 的图象如图11所示,当x<0时,y 的取值范围是 。

12、如图12,点E 在AB 上,AC=AD ,请你添加一个条件,使图中存在全等三角形,所添条件为,你所得到的一对全等三角形是。

13、如图13,△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为。

CA E BDAB D CE图11 图12 图1314、等腰三角形的一个角为30°,则它的另外两内角分别为。

三、填空题(本题共2小题,每小题8分,满分16分)15、△ABC在平面直角坐标系中的位置如图所示.(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;(3)观察△A1B1C和△A2B2C2,它们是否关于某直线对称?若是,请用粗线条画出对称轴.16、已知点P(x,y)的坐标满足方程()x y+++=3402,求点P分别关于x轴,y轴以及原点的对称点坐标。

四、填空题(本题共2小题,每小题8分,满分16分)17、一次函数y=kx+b的自变量x的取值范围是-3≤x≤6,相应函数值的取值范围是-5≤y≤-2,求这个函数的解析式。

18、等腰三角形一腰上的中线把这个三角形的周长分成12cm和9cm,求它的各边长.五、填空题(本题共2小题,每小题10分,满分20分)19、如图所示,AC=BD,AB=DC,求证∠B=∠C。

A DEBC20、如下图所示,在△ABC中,∠A=40°,∠B=90°,AC的垂直平分线MN分别与AB、AC交于点D、E,求∠BCD的度数。

B六、填空题(本题满分12分)21、如图所示,在△ABC和△ABD中,现给出如下三个论断:①AD=BC ②∠C=∠D ③∠1=∠2请选择其中两个论断为条件,另一个论断为结论,构造一个命题。

(1)写出所有的真命题(“——————⎧⎨⎩⇒”的形式,用序号表示)。

(2)请选择一个真命题加以证明。

C D1 2AB七、填空题(本题满分12分)22、已知:如图,在Rt△ABC中,∠C=90°,D是AC上一点,DE⊥AB于E,且DE=DC.(1)求证:BD平分∠ABC;(2)若∠A=36°,求∠DBC的度数.八、填空题(本题满分14分)23、有一个附有进水管、出水管的水池,每单位时间内进出水管的进、出水量都是一定的,设从某时刻开始,4h内只进水不出水,在随后的时间内不进水只出水,得到的时间x(h)与水量y(m3)之间的关系图(如图).回答下列问题:(1)进水管4h共进水多少?每小时进水多少?(2)当0≤x ≤4时,y 与x 有何关系? (3)当x=9时,水池中的水量是多少?(4)若4h 后,只放水不进水,那么多少小时可将水池中的水放完?答案1-5:ACDDA 6-10:BDCCC 11、y<-2 12、略 13、19cm 14、30° 120°或75° 75° 15、(1)作图略, 各顶点的坐标为:A 1(0,4) B 1 (2,2) C 1(1,1);(2)图形略, 各顶点的坐标为:A 2 (6,4) B 2 (4,2) C 2(5,1) (3)是关于某直线对称,对称轴画图略(直线x=3). 16、解:由()x y +++=3402可得x y +=+=3040,解得x =-3,y =-4。

则P 点坐标为P (―3,―4)那么P (―3,―4)关于x 轴,y 轴,原点的对称点坐标分别为(―3,4),(3,―4),(3,4)。

17、解:①当k >0时,y 随x 的增大而增大,则有:当x =-3,y =-5;当x =6时,y =-2,把它们代入y=kx +b 中可得∴∴函数解析式为y =x -4.②当k<O 时则随x 的增大而减小,则有:当x =-3时,y =-2;当x =6时,y =-5,把它们代入y=kx +b 中可得∴∴函数解析式为y =-x -3.∴函数解析式为y =x -4,或y =-x -3.18、解:设三角形腰长为x ,底边长为y .(1)由 得(2)由 得答:这个等腰三角形的各边长分别为8cm 、8cm 、5cm 或6cm 、6cm 、9cm . 19、证明1:连接AD在△ABD 与△DCA 中AB DC DB AC AD DA ===⎧⎨⎪⎩⎪∴≅∴∠=∠∆∆ABD DCA SSS B C()B C证明2:连结BC在△ABC 与△DCB 中AB DC AC DB BC CB ===⎧⎨⎪⎩⎪∴≅∴∠=∠∠=∠∠=∠-∠∠=∠-∠∴∠=∠∆∆ABC DCB SSS ABC DCB ACB DBCABD ABC DBC ACD DCB ACB ABD ACD(),,B C20、解:∵∠B =90°,∠A =40°∴∠ACB =50°∵MN 是线段AC 的垂直平分线 ∴DC =DA在△ADE 和△CDE 中, DA DC DE DE AE CE ===⎧⎨⎪⎩⎪ ∴△ADE ≌△CDE (SSS ) ∴∠DCA =∠A =40° ∴∠BCD =∠ACB -∠DCA =50°-40° =10°21、解:(1)真命题是①③②;②③①⎧⎨⎩⇒⎧⎨⎩⇒(2)选择命题一:①③②⎧⎨⎩⇒证明:在△ABC 和△BAD 中 AD BC AB BA ABC BAD C D=∠=∠=∴≅∴∠=∠,,12∆∆注:不能写成①②③⎧⎨⎩⇒,该命题误用“SSA ”。

解析:所添条件可以为:CE=DE ,∠CAB=∠DAB ,BC=BD 等条件中的一个,可以得到∆∆∆∆ACE ADE ACB ADB ≅≅,等。

证明过程略。

22、解:(1)证明:∵DC ⊥BC ,DE ⊥AB ,DE =DC , ∴点D 在∠ABC 的平分线上,∴BD 平分∠ABC . (2)∵∠C =90°,∠A =36°,∴∠ABC =54°,∵BD 平分∠ABC ,∴∠DBC =∠ABD =27°.23、 分析:在本题中横坐标的意义是进出水的时间,纵坐标表示水池中的水量,从图象看0≤x≤4时,y 是x 的正比例函数;x>4时,y 是x 的一次函数.解:(1)由图象知,4h 共进水20m 3,所以每小时进水量为5m 3.(2)y 是x 的正比例函数,设y=kx ,由于其图象过点(4,20),所以20=4k ,k=5,即y=5x(0≤x≤4). (3)由图象可知:当x=9时y=10,即水池中的水量为10m 3.(4)由于x≥4时,图象是一条直线,所以y 是x 的一次函数,设y=kx +b ,由图象可知,该直线过点(4,20),(9,10).令y=0,则-2x+28=0,∴x=14.14-4=10,所以4h后,只放水不进水,10h就可以把水池里的水放完.。

相关文档
最新文档