导数的概念3

合集下载

导数的概念及其几何意义教案

导数的概念及其几何意义教案

导数的概念及其几何意义教案导数的概念及其几何意义一、导数的定义和基本概念1. 导数的定义导数是微积分学中一个非常重要的概念,它描述了函数在某一点附近的变化率。

在数学上,对于给定的函数f(x),它在某一点x0处的导数可以用极限的概念来定义,即:\[ f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) -f(x_0)}{\Delta x} \]其中,f'(x0)表示函数f(x)在点x0处的导数。

2. 导数的基本概念根据导数的定义可以知道,导数可以理解为函数图像在某一点的切线的斜率,也就是函数在该点的瞬时变化率。

导数的概念是微积分的基础,它在物理、经济、生物等领域有着广泛的应用。

二、导数的几何意义1. 切线和切线斜率在几何意义上,导数可以理解为函数图像在某一点的切线的斜率。

对于函数f(x),在点x0处的切线斜率即为该点处的导数值f'(x0)。

通过求导可以获得函数曲线在任意点的切线斜率,从而更好地理解函数图像在各个点的变化趋势。

2. 导数与函数图像的关系导数还可以帮助我们理解函数曲线的凹凸性、极值点以及拐点等性质。

对于函数f(x),如果在某一点的导数值为0,那么这个点可能是函数的极值点或者拐点。

通过导数,我们可以更直观地理解函数的整体形态和特性。

三、深入理解导数的意义1. 导数的局部性导数反映了函数在某一点附近的变化情况,是一种局部性的量。

通过导数,我们可以得知函数在某一点处的瞬时变化率,从而对函数的局部特性有更深入的理解。

2. 导数与积分的关系在微积分中,导数和积分是密切相关的。

导数描述了函数的瞬时变化率,而积分则描述了函数在一定区间内的累积效应。

导数和积分是微积分学中最重要的两个概念,它们相互补充,共同构成了微积分学的核心内容。

结语:导数作为微积分学中的重要概念,在数学和应用领域都有着广泛的意义。

通过深入理解导数的概念及其几何意义,我们可以更好地理解函数图像的变化规律,为后续的微积分学习打下扎实的基础。

高三数学导数的概念与运算

高三数学导数的概念与运算
1 (ln x )' x
1 (log a x)' log a e ; ; x
; (a )' a ln a 。
x x
(e )' e
x
x
5.导数的四则运算法则:
[u( x) v( x)] u ( x) v ( x)
' ' '
[u( x)v( x)] u '( x)v( x) u( x)v '( x)
; / 筑志棋牌游戏网
zth51awb
房肯煎药了,她去找刘晨寂。问准刘晨寂所在,她去找他。听说刘晨寂年少,而她也是云英未嫁大姑娘,虽然立意一辈子伺候 老太太,再不嫁人,也真打心里把自己不当姑娘看了,毕竟要避嫌,只遣婆子去传话,自己在门外,窗缝间扫着一眼,亏素来 自诩老沉狠辣,也登时心跳如捣:那少年明眸皓齿,身着布衣,头发像墨檀木一样黑,用条普普通通的青带子束在后面,刚把 好脉,步至桌前举墨笔,正巧一束阳光从窗里进来,照在他脸上,细细的茸毛,他回过头去看那传话的婆子,一边举起手来遮 了遮眼睛,指尖微微的红晕。这才叫布衣红颜!宝音定定神。奇也怪也!她为何觉得他这样眼熟,不但见过,而且似亲密相处 过的?实在没有因由!屋里,那传话婆子请刘大夫先留外院不要走,表 的痰盒来端给刘大夫看看,刘大夫要拟什么方子,尽 管说,若凶险极了须诊脉,给刘大夫告个罪,请刘大夫蒙上眼,入内院隔帘给表 诊。刘晨寂答应了。听他应声,宝音心底就 安定些,又嘱了丫头婆子们,刘大夫要写出什么方子来,只要不是摆明了毒药,管老大夫怎么说,就用刘大夫的方子!如果表 真的病危了,就是毒药也听刘大夫的!表面上,老大夫治过一段时间,没起色,还不如试刘大夫,这是她的道理。背地里…… 见了刘晨寂,听了他的声音,她就是想相信他,这真是可怪。踌躇疑惑着,宝音又走了几处,绕了一绕,从与嘉颜议帐的屋子 窗下过,听嘉颜似在里头生了气。嘉颜一向性子沉着,能发重话,不知出了什么大事?宝音奇着,赶紧往门前绕,却一个大丫 头又拦了她,先道乏,后问:“宝音姐姐,你看这一件是二老爷房里要的,我这般拿去还使得么?”宝音将那东西也看了一眼: 是个花鸟镶翠靶镜,镜把儿原断过一次,又用宝相花饰精巧鎏合,顿时“噫”一声:“二#奶#奶的?我不是拣点出一副新的, 怎又拿这旧的修补了给二#奶#奶!”那大丫头笑道:“是二#奶#奶说,何必又用新的,就叫将旧的补补,还于她去。”这般亏 苦,无非要在老太太跟前留下会持家的好印象,宝音心头敞亮,赞叹一句道:“二#奶#奶如此克俭,咱们作奴婢的却不能哑着。 我回老太太去,总也不能给二#奶#奶用补旧的!”大丫头含笑而去。宝音加快步子拾阶上去,有个腿快的家人媳妇赶到门边把 那半疏半透的蒙绣纱湘帘子打起来,笑道:“宝音姑娘!可巧儿您回来了,有个九层玲珑塔形的托盘儿找不着了,姑娘您还有 印象吗?”这媳妇名下数目一向不清,教了几次,记帐还是糊涂,有些有意装傻、从中贪墨的嫌疑,宝音正想捉她呢,拧起眉 毛道:“都问我,自个儿就不用查帐了?若我死了,你们更问谁去?”媳妇腮帮子明显抽了两抽。宝音自己接了帘子进屋来, 问嘉颜道:“怎么了?”嘉颜

导数的定义解释

导数的定义解释

导数的定义解释在数学中,导数是描述函数变化的重要概念,它表示函数增长率,既可以描述数字函数也可以描述几何函数,是数学进行求解和分析的基础。

导数的定义解释如下:1、定义:函数f(x)的n阶导数是指在变量x上,使函数的变化量(即增量)与x的变化量(即增量)的比值关系趋于某一常数,即定义为n阶导数的函数。

2、解释:函数f(x)的n阶导数,是指表示函数f(x)对变量x的变化量之比率的函数。

通俗点讲,就是当变量x发生变化时,函数f(x)所发生的变化量和x变化量之比例所确定的量。

3、形式:此量可以表示为函数f(x)的n次微分式:f(x)的n阶导数=f((n)(x)/dxn上式中,dx表示变量x的微小变化量,即对变量x进行微分的步长,dx的数值等于变量x的变化量/微分次数,微分次数即n。

4、说明:从定义中可以看出,当函数f(x)变化时,函数f(x)的n阶导数可以看作是函数f(x)和变量x变化量之比例,也即函数f(x)关于变量x的变化率。

简单来说,导数是一种特征量,它可以对函数表达式进行更为细致的分析,可以表示函数的变化趋势,从而为数学求解和分析提供更多的有效信息。

以下为一个简单的例子,关于求解一元函数的最大值和最小值:已知函数f(x)=3x3+2x2+x+1求f(x)的最大值和最小值解:f(x)的一阶导数为f(x)=3x2+4x+1设f(x)= 0,得3x2+4x+1=0解得x=-1/6,x=-2又得f(-1/6)=-4/27,f(-2)=-17/2即函数f(x)在x=-1/6处取得最大值f(-1/6)=-4/27,在x=-2处取得最小值f(-2)=-17/2由此可见,导数在数学求解和分析中起着非常重要的作用,因此,对导数的定义解释也是十分重要的。

以上就是关于“导数的定义解释”的全部内容,希望能够帮助到大家。

在数学中,导数的概念非常重要,为我们的求解和分析提供了更多有效的信息,因此,要深入理解导数的定义解释,从而运用自如。

导数的三种定义形式

导数的三种定义形式

导数的三种定义形式
导数的三种定义形式包括:
1.导数(函数的变化率)定义为函数在某一点处的瞬时变化率,即函数在该
点的切线斜率。

这个定义可以通过求函数图像上某一点处的切线斜率来直观理解。

2.导数定义为函数对于自变量的导数,即函数在某一点处的变化率。

这个定
义可以通过求函数图像上某一点处的切线斜率来直观理解。

3.导数定义为函数的极限,即当自变量趋近于某一点时,函数的变化率趋近
于一个极限值。

这个定义涉及到极限的概念,需要一定的数学基础才能理解。

这三种定义形式实际上是等价的,只是从不同的角度来描述导数的性质。

在实际应用中,可以根据需要选择不同的定义形式来解决问题。

高等数学-导数的概念

高等数学-导数的概念
内有定义,如果当 →
0− 时,极限
(0 +)−(0 )



→0
在,则称此极限值为函数 = ()在0 处的左导数,记为
−′ (0 )
=
(0 +)−(0 )


→0
=
()−(0 )

.

→0
0
16
01 导数的定义
4.左导数和右导数
′ 在点0 处的函数值,即 ′ (0 ) = ′ ()|=0 .
12
01 导数的定义
例2 求函数() = ( > 0)的导数.
根据导数定义,使用分子有理化得
( + ) − ()
+ −

() =
=
→0

→0

如果 ′ (0 ) = ∞,曲线 = ()在点(0 , (0 ))处的
切线为垂直于轴的直线 = 0 .
19
02 导数的意义
结论 1 曲线 = ()上点(0 , 0 )处的切线方程为
− 0 = ′ (0 )( − 0 ) .
2 如果 ′ (0 ) ≠ 0,曲线 = ()在点 0 , 0
(0 + ) − (0)

=
→0
→0

=
1
()3
−0

1
2
→0 ()3
O
x
= +∞,
即导数为无穷大(导数不存在).
26
→0
= ()在
点0 处可导,并称这个极限值为函数 = ()在点0 处的导数,
记作
′ (0 ), ′ |=0 ,

导数的概念及其几何意义教案

导数的概念及其几何意义教案

导数的概念及其几何意义教案导数的概念及其几何意义导数是微积分学中的一个基本概念,它不仅具有重要的理论意义,而且在实际应用中也有着广泛的用途。

本文将通过深入的理论探讨和几何意义的解释,帮助读者全面理解导数的概念及其应用。

一、导数的概念导数是函数的一种基本性质,它描述了函数在某一点上的变化率。

具体地说,设函数y=f(x),在某一点x=a处有定义,若存在极限lim_[h→0] (f(a+h)-f(a))/h ,那么这个极限就称为函数f(x)在点a处的导数,记作f'(a)或dy/dx|_(x=a)。

从定义中可以看出,导数表示了函数在某一点上的瞬时变化率,也即函数的斜率。

导数的绝对值越大,表示函数在该点上的变化越剧烈;导数为零表示函数在该点上没有变化;导数为正表示函数在该点上单调递增;导数为负表示函数在该点上单调递减。

二、导数的几何意义导数的几何意义可以通过理解切线的概念来解释。

对于一个函数,取其中一点P(x,y),在这一点上作一条切线,使得切线与曲线只有一个公共点P。

那么这条切线的斜率就是函数在点P处的导数。

通过这种解释,我们可以把导数理解为函数曲线在某一点上的局部近似线性化描述。

切线的近似线性特征使得我们可以使用直线的性质来研究函数曲线的性质。

我们可以通过判断切线的斜率的正负来确定函数的单调性;通过判断切线与x轴的交点来确定函数的根的存在性等等。

三、导数的应用导数在实际应用中具有广泛的用途。

下面列举几个典型的应用场景:1. 曲线的拟合与插值:通过函数的导数可以获得曲线的斜率信息,进而进行曲线的拟合和插值,从而更好地描述和预测曲线的变化。

2. 最优化问题:很多最优化问题可以通过导数的求解来解决。

求函数在某一范围内的最大值或最小值,我们可以通过求解导数为零的位置来得到答案。

3. 物理学中的速度和加速度:在物理学中,速度和加速度是描述物体的运动的重要概念。

通过对位移和时间的关系进行导数运算,我们可以得到速度和加速度的函数表达式,从而更好地分析物体的运动规律。

大学导数知识点总结

大学导数知识点总结

大学导数知识点总结一、导数的概念导数是微积分中一个非常重要的概念,它是某一函数在某一点上的变化率。

在几何意义上,导数表示了曲线在某一点的切线斜率;在物理学中,导数表示了物体在某一时刻的速度和加速度。

因此,导数在数学、物理、经济等领域中都有着非常广泛的应用。

设y=f(x),x为自变量,y为因变量。

如果函数f(x)在点x=a处的导数存在,则称函数f(x)在点x=a处可导,记作f'(a)。

导数f'(a)就是函数f(x)在点x=a处的瞬间变化率,也就是函数的斜率。

导数的计算是微积分中的一个重要内容,它可以通过极限的方法来求得。

二、导数的计算方法求导数的过程即为求函数的瞬间变化率的过程,常用的方法有以下几种:1. 函数的基本求导公式:包括多项式函数、指数函数、对数函数、三角函数等求导公式。

这些基本求导公式是求导的起点,通过它们可以得到更复杂函数的导数。

2. 导数的四则运算:如果函数f(x)和g(x)都在点x=a处可导,那么f(x)与g(x)的和、差、积、商函数在点x=a处的导数可分别表示为(f+g)'(a)、(f-g)'(a)、(fg)'(a)、(f/g)'(a)。

3. 复合函数求导:对于复合函数f(g(x)),可以利用链式法则求导,即先对最外层函数求导,再乘以内层函数的导数。

4. 隐函数求导:对于以x和y为自变量的方程,如果y不能表示为x的函数形式,则称y是x的隐函数。

对隐函数求导需要利用隐函数求导的公式。

5. 参数方程求导:对参数方程x=x(t)和y=y(t)所确定的轨迹求切线斜率时,需要计算dy/dx=y'(t)/x'(t)。

6. 反函数求导:如果函数y=f(x)在一段区间内是单调、连续、可导的,并且f'(x)≠0,则其反函数在对应区间内也是可导的,且有f^(-1)'(y)=1/f'(x),即反函数的导数等于原函数导数的倒数。

导数概念

导数概念

一.导数的概念1.导数的定义:如果当0x ∆→时,y x∆∆有极限,就说函数()y f x =在点0x 处可导,并把这个极限叫做()y f x =在点0x 处的导数。

记作0'()f x 或0'|x x y =。

即00000()()'()=lim lim x x f x x f x y f x x x∆→∆→+∆-∆=∆∆。

2.导数的几何意义:函数()y f x =在点0x 处的导数0'()f x 就是曲线()y f x =在点00(,)P x y 处切线的斜率,即0'()k f x =。

此时相应的切线方程为000'()()y y f x x x -=-。

3.导函数:函数()y f x =的导数,是一个函数。

其求法与在一点处导数一致。

()y f x =在0x 处的导数0'()f x 就是导函数'()y f x =在0x 处的函数值。

二.基本初等函数的导数三.导数的运算1.和、差、积、商的求导法则(1)加减:[()()]''()'()f x g x f x g x ±=±; (2)积:[()()]''()()()'()f x g x f x g x f x g x ⋅=+;(3)商:2()'()()()'()'()()f x f x g x f x g x g x g x ⎡⎤-=⎢⎥⎣⎦。

2.复合函数的求导法则复合函数(())y f g x =可看做(),()y f u u g x ==的复合,其求导法则为'''u x y y u =⋅,即是等于y 对u 的导数与u 对x 的导数的乘积四.导数的应用1.函数的单调性:求函数的单调区间①确定函数的定义域;②解方程'()0f x =,得到所有在定义域内的根;③将定义域内的间断点与解得的根从小到大排列,得到若干个区间;④确定每个区间'()f x 的符号,'()0f x >的为增区间,'()0f x <的为减区间。

导数的概念及运算、几何意义

导数的概念及运算、几何意义

导数的概念及运算、几何意义1.导数的概念(1)函数y=f(x)在x=x0处的导数称函数y=f(x)在x=x0处的瞬时变化率为函数y=f(x)在x=x0处的导数,记作f′(x0)或,即f′(x0)==.y′|x=x(2)导数的几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)·(x-x0).(3)函数f(x)的导函数称函数f′(x)=为f(x)的导函数.2.导数公式及运算法则(1)基本初等函数的导数公式(2)导数的运算法则①[f (x )±g (x )]′=)(x f '±g ′(x );②[f (x )·g (x )]′=)(x f 'g (x )+f (x )g ′(x ); ③])()(['x g x f =f ′(x )g (x )-f (x )g ′(x ) [g (x )]2(g (x )≠0). 特殊情况[c ·f (x )]′=c ·)(x f '.(3)复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.3.判断下列结论的正误(正确的打“√”,错误的打“×”)(1))(0x f '与[f (x 0)]′表示的意义相同.(×)(2))(0x f '是导函数)(x f '在x =x 0处的函数值.(√)(3)曲线的切线不一定与曲线只有一个公共点.(√) (4))3sin('π=cos π3.(×)(5)若(ln x )′=1x ,则)1('x =ln x .(×)(6)函数f (x )=sin(-x )的导数为f ′(x )=cos x .(×)(7)函数f (x )=,由于f ′(0)无意义,则说明f (x )=在x =0处无切线.(×)(8)与曲线只有一个公共点的直线一定是曲线的切线.(×)(9)若f (a )=-x 2+2ax +a 3,则f ′(a )=2x +3a 2.(√)(10)过点P 作y =f (x )的切线,且P 在y =f (x )上,则P 一定为切点.(×)考点一 导数的运算[例1] (1)函数y =(1-x ))1(x +,则y ′=________.解析:∵y =(1-x ))11(x +=1x -x =2121x x --,='y 21232121----x x答案:21232121----x x (2)函数y =ln x x ,则y ′=________.解析:y ′=)ln ('xx =(ln x )′x -x ′ln x x 2=1x ·x -ln x x 2=1-ln x x 2. 答案:1-ln x x 2(3)y =ln(2x +5),则y ′=________.解析:设y =ln u ,u =2x +5,则y ′x =y ′u ·u ′x ,因此y ′=12x +5·(2x +5)′=22x +5. 答案:22x +5 (4)已知函数f (x )的导函数f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=________.解析:f ′(x )=2f ′(1)+1x令x =1,得f ′(1)=2f ′(1)+1,∴f ′(1)=-1.答案:-1 [方法引航] (1)总原则:先化简解析式,再求导.(2)具体方法:①连乘积的形式:先展开化为多项式形式,再求导.②根式形式:先化为分数指数幂,再求导.③复杂分式:化为简单分式的和、差,再求导.(3)区分f ′(x )与f ′(x 0)f ′(x )表示导函数,f ′(x 0)是导函数值.1.若函数y =tan x ,则y ′=________.解析:y ′=)cos sin ('xx =(sin x )′cos x -sin x (cos x )′cos 2x =cos x cos x -sin x (-sin x )cos 2x =1cos 2x . 答案:1cos 2x2.设f (x )=x ln x ,若)(0x f '=2,则x 0的值为( )A .e 2B .e C.ln 22 D .ln 2 解析:选B.由f (x )=x ln x 得f ′(x )=ln x +1.根据题意知ln x 0+1=2,所以ln x 0=1,因此x 0=e.考点二 导数的几何意义[例2] (1)求曲线f (x )在点(2,f (2))处的切线方程;(2)求经过点A (2,-2)的曲线f (x )的切线方程.解:∵f ′(x )=3x 2-8x +5,∴f ′(2)=1,又f (2)=-2,∴曲线f (x )在点(2,f (2))处的切线方程为y -(-2)=x -2,即x -y -4=0.(2)设切点坐标为(x 0,x 30-4x 20+5x 0-4),∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)(x -2),又切线过点(x 0,x 30-4x 20+5x 0-4),∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2),整理得(x 0-2)2(x 0-1)=0,解得x 0=2或x 0=1,∴经过A (2,-2)的曲线f (x )的切线方程为x -y -4=0,或y +2=0.[方法引航] 导数几何意义的应用,需注意以下两点:(1)当曲线y =f (x )在点(x 0,f (x 0))处的切线垂直于x 轴时,函数在该点处的导数不存在,切线方程是x =x 0;(2)注意区分曲线在某点处的切线和曲线过某点的切线.曲线y =f (x )在点P (x 0,f(x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.1.在本例中,若f (x )在P 点处的切线平行x 轴,求P 点坐标.解:∵f ′(x )=3x 2-8x +5,令3x 2-8x +5=0得x =1或x =53,∴f (1)=1-4+5-4=-2,f (53)=-5827,∴P (1,-2)或P )2758,35(-. 2.在本例中,若f (x )不变,求f (x )过点(1,-2)的切线方程.解:设过点P (1,-2)的直线与y =f (x )切于点M (x 0,y 0),∴其切线斜率k =f ′(x 0)=3x 20-8x 0+5,y 0=x 30-4x 20+5x 0-4,其切线方程为y -(x 30-4x 20+5x 0-4)=(3x 20-8x 0+5)(x -x 0)过点(1,-2),即-2-(x 30-4x 20+5x 0-4)=(3x 20-8x 0+5)(1-x 0),即(x 0-1)2(2x 0-3)=0∴x 0=1或x 0=32.∴切点为(1,-2)或)817,23(-,∴k 1=0或k 2=-14. ∴所求切线方程分别为y =-2.或y +178=-14)23(-x ,即y =-14x -74.[易错警示]借问“切点”何处有——求曲线的切线方程时切点易错[典例] (2017·浙江杭州模拟)若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或7[正解] 设过点(1,0)的直线与曲线y =x 3相切于点(x 0,x 30),所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30,又点(1,0)在切线上,则x 0=0或x 0=32,当x 0=0时,由y =0与y =ax 2+154x-9相切可得a =-2564;当x 0=32时,由y =274x -274与y =ax 2+154x -9相切可得a =-1,所以选A.[答案] A[易误] (1)审题不仔细,未对点(1,0)的位置进行判断,误认为(1,0)是切点;(2)当所给点不是切点时,无法与导数的几何意义联系.[警示] ①“曲线y =f (x )在P 点处的切线”与“曲线过P 点的切线”不同,前者P 为切点,后者P 不一定为切点.②此类题首先确定点是否为曲线的切点.当不是切点时.应先设出切点.[高考真题体验]1.(2016·高考全国丙卷)已知f (x )为偶函数,当x ≤0时,x e x f x -=--1)(,则曲线y =f (x )在点(1,2)处的切线方程是________.解析:当x >0时,-x <0,f (-x )=e x -1+x ,而f (-x )=f (x ),所以f (x )=e x -1+x (x >0),点(1,2)在曲线y =f (x )上,易知f ′(1)=2, 故曲线y =f (x )在点(1,2)处的切线方程是y -2=f ′(1)·(x -1),即y =2x .答案:y =2x2.(2015·高考课标卷Ⅰ)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.解析:由题意可得f ′(x )=3ax 2+1,∴f ′(1)=3a +1,又f (1)=a +2,∴f (x )=ax 3+x +1的图象在点(1,f (1))处的切线方程为y -(a +2)=(3a +1)(x -1),又此切线过点(2,7),∴7-(a +2)=(3a +1)(2-1),解得a =1.答案:13.(2012·高考课标全国卷)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________.解析:y ′=3ln x +1+x ·3x =3ln x +4,k =y ′|x =1=4,切线方程为y -1=4(x -1),即y =4x -3.答案:y =4x -34.(2016·高考天津卷)已知函数f (x )=(2x +1)e x ,f ′(x )为f (x )的导函数,则)0(f '的值为________.解析:∵f ′(x )=2e x +(2x +1)e x =(2x +3)·e x ,∴f ′(0)=3.答案:35.(2015·高考天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,)(x f '为f (x )的导函数.若)1(f '=3,则a 的值为________.解析:∵f ′(x )=a ln x +a ,∴f ′(1)=a ln 1+a =3,解得a =3.答案:36.(2016·高考山东卷)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是( )A .y =sin xB .y =ln xC .y =e xD .y =x 3解析:选A.对于A ,y ′=cos x ,存在x 1,x 2,若cos x 1cos x 2=-1,如x 1=π,x 2=2π,可满足,对于B ,其导数为f ′(x )=1x ,f ′(x 1)·f ′(x 2)=1x 1x 2>0,故B 不满足;y =f (x )=e x 的导函数为f ′(x )=e x ,f ′(x 1)·f ′(x 2)=e x 1+x 2>0,故C 不满足;y =f (x )=x 3的导函数为f ′(x )=3x 2,f ′(x 1)·f ′(x 2)=9x 21x 22≥0,故D 不满足.故选A.课时规范训练A 组 基础演练1.若函数f (x )=ax 4+bx 2+c 满足2)1(='f ,则)1(-'f 等于( )A .-1B .-2C .2D .0解析:选B.f ′(x )=4ax 3+2bx ,∵f ′(x )为奇函数且2)1(='f ,∴)1(-'f =-2.2.若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为( )A .4x -y -3=0B .x +4y -5=0C .4x -y +3=0D .x +4y +3=0解析:选A.切线l 的斜率k =4,设y =x 4的切点的坐标为(x 0,y 0),则k =4x 30=4,∴x 0=1,∴切点为(1,1),即y -1=4(x -1),整理得l 的方程为4x -y -3=0.3.直线y =12x +b 是曲线y =ln x (x >0)的一条切线,则实数b 的值为( ) A .2 B .ln 2+1 C .ln 2-1 D .ln 2解析:选C.∵y =ln x 的导数为y ′=1x ,∴1x =12,解得x =2,∴切点为(2,ln 2).将其代入直线y =12x +b ,得b =ln 2-1.4.曲线y =3ln x +x +2在点P 0处的切线方程为4x -y -1=0,则点P 0的坐标是( )A .(0,1)B .(1,-1)C .(1,3)D .(1,0)解析:选C.y ′=3x+1,令y ′=4,解得x =1,此时4×1-y -1=0,解得y =3,∴点P 0的坐标是(1,3).5.直线y =kx +b 与曲线y =ax 2+2+ln x 相切于点P (1,4),则b 的值为( )A .3B .1C .-1D .-3解析:选C.由点P (1,4)在曲线上可得a ×12+2+ln 1=4,解得a =2,故y =2x 2+2+ln x ,所以y ′=4x +1x ,所以曲线在点P 处切线的斜率1|='=x y k =4×1+11=5.所以直线的方程为y =5x +b .由点P 在直线上得4=5×1+b ,解得b =-1,故选C.6.曲线y =x e x -1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1解析:选C.y ′=e x -1+x e x -1=(x +1)e x -1,故曲线在点(1,1)处的切线斜率为2|1='==x y k7.若曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则a +b =( )A .-1B .0C .1D .2解析:选C.依题意得,f ′(x )=-a sin x ,g ′(x )=2x +b ,于是有f ′(0)=g ′(0),即-a sin 0=2×0+b ,b =0,m =f (0)=g (0),即m =a =1,因此a +b =1.8.在函数y =x 3-9x 的图象上,满足在该点处的切线的倾斜角小于π4,且横、纵坐标都为整数的点的个数是( )A .0B .1C .2D .3解析:选A.依题意得,y ′=3x 2-9,令0≤y '<1得3≤x 2<103,显然满足该不等式的整数x不存在,因此在函数y =x 3-9x 的图象上,满足在该点处的切线的倾斜角小于π4,且横、纵坐标都为整数的点的个数是0,选A.9.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)…(x -a 8),则f ′(0)=( )A .26B .29C .212D .215解析:选C.依题意,记g (x )=(x -a 1)(x -a 2)…(x -a 8),则f (x )=xg (x ),)(x f '=g (x )+xg ′(x ),f ′(0)=g (0)=a 1a 2…a 8=(a 1a 8)4=212,故选C.10.已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=)(1x f ',f 3(x )=)(2x f ',…,f n +1(x )=)(x f n ',n ∈N *,则f 2 019(x )等于( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x解析:选A.∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,∴f 3(x )=f 2′(x )=-sin x -cos x ,∴f 4(x )=f 3′(x )=-cos x +sin x ,∴f 5(x )=f 4′(x )=sin x +cos x ,∴f n (x )是以4为周期的函数,∴f 2 019(x )=f 3(x )=-sin x -cos x ,故选A.B 组 能力突破1.已知函数f (x )在R 上满足f (2-x )=2x 2-7x +6,则曲线y =f (x )在(1,f (1))处的切线方程是( )A .y =2x -1B .y =xC .y =3x -2D .y =-2x +3解析:选C.法一:令x =1得f (1)=1,令2-x =t ,可得x =2-t ,代入f (2-x )=2x 2-7x +6得f (t )=2(2-t )2-7(2-t )+6,化简整理得f (t )=2t 2-t ,即f (x )=2x 2-x ,∴f ′(x )=4x -1,∴f ′(1)=3.∴所求切线方程为y -1=3(x -1),即y =3x -2.法二:令x =1得f (1)=1, 由f (2-x )=2x 2-7x +6,两边求导可得f ′(2-x )·(2-x )′=4x -7,令x =1可得-f ′(1)=-3,即f ′(1)=3.∴所求切线方程为y-1=3(x-1),即y=3x-2.2.已知函数f(x)=a sin x+bx3+4(a∈R,b∈R),)(xf'为f(x)的导函数,则f(2 017)+f(-2 017)+)2018(f'-)2018(-'f=()A.0 B.2 017 C.2 018 D.8解析:选D.设g(x)=a sin x+bx3,∴f(x)=g(x)+4,且g(-x)=-g(x),所以f(2 017)+f(-2 017)=g(2 017)+4+g(-2 017)+4=8,又因为f′(x)=a cos x+3bx2,所以f′(x)为R上的偶函数,则f′(2 018)-f′(-2 018)=0,所以f(2 017)+f(-2 017)+f′(2 018)-f′(-2 018)=8,故选D.3.已知函数y=f(x)及其导函数y=)(xf'的图象如图所示,则曲线y=f(x)在点P处的切线方程是________.解析:根据导数的几何意义及图象可知,曲线y=f(x)在点P处的切线的斜率k=f′(2)=1,又过点P(2,0),所以切线方程为x-y-2=0.答案:x-y-2=04.已知函数f(x)的导函数为)(xf',且满足f(x)=3x2+2x·)2(f',则)5(f'=________.解析:对f(x)=3x2+2x)2(f'求导,得f′(x)=6x+2)2(f'.令x=2,得)2(f'=-12.再令x=5,得f′(5)=6×5+2)2(f'=6.答案:65.设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则f′(1)=________.解析:设e x=t,则x=ln t(t>0),∴f(t)=ln t+t,∴f′(t)=1t+1,∴f′(1)=2.答案:26.若函数f(x)=12x2-ax+ln x存在垂直于y轴的切线,则实数a的取值范围是________.解析:∵f(x)=12x2-ax+ln x,∴f′(x)=x-a+1x.∵f(x)存在垂直于y轴的切线,∴f′(x)存在零点,x+1x-a=0,∴a=x+1x≥2.答案:[2,+∞)。

导数的概念-课件-导数的概念

导数的概念-课件-导数的概念

导数在现代数学中的地位和作用
基本概念
导数是现代数学的基本概念之一,是研究函数性质和解决实际问题的 重要工具。
数学分析
导数是数学分析的重要分支,是研究函数的可微性、可导性和连续性 的基础。
应用领域
导数的应用领域非常广泛,不仅限于数学和物理领域,还涉及到工程 学、经济学和计算机科学等多个领域。
数学建模
导数的应用发展
物理学
工程学
导数在物理学的各个分支中都有广泛的应 用,如力学、电磁学、热学等。
在机械工程、航空航天工程、土木工程等 领域,导数被用于优化设计、控制工程和 流体力学等方面。
经济学
计算机科学
导数在经济学中被用于研究经济系统的变 化率和最优决策问题。
在计算机图形学、数值分析和机器学习等 领域,导数被用于计算图像处理、数据拟 合和模型训练等方面。
高阶导数在研究函数的极值、拐 点、曲线的形状等方面有重要应 用。
微分学基本定理
微分学基本定理的内容
微分学基本定理是导数与微分之间的关系,即函数在某点的导数 等于该函数在该点的切线的斜率。
微分学基本定理的推导
通过极限的概念和性质,利用切线斜率的定义推导出微分学基本定 理。
微分学基本定理的应用
微分学基本定理是微分学的基础,在研究函数的增减性、极值、曲 线的形状等方面有重要应用。
复合函数求导法则
若$y = f(u)$和$u = g(x)$都可导, 则复合函数$y = f[g(x)]$的导数为 $(y)' = u' cdot (u)' = u' cdot v'$。
隐函数的导数
由显函数表示的隐函数求 导
若由显函数$F(x, y) = 0$表示的隐函数为$y = f(x)$,则通过求偏导数$frac{partial F}{partial x}$和$frac{partial F}{partial y}$ ,可以得到隐函数$y = f(x)$的导数。

导数的基本概念及性质应用

导数的基本概念及性质应用

导数的基本概念及性质应用考点:1、掌握导数的基本概念及运算公式,并能灵活应用公式求解 2、能运用导数求解单调区间及极值、最值3、理解并掌握极值及单调性的实质,并能灵活应用其性质解题。

能力:数形结合 方法:讲练结合新授课:一、 知识点总结:导数的基本概念与运算公式1、导数的概念函数y =)(x f 的导数)(x f ',就是当Δx →0时,函数的增量Δy 与自变量的增量Δx 的比x Δ yΔ的极限,即)(x f '=0x Δlim→xΔ y Δ=x Δlim→xΔf(x)-x) Δ(+x f说明:分子和分母中间的变量必须保持一致 2、导函数函数y =)(x f 在区间( a, b )内每一点的导数都存在,就说在区)(x f 间( a, b )内可导,其导数也是(a ,b )内的函数,叫做)(x f 的导函数,记作)(x f '或x y ',函数)(x f 的导函数)(x f '在0x x =时的函数值)(0x f ',就是)(x f 在0x 处的导数。

3、导数的几何意义设函数y =)(x f 在点0x 处可导,那么它在该点的导数等于函数所表示曲线在相应点),(00y x M 处的切线斜率。

4、求导数的方法 (1)基本求导公式0='c )()(1Q m mx x m m ∈='-x x cos )(sin =' x x sin )(cos -=' x x e e =')( a a a x x ln )(=' xx 1)(ln ='ax x a ln 1)(log ='(2)导数的四则运算v u v u '±'='±)( v u v u uv '+'=')()0()(2≠=''-'v v v u v u v u(3)复合函数的导数设)(x g u=在点x 处可导,y =在点)(x f 处可导,则复合函数)]([x g f 在点x 处可导,)()())(('''x u f x f x ϕϕ=导数性质:1、函数的单调性⑴设函数y =)(x f 在某个区间内可导,若)(x f '>0,则)(x f 为增函数;若)(x f '<0则为减函数。

导数的概念

导数的概念
王新 敞 wx ckt@ 12 6.co m
三 导数的应用 (一)利用导数判断函数单调性及求解单调区间。
1.导数和函数单调性的关系: (1)若 f ¢ (x)>0 在(a,b)上恒成立,则 f(x)在(a,b)上是增函数, f ¢ (x)>0 的解集与定义域的 交集的对应区间为增区间; (2)若 f ¢ (x)<0 在(a,b)上恒成立,则 f(x)在(a,b)上是减函数, f ¢ (x)<0 的解集与定义域 的交集的对应区间为减区间。 2.利用导数求解多项式函数单调性的一般步骤:
f (x0 ) )处的切线方程为 y -
f (x0 ) =
f
(x )(x - x ) / 0
0
新疆 王新敞
奎屯
2.导数的物理意义: 导数是物体变速直线运动的瞬时速度,也叫做瞬时变化率。
(三)概念部分题型:
1.利用定义求函数 y = f (x) 的导数
主要有三个步骤:
(1)求函数的改变量 Dy
=
f (x + Dx) -
x= x0
,即
f
/
(x0 )
=
lim
Dx®0
f (x0
+ Dx) Dx
f (x0 )
2 导函数的定义:如果函数 y = f (x) 在开区间 (a, b) 内的每点处都有导数,此时对于每
一个 x Î (a,b) ,都对应着一个确定的导数 f / (x) ,从而构成了一个新的函数 f / (x) , 称这
(二)导数的四则运算
1.和差: (u±v)¢ =u¢±v¢
2.积: (uv)¢ = u¢v + uv¢
3.商:
(u )¢ v
=

3.1 导数的概念及几何意义、导数的运算

3.1 导数的概念及几何意义、导数的运算

∴x2=-2x1,∴f
'(x2)=3 x22=12 x12.∴
f f
'(x1) = 1 .
'(x2 ) 4
(2)由题意,得f '(x)=2x.
设直线与曲线相切于点(x0,y0), 则所求切线的斜率k=2x0,
由题意知2x0= y0 0 = y0 ①.
x0 1 x0 1
林老师网络编辑整理
12
又y0= x02 ②,所以由①②解得x0=0或x0=-2, 所以k=0或k=-4, 所以所求切线方程为y=0或y=-4(x+1), 即y=0或4x+y+4=0. 答案 (1) 1 (2)y=0或4x+y+4=0
2
2
(4)y'
=
cos ex
x

'=(cos
x)
'ex cos (ex )2
x(ex
)'
=-
sin
x cos ex
x.
林老师网络编辑整理
9
栏目索引
栏目索引
方法二 求曲线y=f(x)的切线方程
1.求“在”曲线y=f(x)上一点P(x0,y0)处的切线方程,则点P(x0,y0)为切点,
'(x1)(x0 x1),
点A(x1,y1),代入方程y-y1=f '(x1)(x-x1),化简即得所求的切线方程.
林老师网络编辑整理
10
栏目索引
例2 (1)(2018江苏淮安高三期中)已知函数f(x)=x3.设曲线y=f(x)在点P(x1,
f(x1))处的切线与该曲线交于另一点Q(x2, f(x2)),记f '(x)为函数f(x)的导

§3.1 导数的概念及运算

§3.1 导数的概念及运算

§3.1 导数的概念及运算考情考向分析 导数的概念和运算是高考的必考内容,一般渗透在导数的应用中考查;导数的几何意义常与解析几何中的直线交汇考查;题型为填空题或解答题的第(1)问,低档难度.1.导数的概念(1)函数y =f (x )从x 1到x 2的平均变化率 函数y =f (x )从x 1到x 2的平均变化率为f (x 2)-f (x 1)x 2-x 1,若Δx =x 2-x 1,Δy =f (x 2)-f (x 1),则平均变化率可表示为Δy Δx.(2)设函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),当Δx 无限趋近于0时,比值ΔyΔx=f (x 0+Δx )-f (x 0)Δx无限趋近于一个常数A ,则称f (x )在x =x 0处可导,并称常数A 为函数f (x )在x =x 0处的导数,记作f ′(x 0). 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率k ,即k =f ′(x 0). 3.基本初等函数的导数公式4.导数的运算法则若f ′(x ),g ′(x )存在,则有(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )g 2(x )(g (x )≠0).知识拓展1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.2.[af (x )+bg (x )]′=af ′(x )+bg ′(x ).3.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( × ) (2)f ′(x 0)与[f (x 0)]′表示的意义相同.( × )(3)与曲线只有一个公共点的直线一定是曲线的切线.( × ) (4)函数f (x )=sin(-x )的导数是f ′(x )=cos x .( × ) 题组二 教材改编2.[P84习题T2]若f (x )=x ·e x,则f ′(1)=________.答案 2e解析 ∵f ′(x )=e x+x e x,∴f ′(1)=2e.3.[P77习题T4]曲线y =sin xx在点M (π,0)处的切线方程为______________.答案 x +πy -π=0 解析 ∵y ′=x cos x -sin x x 2,∴y ′|x =π=-ππ2=-1π, ∴切线方程为y =-1π(x -π),即x +πy -π=0.题组三 易错自纠4.若曲线y =kx +ln x 在点(1,k )处的切线平行于x 轴,则k =________. 答案 -1解析 函数y =kx +ln x 的导函数为y ′=k +1x,由导数y ′|x =1=k +1=0,得k =-1.5.有一机器人的运动方程为s =t 2+3t(t 是时间,s 是位移),则该机器人在时刻t =2时的瞬时速度为________. 答案1346.已知f (x )=12x 2+2xf ′(2 018)+2 018ln x ,则f ′(2 018)=________.答案 -2 019解析 由题意得f ′(x )=x +2f ′(2 018)+2 018x,所以f ′(2 018)=2 018+2f ′(2 018)+2 0182 018,即f ′(2 018)=-(2 018+1)=-2 019.7.已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________. 答案 1解析 ∵f ′(x )=3ax 2+1,∴f ′(1)=3a +1, 又f (1)=a +2,∴切线方程为y -(a +2)=(3a +1)(x -1), 又点(2,7)在切线上,可得a =1.题型一 导数的计算1.f (x )=x (2 018+ln x ),若f ′(x 0)=2 019,则x 0=________. 答案 1解析 由题意得,f ′(x )=2 018+ln x +x ×1x=2 019+ln x ,故由f ′(x 0)=2 019,得2 019+ln x 0=2 019,则ln x 0=0,解得x 0=1.2.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)=________. 答案 -2解析 f ′(x )=4ax 3+2bx ,∵f ′(x )为奇函数且f ′(1)=2,∴f ′(-1)=-2. 3.已知f (x )=x 2+2xf ′(1),则f ′(0)=________. 答案 -4解析 ∵f ′(x )=2x +2f ′(1), ∴f ′(1)=2+2f ′(1),即f ′(1)=-2. ∴f ′(x )=2x -4,∴f ′(0)=-4. 思维升华 导数计算的技巧求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导;遇到函数的商的形式时,如能化简则化简,这样可避免使用商的求导法则,减少运算量.题型二 导数的几何意义命题点1 求切线方程典例 (1)曲线f (x )=e xx -1在x =0处的切线方程为__________________.答案 2x +y +1=0解析 根据题意可知切点坐标为(0,-1), f ′(x )=(x -1)(e x )′-e x (x -1)′(x -1)2=(x -2)ex(x -1)2,故切线的斜率k =f ′(0)=(0-2)e(0-1)2=-2,则直线的方程为y -(-1)=-2(x -0), 即2x +y +1=0.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为______________. 答案 x -y -1=0解析 ∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0). 又∵f ′(x )=1+ln x ,∴直线l 的方程为y +1=(1+ln x 0)x . ∴由⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0. 引申探究本例(2)中,若曲线y =x ln x 上点P 的切线平行于直线2x -y +1=0,则点P 的坐标是________. 答案 (e ,e)解析 y ′=1+ln x ,令y ′=2,即1+ln x =2, ∴x =e ,∴点P 的坐标为(e ,e). 命题点2 求参数的值典例 (1)(2017·南通三模)若直线y =2x +b 为曲线y =e x+x 的一条切线,则实数b 的值是__________. 答案 1解析 设切点的横坐标为x 0,由曲线y =e x +x ,得y ′=e x+1,所以依题意切线的斜率为k =0e x+1=2,得x 0=0,所以切点为(0,1).又因为切线y =2x +b 过切点(0,1),故有1=2×0+b ,解得b =1.(2)曲线y =4x -x 2上两点A (4,0),B (2,4),若曲线上一点P 处的切线恰好平行于弦AB ,则点P 的坐标是________. 答案 (3,3)解析 设点P (x 0,y 0),∵A (4,0),B (2,4), ∴k AB =4-02-4=-2.∵在点P 处的切线l 平行于弦AB ,∴k l =-2. ∴根据导数的几何意义知,曲线在点P 的导数y ′|0x x ==(4-2x )|0x x ==4-2x 0=-2,即x 0=3,∵点P (x 0,y 0)在曲线y =4x -x 2上, ∴y 0=4x 0-x 20=3,∴P (3,3). 命题点3 导数与函数图象典例 (1)已知函数y =f (x )及其导函数y =f ′(x )的图象如图所示,则曲线y =f (x )在点P 处的切线方程是________.答案 x -y -2=0解析 由题图可知,f ′(2)=1,∴切线方程为y =x -2,即x -y -2=0.(2)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=______.答案 0解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题图可知f (3)=1,∴g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.思维升华 导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值k =f ′(x 0).(2)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),由⎩⎪⎨⎪⎧y 1=f (x 1),y 0-y 1=f ′(x 1)(x 0-x 1)求解即可.(3)函数图象在每一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况. 跟踪训练 (1)已知f (x )=x 2,则曲线y =f (x )过点P (-1,0)的切线方程是________. 答案 y =0或4x +y +4=0 解析 设切点坐标为(x 0,x 20), ∵f ′(x )=2x ,∴切线方程为y -0=2x 0(x +1), ∴x 20=2x 0(x 0+1), 解得x 0=0或x 0=-2,∴所求切线方程为y =0或y =-4(x +1), 即y =0或4x +y +4=0.(2)设曲线y =1+cos x sin x 在点⎝ ⎛⎭⎪⎫π2,1处的切线与直线x -ay +1=0平行,则实数a =________. 答案 -1解析 ∵y ′=-1-cos xsin 2x ,∴y ′|π2x ==-1. 由条件知1a=-1,∴a =-1.求曲线的切线方程典例 若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切,求a 的值. 错解展示:现场纠错解 易知点O (0,0)在曲线y =x 3-3x 2+2x 上. (1)当O (0,0)是切点时,由y ′=3x 2-6x +2,得y ′|x =0=2,即直线l 的斜率为2,故直线l 的方程为y =2x .由⎩⎪⎨⎪⎧y =2x ,y =x 2+a ,得x 2-2x +a =0,依题意Δ=4-4a =0,得a =1.(2)当O (0,0)不是切点时,设直线l 与曲线y =x 3-3x 2+2x 相切于点P (x 0,y 0),则y 0=x 30-3x 20+2x 0,k =y ′|0x x ==3x 20-6x 0+2,① 又k =y 0x 0=x 20-3x 0+2,②联立①②,得x 0=32(x 0=0舍去),所以k =-14,故直线l 的方程为y =-14x .由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a ,得x 2+14x +a =0,依题意知Δ=116-4a =0,得a =164.综上,a =1或a =164.纠错心得 求曲线过一点的切线方程,要考虑已知点是切点和已知点不是切点两种情况.1.函数f (x )=(x +2a )(x -a )2的导数为________. 答案 3(x 2-a 2)解析 f ′(x )=(x -a )2+(x +2a )·(2x -2a ) =(x -a )·(x -a +2x +4a )=3(x 2-a 2).2.若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为________. 答案 (2,+∞)解析 由题意可知x >0,且f ′(x )=2x -2-4x.令f ′(x )>0,则2x -2-4x>0,∴2x 2-2x -4>0,解得x <-1或x >2.又x >0,∴x >2, 即f ′(x )>0的解集为(2,+∞).3.曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为________. 答案 (1,3)或(-1,3)解析 f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,∴P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上.4.若直线y =x 是曲线y =x 3-3x 2+px 的切线,则实数p 的值为________. 答案 1或134解析 ∵y ′=3x 2-6x +p ,设切点为P (x 0,y 0),∴⎩⎪⎨⎪⎧3x 20-6x 0+p =1,x 30-3x 20+px 0=x 0,解得⎩⎪⎨⎪⎧x 0=0,p =1或⎩⎪⎨⎪⎧x 0=32,p =134.5.已知曲线y =ln x 的切线过原点,则此切线的斜率为________. 答案 1e解析 y =ln x 的定义域为(0,+∞),且y ′=1x,设切点为(x 0,ln x 0),则y ′|0x x ==1x 0,切线方程为y -ln x 0=1x 0(x -x 0),因为切线过点(0,0),所以-ln x 0=-1, 解得x 0=e ,故此切线的斜率为1e.6.已知函数f (x )=2e x +1+sin x ,其导函数为f ′(x ),则f (2 019)+f (-2 019)+f ′(2 019)-f ′(-2 019)的值为________.答案 2 解析 ∵f (x )=2e x +1+sin x , ∴f ′(x )=-2ex(e x +1)2+cos x ,f (x )+f (-x )=2e x +1+sin x +2e -x+1+sin(-x )=2, f ′(x )-f ′(-x )=-2e x(e x +1)2+cos x +2e-x(e -x +1)2-cos(-x )=0,∴f (2 019)+f (-2 019)+f ′(2 019)-f ′(-2 019)=2.7.已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数,若f ′(1)=3,则a 的值为______. 答案 3解析 f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ),由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.8.已知曲线f (x )=x ln x 在点(e ,f (e))处的切线与曲线y =x 2+a 相切,则a =______. 答案 1-e解析 因为f ′(x )=ln x +1,所以曲线f (x )=x ln x 在x =e 处的切线斜率为k =2, 则曲线f (x )=x ln x 在点(e ,f (e))处的切线方程为y =2x -e. 由于切线与曲线y =x 2+a 相切, 故y =x 2+a 可联立y =2x -e , 得x 2-2x +a +e =0,所以由Δ=4-4(a +e)=0,解得a =1-e.9.设点P 是曲线y =x 3-3x +23上的任意一点,P 点处切线倾斜角α的取值范围为_________.答案 ⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫2π3,π 解析 因为y ′=3x 2-3≥-3,故切线斜率k ≥-3,所以切线倾斜角α的取值范围是⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫2π3,π.10.已知f ′(x ),g ′(x )分别是二次函数f (x )和三次函数g (x )的导函数,且它们在同一平面直角坐标系内的图象如图所示.(1)若f (1)=1,则f (-1)=________;(2)设函数h (x )=f (x )-g (x ),则h (-1),h (0),h (1)的大小关系为____________.(用“<”连接)答案 (1)1 (2)h (0)<h (1)<h (-1)解析 (1)由图可得f ′(x )=x ,g ′(x )=x 2, 设f (x )=ax 2+bx +c (a ≠0),g (x )=dx 3+ex 2+mx +n (d ≠0),则f ′(x )=2ax +b =x ,g ′(x )=3dx 2+2ex +m =x 2,故a =12,b =0,d =13,e =m =0,所以f (x )=12x 2+c ,g (x )=13x 3+n , 由f (1)=1,得c =12, 则f (x )=12x 2+12,故f (-1)=1. (2)h (x )=f (x )-g (x )=12x 2-13x 3+c -n , 则有h (-1)=56+c -n ,h (0)=c -n , h (1)=16+c -n ,故h (0)<h (1)<h (-1).11.已知函数f (x )=x 3-4x 2+5x -4.(1)求曲线f (x )在点(2,f (2))处的切线方程;(2)求经过点A (2,-2)的曲线f (x )的切线方程.解 (1)∵f ′(x )=3x 2-8x +5,∴f ′(2)=1,又f (2)=-2,∴曲线在点(2,f (2))处的切线方程为y +2=x -2,即x -y -4=0.(2)设曲线与经过点A (2,-2)的切线相切于点P (x 0,x 30-4x 20+5x 0-4),∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)·(x -2),又切线过点P (x 0,x 30-4x 20+5x 0-4),∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2),整理得(x 0-2)2(x 0-1)=0,解得x 0=2或1,∴经过点A (2,-2)的曲线f (x )的切线方程为 x -y -4=0或y +2=0.12.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限.(1)求P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程.解 (1)由y =x 3+x -2,得y ′=3x 2+1,由已知令3x 2+1=4,解得x =±1.当x =1时,y =0;当x =-1时,y =-4.又∵点P 0在第三象限,∴切点P 0的坐标为(-1,-4).(2)∵直线l ⊥l 1,l 1的斜率为4,∴直线l 的斜率为-14. ∵l 过切点P 0,点P 0的坐标为(-1,-4),∴直线l 的方程为y +4=-14(x +1),即x +4y +17=0.13.已知函数f (x )=x +1,g (x )=a ln x ,若在x =14处函数f (x )与g (x )的图象的切线平行,则实数a 的值为________.答案 14解析 由题意可知f ′(x )=1212x -,g ′(x )=a x, 由f ′⎝ ⎛⎭⎪⎫14=g ′⎝ ⎛⎭⎪⎫14,得12×121()4-=a 14, 可得a =14,经检验,a =14满足题意. 14.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2距离的最小值为________. 答案 2解析 由题意知y =x 2-ln x 的定义域为(0,+∞),当点P 是曲线的切线中与直线y =x -2平行的直线的切点时,点P 到直线y =x -2的距离最小,如图所示.故令y ′=2x -1x=1,解得x =1,故点P 的坐标为(1,1).故点P 到直线y =x -2的最小值d min =|1-1-2|2= 2.15.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________. 答案 [2,+∞)解析 ∵f (x )=12x 2-ax +ln x ,定义域为(0,+∞),∴f ′(x )=x -a +1x. ∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,即x +1x -a =0有解,∴a =x +1x≥2(当且仅当x =1时取等号). 16.设抛物线C :y =-x 2+92x -4,过原点O 作C 的切线y =kx ,使切点P 在第一象限. (1)求k 的值;(2)过点P 作切线的垂线,求它与抛物线的另一个交点Q 的坐标.解 (1)设点P 的坐标为(x 1,y 1),则y 1=kx 1,①y 1=-x 21+92x 1-4,② 将①代入②得x 21+⎝ ⎛⎭⎪⎫k -92x 1+4=0. ∵P 为切点,∴Δ=⎝ ⎛⎭⎪⎫k -922-16=0, 得k =172或k =12. 当k =172时,x 1=-2,y 1=-17; 当k =12时,x 1=2,y 1=1. ∵P 在第一象限,∴所求的斜率k =12. (2)过P 点作切线的垂线,其方程为y =-2x +5.③将③代入抛物线方程得x 2-132x +9=0. 设Q 点的坐标为(x 2,y 2),即2x 2=9,∴x 2=92,y 2=-4. ∴Q 点的坐标为⎝ ⎛⎭⎪⎫92,-4.。

高中导数的概念

高中导数的概念

高中导数的概念导数定义一、导数第一定义设函数y = f(x) 在点x0 的某个邻域内有定义当自变量x 在x0 处有增量△x ( x0 + △x 也在该邻域内) 时相应地函数取得增量△y = f(x0 + △x) - f(x0) 如果△y 与△x 之比当△x→0 时极限存在则称函数y = f(x) 在点x0 处可导并称这个极限值为函数y = f(x) 在点x0 处的导数记为f'(x0) ,即导数第一定义二、导数第二定义设函数y = f(x) 在点x0 的某个邻域内有定义当自变量x 在x0 处有变化△x ( x - x0 也在该邻域内) 时相应地函数变化△y = f(x) - f(x0) 如果△y 与△x 之比当△x→0 时极限存在则称函数y = f(x) 在点x0 处可导并称这个极限值为函数y = f(x) 在点x0 处的导数记为f'(x0) ,即导数第二定义三、导函数与导数如果函数y = f(x) 在开区间I内每一点都可导就称函数f(x)在区间I 内可导。

这时函数y = f(x) 对于区间I 内的每一个确定的x 值都对应着一个确定的导数这就构成一个新的函数称这个函数为原来函数y =f(x) 的导函数记作y', f'(x), dy/dx, df(x)/dx。

导函数简称导数。

导数(Derivative)是微积分中的重要基础概念。

当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。

一个函数存在导数时,称这个函数可导或者可微分。

可导的函数一定连续。

不连续的函数一定不可导。

导数实质上就是一个求极限的过程,导数的四则运算法则来源于极限的四则运算法则。

右上图为函数y = ƒ(x) 的图象,函数在x_0处的导数ƒ′(x_0) = lim{Δx→0} [ƒ(x_0 + Δx) - ƒ(x_0)] / Δx。

如果函数在连续区间上可导,则函数在这个区间上存在导函数,记作ƒ′(x)或dy / dx。

高二数学导数的定义及其几何意义的应用例题+方法总结+课后作业

高二数学导数的定义及其几何意义的应用例题+方法总结+课后作业

导数的概念及几何意义知识点一、导数的概念1. 导数的概念设函数=()y f x ,当自变量x 从0x 变1x 时,函数值从()0f x 变到()1f x ,函数值关于x 的平均变化率为()()()()100010=f x f x f x x f x y x x x x-+∆-∆=∆-∆, 当1x 趋于0x ,即x ∆趋于0时,如果平均变化率趋于一个固定的值,那么这个值就是函数=()y f x 在0x 点的导数,通常用符号()0'f x ‘表示,记作 ()()()xx f x x f x yx f x x ∆-∆+=∆∆'→∆→∆00000lim lim=注意:(1)导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率.如瞬时速度即是位移在这一时刻的瞬间变化率.(2)对于不同的实际问题,平均变化率富于不同的实际意义.如位移运动中,位移S 从时间1t 到2t 的平均变化率即为1t 到2t 这段时间的平均速度.(3)增量x ∆可以是正数,也可以是负,但是不可以等于0.0x ∆→的意义:x ∆与0之间距离要多近有多近,即|0|x ∆-可以小于给定的任意小的正数. (4)0x ∆→时,Δy 在变化中都趋于0,但它们的比值却趋于一个确定的常数.即存在一个常数与00()()f x x f x y x x+∆-∆=∆∆无限接近. (5)函数=()y f x 在0x 点的导数还可以用符号0'|x x y =表示.知识点二、导数的几何意义已知点00(,)P x y 是曲线=()y f x 上一定点,点00(,)Q x x y y +∆+∆是曲线=()y f x 上的()0'f x ‘表示曲线=()y f x 在0x x =处的切线的斜率,即()0'=tan f x α‘(α为切线的倾斜角)动点,我们知道平均变化率yx∆∆表示割线PQ 的斜率.如图所示:当点Q 无限接近于点P ,即0x ∆→时,割线PQ 的极限位置直线PT 叫做曲线在点P 处的切线.也就是:当0x ∆→时,割线PQ 斜率的极限,就是切线的斜率.即:0000()()limlim ()x x f x x f x yk f x x x∆→∆→+∆-∆'===∆∆.注意:(1)曲线上一点切线的斜率值只与该点的位置有关.(2)关于切线有两种不同的说法,求法也不同,具体求法与步骤参考类型二:①曲线在点P 处的切线:点P 在曲线上,在点P 处作曲线的切线(P 是切点),此时数量唯一.②曲线经过点P 处的切线:点P 位置不确定(在曲线上或曲线外),过点P 作曲线上任意位置的切线(只要切线经过点P 即可),数量不唯一.(3)直线与曲线相切⎫直线和曲线有1个公共点;有别于直线和圆,如图,直线l 2与曲线C 有唯一公共点M ,但我们不能说直线l 2与曲线C 相切;而直线l 1尽管与曲线C 相切,却有不止一个公共点.这也是我们用割线的极限位置来定义切线,而不说“与曲线只有一个公共点的直线叫做切线”的原因.知识点三、导数的物理意义在物理学中,如图物体运动的规律是()=s s t ,那么该物体在时刻0t 的瞬时速度v 就是()=s s t 在0=t t 时的导数,即()0='v s t ;如果物体运动的速度随时间变化的规律是()v v t =,那么物体在时刻0t 的瞬时加速度a 就是()v v t =在0=t t 时的导数,即()0'a v t =.题型一、导数定义的应用例1. 用导数的定义,求函数()y f x==x =1处的导数.【总结升华】利用定义求函数的导数值,有三步,即三步求导法,具体步骤如下: (1)求函数的增量:00()()y f x x f x ∆=+∆-; (2)求平均变化率:00()()f x x f x y x x+∆-∆=∆∆; (3)求极限,得导数:00000()()'()lim lim x x f x x f x yf x x x∆→∆→+∆-∆==∆∆.【变式1】已知函数()2=f x x x -+的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-,则=∆∆xy,()'1=f - .【变式2】求函数 2()3f x x =在x =1处的导数.【变式3】求函数()2f x x x =-+在1x =-附近的平均变化率,并求出在该点处的导数.例2. 已知函数()24f x x=,求()f x '.【变式1】求函数y =在(0,)+∞内的导函数. 【变式2】已知()f x =,求'()f x ,'(2)f .例3(1)若0'()2f x =,则000()()lim2k f x k f x k→--=________.()2若(3)2f '=,则1(3)(12)lim 1x f f x x →-+=-【变式1】函数)(x f 满足2)1('=f ,则当x 无限趋近于0时,(1)=-+xf x f 2)1()1( ;(2)=-+xf x f )1()21( .【变式2】若0'()f x a = (1)求()()xx f x x f x ∆-∆-→∆000lim的值;(2)求000()()lim x f x x f x x x∆→+∆--∆∆的值.【变式3】设函数()f x 在点x 0处可导,则000()()lim2h f x h f x h h→+--=________.题型二、求曲线的切线方程方法总结:1.求曲线()y f x =在0x x =处切线的步骤:(1)先求()0'f x ,即曲线()y f x =在))((00x f x P ,处切线的斜率. (2)再求()0f x ,则切线过点()()00x f x ,;(2)最后由点斜式写出直线方程:()000=()()y f x f x x x '--.特别的,如果()y f x =在点00(())x f x ,处的切线平行于y 轴(此时导数不存在)时,由切线定义知:切线方程为:0x x =. 2.求曲线()f x 经过点()00P x y ,的切线方程的一般步骤: (1)求导函数()'f x ;(2)验证点P 是否在曲线上:计算()0f x ,观察()00=f x y 是否成立; (3)分类讨论:①若()00=f x y ,则P 是切点,切线唯一,方程为()000=()()y f x f x x x '--: ②若()00f x y ≠,则P 不是切点,求切点:设切点坐标为()()a f a ,,则切线方程()=()()y f a f a x a '--,代入点()00P x y ,坐标,求出a 的值(注意0a x ≠),可得切线方程.例4.求曲线21y x =+在点()12P ,处的切线方程.【变式】求曲线215y x x=++上一点2x =处的切线方程.例5.求曲线()3f x x =经过点(1,1)P 的切线方程.例6.过点(1,-1)且与曲线y =x 3-2x 相切的直线方程为( )A .x -y -2=0或5x +4y -1=0B .x -y -2=0C .x -y -2=0或4x +5y +1=0D .x -y +2=0【变式1】 已知函数3()3f x x x =-,过点(2,2)作函数图象的切线. 求切线方程.【变式2】已知曲线1y x=. (1)求曲线过点()10A ,的切线方程; (2)求满足斜率为13-的曲线的切线方程.【变式3】设函数32()2f x x ax bx a =+++,2()32g x x x =-+(其中x ∈R ,,a b 为常数).已知曲线()y f x =与()y g x =在点(2,0)处有相同的切线l .求,a b 的值,并写出切线l 的方程.题型三、导数的实际应用例6.蜥蜴的体温与阳光的照射有关,其关系为()120155T t t =++,其中()T t 为体温(单位:℃),t 为太阳落山后的时间(单位:min).计算()2T ',并解释它的实际意义.【变式1】设一个物体的运动方程是:2021)(at t v t s +=,其中0v 是初速度(单位:m ),t 是时间(单位:s ).求:2s t =时的瞬时速度(函数s(t)的瞬时变化率).课后作业1.若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 的值为( )A .-1或-2564B .-1或214C .-74或-2564D .-74或72.已知f(x)为偶函数,当x <0时,f(x)=f (-x )+3x ,则曲线y=f (x )在点(1,-3)处的切线方程是3.设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a=A. 0B.1C.2D.34.若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b=5.若曲线y=e -x 上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是6.在平面直角坐标系中,若曲线y=ax 2+xb(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b=7.设点P 在曲线y=21e x上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为A.1-ln2B.2(1-ln2)C.1+ln2D.2(1+ln2) 8.若存在过点(1,0)的直线与曲线y=x 3和y=ax 2+415x-9都相切,则a 等于 9.抛物线y=x 2上的点到直线x-y-2=0的最短距离为 A.2B.827C. 22D. 110.已知点P 在曲线y=14x e 上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是。

第三章 第1讲 导数的概念及运算

第三章  第1讲 导数的概念及运算

第1讲导数的概念及运算基础知识整合1.导数的概念(1)f(x)在x=x0处的导数就是f(x)在x=x0处的□01瞬时变化率,记作:y′|x=x0或f′(x0),即f′(x0)=limΔx→0f(x0+Δx)-f(x0)Δx.(2)当把上式中的x0看作变量x时,f′(x)即为f(x)的导函数,简称导数,即y′=f′(x)=□02limΔx→0f(x+Δx)-f(x)Δx.2.导数的几何意义函数f(x)在x=x0处的导数就是曲线y=f(x)在点□03P(x0,f(x0))处的切线的斜率,即曲线y=f(x)在点P(x0,f(x0))处的切线的斜率k=f′(x0),切线方程为□04y -y0=f′(x0)(x-x0).3.基本初等函数的导数公式(1)C′=□050(C为常数);(2)(x n)′=□06nx-(n∈Q*);(3)(sin x)′=□07cos x;(4)(cos x)′=□08-sin x;(5)(a x)′=□09a ln_a;(6)(e x)′=□10e;(7)(log a x)′=1x ln a;(8)(ln x)′=□111x.4.导数的运算法则(1)[f(x)±g(x)]′=□12f′(x)±g′(x).(2)[f (x )·g (x )]′=□13f ′(x )g (x )+f (x )g ′(x ). 特别地:[C ·f (x )]′=□14Cf ′(x )(C 为常数). (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=□15f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).5.复合函数的导数设函数u =φ(x )在点x 处有导数u ′=φ′(x ),函数y =f (u )在点x 的对应点u 处有导数y ′=f ′(u ),则复合函数y =f [φ(x )]在点x 处也有导数y ′x =f ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.1.f ′(x 0)与x 0的值有关,不同的x 0,其导数值一般也不同. 2.f ′(x 0)不一定为0,但[f (x 0)]′一定为0.3.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.1.(2019·海南模拟)曲线y =x2x -1在点(1,1)处的切线方程为( )A .x -y -2=0B .x +y -2=0C .x +4y -5=0D .x -4y -5=0答案 B 解析 y ′=2x -1-2x (2x -1)2=-1(2x -1)2,当x =1时,y ′=-1,所以切线方程是y -1=-(x -1),整理得x +y -2=0.故选B.2.函数f (x )=x (2017+ln x ),若f ′(x 0)=2018,则x 0的值为( ) A .e 2 B .1 C .ln 2 D .e 答案 B解析 f ′(x )=2017+ln x +x ·1x =2018+ln x ,故由f ′(x 0)=2018,得2018+ln x 0=2018,则ln x 0=0,解得x 0=1.故选B.3.若曲线y =e x +ax +b 在点(0,2)处的切线l 与直线x +3y +1=0垂直,则a +b =( )A .3B .-1C .1D .-3 答案 A解析 因为直线x +3y +1=0的斜率为-13,所以切线l 的斜率为3,即y ′|x=0=e 0+a =1+a =3,所以a =2;又曲线过点(0,2),所以e 0+b =2,解得b =1.故选A.4.(2019·河北质检)已知直线y =kx 是曲线y =ln x 的切线,则k 的值是( ) A .e B .-e C.1e D .-1e 答案 C解析 依题意,设直线y =kx 与曲线y =ln x 切于点(x 0,kx 0),则有⎩⎨⎧kx 0=ln x 0,k =1x 0,由此得ln x 0=1,x 0=e ,k =1e .故选C.5.f (x )=2x +3x 的图象在点(1,f (1))处的切线方程为________. 答案 x -y +4=0解析 f ′(x )=-2x 2+3,f ′(1)=1,即切线的斜率为1,又f (1)=5,即切点坐标为(1,5),故切线方程为y -5=x -1,即x -y +4=0.6.(2019·郑州模拟)直线x -2y +m =0与曲线y =x 相切,则切点的坐标为________.答案 (1,1)解析 ∵y =x =x12 ,∴y ′=12x -12 ,令y ′=12x -12 =12,则x =1,则y =1=1,即切点坐标为(1,1).核心考向突破考向一 导数的基本运算 例1 求下列函数的导数:(1)y =cos x e x ;(2)y =x ⎝ ⎛⎭⎪⎫x 2+1x +1x 3;(3)y =sin 3x +sin3x ;(4)y =1(2x -1)3.解 (1)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos xe x.(2)因为y =x 3+1x 2+1,所以y ′=3x 2-2x 3. (3)y ′=(sin 3x )′+(sin3x )′=3sin 2x cos x +3cos3x . (4)y ′=⎣⎢⎡⎦⎥⎤1(2x -1)3′=[(2x -1)-3]′=-3(2x -1)-4×2=-6(2x -1)-4. 触类旁通导数的运算方法(1)连乘积形式:先展开化为多项式的形式,再求导.(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导.(3)对数形式:先化为和、差的形式,再求导. (4)根式形式:先化为分数指数幂的形式,再求导.(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导. (6)复合函数:确定复合关系,由外向内逐层求导.即时训练 1.求下列函数的导数: (1)y =(3x 2-4x )(2x +1);(2)y =x 2sin x ; (3)y =11-2x;(4)y =ln xx 2+1.解 (1)因为y =(3x 2-4x )(2x +1)=6x 3+3x 2-8x 2-4x =6x 3-5x 2-4x ,所以y ′=18x 2-10x -4.(2)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x .(3)y ′=[(1-2x ) -12]′=-12(1-2x )-32 ×(-2)=(1-2x ) -32 .(4)y ′=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x (x 2+1)-2x ln x(x 2+1)2=x 2+1-2x 2ln x x (x 2+1)2.考向二 导数的几何意义角度1 求切线的方程例2 (1)(2019·四川成都模拟)曲线y =x sin x 在点P (π,0)处的切线方程是( )A .y =-πx +π2B .y =πx +π2C .y =-πx -π2D .y =πx -π2答案 A解析 因为y =x sin x ,所以y ′=sin x +x cos x ,在点P (π,0)处的切线斜率为k =sinπ+πcosπ=-π,所以曲线y =x sin x 在点P (π,0)处的切线方程是y =-π(x -π)=-πx +π2.故选A.(2)曲线y =f (x )=e 2x +1在点⎝ ⎛⎭⎪⎫-12,1处的切线方程为________.答案 2x -y +2=0解析 ∵f ′(x )=e 2x +1·(2x +1)′=2e 2x +1, ∴f ′⎝ ⎛⎭⎪⎫-12=2e 0=2,∴曲线y =e 2x +1在点⎝ ⎛⎭⎪⎫-12,1处的切线方程为y -1=2⎝ ⎛⎭⎪⎫x +12,即2x -y +2=0.角度2 求切点的坐标例3 (1)(2019·陕西模拟)设曲线y =e x在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则点P 的坐标为( )A .(1,1)B .(-1,-1)C .(1,-1)D .(-1,1)答案 A解析 对y =e x 求导得y ′=e x ,令x =0,得曲线y =e x 在点(0,1)处的切线斜率为1,故曲线y =1x (x >0)上点P 处的切线斜率为-1,由y ′=-1x 2=-1,得x =1,则y =1,所以点P 的坐标为(1,1).故选A.(2)(2018·江西模拟)若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.答案 (e ,e)解析 设点P (x 0,y 0),∵y =x ln x ,∴y ′=ln x +x ·1x =1+ln x .∴曲线y =x ln x 在点P 处的切线斜率k =1+ln x 0.又k =2,∴1+ln x 0=2,∴x 0=e ,y 0=eln e =e.∴点P 的坐标是(e ,e). 角度3 求公切线的方程例4 (1)已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-2 答案 D解析 ∵f ′(x )=1x ,∴直线l 的斜率为k =f ′(1)=1, 又f (1)=0,∴切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,于是解得m =-2.故选D.(2)若直线l 与曲线y =e x及y =-14x 2都相切,则直线l 的方程为________.答案 y =x +1解析 设直线l 与曲线y =e x 的切点为(x 0,e x 0),直线l 与曲线y =-14x 2的切点为⎝ ⎛⎭⎪⎫x 1,-x 214,因为y =e x 在点(x 0,e x 0)处的切线的斜率为y ′|x =x 0=e x0,y =-x 24在点⎝ ⎛⎭⎪⎫x 1,-x 214处的切线的斜率为y ′|x =x 1=⎝ ⎛⎭⎪⎫-x 2| x =x 1=-x 12,则直线l 的方程可表示为y =e x 0x -x 0e x 0+e x0或y =-12x 1x +14x 21,所以⎩⎪⎨⎪⎧e x0=-x 12,-x 0e x 0+e x0=x 214,所以e x 0=1-x 0,解得x 0=0,所以直线l 的方程为y =x +1.触类旁通(1)求曲线切线方程的步骤①求出函数y =f (x )在点x =x 0处的导数,即曲线y =f (x )在点P (x 0,f (x 0))处切线的斜率;②由点斜式方程求得切线方程为y -f (x 0)=f ′(x 0)·(x -x 0).(2)求曲线f (x ),g (x )的公切线l 的方程的步骤,①设点求切线,即分别设出两曲线的切点的坐标(x 0,f (x 0)),(x 1,g (x 1)),并分别求出两曲线的切线方程;,②建立方程组,即利用两曲线的切线重合,则两切线的斜率及在y 轴上的截距都分别相等,得到关于参数x 0,x 1的方程组,解方程组,求出参数x 0,x 1的值;,③求切线方程,把所求参数的值代入曲线的切线方程中即可.即时训练 2.(2019·衡水调研)已知曲线y =x 22-3ln x 的一条切线的斜率为2,则切点的横坐标为( )A .3B .2C .1 D.12 答案 A解析 设切点坐标为(x 0,y 0),且x 0>0,由y ′=x -3x ,得k =x 0-3x 0=2,∴x 0=3.故选A.3.曲线y =1-2x +2在点(-1,-1)处的切线方程为( )A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x -2答案 A 解析 ∵y =1-2x +2=x x +2,∴y ′=x +2-x(x +2)2=2(x +2)2,y ′|x =-1=2, ∴曲线在点(-1,-1)处的切线斜率为2, ∴所求切线方程为y +1=2(x +1),即y =2x +1.4.(2016·全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln (x +1)的切线,则b =________.答案 1-ln 2解析 直线y =kx +b 与曲线y =ln x +2,y =ln (x +1)均相切,设切点分别为A (x 1,y 1),B (x 2,y 2),由y =ln x +2得y ′=1x ,由y =ln (x +1)得y ′=1x +1,∴k =1x 1=1x 2+1,∴x 1=1k ,x 2=1k -1,∴y 1=-ln k +2,y 2=-ln k .即A ⎝ ⎛⎭⎪⎫1k ,-ln k +2,B ⎝ ⎛⎭⎪⎫1k -1,-ln k ,∵A ,B 在直线y =kx +b 上, ∴⎩⎪⎨⎪⎧2-ln k =k ·1k +b ,-ln k =k ·⎝ ⎛⎭⎪⎫1k -1+b ⇒⎩⎪⎨⎪⎧b =1-ln 2,k =2.考向三 求参数的范围例5 (1)(2019·沈阳模拟)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值为( )A .1B .2C .5D .-1 答案 A解析 由题意可得3=k +1,3=1+a +b ,则k =2.又曲线的导函数y ′=3x 2+a ,所以3+a =2,解得a =-1,b =3,所以2a +b =1.故选A.(2)已知函数f (x )=e x -mx +1的图象为曲线C ,若曲线C 存在与直线y =e x 垂直的切线,则实数m 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫1e ,+∞解析 由题意知,方程f ′(x )=-1e 有解,即e x -m =-1e 有解,即e x=m -1e 有解,故只要m -1e >0,即m >1e 即可.故填⎝ ⎛⎭⎪⎫1e ,+∞.触类旁通处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.即时训练 5.已知函数f (x )=ax 2+2b ln x ,若曲线y =f (x )在点(2,f (2))处的切线方程为y =x +2-6ln 2,则a +b =( )A .-2B .-1C .2D .1 答案 A解析 由切线方程,得f (2)=4-6ln 2,f ′(2)=1. ∵f (x )=ax 2+2b ln x ,∴f ′(x )=2ax +2bx ,∴⎩⎪⎨⎪⎧4a +2b ln 2=4-6ln 2,4a +b =1,解得a =1,b =-3, ∴a +b =-2.故选A.6.若曲线y =13x 3+ax 2+x 存在垂直于y 轴的切线,则实数a 的取值范围为( )A.⎝ ⎛⎦⎥⎤-∞,-12∪[1,+∞) B .(-∞,-1]∪[1,+∞) C .(-∞,-1]∪[0,+∞) D.⎣⎢⎡⎭⎪⎫-12,+∞ 答案 B解析 令y =f (x )=13x 3+ax 2+x ,则f ′(x )=x 2+2ax +1,∵曲线y =f (x )存在垂直于y 轴的切线,∴f ′(x )=0有解,即x 2+2ax +1=0有解,∴Δ=(2a )2-4≥0,∴a ≥1或a ≤-1,即实数a 的取值范围为(-∞,-1]∪[1,+∞),故选B.。

3.1 导数的概念

3.1 导数的概念
四、函数的可导性与连续性的关系
五、单侧导数
2
一、 引例
1. 变速直线运动的速度
设描述质点运动位置的函数为
则 到 的平均速度为
f (t ) f (t 0 ) v t t0
自由落体运动
s 1 gt 2
2
而在 时刻的瞬时速度为
f (t ) f (t 0 ) v lim t t0 t t0
在 t 0 时刻的瞬时速度
f ( t 0 )
o
f (t0 )
f (t )
t0
t
s
曲线 C : y f ( x ) 在 M 点处的切线斜率
y
y f (x )
N
f ( x0 )
C
M
x0
T
说明: 在经济学中, 边际成本率,
o
x x
边际劳动生产率和边际税率等从数学角度看就是导数.
7
y f ( x) f ( x0 ) x x x0

f ( x ) f ( 0) sin x sin 0 f (0) lim lim x 0 x 0 x0 x0

sin x lim 1 x 0 x

f (0) 1
函数f ( x )在x 0处可导。
17
内容小结
1. 导数的实质: 增量比的极限; f ( x0 ) f ( x0 ) a 2. f ( x0 ) a
9

例如, (
1 x ) ( x 2 ) 1 2
1 x 2

1 2 x

1 1 1 1 1 ( x ) x 2 x x
3 ) ( x 4 )

导数的概念及运算

导数的概念及运算

导数的概念及运算重点难点分析:1.导数的定义、意义与性质:(1)函数的导数:对于函数f(x),当自变量x在x0处有增量Δx,则函数y相应地有改变量Δy=f(x0+Δx)-f(x0),这两个增量的比叫做函数y=f(x)在x0到x0+Δx之间的平均变化率,即。

如果当Δx→0时,有极限,我们说函数在x0处可导,并把这个极限叫做f(x)在x0处的导数(或变化率)。

记作f'(x0)或,即。

(2)导函数:如果函数y=f(x)在开区间(a,b)内每一点处可导,这时,对于开区间(a,b)内的每一个值x0,都对应着一个确定的导数f'(x0),这样就在开区间(a,b)内构成一个新的函数,我们把这一新函数叫做f(x)在区间内的导函数,记作f'(x)或y',即。

(3)可导与连续的关系:如果函数y=f(x)在点x0处可导,那么函数y=f(x)在点x0处连续。

(4)导数的几何意义:过曲线y=f(x)上任意一点(x,y)的切线的斜率就是f(x)在x处的导数,即。

也就是说,曲线y=f(x)在点P(x0,f(x0))处的切线的斜率是f'(x0),切线方程为y-y0=f'(x0)(x-x0)。

2.求导数的方法:(1)求函数y=f(x)在x0处导数的步骤:①求函数的增量Δy=f(x0+Δx)-f(x0)②求平均变化率③取极限,得导数。

(2)几种常见函数的导数公式:①C'=0(C为常数);②(x n)'=nx n-1 (n∈Q);③(sinx)'=cosx;④(cosx)'=-sinx;⑤(e x)'=e x;⑥(a x)'=a x lna⑦;⑧(3)导数的四则运算法则:①(u±v)'=u'±v'②(uv)'=u'v+uv'③(4)复合函数的导数复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三课时课 题§ 3.1.3 导数的概念(三)教学目标一、教学知识点1.函数y =f (x )的平均变化率,函数的导数的概念.2.函数y =f (x )在点x 0处的导数的求法.3.函数y =f (x )在开区间(a,b)内的导函数的定义.4.函数y =f (x )在某一点x =x 0处可导,函数y =f (x )在这点x =x 0处连续. 二、能力训练要求1.理解并掌握导数的概念,学会求函数在一点处的导数的方法.2.理解并掌握开区间内的导数的概念,会求一个函数的导数.3.深刻理解“函数在一点处可导,则函数在这点连续”的内在含义和实际意义.4.能灵活运用导数的定义及导函数的定义求解导数. 三、德育渗透目标1.培养学生的辩证唯物主义的观点,如量变与质变、分类与整合、运动与静止等等,都是进行唯物主义教育的素材.2.根据函数的可导性与连续性的关系,培养学生的逻辑推理能力和思辩能力.3.由切线的斜率与瞬时速度的关系,加深学生对特殊与一般、运动与静止的理解,培养学生的直觉思维中的类比能力.4.培养学生的总结、归纳、抽象与概括的能力,培养学生的分析问题和解决问题的能力,培养学生实际动手操作的能力. 教学重点导数的定义、导函数的概念是本节课的教学重点内容,它是研究函数的基本性质的基础,求导数的方法也是重点内容. 教学难点导数概念的理解,通过曲线切线的斜率与瞬时速度引出导数的概念,从导数的定义归纳出求导数的方法.关于函数y =f (x )在点x 0处可导,与y =f (x )在x =x 0处连续的辨析是难点. 教学方法建构主义理论指导下的课堂教学——在教师的正确引导下,由学生已学过的有关知识,如函数的极限、瞬时速度、曲线的切线斜率等概念,让学生积极主动地建构出函数y =f (x )在x 0处的导数的概念,由函数y = f (x ) 在x =x 0处的导数建构出函数y = f (x ) 在开区间(a,b)上的导函数的定义. 教具准备实物投影仪(或幻灯片、幻灯机). 教学过程Ⅰ.课题导入 1.概念的引入[师]同学们,前面我们已经学习了曲线在点P 0(x 0,y 0)处的切线斜率及切线方程的求法.请同学们回忆一下,切线的斜率是怎样定义的?[生1]在P 0(x 0,y 0)附近,设Q 点是曲线上的点,其坐标为Q (x 0+Δx ,y 0+Δy ),当Δx →0时,割线P 0Q 的斜率xy x x x y y y k Q P ∆∆=-∆+-∆+=000)()(0的极限,就是曲线在点P 0处的切线的斜率,即xx f x x f xy k x x ∆-∆+=∆∆=→∆→∆)()(limlim000.[师]运用函数的极限研究了物体运动规律如瞬时速度、瞬时加速度等等.那么瞬时速度是如何定义的呢?[生2]如果物体的运动规律是s=s(t ),那么物体在时刻t 的瞬时速度v ,就是物体在t 到t +Δt 这段时间内,当Δt →0时平均速度的极限,即tt s t t s ts v t t ∆-∆+=∆∆=→∆→∆)()(limlim.[生3](突然站起)请问老师,物体的瞬时加速度是否可以用瞬时速度在 Δ t →0时的平均加速度的极限来定义呢?[师]生3提问得好.我们广大同学就应该有这种精神,敢于质疑,勇于探索和创新.他问的问题仍然是研究物体运动规律的变化性.物体的运动规律(瞬时速度)v =v (t ),那么物体在时刻t 的瞬时加速度a(t ),就是物体在t 到t +Δt 这段时间内,当Δt →0时平均加速度的极限,即 tt v t t v tv t a t t ∆-∆+=∆∆=→∆→∆)()(limlim)(0.(学生提出问题质疑老师,这一点在以往的常规教学中还是不常见到的,在新的形势下,教师应有为学生学习服务的意识,不单纯是讲授知识,而还应该传道解惑也.教师的工作方法、学识的渊博、热情的态度、人格的力量都能深深地影响学生的一辈子,可以让更多的学生有更好的发展,让所有的学生都有较好的发展,所以,我们课堂教学应鼓励学生大胆提问,找出问题)[师]刚才两位同学所述都是正确的.切线的斜率和瞬时速度都是极限问题,这是共性问题,今天我们共同来学习新的内容(教师板书课题):导数的概念(三).Ⅱ.讲授新课[师]我们知道,Δt 是时间增量,Δs 是位移增量,对于一般的函数y =f (x ),Δx 称为自变量在x 0处的增量,Δy 称为函数的增量.切线的斜率与瞬时速度都是以极限来定义的,而且在形式上也是类似的.[板书]切线的斜率xx f x x f xy k x x ∆-∆+=∆∆=→∆→∆)()(limlim000,瞬时速度t s t t s s v t t -∆+=∆=→∆→∆)()(limlim 0.我们把函数y =f (x )在x =x 0处的函数的平均变化率的极限,即xy x ∆∆→∆0lim 叫做f (x )在x 0处的导数.现请同学们概括并叙述导数的定义.[生4]函数y =f (x ),如果当Δx →0时,xy ∆∆有极限,就说函数y =f (x )在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数(或变化率),记作f ′(x 0)或y ′|x =x 0.[师]如何用数学符号来表示呢?[生5]f ′(x 0)=y ′|x =x 0=xx f x x f xy k x x ∆-∆+=∆∆=→∆→∆)()(limlim000.[师]大家认为这个定义中应注意到什么问题?请同学们先讨论一下,然后再总结. (教室内的气氛开始活跃了,同学们争先恐后地发言,发表自己的见解.只有在宽松和谐的氛围中学习,才能实现有意义的建构)[生6]如果Δx →0时,xy ∆∆要先有极限,才有f (x )在点x 0处可导,进而才能得到f (x )在点x 0处的导数.[师]回答得很好!同学们能否从导数的定义,概括出求函数y =f (x )在点x 0处的导数的方法和步骤?[生7]求函数y =f (x )在点x 0处的导数的方法是: (1)求函数y =f (x )的增量Δy =f (x 0+Δx )-f (x 0);(2)求平均变化率xx f x x f xy ∆-∆+=∆∆)()(00;(3)取极限,得函数f ′(x 0)=xy x ∆∆→∆0lim.[师]同学们,刚才同学7总结得是否全面呢? [生](众生)总结得很全面.[师]我们根据导数的定义和求导数的步骤,来研究上节课中求自由落体在t =3时的瞬时速度,其中221gt s =.求它在t =3时的瞬时速度实质就是求221gt s =在时刻t =3处的导数.请同学们来说说看.[生8]第一步:先写出位移函数的增量Δs=21g(3+Δt )2-21g·32=21g [(Δt )2+6·Δt ].第二步:求出t 由3到3+Δt 内的位移的平均变化率g t g tt t g t s 321]6)[(212+∆⋅=∆∆⋅+∆=∆∆.第三步:对ts ∆∆取极限,即gg gt g g t g t ss v t t t t t 30213lim lim 21)321(lim lim |0003+⋅=+∆⋅=+⋅=∆∆='=→∆→∆→∆→∆==3g=3×9.8=29.4(m/s).故自由落体在t =3时的瞬时速度就是v =29.4m/s.[师]从这个题目中我们可以得出什么样的结论呢?[生]瞬时速度就是位移函数s(t )对时间t 的导数,即v =s′|t =t 0.[师]我们可以根据开区间上连续函数的定义,类似地定义函数在开区间上可导.[生]如果函数f (x )在开区间(a ,b )内任一点x 0处可导,即f ′(x 0)=y ′|x =x 0xx f x x f xy x x ∆-∆+=∆∆=→∆→∆)()(limlim000在x 0处是存在的,由于x 0是开区间(a,b)上的任意一点,当x 0取遍(a,b)内的所有值时,这个极限都是存在的,就称函数f (x )在开区间(a,b)内可导.[师]你的理解和解释是很好的.一般地,如果函数f (x )在开区间(a,b)内可导,那么对于(a,b)内每一个确定的点x 0,对应着一个确定的导数f ′(x 0),根据函数的定义,在(a,b)内构成一个新的函数,把这一新函数叫做f (x )在开区间(a,b)内的导函数,前提是f (x )在(a,b)内可导.它的数学符号如何表示呢?[生9]f ′(x )=y ′=xx f x x f xy x x ∆-∆+=∆∆→∆→∆)()(limlim000,从这个定义中我们学到了由特殊到一般的科学思维方法,体现了动与静的辩证关系.[师]当x 0∈(a,b)时,函数y =f (x )在x 0处的导数f ′(x 0)等于函数f (x )在开区间(a,b)内的导函数f ′(x )在点x 0处的函数值.f ′(x 0)可以直接根据f (x )在点x 0处的导数得到,也可以先求f (x )在开区间(a,b)内的导数f ′(x ),然后再将x =x 0代入f ′(x )中得到.(稍停顿一会,让学生体会、反思) [师]你们能举一个例子吗?[生10]刚才研究的自由落体运动在t =3时的瞬时速度就可以用导函数的方法来解.∵221gt s =,∴任意时刻t 的瞬时速度为tgt t t g tt s t t s t v t t ∆-∆+=∆-∆+=→∆→∆22021)(21lim )()(lim)(gtt g t t g t t g tt t t g t t t =⋅=∆+⋅=∆+⋅=∆∆+∆=→∆→∆→∆221)lim 2(21)2(lim 21])(2[21lim 020∴当t =3时,v (3)=s′(3)=s′|t =3=g·3=9.8×3=29.4(m/s). v (t )=g·t 叫做221)(gt t s =的导函数.[师]举的例子很恰当.我们从f (x )在x 0处可导的定义可以知道,f (x )在x 0处有定义,那么我们来看一下f (x )在x 0处是否有极限?是否连续呢?[生11]如果函数y =f (x )在x 0处可导,那么f (x )在x 0处一定有极限,且连续. [众生]这是需要证明的.如果能证明出来才能说明你的猜想是正确的. [生11]用定义法证明: 已知f ′(x 0)=xx f x x f x ∆-∆+→∆)()(lim000,我们要证的目标是)()(lim 00x f x f x x =→,即)()(lim 00x f x f x =→∆.令x =x 0+Δx ,当Δx →0时,x →x 0. ∴)(lim )(lim 00x x f x f x x ∆+=→∆→∆)(lim lim )()(lim)(lim ])()([lim )]()()([lim )]()()([lim 000000000000000000x f x xx f x x f x f x xx f x x f x f x xx f x x f x f x f x x f x x x x x x x →∆→∆→∆→∆→∆→∆→∆+∆⋅∆-∆+=+∆⋅∆-∆+=+∆⋅∆-∆+=+-∆+==f ′(x 0)·0+f (x 0)=f (x 0). ∴)()(lim 00x f x f x =→∆.∴f (x )在x 0处一定有极限,且连续.[师]妙,妙极了!他不仅给出了猜想,而且证明了自己的猜想.这种先猜后证是众多科学家、发明家常用的方法.生11在证明过程中灵活运用代数式的变形,由f (x 0+Δx )经过添项去项配凑出导数定义的基本结构形式.[师]刚才的命题逆命题是否成立呢?[生12]如果函数f (x )在x =x 0处连续,那么函数y =f (x )在x 0处可导.例如函数y =x 2,y =x 3等等.[师]你的举例能代表证明吗?[生13]他的结论是错误的.例如,函数y =f (x )=|x |在x 0处连续,但在x =0处不可导.因为⎩⎨⎧<-≥==0,0||)(x xx xx x f 在x 0处有0lim lim ,0)(lim lim 0000===-=+→+→-→-→x y x y x x x x ,∴)0(0lim 0f y x ==→.∴y =|x |在x =0处连续.但.||lim 0||lim |0||0|limlim0000x x xx xx x yx x x x ∆∆=∆-∆=∆-∆+=∆∆→→→→当Δx >0时,1lim||limlim000=∆∆=∆∆=∆∆+→+→→x xx x xyx x x ; 当Δx <0时,1lim ||lim lim 000-=∆∆-=∆∆=∆∆-→-→-→x xx x x yx x x .∴xyx y x x ∆∆≠∆∆-→+→00lim lim ,即函数y =f (x )=|x |在x =0处不可导,也就是其导数不存在.这就说明:f (x )在x 0处连续,但未必可导.[师]回答得完全正确,我们要学会辩证地看问题.你们能得到什么样的结论呢? [生14]如果函数y =f (x )在点x 0处可导,那么函数y =f (x )在点x 0处连续,反之未必成立.也就是说:函数具有连续性是函数具有可导性的必要条件,而不是充分条件.2.课本例题[例1]求函数y =x 2在点x =1处的导数[师]求函数在某一点处的导数的方法和步骤是什么呢?[生15]①求函数增量Δy ;②求函数的变化率xy ∆∆;③求极限xy x ∆∆→0lim.[生16]解:Δy =(1+Δx )2-12 =2·Δx +(Δx )2, ∴x xx x xy ∆+=∆∆+∆=∆∆2)(22.∴x x xy x x x ∆+=∆+=∆∆→→→0lim 2)2(lim lim=2+0=2.∴y ′|x =1=2.(学生在黑板上板演,教师在下面巡视指导,与学生共同研究,发现问题及时解决) [师]刚才我在下面发现有的同学求xy ∆∆时漏掉了(Δx )2,但他的结果仍然是2.若把题目变为求y =x 2的导数y ′,又如何求呢?[生17]Δy =(x +Δx )2-x 2=2x ·Δx +(Δx )2,∴.2)(22x x xx x x xy ∆+=∆∆+∆⋅=∆∆∴ x x x x xy x x x x 2)(lim )2(lim )2(lim lim=∆+=∆+=∆∆→→→→[例2]已知x y =,求y ′.[师]求一个函数在区间上的导数的方法是什么?[生18]与求函数在一点处的导数的方法和步骤是一样的,也是三个步骤,只是把x 0换成x 即可.(然后该生走向黑板,边写边讲)解:x x x y -∆+=,∴,1)(xx x x x x x x x x xxx x xy +∆+=+∆+⋅∆-∆+=∆-∆+=∆∆∴xx x x xx x xy x x x 21)(lim 11limlim=+∆+=+∆+=∆∆→∆→∆→∆.[师]回答得很好,求解也是完全正确的.从这道题可以看出求函数的导数也主要是求极限的值,所以极限是求函数的导数的基础,求极限的一些基本方法和思想要熟记于心.同时本题运用了分子有理化的变化技巧.若将本题变为求函数3x y =的导数y ′,又如何求解呢?[生19](自然而大方地走向讲台)求解3x y =的导数的思想方法和步骤与前面生18的完全相同,具体的是:解:33x x x y -∆+=∆33232333232333232333232333)()()()()()()())[((x x x x x x xxx x x x x xx x xx x x x x xx x x x x x x x ⋅∆+++∆+∆=⋅∆+++∆+-∆+=⋅∆+++∆+⋅∆+++∆+-∆+=∴332323)()(1x x x x x x x y ⋅∆+++∆+=∆∆.∴323323233323230031)()(1)()(1limlimx xx x x x x x x x x x x xy x x =⋅∆+++∆+⋅∆+++∆+=∆∆→∆→∆∴3231-⋅='xy .[师]生19板演得非常正确,下面的同学在运算中存在不少的问题,例如对33x x x -∆+不知道如何处理,而生19给出分子有理化的方法,这一点我们在学习函数的极限时也讲过.所以我们应该积累一点代数的变形技巧才行. 3.精选例题[例1]已知y =x 3-2x +1,求y ′,y ′|x =2.(投影放出) [生20]解:Δy =(x +Δx )3-2(x +Δx )+1-(x 3-2x +1) =x 3+3x 2·Δx +3x ·(Δx )2+(Δx )3-2x -2Δx +1-x 3+2x -1 =(Δx )3+3x ·(Δx )2+(3x 2-2)Δx .∴xy ∆∆=(Δx )2+3x ·Δx +3x 2-2.→∆→∆∆x x x又Δy =(2+Δx )3-2(2+Δx )+1-(23-2·2+1)=(Δx )3+6(Δx )2+10Δx , ∴xy ∆∆=(Δx )2+6Δx +10.∴y ′|x =2=0lim lim→∆→∆=∆∆x x xy [(Δx )2+6Δx +10]=10.所以y ′=3x 2-2,y ′|x =2=10.[生21]求y ′|x =2时,可以直接运用y ′=3x 2-2,将x =2代入即可.y ′|x =2=3×22-2=12-2=10. [师]很好!生20着重强调了定义在解题中的作用,而生21则灵活运用题目之间的内在联系,两个同学的做法都值得我们学习.如果题目中求y ′和y ′|x =x 0时,运用定义求y ′,然后利用y ′的表达式求y ′|x =x 0 就很简单了;如果只要求y ′|x =x 0,运用定义解就很简便了.[例2]已知f (x )=a x 3+3x 2+2,若f ′(-1)=4,求a 的值.(投影放出)[师]这道题函数f (x )中含有字母a ,已知f ′(-1)=4,那么先要把f ′(-1)用a 表示出来,这样才能求出a 的值.[生22]Δy =a (-1+Δx )3+3(-1+Δx )2+2-[a (-1)3+3(-1)2+2]=a ·(Δx )3+(3-3a )(Δx )2+(3a -6)Δx .∴xxa x a x a xy ∆⋅-+∆⋅-+∆⋅=∆∆)2(3)()1(3)(23=a ·(Δx )2+(3-3a )·Δx +3a -6. ∴0lim lim→∆→∆=∆∆x x xy [a (Δx )2+(3-3a )Δx +3a -6]=3a -6.∴f ′(-1)= xy x ∆∆→∆0lim =3a -6.又∵f ′(-1)=4,∴3a -6=4.∴310=a . 故所求a 的值为310.[例3]已知使函数a ax x y 34_23-=式a 的导数为0的x 值使y 值也为0,求常数a的值.(投影放出)[师]本题是已知y ′=0,从中求出x ,此x 对应的函数值是0,从而求出实常数a .问题是先求出导数y ′,利用定义求解.[生23]解:Δy =(x +Δx )3+a (x +Δx )2-a 34-(x 3+ax 2-a 34)=x 3+3x 2·Δx +3x ·(Δx )2+(Δx )3+a ·x 2+2ax ·Δx +(Δx )2-a 34-x 3-ax 2+a 34=(Δx )3+(3x +1)·(Δx )2+(3x 2+2ax )·Δx . ∴xxax x x x x xy ∆∆⋅++∆⋅++∆=∆∆)22()()13()(223=(Δx )2+(3x +1)·(Δx )+(3x 2+2ax ).→∆→∆∆x x x=0+(3x +1)×0+3x 2+2ax =3x 2+2ax . ∵y ′=0,∴3x 2+2ax =0. ∴x =0或32a x -=.由题设,知当x =0时,y =0,即a a 3400023-⋅+=,∴a =0; 当32ax -=,y =0,即034)32()32(023=--⋅+-=a a a a ,∴0349427833=-+-a a a .∴0342743=-a a .∴a 3-9a =0.∴a =0,a =±3.∴所求的实数a 的值为0,±3.[师]生23求解非常正确,解题思路也十分严密,请同学们注意,刚才我看到同学们解的大部分是不全面的,有的同学仅仅求出a =±3.原因是在y ′=0时,仅解出32a x -=,遗漏了x =0,而在将32a x -=代入y 的式子,解a 3-9a =0时,又漏掉了a =0.也有的同学漏掉32a x -=,仅求出x =0,再代入函数式,求出a =0.而生23的解题思维的严谨性值得广大同学学习.[例4](打出投影片)已知函数f (x )=x 2(x -1),当x =x 0时,有f ′(x 0)=f (x 0),求x 0的值. [师生共析]该题也要先求f ′(x 0),再根据f ′(x 0)=f (x 0),列出关于x 0的一个方程,求出方程的解就是x 0的值.[生24]解:Δy =(x 0+Δx )2·(x 0+Δx -1)-x 02·(x 0-1)=(Δx )3+(3x 0-1)·(Δx )2+(3x 02-2x 0)·Δx .∴xy ∆∆=( Δ x )2+(3x 0-1)· Δ x + 3x 02-2x 0 .∴0lim lim→∆→∆=∆∆x x xy [(Δx )2+(3x 0-1)·Δx +3x 02-2x 0]=3x 02-2x 0.∴f ′(x 0)=3x 02-2x 0. 又∵f ′(x 0)=f (x 0),∴3x 02-2x 0=x 02(x 0-1),即x 0(x 02-4x 0+2)=0. ∴x 0=0,x 02-4x 0+2=0. ∴x 0=0,220±=x .∴x 0的值为0或22+或22-.Ⅲ.课堂练习(学生板演,形式多样,如一生一题,两生一题即一道题由两位同学解,进行解题比 赛等)1.求y =2x 2+4x 在点x =3处的导数.[生25]解:Δy =2(3+Δx )2+4(3+Δx )-(2×32+4×3)=2(Δx )2+16Δx .∴xxx xy ∆∆+∆=∆∆16)(22=2· Δ x +16. ∴ 0lim lim→∆→∆=∆∆x x xy (2·Δx +16)=16,即y ′|x =3=16. 2.已知4+=x y ,求y ′.[生26]解:44+-+∆+=∆x x x y .∴xx x x xy ∆+-+∆+=∆∆44441)44()44(44+++∆+=+++∆+⋅∆∆=+++∆+∆--+∆+=x x x x x x x xx x x x x x x∴.42144lim 1)44(lim lim 010+=+++∆+=+++∆+=∆∆→∆-→∆→∆x x x x x x x xy x x x∴421+='x y .3.设f (x )在x 0处可导,则kk x f k x f k 2)()(lim 000--+→等于( )A. 2f ′(x 0)B.)(210x fC . f ′(x 0) D. 0 [生27]解:由导数定义知:xx f x x f x f x ∆-∆+='→∆)()(lim)(0000,所以 kk x f k x f k 2)()(lim000--+→)()(21)(212)()(lim2)()(lim 2)()()()(lim00000000000000x f x f x f k k x f x f k x f k x f kk x f x f x f k x f k k k '='+'=--+-+=--+-+=→→→ 故选C. 4. xx x f x x f x ∆∆--∆+→∆)()2(lim000=A,则f ′(x 0)等于( )A. AB.3A C. 3AD. 可能不存在[生28]解:选D.例如,函数⎩⎨⎧∉∈,1,0)(Q x Q x x f ,其中Q 为有理数集,易见f (x )处处不连续,故处处不可导,但对固定的x 0∈Q ,有0)()2(00=∆∆--∆+xx x f x x f ,这是由于无论Δx是有理数还是无理数,均有f (x 0+2Δx )-f (x 0-Δx )=0.5.物体运动方程为3414-=t s ,则t =5时的瞬时速度为( )A. 5B. 25C . 125D. 625[生29]解:Δs=41 (t +Δt )4-3-(41t 4-3)=41[t 4+4t 3·Δt +6t 2·(Δt )2+4·t (Δt )3+(Δt )4]-3-41t 4+3=41[(Δt )4+4t ·(Δt )3+6t 2·(Δt )2+4t 3·Δt ].∴ttt t t t t t ts ∆⋅∆+∆+∆⋅+∆=∆∆44)(6)(4)(32234=41[(Δt )3+4t ·(Δt )2+6t 2·Δt +4t 3].∴0lim 41lim →∆→∆=∆∆='t t ts s [(Δt )3+4t ·(Δt )2+6t 2·Δt +4t 3]=41(0+0+0+4t 3)=t 3.∴s′| t =5=53=125.∴t =5时的瞬时速度为125.故选C. 6.设f (x )为可导函数,且满足12)1()1(lim 0-=--=→xx f f x ,则过曲线y =f (x )上点(1,f (1))处的切线斜率为( )A. 2B. -1 C . 1 D. -2[生30]解:∵12)1()1(lim 0-=--=→x x f f x ,∴ 2)1(1)1()1(lim 0-=----=→x x f f x ,即f ′(1)=-2.故选 D .7.函数f (x )=x (x -1)…(x -100)在点x =0处的导数为_____________. [生31]解:当x =0时,f (0)=0·(0-1)·…·(0-100)=0. 当x =0+Δx 时,f (0+Δx )=Δx ·(Δx -1)·…·(Δx -100), ∴Δy =f (0+Δx )-f (0)=Δx (Δx -1)…(Δx -100). ∵xy ∆∆=(Δx -1)(Δx -2)…(Δx -100),∴xy x ∆∆→∆0lim=(-1)100·1·2·…·100=100!.∴应填100!. Ⅳ.课时小结[师]这节课我们共同研究了什么内容?请同学们进行小结. [生32]我们学习了导数的定义,以及求导数方法的三个步骤..)()(limlim|)(00000xx f x x f xy x x y x f x x ∆-∆+=∆∆=='='→∆→∆.xx f x x f xy y x f x x ∆-∆+=∆∆='='→∆→∆)()(limlim|)(0.三个步骤:①求函数的增量Δy ;②求平均变化率xy ∆∆;③取极限xy x f x ∆∆='→∆00lim)(,以及函数的连续性是函数可导的必要而非充分条件.[师]生30总结得很全面、很精辟,同学们应该学会概括和总结. Ⅴ.课后作业(一)课本P 114习题3.1 4、5.(二)1.预习内容:课本P 112~114导数的几何意义. 2.预习提纲(打出投影片): (1)用导数表示切线的方程.(2)预习例3、例4,学会通过求函数的导数来求函数在一点处的切线方程. 板书设计§ 3.1.3 导数的概念(三)(一)有关概念 1.导数的定义.2.求函数y =f (x )在点x 0处的导数的方法.①求Δy =f (x 0+Δx )-f (x 0);②求xy ∆∆;③求极限xy x ∆∆→∆0lim.3.瞬时速度是位移函数s(t )对时间t 的导数.4.如果函数f (x )在开区间(a ,b )内每一点都可导,则f (x )在(a ,b )内可导.5.导函数f ′(x )或y ′的定义.6.函数可导连续,反之不成立. (二)例题A. 课本例题1.求y =x 2在x =1处的导数.2.求函数x y =的导数y ′.变题:求3x y =的导数y ′.B. 精选例题例1.已知y =x 3-2x +1,求y ′, y ′|x =2.例2.已知f (x )=a x 3+3x 2+2,若 f ′(-1) =4,求a 的值. 例3.已知使函数a ax x y 3423-+=的导数为0的x 值使y 值也为0,求a 的值.例4.已知函数f (x )=x 2(x -1),当x =x 0时有f ′(x 0)=f (x 0),求x 0的值. (三)课堂练习1.求函数y =2x 2+4x 在点x =3处的导数.2.求函数4+=x y 的导数y ′.3.设f (x )在x 0处可导,则kk x f k x f k 2)()(lim000--+→等于 ( )A. 2f ′(x 0)B. )(210x f 'C. f ′(x 0)D. 04.xx x f x x f x ∆∆--∆+→∆)()2(lim000=A,则f ′(x 0)等于( )A. AB. 3AC. 3AD. 可能不存在5. 3414-=t s 则t =5时的瞬时速度为 ( )A. 5B. 25C. 125D. 6256.设f (x )为可导函数,且满足12)1()1(lim 0-=--=→xx f f x ,则过曲线y =f (x )上点(1,f (1))处的切线斜率为( )A. 2B. -1C. 1D. -2 7.函数f (x )=x (x -1)…(x -100)在点x =0处的导数为. (四)课时小结 (五)课后作业。

相关文档
最新文档