解三角形章节测试卷
解三角形测试
解三角形测试卷1.设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为(A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 不确定2.在△ABC 中, ,3,4AB BC ABC π∠===则sin BAC ∠ = ( )3.在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=且a b >,则B ∠=( )A.6πB.3πC.23πD.56π4.在锐角中ABC ∆,角,A B 所对的边长分别为,a b .若2sin ,a B A =则角等于( )A.12π B.6π C.4π D.3π5.在ABC ∆中,内角A ,B ,C 所对的边分别是,,a b c ,已知8=5b c ,=2C B ,则cos C= ( )A .725B .725-C .725±D .24256.△ABC 的三个内角A 、B 、C 所对的边分别为a ,b ,c ,asin AsinB+bcos 2则ba=( )(A)(B)(C)7.若ABC ∆的内角,,A B C 所对的边,,a b c 满足22()-4a b c +=,且060C =,则ab 的值为( )(A )43(B) 3-238.在ABC ∆中,角,,A B C 所对的边分,,a b c .若cos sin a A b B =,则2sin cos cos A A B +=( )(A)- 12 (B) 12(C) -1 (D) 1 9.如图,在△ABC 中,D 是边AC 上的点,且,2,2AB AD AB BC BD ===,则sin C 的值为( )A.3 B.6 C.3 D.610.在∆ABC 中.222sin sin sin sin sin A B C B C ≤+-.则A 的取值范围是( )(A)(0,6π] (B)[ 6π,π) (C)(0,3π] (D) [ 3π,π)12.如图ABC ∆中,已知点D 在BC 边上,AD ⊥AC,sin 3BAC AB AD ∠===则BD 的长为_______________13.已知△ABC 的内角A 、B 、C 所对应边分别为a 、b 、c,若22232330a ab b c ++-=,则角C 的大小是_______________(结果用反三角函数值表示)14.在ABC ∆中,角 A B C 、、所对边长分别为 a b c 、、,若05,8,60a c B ===,则b=_______15.设ABC ∆的内角,,A B C 所对边的长分别为,,a b c .若2b c a +=,则3sin 5sin ,A B =则角C =_____.16.设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且35cos ,cos ,3,513A B b ===则c =______ 17.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . 若()()a b c a b c ab +-++=,则角C =____. 18.在△ABC 中,若2a =,7b c +=,1cos 4B =-,则b =_______. 19.在ABC ∆中。
沪科版九年级数学上册《第二十三章解直角三角形》单元测试卷-附答案
沪科版九年级数学上册《第二十三章解直角三角形》单元测试卷-附答案学校:___________班级:___________姓名:___________考号:___________(满分150分,限时120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)1.(2023安徽淮南模拟)如果Rt△ABC的各边长都扩大为原来的3倍,那么锐角A 的正弦值、余弦值()A.都扩大为原来的3倍B.都缩小为原来的13C.没有变化D.不能确定2.(2023安徽宿州埇桥期末)三角函数sin 30°、cos 16°、cos 43°之间的大小关系是()A.cos 43°>cos 16°>sin 30°B.cos 16°>sin 30°>cos 43°C.cos 16°>cos 43°>sin 30°D.cos 43°>sin 30°>cos 16°3.(2023安徽巢湖三中月考)若sin(70°-α)=cos 50°,则锐角α的度数是()A.50°B.40°C.30°D.20°4.在△ABC中,∠C=90°,tan A=2,则cos A的值为()A.√55B.2√55C.12D.25.(2023安徽阜阳质检)下列运算中,值为14的是() A.sin 45°×cos 45° B.tan 45°-cos230°C.tan30°cos60°D.(tan 60°)-16.如图,在Rt△ABC中,∠ACB=90°,∠B=β,CD⊥AB,垂足为D,那么下列线段的比值不一定等于sin β的是()A.ADBD B.ACABC.ADACD.CDBC7.(2023安徽池州月考)如图,将△ABC放在每个小正方形的边长均为1的网格中,点A,B,C均在格点上,则tan A的值是()A.√55B.12C.2D.√1058.【新考法】一配电房的示意图如图所示,它是一个轴对称图形,已知AB=3 m,∠ABC=α,则房顶A离地面EF的高度为()A.(4+3sin α)mB.(4+3tan α)mC.(4+3sinα)m D.(4+3tanα)m9.(2023安徽合肥庐江期末)如图,在△ABC中,sin B=12,AB=8,AC=5,且∠C 为锐角,cos C的值是()A.35B.45C.√32D.3410.【新情境·双翼闸机】下图是一个地铁站入口的双翼闸机示意图,它的双翼展开时,双翼边缘的端点A与B之间的距离为12 cm,双翼的边缘AC=BD=64 cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°.当双翼收起时,可以通过闸机的物体的最大宽度为()A.76 cmB.(64√2+12)cmC.(64√3+12)cmD.64 cm二、填空题(本大题共4小题,每小题5分,满分20分)11.如果tan α=1,那么锐角α=度.12.如图,Rt△ABC中,∠ACB=90°,CD⊥AB于点D,BC=6,AC=8,设∠BCD=α,则tan α=.13.如图,已知tan O=4,点P在边OA上,OP=5,点M、N在边OB上,PM=PN,3如果MN=2,那么PM=.,BC=12,D是AB的中点,过点B 14.如图,在△ABC中,∠ACB=90°,cos A=35作线段CD的垂线,交CD的延长线于点E.(1)线段CD的长为;(2)cos∠DBE的值为.三、(本大题共2小题,每小题8分,满分16分) 15.计算:2cos 30°-tan 260°3tan45°+√(sin60°−1)2.16.(2023广西梧州模拟)构建几何图形解决代数问题是“数形结合”思想的重要体现,某数学兴趣小组在尝试计算tan 15°时,采用以下方法:如图,在Rt △ACB 中,∠C =90°,∠ABC =30°,延长CB 使BD =AB ,连接AD ,得∠D =15°,设AC =1,则AB =2,BC =√3,所以tan 15°=ACCD =2+√3=√3(2+√3)×(2−√3)=2-√3,类比这种方法,计算tan 22.5°的值(画出计算所需图形,并用文字、计算说明).四、(本大题共2小题,每小题8分,满分16分)17.(2021广东潮州中考)如图,在Rt△ABC中,∠A=90°,作BC的垂直平分线交AC于点D,延长AC至点E,使CE=AB.(1)若AE=1,求△ABD的周长;BD,求tan∠ABC的值.(2)若AD=1318.(2023安徽合肥瑶海期末)有一架长为6米的梯子AB,将它的上端A靠着墙面,下端B放在地面上,梯子与地面所成的角记为α,地面与墙面互相垂直(如图1所示).一般满足50°≤α≤75°时,人才能安全地使用这架梯子.(1)当梯子底端B距离墙面2.5米时,人是否能安全地使用这架梯子?(2)当人能安全地使用这架梯子,且梯子顶端A离地面最高时,梯子开始下滑,如果梯子顶端A沿着墙面下滑1.5米到墙面上的D点处停止,梯子底端B也随之向后平移到地面上的点E处(如图2所示),此时人是否能安全地使用这架梯子?请说明理由.(参考数据:sin 50°≈0.77,cos 50°≈0.64,sin 75°≈0.97,cos 75°≈0.26)五、(本大题共2小题,每小题10分,满分20分)19.如图,数学兴趣小组成员在热气球A上看到横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为53°和45°,已知大桥BC与地面在同一水平面上,其长度为75米,又知此时地面气温为20 ℃,海拔每升高100米,气温会下降约0.6 ℃,试求此时热气球(体积忽略不计)附近的温度.(参考数据:sin53°≈45,cos53°≈3 5,tan53°≈43)20.【方程思想】李老师给班级布置了一个实践活动,测量某广场纪念碑的高度,使用卷尺和测角仪测量.如图,纪念碑设在1.2 m的石台上,他们先在点B处测得纪念碑最高点A的仰角为22°,然后沿水平方向前进21 m,到达点N处,在点C 处测得点A的仰角为45°,BM=CN=1.7 m,求纪念碑的高度.(结果精确到0.1 m,参考数据:sin 22°≈0.37,cos 22°≈0.93tan 22°≈0.40,√2≈1.41)六、(本题满分12分)21.【主题教育·生命安全与健康】某校为检测师生体温,在校门安装了某型号测温门,如图,已知测温门AD的顶部A距地面2.2 m.某数学兴趣小组为了解测温门的有效测温区间,做了如下实践:身高为1.6 m的组员在地面N处时测温门开始显示额头温度,此时在额头B处测得A的仰角为20°,在地面M处时,测温门停止显示额头温度,此时在额头C处测得A的仰角为60°.求有效测温区间MN的长度.(参考数据:sin 20°≈0.34,cos 20°≈0.94,tan 20°≈0.36,√3≈1.73,额头到地面的距离以身高计,计算结果精确到0.1 m)七、(本题满分12分)22.如图,某大楼的顶部竖有一块广告牌CD,小明在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1∶√3,AB=16米,AE=24米.(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米,参考数据:√2≈1.414,√3≈1.732)八、(本题满分14分)23.(2022四川自贡中考)某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:(1)[探究原理]制作测角仪时,将细线一端固定在量角器圆心O处,另一端系小重物G.测量时,使支杆OM、量角器90°刻度线ON与铅垂线OG相互重合(如图①),绕点O转动量角器,使观测目标P与直径两端点A、B共线(如图②),此时目标P的仰角∠POC=∠GON.请说明这两个角相等的理由;(2)[实地测量]如图③,公园广场上有一棵树,为测树高,同学们在观测点K处测得树顶端P 的仰角∠POQ=60°,观测点与树的距离KH为5米,点O到地面的距离OK为1.5米,求树高PH;(√3≈1.73,结果精确到0.1米)(3)[拓展探究]公园高台上有一凉亭,为测量凉亭顶端P 距地面的高度PH (如图④),同学们经过讨论,决定先在水平地面上选取观测点E 、F (E 、F 、H 在同一直线上),分别测得点P 的仰角为α、β,再测得E 、F 间的距离为m 米,点O 1、O 2到地面的距离O 1E 、O 2F 均为1.5米.求PH (用α、β、m 表示).参考答案与解析1.C Rt △ABC 的各边长都扩大为原来的3倍后,所得的三角形与Rt △ABC 是相似的,∴锐角A 的大小是不变的,∴锐角A 的正弦值、余弦值没有变化.2.C ∵sin 30°=cos 60°,16°<43°<60°,余弦值随着角度的增大而减小,∴cos 16°>cos 43°>sin 30°.3.C ∵sin(70°-α)=cos 50°,∴70°-α+50°=90°,解得α=30°.故选C.4.A 在△ABC 中,∠C =90°,设∠A 、∠B 、∠C 的对边分别为a 、b 、c ,因为tan A =ab =2,所以a =2b ,由勾股定理得c =√a 2+b 2=√5b所以cos A =bc =√5b =√55.5.Bsin 45°×cos 45°=√22×√22=12,故A 不符合题意;tan 45°-cos 230°=1-(√32)2=1-34=14,故B 符合题意;tan30°cos60°=√3312=23√3,故C 不符合题意;(tan 60°)-1=(√3)-1=√33,故D 不符合题意. 6.AAD BD不一定等于sin β,故A 符合题意;∵△ABC 是直角三角形,∴sin β=AC AB,故B 不符合题意; ∵CD ⊥AB ,∠ACB =90°,∴∠ACD +∠A =∠B +∠A =90°∴∠ACD =∠B ,∴sin β=ADAC,故C 不符合题意;∵△BCD 是直角三角形,∴sin β=CDBC,故D 不符合题意.7.B 如图,取格点D ,连接BD由题意得AD 2=22+22=8,BD 2=12+12=2,AB 2=12+32=10,∴AD 2+BD 2=AB 2 ∴△ABD 是直角三角形,∴∠ADB =90°,在Rt △ABD 中 AD =2√2,BD =√2,∴tan A =BDAD =√22√2=12. 8.A 过点A 作AD ⊥BC 于点D ,如图∵AD ⊥BC ,∠ABC =α,∴sin α=AD AB=AD3,∴AD =3sin α m ,∴房顶A 离地面EF 的高度=AD +BE =(4+3sin α)m .9.A 如图,过点A 作AD ⊥BC ,垂足为D∴∠ADB =∠ADC =90°在Rt △ABD 中,sin B =12,AB =8,∴AD =AB ·sin B =8×12=4在Rt △ADC 中,AC =5,∴CD =√AC 2−AD 2=√52−42=3,∴cos C =CD AC =35.10.A 如图所示,过A 作AE ⊥CP 于E ,过B 作BF ⊥DQ 于F ,在Rt △ACE 中,AE =12AC =12×64=32(cm),同理可得BF =32 cm ,∵点A 与B 之间的距离为12 cm ,∴通过闸机的物体的最大宽度为32+12+32=76(cm).11.45解析 ∵tan α=1,∴锐角α=45度. 12.34解析 ∵CD ⊥AB ,∠ACB =90°,∴∠α+∠B =∠A +∠B =90°,∴∠α=∠A ∴tan α=tan A =68=34.13.√17解析 如图,过P 作PD ⊥OB ,交OB 于点D∵tan O =PD OD =43,∴设PD =4x ,则OD =3x∵OP =5,由勾股定理得(3x )2+(4x )2=52,∴x =1(已舍负),∴PD =4 ∵PM =PN ,PD ⊥OB ,MN =2,∴MD =ND =12MN =1在Rt △PMD 中,由勾股定理得PM =√MD 2+PD 2=√17. 14.(1)152(2)2425解析 (1)在Rt △ABC 中,cos A =AC AB =35∴设AC =3x ,则AB =5x ,∴BC =√AB 2−AC 2=√(5x)2−(3x)2=4x ∵BC =12,∴4x =12,∴x =3,∴AB =15,AC =9,∵D 是AB 的中点 ∴CD =12AB =152.(2)∵∠ACB =90°,D 是AB 的中点,∴△CBD 的面积=12×△ABC 的面积,∴12CD ·BE =12×12AC ·BC ,∴152BE =12×9×12,∴BE =365,在Rt △BDE 中cos ∠DBE =BE BD=365152=2425.15.解析原式=2×√32-(√3)23×1+1-√32=√3-1+1-√32=√32. 16.解析 如图,在等腰直角△ABC 中,∠C =90°,延长CB 至点D ,使得AB =BD ,则∠BAD =∠D.∵∠ABC =45°=∠BAD +∠D =2∠D ,∴∠D =22.5° 设AC =1,则BC =1,AB =√2AC =√2 ∴CD =CB +BD =CB +AB =1+√2 ∴tan 22.5°=tan D =ACCD =1+√2=√2−1(1+√2)×(√2−1)=√2-1.17.解析 (1)如图,连接BD ,设BC 的垂直平分线交BC 于点F ,∴BD =CD ∴C △ABD =AB +AD +BD =AB +AD +DC =AB +AC. ∵AB =CE ,∴C △ABD =AC +CE =AE =1 故△ABD 的周长为1.(2)设AD =x ,∴BD =3x.∵BD=CD,∴AC=AD+CD=4x在Rt△ABD中,AB=√BD2−AD2=√(3x)2−x2=2√2x∴tan∠ABC=ACAB =2√2x=√2.18.解析(1)在Rt△AOB中,cos α=OBAB∴OB=AB·cos α当α=50°时,OB=AB·cos α≈6×0.64=3.84当α=75°时,OB=AB·cos α≈6×0.26=1.56.∵1.56<2.5<3.84∴此时人能安全地使用这架梯子.(2)此时人不能安全地使用这架梯子.理由如下:当∠ABO=75°时∵sin∠ABO=AOAB∴AO=AB·sin 75°≈6×0.97=5.82(米)∵梯子顶端A沿着墙面下滑1.5米到墙面上的D点∴OD=AO-AD=5.82-1.5=4.32(米).当∠ABO=50°时∵sin∠ABO=AOAB∴AO=AB·sin∠ABO≈6×0.77=4.62(米)∵4.32<4.62∴此时人不能安全地使用这架梯子.19.解析过A作AD⊥BC,交CB的延长线于点D,如图所示则∠ACD=45°,∠ABD=53°,在Rt△ACD中,tan∠ACD=ADCD∴CD=ADtan45°=AD1=AD在Rt△ABD中,tan∠ABD=ADBD ,∴BD=ADtan53°≈AD43=34AD由题意得AD-34AD=75,∴AD=300 m,∵此时地面气温为20 ℃,海拔每升高100米,气温会下降约0.6 ℃,∴此时热气球(体积忽略不计)附近的温度约为20-300100×0.6=18.2(℃).答:此时热气球(体积忽略不计)附近的温度约为18.2 ℃.20.解析延长BC交AF于E,延长AF交MN的延长线于D,如图则四边形BMNC、四边形BMDE是矩形∴BC=MN=21 m,DE=CN=BM=1.7 m∵∠AEC=90°,∠ACE=45°∴△ACE是等腰直角三角形∴CE=AE设AE=CE=x m∴BE=(21+x)m∵∠ABE=22°∴tan 22°=AE BE =x21+x≈0.40,解得x =14∴AE =14 m∴AD =AE +ED =14+1.7=15.7(m) ∴纪念碑的高度=15.7-1.2=14.5(m). 答:纪念碑的高度约为14.5 m . 21.解析 延长BC 交AD 于点E则DE =CM =BN =1.6 m ,BC =MN ,∠AEB =90° ∵AD =2.2 m∴AE =AD -DE =2.2-1.6=0.6(m) 在Rt △ACE 中,∠ACE =60° ∴CE =AE tan60°=√3≈0.35(m)在Rt △ABE 中,∠ABE =20° ∴BE =AE tan20°≈0.60.36≈1.67(m)∴MN =BC =BE -CE =1.67-0.35=1.32(m) ∴有效测温区间MN 的长度约为1.32 m .22.解析 (1)Rt △ABH 中,tan ∠BAH =√3=√33 ∴∠BAH =30°,∴BH =12AB =8米.(2)如图,过B 作BG ⊥DE 于G 由(1)得BH =8米,易得AH =8√3米∴BG=HE=AH+AE=(8√3+24)米,在Rt△BGC中,∠CBG=45°∴CG=BG=(8√3+24)米.在Rt△ADE中,∠DAE=60°,AE=24米,∴DE=√3AE=24√3米.∴CD=CG+GE-DE=8√3+24+8-24√3=32-16√3≈4.3(米).答:广告牌CD的高约为4.3米.23.解析(1)∵∠COG=90°,∠AON=90°∴∠POC+∠CON=∠GON+∠CON∴∠POC=∠GON.(2)由题意可得KH=OQ=5米,QH=OK=1.5米,∠PQO=90°,∠POQ=60°在Rt△PQO中,tan∠POQ=PQOQ∴tan 60°=PQ5∴PQ=5√3米∴PH=PQ+QH=5√3+1.5≈10.2(米)即树高PH约为10.2米.(3)由题意可得O1O2=m米,O1E=O2F=DH=1.5米,tan β=PDO2D ,tan α=PDO1D∴O2D=PDtanβ,O1D=PDtanα∵O1O2=O2D-O1D,∴m=PDtanβ-PD tanα∴PD=mtanα·tanβtanα−tanβ米,∴PH=PD+DH=(mtanα·tanβtanα−tanβ+1.5)米。
高中数学总复习第04章检测A卷(解析版)
三角函数、解三角形 章节验收测试卷A 卷姓名班级准考证号1.已知角α的终边经过点P (4,-3),则2sin cos αα+的值等于( ) A.25−B.45C.35-D.25【答案】A 【解析】因为角α的终边过点()4,3,5P r OP −==, 所以利用三角函数的定义,求得34,cos 55sin αα=−=, 3422cos 2555sin αα∴+=−⨯+=−,故选A.2.将函数()1223f x sin x π⎛⎫=− ⎪⎝⎭的图象上每一个点向左平移3π个单位,得到函数()g x 的图象,则函数()g x 的单调递增区间为( )A.,,44k k k Z ππππ⎡⎤−+∈⎢⎥⎣⎦B.3,,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C.2,,36k k k Z ππππ⎡⎤−−∈⎢⎥⎣⎦D.5,,1212k k k Z ππππ⎡⎤−+∈⎢⎥⎣⎦【答案】D 【解析】由题意可知平移后的解析式:()1sin 223g x x π⎛⎫=+ ⎪⎝⎭函数()y g x =的单调递增区间:222232k x k πππππ−≤+≤+解得:5 1212k x k k Z ππππ−≤≤+∈3.若在是减函数,则的最大值是A .B .C .D .【解析】 因为,所以由得因此,从而的最大值为,选A.4.的内角的对边分别为,,,若的面积为,则A .B .C .D . 【答案】C 【解析】 由题可知所以由余弦定理所以,故选C.5.已知函数()222cos sin 2f x x x =−+,则A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为4【解析】根据题意有()1cos2x 35cos212cos2222f x x x −=+−+=+, 所以函数()f x 的最小正周期为22T ππ==,且最大值为()max35422f x =+=,故选B. 6.已知4sin cos 3αα−=,则sin 2α=( ). A .79−B .29− C .29D .79【答案】A 【解析】 【详解】()2sin cos 17sin 22sin cos 19ααααα−−===−−.所以选A.7.下列函数中,以2π为周期且在区间(4π,2π)单调递增的是 A .f (x )=│cos 2x │ B .f (x )=│sin 2x │ C .f (x )=cos│x │ D .f (x )= sin│x │【答案】A 【解析】因为sin ||y x =图象如下图,知其不是周期函数,排除D ;因为cos cos y x x ==,周期为2π,排除C ,作出cos 2y x =图象,由图象知,其周期为2π,在区间(,)42ππ单调递增,A 正确;作出sin 2y x =的图象,由图象知,其周期为2π,在区间(,)42ππ单调递减,排除B ,故选A .8.设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论: ①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,)其中所有正确结论的编号是 A .①④ B .②③C .①②③D .①③④【答案】D 【解析】当[0,2]x π∈时,,2555x πππωπω⎡⎤+∈+⎢⎥⎣⎦, ∵f (x )在[0,2]π有且仅有5个零点, ∴5265πππωπ≤+<,∴1229510ω≤<,故④正确, 由5265πππωπ≤+<,知,2555x πππωπω⎡⎤+∈+⎢⎥⎣⎦时, 令59,,5222x ππππω+=时取得极大值,①正确;极小值点不确定,可能是2个也可能是3个,②不正确; 因此由选项可知只需判断③是否正确即可得到答案,当0,10x π⎛⎫∈ ⎪⎝⎭时,(2),5510x ππωπω+⎡⎤+∈⎢⎥⎣⎦, 若f (x )在0,10π⎛⎫⎪⎝⎭单调递增, 则(2)102ωππ+< ,即<3ϖ , ∵1229510ω≤<,故③正确. 故选:D .9.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若=,b =4,则△ABC 的面积的最大值为A .4B .2C .3D .【答案】A 【解析】 ∵在△ABC 中=,∴,由正弦定理得,∴.又,∴,∵,∴.在△ABC 中,由余弦定理得,∴,当且仅当时等号成立.∴△ABC 的面积.故选A .10.在ABC ∆中,角,,A B C 的对边分别为a ,b ,c .若ABC ∆为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是( )A .2a b =B .2b a =C .2A B =D .2B A =【答案】A 【解析】sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,选A. 11.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2 【答案】D 【解析】把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y=cos2x 图象,再把得到的曲线向左平移π12个单位长度,得到函数y=cos2(x+π12)=cos (2x+π6)=sin (2x+2π3)的图象,即曲线C 2, 故选:D .12.锐角ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且满足22b a ac −=,函数()cos 22sin sin 344f x x x x πππ⎛⎫⎛⎫⎛⎫=−−+− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()f B 的取值范围是( ) A.1(,1)2 B.1(,1]2C.D.1(2【答案】A 【解析】22b a ac −=,22222cos b a c ac B a ac ∴=+−=+,2cos c a B a ∴=+,sin 2sin cos sin C A B A ∴=+,sin sin()sin cos cos sin C A B A B A B =+=+,sin cos sin sin cos sin()A A B A B B A ∴=−=−,三角形ABC 为锐角三角形,A B A ∴=−,2B A ∴=,3C A π∴=−,∴022302202B B B ππππ⎧<<⎪⎪⎪<−<⎨⎪⎪<<⎪⎩(3B π∴∈,)2π()cos 22sin sin 344f x x x x πππ⎛⎫⎛⎫⎛⎫=−−+− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=cos 22sin cos cos(2)sin(2)34432x x x x x πππππ⎛⎫⎛⎫⎛⎫−−++=−−+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=sin(2)6x π−,所以()sin(2)6f B B π=−,因为252,23266B B πππππ<<∴<−<,所以1()12f B <<. 故选:A13.函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.【答案】3 【解析】0x π≤≤193666x πππ∴≤+≤由题可知3336262x x ,ππππ+=+=,或5362x ππ+=解得4x ,99ππ=,或79π故有3个零点。
八年级数学上册试题 第十一章 三角形章节测试卷--人教版(含详解)
第十一章《三角形》章节测试卷一.选择题(共12小题,满分48分,每小题4分)1.已知△ABC中,∠A=20°,∠B=70°,那么△ABC是( )A.直角三角形B.锐角三角形C.钝角三角形D.正三角形2.下面四个图形中,线段BD是△ABC的高的是( )A.B.C.D.3.要使如图所示的五边形木架不变形,至少要再钉上几根木条( )A.1根B.2根C.3根D.4根4.能把一个任意三角形分成面积相等的两部分是( )A.以上都可以B.高C.中线D.角平分线5.长度分别为3,8,x的三条线段能组成一个三角形,x的值可以是( )A.4B.5C.6D.116.如图,在△ABC中,∠BAC=90°,AD是△ABC的高,若∠B=20°,则∠DAC=( )A.90°B.20°C.45°D.70°7.如图所示,∠1=∠2=150°,则∠3=( )A.30°B.150°C.120°D.60°8.如图,在△ABC中,AB=2021,AC=2018,AD为中线,则△ABD与△ACD的周长之差为( )A.1B.2C.3D.49.若一个多边形的每个内角都等于150°,则这个多边形的边数是( )A.10B.11C.12D.1310.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )A.90°B.135°C.270°D.315°11.△ABC的两边是方程组{x+2y=104x+3y=20的解,第三边长为奇数.符合条件的三角形有( )A.1个B.2个C.3个D.4个12.如图,在四边形ABCD中,∠ABC与∠BCD的平分线的交点E恰好在AD边上,则∠BEC=( )A.∠A+∠D﹣45°B.12(∠A+∠D)+45°C.180°-(∠A+∠D)D.12∠A+12∠D二.填空题(共4小题,满分16分,每小题4分)13.如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=20°,则∠1= °.14.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A= .15.如图,△ABC中,∠B=40°,∠C=30°,点D为边BC上一点,将△ADC沿直线AD折叠后,点C落到点E处,若DE∥AB,则∠AFD的度数为 .16.如图,D,E,F分别是△ABC的边AB,BC,AC上的中点,连接AE,BF,CD交于点G,AG:GE=2:1,△ABC的面积为6,设△BDG的面积为S1,△CGF的面积为S2,则S1+S2= .三.解答题(共8小题,满分86分)17.已知一个多边形的内角和是外角和的三倍,则这个多边形是几边形?18.如图,∠ABC=∠FEC=∠ADC=90°.(1)在△ABC中,BC边上的高是 ;(2)在△AEC中,AE边上的高是 ;(3)若AB=2.4cm,CD=2cm,AE=3cm,求△AEC的面积及CE的长.19.如图,已知D是△ABC边BC延长线上一点,DF⊥AB于点F,交AC于点E,∠A=35°,∠D=42°,求(1)∠ACD的度数;(2)∠AEF的度数.20.已知一等腰三角形的两边长x,y满足方程组{3x−y=55x+2y=23求此等腰三角形的周长.21.一个零件的形状如图,按规定∠A=90°,∠B和∠C应分别是32°和21°,检验工人量得∠BDC=149°,就判断这个零件不合格,运用三角形的有关知识说出零件不合格的理由.22.如图1所示,将一副三角板的直角顶点重合在点O处.(1)∠AOD ∠BOC;(填“>”“<”“=”)(2)若将三角尺按图2的位置摆放,∠AOC和∠BOD在数量上有何关系?说明理由;(3)在图2中,已知∠BOC与∠AOC的度数比为m:n,当a6m b11与a n+1b2n﹣11是同类项时,求∠BOD的度数.23.问题1现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.研究(1):如果折成图①的形状,使A点落在CE上,则∠1与∠A的数量关系是 研究(2):如果折成图②的形状,猜想∠1+∠2和∠A的数量关系是 研究(3):如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.问题2研究(4):将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是 .24.△ABC中,AD是∠BAC的角平分线,AE是△ABC的高.(1)如图1,若∠B=40°,∠C=60°,求∠DAE的度数;(2)如图2(∠B<∠C),试说明∠DAE与∠B、∠C的数量关系;(3)拓展:如图3,四边形ABDC中,AE是∠BAC的角平分线,DA是∠BDC的角平分线,猜想:∠DAE与∠B、∠C的数量关系是否改变.说明理由.答案一.选择题1.【解答】解:∵△ABC中,∠A=20°,∠B=70°,∴∠C=180°﹣20°﹣70°=90°,∴△ABC是直角三角形.故选:A.2.【解答】解:由图可得,线段BD是△ABC的高的图是D选项.故选:D.3.【解答】解:过五边形的一个顶点作对角线,有5﹣3=2条对角线,所以至少要钉上2根木条.故选:B.4.【解答】解:三角形的中线把三角形分成等底同高的两个三角形,面积相等,所以,能把一个任意三角形分成面积相等的两部分是中线.故选:C.5.【解答】解:8﹣3<x<8+3,5<x<11,只有选项C符合题意.故选:C.6.【解答】解:∵∠BAC=90°,∴∠DAC+∠BAD=90°,∵AD是△ABC的高,∴∠ADB=∠BAD+∠B=90°,∴∠DAC=∠B=20°,故选:B.7.【解答】解:∵∠1=∠2=150°,∴∠ABC=∠BAC=180°﹣150°=30°,∴∠3=∠ABC+∠BAC=60°.故选:D.8.【解答】解:∵AD为中线,∴DB=DC,∴△ABD与△ACD的周长之差为:(AB+AD+BD)﹣(AD+DC+AC)=AB+AD+BD﹣AD﹣DC﹣AC=AB﹣AC=2021﹣2018=3,故选:C.9.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故选:C.10.【解答】解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选:C.11.【解答】解:方程组{x+2y=104x+3y=20的解为:{x=2 y=4,∵△ABC的两边是方程组{x+2y=104x+3y=20的解,第三边长为奇数,∴2<第三边长<6,1∴第三边长可以为:3,5.∴这样的三角形有2个.故选:B.12.【解答】解:∵四边形的内角和=360°,∴∠ABC+∠BCD=360°﹣(∠A+∠D),∵∠ABC与∠BCD的平分线的交点E恰好在AD边上,∴2∠EBC=∠ABC,2∠ECB=∠BCD,∴∠EBC+∠ECB=12(∠ABC+∠BCD)=12×[360°−(∠A+∠D)],∴∠BEC=180°﹣(∠EBC+∠ECB)=180°−12×[360°−(∠A+∠D)]=12(∠A+∠D),故选:D.二.填空题13.【解答】解:∵∠A=60°,∠C=50°,∴∠ABC=180°﹣∠A﹣∠C=180°﹣60°﹣50°=70°,∴∠1=∠ABC﹣∠D=50°﹣20°=50°.故答案为:50.14.【解答】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABC=2∠ABP,∠ACM=2∠ACP,又∵∠ABP=20°,∠ACP=50°,∴∠ABC=2×20°=40°,∠ACM=2×50°=100°,∴∠A=∠ACM﹣∠ABC=60°,故答案为60°.15.【解答】解:∵∠B=40°,∠C=30°,∴∠BAC=110°,由折叠的性质得,∠E=∠C=30°,∠EAD=∠CAD,∵DE∥AB,∴∠BAE=∠E=30°,∴∠CAD=40°,∴∠ADC=180°﹣∠CAD﹣∠C=110°,∴∠AFD=110°﹣40°=70°,故答案为:70°.16.【解答】解:∵D,E,F分别是△ABC的边AB,BC,AC上的中点,∴AD=DB,AF=CF,∴△BDG的面积=△ADG的面积,△CFG的面积=△AGF的面积,∴设△BDG的面积为S1,△CGF的面积为S2,则S1+S2=四边形ADGF的面积,∵△ABC的面积为6,AG:GE=2:1,∴四边形ADGF的面积=23×12×6=2,∴S1+S2=2,故答案为:2三.解答题17.解:设这个多边形为n边形,n边形的内角和为:(n﹣2)×180°,n边形的外角和为:360°,根据题意得:(n﹣2)×180°=3×360°,解得:n=8,答:这个多边形是八边形.18.解:(1)在△ABC中,BC边上的高是线段AB;故答案为线段AB;(2)在△AEC中,AE边上的高是线段CD;故答案为线段CD;(3)∵S△AEC=12×AE×CD=12×CE×AB,∴CE=AE⋅CDAB= 2.5(cm).19.解:(1)∵DF⊥AB,∴∠B=90°﹣∠D=48°,∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B=83°;(2)∵DF⊥AB,∴∠AFD=90°,∴∠AEF=90°﹣∠A=55°.20.解:解方程组组{3x−y=55x+2y=23得{x=3 y=4,所以,等腰三角形的两边长为3,4.若腰长为3,底边长为4,由3+3=6>4知,三角形的周长为10.若腰长为4,底边长为3,则三角形的周长为11.所以,这个等腰三角形的周长为10或11.21.解:延长CD交AB于点E,∵∠BEC是△ACE的一个外角,∴∠BEC=∠A+∠C=90°+21°=111°,同理,∠BDC=∠BEC+∠B=111°+32°=143°,而检验工人量得∠BDC=149°,所以零件不合格.22.解:(1)∵∠AOB=∠COD=90°,∴∠AOB+∠BOD=∠COD+∠BOD,即∠AOD=∠BOC.故答案为:=;(2)∵∠AOB=∠COD=90°,∴∠AOC+∠BOD=180°.故∠AOC和∠BOD在数量上的关系为:∠AOC+∠BOD=180°;(3)∵a6m b11与a n+1b2n﹣11是同类项,∴{6m=n+111=2n−11,解得{m=2n=11,∵∠BOC与∠AOC的度数比为m:n,11﹣2=9,∴∠BOC=90°×2=20°,11−2∴∠BOD=90°﹣20°=70°.故∠BOD的度数是70°.23.解:(1)如图1,∠1=2∠A,理由是:由折叠得:∠A=∠DA′A,∵∠1=∠A+∠DA′A,∴∠1=2∠A;故答案为:∠1=2∠A;(2)如图2,猜想:∠1+∠2=2∠A,理由是:由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠ADB+∠AEC=360°,∴∠1+∠2=360°﹣∠ADE﹣∠A′DE﹣∠AED﹣∠A′ED=360°﹣2∠ADE﹣2∠AED,∴∠1+∠2=2(180°﹣∠ADE﹣∠AED)=2∠A;故答案为:∠1+∠2=2∠A;(3)如图3,∠2﹣∠1=2∠A,理由是:∵∠2=∠AFE+∠A,∠AFE=∠A′+∠1,∴∠2=∠A′+∠A+∠1,∵∠A=∠A′,∴∠2=2∠A+∠1,∴∠2﹣∠1=2∠A;(4)如图4,由折叠得:∠BMN=∠B′MN,∠ANM=∠A′NM,∵∠DNA+∠BMC=360°,∴∠1+∠2=360°﹣2∠BMN﹣2∠ANM,∵∠BMN+∠ANM=360°﹣∠A﹣∠B,∴∠1+∠2=360°﹣2(360°﹣∠A﹣∠B)=2(∠A+∠B)﹣360°,故答案为:∠1+∠2=2(∠A+∠B)﹣360°.24.解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD是∠BAC的角平分线,∠BAC=40°,∴∠CAD=∠BAD=12∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴∠DAE=∠CAD﹣∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC =180°﹣∠B ﹣∠C ,∵AD 是∠BAC 的角平分线,∴∠CAD =∠BAD =12∠BAC ,∵AE 是△ABC 的高,∴∠AEC =90°,∴∠CAE =90°﹣∠C ,∴∠DAE =∠CAD ﹣∠CAE =12∠BAC ﹣(90°﹣∠C )=12(180°﹣∠B ﹣∠C )﹣90°+∠C =12∠C −12∠B ,即∠DAE =12∠C −12∠B ; (3)不变,理由:连接BC 交AD 于F ,过点A 作AM ⊥BC 于M ,过点D 作DN ⊥BC 于N ,∵AE 是∠BAC 的角平分线,AM 是高,∴∠EAM =12(∠ACB ﹣∠ABC ),同理,∠ADN =12(∠BCD ﹣∠CBD ),∵∠AFM =∠DFN ,∠AMF =∠DNF =90°,∴∠MAD =∠ADN ,∴∠DAE =∠EAM+∠MAD =∠EAM+∠ADN =12(∠ACB ﹣∠ABC )+12(∠BCD ﹣∠CBD )=12(∠ACD ﹣∠ABD ).。
解三角形测试
解三角形测试卷(5.9) 一、选择题1.在△ABC 中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是 ( ) A. 0,6π⎛⎤⎥⎝⎦B. ,6ππ⎡⎤⎢⎥⎣⎦C. 0,3π⎛⎤⎥⎝⎦D. ,3ππ⎡⎫⎪⎢⎣⎭2.在△ABC 中,若a=角A=30°,则c 等于 ( )以上都不对3. △ABC 的三内角A 、B 、C 的对应边的长分别为a 、b 、c.设向量p =(a+c,b ),q =(b-a,c-a)若p ∥q,则角C 的大小为 ( ) A.6π B.3π C.2π D.23π4.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若ac b c a 3222=-+,则角B 的值为()A.6π B. 3π C. 566ππ或 D. 233ππ或5.在△ABC 中,a,b,c 分别为内角A ,B ,C 的对边,如果2b=a+c ,B=6π,△ABC 的面积为32,那么b 等于 ( )1 D.26. 如图,在一幢20 m 高的楼顶测得对面一塔吊顶部的仰角为60°,塔基的俯角为45°,那么该塔吊的高是 ( )A.201⎛⎝⎭mB.20(1mC.10mD.20m7.已知△ABC 的内角A 、B 、C 所对边的长分别为a 、b 、c ,若向量m =(a+b,-c),n =(sin A+sin B,sin C),且n m∙=3asin B,则角C 的值为 ( )A.6π B.3π C.23π D.56π8.在△ABC 中,内角A ,B ,C 的对边分别是a,b,c ,若22,sin a b C B -=,则A=A.30°B.60°C.120°D.150°9.在△ABC 中,∠B=60°,最大边与最小边的比为12,则三角形的最大角为 ( ) A.60° B.75° C.90° D.115° 10.若A 、B 是锐角ABC ∆的两个内角,则点(cos sin ,sin cos )P B A B A --在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 二、填空题11.在△ABC 中,角A=60°,AB=2,2ABC S ∆=,则BC= . 12.在△ABC 中,若b=5,∠B=4π,sin A=13,则a= .13.在△ABC 中,三个角A 、B 、C 的对边边长分别为a=3,b=4,c=6,则bccos A+cacos B+abcos C 的值为 .14.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c.)cos A= acos C,则cos A= .15.在△ABC 中,D 为BC 边上一点,BC=3BD ,AD=2,∠ADB=135°,若则BD= .二、填空题11、 12、 13、 14、 15、 三、解答题16.在△ABC 中,角A ,B ,C 所对的边分别为a,b,c ,且满足csin A=acos C. (1)求角C 的大小.(2cos 4A B π⎛⎫-+ ⎪⎝⎭的最大值,并求取得最大值时角A 、B 的大小.17.已知△ABC ,且(1)求边AB 的长; (2)若△ABC 的面积为16sin C ,求角C 的度数.18.如图,甲船以每小时直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里.当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距.问乙船每小时航行多少海里?19.在ABC ∆中 ,已知1sin sin 4=C B ,bc a c b =-+222,且C B > ,求C B A ,,.20.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知向量m=(3cos 2A ,3sin 2A ),n =(cos 2A ,sin 2A ),且满足|n m(1)求角A 的大小;(2)若试判断△ABC 的形状.21.如图,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB=90°,BD 交AC 于E ,AB=2. (1)求cos ∠CBE 的值; (2)求AE .。
《解直角三角形》章节测试题
《解直角三角形》章节测试题时间100分钟 满分100分 班级 姓名 得分一、 选择题((每题3分,共21分))1. 在∆Rt 中,各边的长度都扩大3倍,则锐角A 的三角函数值( )A 也扩大3倍B 缩小为原来的31 C 都不变 D 有的扩大,有的缩小 2. 如图(1),在△ABC 中,∠C=90°,AC=8cm ,AB 的垂直平分线MN 交AC于D ,连结BD ,若cos ∠BDC=53,则BC 的长是( )A 、4cm B 、6cm C 、8cm D 、10cm3.若3tan(a+10°)=3,锐角a 的度数是( ) A 、20°B 、30°C 、35°D 、50°4. 在Rt △ABC 中,∠C=90°,当已知∠A 和a 时,求c ,应选择的关系式是( )A .c=A a sinB .c=Aa cos C .c=a·tanA D .c=a·cotA 5. 当锐角α>60°时,则cosα的取值范围是( )A .21cos 0<<α B.23cos 0<<α C.23cos 21<<α D .22cos 21<<α 6. Rt △ABC 中,∠C=90°,tanA=34,BC=8,则AC 等于( ) A .6 B .332 C .10 D .12 7. 点(-sin60°,cos60°)关于y 轴对称的点的坐标是( )A .(,)B .(-,)C .(-,-)D .(-,-)二、 填空题((每题3分,共48分))8. 在Rt △ABC 中,∠C =90°,a =2,b =3,则sin B = ,tan B = .图(1)9.在△ABC 中,∠C=90°,若cosA=53,则tanB=_____,cotB= , cosB= . 10. 一等腰三角形的两边长分别为4cm 和6cm ,则其底角的余弦值为________.11. 在△ABC 中,若BC=2,AB=7,AC=3,则cosA=________.12. 在△ABC 中,AB=2,AC=2,∠B=30°,则∠A=______.13. 在Rt △ABC 中,∠C =90°,面积为24cm 2,b=6cm, 则sin A = .14. 在△ABC 中,∠C =90°,cosA=23,AB =8cm ,则△ABC 的面积为______. 15. 2sin30°+2cos60°+3tan45°=_______;=+ 65cos 25cos 22______16. =+ 12cos 12sin 22______; =+ 56sin 34sin 22______.17. 已知锐角α,(1).sin28°=cosα,则α=________, (2).tan28°=cosα,则α=________;(3).cos38°=sinα,则α=________, (4).cot 2432'22''=tan α,则α=____________ .18.sin40 ,sin75 ,tan45 ,cot25 的大小关系是(用""<符号连接)___________________19、若∠A 是锐角,且sinA =cosA ,则∠A 的度数是 .20、在△ABC 中,∠C =90°,如果AB =2,BC =1,那么sinA 的值是 ;21、如图(2),在坡度为1:2的山坡上种树,要求相邻两棵树间的水平距离为6米,斜坡上相邻两树间的坡面距离是 ;22、△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,如果a :b :c =1:3:2,那么∠A :∠B :∠C = ;23、如图(3),∠C =900,∠DBC =300,AB =DB ,那么tanA= ;三、计算(每题3分,共12分)24、---10)21(30sin 2|060cot -|+132+图(2)图(3)25112sin 602cot 30tan 601--+26、0)20093(30tan 160sin 160cos -+++27、 60sin 225tan 25cot 30tan 3-+四、简答题(19分)28、(9分)如图(4),一船在A 处看见灯塔B 在它的南偏西300方向,这时,船和灯塔B 的距离为40海里,然后船向西南方向航行到C 处,这时,望见灯塔B 在它正东方向,那么,船航行了多少海里?图(4)E 29、(10分)如图(5),D 是△ABC 的边AC 上一点,CD =2AD ,AE ⊥BC ,交BC 于点E.若BD =8,sin ∠CBD =43,求AE 的长。
解直角三角形测试题及答案
《解直角三角形》整章测试【1】一、选择题(每小题3分,共24分)1.在Rt △ABC 中, ∠C=90︒,AB=4,AC=1,则cos A 的值是( )(A )154(B)14(C)15 (D)42.计算:2)130(tan -︒=( )(A)331-(B)13- (C)133-(D )1-3 3.在ABC ∆中,,A B ∠∠都是锐角,且sinA =21, cosB =23,则ABC ∆的形状( ) (A )直角三角形(B )钝角三角形 (C )锐角三角形 (D )不能确定4.如图,在Rt ABC △中,3tan 2B =,23BC =,则AC 等于( )(A )3(B )4(C )43(D )65.如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE 为5m ,AB 为1.5m (即小颖的 眼睛距地面的距离),那么这棵树高是( ) (A)(53332+)m (B)(3532+)m (C)533m (D)4m 6.因为1sin 302=,1sin 2102=-, 所以sin 210sin(18030)sin 30=+=-;因为2sin 452=,2sin 2252=-,所以sin 225sin(18045)sin 45=+=-,由此猜想,推理知:一般地当α为锐角时有sin(180)sin αα+=-,由此可知:sin 240=( )(A )12-(B)22-(C)32- (D)3-7.如图,客轮在海上以30km/h 的速度由B 向C 航行,在B 处测得 灯塔A 的方位角为北偏东80,测得C 处的方位角为南偏东25,航 行1小时后到达C 处,在C 处测得A 的方位角为北偏东20,则C 到A 的距离是( )(A)156km(B)152km (C)15(62)+km(D)5(632)+km北东ABC8.如图,在Rt ABC △中,906cm A AC ∠==,,8cm AB =,把AB 边翻折,使AB 边落在BC 边上,点A 落在点E 处,折痕为BD ,则sin DBE ∠的值为()(A)13(B)310(C)37373(D)1010二、填空题(每小题3分,共24分) 9.计算sin 60tan 45cos30-的值是.10. 用“>”或“<”号填空:1sin 50cos 402-0.(可用计算器计算) 11.在Rt ABC △中,90C ∠=,:3:4BC AC =,则cos A =. 12.如图,一架梯子斜靠在墙上,若梯子到墙的距离AC =3米,3cos 4BAC ∠=,则梯子AB 的长度为米.13.如图,一轮船由南向北航行到O 处时,发现与轮船相距40海里的A 岛在北偏东33方向.已知A 岛周围20海里水域有暗礁, 如果不改变航向,轮船(填“有”或“没有”)触暗礁 的危险.(可使用科学计算器)14. 如图,在菱形ABCD 中,DE ⊥AB ,垂足为E ,DE=6cm ,3sin 5A =,则菱形ABCD 的面积是__________2cm . 15.根据指令[s,A](s ≥0,0°≤A <360°)机器人在平面上能完成如下动作:先在原地逆时针旋转角度A ,再朝其面对的方向沿直线行走距离s .现在机器人在平面直角坐标系的原点,且面对y 轴的负方向,为使其移动到点(-3,3),应下的指令是.16. 有古诗“葭生池中”今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问: 水深、葭长各几何?(1丈=10尺)回答:水深,葭长. 17.(本题8分)计算:242(2cos 45sin 60)4︒-︒+. 18.(本题10分)某校数学兴趣小组在测量一座池塘边上A B ,两点间的距离时用了以下三种测量方法,如下图所示.图中a b c ,,表示长度,β表示角度.请你分别求出AB 的长度(用含有a b c β,,,字母的式子表示).(1)______AB = (2)______AB = (3)______AB =19.(本题10分)小强家有一块三角形菜地,量得两边长分别为40m ,50m ,第三边上的高为30m ,请你帮小强计算这块菜地的面积(结果保留根号). 20.(本题12分)海中有一个小岛P ,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P 在北偏东60°方向上,航行12海里到达B 点,这时测得小岛P 在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由. (1A C B a b(2AC B a β (3AC B aD Ec b A BCD EA BC21.(本题12分)如图,AC是某市环城路的一段,AE,BF,CD都是南北方向的街道,其与环城路AC的交叉路口分别是A,B,C.经测量花卉世界D位于点A的北偏东45°方向、点B的北偏东30°方向上,AB=2km,∠DAC=15°.(1)求B,D之间的距离;(2)求C,D之间的距离.四、附加题(本题20分)22.现代家居设计的“推拉式”钢窗,运用了轨道滑行技术,纱窗装卸时利用了平行四边形的不稳定性,操作步骤如下:(1)将矩形纱窗转化成平行四边形纱窗后,纱窗上边框嵌入窗框的上轨道槽(如图1).(2)将平行四边形纱窗的下边框对准窗框的下轨道槽(如图2).(3)将平行四边形纱窗还原成矩形纱窗,同时下边框嵌入窗框的下轨道槽(如图3).在装卸纱窗的过程中,如图所示α∠的值不得小于81,否则纱窗受损.现将高96cm的矩形纱窗恰好安装在上、下槽深分别为0.9cm,高96cm(上、下槽底间的距离)的窗框上.试求合理安装纱窗时α∠的sin810.987=0.990=sin830.993=0.995=cos90.987=0.990=0.993=0.995=章《解直角三角形》整章测试答案:~8 BABA ACDD三、17.解:2=原式2=-2=18.解:(1)AB=(2)tanAB aβ=(3)acABb=.19.解:分两种情况:(1)当ACB∠为钝角时,BD是高,90ADB∴∠=.在Rt BCD△中,40BC=,30BD=∴CD==.在Rt ABD△中,50AB=,ABC中山路文化路D和平路45°15°30°环城路EF 图1 2 图3∴40AD ==.40AC AD CD ∴=-=-,新课标第一网∴211(4030(600)22ABC S AC BD ==-⨯=-△. (2)当ACB ∠为锐角时, BD 是高,90ADB BDC ∴∠=∠=,在Rt ABD △中,5030AB BD ==,,40AD ∴==.同理CD ==∴(40AC AD CD =+=+,∴211(4030(600)22ABC S AC BD ==+⨯=+△.综上所述:2(600)ABC S =±△.20.解:有触礁危险.理由: 过点P 作PD ⊥AC 于D .设PD 为x ,在Rt △PBD 中,∠PBD=90°-45°=45°. ∴BD =PD =x .在Rt △PAD 中,∵∠PAD =90°-60°=30°,∴x .xAD 330tan =︒=∵BD ,AB AD +=∴x .x +=123 ∴)13(61312+=-=x .∵,<18)13(6+∴渔船不改变航线继续向东航行,有触礁危险.21. 解:(1)由题意得,∠EA D =45°,∠FBD=30°. ∴∠EAC=∠EA D +∠DA C =45°+15°=60°. ∵ AE∥BF∥CD,∴ ∠FBC=∠EAC =60°. ∴ ∠DBC=30°.又∵ ∠DBC=∠DAB+∠ADB, ∴ ∠ADB=15°.∴∠DAB=∠ADB.∴ BD=AB=2. 即B ,D 之间的距离为2km .(2)过B 作BO⊥DC,交其延长线于点O , 在Rt△DBO 中,BD=2,∠DBO=60°. ∴ DO=2×sin60°=2×323=,BO=2×cos60°=1. 在Rt△CBO 中,∠CBO=30°,CO=BOtan30°=33, ∴ CD=DO-CO=332333=-(km ). 即C ,D 之间的距离为332km . 22. 解:能够合理装上平行四边形纱窗时的最大高度:960.995.1-=(cm ) 能够合理装上平行四边形纱窗时的高:96sin α∠或96cos(90)α-∠·°当81α∠=°时,纱窗高:96sin81960.98794.75295.1=⨯=<° ∴此时纱窗能装进去,当82α∠=°时,纱窗高:96sin82960.99095.0495.1=⨯=<° ∴此时纱窗能装进去.当83α∠=°时,纱窗高:96sin83960.99395.32895.1=⨯=>° ∴此时纱窗装不进去.因此能合理装上纱窗时α∠的最大值是82°.。
《解三角形》单元测试题1
《解三角形》单元测试题一、选择题(本大题共10小题,每小题6分,共60分)1.在ABC ∆中,2,45,6000===b C A ,则此三角形的最小边长为( )A .2B .232-C .13-D .)12(2- 2.根据下列条件,确定三角形有两解的是( ) A .060,6,3===A b a B .030,5,4===C b c C .0120,2,3===B b aD .060,4,5===C b c3.已知ABC ∆中,030,1,3===B b a ,则其面积等于( )A .23或3 B .23 C .23或43 D .43 4.在△ABC 中,2m :1)(m :m sinC :sinB :sinA +=,则m 的取值范围是( ) A .R m ∈ B .2>m C .0>mD .21>m 5.已知三角形的三边长分别是)0(33,2,3222>++++m m m m m m ,则这个三角形的最大角是( ) A .0150 B .0135 C .0120 D .0906.在△ABC 中,若bc a c b c b a 3))((=-+++,则A ∠等于( )A .030 B .060 C .0120 D .0150 7. 在△ABC 中,已知0120,4,6===C b a ,则B sin 的值是( )A .1957 B .721 C .383- D .1957- 8. 钝角三角形三边长为2,1,++a a a ,其最大角不超过0120,则a 的取值范围是( )A .)3,23[B .)25,1[ C .]3,2( D .)3,0( 9.关于x 的方程22cos cos cos 02Cx x A B -⋅⋅-=有一个根为1,则△ABC 一定是( )A .等腰三角形B .直角三角形C .锐角三角形D .钝角三角形10.甲、乙两楼相距m 20 ,从乙楼底望甲楼顶的仰角为060,从甲楼顶望乙楼顶的俯角为030,则甲、乙两楼的高分别是( ) A .m m 3320,2315 B .m m 320,310 C .m m 320,)23(10+ D .m m 3340,320 二、填空题(本大题共4小题,每小题6分,共24分)11.在△ABC 中,若AB =5,AC =5,且cos C =109,则BC =________. 12.在△ABC 中,∠C =60°,a 、b 、c 分别为∠A 、∠B 、.C 的对边,则ca bc b a +++=________. 13.△ABC 中,A 为锐角,2lg 21sin lg 1lg lg -==+A c b ,则△ABC 为 三角形.14.一船以每小时15km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60,行驶4h 后,船到达C处,看到这个灯塔在北偏东15,这时船与灯塔的距离为 km . 三、解答题(本大题共5小题,共66分)15.(本小题共12分)已知a =33,c =2,B =150°,求边b 的长及S △. 16.(本小题共12分)在△ABC 中,设,2tan tan bbc B A -=求A 的值. 17.(本小题共14分)如图,在四边形ABCD 中,AC 平分∠DAB ,∠ABC=600,AC=7,AD=6,S △ADC =2315,求AB 的长. 18.(本小题共14分)在△ABC 中,证明:2222112cos 2cos ba b B a A -=-. 19. (本小题共14分) 一缉私艇A 发现在北偏东45方向,距离12 nmile的海面上C 处有一走私船正以10 nmile/h 的速度沿东偏南15方向逃窜.缉私艇的速度为14 nmile/h, 若要在最短的时间内追上该走私船,缉私艇应沿北偏东α+45的方向去追,.求追及所需的时间和α角的正弦值.600 2 1DCB A 17题图ABC北 东19题图。
第十一章-三角形》单元测试卷含答案(共5套)
第十一章三角形》单元测试卷含答案(共5套)第十一章三角形单元测试卷(一)时间: 120分钟满分: 120分一、选择题1.以下列每组长度的三条线段为边能组成三角形的是() A。
2.3.6.B。
2.4.6C。
2.2.4.D。
6、6、62.如图, 图中∠1的大小等于()A。
40°。
B。
50°。
C。
60°。
D。
70°3.一个多边形的每一个内角都等于140°, 则它的边数是() A。
7.B。
8.C。
9.D。
104.如图, △ABC中, ∠A=46°, ∠C=74°, BD平分∠XXX于点D, 那么∠XXX的度数是()A。
76°。
B。
81°。
C。
92°。
D。
104°5.用五根木棒钉成如下四个图形, 具有稳定性的有()A。
1个。
B。
2个。
C。
3个。
D。
4个6.如图, 点A, B, C, D, E, F是平面上的6个点, 则∠A+∠B +∠C+∠D+∠E+∠F的度数是()A。
180°。
B。
360°。
C。
540°。
D。
720°二、填空题7.已知三角形两条边长分别为3和6, 第三边的长为奇数, 则第三边的长为9.8.若n边形内角和为900°, 则边数n为10.9.将一副三角板按如图所示的方式叠放, 则∠α的度数为30°。
10.如图, 在△ABC中, ∠ACB=90°, ∠A=20°。
若将XXX沿CD所在直线折叠, 使点B落在AC边上的点E处, 则∠XXX的度数是70°。
11.如图, 在△ABC中, E、D.F分别是AD.BF、CE的中点。
若△DEF的面积是1cm², 则S△ABC=3cm²。
12.当三角形中一个内角β是另一个内角α的时, 我们称此三角形为“希望三角形”, 其中角α称为“希望角”。
如果一个“希望三角形”中有一个内角为54°, 那么这个“希望三角形”的“希望角”的度数为27°。
《解三角形》测试题
《解三角形》单元练习题一 选择题:1.已知△ABC 中,30A = ,105C = ,8b =,则等于 ( )A 4B 2. △ABC 中,45B =,60C =,1c =,则最短边的边长等于 ( )A B C 12 D3.长为5、7、8的三角形的最大角与最小角之和为 ( ) A 90° B 120° C 135° D 150°4. △ABC 中,cos cos cos a b cA B C ==,则△ABC 一定是 ( )A 直角三角形B 钝角三角形C 等腰三角形D 等边三角形5. △ABC 中,60B = ,2b ac =,则△ABC 一定是 ( )A 锐角三角形B 钝角三角形C 等腰三角形D 等边三角形6.△ABC 中,∠A=60°, a= 6 , b=4, 那么满足条件的△ABC ( )A 有 一个解B 有两个解C 无解D 不能确定7. △ABC 中,8b =,c =ABC S = ,则A ∠等于 ( )A 30B 60C 30 或150D 60 或1208.△ABC 中,若60A =,a =sin sin sin a b cA B C +-+-等于 ( )A 2B 1229. 在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为( ) A.3400米 B. 33400米 C. 2003米 D. 200米10. 海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是 ( )A.10 海里B.5海里C. 56 海里D.53 海里二、填空题:13.在△ABC 中,如果sin :sin :sin 2:3:4A B C =,那么cos C 等于 。
14.在△ABC 中,已知b =,150c =,30B =,则边长a = 。
第一章 解直角三角形单元测试卷(标准难度 含答案)
浙教版初中数学九年级下册第一单元《解直角三角形》(标准难度)(含答案解析)考试范围:第一单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1. 如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是( )A. sinA=√32B. tanA=12C. cosB=√32D. tanB=√32. 如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=35,DF=5,则BC的长为( )A. 8B. 10C. 12D. 163. 如图,在Rt△BAD中,延长斜边BD到点C,使DC=12BD,连接AC,若tan B=53,则tan∠CAD的值为( )A. √33B. √35C. 13D. 154. 在实数π,13,√2,sin30°中,无理数的个数为( )A. 1B. 2C. 3D. 45. 如图,△ABC的三个顶点分别在正方形网格的格点上,下列三角函数值错误的是( )A. sinB=35B. cosB=45C. tanB=34D. tanA=436. 如图,CD是平面镜,光线从点A出发,经CD上点E反射后照射到点B.若入射角为α,AC⊥CD,BD⊥CD,垂足分别为点C,D,且AC=3,BD=6,CD=11,则tanα的值为( )A. 113B. 311C. 911D. 1197. 在Rt△ABC中,∠C=90∘,cosA=√32,∠B的平分线BD交AC于点D,若AD=16,则BC的长为( )A. 6B. 8C. 8√3D. 128. 如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正确的结论为( )A. ①②;B. ②③;C. ①②③;D. ①③;9. 某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为( )A. 95sinα米B. 95cosα米C. 59sinα米D. 59cosα米10. 如图,在△ABC中,∠B=45°,∠C=60°,AD⊥BC于点D,BD=√3.若E,F分别为AB,BC的中点,则EF的长为( )A. √33B. √32C. 1D. √6211. 如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=α,则点A到OC的距离等于( )A. a⋅sinα+b⋅sinαB. a⋅cosα+b⋅cosαC. a⋅sinα+b⋅cosαD. a⋅cosα+b⋅sinα12. 如图,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸点A处,测得河的北岸边点B在其北偏东45∘方向然后向西走80米到达C点,测得点B在点C的北偏东60∘方向,则这段河的宽度为( )A. 80(√3+1)米B. 40(√3+1)米C. (120−40√3)米D. 40(√3−1)米第II卷(非选择题)二、填空题(本大题共4小题,共12分)13. 在Rt△ABC中,∠C=90°,AB=3,BC=2,则cosA的值是.14. 在菱形ABCD中,DE⊥AB,垂足是E,DE=6,sin A=3,则菱形ABCD的周长是.515. 若锐角α满足cosα<√2且tanα<√3,则α的范围是.216. 如图,在△ABC中,AB=AC=5cm,cosB=3.如果⊙O的半径为√10cm,且经过点B,5C,那么线段AO=cm.三、解答题(本大题共9小题,共72分。
高中数学必修五第一章《解三角形》单元测试卷及答案
高中数学必修五第一章《解三角形》单元测试卷及答案(2套)单元测试题一一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中) 1.在ABC △中,::1:2:3A B C =,则::a b c 等于( )A .1:2:3B .3:2:1C .2D .22.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且A >B ,则一定有( ) A .cos A >cos BB .sin A >sin BC .tan A >tan BD .sin A <sin B3.△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,2sin sin cos a A B b A +,则ba =( )A .B .C D4.在△ABC 中,∠A =60°,a =,b =4.满足条件的△ABC ( ) A .无解B .有一解C .有两解D .不能确定5.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且222a b c =-, 则角B 的大小是( ) A .45°B .60°C .90°D .135°6.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,若22a b -,sin C B =,则A =( ) A .30°B .60°C .120°D .150°7.在△ABC 中,∠A =60°,b =1,△ABC sin aA为( )A B C D .8.在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是( )A .0,6π⎛⎤ ⎥⎝⎦B .,6π⎡⎫π⎪⎢⎣⎭C .0,3π⎛⎤ ⎥⎝⎦D .,3π⎡⎫π⎪⎢⎣⎭9.在△ABC 中,已知B =45°,c =,b =A 的值是( ) A .15°B .75°C .105°D .75°或15°10.在锐角三角形ABC 中,b =1,c =2,则a 的取值范围是( )A .1<a <3B .1a <<C a <D .不确定11.在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 22A b cc+=,则 △ABC 的形状为( ) A .直角三角形B .等腰直角三角形C .等腰或直角三角形D .等边三角形12.如图所示,在△ABC 中,已知∠A ∶∠B =1∶2,角C 的平分线CD 把三角形面积分为3∶2两部分,则cos A 等于( )A .13B .12C .34D .0二、填空题(本大题共4个小题,每空5分,共20分,把正确答案填在题中横线上) 13.等腰三角形的底边长为6,腰长为12,其外接圆的半径为________. 14.在△ABC 中,若a 2+b 2<c 2,且3sin C ,则∠C =________. 15.在△ABC 中,a =3,26b =B =2∠A ,则cos A =________.16.某人在C 点测得塔AB 在南偏西80°,仰角为45°,沿南偏东40°方向前进10 m 到O ,测得塔A 仰角为30°,则塔高为________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(10分)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .已知()cos cos 3sin cos 0C A A B +=.(1)求角B 的大小;(2)若a +c =1,求b 的取值范围.18.(12分)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .(1)若sin 2cos 6A A π⎛⎫+= ⎪⎝⎭,求A 的值;(2)若1cos 3A =,b =3c ,求sin C 的值.19.(12分)在△ABC 中,角A 、B 、C 对应的边分别是a 、b 、c ,已知cos2A -3cos(B +C )=1.(1)求角A 的大小;(2)若△ABC 的面积S =b =5,求sin B sin C 的值.20.(12分)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c ,且222a b c +=. (1)求C ;(2)设cos cos A B =,()()2cos cos cos A B ααα++,求tan α的值.21.(12分)在△ABC 中,2C A π-=,1sin 3B =. (1)求sin A 的值;(2)设6AC =,求△ABC 的面积.22.(12分)如图,已知扇形AOB ,O 为顶点,圆心角AOB 等于60°,半径为2,在弧AB 上有一动点P ,过P 引平行于OB 的直线和OA 相交于点C ,设∠AOP =θ,求△POC 面积的最大值及此时θ的值.答 案一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中) 1.【答案】C 【解析】6A π=,3B π=,2C π=,132::sin :sin :sin 3222a b c A B C ===,故选C . 2.【答案】B【解析】∵A B >,∴a b >,由正弦定理,得sin sin A B >,故选B .3.【答案】D【解析】本小题考查内容为正弦定理的应用.∵2sin sin cos a A B b A +=,∴22sin sin sin cos A B B A A +=,sin B A =,∴b =,∴ba.故选D . 4.【答案】A【解析】4sin 60⨯︒=<a <b sin A ,∴△ABC 不存在. 故选A . 5.【答案】A【解析】∵222a b c =-,∴222a c b +-=,由余弦定理,得222cos 2a c b B ac +-===0°<B <180°,所以B =45°. 故选A . 6.【答案】A【解析】由sin C B =及正弦定理,得c =,∴2226a b b -=, 即a 2=7b 2.由余弦定理,2222222cos2b c a A bc +-===,又∵0°<A <180°,∴A =30°.故选A . 7.【答案】B【解析】由1sin 2bc A =c =4.由余弦定理得a 2=b 2+c 2-2bc cos A =13,故a =sin a A ==B . 8.【答案】C【解析】本题主要考查正余弦定理,∵sin 2A ≤sin 2B +sin 2C -sin B sin C , ∴由正弦定理得:a 2≤b 2+c 2-bc ,即b 2+c 2-a 2≥bc ,由余弦定理得:2221cos 222b c a bc A bc bc +-==≥=,∴03A π<≤,故选C .9.【答案】D 【解析】∵sin sin b cB C =,∴sin sin c B C b ==. ∵0°<C <180°.∴C =60°或120°,∴A =75°或15°.故选D . 10.【答案】C【解析】∵b <c ,△ABC 为锐角三角形,∴边c 与边a 所对的角的余弦值大于0,即b 2+a 2-c 2>0且b 2+c 2-a 2>0,∴22140140a a ⎧+->⎪⎨+->⎪⎩.∴3<a 2<5,∴35a <<. 故选C . 11.【答案】A【解析】由21cos cos 222A A b c c ++==,整理得cos bA c=.又222cos 2b c a A bc +-=, 联立以上两式整理得c 2=a 2+b 2,∴C =90°.故△ABC 为直角三角形.故选A . 12.【答案】C【解析】在△ABC 中,设∠ACD =∠BCD =β,∠CAB =α,由∠A ∶∠B =1∶2,得∠ABC =2α.∵∠A <∠B ,∴AC >BC ,∴S △ACD >S △BCD ,∴S △ACD ∶S △BCD =3∶2,∴1sin 3212sin 2AC DC BC DC ββ⋅⋅⋅=⋅⋅⋅,∴32AC BC =.由正弦定理得sin sin AC BC B A =,sin 2sin 2sin cos sin AC BC AC BCααααα=⇒=, ∴133cos 2224AC BC α==⨯=,即3cos 4A =.故选C .二、填空题(本大题共4个小题,每空5分,共20分,把正确答案填在题中横线上) 13.815【解析】设△ABC 中,AB =AC =12,BC =6,由余弦定理222222121267cos 2212128AB AC BC A AB AC +-+-===⋅⨯⨯.∵()0,A ∈π,∴15sin A =,∴外接圆半径8152sin BC r A == 14.【答案】23π【解析】∵a 2+b 2<c 2,∴a 2+b 2-c 2<0,即cos C <0.又3sin C ,∴23C π∠=. 15.6【解析】∵a =3,26b =,∠B =2∠A ,由正弦定理326sin sin 2A A=, ∴2sin cos 26sin 3A A A =,∴6cos 3A =. 16.【答案】10 m【解析】画出示意图,如图所示,CO =10,∠OCD =40°,∠BCD =80°,∠ACB =45°, ∠AOB =30°,AB ⊥平面BCO ,令AB =x ,则BC =x ,3BO x ,在△BCO 中,由余弦定理得)()223100210cos 8040xx x =+-⨯⨯︒+︒,整理得25500x x -=-,解得10x =,5x =-(舍去),故塔高为10 m .三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.【答案】(1)3B π=;(2)112b ≤<. 【解析】(1)由已知得()cos cos cos 3cos 0A B A B A B -++-=, 即有sin sin 3sin cos 0A B A B =. 因为sin A ≠0,所以sin 30B B =. 又cos B ≠0,所以tan 3B =.又0<B <π,所以3B π=. (2)由余弦定理,有b 2=a 2+c 2-2ac cos B . 因为a +c =1,1cos 2B =,有2211324b a ⎛⎫=-+ ⎪⎝⎭.又0<a <1,于是有2114b ≤<,即有112b ≤<. 18.【答案】(1)3A π=;(2)1sin 3C =. 【解析】(1)由题设知sin cos cos sin 2cos 66A A A ππ+=.从而sin 3A A ,所以cos A ≠0,tan A =.因为0<A <π,所以3A π=. (2)由1cos 3A =,b =3c 及a 2=b 2+c 2-2bc cos A ,得a 2=b 2-c 2, 故△ABC 是直角三角形,且2B π=.所以1sin cos 3C A ==. 19.【答案】(1)3A π=;(2)5sin sin 7B C =. 【解析】(1)由cos2A -3cos(B +C )=1,得2cos 2A +3cos A -2=0, 即(2cos A -1)(cos A +2)=0,解得1cos 2A =或cos A =-2(舍去). 因为0<A <π,所以3A π=.(2)由11sin sin 223S bc A bc π====bc =20,又b =5,知c =4.由余弦定理得a 2=b 2+c 2-2bc cos A =25+16-20=21,故a =. 又由正弦定理得222035sin sin sin sin sin 2147b c bc B C A A A a a a =⋅==⨯=.20.【答案】(1)34C π=;(2)tan α=1或tan α=4.【解析】(1)因为222a b c +=,由余弦定理有222cos 2a b c C ab +-===34C π=. (2)由题意得()()2sin sin cos cos sin sin cos cos cos A A B B ααααα--,因此()()tan sin cos tan sin cos A A B B αα--=,()2tan sin sin tan sin cos cos sin cos cos A B A B A B A B αα-++=,()2tan sin sin tan sin cos cos A B A B A B αα-++=因为34C π=,4A B π+=,所以()sin A B +=因为cos(A +B )=cos A cos B -sin A sin B ,即sin sin 52A B -=,解得sin sin 5210A B =-=.由①得tan 2α-5tan α+4=0,解得tan α=1或tan α=4. 21.【答案】(1)sin A ;(2)ABC S =△. 【解析】(1)由2C A π-=和A +B +C =π,得22A B π=-,04A π<<. ∴cos2A =sinB ,即2112sin 3A -=,∴sin A =.(2)由(1)得cos A sin sin BC AC A B =,∴sin 31sin 3AC ABC B===∵2C A π-=,∴2C A π=+,∴sin sin cos 2C A A π⎛⎫=+== ⎪⎝⎭,∴11sin 22ABC S AC BC C =⋅⋅==△. 22.【答案】当θ=30°时,S (θ). 【解析】∵CP ∥OB ,∴∠CPO =∠POB =60°-θ,∠OCP =120°. 在△OCP 中,由正弦定理,得sin sin OP CP OCP θ=∠,即2sin120sin CPθ=︒,∴CP θ.又()2sin 60sin120CO θ=︒-︒,∴()60OC θ=︒-.故△POC 的面积是()1sin1202S CP CO θ=⋅⋅︒()()160sin si 2n 60θθθθ=︒-︒-()1sin sin 21cos 2602θθθθ⎫⎤=-︒=-⎪-⎥⎪⎝⎦⎭,()0,60θ∈︒︒, ∴当θ=30°时,S (θ)单元测试题二一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.在ABC △中,若90C =︒,6a =,30B =︒,则c b -等于( )A .1B .1-C .D .-2.在ABC △中,3AB =,2AC =,BC =BA ·AC 等于( )A .32-B .23-C .23D .323.在△ABC 中,已知a =,b =A =30°,则c 等于( )A .BC .D .以上都不对4.根据下列情况,判断三角形解的情况,其中正确的是( ) A .a =8,b =16,A =30°,有两解 B .b =18,c =20,B =60°,有一解 C .a =5,c =2,A =90°,无解 D .a =30,b =25,A =150°,有一解5.△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为( )A B C D .6.在△ABC 中,2cos 22A b cc+⋅=(a 、b 、c 分别为角A 、B 、C 的对边),则△ABC 的形状为( ) A .直角三角形 B .等腰三角形或直角三角形 C .等腰直角三角形D .正三角形7.已知△ABC 中,A 、B 、C 的对边分别为a 、b 、c .若a c =A =75°,则b 等于( )A .2B -C .4-D .4+8.在△ABC 中,已知b 2-bc -2c 2=0,a =7cos 8A =,则△ABC 的面积S 为( )A B C D .9.在△ABC 中,AB =7,AC =6,M 是BC 的中点,AM =4,则BC 等于( )A B C D10.若sin cos cos A B Ca b c==,则△ABC 是( ) A .等边三角形 B .有一内角是30°的直角三角形 C .等腰直角三角形D .有一内角是30°的等腰三角形11.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若()222tan 3a c b B ac +-=,则角B 的值为( ) A .6π B .3π C .6π或56π D .3π或23π12.△ABC 中,3A π=,BC =3,则△ABC 的周长为( ) A .43sin 33B π⎛⎫++ ⎪⎝⎭B .43sin 36B π⎛⎫++ ⎪⎝⎭C .6sin 33B π⎛⎫++ ⎪⎝⎭D .6sin 36B π⎛⎫++ ⎪⎝⎭二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.在△ABC 中,2sin sin sin a b cA B C--=________. 14.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若2223a c b ac +-=, 则角B 的值为________.15.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边.若a =1,3b =, A +C =2B ,则sin C =________.16.钝角三角形的三边为a ,a +1,a +2,其最大角不超过120°,则a 的取值范围是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)如图所示,我艇在A 处发现一走私船在方位角45°且距离为12海里的B 处正以每小时10海里的速度向方位角105°的方向逃窜,我艇立即以14海里/小时的速度追击,求我艇追上走私船所需要的时间.18.(12分)在△ABC 中,角A 、B 、C 所对的边长分别是a 、b 、c ,且4cos 5A =. (1)求2sin cos22B CA ++的值; (2)若b =2,△ABC 的面积S =3,求a .19.(12分)如图所示,△ACD 是等边三角形,△ABC 是等腰直角三角形,∠ACB =90°,BD 交AC 于E ,AB =2. (1)求cos ∠CBE 的值; (2)求AE .20.(12分)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a =2,3cos 5B =. (1)若b =4,求sin A 的值;(2)若△ABC 的面积S △ABC =4,求b ,c 的值.21.(12分)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C . (1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.22.(12分)已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量(),a b m =, ()sin ,sin B A =n ,()2,2b a --p =.(1)若m ∥n ,求证:△ABC 为等腰三角形; (2)若m ⊥p ,边长c =2,角3C π=,求△ABC 的面积.答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.【答案】C【解析】tan 30ba=︒,tan30b a =︒=2c b ==,c b -= 故选C . 2.【答案】A【解析】由余弦定理得22294101cos 2124AB AC BC A AB AC +-+-===⋅.∴13cos 3242AB AC AB AC A ⋅=⋅⋅=⨯⨯=.∴32BA AC AB AC ⋅=-⋅=-.故选A .3.【答案】C【解析】∵a 2=b 2+c 2-2bc cos A ,∴2515c c =+-. 化简得:2100c -+=,即(0c c -=,∴c =c = 故选C . 4.【答案】D 【解析】A 中,因sin sin a b A B =,所以16sin30sin 18B ⨯︒==,∴90B =︒,即只有一解;B 中,20sin 60sin 18C ︒==c b >,∴C B >,故有两解; C 中,∵A =90°,a =5,c =2,∴b = 故A 、B 、C 都不正确.故选D . 5.【答案】C【解析】设另一条边为x ,则2221232233x =+-⨯⨯⨯,∴29x =,∴3x =.设1cos 3θ=,则sin θ=.∴32sinR θ==,R =C . 6.【答案】A【解析】由2cos cos 22A b c b A c c+⋅=⇒⋅=,又222cos 2b c a A bc +-⋅=, ∴b 2+c 2-a 2=2b 2⇒a 2+b 2=c 2,故选A . 7.【答案】A【解析】()sin sin 75sin 3045A =︒=︒+︒, 由a =c 知,C =75°,B =30°.1sin 2B =.由正弦定理:4sin sin b aB A===.∴b =4sin B =2.故选A .8.【答案】A【解析】由b 2-bc -2c 2=0可得(b +c )(b -2c )=0. ∴b =2c ,在△ABC 中,a 2=b 2+c 2-2bc cos A ,即22276448c c c =+-⋅.∴c =2,从而b =4.∴11sin 4222ABCS bc A ==⨯⨯△A . 9.【答案】B【解析】设BC =a ,则2aBM MC ==. 在△ABM 中,AB 2=BM 2+AM 2-2BM ·AM ·cos ∠AMB ,即22217424cos 42aa AMB =+-⨯⨯⋅∠ ①在△ACM 中,AC 2=AM 2+CM 2-2AM ·CM ·cos ∠AMC即22216424cos 42aa AMB =++⨯⨯⋅∠ ②①+②得:22222176442a +=++,∴a =B .10.【答案】C 【解析】∵sin cos A Ba b=,∴a cos B =b sin A , ∴2R sin A cos B =2R sin B sin A,2R sin A ≠0.∴cos B =sin B ,∴B =45°.同理C =45°,故A =90°.故C 选项正确. 11.【答案】D【解析】∵()222tan a c b B +-,∴222tan 2a c b B ac +-⋅=,即cos tan sin B B B ⋅=0<B <π,∴角B 的值为3π或23π.故选D . 12.【答案】D 【解析】3A π=,BC =3,设周长为x ,由正弦定理知2sin sin sin BC AC ABR A B C ===, 由合分比定理知sin sin sin sin BC AB BC ACA ABC ++=++,=,∴()sin sin B A B x ⎤+++=⎥⎦,即3sin sin 3sin sin cos cos sin 333x B B B B B π⎤ππ⎛⎫⎫=+++=+++ ⎪⎪⎥⎝⎭⎭⎦133sin sin 3sin 22B B B B B ⎫⎫=+++=++⎪⎪⎪⎪⎭⎭136cos 36sin 26B B B ⎫π⎛⎫=++=++⎪ ⎪⎪⎝⎭⎝⎭.故选D .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】0 14.【答案】6π【解析】∵222a cb +-=,∴222cos 2a c b B ac +-==6B π=. 15.【答案】1【解析】在△ABC 中,A +B +C =π,A +C =2B .∴3B π=. 由正弦定理知,sin 1sin 2a B A b ==.又a <b .∴6A π=,2C π=.∴sin 1C =. 16.【答案】332a ≤< 【解析】由()()()()()()22222212120121212a a a a a a a a a a a ⎧⎪++>+⎪⎪++-+<⎨⎪++-+⎪≥-⎪+⎩,解得332a ≤<.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】2小时.【解析】设我艇追上走私船所需时间为t 小时, 则BC =10t ,AC =14t ,在△ABC 中, 由∠ABC =180°+45°-105°=120°,根据余弦定理知:(14t )2=(10t )2+122-2·12·10t cos 120°,∴2t =. 答:我艇追上走私船所需的时间为2小时. 18.【答案】(1)5950;(2)a = 【解析】(1)()221cos 1cos 59sin cos2cos22cos 122250B C B C A A A A -++++=+=+-=. (2)∵4cos 5A =,∴3sin 5A =.由1sin 2ABC S bc A =△,得133225c =⨯⨯,解得c =5.由余弦定理a 2=b 2+c 2-2bc cos A ,可得24425225135a =+-⨯⨯⨯=,∴a = 19.【答案】(1;(2)AE=.【解析】(1)∵∠BCD =90°+60°=150°,CB =AC =CD , ∴∠CBE =15°.∴()cos cos 4530CBE ∠=︒-︒= (2)在△ABE 中,AB =2,由正弦定理得sin sin AE ABABE AEB=∠∠, 即()()2sin 4515sin 9015AE =︒-︒︒+︒,故122sin 30cos15AE ⨯︒===︒20.【答案】(1)2sin 5A =;(2)b =5c =. 【解析】(1)∵3cos 05B =>,且0<B <π,∴4sin 5B ==. 由正弦定理得sin sin a bA B=,42sin 25sin 45a B Ab ⨯===. (2)∵1sin 42ABC S ac B ==△,∴142425c ⨯⨯⨯=,∴5c =.由余弦定理得2222232cos 25225175b a c ac B =+-=+-⨯⨯⨯=,∴b =21.【答案】(1)120A =︒;(2)△ABC 为等腰钝角三角形. 【解析】(1)由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c , 即a 2=b 2+c 2+bc .由余弦定理得a 2=b 2+c 2-2bc cos A ,故1cos 2A =-,120A =︒.(2)方法一 由(1)得sin 2A =sin 2B +sin 2C +sin B sin C , 又A =120°,∴223sin sin sin sin 4B C B C ++=, ∵sin B +sin C =1,∴sin C =1-sin B . ∴()()223sin 1sin sin 1sin 4B B B B +-+-=, 即21sin sin 04B B -+=.解得1sin 2B =.故1sin 2C =.∴B =C =30°. 所以,△ABC 是等腰的钝角三角形.方法二 由(1)A =120°,∴B +C =60°,则C =60°-B , ∴sin B +sin C =sin B +sin(60°-B) 11sin sin sin 22B B B B B =-==sin(B +60°)=1, ∴B =30°,C =30°.∴△ABC 是等腰的钝角三角形.22.【答案】(1)见解析;(2)ABC S =△ 【解析】(1)证明 ∵m ∥n ,∴a sin A =b sin B ,即22a ba b R R⋅=⋅, 其中R 是△ABC 外接圆半径,∴a =b .∴△ABC 为等腰三角形. (2)解 由题意知m ·p =0,即a (b -2)+b (a -2)=0.∴a +b =ab .由余弦定理可知,4=a 2+b 2-ab =(a +b )2-3ab , 即(ab )2-3ab -4=0.∴ab =4(舍去ab =-1),∴11sin 4sin 223ABC S ab C π==⨯⨯=△.。
九年级数学上册试题 第23章《解直角三角形》单元测试卷 -沪科版(含答案)
第23章《解直角三角形》单元测试卷一、选择题(本大题共10小题,每小题3分,共30分)1.在Rt ABC ∆中,90C ∠=︒,6AC =,4sin 5A =,则AB 的值为()A.8B.9C.10D.122.如图,在ABC ∆中,90C ∠=︒,30A ∠=︒,则cos B 的值为()A.13B.12C.22D.323.如图,某游乐场山顶滑梯的高BC 为50米,滑梯的坡比为5:12,则滑梯的长AB 为()A.100米B.110米C.120米D.130米4.如图,ABC ∆的顶点都在正方形网格的格点上,则tan ACB ∠的值为()A.13B.35C.23D.125.下列各式中正确的是()A.sin 46cos 44︒>︒B.2sin 40sin 80︒=︒C.cos 44cos 46︒<︒D.22sin 44sin 461︒+︒=6.如图,在44⨯的正方形网格中,小正方形的顶点称为格点若ABC ∆的顶点都在格点上,则cos ABC ∠的值是()A.13B.12C.55D.2557.如图,在ABC ∆中,90ACB ∠=︒,点D 在AB 的延长线上,连接CD ,若2AB BD =,2tan 3BCD ∠=,则ACBC的值为()A.1B.2C.12D.328.如图,Rt ABC ∆中,90ABC ∠=︒,6AB =,8BC =,D 为AC 边上一动点,且1tan 2ABD ∠=,则BD 的长度为()A.1558B.25C.5D.5119.如图,AC 垂直于AB ,P 为线段AC 上的动点,F 为PD 的中点, 2.8AC m =, 2.4PD m =, 1.2CF m =,15DPE ∠=︒.若90PEB ∠=︒,65EBA ∠=︒,则AP 的长约为()(参考数据:sin 650.91︒≈,cos 650.42︒≈,sin 500.77︒≈,cos500.64)︒≈A.1.2B.1.3m C.1.5m D.2.0m10.如图,在Rt ABC ∆中,90C ∠=︒,30BAC ∠=︒,延长CA 到点D ,使AD AB =,连接BD .根据此图形可求得tan15︒的值是()A.23-B.23+C.36D.32二、填空题(本大题共8小题,每小题3分,共24分)11.如图,在ABC ∆中,90C ∠=︒,设A ∠,B ∠,C ∠所对的边分别为a ,b ,c ,则正确的是.A .sin a c A =⋅B .cos b c B =⋅C .tan a b A =⋅D .tan a b B=⋅12.有一斜坡AB ,坡顶B 离地面的高度BC 为30m ,斜坡的倾斜角是BAC ∠,若坡比为2:5,则此斜坡的水平距离AC 为.13.在Rt ABC ∆中,90BCA ∠=︒,CD 是AB 边上的中线,8BC =,5CD =,则tan ACD ∠=.14.如图所示,MON ∠是放置在正方形网格中的一个角,则tan MON ∠的值是.15.在ABC ∆中,22AB =,1tan 3B =,BC 边上的高长为2,则ABC ∆的面积为.16.某长江大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB 与水平桥面的夹角是30︒,拉索BD 与水平桥面的夹角是60︒,两拉索底端距离20AD =米,则立柱BC 的高为米.(结果保留根号)17.如图是一款利用杠杆原理设计的平衡灯,灯管AB 与支架AD ,砝码杆AC 均成120︒角,且40AB cm =,18AC cm =,6AD cm =,底座是半径为2cm 的圆柱体,点P 是杠杆的支点.如图1,若砝码E 在端点C 时,当杠杆平衡时,支架AD 垂直于桌面,则此时垂直光线照射到最远点M 到支点P 的距离PM 为cm .由于特殊设计,灯管的重力集中在端点B ,砝码杆重力集中在砝码E 上,支架AD 的重力忽略不计,由杠杆原理可知,平衡时重力保持垂直水平桌面向下,且1122G h G h ⋅=⋅,如图2.为了使得平衡时砝码杆与桌面平行,则砝码E 到离A 点的距离为cm .18.用一副如图1所示的七巧板,拼出如图2所示中间有一个空白正方形的“风车图”,则图2中tan ABC ∠=.三、解答题(本大题共8小题,共66分.)19.计算:22sin 456cos303tan 454sin 60︒-︒+︒+︒.20.如图,在Rt ABC ∆中,90C ∠=︒,10AB =,6BC =,求sin A ,cos A ,tan A 的值.21.如图,在ABC∆中,90C∠=︒,AB的垂直平分线分别交边AB、BC于点D、E,连接AE.(1)如果25B∠=︒,求CAE∠的度数;(2)如果2CE=,2sin3CAE∠=,求tan B的值.22.如图,在ABC∆中,已知ABC m∠=︒,ACB n∠=︒.090m n︒<︒+︒<︒,1AC=.(1)求AB及BC的长度(用m︒,n︒的三角函数表示);(2)试判断sin()sin cos cos sinm n m n m n︒+︒=︒︒+︒︒是否成立并说明理由.23.如图,梯子斜靠在与地面垂直(垂足为)O 的墙上.当梯子位于AB 位置时,它与地面所成的角60ABO ∠=︒,当梯子底端向右滑动0.5m (即0.5)BD m =到达CD 位置时,它与地面所成的角5118CDO ∠=︒',求梯子的长.(参考数据:sin 51180.780︒'=,cos 51180.625︒'=,tan 5118 1.248)︒'=24.如图,在Rt ABC ∆中,90A ∠=︒,作BC 的垂直平分线交AC 于点D ,延长AC 至点E ,使CE AB =.(1)若1AE =,求ABD ∆的周长;(2)若13AD BD =,求tan ABC ∠的值.25.在太原郁郁葱葱的西山上,环绕着一条蜿蜒曲折、鲜艳夺目的公路,它就是太原环城旅游公路暨公路自行车赛道,该赛道环西山而建,全长约136千米,将百余处景点串连成一条线.(1)周日,某自行车骑行团组织甲、乙两个赛队在该赛道进行骑行活动,他们从赛道同一端出发,甲队出发25分钟时乙队出发,结果乙队比甲队提前15分钟到达终点(即赛道的另一端).已知乙队骑行的平均速度为甲队的1.2倍.求甲、乙两个赛队此次活动骑行的平均速度.(2)该赛道一端附近是太原市的摄乐桥如图(1),摄乐桥是太原市第18座跨汾河大桥,也是太原市首座仅靠主塔及缆索承担桥面重量的跨河大桥.某数学兴趣小组的同学们为了测量摄乐桥主塔的高AB,在地面上选取测点C放置测倾仪,测得主塔顶端A的仰角45∠=︒,将测ADM倾仪向靠近主塔的方向前移10m至点E处,测得主塔顶端A的仰角47.7∠=︒,测量示意图AFM如图(2)所示.已知测倾仪的高度 1.5︒≈,=,求摄乐桥主塔的高AB.(参考数据:sin47.70.74CD m︒≈︒≈,tan47.7 1.10)cos47.70.6726.山西省隰县盛产香梨,被称为“隰县玉露香”.县政府运用“互联网+玉露香梨”的发展思路,探索“爱心助农精准脱贫”的方式,构建“隰县玉露香”电商生态圈,使隰县成为中国北方最大的电商孵化基地.2021年春节期间,“隰县玉露香”在网上热销,某电商看准商机,用10000元购进一批“隰县玉露香”,销量可观,于是又用18000元购进一批同款规格的“隰县玉露香”,但第二次的进价比第一次每箱上涨20元,第二次所购数量恰好是第一次的1.5倍.(1)求第一次购进的“隰县玉露香”每箱的价格.(2)政府为推进农村电商高质量可持续发展,在隰县新建一批移动信号发射塔,以提高农村互联网的传输效率.如图,是一个新建的移动信号发射塔AC ,其高15AC m =.用测角仪在山脚下的点B 处测得塔底C 的仰角36.9CBD ∠=︒,塔顶A 的仰角42ABD ∠=︒,点A ,C ,D 在同一条铅垂线上.果农要在山脚B 处修建房屋以方便管理梨园,按国家规定,通讯基站离居民居住地至少100m 就可不受信号塔辐射的影响.请判断在点B 处的房屋是否受信号塔塔顶A 发出的信号辐射的影响.(测角仪、房屋的高度忽略不计;结果精确到0.1m ;参考数据:sin 36.90.60︒≈,cos36.90.80︒≈,tan 36.90.75︒=,sin 420.67︒=,cos 420.74︒=,tan 420.90)︒≈答案一、选择题C .B .D .D .D .C .B .D .B .A .二、填空题11.A 、C .12.75m .13.43.14.1.15.7或5.16..17.165.18.3.三、解答题19.原式22()6314222=⨯-⨯+⨯+⨯2234=⨯-+13=-++4=.20.在Rt ACB ∆中,由勾股定理得:8AC ===,所以63sin 105BC A AB ===,84cos 105AC A AB ===,63tan 84BC A AC ===.21.(1)DE 垂直平分AB ,EA EB ∴=,25EAB B ∴∠=∠=︒.40CAE ∴∠=︒.(2)90C ∠=︒ ,∴2sin 3CE CAE AE ∠==.2CE = ,3AE ∴=,AC ∴=3EA EB == ,5BC ∴=,∴tan AC B BC ==.22.(1)作AD BC ⊥于点D ,在Rt ACD ∆中,1AC =,sin AD n AD AC ︒==,cos CD n CD AC︒==,在Rt ABD ∆中,sin AD m AB ︒=,sin sin sin AD n AB m m ︒∴==︒︒,cos BD m AB︒= ,sin cos cos sin n BD AB m m m ︒∴=⋅︒=︒︒.sin cos cos sin n BC BD CD m n m ︒∴=+=︒+︒︒.(2)成立,理由如下:作CE BA ⊥交BA 延长线于点E ,EAC ∠ 为ABC ∆的外角,EAC B ACB m n ∴∠=∠+∠=︒+︒,在Rt EBC ∆中,sin CE m BC︒=,sin sin (cos cos )sin sin cos cos sin sin n CE BC m m n m m n m n m ︒∴=⋅︒=︒+︒︒=︒︒+︒︒︒.23.设梯子的长为xm ,在Rt ABO ∆中,cos OBABO AB∠=1cos cos 602OB AB ABO x x ∴=∠=︒=在Rt CDO ∆中,cos ODCDO CD∠=cos cos51180.625OD CD CDO x x ∴=∠=︒'≈ .BD OD OB =- ,0.5BD m =10.6250.52x x ∴-=,解得4x =.故梯子的长是4米.24.(1)如图,连接BD ,设BC 垂直平分线交BC 于点F ,BD CD ∴=,ABD C AB AD BD∆=++AB AD DC=++AB AC =+,AB CE = ,1ABD C AC CE AE ∆∴=+==,故ABD ∆的周长为1.(2)设AD x =,3BD x ∴=,又BD CD = ,4AC AD CD x ∴=+=,在Rt ABD ∆中,AB ==.tanAC ABC AB ∴∠===.25.(1)设甲队骑行的平均速度为/xkm h,则乙队骑行的平均速度为1.2/xkm h.根据题意,得13613625151.26060x x-=+,解得:34x=.经检验,34x=是原方程的根.1.2 1.23440.8x∴=⨯=.答:甲队骑行的平均速度为34/km h,乙队骑行的平均速度为40.8/km h.(2)如图,过点D作DG AB⊥于点G,则DG过点F.由题意得 1.5BG EF CD m===,10DF m=.设FG a=m.在Rt ADG∆中,45ADG∠=︒,(10)AG DG a m∴==+.在Rt AFG∆中,tanAG AFGFG∠=,tan tan47.7 1.10() AG FG AFG a x m∴=⋅∠=︒≈,10 1.10a a∴+=,解得:100a≈,10100110()AG m∴=+=,110 1.5111.5()AB AG BG m∴=+=+=.答:摄乐桥主塔的高AB约为111.5m.26.(1)设第一次购进隰县玉露香的进价为x 元/箱,根据题意可得:10000180001.520x x ⨯=+,解得100x =,经检验,100x =是原方程的解,答:第一次购进的“隰县玉露香”每箱的价格为100元;(2)由题意得,90ADB ∠=︒,在Rt ABD ∆中,tan AD ABD BD∠=,tan 42AD BD ∴=⋅︒,在Rt BCD ∆中,tan CD CBD BD ∠=,tan 36.9CD BD ∴=⋅︒,AC AD CD =- ,15AC m =,15tan 42tan 36.9BD BD ∴=⋅︒-⋅︒,解得100BD m ≈,100135.1()cos 0.74BD AB m ABD ∴=≈≈∠,135.1100> ,∴在点B 处的房屋不会受信号塔塔顶A 发出的信号辐射的影响.。
苏教版必修5高一数学第1章解三角形章节能力测试题有答案
章节能力测试题(一)(测试范围:解三角形) 一.填空题(本大题共14小题,每小题5分,共70分)1.三角形ABC 中,如果A=60º,C=45º,且a=则c= 。
1.。
【解析】由正弦定理得sin 45sin sin 603a C c A ===。
2. 在Rt △ABC 中,C=090,则B A sin sin 的最大值是_______________。
2.12。
【解析】B A s i n si n =1sin cos sin 22A A A=,故B A s i n s i n 的最大值是12。
3.在△ABC 中,若=++=A c bc b a 则,222_________。
3.1200.【解析】2221cos 22b c a A bc +-==-,A=1200.4.在△ABC 中,若====a C B b 则,135,30,200_________。
4.26-。
【解析】A=1800-300-1350=150.sin150=sin(450-300)=4.由正弦定理得sin 2sin15sin sin 30b A a B ===5. 三角形的两边分别为5和3,它们夹角的余弦是方程57602x x --=的根,则三角形的另一边长为 .5.【解析】∵三角形两边夹角为方程57602x x --=的根,不妨假设该角为θ,则易解得得53cos -=θ或cos θ=2(舍去),∴据余弦定理可得13252cos 3523522==⨯⨯⨯-+=θ三角形的另一边长。
6.在△ABC 中,已知a=5 2 , c=10, A=30°, 则∠B= 。
6.B=105º或B=15º。
提示:由正弦定理可得sinC=sin 2c A a == ,∴C=45º或者C=135º,∴B=105º或者B=15º。
7.科学家发现,两颗恒星A与B分别与地球相距5亿光年与2亿光年,且从地球上观测,它们的张角为60º,则这两颗恒星之间的距离为 亿光年。
2024年中考数学复习(全国版)第四章 三角形真题测试(提升卷)(解析版)
第三章三角形章节测试(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(2023·吉林长春·统考中考真题)如图,用直尺和圆规作MAN 的角平分线,根据作图痕迹,下列结论不一定正确的是()A.AD AEB.AD DF C.DF EF D.AF D E【答案】B 【分析】根据作图可得,AD AE DF EF ,进而逐项分析判断即可求解.【详解】解:根据作图可得,AD AE DF EF ,故A,C 正确;∴,A F 在DE 的垂直平分线上,∴AF D E ,故D 选项正确,而DF EF 不一定成立,故C 选项错误,故选:B.【点睛】本题考查了作角平分线,垂直平分线的判定,熟练掌握基本作图是解题的关键.2.(2023·四川宜宾·统考中考真题)如图,AB CD ∥,且40A ,24D ,则E 等于()A.40B.32 C.24 D.16【答案】D 【分析】可求40ACD ,再由ACD D E ,即可求解.【详解】解:AB CD ∥∵,上述结论中,所有正确结论的序号是(A.①②B.①③【答案】D【分析】如图,过D作DF AE,进而可判断①的正误;由DF DE,可得a b cA.1,0 B. 0,0【答案】A 【分析】根据题意确定直线AD 的解析式为:A.32确角度之间的数量关系.6.(2023·山西·统考中考真题)如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O 的光线相交于点P ,点F 为焦点.若1155,230 ,则3 的度数为()A.45B.50 C.55 D.60【答案】C 【分析】利用平行线的性质及三角形外角的性质即可求解.【详解】解:∵AB OF ∥,∴1180BFO ,∴18015525BFO ,∵230POF ,∴3302555POF BFO ;故选:C.【点睛】本题考查了平行线的性质,三角形外角的性质等知识,掌握这两个知识点是关键.7.(2023·江苏无锡·统考中考真题)如图ABC 中,90,4,,ACB AB AC x BAC ,O 为AB 中点,若点D 为直线BC 下方一点,且BCD △与ABC 相似,则下列结论:①若45 ,BC 与OD 相交于E ,则点E 不一定是ABD △的重心;②若60 ,则AD 的最A.①④【答案】A 【分析】①有3种情况,②当60 ,如图4时AD 最大,4AB ,2AC BE ,23BC AE ,36BD BC ,8DE ,21927AD ,③如图5,若60 ,C ABC BD ∽△△,∴60BCD ,90CDB ,4AB ,2AC ,23BC ,3OE ,1CE ,∴3CD ,32GE DF,32CF ,∴52EF DG ,32OG ,∴723OD ,∴③错误;A.23B.35 2【答案】B【分析】根据平行线分线段成比例得出A.1个B.2【答案】C 【分析】根据正方形ABCD 腰直角三角形,进而可得12HC EF ;由此即可判断①正确;再根据确,进而证明AFK HDE ④正确,由AED 随着DE 【详解】解:∵正方形ABCD ∴AB AD ,ADC ∴90ABF ADC ,又∵AD CD ,HD HD ∴(SSS)AHD CHD ,∴12ADH CDH ∵ADH EAD DHE ∴EAD DHE ,∴FAB DHE EAD 又∵45AFE ADH ∴AFK HDE ,∴AF AK HD HE,又∵22AF AH HEA.10B.【答案】A【分析】由作图可知BP平分于点Q,根据角平分线的性质可知∵矩形ABCD中,3,AB BC3CD AB,225.BD BC CD由作图过程可知,BP平分CBD ∵四边形ABCD是矩形,二、填空题(本大题共10小题,每小题3分,共30分)【答案】105【分析】根据平行线的性质可得【详解】解:∵AB DE ∥,【答案】8【分析】利用三角形中位线定理即可求解.【详解】解:∵点C D ,分别是OA ∴12CD AB ,∴ 28cm AB CD ,(1)ADEV的面积为________;(2)若F为BE的中点,连接AF 【答案】313【分析】(1)过点E作EH AD∵正方形ABCD的边长为3,3,AD∵ 是等腰三角形,EAADE13【答案】1:3【分析】根据位似图形的性质即可求出答案.【详解】解:12OA AA ∵:::1:3OA OA ,设ABC 周长为1l ,设A B C【答案】2 3【分析】根据作图可得BDE据相似三角形的性质即可求解.【详解】解:根据作图可得 ∴DE AC∥,【答案】1【分析】根据公式求得【详解】解:∵7,AB ∴21AB AC BD BC 【答案】①③④【分析】由题意易得,AB AC ABC 90DEB AEF BAC ,则可证平行四边形的性质与判定可进行求解.,BAC DEB △△【答案】5【分析】过点D 作DF AB ABB 、DFB △是等腰直角三角形,得=10AD DF ,证明AFD 求得10=4DF ,从而求得AD 【详解】解:过点D 作DF ∵90ACB ,3AC ,BC【点睛】本题考查旋转的性质、等腰三角形的判定与性质、相似三角形的判定与性质、三角形的面积,熟练掌握相关知识是解题的关键.19.(2023·山东日照·统考中考真题)如图,矩形【答案】②③④【分析】根据等腰三角形的三线合一可知以得出10BD ,152MN,2MPE DAB S ME S BD,判断③;利用将军饮马问题求出最小值判断④.延长ME 交BC 于点P,则ABPM 为矩形,∴2226BD AB AD ∵ME AD ,MN BD ,【点睛】本题考查矩形的性质,相似三角形的判定和性质,轴对称,掌握相似三角形的判定和性质是解题的关键.20.(2023·湖北随州·统考中考真题)如图,在Rt △D 为AC 上一点,若BD 是ABC 的角平分线,则AD 【答案】3【分析】首先证明CD DP ,BC 理构建方程即可解决问题.【详解】解:如图,过点D 作AB 在Rt ABC △中,∵8AC BC ,∴222286AB AC BC ∵BD 是ABC 的角平分线,∵90C BPD BD BD ,,∴ AAS BDC BDP ≌,∴6BC BP ,CD PD ,设CD PD x ,在Rt ADP 中,∵4PA AB BP ,8AD x ,∴2224(8)x x ,∴3x ,∴3AD .故答案为:3.【点睛】本题考查了角平分线的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(2023·江苏苏州·统考中考真题)如图,在ABC 中,,AB AC AD 为ABC 的角平分线.以点A 圆心,AD 长为半径画弧,与,AB AC 分别交于点,E F ,连接,DE DF .(1)求证:ADE ADF V V ≌;(2)若80BAC ,求BDE 的度数.【答案】(1)见解析(2)20BDE【分析】(1)根据角平分线的定义得出BAD CAD ,由作图可得AE AF ,即可证明ADE ADF V V ≌;(2)根据角平分线的定义得出40EAD ,由作图得出AE AD ,则根据三角形内角和定理以及等腰三角形的性质得出70ADE ,AD BC ,进而即可求解.【详解】(1)证明:∵AD 为ABC 的角平分线,由作图可得AE AF ,在ADE V 和ADF △中,AE AF BAD CAD AD AD,∴ADE ADF V V ≌ SAS ;(2)∵80BAC ,AD 为ABC 的角平分线,∴40EAD由作图可得AE AD ,∴70ADE ,∵AB AC ,AD 为ABC 的角平分线,∴AD BC ,∴20BDE【点睛】本题考查了全等三角形的性质与判定,等腰三角形的性质与判定,角平分线的定义,熟练掌握等腰三角形的性质与判定是解题的关键.22.(2023·云南·统考中考真题)如图,C 是BD 的中点,,AB ED AC EC .求证:ABC EDC △≌△.【答案】见解析【分析】根据C 是BD 的中点,得到BC CD ,再利用SSS 证明两个三角形全等.【详解】证明:∵C 是BD 的中点,BC CD ,在ABC 和EDC △中,BC CD AB ED AC EC, ABC EDC SSS ≌(1)证明:ABC DEB ∽△△.(2)求线段BD 的长.【答案】(1)见解析(2)3BD(1)求证:AC BD ;(2)若10AB ,16AC 【答案】(1)见详解9(1)求证:DE AF(2)若ABC CDE ,求证:2AF BF CE【答案】见解析【分析】(1)先根据平行线的性质可得DAE【答案】CD 的长度54米【分析】AD 上截取AE ,使得AE EC ,设CD x ,在Rt △则32AD AE ED x ,进而即可求解.【详解】解:如图所示,AD 上截取AE ,使得AE EC ,∴EAC ECA ,∵15CAD∴230CED EAC ,【答案】斜坡AB 的长约为10米【分析】过点D 作DE BC 于点E ,在Rt DEC △中,利用勾股定理即可求解.在Rt DEC △中,2018CD C ,,sin 20sin18200.31 6.2DE CD C ∴ 6.2AF DE .【答案】图②中2FH FG ,图③中FH FG ,证明见解析【分析】图②:如图②所示,连接BD HG CE ,,,先由三角形中位线定理得到12FG CE FG CE ∥,,12GH BD GH BD ∥,,再证明ABD ACE ≌△△得到CE BD ACE ABD ,∠∠,则FG HG ,进一步证明90FGH ,即可证明HGF △图③证明如下:如图③所示,连接BD HG,∵点F,G分别是DE DC,∴FG是CDE的中位线,180BAC,60∴HGF△是等边三角形,.∴FH FG【点睛】本题主要考查了全等三角形的性质与判定,三角形中位线定理,等边三角形的性质与判定,勾股定理等等,正确作出辅助线构造全等三角形是解题的关键.。
全等三角形 章节达标检测(解析版)
第十二章全等三角形章节达标检测一、单选题:1.下列各组图案中,不是全等形的是()A.B.C.D.【答案】D【知识点】全等图形【解析】【解答】解:根据全等形的定义可知,ABC都是全等形,D大小不一样不是全等形,故答案为:D.【分析】根据全等形的定义即可得出答案.2.下列说法正确的是()A.周长相等的两个三角形全等B.面积相等的两个三角形全等C.三个角对应相等的两个三角形全等D.三条边对应相等的两个三角形全等【答案】D【知识点】三角形全等的判定【解析】【解答】解:A、全等三角形的周长相等,但周长相等的两个三角形不一定全等,故本选项错误;B、全等三角形的面积相等,但面积相等的两个三角形不一定全等,故本选项错误;C、判定全等三角形的过程中,必须有边的参与,故本选项错误;D、正确,符合判定方法SSS.故答案为:D.【分析】根据全等三角形的判定SSS、SAS、ASA、AAS可得结果.3.如图(1),若△ABC与△DEF全等,请根据图中提供的信息,得出x的值为()A.20B.18C.60D.50【答案】A【知识点】三角形全等及其性质【解析】【解答】解:根据全等三角形的对应边相等的性质可知EF=AB=18.故答案为:A【分析】根据全等三角形的性质与判定进行作答即可.4.如图,点B、E、C、F在一条直线上,△ABC≌△DEF则下列结论正确的是()A.AB∥DE,且AC不平行于DF.B.BE=EC=CFC.AC∥DF.且AB不平行于DE D.AB∥DE,AC∥DF.【答案】D【知识点】三角形全等及其性质【解析】【解答】解:∵△ABC≌△DEF,在△ABC和△DEF中,∴AB=DE,BC=EF,AC=DF,∠2=∠F,∠1=∠B,∴AB∥DE,AC∥DF.所以答案为D选项.【分析】根据题中条件△ABC≌△DEF,得出∠2=∠F,∠1=∠B,进而可得出结论.,则图中全等三角形共有5.如图,将长方形纸片沿对角线折叠,重叠部分为BDE()A.0对B.1对C.2对D.3对【答案】C【知识点】三角形全等的判定;矩形的性质;翻折变换(折叠问题)【解析】【解答】解:∵△BDC是将长方形纸片ABCD沿BD折叠得到的,∴CD=AB,AD=BC,∵BD=BD,∴△CDB≌△ABD(SSS),∴∠CBD=∠ADB∴EB=ED∴CE=AE又AB=CD∴△ABE≌△CDE,∴图中全等三角形共有2对故答案为:C【分析】根据折叠的性质得出CD=AB,AD=BC,根据SSS可证△CDB≌△ABD,可得∠CBD=∠ADB,由等角对等边可得EB=ED,根据HL可证△ABE≌△CDE,从而得出结论.6.如图所示,D,E分别是△ABC的边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°【答案】D【知识点】全等图形;三角形全等及其性质【解析】【解答】解:∵△ADB≌△EDB≌△EDC,∴∠A=∠BED=∠CED,∠ABD=∠EBD=∠C,∵∠BED+∠CED=180°,∴∠A=∠BED=∠CED=90°,在△AB C中,∠C+2∠C+90°=180°,∴∠C=30°.故选D.【分析】根据全等三角形对应角相等,∠A=∠BED=∠CED,∠ABD=∠EBD=∠C,根据∠BED+∠CED=180°,可以得到∠A=∠BED=∠CED=90°,再利用三角形的内角和定理求解即可.7.如图,AD是△AB C中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB =4,则AC长是()A.6B.5C.4D.3【答案】D【知识点】三角形的面积;角平分线的性质【解析】【解答】解:过D作DF⊥AC于F,∵AD是△AB C中∠BAC的角平分线,DE⊥AB于点E,DE=2,∴DE=DF=2,∵S△ABC=7,∴S△ADB+S△ADC=7,∴12×AB×DE+12×AC×DF=7,∴12×4×2+12×AC×2=7,解得:AC=3.故答案为:D.【分析】先求出DE=DF=2,再求出S△ADB+S△ADC=7,最后利用三角形的面积公式计算求解即可。
2023-2024学年陕西省渭南市高中数学人教B版 必修四第九章-解三角形章节测试-20-含解析
1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年陕西省渭南市高中数学人教B 版 必修四第九章-解三角形章节测试(20)姓名:____________班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)1. 在中, ,,是的外接圆的直径,则 的取值范围是( ) A. B. C. D. 米 米10米5米2. 如图所示,为测量某不可到达的竖直建筑物 的高度,在此建筑物的同一侧且与此建筑物底部在同一水平面上选择相距10米的 , 两个观测点,并在 , 两点处分别测得塔顶的仰角分别为 和,且,则此建筑物的高度为( )A. B. C. D. 3. 雷峰塔又名黄妃塔、西关砖塔,位于浙江省杭州市西湖区,地处西湖风景区南岸夕照山(海拔46米)之上.是吴越国王钱俶为供奉佛螺髻发舍利、祈求国泰民安而建.始建于北宋太平兴国二年(977年),历代屡加重修.现存建筑以原雷峰塔为原型设计,重建于2002年,是“西湖十景”之一,中国九大名塔之一,中国首座彩色铜雕宝塔.李华同学为测量塔高,在西湖边相距的、两处(海拔均约16米)各放置一架垂直于地面高为米的测角仪、(如图所示).在测角仪处测得两个数据:塔顶仰角及塔顶与观测仪点的视角在测角仪处测得塔顶与观测仪点的视角, 李华根据以上数据能估计雷锋塔的高度约为( )(参考数据: , )70.57171.572A. B. C. D. 4. 设, 是双曲线()的左、右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为A. B. C. D.5. 在△中,若,则△的最大内角与最小内角的和为( )A. B. C. D.等腰三角形直角三角形等腰三角形或直角三角形等腰直角三角形6. 在中,若,则是( )A. B. C. D. f (sinA )≤f (cosB )f (sinA )≤f (sinB )f (cosA )≤f (sinB )f (cosA )≤f (cosB )7. 已知函数f (x )=cosx ,a ,b ,c 分别为△ABC 的内角A ,B ,C 所对的边,且3a 2+3b 2﹣c 2=4ab ,则下列不等式一定成立的是( )A. B. C. D. 8. 若的面积为,且为钝角,的取值范围是( )A. B. C. D.9. 在中,内角A ,B ,C 所对的边分别为 ,,, 将该三角形绕AC 边旋转360°得一个旋转体,则该旋转体体积为( )A. B. C. D.10. 直线分别与轴,轴交于点两点,点在圆上,则面积的取值范围是()A. B. C. D.11. 在△ABC 中,内角ABC 的对边分别是abc,若,, 则A=( )A. B. C. D.12. 已知为椭圆的两个焦点,P为椭圆上,则此椭圆离心率的取值范围是 ( )A. B. C. D.13. 设的内角的对边分别为,点为的重心且满足向量,若,则实数 .14. 我国南宋时期著名的数学家秦九韶在其著作《数书九章》中,提出了已知三角形三边长求三角形面积的公式.在中,设分别为的内角的对边,S表示的面积,其公式为.若,,,则 .15. △ABC的三个内角A,B,C的对边长分别为a,b,c,R是△ABC的外接圆半径,有下列四个条件:①(a+b+c)(a+b﹣c)=3ab②sinA=2cosBsinC③b=acosC,c=acosB④有两个结论:甲:△ABC是等边三角形.乙:△ABC是等腰直角三角形.请你选取给定的四个条件中的两个为条件,两个结论中的一个为结论,写出一个你认为正确的命题.16. 已知中,角所对边分别为,,,,则.17. △ABC中,角A,B,C的对边分别是a,b,c且满足(2a﹣c)cosB=bcosC.(1) 求角B的大小;(2) 若△ABC的面积为,求a+c的值.18. 在①,②,③这三个条件中任选一个,补充在下面的问题中.若问题中的三角形存在,求出a的值;若问题中的三角形不存在,说明理由.问题:是否存在,它的内角A,B,C所对的边分别为a,b,c,且,, ▲ ?注:如果选择多个条件分别解签.按第一个解答计分.19. 在△ABC中,角A,B,C的对边分别是a,b,c,点(a,b)在4xcosB﹣ycosC=ccosB上.(1) cosB的值;(2) 若 • =3,b=3 ,求a和c.20. 已知a , b , c分别为的三个内角A , B , C的对边,.(1) 求A;(2) D为BC边上一点,,且,求.21. 记的内角的对边分别为,且.(1) 求;(2) 若,且,求的面积.答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.(1)(2)18.19.(1)(2)20.(1)(2)21.(1)(2)。
2023-2024学年山西省吕梁市高中数学人教B版 必修四第九章-解三角形章节测试-16-含解析
1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年山西省吕梁市高中数学人教B 版 必修四第九章-解三角形章节测试(16)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)1. 在△ABC 中,内角A,B ,C 的对边分别为a ,b ,c ,已知 , , ,则B=( )A. B. C. D.2. 已知F 1、F 2为双曲线C :x²-y²=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=( )A.B.C.D.3或33或3. 在中,角A ,B ,C 所对应的边分别为a,b ,c ,.若 , 则( )A. B. C.D. 4.已知的内角的对边分别为 , 若, 则中线的长为( )A.B.C.D.5. 在 中,已知 为 的面积),若 ,则 的取值范围是( )A. B. C. D.6. 在中,,则角的大小为( )A. B. C. D.127. 已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2﹣bc ,bc=4,则△ABC 的面积为( )A.B. C.D. 18. 在中,已知 , , , 则等于()A. B.C.D.9. 在正四面体ABCD 中,点E ,F ,G 分别为棱BC ,CD ,AC 的中点,则异面直线AE ,FG 所成角的余弦值为( )A. B. C. D.10. 已知正四棱锥 的侧棱长与底面边长都相等, 是 的中点,则所成的角的余弦值为( )A.B.C.D.11. 知 为 的三个内角 的对边,向量 .若 ,且,则角的大小分别为( )A. B.C.D.212. 已知、分别为双曲线C :的左、右焦点,O 为原点,双曲线上的点P 满足 , 且, 则该双曲线C 的离心率为( )A. B. C. D.13. 已知△ABC 的内角A ,B ,C 所对边分别为a ,b ,c ,且, ,c+bcosA ﹣acosB acosA ,则,内角B 的取值范围是 .14. 如图,已知 , 分别为两边上的点, , , 过点 , 作圆弧,为的中点,且则线段长度的最大值为 .15. 已知凸四边形ABCD(指把四边形的任意一条边向两端无限延长成一直线时,其他各边都在此直线的同旁)中,边,对角线,且,又顶点满足,则凸四边形ABCD的对角线长的范围是 .16. 在中,已知 , ,且最大角为,则该三角形的周长为.阅卷人三、解答得分17. 如图,平面四边形的对角线相交于四边形内部,,,,.(1) 若,求的值;(2) 记,当变化时,求长度的最大值.18. 已知中,角所对的边分别是,的面积为,且, .(1) 求的值;(2) 若,求的值.19. 如图,四棱锥中,底面是菱形, .(1) 证明:平面平面;(2) 若 , , ,求二面角 的余弦值.20. 在 中,内角 , , 的对边分别为 , , ,且 .(1) 求 ;(2) 若, 的面积为,求的周长21. 在锐角三角形中,内角的对边分别为 , , , 已知.(1) 求的最小值;(2) 若,, 求.答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.(1)(2)18.(1)(2)19.(1)(2)(1)(2)(1)(2)。
沪科版九年级数学上册试题 第23章《解直角三角形》章节测试卷(含解析)
第23章《解直角三角形》章节测试卷一.选择题(共9小题,满分27分,每小题3分)1.在△ABC 中,∠A 、∠B 都是锐角,且sinA =32,cosB =12,则△ABC 是( ).A .等腰三角形B .等边三角形C .直角三角形D .钝角三角形2.直角三角形纸片ABC ,两直角边BC =4,AC =8,现将△ABC 纸片按如图那样折叠,使A 与电B 重合,折痕为DE ,则tan ∠CBE 的值是( )A .12B .34C .1D .433.如图,△ABC 的顶点分别在单位长度为1的正方形网格的格点上,则sin ∠BAC 的值为( )A .5B .55C .12D .2534.如图,在△ABC 中,∠C =90°,点D 、E 分别在BC 、AC 上,AD 、BE 交于F ,若BD=CD =CE ,AF =DF ,则tan ∠ABC 的值为( )A .12B .23C .34D .455.一块直角三角板ABC 按如图放置,顶点A 的坐标为(0,1),直角顶点C 的坐标为(−3,0),∠B =30°,则点B 的坐标为( )A. (−3−33,33)B .(−3+3,3)C .(−3+33,33)D .(−3−3,33)6.在Rt △ABC 中,∠A =90°,有一个锐角为60°,BC =6,若点P 在直线AC 上(不与点A 、C 重合),且∠ABP =30°,则CP 的长为( )A .6或23B .6或43C .23或43D .6或23或437.如图,延长等腰Rt ΔABC 斜边AB 到D ,使BD =2AB ,连接CD ,则tan ∠BCD 的值为( )A .23B .1C .13D .128.如图,在△ABC 中,∠ACB =90∘,分别以AB ,AC ,BC 为边向外作正方形,连结CD ,若sin∠BCD=35,则tan ∠CDB 的值为( )A .23B .34C .710D .9139.如图1是由四个全等的直角三角形组成的“风车”图案,其中∠AOB =90°,延长直角三角形的斜边恰好交于另一直角三角形的斜边中点,得到如图2,若IJ =2,则该“风车”的面积为( )A .2+1B .22C .4−2D .42二.填空题(共6小题,满分18分,每小题3分)10.如图,在Rt △ABC 中,∠C =90°,点D ,E 分别在AC ,BC 边上,且AD =3,BE =4,连接AE ,BD ,交于点F ,BD=10,cos ∠AFD=32,则AE 的长为 .11.如图,在菱形ABCD 中,tan ∠ABC =43,AE ⊥BC 于点E ,AE 的延长线与DC 的延长线交于点F ,则S △ECF :S 四边形ADCE = .(S 表示面积)12.如图,在矩形ABCD中,AB=3,AD=4,E是对角线BD上一动点(点E不与点B,D重合),当△ABE是等腰三角形时,DE=.13.如图,已知点P是菱形ABCD的对角线AC延长线上一点,过点P分别作AD,DC延长线的垂线,垂足分别为点E,F.若∠ABC=120°,AB=6,则PE−PF的值为.14.如图,在正方形ABCD中,M,N分别是AB,CD的中点,P是线段MN上的一点,BP的延长线交4D 于点E,连接PD,PC,将△DEP绕点P顺时针旋转90°得△GFP,则下列结论:①CP=GP,②tan∠CGF=1;③BC垂直平分FG;④若AB=4,点E在AD边上运动,则D,F两点之间距离的2.其中结论正确的序号有.最小值是3215.如图,△A B1A1,△A1B2A2,△A2B3A3,…是等边三角形,直线y=33x+2经过它们的顶点A,A1,A2,A3,…,点B1,B2,B3,…在x轴上,则线段B2022B2023的长度是.16.如图,E、F、G、H分别是矩形的边AB、BC、CD、AD上的点,AH=CF,AE=CG,∠EHF=60°,∠GHF=45°,若AH=2,AD=5+3,则四边形EFGH的周长为.三.解答题(共7小题,满分52分)17.(6分)计算:(1)2sin60°−tan45°2−tan30°⋅tan60°−2cos30°+6sin245°. (2)(π−1)0+4sin45°−8+|−3|.18.(6分)如图,在△ABC中,AD⊥BC于点D,若AD=6,BC=12,tan∠ACD=32.求:(1)CD的长;(2)sin∠ABC的值.19.(8分)(2023春·河南南阳·九年级统考期中)如图,已知点A(7,8)、C(0,6),AB⊥x轴,垂足为点B,点D在线段OB上,DE∥AC,交AB于点E,EF∥CD,交AC于点F.(1)求经过A、C两点的直线的表达式;(2)设OD=t,BE=s,求s与t的函数关系式;(3)是否存在点D,使四边形CDEF为矩形?若存在,请直接写出点D的坐标;若不存在,请说明理由.20.(8分)(1)在如图1的正方形网格图中,每个小正方形的边长为1,A,B,C,D均为格点(小正方形的顶点).求证:∠ABC=∠D.(2)在如图2所示的正方形网格图中,每个小正方形的边长为1,A,B,C均为格点,请你仅用无刻度的直尺在线段AC上求作一点P,使得∠PBA=∠C,并简要说明理由.21.(9分)如图,小明为测量宣传牌AB的高度,他站在距离建筑楼底部E处6米远的地面C处,测得宣传牌的底部B的仰角为60°.同时测得建筑楼窗户D处的仰角为30°(A、B、D、E在同一直线上.)然后,小明沿坡度为i=1:2.5的斜坡从C走到F处,此时DF正好与地面CE平行,小明在F处又测得宣传牌顶部A的仰角为45°.(1)填空:∠DAF=__________度,∠BDC=__________度;(2)求F距离地面CE的高度(结果保留根号);(3)求宣传牌AB的高度(结果保留根号).22.(9分)我们定义:等腰三角形中底边与腰的比叫做顶角正对(sad),如图①,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sadA=底边腰=BCAB.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad90°=________.(2)对于0°<A<180°,∠A的正对值sadA的取值范围是________.(3)如图②,已知sinA=35,其中∠A为锐角,试求sadA的值.23.(9分)已知:△ABC 中,AB =AC ,D 为直线BC 上一点.(1)如图1,BH ⊥AD 于点H ,若AD =BD ,求证:BC =2AH .(2)如图2,∠BAC =120°,点D 在CB 延长线上,点E 在BC 上且∠DAE=120°,若AB =6,DB=23,求CE 的值.(3)如图3,D 在CB 延长线上,E 为AB 上一点,且满足:∠BAD=∠BCE ,AE BE=23,若tan ∠ABC =34,BD =5,求BC 的长.答案解析一.选择题1.B【分析】根据特殊角的三角函数值求出∠A=60°,∠B=60°,然后利用三角形内角和定理求出∠C的度数,即可解答.【详解】解:∵sinA=32,cosB=12,∴∠A=60°,∠B=60°,∴∠C=180°−∠A−∠B=60°,∴△ABC是等边三角形,故选:B.2.B【分析】根据折叠的性质得出BE=AE,设CE=x,则BE=AE=8−x,在Rt△BCE中,根据勾股定理得出B C2+C E2=B E2,列出方程求出x的值,最后根据正切的定义,即可解答.【详解】解:∵△ADE沿DE折叠得到△BDE,∴BE=AE,设CE=x,则BE=AE=8−x,在Rt△BCE中,根据勾股定理可得:B C2+C E2=B E2,即42+x2=(8−x)2,解得:x=3,∴tan∠CBE=CEBC =34,故选:B.3.B【分析】过B作BD⊥AC于点D,根据勾股定理得出AB,AC的值,再利用面积公式求出BD的值,由sin∠BAC=BDBA可得角的正弦值.【详解】解:如图,过B作BD⊥AC于点D根据勾股定理得:AB =32+42=5,AC =32+62=35∴S ΔABC =12AC ⋅BD =4×6−12×3×1−12×3×4−12×6×3=152, ∴BD =5∴sin ∠CAB=BD AB =55故选:B .4.C 【分析】如图,过A 作AG ∥BC ,交BE 的延长线于G ,证明△AGF ≌△DBF (AAS ),则AG =BD =12BC ,证明△AEG ∽△CEB ,则AE CE =AG BC =12,解得AE =12CE ,AC =32CE ,根据tan ∠ABC =ACBC,计算求解即可.【详解】解:如图,过A 作AG ∥BC ,交BE 的延长线于G ,∴∠G =∠DBF ,在△AGF 和△DBF 中,∵{∠G =∠DBF∠AFG =∠DFB AF =DF,∴△AGF ≌△DBF (AAS ),∴AG =BD =12BC ,∵∠G =∠CBE ,∠AEG =∠CEB ,∴△AEG ∽△CEB ,∴AE CE =AG BC=12,解得AE =12CE ,∴AC =32CE ,∴tan ∠ABC=AC BC =32CE 2CE =34,故选:C .5.D【分析】过点B 作BE ⊥OC 于点E ,根据ΔABC 为直角三角形可证明ΔBCE ∽ΔCAO ,求出AC =10,求出BC ,再由比例线段可求出BE ,CE 长,则答案可求出.【详解】解:过点B 作BE ⊥OC 于点E ,∵△ABC 为直角三角形,∴∠BCE +∠ACO =90°,∴ΔBCE ∽ΔCAO ,∴ BE OC =BC AC =EC OA ,在Rt △ACO 中,AC =A O 2+C O 2=12+32=10,在Rt △ABC 中,∠CBA=30°,∴ tan ∠CBA=CA BC ,∴ BC =CA tan ∠CBA =10tan30°=30,∴ BE3=3010=EC1,解得BE =33,EC =3,∴ EO =EC +CO =3+3,∴点B 的坐标为(−3−3,33).故选:D .6.D【分析】根据点P在直线AC上的不同位置,∠ABP=30°,利用特殊角的三角函数进行求解.【详解】如图1:当∠C=60°时,∠ABC=30°,与∠ABP=30°矛盾;如图2:当∠C=60°时,∠ABC=30°,∵∠ABP=30°,∴∠CBP=60°,∴△PBC是等边三角形,∴CP=BC=6;如图3:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°−30°=30°,∴PC=PB,∵BC=6,∴AB=3,∴PC=PB=3cos30°=332=23如图4:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°+30°=90°,∴PC=BCcos30°=632=43故选:D7.A【分析】过点D作DE垂直于CB的延长线于点E,设AC=BC=a,根据勾股定理得AB=2a,由等腰直角三角形的性质得∠ABC=∠BAC=45°,从而得BD=2AB=22a,在Rt△BDE中,解直角三角形得DE=2a,BE=2a,进而求得CE=BC+BE=3a即可求得tan∠BCD.【详解】解:过点D作DE垂直于CB的延长线于点E,如下图,设AC=BC=a,∵AC⊥BC,AC=BC=a,∴AB=A C2+B C2=2a,∠ABC+∠BAC=90°,∠ABC=∠BAC,∴∠ABC=∠BAC=45°,BD=2AB=22a,∴∠DBE=∠ABC=45°,∵DE⊥CE,∴DE=BD·sin∠DBE=22a·sin45°=2a,BE=BD·cos∠DBE=22a·cos45°=2a,∴CE=BC+BE=3a,∴tan∠BCD=DECE =2a3a=23,故选:A.8.D【分析】过点B作BE⊥CD于点E,过点C作CF⊥AB于点F,可得△ABC,△BED,△BEC,△BCF都是直角三角形,根据sin∠BCE=BEBC =35,设BE=3a,BC=5 a,得CE=B C2−B E2=4 a,过点C作DB延长线于点G,得矩形CFBG,设AC=x,AB=y,然后利用勾股定理和三角形的面积可得y2−9=133,进而利用锐角三角函数即可解决问题.【详解】解:如图,过点B作BE⊥CD于点E,过点C作CF⊥AB于点F,∴△ABC,△BED,△BEC,△BCF都是直角三角形,∵sin∠BCD=35,∴sin∠BCE=BEBC =35,设BE=3a,BC=5a,∴CE=B C2−B E2=4a,过点C作DB延长线于点G,得矩形CFBG,∴BF=CG,设AC=x,AB=y,在Rt△ABC中,根据勾股定理,得AB2﹣AC2=BC2,∴y2﹣x2=25a2,∵S△ABC=12×AB•CF=12×AC•BC,∴y•CF=5ax,∴CF=5axy,在Rt△BCF中,根据勾股定理,得BF=B C2−C F2=25a2−(5axy )2=25ya,∴BF=CG=25ya,在正方形ABDH中,AB=BD=y,在Rt△BDE中,根据勾股定理,得DE=B D2−B E2=y2−9a2,∴CD=CE+ED=4a +y2−9a2,∵S△CBD=12×CD•BE=12×BD•CG,∴CD•BE=BD•CG,∴(4a +y2−9a2)×3=y×25ya,∴y2−9a2=133a,∴tan∠CDB=tan∠EDB=BEDE =3ay2−9a2=913.故选:D.9.B【分析】连接AC,由题意可得Rt△AOB≌Rt△DCO≌Rt△EOF≌Rt△GOH,进而说明△OAC为等腰直角三角形,再说明分CD、GI垂直平分AB,进而说明∠OBH=∠OHB=45°,然后再运用解直角三角形求得AI,然后再求得三角形AOB的面积,最后求风车面积即可.【详解】解:如图:连接AC由题意可得:Rt△AOB≌Rt△DCO≌Rt△EOF≌Rt△GOH∴OA=OC, ∠OAB= ∠OCD∵∠AOC=∠AOB=90°∴△OAC为等腰直角三角形又∵∠OAB= ∠OCD:∴∠AJD=180°-∠ADJ-∠OAB=180°-∠ODC-∠OCD=90°,即AJ⊥CD又∵CJ=DJ∴AJ垂直平分CD同理:GI垂直平分AB∴AC=AD,AJ是等腰三角形顶角∠CAD的角平分线即∠DAJ=12∠CAD=12×45°=22.5°易得IH=BJ,IJ=IB+BJ=IB+IH 又∵IB=IA∴IJ=IB+BJ=IH+IA= 2在Rt△ABO中,∠ABH=∠BAH=22.5°∴∠OBH=OHB=45°设OB=OH=a,即AH=BH=2OB=2a∴tan∠A=BOAO =aa+2a=2−1∴IHIA=tan∠A=2−1设IH=(2−1)x,AI=x ∴IH+IA=2x=2,即x=1∴S△ABH =12×AB×IH=2−1又∵SΔBOHSΔABH =OHAH=12∴S△BOH =1−22∴S△AOB =S△ABH+S△BOH=2−1+1−22=22∴S风车=4S△AOB=4×22=22.故选B.二.填空题10.53【分析】过点A作AG∥BE,BG∥AE交于点G,连接DG,勾股定理求得DG,过点D作DH⊥BG,证明G,H重合,进而勾股定理即可求解.【详解】解:如图所示,过点A作AG∥BE,BG∥AE交于点G,连接DG,则四边形AGBE是平行四边形,∴AG=BE=4,∵∠C=90°,则BC⊥AC∴AG⊥AC∴△ADG是直角三角形,∴DG=5∵cos∠AFD=32∴∠AFD=30°∵AE∥BG∴∠DBG=30°∵DG=5,DB=10过点D作DH⊥BG,∵sin∠DBG=12∴DH=12DB=5,∴G,H重合,∴AE=BG=BH=53故答案为:53.11.4:21【分析】设AE=4k,则BE=3k,根据勾股定理求出AB=5k,然后证明△CEF∽△DAF,最后根据相似三角形的性质求解即可.【详解】解∶∵tan∠ABC=43,AE⊥BC,∴tan∠ABC=43=AEBE,设AE=4k,则BE=3k,∴AB =A E 2+B E 2=5k ,∵四边形ABCD 是菱形,∴CB ∥AD ,AD =BC =AB =5k ,∴CE =BC −BE =2k ,∵CB ∥AD ,∴△CEF ∽△DAF ,∴S △CEF S△DAF =(CE DA )2=(2k 5k )2=425,∴S △CEFS 四边形ADCE =S △CEF S △DAF −S △CEF =425−4=421.故答案为:4:21.12.2或52或75【分析】分AB =AE,BE =BA,EA =EB 三种情况,分别画出图形,即可求解.【详解】解:在矩形ABCD 中,AB =3,AD =4,∴∠BAD=90°,∴BD =A B 2+A D 2=32+42=5,当AB =AE 时,过点A 作AF ⊥AD 于点F ,则AF ⊥BD ,∴cos ∠ABD=AB BD =BF AB ,∴BF =AB 2BD =95∴DE =BD −BE =BD −2BF =5−185=75,当BA =BE 时,DE =BD −BE =5−3=2,当EA =EB 时,过点E 作EG ⊥AB 于点G ,∴EG ∥AD ,AG =GB ,∴BE ED=BG AG =1,∴DE =12BD=52,综上所述DE = 2或52或75,故答案为:2或52或75.13.33【分析】如图,延长BC 交EP 于M ,由菱形的性质可知,CP 为∠BCD ,∠FCM 的平分线,则PF =PM ,PE −PF =PE −PM =EM ,由题意知,EM 为△ABD 底边AD 上的高,由菱形ABCD ,∠ABC=120°,AB =6,可得∠BAD=60°,根据EM=AB ⋅sin ∠BAD ,计算求解,进而可得结果.【详解】解:如图,延长BC 交EP 于M ,由菱形的性质可知,CP为∠BCD,∠FCM的平分线,∵PF⊥CF,PM⊥CM,∴PF=PM,∴PE−PF=PE−PM=EM,由题意知,EM为△ABD底边AD上的高,∵菱形ABCD,∠ABC=120°,AB=6,∴∠BAD=60°,∴EM=AB⋅sin∠BAD=33,∴PE−PF=33,故答案为:33.14.①②③【分析】延长GF交AD于点H,连接FC,FB,FA,由已知可得MN为AB,CD的垂直平分线,由垂直平分线的性质和图形旋转的性质可得①的结论正确;利用三角形的内角和定理和等腰三角形的性质计算可得∠BCG=45°,由四边形内角和定理通过计算可得∠EHF=90°;利用平行线的性质可得BC⊥FG,则∠CGF=45°,可说明②的结论正确;通过证明点A,B,E,F在以点P为圆心,PA为半径的同一个圆上,利用圆周角定理可得∠FAB=45°,得到A,F,C三点共线,得到△CGF为等腰直角三角形,则③的结论正确;由题意点F在对角线AC上运动,当EF⊥AC时,EF的值最小,连接AC,解直角三角形的知识可得④的结论不正确.【详解】解:延长GF交AD于点H,连接FC,FB,FA,如图,∵正方形ABCD中,M,N分别是AB,CD的中点,∴MN是线段BA,CD的垂直平分线.∴PD=PC,PA=PB.∵△FPG是△PED绕点P顺时针旋转90°得到,∴△FPG≌△PED,∴PD=PG.∴PC=PG.∴①的结论正确;∵PD=PC,∴∠PDC=∠PCD=1(180°−∠DPC).2∵PC=PG,∴∠PCG=∠PGC=1(180°−∠CPG).2∴∠PCD+∠PCG=1[360°−(∠DPC+∠CPG)].2∵∠DPC+∠CPG=90°,∴∠PCD+∠PCG=135°.∵∠BCD=90°,∴∠BCG=45°.∵△FPG≌△PED,∴∠DEP=∠GFP.∵∠HFP+∠PFG=180°,∴∠DEP+∠HFP=180°.∵∠DEP+∠HFP+∠EHF+∠EPF=360°,∴∠EHF+∠EPF=180°.∴∠EPF=90°,∴∠EHF=90°.即GH⊥AD.∵AD//BC,∴GF⊥BC.∴∠CGF=45°.∴tan∠CGF=1.∴②的结论正确;∵PA=PB,PM⊥AB,∴∠APM=∠BPM,∵PM//AE,∴∠PEA=∠BPM,∠PAE=APM.∴∠PEA=∠PAE.∴PA=PE.∵PE=PF,∴PA=PB=PE=PF.∴点A,B,E,F在以点P为圆心,PA为半径的同一个圆上.∴∠FAB=12∠FPB=12×90°=45°.∴点F在对角线AC上,∴∠FCB=45°.∵∠BCG=∠CGF=45°,∴△FCG为等腰直角三角形.∵BC平分∠FCG,∴BC垂直平分FG.∴③的结论正确;由以上可知:点F在正方形的对角线AC上运动,∴当EF⊥AC时,EF的值最小.此时点E与点D重合,∴DF=AD⋅sin45°=4×22=22.∴④的结论不正确.综上,结论正确的序号有:①②③,故答案为:①②③.15.220233【分析】设直线y=33x+2与x轴交于点C,求出点A、C的坐标,可得OA=2,OC=23,推出∠C B1A1=90°,∠C B1A=30°,然后求出C B1=2O B1=43=22×3,C B2=2C B1=83=23×3,C B3=2C B2=163=24×3,…,进而可得C B2022=22023×3,C B2023=22024×3,再求出B2022B2023即可.【详解】解:如图所示,设直线y =33x +2与x 轴交于点C ,当x =0时,y =2;当y =0时,x =−23,∴ A (0,2),C (−23,0),∴ OA=2,OC =23,∴ tan ∠ACO =OA OC=223=33,∴ ∠ACO=30°,∵ △A B 1A 1是等边三角形,∴ ∠A A 1B 1=∠A B 1A 1=60°,∴ ∠C B 1A 1=90°,∠C B 1A =30°,∴ AC =A B 1,∵ AO⊥C B 1,∴ O B 1=OC =23,∴ C B 1=2O B 1=43=22×3,同理,C B 2=2C B 1=83=23×3,C B 3=2C B 2=163=24×3,……,∴ C B 2022=22023×3,C B 2023=22024×3,∴ B 2022B 2023=22024×3−22023×3=220233,故答案为:220233.16.8+46【分析】先构造15° 的直角三角形,求得15° 的余弦和正切值;作EK ⊥FH ,可求得EH:EF =2:6;作∠ARH=∠BFT =15°,分别交直线AB 于R 和T ,构造“一线三等角”,先求得FT 的长,进而根据相似三角形求得ER ,进而求得AE ,于是得出∠AEH =30°,进一步求得结果.【详解】解:如图1,Rt △PMN 中,∠P =15°,NQ =PQ ,∠MQN =30°,设MN=1,则PQ =NQ =2,MQ=3,PN =6+2,∴cos15°=6+24,tan15°=2−3,如图2,作EK ⊥FH 于K ,作∠AHR =∠BFT =15°,分别交直线AB 于R 和T ,∵四边形ABCD 是矩形,∴∠A =∠C ,在△AEH 与△CGF 中,{AE =CG ∠A =∠C AH =CF,∴△AEH ≌△CGF(SAS),∴EH =GF ,同理证得△EBF ≌△GDH ,则EF =GH ,∴四边形EFGH 是平行四边形,设HK=a ,则EH=2a ,EK =3a ,∴EF =2EK =6a ,∵∠EAH =∠EBF =90°,∴∠R=∠T =75°,∴∠R=∠T=∠HEF=75°,可得:FT=BFcos15°=3+36+24=26,AR=AH⋅tan15°=4−23,△FTE∽△ERH,∴FTER =EFEH,∴26ER =62,∴ER=4,∴AE=ER−AR=23,∴tan∠AEH=223=33,∴∠AEH=30°,∴HG=2AH=4,∵∠BEF=180°−∠AEH−∠HEF=75°,∴∠BEF=∠T,∴EF=FT=26,∴EH+EF=4+26=2(2+6),∴2(EH+EF)=4(2+6),∴四边形EFGH的周长为:8+46,故答案为:8+46.三.解答题17.(1)原式=2×32−12−33×3−2×32+6×(22)2=3−12−1−3+6×12=3−1−3+3=2.(2)原式=1+4×22−22+3 =1+22−22+3=4.18.(1)解:∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ADC中,tan∠ACD=ADCD =32,AD=6,∴CD=4;(2)解:由(2)得CD=4,∴BD=BC−CD=8,∴AB=A D2+B D2=10,在Rt△ABD中,sin∠ABD=ADAB =35,即sin∠ABC=35.19.解:(1)设直线AC的表达式为y=kx+b 将点A、C的坐标代入,得得:{7k+b=8b=6,解得:{k=27b=6,故直线AC的表达式为:y=27x+6;(2)∵OD=t,BE=s,AB⊥x轴∴则点D(t,0),点E(7,s)∵DE∥AC可设直线DE的解析式为y=27x+c将点D的坐标代入0=27t+c解得:c=﹣27t∴直线的表达式为:y=27x﹣27t,将点E的坐标代入,得s=2﹣27t(根据点D在线段OB上,可得0<t<7);(3)存在,理由:设点D(t,0),由(2)BE=2﹣27t,四边形CDEF为矩形,则∠CDE=90°,∵∠EDB +∠CDO =90°,∠CDO +∠OCD =90°,∴∠OCD =∠BDE ,∴tan ∠OCD =tan ∠BDE ,∴ODOC =BE BD即t 6=2−27t 7−t,解得:t =127或7(因为0<t <7,故舍去7),故点D 的坐标为(127,0).20.(1)如图所示,取格点E ,F ,连接BF,AF ,AE,CE ,∵BF =12+12=2,DF =32+32=32,∴tan ∠D =BF DF=232=13,∵CE =1,BE =3,∴tan ∠ABC=CE BE=13,∴tan ∠D =tan ∠ABC ,∴∠ABC=∠D ;(2)解:如图,取格点D ,E ,同理(1)可得,在Rt△AEC中,tan∠ACE=1,2,在Rt△ABD中,tan∠ABD=12∴tan∠ACE=tan∠ABD,∴∠ACE=∠ABD,直线BD与AC的交点为所求的点P.21.(1)解:由题意,得AD⊥DF,∴∠ADF=90°∴∠DAF=90°−∠AFD=90°−45°=45°,由题意,得FD∥CE,∴∠CDF=∠ECD=30°∴∠BDC=∠ADF+∠CDF=90°+30°=120°.(2)解:如图,过点F作FG⊥EC于G,由题意得,FG∥DE,DF∥GE,∠FGE=90°,∴四边形DEGF是矩形.∴FG=DE.在Rt △CDE 中,DE =CE ⋅tan ∠DCE=6×tan30°=23(米),∴FG =23(米).答:F 距离地面CE 的高度为23米;(3)解:∵斜坡CF 的坡度为i =1:2.5,∴Rt △CFG 中,CG = 2.5FG =23× 2.5=53(米),∴FD =EG =(53+6)(米).∴在Rt △AFD 中,∠AFD=45°,∴AD =FD =(53+6)米.在Rt △BCE 中,BE =CE ⋅tan ∠BCE =6×tan60°=63(米),∴AB =AD +DE −BE =53+6+23−63=(6+3)(米).答:宣传牌AB 的高度约为(6+3)米.22.(1)解:如图,∠BAC=90°,AB =AC ,sad90°=BC AB ,∵cos45°=AB BC=22,∴sad90°=BCAB = 2.(2)解:如图,点A 在BC 的中垂线上,当点A 向BC 靠近时,∠A 增大,逐渐接近180°,腰长AB 接近12BC ,AB >12BC 相应的sadA =BC AB <2;当点A 远离BC 时,∠A 减小,逐渐接近0°,腰长AB 逐渐增大,相应的sadA =BCAB 逐渐接近0,sad A =BCAB >0;∴0<sadA <2(3)解:如图,在AB 上截取AH=AC ,过H 作HD ⊥AC 于D ,sinA =35=DH AH ,设HD =3x,AH =AC =5x ,则,AD =A H 2−H D 2=4x ,∴DC =AC −AD =5x −4x =x .Rt △HDC 中,HC =C D 2+H D 2=10x ,∴sadA =CH AH =10x 5x =105.23.(1)解:证明:如图1,过点A 作AN ⊥BC 于N ,∵AB =AC ,∴BN =12BC ,∵AD =BD ,∴∠ABD =∠BAD ,在△ABN 和△BAH 中,{∠ANB=∠BHA=90°∠ABD=∠DABAB=BA,∴△ABN≌△BAH(AAS),∴BN=AH,∴12BC=AH,∴BC=2AH;(2)如图2,在AC上取一点F,使EF=EC,连接EF,∵∠BAC=∠DAE=120°,∴∠DAB=∠EAC,∵AB=AC,∴∠ABE=∠C=∠CFE=30°,∴∠ABD=∠AFE=150°,∴△ABD∽△AFE,∴ABAF =BDEF,即6AF=23EF,∴AFEF=3,设EF=a,则AF=3a,∵EF=CE=a,∠C=30°,∴CF=2EF·cos30°=3a,∴6−3a=3a,∴a=3,∴CE=EF=3;(3)如图3,过点A作AP⊥BC于P,作AG∥CE交BC的延长线于G,设AE=2m,BE=3m,则AB=AC=5m,∵tan∠ABC=34=AP BP ,∴ BP AB =45,∴BP =CP =4m ,BC =8m ,∵∠BAD =∠BCE =∠G ,∠ABD =∠GCA ,∴△ABD ∽△GCA ,∴ CG AB =AC BD ,即CG 5m =5m 5,∴CG =5m 2,∵AG ∥CE ,∴ BE AE =BC CG ,∴ 3m 2m =8m5m 2,∴m =1615,∴BC =8m =12815.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解三角形章节测试卷班级 姓名 座位号一、选择题(新题型的注释)1.在△ABC 中,若 ,222bc a c b =-+ 则A = ( ) A 090 B 0150 C 0135 D 0602..在△错误!未找到引用源。
中,若错误!未找到引用源。
,则△错误!未找到引用源。
是( )A.等边三角形B.锐角三角形C.钝角三角形D.直角三角形 3.ABC ∆中,若︒===60,2,1B c a ,则ABC ∆的面积为( )A .21B .23C.1D.3 4.△ABC 中,45A ∠=︒,105B ∠=︒,A ∠的对边2a =,则C ∠的对边c 等于( ).(A )2(B )3(C )2(D )15.的内角、、的对边分别为、、,若、、成等比数列,且,则 ( )A .B .C .D .6.锐角三角形ABC 中,内角C B A ,,的对边分别为c b a ,,,若2B A =,则ba的取值范围是( )A. (2,3)B.)2,2(C.)2,0(D. )3,0( 7.在ABC ∆中,8,60,75a B C ︒︒===,则b =( ) A.42 B.43 C.46 D.3238.在ABC ∆中,3:2:1::=C B A ,则c b a ::等于( ).A 3:2:1 .B 1:2:3 .C 2:3:1 .D 1:3:29.在ABC ∆中,如果60A =,4c =,234a << ,则此三角形有( )A. 两解B. 一解C. 无解D. 无穷多解10.在△ABC 中,内角A,B,C 的对边分别是a,b,c ,若,223a b bc -=ABC ∆A B C a b c a b c 2c a =cos B =14342423,则角A=( ).A .B .C .D .11.在Rt ABC ∆中,CD 是斜边上的高线,:3:1AC BC =则:ABC ACD S S ∆∆为 ( ). A .4:3 B . 9:1 C .10:1 D .10:9 12.在中,角所对的边分别是,若,且,则的面积等于 ( )A .35B .34C .D .24二、填空题(题型注释)13.设△ABC 中,a:(a+b):(c+b)=3:7:9,则cosB = .14.甲船在A 处观察乙船,乙船在它的北偏东60°的方向,两船相距a 海里,乙船正向北行驶,若甲船是乙船速度的3倍,甲船为了尽快追上乙船,则应取北偏东________(填角度)的方向前进。
15.在△ABC 中,角A 、B 、C 所对的边分别为、、,若△ABC=,则角C 的大小为16.对于ABC ∆,有如下命题:①sin 2sin 2A B =若,则ABC ∆一定为等腰三角形;②在ABC ∆中,若0120A ∠=,5,7AB BC ==,则ABC ∆的面积是唯一确定的值;③222sin sin cos 1A B C ABC ++<∆若,则一定为钝角三角形; 则其中正确命题的序号是 (把所有正确的命题序号都填上)17..设的外接圆半径为,且已知,,则=________.三、解答题(题型注释)18.(本题9分)在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,且.2cos cos ca bC B +-= (1)求角B 的大小;(2)若4,13=+=c a b ,求ABC ∆的面积.45=C 4=AB R ABC ∆R S c b a 4222c a b -+32ABC ∆4AC AB ⋅=- ()221a b c bc-+=-,,a b c ,,A B C ABC ∆01500120060030sin 23sin C B=19. (本题8分)在ABC ∆中,角C B A 、、所对的边分别为c b a ,,,已知412cos -=C 。
(1)求C sin 的值;(2)当2=a ,C A sin sin 2=时,求b 及c 的长。
20.在ABC ∆中,60A ∠=︒,1b =,32S ∆=. (1)求边长a 、c 的值; (2)求sin sin sin a b cA B C++++的值21..已知函数1)sin (cos 212sin 23)(22---=x x x x f (1)求函数f(x)的最小值和最小正周期;(2)设△ABC 的内角A 、B 、C 的对边分别为a,b,c,且c=7,0)(=C f ,若向量B ),(n A m sin 3)sin ,1(==与向量共线,求a , b 的值。
22.设的内角所对的边分别为且.(1)求角的大小;(2)若,求的周长的取值范围. 23.(本小题满分12分)在ABC ∆中,a b C B 32,== 求(1)A cos 的值. (2)求⎪⎭⎫⎝⎛+42cos πA 的值。
l ABC ∆1=a Ab c C a =+21cos ,,,c b a C B A ,,ABC ∆参考答案1.D 2.D【解析】因为向量的关系式可知,结合向量的数量积公式可知,2c b c c o s Aa c c o s B abc o s C=++,利用余弦定理化角为边,可知该三角形是直角三角形,选D 3.B 【解析】011sin 12sin 6022S ac B ==⨯⨯⨯=234.C【解析】因为180()180(45105)3C A C ∠=-∠+∠=-+=,所以12s i n 2,2sin sin sin 22c a a Cc C A A⨯=∴===. 5.B 6.A【解析】解:根据正弦定理得:sin sin =a bA B则由B=2A , 得:b a =sin sin 22cos sin sin ==B AA A A而三角形为锐角三角形,所以A ∈(6π,4π ) 所以cosA ∈22, 32)即得2cosA ∈(2,3) 故选A 7.C 8.C 9.A【解析】由正弦定理得:0sin 4sin 6023,sin sin sin a c c A C A C a a a ⨯=∴===2323,01a a>∴<< ,∴三角形有解;又c a >,所以有两解。
故选A 10.A11.D 12.C13.3514.30° 15.45° 16.②③【解析】解:因为①sin 2sin 2A B =若,则+=2=若或A B A B πABC ∆一定为等腰三角形;错误。
②在ABC ∆中,若0120A ∠=,5,7AB BC ==,则ABC ∆的面积是唯一确定的值;正确 ③222sin sin cos 1A B C ABC ++<∆若,则一定为钝角三角形,正确 17.18.0120=B ,11333sin 32224ABC S ac B ∆==⨯⨯=【解析】解:(1)∵.2cos cos ca b C B +-= 即:2222222.22a c b bac a b c a c ab +-=-+-+…………………………………………………………(1分) 222b a c ac ⇒=++……………………………………………………………………(3分)∴22cos 2a c ac B ac++==21-∵0B π<<∴0120=B ………………………………………………………………………………(5分)(2)13{4b ac =+=22213{216b a c ac =⇒++= 即:222213{216a c ac a c ac ++=⇒++= ∴3ac =………………………………………………………………………………(8分) ∴11333sin 32224ABC S ac B ∆==⨯⨯=…………………………………………(9分) 2219.(1)解:因为41sin 212cos 2-=-=C C ,及π<<C 0, 所以410sin =C 。
………………………………………………………4分(2)解:当2=a ,C A sin sin 2=时,由正弦定理CcA a sin sin =,得4=c 。
由411cos 22cos 2-=-=C C ,及π<<C 0得46cos ±=C 。
由余弦定理C ab b a c cos 2222-+=,得01262=-±b b 。
解得6=b 或62。
所以⎩⎨⎧==.4,6c b 或⎩⎨⎧==.4,62c b …………………………………………………8分20.(1)由1133sin 12222S bc A c ∆==⨯⨯⨯=,解得:2c =, 由22212cos 1421232a b c bc A =+-=+-⨯⨯⨯=,得3a =;…………6分 (2)由正弦定理有:32sin sin sin 32a b cA B C====, 2sin sin sin sin a b c aA B C A++∴==++21.解:(1)12cos 21223)(--∑=x x x f 1)62(--∑=πx162)62(22262-=-∑+-=-∴)mm x (k k x πππ时当 即2)(-=mm x f T=π (2)a b A B 33=∴∑=∑61162601)62(01)62()(ππππππ<-<-∴<<=-∑∴=--∑=c c c c c f3262πππ==-∴C c 即由余弦定理31cos 2222==-+=,b a c ab b a C 即22.解:(1)由得 …………又 …………,,, 又 …………(2)由正弦定理得:,…………………故的周长的取值范围为. …………13'(2)另解:周长 由(1)及余弦定理…………………… 又即的周长的取值范围为. ………… 13'23.解:(1)由a b C B 32,==,得a c b 23==..............3分312323243432cos 222222=⨯⨯-+=-+=∴aa a a a bc a cb A ....................6分(]2,3l ABC ∆12b c a l a b c +>=∴=++>10'2b c +≤22()1313()2b c b c bc +∴+=+≤+8'221b c bc ∴+=+2222cos a b c bc A=+-1a b c b c=++=++l (]2,3l ABC ∆1sin ,162B π⎛⎫⎛⎤∴+∈ ⎪ ⎥⎝⎭⎝⎦⎪⎭⎫ ⎝⎛∈+∴65,66πππB 20,,3B π⎛⎫∴∈ ⎪⎝⎭,3A π=10'⎪⎭⎫ ⎝⎛++=6sin 21πB 3112sin cos 22B B ⎛⎫=++ ⎪ ⎪⎝⎭8'()()()221sin sin 1sin sin 33l a b c B C B A B =++=++=+++C c sin 32=B A B a b sin 32sin sin ==6'3π=∴A 0A π<< 21cos =∴A 0sin ≠C 1sin cos sin 2C A C ∴=4'()sin sin sin cos cos sin B A C A C A C=+=+2'1sin cos sin sin 2A C C B+=b c C a =+21cos(2),31cos =A A 为锐角 322cos 1sin 2=-=∴A A ......8分924cos sin 22sin =⋅=∴A A A , 971cos 22cos 2-=-=A A .....10分182784sin 2sin 4cos 2cos 42cos +-=-=⎪⎭⎫ ⎝⎛+∴πππA A A ..........12分。