正方形的性质学案1
第08讲-正方形的性质与判定-学案
第08讲 正方形的性质与判定温故知新一、平行四边形的性质与判定1、平行四边形的定义:两线对边分别平行的四边形叫做平行四边形.....,平行四边形不相邻的两顶点连成的线段叫做它的对角线...。
2、平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。
3、平行四边形的判别方法:平行四边形中有4条判定定理:简记为一组两组两条一组(对边平行且相等) 一组对边平行且相等的四边形是平行四边形两组(对边平行、对边相等) 两组对边分别平行的四边形是平行四边形两组对边分别相等的四边形是平行四边形两条(对角线相互平分) 两条对角线互相平分的四边形是平行四边形 ◆二、菱形的性质与判定:1、菱形的定义: 有一组邻边相等的平行四边形叫做菱形,菱形是特殊的平行四边形。
2、菱形的性质:(1)对边平行,四边相等。
(2)对角相等,邻角互补。
(3)对角线互相垂直平分且每一条对角线平分一组对角。
四边形ABCD AB BC CD DA ⇒===是菱形 四边形12AC BDABCD ⊥⎧⇒⎨∠=∠⎩是菱形3、菱形的判定:(1)有一组邻边相等的平行四边形是菱形。
(2)对角线互相垂直的平行四边形。
平行四边形四边形是菱形ABCD ABCD AC BD ⎫⇒⎬⊥⎭(3)四条边都相等的四边形。
AB BC CD DA ABCD ===⇒是菱形 (4)菱形的面积=边长×高=对角线的乘积的一半。
AB CD12ABCD◆三、矩形的性质与判定:矩形的定义:有一个角是直角的平行四边形是矩形(矩形是特殊的平行四边形)。
※推论:直角三角形斜边上的中线等于斜边的一半。
课堂导入矩形的性质:矩形具有平行四边形的一切性质。
(1)边:对边平行且相等。
(2)角:四个角都是直角。
(3)对角线:互相平分且相等。
矩形的判定:(1)有一个角是直角的平行四边形。
(2)对角线相等的平行四边形。
(3)有三个角是直角的四边形。
典例分析例1、下列说法正确的是()A.对角线相等且互相垂直的四边形是菱形B.对角线互相垂直平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形例2、已知:如图,∠MON=45°,OA1=1,作正方形A1B1C1A2,面积记作S1;再作第二个正方形A2B2C2A3,面积记作S2;继续作第三个正方形A3B3C3A4,面积记作S3;点A1、A2、A3、A4…在射线ON上,点B1、B2、B3、B4…在射线OM上,…依此类推,则第6个正方形的面积S6是()A.256 B.900 C.1024 D.4096例3、如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点,若AM=2,则正方形的边长为()A.4 B.3 C.2+ D.例4、如图,正方形AEFG的顶点E,G在正方形ABCD的边AB,AD上,连接BF,DF.则BE:CF的值为.例5、如图,正方形ABCD中,以对角线BD为边作菱形BDFE,使B,C,E三点在同一直线上,连接BF,交CD与点G.(1)求证:CG=CE;(2)若正方形边长为4,求菱形BDFE的面积.举一反三1、如图,在平面直角坐标系中,正方形A 1B 1C 1D 1、D 1E 1E 2B2、A 2B 2C 2D 2、D 2E 3E 4B3、A 3B 3C 3D 3,…,按图示的方式放置,其中点B 1在y 轴上,点C 1、E 1、E 2、C 2、E 3、E4、C 3,…,在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O=60°,B 1C 1∥B 2C 2∥B 3C 3,…,则正方形A 2016B 2016C 2016D 2016的边长是( )A .()2015B .()2016C .()2016D .()20152、如图,在正方形ABCD 中,E 、F 分别是边BC 、CD 上的点,∠EAF=45°,△ECF 的周长为4,则正方形ABCD 的边长为( )A .2B .3C .4D .5学霸说熟练掌正方形的性质,三角形的全等判定及性质,勾股定理的应用,直角三角形斜边上中线的性质等是解题的关键;3、如图,四边形ABCD是正方形,以CD为边作等边三角形CDE,BE与AC相交于点M,则∠AMD的度数是()A.75° B.60° C.54° D.67.5°4、如图,在平面直角坐标系中,点A的坐标是(0,3),点B的坐标是(﹣4,0),以AB为边作正方形ABCD,连接OD,DB.则△DOB的面积是.5、如图,设四边形ABCD是边长为1的正方形,以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以第二个正方形的对角线AE为边作第三个正方形AEGH,如此下去…,记正方形ABCD的边长a1=1,依上述方法所作的正方形的边长依次为a2,a3,a4,…,则a n= .6、如图,四边形ABCD是边长为a的正方形,点G、E分别是边AB、BC的中点,∠AEF=90°,且EF交正方形外角的平方线CF于点F.(1)证明:△AGE≌△ECF;(2)求△AEF的面积.知识要点二正方形的判定判定方法(1)有一组邻边相等的矩形是正方形。
四年级数学(学案)正方形及其性质
科目数学课题正方形及其性质学习目标熟练掌握正方形的定义及边、角、对角线的性质。
知道正方形与平行四边形、矩形、菱形的联系和区别。
3、应用正方形的性质进行相关计算、证明。
课前准备:温故:1、矩形的性质是什么?2、菱形的性质是什么?二、初步探究1、同学们观察下列一组图片、你发现了那些几何图形:2、动手操作:制作一张正方形纸片,通过折叠并观察,回答下列问题.问:它是轴对称图形吗?有几条对称轴?对称轴之间有什么位置关系?有什么数量关系?3、图中有哪些相等的线段?③图中有哪些相等的角?(组内交流、互相指出来)4、正方形性质:正方形既是特殊的矩形,又是特殊的菱形.正方形具的性质,同时又具有的性质.总结:正方形的性质:正方形边的性质:正方形角的性质:正方形对角线的性质:结论:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.正方形的性质:正方形是特殊的平行四边形,也是特殊的矩形、菱形.所以它具有这些图形的所有性质. 正方形是轴对称图形,有四条对称轴. 四条边相等、四个角是直角、对角线相等并且互相垂直平分,每一条对角线平分一组对角.三、对应练习1)正方形的边长为4cm,则周长为(),面积为(),对角线长为();2))正方形ABCD中,对角线AC、BD交于O点,AC=4 cm,则正方形的边长为(),周长为(),面积为()3)在正方形ABCD中,AB=12 cm,对角线AC、BD相交于O,OA= ,AC= 。
4) 1、正方形具有而矩形不一定具有的性质是( )A、四个角相等B、对角线互相垂直平分C、对角互补D、对角线相等. 5)、正方形具有而菱形不一定具有的性质()A、四条边相等 B对角线互相垂直平分 C对角线平分一组对角 D对角线相等. 6)、正方形对角线长6,则它的面积为_________ ,周长为________.7)、顺次连接正方形各边中点的小正方形的面积是原正方形面积的()A.1/2 B.1/3 C.1/4 D.1/ 5四:范例讲解:1、(课本P21例一)学生自己阅读课本内容、注意证明过程的书写2、如图,分别以△ABC的边AB,AC为一边向外画正方形AEDB和正方形ACFG,连接CE,BG.求证:BG=CE五:小结六:课时作业。
正方形的性质及判定-人教版八年级数学下册教案
正方形的性质及判定-人教版八年级数学下册教案
一、教学目标
1.了解正方形的定义及性质;
2.判定一个四边形是否为正方形;
3.运用正方形的性质解决实际问题。
二、教学重难点
1.判断四边形是否为正方形的方法;
2.运用正方形的性质解决实际问题。
三、教学内容及步骤
(一)导入(5分钟)
1.通过观察物体,引出正方形的含义;
2.介绍本节课的学习目标。
(二)正片(30分钟)
1. 正方形的定义
1.学生回顾并回答正方形的定义;
2.老师引导学生深入理解正方形的定义,并与长方形、菱形等进行比较。
2. 正方形的性质
1.学生回顾并回答正方形的性质;
2.老师引导学生深入理解正方形的性质,包括等边、等角、对角线互相垂直、对角线相等等。
3. 判定正方形的方法
1.老师通过例题引导学生掌握判定正方形的方法;
2.学生进行练习,巩固判定正方形的方法。
4. 运用正方形的性质解决实际问题
1.通过例题引导学生运用正方形的性质解决实际问题;
2.学生进行练习,巩固运用正方形的性质解决实际问题。
(三)小结(5分钟)
1.回顾本节课所学内容;
2.强调正方形的定义及性质在实际生活中的应用。
(四)作业布置(5分钟)
1.完成课堂练习;
2.完成课后作业。
四、教学反思
本节课通过例题引导学生掌握了正方形的定义及性质,并且通过练习巩固了判定正方形的方法和运用正方形的性质解决实际问题的能力。
同时,课堂中老师与学生的互动也让学生参与性更强,思维更加开放。
【PPT课程】初中金榜学案数学(八年级下 湘教版)2.7
★★4.如图,在△ABC中,BD平分∠ABC,AE⊥BD于点O,交BC于点E,AD∥BC,连接CD, (1)求证:AO=EO. (2)当△ABC满足什么条件时四边形ABED是正方形?请说明理由.
解:(1)∵AD∥BC,∴∠CBD=∠ADB, ∵BD平分∠ABC, ∴∠ABD=∠CBD, ∴∠ABD=∠ADB,∴AB=AD, 又∵AE⊥BD,∴BO=DO, 又∵∠AOD=∠EOB, ∴△AOD≌△EOB,∴AO=EO.
ABF DAE,
在△ABF和△DAE中 AFB AED 90,
AB AD
∴△ABF≌△DAE,∴AF=DE,BF=AE,
∴FG=FE,∴矩形EFGH是正方形.
(2)在Rt△ABF中,∠ABF=30°,AB=2, ∴AF=1,BF= 3 ,同理:AE= ,3 ∴EF=AE-AF= 3 -1, ∴S正方形EFGH=EF2=( 3 -1)2=4-2 3 .
解:(1)∵四边形ABCD是正方形, ∴∠ADG=∠C=90°,AD=DC, 又∵AG⊥DE, ∴∠DAG+∠ADF=90°=∠CDE+∠ADF, ∴∠DAG=∠CDE,∴△ADG≌△DCE(ASA).
(2)如图所示,延长DE交AB的延长线于H, ∵E是BC的中点,∴BE=CE, 又∵∠C=∠HBE=90°,∠DEC=∠HEB, ∴△DCE≌△HBE(ASA), ∴BH=DC=AB,即B是AH的中点, 又∵∠AFH=90°, ∴在Rt△AFH中,BF= 1 AH=AB.
2
【核心素养题】 8.(14分)如图,在正方形ABCD中,E是DC边上一点,(与D,C不重合),连接AE,将 △ADE沿AE所在的直线折叠得到△AFE,延长EF交BC于G,连接AG,作GH⊥AG,与AE 的延长线交于点H,连接CH.显然AE是∠DAF的平分线,EA是∠DEF的平分线.仔细 观察,请逐一找出图中其他的角平分线(仅限于小于180°的角平分线),并说明 理由. 略
正方形的定义及性质
科目
数学
课题
正方形的定义及性质
授课时间
12月7日
设计人
沈正江
班级
八1
姓名
序号
18
学习
目标
1、会用正方形的性质来解决有关线段、角相等和求值等问题.
2、会运用正方形的知识解决与实际有关的几何问题.
重难点
正方形性质的灵活应用.
一、探究新知:
阅读教材106----107页内容(10分钟),完成下列问题:
A.四个角是直角B.四条边都相等
C.对角线互相垂直平分D.每一条对角线平分一组对角
总结正方形的定义及性质:
二、新知应用:
☆1.如图所示,四边形ABCD是正方形,延长BC到点E,使CE=AC,连结AE,交CD于F,求∠AFC的度数.
☆2、如图,四边形ABCD和AEFG都是正方形,
求证:BE=DG
★3、如图,已知正方形ABCD来自BE∥AC,AE=AC,A、1个B、2个C、3个D、4个
2、如图,已知正方形ABCD,E为BC上任意点,延长AB至F,使BF = BE,AE的延长线交CF于G,求证:AG⊥CF
畅谈收获:
1.正方形既是________相等的矩形,又是有一个角是________的菱形.
2.正方形的两条对角线与四边成________个等腰直角三角形.
3.正方形具备而矩形不具备的性质是( )
A.四个角是直角B.两组对边分别相等
C.对角线相等D.每一条对角线平分一组对角
4.正方形具备而菱形不具备的性质是( )
求证:CF=CE
★★4、如图,已知E、F分别是正方形ABCD的边BC、CD上的点,∠EAF=45°,
求证:BE+FD=EF;
中考数学 第29课时《正方形》复习学案(无答案)(2021年整理)
广东省深圳市2017届中考数学第29课时《正方形》复习学案(无答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(广东省深圳市2017届中考数学第29课时《正方形》复习学案(无答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为广东省深圳市2017届中考数学第29课时《正方形》复习学案(无答案)的全部内容。
正方形一、基础知识梳理(课前完成)1.(一)定义:(1)正方形的定义:的平行四边形叫正方形。
(2)依次连接任意四边形各边中点所得的四边形称为中点四边形。
2。
正方形的性质与判定:正方形的的性质:正方形的常用判定方法:①正方形的四个角都是_____,四条边都__;①有一个角是直角的菱形是正方形;②_____的两条对角线相等,并且互相垂②对角线相等的________是正方形直平分,每条对角线平分一组对角;③对角线互相垂直的_______是正方形.3。
正方形的对称性与面积:①正方形是______对称图形,又是对称图形,它有______条对称轴.S=4。
完成下表结论:中点四边形的形状与原四边形的有关,若原四边形的对角线,则其中点四边形是菱形;若原四边形的对角线互相垂直则其中点四边形是 ;若原四边形的对角线,则其中点四边形是 .二、基础诊断题1.顺次连接正方形四边中点所得的四边形一定是()A . 矩形B . 正方形C . 菱形D . 直角梯形2. 如图,菱形ABCD 中,60B ∠=,4AB =,则以AC 为边长的正方形ACEF 的周长为( ) A .14 B .15 C .16 D .173.如图,正方形ABCD 中,AB=4,E 是BC 的中点,点P 是对角线AC 上一动点,则PE+PB 的最小值为 .三、中 考 导 航深圳市2014年—2016年中考分式考点分布一览表 中考年份选择题(占分)填空题(占分)解答题(占分)备 注2014年中考 2015年中考 2016年中考 合计占分(%)四、典型例题 例题1.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,A 的坐标为(1,),则点C 的坐标为( )BAD F E60(第2题图)第3题A.(﹣,1)B.(﹣1,)C.(,1) D.(﹣,﹣1)分析:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选A.点评:本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.例题3、(2014•宜宾)如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n﹣1 C.()n﹣1 D.()n考点:正方形的性质;全等三角形的判定与性质.专题:规律型.分析:根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n 个这样的正方形重叠部分即为(n ﹣1)个阴影部分的和.解答:解:由题意可得一个阴影部分面积等于正方形面积的,即是×4=1, 5个这样的正方形重叠部分(阴影部分)的面积和为:1×4,n 个这样的正方形重叠部分(阴影部分)的面积和为:1×(n﹣1)=n ﹣1. 故选:B .点评: 此题考查了正方形的性质,解决本题的关键是得到n 个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积. 五、基础达标检测题(一)选择题(每小题有四个选项,只有一个选项是正确的.) 1(2014•兰州)下列命题中正确的是( ) A . 有一组邻边相等的四边形是菱形 B . 有一个角是直角的平行四边形是矩形 C . 对角线垂直的平行四边形是正方形 D . 一组对边平行的四边形是平行四边形2.如图,边长为1的正方形ABCD 绕点A 逆时针旋转45度后得到正方形'''D C AB ,边''C B 与DC 交于点O ,则四边形OD AB '的周长..是( ) A .22 B .3 C .2 D .21 3. 如图,已知正方形ABCD 的对角线长为2,将正方形ABCD 沿直线EF 折叠,则图中阴影部分的周长为( ) A . 8B . 4C . 8D . 62题图O C 'B 'D 'DC3题4题图 5题图4 如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确的结论有( )个A.2 B.3 C.4 D.5(二)、填空题5 如图,已知正方形ABCD的边长为1,连接AC.BD,CE平分∠ACD交BD于点E,则DE= .6。
学案1:2.2.4 第1课时 均值不等式
2.2.4 第1课时 均值不等式知识点 均值不等式1.给定两个正数a ,b ,数a +b 2称为a ,b 的算术平均值,数ab 称为a ,b 的几何平均值. 2.如果a ,b ,当且仅当 时,等号成立. 3.几何意义:所有周长一定的矩形中, 的面积最大.自主检测1.a ,b ∈R ,则a 2+b 2与2|ab |的大小关系是( )A .a 2+b 2≥2|ab |B .a 2+b 2=2|ab |C .a 2+b 2≤2|ab |D .a 2+b 2>2|ab | 2.若a ,b ∈R 且ab >0,则下列不等式中恒成立的是( )A .a 2+b 2>2abB .a +b ≥2abC .1a +1b >2abD .b a +a b≥2 3.若x >0,y >0且x +y =4,则下列不等式中恒成立的是( )A .1x +y >14B .1x +1y ≥1C .xy ≥2D .1xy≥1 题型探究探究一 用均值不等式判断不等式的成立例1.有下列式子:①a 2+1>2a ;②⎪⎪⎪⎪x +1x ≥2;③a +b ab≥2;④x 2+1x 2+1≥1,其中正确的个数是( )A .0B .1C .2D .3 方法提升利用均值不等式比较实数大小的注意事项(1)利用均值不等式比较大小,常常要注意观察其形式(和与积),同时要注意结合函数的性质(单调性).(2)利用均值不等式时,一定要注意条件是否满足a >0,b >0.跟踪训练1.设M =a +1a -2(2<a <3),N =x (43-3x )⎝⎛⎭⎫0<x <433,则M ,N 的大小关系为( )A .M >NB .M <NC .M ≥ND .M ≤N 探究二 用均值不等式证明不等式例2.(1)证明不等式a 2+b 2+c 2≥ab +bc +ca .方法提升利用均值不等式证明不等式的注意事项(1)策略:从已证不等式和问题的已知条件出发,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后转化为所求问题,其特征是以“已知”看“可知”,逐步推向“未知”.(2)注意事项:①多次使用均值不等式时,要注意等号能否成立;②累加法是不等式证明中的一种常用方法,在证明不等式时注意使用条件; ③对不能直接使用均值不等式的证明可重新组合,形成均值不等式模型再使用. 知识拓展一、千变万化,不离其宗►逻辑推理均值不等式的几种常见变形及结论(1)a +b ≥2ab (a >0,b >0);(2)ab ≤a 2+b 22(a ,b ∈R ); (3)ab ≤⎝⎛⎭⎫a +b 22,(a ,b ∈R ); (4)b a +a b ≥2(ab >0); (5)a +k a≥2k (a >0,k >0); (6)21a +1b ≤ab ≤a +b 2≤ a 2+b 22(a ,b 都是正实数).[典例] 已知a ,b ,c ∈R ,a +b +c =1,求证:ab +ac +bc ≤1.二、忽视均值不等式的条件►逻辑推理[典例] 设y =x +1x,求y 的取值范围.参考答案知识点梳理知识点 均值不等式2.≥ a =b3.正方形自主检测1.【答案】A2.【答案】D3.【答案】B题型探究探究一 用均值不等式判断不等式的成立例1.【解析】∵a 2-2a +1=(a -1)2≥0,∴a 2+1≥2a ,故①不正确;对于②,当x >0时,⎪⎪⎪⎪x +1x =x +1x≥2(当且仅当x =1时取“=”);当x <0时,⎪⎪⎪⎪x +1x =-x -1x ≥2(当且仅当x =-1时取“=”),∴②正确;对于③,若a =b =-1,则a +b ab=-2<2,故③不正确;对于④,x 2+1x 2+1=x 2+1+1x 2+1-1≥1(当且仅当x =0时取“=”),故④正确.∴选C.【答案】C跟踪训练1.【解析】M =a +1a -2=a -2+1a -2+2>4, N =x (43-3x )=13×3x (43-3x )≤13×⎝ ⎛⎭⎪⎫3x +43-3x 22=4. ∴M >N .【答案】A探究二 用均值不等式证明不等式例2.(1)证明:∵a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac .∴2(a 2+b 2+c 2)≥2(ab +bc +ca )(当且仅当a =b =c 取等号)∴a 2+b 2+c 2≥ab +bc +ca .(2)证明:∵a >0,b >0,c >0,∴bc a >0,ac b >0,ab c >0. 则bc a +ac b ≥2abc 2ab =2c ,bc a +ab c ≥2b ,ac b +ab c≥2a . 由不等式的性质知,2⎝⎛⎭⎫bc a +ac b +ab c ≥2(a +b +c ),∴bc a +ac b +ab c≥a +b +c . [典例] 证明:∵ab ≤a +b 2,bc ≤b +c 2,ac ≤a +c 2,∴ab +ac +bc ≤2(a +b +c )2=1. 故原不等式成立.[典例]解:当x >0时,y =x +1x ≥2x ·1x=2.当且仅当x =1x,即x =1时取“=”. 当x <0时,y =x +1x =-[(-x )+1-x], ∵(-x )+1-x ≥2,∴-[(-x )+1-x]≤-2. 当且仅当x =1x时,即x =-1时取“=”. ∴y 的取值范围为{y |y ≤-2或y ≥2}.。
正方形的性质与判定学案
正方形的性质在小学,什么样的四边形是正方形?正方形与矩形和菱形又有什么关系呢? ◆ 正方形的定义:四个角______________,四条边______________的四边形叫正方形。
◆ 因此,正方形既是一个特殊的平行四边形,也是一个特殊的有一组邻边相等的________,又是一个特殊的有一个角是直角的________。
它具有__________________________________的一切性质。
◆ 平行四边形、矩形、菱形、正方形性质的区别与联系:◆ 正方形的两条对角线把这个正方形分成四个__________________________________三角形。
例1 如图,四边形ABCD 是正方形,E 是AB 边上的一点,已知EC=30m ,EB=10m ,这个正方形的边长、面积和对角线长分别是多少?练习1(边、角、对角线)(1)边长为10cm 的正方形的对角线长是________cm ,这条对角线和正方形一边的夹角是________,这个正方形的面积是________cm 2。
(2)正方形的周长为4,则它的边长为________,一条对角线长为________。
面积为________。
(3)正方形的面积为4,则它的边长为________,一条对角线长为________,周长为________。
(4)如果边长分别为4cm 和5cm 的矩形与一个正方形的面积相等,那么这个正方形的边长为________,一条对角线长为________,周长为________。
(5)将两块能完全重合的两张等腰直角三角形纸片拼成下列图形:①平行四边形(不包括菱形、矩形、正方形)②矩形③正方形④等边三角形⑤等腰直角三角形( ) A.①③⑤ B.②③⑤ C.①②③ D.①③④⑤(6)在正方形ABCD 中,AB=12cm ,对角线AC 、BD 相交于O ,则△ABO 的周长是( )A.12+122B.12+62C.12+2D.24+62(7)如图,AC 为正方形ABCD 的对角线,△ADE 为等边三角形,则∠EAC=________。
八年级数学下册第9章中心对称图形—平行四边形9.4矩形、菱形、正方形学案(无答案)苏科版(new)
矩形【学习目标】1.掌握矩形的性质和判定,会证明一个四边形是矩形,并能够运用矩形的性质进行有关线段或角的计算或证明.2.能够结合三角形的知识,解决有关矩形与等腰三角形相、直角三角形相关的问题.3.探索与平行四边形有关的面积问题、最值问题、动点类问题等.【知识点】1.有一个角是的平行四边形叫做矩形.2.矩形的性质:矩形的四个角;矩形的对角线.3.矩形的判定:有个角是直角的四边形是矩形;对角线的平行四边形是矩形.【例题精讲】一、矩形与特殊等腰三角形问题例1.如图,在矩形ABCD中,AC、BD相交于点O,AE平分∠BAD交BC于E,若∠EAO=15°,则∠BOE的度数为A.85° B.80°C.75° D.70°例2.如图,在矩形ABCD中,对角线AC、BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为A.6 B.5C.23 D.33例3.如图,矩形ABCD中,AB>AD,AN平分∠DAB,DM⊥AN于点M,CN⊥AN于点N,G为MN的中点,GH⊥MN交CD于点H,且DM=a,GH=b,则CN的值为(用含a、b的代数式表示)A.2a+b B.a+2bC.a+b D.2a+2b例4.如图,在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F,G是线段BC上一点,连接GE、GF、GM,若△EGF是等腰直角三角形,∠EGF=90°,则AB=.二、矩形与面积问题例5.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,则重叠部分△AFC的面积为A.12 B.10C.8 D.6例6.如图所示,在矩形ABCD中,AB=6,AD=8,P是AD上不与A、D重合的一动点,PE⊥AC于E,PF⊥BD于F,则PE+PF的值为.例7.如图,在长方形ABCD中,E是AD的中点,F是CE的中点,若△BDF的面积为6平方厘米,则长方形ABCD的面积是平方厘米.三、矩形与勾股定理例8.如图,在矩形ABCD中,AB=8,AD=6,P、Q分别是AB和CD上的任意一点,且AP=CQ,线段EF是PQ的垂直平分线,交BC于F,交PQ于E,设AP=x,BF=y,则y与x的函数关系式为.例9.如图,P是矩形ABCD内一点,若PA=3,PB=4,PC=5,则PD=.例10.如图,在矩形ABCD中,AB=3,BC=4,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1 恰好在∠BCD的平分线上时,则C A1的长为.例11.如图,在矩形ABCD中,AB=6,BC=8,AC与BD相交于O,E为DC的一点,过点O作OF⊥OE交BC于F,记22d=+,则关于d的正DE BF确的结论是A.d=5 B.d<5C.d≤5 D.d≥5例12.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM、ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=8,BC=3,运动过程中,点D到点O的最大距离为.例13.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C 重合),PE⊥AB于E,PF⊥AC于F,M为EF终点,设AM的长为x,则x的取值范围是A.4≥x>2.4B.4≥x≥2。
华师大版八年级下册第19章矩形、菱形、正方形期末复习学案
华师大版八年级下册第19章期末复习学案第1课时:矩形、菱形、正方形的性质【知识梳理】1.矩形、菱形、正方形都具有平行四边形的所有性质。
2、矩形的特殊性质:(1)矩形的四个角都是直角;(2)矩形的对角线相等.3、菱形的特殊性质:(1)四边相等;(2)对角线互相垂直,并且每一条对角线平分一组对角.4、正方形的特殊性质:正方形具有矩形和菱形的性质.5、矩形、菱形、正方形都中轴对称图形,也是中心对称图形。
【例题精讲】例1、已知:如图, O是矩形ABCD 对角线的交点, AE平分∠BAD,∠AOD=120°,求∠AEO 的度数例2、如图,矩形ABCD中,AC与BD交于点O,BE⊥AC,CF⊥BD,垂足分别为E,F.求证:BE=CF.例3、如图,菱形ABCD的周长为2P,对角线AC、BD相交于点O,AC+BD=q,求菱形ABCD的面积。
例4、如图,在正方形ABCD中,点P在AD上,且不与A、D重合,BP的垂直平分线分别交CD、AB于E、F两点,垂足为Q,过E作EH⊥AB于H.(1)求证:HF=AP;(2)若正方形ABCD的边长为12,AP=4,求线段EQ的长.【当堂检测】1、矩形具有而平行四边形不具有的性质是()A、对边平行且相等B、对角相等C、对角线互相平分D、对角线相等2、菱形具有而平行四边形不具有的是()A、对角线互相平分B、对边平行且相等C、对角相等D、对角线重直3、菱形的周长为20,一条对角线长为6,则下列说法错误的是()A、菱形的边长是5B、另一条对角线是8C、菱形的面积是4.8D、菱形的高为4、如图,菱形ABCD中,AB=2,∠A=120º,点P、Q、K分别为线段BC、CD、BD上任意一点,则PK+QK的最小值为 ( )A.1 B. 3 C.2 D.3+15、 (2014黑龙江牡丹江, 第8题3分)如图,在菱形ABCD中,E是AB边上一点,且∠A=∠EDF=60°,有下列结论:①AE=BF;②△DEF是等边三角形;③△BEF是等腰三角形;④∠ADE=∠BEF,其中结论正确的个数是()A. 3 B. 4 C. 1 D.26、在矩形ABCD中,已知∠DOC=120°,AD=6㎝,则AC= ㎝,AB=;7、菱形的两条对角线长为10cm和24cm,菱形的面积为,周长为;8、如图,已知正方形ABCD的边长为4,对角线AC与BD相交于点O,点E在DC边的延长线上.若∠CAE=15°,则AE= 8 .9、如图,在矩形ABCD中,AB=4,AD=6,M,N分别是AB,CD的中点,P是AD上的点,且∠PNB=3∠CBN.(1)求证:∠PNM=2∠CBN;(2)求线段AP的长.10、如图,在菱形ABCD中,M,N分别是边AB,BC的中点,MP⊥AB交边CD于点P,连接NM,NP.(1)若∠B=60°,这时点P与点C重合,则∠NMP= 度;(2)求证:NM=NP;(3)当△NPC为等腰三角形时,求∠B的度数.11、如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:BE=CE.(2)求∠BEC的度数.第2课时:矩形、菱形、正方形的判定【知识梳理】1、 矩形的判定:(1)有一个角是90°的平行四边形;(2)三个角是直角的四边形;(3)对角线相等的平行四边形.2、菱形的判定:(1)一组邻边相等的平行四边形;(2)四边相等的四边形;(3)对角线互相垂直的平行四边形.(4)每条角线平分一组对角的四边形 3、正方形的判定:(1)一组邻边相等的矩形;(2)有一个角是直角的菱形. 【例题精讲】例题1. 将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D′ 处,折痕为EF .(1)求证:△ABE≌△AD′F; (2)连接CF ,判断四边形AECF 是什么特殊四边形证明你的结论.例题2.如图,正方形ABCD 和正方形A′OB′C′是全等图形,则当正方形A′OB′C′绕正方形ABCD 的中心O 顺时针旋转的过程中.(1)证明:CF=BE ;(2)若正方形ABCD 的面积是4,求四边形OECF 的面积.例题4. 如图,在矩形ABCD 中,AB=12,AC=20,两条对角线相交于点O .以OB 、OC 为邻边作第1个平行四边形OBB 1C ,对角线相交于点A 1,再以A 1B 1、A 1C 为邻边作第2个平行四边形A 1B 1C 1C ,对角线相交于点O 1;再以O 1B 1、O 1C 1为邻边作第3个平行四边形O 1B 1B 2C 1……依次类推. (1)求矩形ABCD 的面积;(2)求第1个平行四边形OBB 1C 、第2个平行四边形A 1B 1C 1C 和第6个平行四边形的面积.A B C D EF D【当堂检测】1、在菱形ABCD中,AB = 5,∠BCD=120°,则对角线AC等于()A.20 B.15 C.10 D.52、如图,要使▱ABCD成为菱形,则需添加的一个条件是()A.AC=AD B.BA=BC C.∠ABC=90° D. AC=BD3、下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形4、下列叙述中,错误的是()A、有一组邻边相等的矩形是正方形B、有一个角是直角的菱形是正方形C、对角线垂直平分且相等的四边形是正方形D、是轴对称也是中心对称是四边形是正方形5、如图,正方形ABCD中,E是对角线AC上一点,EF⊥AB,EG⊥AD,垂足分别为F、G。
2020年九年级数学中考复习学案:正方形的蝴蝶三角形模型的构建,应用及其变式
正方形的蝴蝶三角形模型的构建,应用及其变式摘要:建模解题是数学学习一种最基本的学习途径和最有效的学习方法,是基于构建主义理论的一种主动学习过程,是对现象和过程进行合理的抽象和量化,然后应用数学公式进行模拟和验证的一种模式化思维。
不同知识,不同条件,不同特点,可以构建不同数学模型,为数学灵活解题提供灵活解题方法。
正方形是一种重要的特殊四边形,也是重要的考题载体之一,而正方形中的一个重要的图形---蝴蝶三角形也日益成为考题的焦点,下面就结合2019年的考题构建一种正方形解题模型--蝴蝶三角形模型,并通过模型的应用,模型的变式,掌握模型的特点,为其他模型的构建提供模本。
关键词:构建主义,建模思想,变式。
《义务教育数学课程标准(2011边版)》第7页中给出了建立数学模型思想的地位:模型思想是学生体会和理解数学与外部世界联系的基本途径[1]。
鉴于数学建模的重要性,学会构建模型,并灵活运用模型解题成为数学学习的重要手段。
下面就向大家介绍一种正方形解题模型的构建,应用和变式,供学习时借鉴。
一、正方形蝴蝶三角形模型的构建如图1,在正方形ABCD中,点E,F分别在BC,CD 上,BE=CF,连接AE,BF二线交于点G,称△ABE和△BCF构成的图形为正方形ABCD的蝴蝶三角形。
蝴蝶三角形具有如下性质:性质1:蝴蝶三角形是全等三角形即△ABE≌△BCF。
性质2:斜边AE,BF的关系是AE=BF且AE⊥BF。
性质3:三角形ABG的面积等于四边形GECF的面积。
性质4:四边形ABFD的面积等于四边形AECD的面积。
性质5:设正方形的边长为a,BE=CF=b,则AE=BF=√a2+b2;BG=√a2+b2,GF=√a2+b2-√a2+b2。
二、蝴蝶三角形性质的证明(1)因为四边形ABCD是正方形,所以AB=BC,∠ABE=∠BCF=90°,因为BE=CF,所以△ABE≌△BCF;(2)因为△ABE≌△BCF,所以AE=BF,∠BAE=∠CBF ,因为∠BAE+∠BEA=90°,所以∠CBF+∠BEA=90°,所以∠BGE=90°即AE⊥BF。
正方形的判定和性质——学案
学习过程一、复习预习1.菱形的定义:有一组邻边相等的平行四边形叫做菱形.2.菱形的性质菱形是特殊的平行四边形,它具有平行四边形的所有性质,•还具有自己独特的性质:① 边的性质:对边平行且四边相等.② 角的性质:邻角互补,对角相等.③ 对角线性质:对角线互相垂直平分且每条对角线平分一组对角.④ 对称性:菱形是中心对称图形,也是轴对称图形.菱形的面积等于底乘以高,等于对角线乘积的一半.点评:其实只要四边形的对角线互相垂直,其面积就等于对角线乘积的一半.3.菱形的判定判定①:一组邻边相等的平行四边形是菱形.判定②:对角线互相垂直的平行四边形是菱形.判定③:四边相等的四边形是菱形.二、知识讲解1、图形旋转的性质:旋转前后的图形,对应点到,每一对对应点与。
2、中心对称图形:把一个平面图形绕某一点旋转,如果旋转后的图形能够和原来的图形互相,那么这个图形叫做中心对称图形。
3、Ⅰ、平行四边形的性质:(1)平行四边形的;O488 16 t(s)S ((A )O48816t(s)S ((B )(2)平行四边形的 ;(3)平行四边形的 。
Ⅱ、平行四边形的判定:(1)两组对边分别 的四边形是平行四边形; (2)两组对边分别 的四边形是平行四边形。
(3)一组对边 的四边形是平行四边形; (4)两条 的四边形是平行四边形;4、Ⅰ、正方形的性质:一般性质________________;特殊性质_______________。
Ⅱ、正方形的判定:从四边形角度________________;从平行四边形角度_____________;从矩形角度____________;从菱形角度___________. 考点/易错点1正方形的特殊性质和判定的理解和记忆。
考点/易错点2正方形和平行四边形性质判定的综合题型,注意区分。
三、例题精析【例题1】【题干】如图,在正方形ABCD 中,点P 是AB 上一动点(不与A ,B 重合),对角线AC ,BD 相交于点O ,过点P 分别作AC ,BD 的垂线,分别交AC ,BD 于点E ,F ,交AD ,BC 于点M ,N .下列结论:①△APE ≌△AME ;②PM+PN=AC ;③PE 2+PF 2=PO 2;④△POF ∽△BNF ;⑤当△PMN ∽△AMP 时,点P 是AB 的中点.其中正确的结论有( )A . 5个B . 4个C . 3个D . 2个【例题2】【题干】如图,正方形ABCD中,AB=8cm,对角线AC,BD 相O 488 16 t(s)S ((C )O 48816t(s)S ((D )交于点O,点E,F 分别从B,C 两点同时出发,以1cm/s 的速度沿BC,CD 运动,到点C,D 时停止运动,设运动时间为t(s),△OE 的面积为s(2cm ),则s(2cm )与t(s)的函数关系可用图像表示为【例题3】【题干】如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE =DF ,AE 、BF 相交于点O ,下列结论:(1)AE =BF ;(2)AE ⊥BF ;(3)AO =OE ;(4)AOB DEOF S S ∆=四边形中正确的有( ) A. 4个 B. 3个C. 2个D. 1个【例题4】【题干】如图,菱形ABCD 中,∠B=60°,AB=4,则以AC 为边长的正方形ACEF 的周长为( )A .14B .15C .16D .17【例题5】【题干】如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60 C.76 D.80【例题6】【题干】如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC 交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S △ABE.其中正确结论有()个.A.2 B.3 C.4 D.5【例题7】【题干】如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.19【例题8】【题干】如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()C.D.A.B.12【例题9】【题干】如图,四边形ABCD、AEFG均为正方形,其中E在BC上,且B、E两点不重合,并连接BG.根据图中标示的角判断下列∠1、∠2、∠3、∠4的大小关系何者正确?()A.∠1<∠2 B.∠1>∠2 C.∠3<∠4 D.∠3>∠4【例题10】【题干】附图为正三角形ABC与正方形DEFG的重迭情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?()A.2 B.3 C.12﹣4 D.6﹣6四、课堂运用【基础】1.已知如图所示的图形的面积为24,根据图中的条件,可列出方程:。
人教版八年级数学下册教案学案18.2.3第2课时正方形的判定
第2课时正方形的判定教学目标1.掌握正方形的判定条件;(重点)2.能熟练运用正方形的性质和判定进行有关的证明和计算.(难点)教学过程一、情境导入老师给学生一个任务:从一张彩色纸中剪出一个正方形.小明剪完后,这样检验它:比较了边的长度,发现4条边是相等的,小明就判定他完成了这个任务.这种检验可信吗?小兵用另一种方法检验:量对角线,发现对角线是相等的,小兵就认为他正确地剪出了正方形.这种检验对吗?小英剪完后,比较了由对角线相互分成的4条线段,发现它们是相等的.按照小英的意见,这说明剪出的四边形是正方形.你的意见怎样?你认为应该如何检验,才能又快又准确呢?二、合作探究探究点一:正方形的判定[类型_]利用“一组邻边相等的矩形是正方形”证明四边形是正方形如图,在RtAABC中,ZACB=90°,CD为ZACB的平分线,DE±B C于点E, DFLAC于点F.求证:四边形CEDF是正方形.解析:要证四边形CEDF是正方形,则要先证明四边形CEDF是矩形,再证明一组邻边相等即可.证明:,:CD平分ZACB,DELBC,DF±AC,:.DE=DF,ZDFC=9Q°,ZZ)£C=90°.又':ZACB=90°,:.四边形CEDF是矩形..:DE=DF,:.矩形CEQF是正方形.方法总结:要注意判定一个四边形是正方形,必须先证明这个四边形为矩形或菱形.[类型二]利用“有一个角是直角的菱形是正方形”证明四边形是正方形@0如图,在四边形ABFC中,ZACB=90°,BC的垂直平分线EF交于点Z),交AB于点E,且CF=AE.(1)试判断四边形BECF是什么四边形?并说明理由;(2)当ZA的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.解析:(1)根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,•.又•..CF=AE,.•.可证3E=EC=BF=FC.根据“四边相等的四边形是菱形“一•.四边形BECF是菱形;(2)菱形对角线平分一组对角,即当ZABC=45°时,ZEBF=90°,有菱形为正方形.根据“直角三角形中两个角锐角互余”得ZA=45°.解:(1)四边形BECF是菱形.理由如下:,:EF垂直平分BC,:.BF=FC,BE=EC, /.Z3=Z1.V ZACB=90°,A Z3+Z4=90°,Zl+Z2=90°,.-.Z2=Z4,:.EC=AE, :.BE=AE.•:CF=AE,:.BE=EC=CF=BF,.L四边形BECF是菱形;(2)当ZA=45°时,菱形BECF是正方形.证明如下:•.•/A=45。
八年级数学教案《正方形》【优秀4篇】
八年级数学教案《正方形》【优秀4篇】八年级数学教案《正方形》篇一课题:4.6 正方形(一)教学目的:使学生掌握正方形的定义、性质和判定,会用正方形的概念和性质进行有关的论证和计算,理解正方形与平行四边形、矩形、菱形的内在联系和区别,进一步加深对“特殊与一般的认识”教学重点:正方形的定义。
教学难点:正方形与矩形、菱形间的关系。
教学方法:双边合作如:在教学时可播放转换动画使学生获得生动、形象的可视思维过程,从而掌握判定一个四边形是正方形的方法。
为了活跃学生的思维,可以得出下列问题让学生思考:(1)对角线相等的菱形是正方形吗?为什么?(2)对角线互相垂直的矩形是正方形吗?为什么?(3)对角线垂直且相等的四边形是正方形吗?为什么?如果不是,应该加上什么条件?(4)能说“四条边都相等的四边形是正方形”吗?为什么?(5)说“四个角相等的四边形是正方形”,对吗?教学过程:让学生将事先准备好的矩形纸片,按要求对折一下,裁出正方形纸片。
问:所得的图形是矩形吗?它与一般的矩形有什么不同?所得的图形是菱形吗?它与一般的菱形有什么不同?所得的图形在小学里学习时称它为什么图形?它有什么特点?由此得出正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
(一)新课由正方形的定义可以得知:正方形是有一组邻边相等的矩形,又是有一个角是直角的菱形,因此正方形具有矩形的性质,同时又具有菱形的性质。
请同学们推断出正方形具有哪些性质?性质1、(1)正方形的四个角都是直角。
(2)正方形的四条边相等。
性质2、(1)正方形的两条对角线相等。
(2)正方形的两条对角线互相垂直平分。
(3)正方形的每条对角线平分一组对角。
例1求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形。
已知:四边形ABCD是正方形,对角线AC、BD相交于点O。
求证:△ABO、△BCO、△CDO、△DAO是全等的等腰直角三角形。
证明:△四边形ABCD是正方形,△AC=BD,AC△BD,AO=CO=BO=DO(正方形的两条对角线相等,并且互相垂直平分)。
人教版八下数学18.2.3正方形 课时1 正方形的性质教案+学案
人教版八年级下册数学第18章平行四边形18.2 特殊的平行四边形18.2.3 正方形课时1正方形的性质教案【教学目标】知识与技能目标1.理解并运用正方形的定义计算和证明;2.理解并运用正方形的性质进行计算和证明;3.体会正方形与平行四边形、矩形、菱形的区别与联系,理解一般与特殊的关系.过程与方法目标经历正方形的定义及其性质的探究过程,丰富认识图形的经验,进一步发展学生的逻辑推理能力和表达能力.情感、态度与价值观目标让学生在发现、归纳、概括中逐步提高思维能力,培养用数学的思想和方法来思考和分析问题的习惯.【教学重点】正方形性质定理的运用.【教学难点】正方形与平行四边形、矩形、菱形的区别与联系.【教学准备】教师准备:教学中出示的教学插图、问题和例题.学生准备:复习平行四边形、矩形、菱形的定义、性质和判定.【教学过程设计】一、情境导入做一做:用一张长方形的纸片(如图所示)折出一个正方形.学生在动手中对正方形产生感性认识,并感知正方形与矩形的关系.问题:什么样的四边形是正方形?二、合作探究知识点一:正方形的性质【类型一】特殊平行四边形的性质的综合例1菱形,矩形,正方形都具有的性质是()A.对角线相等且互相平分B.对角线相等且互相垂直平分C.对角线互相平分D.四条边相等,四个角相等解析:选项A不正确,菱形的对角线不相等;选项B不正确,菱形的对角线不相等,矩形的对角线不互相垂直;选项C正确,三者均具有此性质;选项D 不正确,矩形的四条边不相等,菱形的四个角不相等.故选C.方法总结:正方形具有四边形、平行四边形、矩形、菱形的所有性质.【类型二】利用正方形的性质解决线段的计算或证明问题例2如图所示,正方形ABCD的边长为1,AC是对角线,AE平分∠BAC,EF⊥AC于点F.(1)求证:BE=CF;(2)求BE的长.解析:(1)由角平分线的性质可得到BE=EF,再证明△CEF为等腰直角三角形,即可证BE=CF;(2)设BE=x,在△CEF中可表示出CE.由BC=1,可列出方程,即可求得BE.(1)证明:∵四边形ABCD为正方形,∴∠B=90°.∵EF⊥AC,∴∠EF A=90°.∵AE平分∠BAC,∴BE=EF.又∵AC是正方形ABCD的对角线,∴AC平分∠BCD,∴∠ACB=45°,∴∠FEC=∠FCE=45°,∴EF=FC,∴BE=CF;(2)解:设BE=x,则EF=CF=x,CE=1-x.在Rt△CEF中,由勾股定理可得CE=2x.∴2x=1-x,解得x=2-1,即BE的长为2-1.方法总结:正方形被每条对角线分成两个直角三角形,被两条对角线分成四个等腰直角三角形,因此正方形的计算问题可以转化到直角三角形和等腰直角三角形中去解决.【类型三】利用正方形的性质解决角的计算或证明问题例3 在正方形ABCD 中,点F 是边AB 上一点,连接DF ,点E 为DF 的中点.连接BE 、CE 、AE .(1)求证:△AEB ≌△DEC ;(2)当EB =BC 时,求∠AFD 的度数.解析:(1)根据“正方形的四条边都相等”可得AB =CD ,根据“正方形每一个角都是直角”可得∠BAD =∠ADC =90°,再根据“直角三角形斜边上的中线等于斜边的一半”可得AE =EF =DE =12DF ,根据“等边对等角”可得∠EAD =∠EDA ,再得出∠BAE =∠CDE ,然后利用“SAS ”证明即可;(2)根据“全等三角形对应边相等”可得EB =EC ,再得出△BCE 是等边三角形.根据等边三角形的性质可得∠EBC =60°,然后求出∠ABE =30°.再根据“等腰三角形两底角相等”求出∠BAE ,然后根据“等边对等角”可得∠AFD =∠BAE .(1)证明:在正方形ABCD 中,AB =CD ,∠BAD =∠ADC =90°.∵点E 为DF中点,∴AE =EF =DE =12DF ,∴∠EAD =∠EDA .∵∠BAE =∠BAD -∠EAD ,∠CDE =∠ADC -∠EDA ,∴∠BAE =∠CDE .在△AEB 和△DEC 中,⎩⎨⎧AB =CD ,∠BAE =∠CDE ,AE =DE ,∴△AEB ≌△DEC (SAS);(2)解:∵△AEB ≌△DEC ,∴EB =EC .∵EB =BC ,∴EB =BC =EC ,∴△BCE 是等边三角形,∴∠EBC =60°,∴∠ABE =90°-60°=30°.∵EB =BC =AB ,∴∠BAE =12×(180°-30°)=75°.又∵AE =EF ,∴∠AFD =∠BAE =75°.方法总结:正方形是最特殊的平行四边形,在正方形中进行计算时,要注意计算出相关的角的度数,要注意分析图形中有哪些相等的线段等.探究点二:正方形性质的综合应用【类型一】 利用正方形的性质解决线段的倍、分、和、差关系例4 如图,AE 是正方形ABCD 中∠BAC 的平分线,AE 分别交BD 、BC 于F 、E ,AC 、BD 相交于O .求证:(1)BE =BF ;(2)OF =12CE . 解析:(1)根据正方形的性质可求得∠ABE =∠AOF =90°.由于AE 是正方形ABCD 中∠BAC 的平分线,根据“等角的余角相等”即可求得∠AFO =∠AEB .根据“对顶角相等”即可求得∠BFE =∠AEB ,BE =BF ;(2)连接O 和AE 的中点G .根据三角形的中位线的性质即可证得OG ∥BC ,OG =12CE .根据平行线的性质即可求得∠OGF =∠FEB ,从而证得∠OGF =∠AFO ,OG =OF ,进而证得OF =12CE .证明:(1)∵四边形ABCD 是正方形,∴AC ⊥BD ,∴∠ABE =∠AOF =90°,∴∠BAE +∠AEB =∠CAE +∠AFO =90°.∵AE 是∠BAC 的平分线,∴∠CAE =∠BAE ,∴∠AFO =∠AEB .又∵∠AFO =∠BFE ,∴∠BFE =∠AEB ,∴BE =BF ;(2)连接O 和AE 的中点G .∵AO =CO ,AG =EG ,∴OG ∥BC ,OG =12CE ,∴∠OGF =∠FEB .∵∠AFO =∠AEB ,∴∠OGF =∠AFO ,∴OG =OF ,∴OF =12CE .方法总结:在正方形的条件下证明线段的关系,通常的方法是连接对角线构造垂直平分线,利用垂直平分线的性质、中位线定理、角平分线、等腰三角形等知识来证明,有时也利用全等三角形来解决.【类型二】 有关正方形性质的综合应用题例5 如图,正方形AFCE 中,D 是边CE 上一点,B 是CF 延长线上一点,且AB =AD ,若四边形ABCD 的面积是24cm 2.则AC 长是________cm.解析:∵四边形AFCE 是正方形,∴AF =AE ,∠E =∠AFC =∠AFB =90°.在Rt △AED 和Rt △AFB 中,⎩⎨⎧AD =AB ,AE =AF ,∴Rt △AED ≌Rt △AFB (HL),∴S △AED =S△AFB.∵S四边形ABCD=24cm2,∴S正方形AFCE=24cm2,∴AE=EC=26cm.根据勾股定理得AC=(26)2+(26)2=43(cm).故答案为4 3.方法总结:在解决与面积相关的问题时,可通过证三角形全等实现转化,使不规则图形的面积转变成我们熟悉的图形面积,从而解决问题.三、教学小结师生共同归纳小结.1.本节课,我们学习了正方形的性质和判定,弄清了正方形、平行四边形、矩形、菱形的关系:2.分小组进行讨论,整理所学的性质:正方形是特殊的平行四边形,它也是特殊的矩形、特殊的菱形,因此它具有平行四边形、矩形、菱形的所有性质.请回忆学过的内容,回答下面的问题(从边、角、对角线、轴对称性四方面考虑):(1)平行四边形有哪些性质?(2)矩形有哪些性质?(3)菱形有哪些性质?(4)正方形有哪些性质?图形对边对角对角线对称性平行四边形平行、相等相等互相平分不是轴对称图形矩形平行、相等四个角都是直角互相平分且相等轴对称图形,有两条对称轴菱形平行、四条边都相等相等互相垂直且平分,每条对角线平分一组对角轴对称图形,有两条对称轴正方形平行、四条边四个角都是直互相垂直、平分且相轴对称图形,有四条对称都相等角等,每条对角线平分一轴组对角四、学习检测1.下列命题是真命题的是( )A.矩形的对角线互相垂直B.菱形的对角线相等C.正方形的对角线相等且互相垂直D.四边形的对角线互相平分解析:根据矩形的对角线相等,可判断选项A错;根据菱形的对角线互相垂直,可判断选项B错;根据正方形的对角线互相垂直、平分且相等,可判断选项C正确;四边形的对角线无特性,可判断选项D错.故选C.2.如图所示,E是正方形ABCD的边AD上任意一点,EF⊥BD于点F,EG⊥AC于点G,若AB=10 cm,则四边形EFOG的周长是.解析:先由题意证明四边形EFOG是矩形,进而可知矩形EFOG的周长为OD 的长的2倍,然后根据勾股定理得OD的长为5 cm.故填10 cm.3.如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证AE=CF.(2)若∠ABE=55°,求∠EGC的大小.【解析】本题考查了等腰直角三角形、正方形的性质,“三角形的一个外角等于与它不相邻的两个内角之和”,全等三角形的性质与判定,解题的关键是证明△ABE≌△CBF.(1)用SAS证明△ABE≌△CBF.(2)∠EGC=∠EBG+∠BEF,而∠EBG=90°-∠ABE,△BEF是等腰直角三角形,从而可求∠EGC的度数.证明:(1)∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°.∵BE⊥BF,∴∠EBF=90°,从而可知∠ABE=∠CBF.∵AB=BC,∠ABE=∠CBF,BE=BF,∴△ABE≌△CBF,∴AE=CF.解:(2)∵BE=BF,∠EBF=90°,∴∠BEF=45°,∵∠ABC=90°,∠ABE=55°,∴∠GBE=35°,∴∠EGC=∠EBG+∠BEG=80°.[归纳总结]证明线段相等,通常转化成证明这两条线段所在的三角形全等得到对应线段相等.本题要充分利用正方形的性质“四条边相等;四个内角都等于90°;对角线互相垂直平分且相等,每一条对角线平分一组对角;正方形既是轴对称图形,又是中心对称图形等”,并根据题意选取合适的性质加以运用.等腰直角三角形的两锐角相等,为45°,底边上的高、中线、顶角的平分线重合.三角形全等的判定方法:SAS,ASA,AAS,SSS,HL(只适用于直角三角形),根据图中的条件选取合适的方法证明三角形全等是关键.【板书设计】18.2 特殊的平行四边形 18.2.3 正方形课时1 正方形的性质1.正方形的定义和性质四条边都相等,四个角都是直角的四边形是正方形.对边平行,四条边都相等;四个角都是直角;对角线互相垂直、平分且相等,并且每一条对角线平分一组对角.2.正方形性质的综合应用3.学习检测【教学反思】在本节数学课的教学中,通过学生动手操作得出的结论归纳矩形和菱形的性质,继而得到正方形的性质,激起了学生的学习热情和兴趣.创设有意义的数学活动,使枯燥乏味的数学变得生动活泼.让学生觉得学习数学是快乐的,使学生保持一颗健康、好学、进取的心及一份浓厚的学习兴趣.人教版八年级下册数学第18章平行四边形18.2 特殊的平行四边形18.2.3 正方形课时1正方形的性质学案【学习目标】1.理解正方形的概念;2.探索并证明正方形的性质,并了解平行四边形、矩形、菱形之间的联系和区别;3.会应用正方形的性质解决相关证明及计算问题.【学习重点】探索并证明正方形的性质,并了解平行四边形、矩形、菱形之间的联系和区别.【学习难点】会应用正方形的性质解决相关证明及计算问题.【自主学习】一、知识回顾1.你还记得长方形有哪些性质吗?2.菱形的性质又有哪些?二、新知探究知识点1:正方形的性质想一想 1.矩形怎样变化后就成了正方形呢?你有什么发现?邻边_____2.菱形怎样变化后就成了正方形呢?你有什么发现?一个角是_____要点归纳:正方形定义:有一组邻边_____并且有一个角是_____的__________叫正方形.想一想正方形是特殊的矩形,也是特殊的菱形.所以矩形、菱形有的性质,正方形都有.那你能说出正方形的性质吗?1.正方形的四个角都是_________,四条边_________.2.正方形的对角线________且互相______________.证一证已知:如图,四边形ABCD是正方形.求证:正方形ABCD四边相等,四个角都是直角.证明:∵四边形ABCD是正方形.∴∠A=____°, AB_____AC.又∵正方形是平行四边形.∴正方形是______,亦是______.∴∠A___∠B___∠C___∠D =____°,AB___BC___CD___AD.已知:如图,四边形ABCD是正方形.对角线AC、BD相交于点O.求证:AO=BO=CO=DO,AC⊥BD.证明:∵正方形ABCD是矩形,∴AO___BO___CO___DO.∵正方形ABCD是菱形.∴AC___BD.想一想请同学们拿出准备好的正方形纸片,折一折,观察并思考.正方形是不是轴对称图形?如果是,那么对称轴有几条?要点归纳:平行四边形、矩形、菱形、正方形之间关系:正方形的性质:1.正方形的四个角都是直角,四条边相等.2.正方形的对角线相等且互相垂直平分. 【典例探究】例1如图,在正方形ABCD中,ΔBEC是等边三角形.求证:∠EAD=∠EDA=15°.DAB CE变式题 1 四边形ABCD是正方形,以正方形ABCD的一边作等边△ADE,求∠BEC的大小.易错提醒:因为等边△ADE与正方形ABCD有一条公共边,所以边相等.本题分两种情况:等边△ADE在正方形的外部或在正方形的内部.变式题2 如图,在正方形ABCD内有一点P满足AP=AB,PB=PC,连接AC、PD.(1)求证:△APB≌△DPC;(2)求证:∠BAP=2∠PAC.例3 如图,在正方形ABCD中,P为BD上一点,PE⊥BC于E,PF⊥DC于F.试说明:AP=EF.方法总结:在正方形的条件下证明两条线段相等:通常连接对角线构造垂直平分的模型,利用垂直平分线性质,角平分线性质,等腰三角形等来说明.【跟踪练习】1.正方形具有而矩形不一定具有的性质是( )A.四个角相等B.对角线互相垂直平分C.对角互补D.对角线相等2.正方形具有而菱形不一定具有的性质()A.四条边相等B.对角线互相垂直平分C.对角线平分一组对角D.对角线相等3.如图,四边形ABCD是正方形,对角线AC与BD相交于点O,AO=2,求正方形的周长与面积.三、知识梳理内容正方形的性质定义:有一组邻相等,并且有一个角是直角的平行四边形叫做正方形.性质:1.四个角都是直角2.四条边都相等3.对角线相等且互相垂直平分四、学习过程中我产生的疑惑【学习检测】1.平行四边形、矩形、菱形、正方形都具有的是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.对角线互相垂直且相等2.如图,正方形ABCD中,CE⊥MN,∠MCE=35°,那么∠ANM是()A.45°B.55°C.65°D.75°B(解析:因为CE⊥MN,所以∠MCE+∠NMC=90°.所以∠NMC=90°-∠MCE=55°.由题意得AD∥BC,所以∠ANM=∠NMC=55°.故选B.)3.一个正方形的对角线长为2cm,则它的面积是()A.2cm2B.4cm2C.6cm2D.8cm24. 在正方形ABC中,∠ADB=________,∠DAC=_________, ∠BOC=__________.5. 在正方形ABCD中,E是对角线AC上一点,且AE=AB,则∠EBC的度数是___________.6.如图,正方形ABCD中,AC是对角线,E是BC延长线上一点,CE=AC,则∠E=度.22.5(解析:由正方形的性质得∠ACB=45°,又CE=AC,所以∠E=∠EAC,因为∠E+∠EAC=45°,所以∠E=∠EAC=22.5°.)第4题图第5题图7.如图,正方形ABCD的边长为1cm,AC为对角线,AE平分∠BAC,EF⊥AC,求BE的长.8. 如图,正方形ABCD的对角线AC,BD交于点O,∠OCF=∠OBE.试猜想OE与OF的大小关系,并说明理由.解:OE=OF.理由如下:∵四边形ABCD是正方形,∴AC⊥BD,OB=OC,∴∠AOB=∠BOC=90°.又∵∠OCF=∠OBE,∴△OCF≌△OBE,∴OE=OF.9. 如图在正方形ABCD中,E为CD上一点,F为BC边延长线上一点,且CE=CF. BE与DF之间有怎样的关系?请说明理由.10.如左下图,正方形ABCD中,M是BC上任意一点,E在BC的延长线上,MN⊥AM,MN交∠DCE的平分线于N,试猜想AM与MN有怎样的数量关系,并说明理由.【解析】猜想AM=MN,要证AM=MN,如右上图,只需构造并证明△APM≌△MCN即可.解:AM=MN.理由如下:在AB上取一点P,使BP=BM,连接PM,如右上图.∵AB=BC,BP=BM,∴AP=MC,∠BPM=45°,∴∠APM=135°.∵CN平分∠DCE,∴∠MCN=∠APM=135°.∵MN⊥AM,∴∠AMB+∠CMN=90°.∵∠AMB+∠BAM=90°,∴∠BAM=∠CMN.∴△APM≌△MCN.∴AM=MN.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正方形的性质学案
主备人:田爱霞班级:姓名:时间:2012-12-17
学习目标:
1.掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算.2.理解正方形与平行四边形、矩形、菱形的联系和区别重点、难点
学习重点:正方形的定义及正方形与平行四边形、矩形、菱形的联系.
学习难点:正方形与矩形、菱形的关系及正方形性质与判定的灵活运用.导学过程:
一、【拨开眼前迷雾】
二、【探究新知】
1:正方形定义:
(1)有一组相等的矩形是正方形
(2)有一个角是的菱形是正方形
总结:正方形判定:
矩形+()=正方形
菱形+()=正方形
()+ ()+平行四边形=正方形
2:正方形性质:
正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形.
所以,正方形具有的性质,同时又具有的性质.
边:对边,四边;
角:四个角都是;
对角线:对角线相等,互相,每条对角线平分一组.
对称性:既是对称图形,又是对称图形。
三、夯实基础
1、如图,四边形ABCD是正方形,两条对角线相交于点O.
(1)一条对角线把它分成_______个全等的________ 三角形;
(2)两条对角线把它分成_______个全等的________三角形;图中一共有________个等腰直角三角形;
(4)AO: AB: AC=________.
2、正方形具有而矩形不一定具有的性质是( )
A、四个角相等
B、对角线互相垂直平分
C、对角互补
D、对角线相等.
3、正方形具有而菱形不一定具有的性质()
A、四条边相等
B、对角线互相垂直平分
C、对角线平分一组对角
D、对角线相等.
4、正方形对角线长6,则它的面积为_________ ,周长为________.
四、【归纳小结】 正方形的定义及判定方法
五、【达标检测】
1.正方形的四条边____ ,四个角___ _,两条对角线____ ____. 2.下列说法是否正确,并说明理由.
①对角线互相垂直的矩形是正方形;( ) ②对角线相等的菱形是正方形;( )
③对角线垂直且相等的平行四边形是正方形;( ) ④对角线垂直平分且相等的四边形是正方形;( ) ⑤四条边都相等的四边形是正方形;( ) ○
6四个角相等的四边形是正方形.( ) 3.如图,一张矩形纸片,要折叠出一个最大的正方形, 小明把矩形的一个角沿折痕AE 翻折上去,使AB 和AD 边上的AF 重合,则四边形ABEF 就是一个最大的正方形,你能说出他使用的判定方法吗?
F
E D
C
B
A
4、ABCD是一块正方形场地,小华和小芳在AB边上取定了
一点E,测量知,EC=15m,EB=5m,求这块地的面积和对角
线长分别是多少?
5、如图,正方形ABCD的对角线相交于点O,在AC上取一点E,使CE=CB,求∠BDE的度数。
6、如图,点E是正方形ABCD内的一点,且AE=EB=AB,求∠CDE的度数。