九年级第一次月考数学试卷+答案

合集下载

部编数学九年级上册第一次九上册数学月考解析版含答案

部编数学九年级上册第一次九上册数学月考解析版含答案

人教版九年级上册第一次月考模拟卷考试范围:第21-22.1.3章;考试时间:120分钟;姓名:注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一、单选题1.(2022·山东烟台·八年级期末)下列方程中,关于x的一元二次方程是()A.x2﹣x(x+3)=0B.ax2+bx+c=0C.x2﹣2x+3=0D.x2﹣2y﹣1=0【答案】C【分析】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:A、x2﹣x(x+3)=0,化简后为﹣3x=0,不是关于x的一元二次方程,故此选项不合题意;B、ax2+bx+c=0,当a=0时,不是关于x的一元二次方程,故此选项不合题意;C、x2﹣2x+3=0是关于x的一元二次方程,故此选项符合题意;D、x2﹣2y﹣1=0含有2个未知数,不是关于x的一元二次方程,故此选项不合题意;故选:C.【点睛】此题主要考查了一元二次方程的定义,解题的关键是判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.x=,则m的值为2.(2022·全国·九年级专题练习)已知关于x的一元二次方程230+-=的一个根是1x x m()A.2B.4C.-4D.-2【答案】B【分析】把x=1代入方程230+-=得1+3-m=0,然后解关于m的方程即可.x x mx=,【详解】解:∵关于x的一元二次方程230x x m+-=的一个根是1∴1+3-m=0,m=.解得4故选B.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.(2022·浙江温州·八年级期末)把一元二次方程()213x x x -=-化为一般形式,正确的是( )A .2230x +=B .22230x x --=C .2220x x -+=D .22230x x -+=【答案】D【分析】将方程整理为一般式即可.【详解】解:()213x x x -=-,223x x x -=-,即22230x x -+=.故选:D .【点睛】本题考查一元二次方程的一般式,掌握一元二次方程的一般式的形式为20(a 0)++=¹ax bx c 是解题的关键.4.(2022·内蒙古赤峰·一模)将一元二次方程2650x x -+=化成2()x h k +=的形式,则k 等于( )A .5-B .4C .9D .14【答案】B【分析】先将常数项移到右边,再在方程两边同时加上一次项系数一半的平方,即加上9,计算即可.【详解】解:∵2650x x -+=x 2-6x =-5x 2-6x +9=-5+9(x -3)2=4∴k =4,故选:B .【点睛】本题考查配方法,熟练掌握配方法的一般步骤是解题的关键.5.(2022·河南商丘·三模)下列关于x 的方程中,一定有两个不相等实数根的是( )A .220220x kx -+=B .220220x kx +-=C .220220x x k -+=D .220220x x k +-=【答案】B【分析】先求出V 的值,再比较出其与0的大小即可求解.【详解】解:A.()22420228088k k =--´=-V ,不能判断大小,不符合题意;B.()224202280880k k =-´-=+>V ,此选项符合题意;C.()222022420224k k =--=-V ,不能判断大小,不符合题意;D.()222022420224k k =-´-=+V ,不能判断大小,不符合题意.故选:B .【点睛】本题考查的是根的判别式,熟知一元二次方程的根与V 的关系是解答此题的关键.6.(2022·北京·九年级专题练习)某长方体木块的底面是正方形,它的高比底面边长还多50cm ,把这个长方体表面涂满油漆时,如果每平方米费用为16元,那么总费用与底面边长满足的函数关系是( )A .正比例函数关系B .一次函数关系C .反比例函数关系D .二次函数关系【答案】D【分析】设底面边长为x cm ,则正方体的高为(x +50)cm ,设总费用为y 元,则可表示出y 与x 的函数关系,根据关系式即可作出选择.【详解】设底面边长为x cm ,则正方体的高为(x +50)cm ,设总费用为y 元,由题意得:2216[24(50)]963200y x x x x x =++=+,这是关于一个二次函数.故选:D .【点睛】本题考查了列函数关系并判断函数形式,关键是根据题意列出函数关系式.7.(2021·黑龙江牡丹江·九年级阶段练习)若抛物线21(1)ay a x -=-的对称轴的左侧,y 随x 的增大而增大,则a 的值为( )A B .C .D .0【点睛】本题考查二次函数的性质和定义,解答本题的关键是掌握二次函数的性质,求出a 的值.8.(2022·全国·九年级专题练习)对于二次函数y =x 2-4x -1的图象,下列叙述正确的是( )A .开口向下B .对称轴为直线x =2C .顶点坐标为(-2,-5)D .当x ≥2时,y 随x 增大而减小【答案】B【分析】根据题目中的抛物线的解析式以及二次函数的性质可以判断各个选项中的说法是否正确.【详解】解:∵224125y x x x =--=--(),∴该函数图象开口向上,对称轴为直线2x =,顶点坐标为(2,-5),∴当2x ³时,y 随x 的增大而增大,故选项B 符合题意,故选:B .【点睛】本题考查二次函数的图象和性质,解答本题的关键是明确题意,利用二次函数的性质解答.9.(2022·全国·九年级)函数y =ax -a 和22y ax =+(a 为常数,且0a ¹),在同一平面直角坐标系中的大致图象可能是( )A .B .C .D .【答案】C【分析】先根据22y ax =+的顶点坐标为()0,2,判断A ,B 不符合题意,再由C ,D 中的二次函数的图象判断0,a < 则0,a -> 从而可得答案.【详解】解:由22y ax =+的顶点坐标为()0,2,故A ,B 不符合题意;由C ,D 中二次函数的图象可得:0,a <0,a \->\ 函数y =ax -a 过一,二,四象限,故C 符合题意,D 不符合题意,故选C【点睛】本题考查的是一次函数与二次函数的图象共存的问题,掌握“一次函数与二次函数的图象与性质”是解本题的关键.10.(2022·全国·九年级课时练习)已知二次函数2()y x h =-(h 为常数),当自变量x 的值满足1≤x ≤3时,其对应的函数值y 的最小值为1,则h 的值为( )A .2或4B .0或4C .2或3D .0或3【答案】B【分析】根据函数的对称轴为:x=h 和13x ££的位置关系,分三种情况讨论即可求解.【详解】解:函数的对称轴为:x=h ,①当3h ³时,x =3时,函数取得最小值1,即2(3)1h -=,解得h =4或h =2(舍去);②当1h £时,x =1时,函数取得最小值1,即2(1)1h -=,解得h =0或h =2(舍去);③当13h <<时,x=h 时,函数取得最小值1,不成立,综上,h =4或h =0,故选:B .【点睛】此题考查函数的最值,函数的对称轴,分情况讨论解决问题是解此题的关键.第II 卷(非选择题)二、填空题11.(2022·江苏南京·八年级期末)方程(x ﹣1)2=6的解是_____.12.(2021·上海浦东新·九年级期末)如果(2,y 1)(3,y 2)是抛物线y =(x +1)2上两点,那么y 1_____y 2.(填“>”或“<”)【答案】<【分析】根据二次函数的性质得到抛物线y =(x +1)2的开口向上,对称轴为直线x =﹣1,则在对称轴右侧,y 随x 的增大而增大.【详解】解:∵y =(x +1)2,∴a =1>0,∴抛物线开口向上,∵抛物线y =(x +1)2对称轴为直线x =﹣1,∵﹣1<2<3,∴y 1<y 2.故答案为<.【点睛】本题考查了2()y a x h =-的性质,求得对称轴是解题的关键.13.(2021·黑龙江牡丹江·九年级阶段练习)将抛物线y =x 2先向右平移6个单位长度,向下平移8个单位长度,此时抛物线的顶点与原点O 的距离为 _____.【答案】10【分析】先得到抛物线2y x =的顶点坐标为(0,0),再利用点的平移规律得到点(0,0)平移后对应点的坐标为(6,﹣8),然后根据勾股定理即可求得.【详解】∵抛物线2y x =的顶点坐标为(0,0)∴抛物线向右平移6个单位长度,再向下平移8个单位长度后得到对应点的坐标为(6,-8)14.(2023·河北·九年级专题练习)在一元二次方程220-+=中,若20x ax b->,则称a是该方程的中a b点值.(1)方程2830-+=的中点值是______;x x(2)已知20x mx n-+=的中点值是3,其中一个根是2,则此时mn的值为______.故答案为:4;48.【点睛】本题考查了新定义概念,解决本题的关键是充分理解新定义的含义.三、解答题15.(2022·湖北武汉·九年级阶段练习)请按指定的方法解方程.(1)用公式法解方程:x 2﹣x ﹣5=0;216.(2022·全国·九年级期中)已知关于x 的一元二次方程2(2)10x m x m -+++=.(1)如果该方程有两个相等的实数根,求m 的值;(2)如果该方程有一个根小于0,求m 的取值范围.【答案】(1)0m =(2)1m <-【分析】(1)根据题意,利用判别式0D =即可求解.(2)利用因式分解变形得[]2(2)1(1)(1)x m x m x x m -+++=--+,可得方程的解,再根据方程有一个根小于0即可求解.(1)解:依题意,得:22[(2)]4(1)m m m D =-+-+= ,∵方程有两个相等的实数根,∴20m =,∴0m =.(2)解:[]2(2)1(1)(1)0x m x m x x m -+++=--+=解得11x m =+,21x = ,∵方程有一个根小于0,∴10+<m ,∴1m <-.【点睛】本题考查了一元二次方程的判别式及根据根的情况求参数问题,熟练掌握一元二次方程根的判别式是解题的关键.用因式分解法解含在参数的一元二次方程是本题的难点.17.(2020·浙江·八年级期中)(1)已知a =+b =22a b ab +的值.(2)已知210x +=,求221x x +的值;(3)用配方法求代数式2611y y -+的最小值.18.(2022·全国·九年级课时练习)二次函数y=ax2+c (a≠0)的图象经过点A(1,-1),B(2,5),(1)求函数y=ax2+c的表达式.(2)若点C(-2,m),D(n ,7)也在函数的图象上,求点C的坐标;点D的坐标.19.(2022·全国·九年级课时练习)已知抛物线y=a (x-h )2+k 的图象如图所示,根据图象解答下列问题:(1)写出抛物线的解析式;(2)写出y 随x 的增大而增大的自变量x 的取值范围;(3)当自变量x 取何值时,函数y 有最大值?最大值为多少?【答案】(1)22(2)2y x =--+;(2)2x <;(3)当2x =时,y 有最大值,最大值为2【分析】(1)根据图象可知,抛物线的顶点坐标为(2,2),且过点(1,0),设顶点式2(2)2y a x =-+,将(1,0)代入解析式,即可求得a 的值,进而求得抛物线的解析式;(2)根据函数图象可知,在对称轴的左侧,y 随x 的增大而增大;(3)根据图象可知,抛物线的顶点坐标为(2,2),且开口朝下,进而求得当2x =时,最值为2.【详解】(1)根据图象可知,抛物线的顶点坐标为(2,2),且过点(1,0),设顶点式2(2)2y a x =-+,将(1,0)代入得,20(12)2a =-+,解得2a =-,\抛物线的解析式为22(2)2y x =--+;(2)根据函数图象可知,在对称轴的左侧,y 随x 的增大而增大,即2x <时,y 随x 的增大而增大,(3)根据图象可知,抛物线的顶点坐标为(2,2),且开口朝下,\当2x =时,y 有最大值,最大值为2.【点睛】本题考查了二次函数2()y a x h k =-+的图象与性质,掌握2()y a x h k =-+的图象与性质是解题的关键.20.(2022·江苏南京·模拟预测)某校举办了“冰雪运动进校园”活动,计划在校园一块矩形的空地上铺设两块完全相同的矩形冰场.如下图所示,已知空地长27m ,宽12m ,矩形冰场的长与宽的比为4:3,如果要使冰场的面积是原空地面积的23,并且预留的上、下通道的宽度相等,左、中、右通道的宽度相等,那么预留的上、下通道的宽度和左、中、右通道的宽度分别是多少米?21.(2022·全国·九年级单元测试)如图,抛物线的顶点为C (1,9),与x 轴交于A ,B (4,0)两点.(1)求抛物线的解析式;(2)抛物线与y 轴交点为D ,求BCD S △.【答案】(1)y =-x 2+2x +8;(2)S △BCD =6.【分析】(1)设抛物线的解析式为y =a (x -1)2+9,把点(4,0)代入可求得a =-1,据此即可求解;(2)过点C 作CE ⊥y 轴于点E ,利用S △BCD = S 梯形OBCE -S △ECD -S △OBD 计算即可求解.(1)解:∵抛物线的顶点为C (1,9),∴设抛物线的解析式为y =a (x -1)2+9,∵抛物线与x 轴交于点B (4,0),∴a (4-1)2+9=0,解得:a =-1,∴抛物线的解析式为y =-(x -1)2+9=-x 2+2x +8;(2)解:过点C 作CE ⊥y 轴于点E ,∵抛物线与y轴交点为D,∴D(0,8),---路线运动,到22.(2022·河北唐山·八年级期中)如图1,90∠=∠=︒,点P从A出发,沿A B C DB CS与x(秒)的图像.D停止;点P的速度为每秒1cm,运动时间为x秒,如图1是ABP△的面积()2cm(1)______时间段内点P在线段AB上运动;______时间段内点P在线段BC上运动;(2)根据题目中提供的信息,请你推断出图1中的AB=______cm;BC=______cm;CD=______cm;图2中的m=______2cm;=.(3)当点P运动______秒时,AP PD【答案】(1)0到2;2到5(2)2;3;1;3(3)323.(2021·福建·漳州市第七中学九年级阶段练习)今年是我国脱贫胜利年,我国在扶贫方面取得了巨大的成就,技术扶贫也使得我省某县的一个电子器件厂脱贫扭亏为盈.该电子器件厂生产一种电脑显卡,2019年该类电脑显卡的出厂价是200元/个,2020年,2021年连续两年在技术扶贫的帮助下改进技术,降低成本,2021年该电脑显卡的出厂价调整为162元/个.(1)这两年此类电脑显卡出厂价下降的百分率相同,则平均每年下降的百分率是;(2)2021年某赛格电脑城以出厂价购进若干个此类电脑显卡,以200元/个销售时,平均每天可销售20个.为了减少库存,商场决定降价销售.经调查发现,单价每降低5元,每天可多售出10个,如果每天盈利1150元,单价应降低多少元?。

九年级数学第一次月考卷(沪科版)(解析版)【测试范围:第二十一章】

九年级数学第一次月考卷(沪科版)(解析版)【测试范围:第二十一章】

2024-2025学年九年级数学上学期第一次月考卷基础知识达标测(考试时间:150分钟试卷满分:120分)考前须知:1.本卷试题共23题,单选10题,填空4题,解答9题。

2.测试范围:第二十一章(沪科版)。

第Ⅰ卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列函数:①y=32;②y=2x2;③y=x(3﹣5x);④y=(1+2x)(1﹣2x),是二次函数的有( )A.1个B.2个C.3个D.4个【分析】利用二次函数定义进行分析即可.【解答】解:①y=3―2;③y=x(3﹣5x);④y=(1+2x)(1﹣2x),是二次函数,共3个,故选:C.2.(4分)已知反比例函数y=―6x,下列说法中正确的是( )A.该函数的图象分布在第一、三象限B.点(2,3)在该函数图象上C.y随x的增大而增大D.该图象关于原点成中心对称【分析】根据反比例函数的解析式得出函数的图象在第二、四象限,函数的图象在每个象限内,y 随x的增大而增大,再逐个判断即可.【解答】解:A.∵反比例函数y=―6x中﹣6<0,∴该函数的图象在第二、四象限,故本选项不符合题意;B.把(2,3)代入y=―6x得:左边=3,右边=﹣3,左边≠右边,∴点(2,3)不在该函数的图象上,故本选项不符合题意;C.∵反比例函数y=―6x中﹣6<0,∴函数的图象在每个象限内,y随x的增大而增大,故本选项不符合题意;D.反比函数y=―6x的图象在第二、四象限,并且图象关于原点成中心对称,故本选项符合题意;故选:D.3.(4分)如果将抛物线y=x2﹣2平移,使平移后的抛物线与抛物线y=x2﹣8x+9重合,那么它平移的过程可以是( )A.向右平移4个单位,向上平移11个单位B.向左平移4个单位,向上平移11个单位C.向左平移4个单位,向上平移5个单位D.向右平移4个单位,向下平移5个单位【分析】根据平移前后的抛物线的顶点坐标确定平移方法即可得解.【解答】解:∵抛物线y=x2﹣8x+9=(x﹣4)2﹣7的顶点坐标为(4,﹣7),抛物线y=x2﹣2的顶点坐标为(0,﹣2),∴顶点由(0,﹣2)到(4,﹣7)需要向右平移4个单位再向下平移5个单位.故选:D.4.(4分)已知二次函数y=ax2+bx+c中的y与x的部分对应值如下表:x…﹣1012…y…﹣5131…则下列判断正确的是( )A.抛物线开口向上B.抛物线与y轴交于负半轴C.当x>1时,y随x的增大而减小D.方程ax2+bx+c=0的正根在3与4之间【分析】结合图表可以得出当x=0或2时,y=1,可以求出此函数的对称轴是直线x=1,顶点坐标为(1,3),借助(0,1)两点可求出二次函数解析式,从而得出抛物线的性质.【解答】解:∵由图表可以得出当x=0或2时,y=1,可以求出此函数的对称轴是直线x=1,顶点坐标为(1,3),∴二次函数解析式为:y=a(x﹣1)2+3,再将(0,1)点代入得:1=a(﹣1)2+3,解得:a=﹣2,∴y=﹣2(x﹣1)2+3,∵a<0∴A,抛物线开口向上错误,故A错误;∵y=﹣2(x﹣1)2+3=﹣2x2+4x+1,与y轴交点坐标为(0,1),故与y轴交于正半轴,故B错误;∵当x>1时,y随x的增大而减小时正确的,故C正确;∵方程ax2+bx+c=0,△=16+4×2×1=22>0,此方程有两个不相等的实数根,由表正根在2和3之间;故选:C.5.(4分)若点(x1,y2)、(x2,y2)和(x3,y3)分别在反比例函数y=―2x的图象上,且x1<x2<0<x3,则下列判断中正确的是( )A.y1<y2<y3B.y3<y1<y2C.y2<y3<y1D.y3<y2<y1【分析】根据所给反比例函数解析式,得出y随x的变化情况,据此可解决问题.【解答】解:因为反比例函数的解析式为y=―2 x ,所以反比例函数的图象位于第二、四象限,且在每一个象限内y随x的增大而增大.因为x1<x2<0<x3,所以0<y1<y2,y3<0,所以y3<y1<y2.故选:B.6.(4分)如表中列出了二次函数y=ax2+bx+c(a≠0)的一些对应值,则一元二次方程ax2+bx+c=0(a≠0)的一个近似解x1的范围是( )x…﹣3﹣2 ﹣1 0 1 …y…﹣11﹣5 ﹣1 1 1 …A.﹣3<x1<﹣2B.﹣2<x1<﹣1C.﹣1<x1<0D.0<x1<1【分析】根据函数的增减性:函数在[﹣1,0]上y随x的增大而增大,可得答案.【解答】解:当x=﹣1时,y=﹣1,x=1时,y=1,函数在[﹣1,0]上y随x的增大而增大,得一元二次方程ax2+bx+c=0(a≠0)的一个近似解在﹣1<x1<0,故选:C.7.(4分)已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+c的图象和反比例函数y=a―b+cx的图象在同一坐标系中大致为( )A.B.C.D.【分析】先根据二次函数的图象开口向下和对称轴可知b<0,由抛物线交y的正半轴,可知c>0,由当x=﹣1时,y<0,可知a﹣b+c>0,然后利用排除法即可得出正确答案.【解答】解:∵二次函数的图象开口向下,∴a<0,∵―b2a<0,∴b<0,∵抛物线与y轴相交于正半轴,∴c>0,∴直线y=bx+c经过一、二、四象限,由图象可知,当x=﹣1时,y>0,∴a﹣b+c>0,∴反比例函数y=a―b+cx的图象必在一、三象限,故B、C、D错误,A正确;故选:A.8.(4分)若二次函数y=ax2+bx+c的图象经过A(x1,y1)、B(x2,y2)、C(2﹣m,n)、D(m,n)(y1≠n)则下列命题正确的是( )A.若a>0且|x1﹣1|>|x2﹣1|,则y1<y2B.若a<0且y1<y2,则|1﹣x1|<|1﹣x2|C.若|x1﹣1|>|x2﹣1|且y1>y2,则a<0D.若x1+x2=2(x1≠x2),则AB∥CD【分析】根据D(m,n)、C(2﹣m,n)两点可确定抛物线的对称轴,再利用二次函数的性质一一判断即可.【解答】解:∵抛物线过点D(m,n),C(2﹣m,n)两点,∴抛物线的对称轴为x=2―m+m2=1,若a>0且|x1﹣1|>|x2﹣1|,则y1>y2,故选项A错误,若a<0且y1<y2,则|1﹣x1|>|1﹣x2|,故选项B错误,若|x1﹣1|>|x2﹣1|且y1>y2,则a>0,故选项C错误,若x1+x2=2(x1≠x2),则AB∥CD,故选项D正确.故选:D.9.(4分)如图,抛物线y=ax2+bx+c(a≠0)交x轴于A(﹣1,0),B两点,与y轴的交点C在(0,3),(0,4)之间(包含端点),抛物线对称轴为直线x=1,有以下结论:①abc>0;②3a+c=0;③―43≤a≤―1;④a+b≤am2+bm(m为实数);⑤方程ax2+bx+c﹣3=0必有两个不相等的实根.其中结论正确有( )A.1个B.2个C.3个D.4个【分析】根据所给函数图象可得出a,b,c的正负,再结合抛物线的对称性和增减性即可解决问题.【解答】解:由函数图象可知,a<0,b>0,c>0,所以abc<0.故①错误.因为抛物线与x轴的一个交点坐标为(﹣1,0),所以a﹣b+c=0.又因为抛物线的对称轴为直线x=1,所以―b2a=1,即b=﹣2a,所以a﹣(﹣2a)+c=0,即3a+c=0.故②正确.因为点C在(0,3),(0,4)之间(包含端点),所以3≤c≤4.又因为c=﹣3a,则3≤﹣3a≤4,解得―43≤a≤―1.故③正确.因为抛物线开口向下,且对称轴为直线x=1,所以当x=1时,函数取得最大值:a+b+c.则抛物线上的任意一点(横坐标为m)的纵坐标都不大于a+b+c,即am2+bm+c≤a+b+c,故a+b≥am2+bm.故④错误.方程ax2+bx+c﹣3=0的根可看成函数y=ax2+bx+c与直线y=3交点的横坐标,显然两个图象有两个不同的交点,所以方程ax2+bx+c﹣3=0必有两个不相等的实根.故⑤正确.故选:C.10.(4分)在平面直角坐标系中,我们把横坐标和纵坐标互为相反数的点称为“相反点”,例如点(1,﹣1),(―…,都是“相反点”,若二次函数y=ax2+3x+c(a≠0)的图象上有且只有一个“相反点”(2,﹣2),当﹣1≤x≤m时,二次函数y=ax2+3x+c(a≠0)的最小值为﹣8,最大值为―74,则m的取值范围为( )A.﹣1≤m≤4B.―1≤m≤32C.32≤m≤4D.32≤m≤5【分析】把(2,﹣2)代入y=ax2+3x+c,求出a、c的关系,再根据二次函数图象上有且只有一个“相反点”,结合Δ=b2﹣4ac求出a、c的值,得出y=﹣x2+3x﹣4,化为顶点式,可得出该二次函数的最值,再根据当y=﹣8时,求出x的值即可.【解答】解:∵点(2,﹣2)是二次函数y=ax2+3x+c(a≠0)的“相反点”,∴﹣2=4a+6+c,∴c=﹣4a﹣8,∵二次函数y=ax2+3x+c(a≠0)的图象上有且只有一个“相反点”,∴ax2+3x+c=﹣x(即ax2+4x+c=0)有且只有一个根,∴Δ=16﹣4ac=0,∴16﹣4a(﹣4a﹣8)=0,解得,a=﹣1,c=﹣4×(﹣1)﹣8=﹣4∴y=﹣x2+3x﹣4=﹣(x―32)2―74,二次函数图象的对称轴为直线x=32,函数的最大值为―74,当y=﹣8时,﹣x2+3x﹣4=﹣8,解得,x1=﹣1,x2=4,当32≤m ≤4时,函数的最大值为―74,最小值为﹣8.故选:C .二.填空题(共4小题,满分20分,每小题5分)11.(5分)若函数y =(m +2)x 3―m 2是反比例函数,则m 的值为  .【分析】形如y =kx(k 为常数,k ≠0)的函数叫做反比例函数,也可写成y =kx ﹣1(k 为常数,k ≠0),由此解答即可.【解答】解:若函数y =(m +2)x 3―m 2是反比例函数,则3﹣m 2=﹣1,解得m =±2,∵m +2≠0,∴m ≠﹣2,∴m =2,故答案为:2.12.(5分)若抛物线y =x 2+2x +c 的顶点在x 轴上,则c = .【分析】根据x 轴上点的,纵坐标是0,列出方程求解即可.【解答】解:∵抛物线的顶点在x 轴上,∴y =4ac―b 24a =4c―224×1=0,解得c =1.故答案为:1.13.(5分)如图,在△OAB OA 在y 轴上.反比例函数y =kx(x >0)的图象恰好经过点B ,与边AB 交于点C .若BC =3AC ,S △OAB =10.则k 的值为  .【分析】根据BC =3AC ,S △OAB =10可得S △COB =152,再根据反比例函数k 值的几何意义列出方程12×(k m +k 4m )×(4m ―m)=152求出k 即可.【解答】解:∵BC =3AC ,S △OAB =10.∴S△COB =34×10=152,设点C(m,km),则B(4m,k4m),∵S△COB =S梯形BCDE=152,∴12×(km+k4m)×(4m―m)=152,解得:k=4.故答案为:4.14.(5分)抛物线y=ax2﹣4x+5的对称轴为直线x=2.(1)a= ;(2)若抛物线y=ax2﹣4x+5+m在﹣1<x<6内与x轴只有一个交点,则m的取值范围是 .【分析】(1)由抛物线y=ax2﹣4x+5的对称轴为直线x=2,得――42a=2,即有a=1;(2)①抛物线y=x2﹣4x+5+m的顶点是(2,0),可得0=4﹣4×2+5+m,解得m=﹣1,②当x=﹣1和x=6时,对应的函数值异号,故10+m>017+m<0或10+m<017+m>0,解得﹣17<m<﹣10,当m=﹣17时,抛物线y=x2﹣4x+5+m在﹣1<x<6没有交点,当m=﹣10时,抛物线y=x2﹣4x+5+m 在﹣1<x<6有一个交点(5,0),即可得m=﹣1或﹣17<m≤﹣10.【解答】解:(1)∵抛物线y=ax2﹣4x+5的对称轴为直线x=2.∴――42a=2,∴a=1;故答案为:a=1;(2)由(1)知:a=1,∴抛物线y=ax2﹣4x+5+m为y=x2﹣4x+5+m,∴由Δ≥0得m≤﹣1,∵对称轴为直线x=2,∴抛物线y=x2﹣4x+5+m在﹣1<x<6内与x轴只有一个交点,分两种情况:①抛物线y=x2﹣4x+5+m的顶点是(2,0),∴0=4﹣4×2+5+m,解得m=﹣1,②当x=﹣1和x=6时,对应的函数值异号,而当x=﹣1时,y=10+m,x=6时,y=17+m,∴10+m>017+m<0或10+m<017+m>0,解得﹣17<m<﹣10,当m=﹣17时,抛物线y=x2﹣4x+5+m在﹣1<x<6没有交点,当m=﹣10时,抛物线y=x2﹣4x+5+m在﹣1<x<6有一个交点(5,0),符合题意,综上所述,m取值范围是m=﹣1或﹣17<m≤﹣10,故答案为:m=﹣1或﹣17<m≤﹣10.三.解答题(共9小题,满分90分)15.(8分)已知:y=y1+y2,并且y1与(x﹣1)成正比例,y2与x成反比例.当x=2时,y=5;当x=﹣2时,y=﹣9.(1)求y关于x的函数解析式;(2)求当x=8时的函数值.【分析】(1)首先设y1=k1(x﹣1),y2=k2x,再根据y=y1+y2可得y=k1(x﹣1)+k2x,然后把x=2时,y=5;当x=﹣2时,y=﹣9代入可得关于k1、k2的方程组,解出k1、k2的值,可得函数解析式;(2)把x=8代入函数解析式可得答案.【解答】解:(1)∵y1与(x﹣1)成正比例,y2与x成反比例,∴设y1=k1(x﹣1),y2=k2 x,∵y=y1+y2,∴y=k1(x﹣1)+k2 x,∵当x=2时,y=5;当x=﹣2时,y=﹣9.∴5=k1+k22―9=―3k1―k22,解得:k1=2k2=6,∴y关于x的函数解析式为y=2(x﹣1)+6 x(2)当x=8时,原式=2×7+34=1434.16.(8分)已知二次函数y=x2﹣(m+2)x+2m﹣1.(1)求证:不论m取何值,该函数图象与x轴总有两个公共点;(2)若该函数图象与y轴交于点(0,3),求该函数的图象与x轴的交点坐标.【分析】(1)令y=0,则x2﹣(m+2)x+2m﹣1=0,计算判别式即可得出结论.(2)先根据图象与y轴交于点(0,3),求出m的值,得出其解析式,再求出y=0时x的值.【解答】(1)证明:令y=0,则x2﹣(m+2)x+2m﹣1=0,∴Δ=[﹣(m+2)2]﹣4(2m﹣1),=m2+4m+4﹣8m+4,=m2﹣4m+8=(m﹣2)2+4≥4,∴Δ>0,∴方程总有两个不相等的实数根,即抛物线与x轴总有两个交点;(2)∵函数的图象与y轴交于点(0,3).∴2m﹣1=3,∴m=2,∴抛物线的解析式为:y=x2﹣4x+3,∵y=x2﹣4x+3=(x﹣2)2﹣1,当y=0时,0=(x﹣2)2﹣1,∴x1=3,x2=1,∴该函数的图象与x轴的交点坐标(3,0)或(1,0).17.(8分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题.(1)写出方程ax2+bx+c=0的两个根: ;(2)写出不等式ax2+bx+c<0的解集: ;(3)写出y随x的增大而减小的自变量x的取值范围 ;(4)若方程ax2+bx+c=k有两个不相等的实数根,直接写出k的取值范围: .【分析】(1)根据图象可知x=1和3是方程的两根;(2)找出函数值小于0时x的取值范围即可;(3)首先找出对称轴,然后根据图象写出y随x的增大而减小的自变量x的取值范围;(4)若方程ax2+bx+c=k有两个不相等的实数根,则k必须小于y=ax2+bx+c(a≠0)的最大值,据此求出k的取值范围.【解答】解:(1)由图象可知,图象与x轴交于(1,0)和(3,0)点,则方程ax2+bx+c=0的两个根为x=1和x=3,故答案为:1和3;(2)由图象可知当x<1或x>3时,不等式ax2+bx+c<0;故答案为:x<1或x>3;(3)由图象可知,y=ax2+bx+c(a≠0)的图象的对称轴为直线x=2,开口向下,即当x>2时,y随x的增大而减小;故答案为:x>2.(4)由图象可知,二次函数y=2+bx+c=k有两个不相等的实数根,则k必须小于y=ax2+bx+c (a≠0)的最大值,故答案为:k<2.18.(8分)如图,在平面直角坐标系中,一次函数y=k1x+b的图象与反比例函数y=k2x的图象交于A(4,﹣2),B(﹣2,n)两点.(1)求反比例函数和一次函数的表达式;(2)连接OA,OB,求△ABO的面积;(3)不等式k1x+b>k2x的解集是 .【分析】(1)把A (4,﹣2)代入反比例函数y =k 2x得出k 2的值,进而求得B 的坐标,再把A 、B 的坐标代入y =k 1x +b ,运用待定系数法分别求其解析式;(2)设一次函数与x 轴交于点C ,由y =﹣x +2即可求得点C 的坐标,把三角形AOB 的面积看成是三角形AOC 和三角形OCB 的面积之和进行计算即可求得;(3)根据图象即可求解.【解答】解:(1)将A (4,﹣2)代入反比例函数解析式得:k 2=﹣8,则反比例解析式为y =―8x;将B (﹣2,n )代入反比例解析式得:n =4,即B (﹣2,4),将A 与B 坐标代入y =k 1x +b 中,得:4k 1+b =―2―2k 1+b =4,解得:k 1=―1b =2,则一次函数解析式为y =﹣x +2;(2)如图所示,设一次函数与x 轴交于点C ,对于一次函数y =﹣x +2,令y =0,得到x =2,即OC =2,则S △AOB =S △AOC +S △BOC =12×22+12×2×4=6.(3)根据函数图象可知:不等式k 1x +b >k 2x的解集为x <﹣2或0<x <4,故答案为:x <﹣2或0<x <4.19.(10分)如图1所示是一座古桥,桥拱截面为抛物线,如图2,AO,BC是桥墩,桥的跨径AB 为20m,此时水位在OC处,桥拱最高点P离水面6m,在水面以上的桥墩AO,BC都为2m.以OC所在的直线为x轴、AO所在的直线为y轴建立平面直角坐标系,其中x(m)是桥拱截面上一点距桥墩AO的水平距离,y(m)是桥拱截面上一点距水面OC的距离.(1)求此桥拱截面所在抛物线的表达式;(2)有一艘游船,其左右两边缘最宽处有一个长方体形状的遮阳棚,此船正对着桥洞在河中航行.当水位上涨2m时,水面到棚顶的高度为3m,遮阳棚宽12m,问此船能否通过桥洞?请说明理由.【分析】(1)先求出点A,点B,点P的坐标,再把抛物线解析式设为顶点式进行求解即可;(2)求出当y=5时x的值,然后计算出两个对应的x的值之间的差的绝对值即可得到答案.【解答】解:(1)由题意知,A(0,2),P(10,6),B(20,2),设抛物线解析式为y=a(x﹣10)2+6,把A(0,2)代入解析式得,100a+6=2,解得a=―1 25,∴此桥拱截面所在抛物线的表达式为y=―125(x―10)2+6;(2)此船不能通过,理由:当y=2+3=5时,―125(x―10)2+6=5,解得x=5或x=15,∵15﹣5=10<12,∴此船不能通过桥洞.20.(10分)为了预防流感,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y(mg)与x(min)成反比例,如图所示,现测得药物9min燃毕,此时室内空气每立方米的含药量为5mg.请你根据题中提供的信息,解答下列问题:(1)分别求出药物燃烧时和药物燃烧后y关于x的函数关系式;(2)研究表明,当空气中每立方米的含药量不低于3mg 且持续时间不低于10min 时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?【分析】(1)直接利用待定系数法分别求出函数解析式;(2)利用y =3时分别代入求出答案.【解答】解:(1)设药物燃烧时y 关于x 的函数关系式为y =k 1x (k 1>0),代入(9,5)得5=9k 1,∴k 1=59,设药物燃烧后y 关于x 的函数关系式为y =k 2x(k 2>0),代入(9,5)得5=k 29,∴k 2=45,∴药物燃烧时y 关于x 的函数关系式为y =59x (0≤x ≤9),药物燃烧后y 关于x 的函数关系式为:y =45x(x >9),∴y =≤x ≤8)(x >8);(2)无效,理由如下:把y =3代入y =59x ,得:x =275,把y =3代入y =45x,得:x =15,∵15―275=485,485<10,∴这次消毒是无效的.21.(12分)在函数的学习中,我们经历了列表、描点、连线画出函数图象,并结合函数图象研究函数性质及其应用的过程,以下是我们研究函数y=(x+1)2―1,x≤11,x>1的性质及其应用的部分过程,请按要求完成下列各小题.x…﹣4﹣3﹣2﹣1012…y…a2―14﹣1―142b…(1)写出表中a,b的值:a= ,b= ;(2)请根据表中的数据在平面直角坐标系中画出该函数的图象,并根据函数图象写出该函数的一条性质: ;(3)若此函数与直线y=m﹣2有2个交点,请结合函数图象,直接写出m的取值范围 .【分析】(1)根据解析式计算即可;(2)利用描点法画出函数图象,观察图象可得函数的一条性质.(3)根据图象即可求解.【解答】解:(1)当x=﹣4时,y=34(﹣4+1)2﹣1=234∴a=23 4,当x=2时,y=2+1=3,∴b=3,故答案为:234,3;(2)画出函数图象如图所示:由图象得:x>1时,y随x的增大而增大;故答案为:x>1时,y随x的增大而增大;(3)由图象可知,若此函数与直线y=m﹣2有2个交点,m的取值范围:m﹣2>﹣1,即m>1.故答案为:m>1.22.(12分)某服装厂生产A品种服装,每件成本为71元,零售商到此服装厂一次性批发A品牌服装x件时,批发单价为y元,y与x之间满足如图所示的函数关系,其中批发件数x为10的正整数倍.(1)当100≤x≤300时,y与x的函数关系式为 .(2)某零售商到此服装厂一次性批发A品牌服装200件,需要支付多少元?(3)零售商到此服装厂一次性批发A品牌服装x(100≤x≤400)件,服装厂的利润为w元,问:x为何值时,w最大?最大值是多少?【分析】(1)利用待定系数法求出一次函数解析式即可;(2)当x=200时,代入y=―110x+110,确定批发单价,根据总价=批发单价×200,进而求出答案;(3)首先根据服装厂获利w元,当100≤x≤300且x为10整数倍时,得出w与x的函数关系式,进而得出最值,再利用当300<x≤400时求出最值,进而比较得出即可.【解答】解:(1)当100≤x≤300时,设y与x的函数关系式为:y=kx+b,根据题意得出:100k+b=100300k+b=80,解得:k=―110 b=110,∴y与x的函数关系式为:y=―110x+110,故答案为:y=―110x+110;(2)当x=200时,y=﹣20+110=90,∴90×200=18000(元),答:某零售商一次性批发A品牌服装200件,需要支付18000元;(3)分两种情况:①当100≤x≤300时,w=(―110x+110﹣71)x=―110x2+39x=―110(x﹣195)2+3802.5,∵批发件数x为10的正整数倍,∴当x=190或200时,w有最大值是:―110(200﹣195)2+3802.5=3800;②当300<x≤400时,w=(80﹣71)x=9x,当x=400时,w有最大值是:9×400=3600,∴一次性批发A品牌服装x(100≤x≤400)件时,x为190或200时,w最大,最大值是3800元.23.(14分)如图,已知:抛物线y=―14x2+bx+c经过点A(0,2)点C(4,0),且交x轴于另一点B.(1)求抛物线的解析式;(2)在直线AC上方的抛物线上有一点M,求△ACM面积的最大值及此时点M的坐标;(3)M点坐标为(2)中的坐标,若抛物线的图象上存在点P,使△ACP的面积等于△ACM面积的一半,则P点的坐标为 .【分析】(1)用待定系数法可得抛物线的解析式为y=―14x2+12x+2;(2)过M作MK∥y轴交AC于K,设M(m,―14m2+12m+2),△ACM面积为S,求出直线AC解析式为y=―12x+2,知K(m,―12m+2),KM=(―14m2+12m+2)﹣(―12m+2)=―14m2+m,故S=12KM•|x C﹣x A|=12×(―14m2+m)×4=―12m2+2m=―12(m﹣2)2+2,根据二次函数性质可得答案;(3)过P作PN∥y轴交AC于N,设P(n,―14n2+12n+2),则N(n,―12n+2),PN=|(―14n2+12n+2)﹣(―12n+2)|=|―14n2+n|,故S△ACP=12PN•|x C﹣x A|=12×|―14n2+n|×4=|―12n2+2n|=12S△ACM=1,解方程组可得答案.【解答】解:(1)把A(0,2)、C(4,0)代入y=―14x2+bx+c得:c=2―4+4b+c=0,解得b=12 c=2,∴抛物线的解析式为y=―14x2+12x+2;(2)过M作MK∥y轴交AC于K,如图:设M(m,―14m2+12m+2),△ACM面积为S,由A(0,2)、C(4,0)得直线AC解析式为y=―12x+2,∴K(m,―12m+2),∴KM=(―14m2+12m+2)﹣(―12m+2)=―14m2+m,∴S=12KM•|x C﹣x A|=12×(―14m2+m)×4=―12m2+2m=―12(m﹣2)2+2,∵―12<0,∴当m =2时,S 取最大值2,此时M (2,2);∴△ACM 面积的最大值是2,此时点M 的坐标为(2,2);(3)过P 作PN ∥y 轴交AC 于N ,设P (n ,―14n 2+12n +2),则N (n ,―12n +2),∴PN =|(―14n 2+12n +2)﹣(―12n +2)|=|―14n 2+n |,∴S △ACP =12PN •|x C ﹣x A |=12×|―14n 2+n |×4=|―12n 2+2n |=12S △ACM=1,解得n =2+22+2―∴P 点的坐标为(22―2+2―故答案为:(2+)或(2―22―。

2024-2025 学年九年级数学上学期第一次月考卷及答案

2024-2025 学年九年级数学上学期第一次月考卷及答案

2024-2025学年九年级数学上学期第一次月考卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:人教版九年级上册21.1-22.1。

6.难度系数:0.8。

第Ⅰ卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知实数x满足(x2﹣x)2﹣4(x2﹣x)﹣12=0,则x2﹣x=()A.﹣2B.6或﹣2C.6D.32.方程中x(x﹣1)=0的根是()A.x1=0,x2=﹣1B.x1=0,x2=1C.x1=x2=0D.x1=x2=13.一次函数y=ax+b与二次函数y=ax2+bx在同一坐标系中的图象大致为()A.B.C.D.4.若关于x的一元二次方程kx2﹣2x+3=0有两个实数根,则k的取值范围是()A.B.C.且k≠0D.5.若方程x 2﹣4x ﹣2=0的两根为x 1,x 2,则+的值为()A .2B .﹣2C .D .6.俗语有云:“一天不练手脚慢,两天不练丢一半,三天不练门外汉,四天不练瞪眼看.”其意思是知识和技艺在学习后,如果不及时复习,那么学习过的东西就会被遗忘.假设每天“遗忘”的百分比是一样的,根据“两天不练丢一半”,则每天“遗忘”的百分比约为(参考数据:)()A .20.3%B .25.2%C .29.3%D .50%7.下列有关函数y =(x ﹣1)2+2的说法不正确的是()A .开口向上B .对称轴是直线x =1C .顶点坐标是(﹣1,2)D .函数图象中,当x <0时,y 随x 增大而减小8.若x =2是方程x 2﹣x +c =0的一个根,则c 的值为()A .1B .﹣1C .2D .﹣29.二次函数y =a (x ﹣t )2+3,当x >1时,y 随x 的增大而减小,则实数a 和t 满足()A .a >0,t ≤1B .a <0,t ≤1C .a >0,t ≥1D .a <0,t ≥110.在解一元二次方程时,小马同学粗心地将x 2项的系数与常数项对换了,使得方程也变了.他正确地解2,另一根等于原方程的一个根.则原方程两根的平方和是()A .B .C .D .第Ⅱ卷二、填空题:本题共5小题,每小题3分,共15分。

人教版九年级上册数学第一次月考试卷及答案

人教版九年级上册数学第一次月考试卷及答案

人教版九年级上册数学第一次月考试题一、单选题1.方程x 2-4x-3=0的一次项系数和常数项分别为()A .4和3B .4和﹣3C .﹣4和﹣3D .﹣4和32.抛物线24y x =-与y 轴的交点坐标为()A .()0,4B .()4,0C .()0,4-D .()4,0-3.把方程x 2﹣4x ﹣1=0转化成(x+m )2=n 的形式,则m ,n 的值是()A .2,3B .2,5C .﹣2,3D .﹣2,54.若关于x 的一元二次方程230x x a -+=的一个根为1,则a 的值为()A .2B .3C .-2D .-15.一元二次方程2x 2-3x +1=0根的情况是()A .只有一个实数根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根6.某年级举办篮球友谊赛,参赛的每两个队之间都要比赛一场,共要比赛36场,则参加此次比赛的球队数是()A .6B .7C .8D .97.已知抛物线y =x 2+x-1经过点P(m ,5),则代数式m 2+m+100的值为()A .104B .105C .106D .1078.把二次函数y =-x 2的图象先向右平移2个单位,再向上平移5个单位后得到一个新图象,则新图象,则新图象所表示的二次函数的解析式是()A .y =-(x -2)2+5B .y =-(x +2)2+5C .y =-(x -2)2-5D .y =-(x +2)2-59.设1(2,)A y -,2(1,)B y -,3(1,)C y ,是抛物线2(1)y x m =+-上的三点,则y 1,y 2,y 3的大小关系为()A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 3>y 1>y 210.已知二次函数y =ax 2+bx+c (a≠0)的图象如图所示,有下列4个结论:①abc >0;②b 2<4ac ;③9a+3b+c <0;④2c <3b .其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题11.方程x2﹣4x=0的解为______.12.方程(m-1)21m x++3x+5=0为一元二次方程,则m的值为___.x x+=______.13.已知方程2+-=的两根分别为1x和2x,则12x x243014.抛物线y=2(x-3)2+1的顶点坐标为_______.15.有一人感染了传染性很强的病毒,经过两轮传染后共有625人患病,每轮传染中平均一人传染______人.16.二次函数y=ax2+bx+c(a≠0)的图象如图所示,请直接写出不等式ax2+bx+c>0的解集_____.x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,17.如图,把抛物线y=12x2交于点Q,则图中阴影部分的面积为.0),它的顶点为P,它的对称轴与抛物线y=12三、解答题18.解方程:2670-+=x x19.已知二次函数y=﹣2x2+5x﹣2.(1)写出该函数的对称轴,顶点坐标;(2)求该函数与坐标轴的交点坐标.20.一条抛物线经过点A(-2,0)且抛物线的顶点是(1,-3),求满足此条件的函数解析式.21.已知关于x的方程x2﹣2(m+1)x+m2﹣3=0的两实根为x1,x2.(1)求m的取值范围;(2)如果x12+x22=x1x2+33,求m的值.22.如图,依靠一面长18米的墙,用34米长的篱笆围成一个矩形场地花圃ABCD,AB边上留有2米宽的小门EF(用其他材料做,不用篱笆围).(1)设花圃的一边AD长为x米,请你用含x的代数式表示另一边CD的长为米;(2)当矩形场地面积为160平方米时,求AD的长.23.某商品的进价为每件20元,售价为每件30元,每个月可卖出180件;如果每件商品的售价每上涨1元,则每个月就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨x元(x为整数),每个月的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;求x为何值时y的值为1920;(2)每件商品的售价为多少元时,每个月可获得最大利润?最大利润是多少.24.阅读下列材料,并用相关的思想方法解决问题.材料:为解方程x4﹣x2﹣6=0可将方程变形为(x2)2﹣x2﹣6=0然后设x2=y,则(x2)2=y2,原方程化为y2﹣y﹣6=0…①解得y1=﹣2,y2=3,当y1=﹣2时,x2=﹣2无意义,舍去;当y2=3时,x2=﹣3,解得x=所以原方程的解为x1x2问题:(1)在原方程得到方程①的过程中,利用法达到了降次的目的,体现了的数学思想;(2)利用以上学习到的方法解下列方程(x2+5x+1)(x2+5x+7)=7.-,与y 25.如图,抛物线2y x bx c=++与x轴交于A,B两点,其中点A的坐标为(3,0)D--在抛物线上.轴交于点C,点(2,3)(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P,求出PA PD的最小值;△的面积为6,求点Q的坐标.(3)若抛物线上有一动点Q,使ABQ参考答案1.C【分析】根据ax2+bx+c=0(a,b,c是常数且a≠0)a,b,c分别叫二次项系数,一次项系数,常数项,可得答案.【详解】解:x2-4x-3=0的一次项系数和常数项分别为-4,-3.故选:C.【点睛】本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c 是常数且a≠0)特别要注意a≠0的条件.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2.C【解析】【分析】求图象与y轴的交点坐标,令x=0,求y即可.【详解】当x=0时,y=-4,所以y轴的交点坐标是(0,-4).故选:C.【点睛】主要考查了二次函数图象与y轴的交点坐标特点,解题的关键是熟知函数图像的特点.3.D【解析】【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得出答案.【详解】解:∵x2﹣4x﹣1=0,∴x2﹣4x=1,则x2﹣4x+4=1+4,即(x﹣2)2=5,∴m=﹣2,n=5,故选:D.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的集中常用方法:直接开方法、因式分解法、公式法、配方法,结合方程特点选择合适、简便的方法是解题关键.4.A【解析】【分析】根据方程的解的定义,把x=1代入方程,即可得到关于a的方程,再求解即可.【详解】解:根据题意得:1-3+a=0解得:a=2.故选A.【点睛】本题主要考查了一元二次方程的解的定义,特别需要注意的条件是二次项系数不等于0.5.B 【解析】【分析】根据一元二次方程根的判别式24b ac -与0的大小关系,即可得出方程根的情况.【详解】解:2x 2-3x +1=0,2,3,1a b c ==-=,∴224(3)42110b ac -=--⨯⨯=>,∴方程有两个不相等的实数根,故选:B .【点睛】本题主要考查了一元二次方程根的判别式,解题的关键在于掌握根的判别式的应用,即240b ac ->,方程有两个不相等的实数根;240b ac -=,方程有两个相等的实数根;240b ac -<,方程无实数根.6.D 【解析】【分析】根据球赛问题模型列出方程即可求解.【详解】解:设参加此次比赛的球队数为x 队,根据题意得:12x (x ﹣1)=36,化简,得x 2﹣x ﹣72=0,解得x 1=9,x 2=﹣8(舍去),答:参加此次比赛的球队数是9队.故选:D .【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握一元二次方程应用问题中的球赛问题.7.C【解析】【分析】把P(m,5)代入y=x2+x﹣1得m2+m=6,然后利用整体代入的方法计算代数式的值.【详解】解:把P(m,5)代入y=x2+x﹣1得m2+m﹣1=5,所以m2+m=6,所以m2+m+100=6+100=106.故选:C.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式,也考查了整体思想的应用.8.A【解析】【分析】根据函数图象“左加右减,上加下减”可得答案.【详解】解:把二次函数y=-x2的图象先向右平移2个单位,再向上平移5个单位后得到一个新图象是y=-(x-2)2+5,故选:A.【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.9.D【解析】【分析】根据二次函数的对称性,可利用对称性,找出点C的对称点C ,再利用二次函数的增减性可判断y值的大小.【详解】解: 函数的解析式是2(1)y x m =+-,∴对称轴是直线1x =-,∴点C 关于对称轴的点C '是1(3,)y -,那么点A 、B 、C '都在对称轴的左边,而对称轴左边y 随x 的增大而减小,于是312y y y >>.故选:D .【点睛】本题考查了二次函数图象上点的坐标的特征,解题的关键是利用二次函数的对称性得出C 关于对称轴的点C '.10.B 【解析】【分析】①函数对称轴在y 轴右侧,则ab <0,c >0,即可求解;②根据抛物线与x 轴有两个交点,由判别式即可得解;③当x=3时,y <0,即可求解;④函数的对称轴为:x=1,故b=-2a ,结合③的结论,代入9a+3b+c <0,即可得解;【详解】解:①函数对称轴在y 轴右侧,则ab <0,c >0,故①错误,不符合题意;②抛物线与x 轴有两个交点,则b 2﹣4ac >0,所以b 2>4ac ,故②错误,不符合题意;③x =3时,y =9a+3b+c <0,故正确,符合题意;④函数的对称轴为:x =1,故b =﹣2a ,∴2b a =-,由③知9a+3b+c <0,代入得302bc -+<,故2c <3b 正确,符合题意;故选:B .【点睛】本题考查的是二次函数图象与系数的关系,要求学生熟悉函数的基本性质,能熟练求解函数与坐标轴的交点及顶点的坐标等.11.x 1=0,x 2=4【解析】【分析】24x x -提取公因式x ,再根据“两式的乘积为0,则至少有一个式子的值为0”求解.【详解】解:240x x -=,(4)0x x -=,0x =或40x -=,10x =,24x =,故答案是:10x =,24x =.【点睛】本题考查一元二次方程的解法,解题的关键是掌握在解一元二次方程时应当注意要根据实际情况选择最合适快捷的解法,该题运用了因式分解法.12.-1【解析】【分析】把含有一个未知数且未知数的最高次数为二次的整式方程是一元二次方程,根据一元二次方程的概念即可完成.【详解】由题意得:212m +=且m-1≠0解得:m=-1即当m=-1时,方程(m-1)21m x ++3x+5=0是一元二次方程.【点睛】本题考查了一元二次方程的概念,其一般形式为20ax bx c ++=,其中a≠0,且a ,b ,c 是常数,理解概念是关键.13.2-【解析】【分析】方程()200++=≠ax bx c a 的两根分别为1x 和2x ,则1212,,b c x x x x a a+=-=根据根与系数的关系直接计算即可.【详解】解: 方程22430x x +-=的两根分别为1x 和2x ,1242.2b x x a ∴+=-=-=-故答案为: 2.-【点睛】本题考查的是一元二次方程的根与系数的关系,掌握“一元二次方程的根与系数的关系”是解题的关键.14.(3,1)【解析】【分析】由抛物线解析式可求得答案.【详解】根据二次函数的性质,由顶点式直接得出顶点坐标为(3,1).故答案是(3,1).【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在()2y a x h k =-+中,对称轴为直线x=h ,顶点坐标为(h ,k ).15.24【解析】【分析】根据题意列一元二次方程,解方程即可【详解】设每轮传染中平均一人传染x 人,则第一轮有(1)x +人感染,第二轮有2(1)x +人感染,根据题意可得:2(1)=625x +解得:1224,26x x ==-(不符题意,舍去)故答案为24【点睛】本题考查了一元二次方程的应用,解一元二次方程,根据题意列出方程是解题的关键.16.1<x <3【解析】【分析】直接写出抛物线在x 轴上方所对应的自变量的范围即可.【详解】解:不等式ax 2+bx+c >0的解集为1<x <3.故答案为1<x <3.【点睛】本题考查了二次函数与不等式(组):对于二次函数y=ax 2+bx+c (a 、b 、c 是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.17.272【解析】【分析】根据点O 与点A 的坐标求出平移后的抛物线的对称轴,然后求出点P 的坐标,过点P 作PM ⊥y 轴于点M ,根据抛物线的对称性可知阴影部分的面积等于四边形NPMO 的面积,然后求解即可.【详解】过点P 作PM ⊥y 轴于点M ,设PQ 交x 轴于点N ,∵抛物线平移后经过原点O 和点A (﹣6,0),∴平移后的抛物线对称轴为x=﹣3.∴平移后的二次函数解析式为:y=12(x+3)2+h ,将(﹣6,0)代入得出:0=12(﹣6+3)2+h ,解得:h=﹣92.∴点P 的坐标是(3,﹣92).根据抛物线的对称性可知,阴影部分的面积等于矩形NPMO 的面积,∴S=9273=22⨯-18.13x =+23x =【解析】【分析】根据方程特点,先将方程变形为267-=-x x ,则利用配方法求解即可.【详解】解:∵2670x x -+=,∴267-=-x x ,则26979x x -+=-+,即2(3)2x -=,∴3x -=∴13x =+23x =【点睛】本题考查了解一元二次方程,熟练掌握解一元二次方程的方法及步骤是解题的关键.19.(1)抛物线的对称轴x=52,顶点坐标为(52,212);(2)抛物线交y 轴于(0,﹣2),交x 轴于(2,0)或(12,0).【解析】【分析】(1)把二次函数y=-2x 2+5x-2化为顶点式的形式,根据二次函数的性质写出答案即可;(2)令x=0可求图象与y 轴的交点坐标,令y=0可求图象与x 轴的交点坐标;【详解】(1)∵y=﹣2(x 2﹣52x+2516﹣2516)﹣2=﹣2(x ﹣54)2+98,∴抛物线的对称轴x=54,顶点坐标为(54,98).(2)对于抛物线y=﹣2x 2+5x ﹣2,令x=0,得到y=﹣2,令y=0,得到﹣2x 2+5x ﹣2=0,解得:x=2或12,∴抛物线交y 轴于(0,﹣2),交x 轴于(2,0)或(12,0).20.()211 3.3y x =--【解析】【分析】设抛物线为:()2,y a x h k =-+根据抛物线的顶点坐标求解,h k ,再把()2,0A -代入解析式可得答案.【详解】解:设抛物线为:()2,y a x h k =-+ 抛物线的顶点是(1,-3),1,3,h k ∴==-∴抛物线为:()213,y a x =--把()2,0A -代入抛物线得:()22130,a ---= 93a ∴=,1,3a ∴=∴抛物线为:()211 3.3y x =--【点睛】本题考查的是利用待定系数法求解抛物线的解析式,根据题意设出合适的抛物线的解析式是解题的关键.21.(1)m≥-2;(2)m=2.【解析】【分析】(1)根据判别式在大于等于0时,方程有两个实数根,确定m 的值;(2)根据根与系数的关系可以求出m 的值.【详解】解:(1)∵△≥0时,一元二次方程有两个实数根,Δ=[2(m+1)]2-4×1×(m 2-3)=8m+16≥0,m≥-2,∴m≥-2时,方程有两个实数根.(2)∵x 12+x 22=x 1x 2+33,∴21212()3x x x x +-=33,∵1222b x x m a+=-=+,2123c x x m a ⋅==-,∴22(22)3(3)m m +--=33,解得m=2或-10(舍去),故m 的值是m=2.【点睛】本题考查了根的判别式和根与系数的关系,要记住12b x x a +=-,12c x x a⋅=-.22.(1)(36﹣2x );(2)AD =10米【解析】【分析】(1)设AD =x 米,则BC =AD =x 米,利用CD 的长=篱笆的长+门的宽﹣2AD ,即可用含x 的代数式表示出CD 的长;(2)利用矩形的面积计算公式,即可得出关于x 的一元二次方程,解之即可得出x 的值,再结合墙的长度为18米,即可确定AD 的长.【详解】(1)设AD =x 米,则BC =AD =x 米,∴CD =34+2﹣2AD =34+2﹣2x =(36﹣2x )米.故答案为:(36﹣2x ).(2)依题意得:x (36﹣2x )=160,化简得:x2﹣18x+80=0,解得:x1=8,x2=10.当x=8时,36﹣2x=36﹣2×8﹣20>18,不合题意,舍去;当x=10时,36﹣2x=36﹣2×10=16<18,符合题意.故AD的长为10米.【点睛】本题考查了列代数式,一元二次方程的应用,注意:求得的两个解要检验是否符合题意.23.(1)x=2;(2)每件商品的售价为34元时,商品的利润最大,为1960元.【解析】【分析】(1)销售利润=每件商品的利润×(180-10×上涨的钱数),根据每件售价不能高于35元,可得自变量的取值;(2)利用公式法结合(1)得到的函数解析式可得二次函数的最值,结合实际意义,求得整数解即可.【详解】解:(1)y=(30﹣20+x)(180﹣10x)=﹣10x2+80x+1800(0≤x≤5,且x为整数);令y=1920得:1920=﹣10x2+80x+1800x2﹣8x+12=0,(x﹣2)(x﹣6)=0,解得x=2或x=6,∵0≤x≤5,∴x=2,(2)由(1)知,y=﹣10x2+80x+1800(0≤x≤5,且x为整数).∵﹣10<0,∴当x=802(10)-⨯-=4时,y最大=1960元;∴每件商品的售价为34元答:每件商品的售价为34元时,商品的利润最大,为1960元.【点睛】本题考查考查二次函数的应用;得到月销售量是解决本题的突破点;注意结合自变量的取值求得相应的售价.24.(1)换元,化归;(2)x 1=0,x 2=﹣5【解析】【分析】(1)利用换元法达到了降次的目的,体现了化归的数学思想,据此可得答案;(2)令y =x 2+5x ,得到关于y 的一元二次方程,解之求出y 的值,从而得到两个关于x 的一元二次方程,分别求解可得.【详解】解:(1)在原方程得到方程①的过程中,利用换元法达到了降次的目的,体现了化归的数学思想;故答案为换元,化归.(2)令y =x 2+5x ,则原方程化为(y+1)(y+7)=7,整理,得:y 2+8y =0,解得y 1=0,y 2=﹣8,当y =0时,x 2+5x =0,解得:x 1=0,x 2=﹣5;当y =﹣8时,x 2+5x =﹣8,即x 2+5x+8=0,∵△=52﹣4×1×8=﹣7<0,∴此方程无解.综上,方程(x 2+5x+1)(x 2+5x+7)=7的解为x 1=0,x 2=﹣5.【点睛】本题考查利用换元法解方程,熟练掌握该方法是解题关键.25.(1)223y x x =+-;(2)(3)点Q 的坐标为(0,3)-或(2,3)--或(1-+或(1-【解析】【分析】(1)将A 、D 点代入抛物线方程2y x bx c =++,即可解出b 、c 的值,抛物线的解析式可得;(2)点C 、D 关于抛物线的对称轴对称,连接AC ,点P 即为AC 与对称轴的交点,PA+PD的最小值即为AC 的长度,用勾股定理即可求得AC 的长度;(3)求得B 点坐标,设点()2,23Q m m m +-,利用三角形面积公式,即可求出m 的值,点Q 的坐标即可求得.【详解】解:(1)∵抛物线2y x bx c =++经过点(3,0),(2,3)A D ---,∴930,423,b c b c -+=⎧⎨-+=-⎩解得2,3,b c =⎧⎨=-⎩∴抛物线的解析式为223y x x =+-.(2)由(1)得抛物线223y x x =+-的对称轴为直线1,(0,3)x C =--.∵(2,3)D --,∴C ,D 关于抛物线的对称轴对称,连接AC ,可知,当点P 为直线AC 与对称轴的交点时,PA PD +取得最小值,∴最小值为AC ==(3)设点()2,23Q m m m +-,令2230y x x =+-=,得3x =-或1,∴点B 的坐标为(1,0),∴4AB =.∵6QAB S = ,∴2142362m m ⨯⨯+-=,∴2260m m +-=或220m m +=,解得:1m =-1-0或2-,∴点Q 的坐标为(0,3)-或(2,3)--或(1-或(1-.【点睛】本题考察了待定系数法求解析式、两点之间线段最短、勾股定理、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答。

九年级数学第一次月考阶段性测试(苏科版第1-2章,培优卷)(解析版)

九年级数学第一次月考阶段性测试(苏科版第1-2章,培优卷)(解析版)

九年级数学第一次月考阶段性测试(江苏专用,10月份培优卷)班级:__________姓名:___________得分:__________注意事项:本试卷满分120分,试题共26题,其中选择6道、填空10道、解答10道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共6小题,每小题2分,共12分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(23-24九年级上·江苏盐城·阶段练习)下列方程是一元二次方程的是()A.2x+y=1B.x2=0C.x x+3=x2 D.x2+3x=1【答案】B【分析】本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键.根据一元二次方程的定义逐个判断即可.【详解】解:A、2x+y=1是二元一次方程,故A选项不符合题意;B、x2=0是一元二次方程,故B选项符合题意;C、x x+3=x2整理得3x=0,是一元一次方程,故C选项不符合题意;D、x2+3x=1是分式方程,不是整式方程,故D选项不符合题意;故选:B.2.(24-25九年级上·江苏宿迁·阶段练习)将一元二次方程x x+1=2化为一般形式,正确的是() A.x2+x-2=0 B.x2-x+2=0 C.x2+x=2 D.x2+2x-2=0【答案】A【分析】本题主要考查了一元二次方程的一般式.根据一元二次方程的一般式ax2+bx+c=0a≠0,即可求解.【详解】解:∵x x+1=2,∴x2+x-2=0,故选:A.3.(2024·江苏无锡·一模)下列结论:①三点确定一个圆;②相等的圆心角所对的弧相等;③经过半径的端点并且垂直于这条半径的直线是圆的切线;④圆内接四边形对角互补;⑤三角形的外心到三角形三个顶点的距离都相等;⑥直角三角形的内心在斜边的中点上.正确的个数是()A.1个B.2个C.3个D.4个【答案】B【分析】本题考查圆的性质,涉及确定圆的条件、圆心角与弧的关系、切线判定、圆内接四边形、三角形的内心与外心定义等知识,根据相关概念,逐项判断即可得到答案,熟记与圆有关的概念与性质是解决问题的关键.【详解】解:①当三点在一条直线上时,无法确定一个圆;故①结论错误;②圆的大小不同,相等的圆心角所对的弧不相等;故②结论错误;③经过半径的端点(不是圆心)并且垂直于这条半径的直线是圆的切线;故③结论错误;④圆内接四边形对角互补;故④结论正确;⑤三角形的外心是三角形外接圆的圆心,到三角形三个顶点的距离都相等;故⑤结论正确;⑥直角三角形的外心在斜边的中点上;故⑥结论错误;综上所述,正确的结论是④⑤,共2个,故选:B .4.(24-25九年级上·江苏南京·阶段练习)如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是AC上的点.连接AC ,若∠BAC =20°,则∠D 的度数为( ).A.100°B.110°C.120°D.130°【答案】B【分析】本题考查了圆周角定理,连接BD ,根据圆周角定理求出∠ADB 及∠BDC 的度数,进而可得出结论,根据题意作出辅助线,构造出圆周角是解题的关键.【详解】解:连接BD ,∵AB 是半圆的直径,∴∠ADB =90°,∵∠BAC =20°,∴∠BDC =∠BAC =20°,∴∠ADC =∠ADB +∠BDC =90°+20°=110°,故选:B .5.(2024·江苏无锡·一模)设x 1,x 2是关于x 的一元二次方程x 2-2m +1 x +m 2+2=0的两个实数根,且x 1+1 x 2+1 =8,则m 的值为()A.1B.-3C.3或-1D.1或-3【答案】A【分析】本题考查了一元二次方程根与系数的关系,解一元二次方程,一元二次方程根的判别式,解题的关键是掌握一元二次方程ax 2+bx +c =0a ≠0 根与系数关系:x 1+x 2=-b a ,x 1⋅x 2=ca.先根据一元二次方程根与系数的关系得出x 1x 2=c a =m 2+2,x 1+x 2=-ba=2m +1 ,再得出x 1+1 x 2+1 =x 1x 2+x 1+x 2+1=8,得出关于m 的一元二次方程,求解,再根据判别式检验即可.【详解】解:∵x 1,x 2是关于x 的一元二次方程x 2-2m +1 x +m 2+2=0的两个实数根,∴x 1x 2=c a =m 2+2,x 1+x 2=-ba=2m +1 ,∵x 1+1 x 2+1 =x 1x 2+x 1+x 2+1=8,∴m 2+2+2m +1 +1=8,整理得:m 2+2m -3=0,m -1 m +3 =0,解得:m =1或m =-3,当m =1时,原方程为x 2-4x +3=0,Δ=b 2-4ac =16-4×1×3=4>0,则原方程有实数根,符合题意;当m =-3时,原方程为x 2+4x +11=0,Δ=b 2-4ac =16-4×1×11=-28<0,则原方程无实数根,不符合题意;综上:m =1.故选:A .6.(2023·湖北武汉·模拟预测)如图,AB 为⊙O 直径,C 为圆上一点,I 为△ABC 内心,AI 交⊙O 于D ,OI ⊥AD 于I ,若CD =4,则AC 为()A.1255B.1655C.25D.5【答案】A【分析】如图,连接BI ,BD ,由题意知,AD 平分∠BAC ,BI 平分∠ABC ,则∠BAD =∠CAD ,∠ABI =∠CBI ,BD=CD,BD =CD =4,由∠DBI =∠DBC +∠CBI =∠DAC +∠CBI =∠DAB +∠ABI =∠BID ,可得ID =BD =4,由垂径定理得OI ⊥AD ,则AD =2ID =8,由勾股定理得,AB =BD 2+AD 2=45,如图,连接OD 交BC 于E ,则OD ⊥BC ,设DE =x ,则OE =25-x ,由勾股定理得,BE 2=OB 2-OE 2=BD 2-DE 2,即25 2-25-x 2=42-x 2,解得x =455,进而可得BE =855,BC =2BE =1655,由勾股定理得,AC =AB 2-BC 2,计算求解即可.【详解】解:如图,连接BI ,BD ,由题意知,AD 平分∠BAC ,BI 平分∠ABC ,∴∠BAD =∠CAD ,∠ABI =∠CBI ,∴BD=CD,BD =CD =4,∵∠DBI =∠DBC +∠CBI =∠DAC +∠CBI =∠DAB +∠ABI =∠BID ,∴ID =BD =4,∵OI ⊥AD ,∴AD =2ID =8,由勾股定理得,AB =BD 2+AD 2=45,如图,连接OD 交BC 于E ,则OD ⊥BC ,设DE =x ,则OE =25-x ,由勾股定理得,BE 2=OB 2-OE 2=BD 2-DE 2,即25 2-25-x 2=42-x 2,解得x =455,∴BE =855,BC =2BE =1655,由勾股定理得,AC =AB 2-BC 2=1255,故选:A .【点睛】本题考查了内心,勾股定理,垂径定理,同弧或等弧所对的圆周角相等,等腰三角形的判定与性质.解题的关键在于对知识的熟练掌握与灵活运用.二、填空题(本大题共10小题,每小题2分,共20分)请把答案直接填写在横线上7.(23-24九年级上·江苏泰州·阶段练习)若x 2=x ,则x =.【答案】1或0【分析】移项后分解因式得出x (x -1)=0,推出x =0,x -1=0,求出即可.本题考查了解一元二次方程,掌握方法是解题的关键.【详解】解:x 2=x ,∴x 2-x =0,∴x (x -1)=0,∴x =0,x -1=0,解得:x 1=0,x 2=1,故答案为:1或0.8.(23-24九年级上·江苏盐城·阶段练习)已知一元二次方程x 2-5x +2=0的两个根为x 1、x 2,x 1+x 2则的值为.【答案】5【分析】本题考查了韦达定理,熟练掌握该知识点是解题的关键.根据韦达定理进行计算即可.【详解】解:∵x 2-5x +2=0∴a =1,b =-5∴x 1+x 2=-b a =--51=5故答案为:5.9.(24-25九年级上·江苏南京·阶段练习)若关于x 的方程kx 2-x +1=0有两个不等的实数根,则k 的值为.【答案】k <14且k ≠0【分析】本题考查一元二次方程判别式,熟练掌握方程有两个不相等的实数根,则Δ>0是解题的关键.根据方程有两个不相等的实数根,Δ>0,结合一元二次方程的定义求解即可.【详解】解:由根与系数的关系可知,当一元二次方程有两个不等的实数根,则Δ>0,且k ≠0,即Δ=b 2-4ac =-1 2-4×1×k =1-4k >0,解得,k <14,∴k <14且k ≠0.故答案为:k <14且k ≠010.(22-23九年级上·江苏扬州·单元测试)在半径是20cm的圆中,的圆心角所对的弧长为cm.(结果保留π)【答案】10π【分析】本题考查了弧长的计算,根据弧长公式l=nπr180n是圆心角度数,r是半径,由此即可求解.【详解】解:的圆心角所对的弧长为l=90π×20180=10π,故答案为:10π.11.(2024·北京门头沟·一模)如图所示,为了验证某个机械零件的截面是个半圆,某同学用三角板放在了如下位置,通过实际操作可以得出结论,该机械零件的截面是半圆,其中蕴含的数学道理是.【答案】90°的圆周角所对的弦是直径【分析】本题考查圆周角定理,掌握“90°的圆周角所对的弦是直径”是正确解答的关键.根据圆周角定理进行判断即可.【详解】解:根据“90°的圆周角所对的弦是直径”即可得出答案,故答案为:90°的圆周角所对的弦是直径.12.(2024·江苏扬州·模拟预测)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠D=34°,则∠A的度数为.【答案】28°/28度【分析】本题考查了切线的性质,圆周角定理,熟知切线的性质与圆周角定理是解题的关键.连接OC,根据切线的性质得∠OCD=90°,求出∠DOC的度数,再根据圆周角定理计算∠A的度数.【详解】解:如图,连接OC,∵DC切⊙O于点C,∴OC⊥DC,∴∠OCD=90°,∵∠D=34°,∴∠DOC=90°-34°=56°,∴∠A=12∠DOC=28°,故答案为:28°.13.(20-21九年级上·四川绵阳·阶段练习)若关于x的方程ax2+bx+c=0的解为x1=-1,x2=3,则方程a (x -1)2+b (x -1)+c =0的解为.【答案】x 1=0,x 2=4【分析】将第二个方程中的(x -1)看成一个整体,则由第一个方程的解可知,x -1=-1或3,从而求解【详解】解:∵关于x 的方程ax 2+bx +c =0的解为x 1=-1,x 2=3,∴方程a (x -1)2+b (x -1)+c =0的解为x -1=-1或3,解得:x 1=0,x 2=4.【点睛】本题考查一元二次方程的解的概念,正确理解概念,利用换元法解方程是解题关键.14.(2024·江苏泰州·三模)如图,正五边形ABCDE 的边长为6,以顶点A 为圆心,长为半径画圆,若图中阴影部分恰是一个圆锥的侧面展开图,则这个圆锥底面圆的半径是.【答案】1.8【分析】本题主要考查了求圆锥底面圆半径,正多边形内角,熟知圆锥底面圆的周长即为其展开图中扇形的弧长是解题的关键.先利用正多边形内角和定理求出∠A 的度数,再根据圆锥底面圆的周长即为其展开图中扇形的弧长进行求解即可.【详解】解:∵ABCDE 是正五边形,∴∠A =180°×5-35=108°,设底面圆的半径为r ,则2πr =108π×6180,解得r =1.8,故答案为:1.8.15.(22-23九年级上·江苏泰州·阶段练习)如图,⊙M 半径为2,圆心M 坐标(3,4),点P 是⊙M 上的任意一点,P A ⊥PB ,且P A 、PB 与x 轴分别交于A 、B 两点,若点A 、点B 关于原点O 对称,则AB 的最小值为.【答案】6【分析】本题主要考查点与圆的位置关系,熟练掌握直角三角形斜边上的中线等于斜边的一半得到答案即可.由Rt△APB中AB=2OP得到要使AB取得最小值,即OP需取最小值,连接OM,交⊙M于点P 即可得到答案.【详解】解:连接OP,∵P A⊥PB,∴∠APB=90°,∵AO=BO,∴AB=2PO,要使AB取得最小值,即OP需取最小值,连接OM,交⊙M于点P ,此时OP取得最小值,过点M作MQ⊥x轴于点Q,则OQ=3,MQ=4,∴OM=5,∵MP =2,∴OP =3,∴AB=2OP =6,故答案为:6.16.(22-23九年级上·江苏盐城·期中)以正方形ABCD的边为直径作半圆O,过点C作直线切半圆于点F,交边于点E,若△CDE的周长为12,则正方形ABCD的边长为.【答案】4【分析】本题考查了正方形的性质、切线长定理等知识点,利用正方形的性质和圆的切线的判定得出均为圆O的切线是解题关键.根据切线长定理可得AE=EF,BC=CF,然后根据△CDE的周长可求出正方形的边长.【详解】解:在正方形ABCD中,∠BAD=∠ABC=90°,AD=CD=BC=AB,∵CE与半圆O相切于点F,以正方形ABCD的边为直径作半圆O,∴AD,BC与半圆O相切,∴AE=EF,BC=CF,∵△CDE的周长为12,∴EF+FC+CD+ED=12,∴AE+ED+CD+BC=AD+CD+BC=12,∵AD=CD=BC=AB,∴正方形ABCD的边长为4.故答案为:4.三、解答题(本大题共10小题,共88分.解答时应写出文字说明、证明过程或演算步骤)17.(23-24九年级上·江苏常州·期末)解下列方程:(1)x2-4x=12;(2)3x(2x-5)=4x-10.【答案】(1)x1=6,x2=-2;(2)x1=23,x2=52.【分析】本题主要考查解一元二次方程,掌握配方法,因式分解法解一元二次方程是解题的关键.(1)运用配方法解一元二次方程即可求解;(2)运用因式分解法求一元二次方程即可求解.【详解】(1)解:x2-4x=12x2-4x+4=16x-22=16x-2=±4∴x1=6,x2=-2;(2)解:3x(2x-5)=4x-103x2x-5-22x-5=02x-53x-2=0∴2x-5=0或3x-2=0,∴x1=52,x2=23.18.(23-24九年级上·江苏盐城·阶段练习)如图,平面直角坐标系中有一个△ABC.(1)利用网格,只用无刻度的直尺作出△ABC的外接圆的圆心点O;(2)△ABC的外接圆的圆心坐标是;(3)该圆圆心到弦AC的距离为;(4)△ABC最小覆盖圆的半径为.【答案】(1)见解析(2)5,2(3)10(4)10【分析】本题考查了三角形外心的性质,等腰三角形三线合一,勾股定理,熟练掌握以上知识点并利用数形结合思想是解题的关键.(1)根据三角形外心的性质,分别作AB与BC的垂直平分线,两直线相交于点O,则O点即是△ABC的外接圆的圆心;(2)根据(1)所求,可由坐标系直接得到答案;(3)取AC的中点P,连接OP,根据等腰三角形三线合一可知OP⊥AC,利用勾股定理求出OP即为所求;(4)利用勾股定理求出CP即可.【详解】(1)解:分别作AB与BC的垂直平分线,两直线相交于点O,则O点即是△ABC的外接圆的圆心,如图即为所求:(2)解:由(1)可知,O点坐标为5,2故答案为:5,2.(3)解:取AC的中点P,连接OP,如图,OA=OC则OP⊥AC∵OP=12+32=10∴该圆圆心到弦AC的距离为10故答案为:10.(4)解:由图可知,最小覆盖圆的半径为CP长如图所示,可知CP为所求,利用网格CP=12+32=10故答案为:10.19.(22-23九年级上·江苏泰州·阶段练习)如图,已知AB、MD是⊙O的直径,弦CD⊥AB于E.(1)若CD=16cm,OD=10cm,求BE的长:(2)若∠M=∠D,求∠D的度数.【答案】(1)4cm(2)30°【分析】本题主要考查垂径定理,勾股定理以及圆周角定理,熟练掌握性质定理是解题的关键.(1)由垂径定理求出DE的长,再根据勾股定理求出答案即可;(2)根据圆周角定理求得∠D=1∠BOD,再根据两锐角互余的性质得到答案.2【详解】(1)解:∵弦CD⊥AB,CD=16cm,CD=8cm,∴CE=DE=12在Rt△OED中,OE=OD2-DE2=102-82=6cm,∴BE=OB-OE=10-6=4cm;∠BOD,(2)解:∵∠M=∠D,∠M=12∠BOD,∴∠D=12∵∠D+∠BOD=90°,∠D=30°.20.(24-25九年级上·江苏宿迁·阶段练习)关于x的方程x2-m+4x+3m+3=0.(1)求证:不论m取何值,方程总有两个实数根;(2)若该方程有两个实数根x1,x2,且x1+1=3,求m的值.x2+1【答案】(1)证明见详解(2)m=-54【分析】本题考查一元二次方程根的情况与判别式关系,一元二次方程根与系数的关系,熟记一元二次方程判别式与方程根的情况联系、一元二次方程根与系数的关系是解决问题的关键.(1)根据一元二次方程根的情况与判别式的关系,只要判定Δ≥0即可得到答案;(2)根据一元二次方程根与系数的关系得到x1+x2=m+4,x1x2=3m+3,将x1+1=3展开,代入x2+1求解即可.【详解】(1)证明:a=1,b=-m+4,c=3m+3,∴Δ=m+42≥0,=m-22-4×1×3m+3∴不论m取何值,方程总有两个实数根;(2)解:x1+1=3,x2+1x1x2+x1+x2+1=3,对于方程x2-m+4x+3m+3=0,可得x1+x2=m+4,x1x2=3m+3,∴m+4+3m+3+1=3,解得:m=-5 4.21.(24-25九年级上·全国·单元测试)如图,老李想用长为70m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门(建在EF处,另用其他材料).(1)当羊圈的边AB的长为多少米时,能围成一个面积为640m2的羊圈?(2)羊圈的面积能达到650m2吗?如果能,请你给出设计方案;如果不能,请说明理由.【答案】(1)当羊圈的边AB的长为16m或20m时,能围成一个面积为640m2的羊圈(2)羊圈的面积不能达到650m2,理由见解析【分析】本题考查了一元二次方程的应用,根据题意列出一元二次方程,解一元二次方程是解题的关键.(1)设羊圈的边AB的长为xm,则边BC的长为72-2xm根据题意列出一元二次方程,解方程即可求解;(2)同(1)的方法建立方程,根据方程无实根即可求解.【详解】(1)解:设羊圈的边AB的长为xm,则边BC的长为72-2xm,根据题意,得x72-2x=640,化简,得x2-36x+320=0,解方程,得x1=16,x2=20,当x1=16时,72-2x=40,当x2=20时,72-2x=32.答:当羊圈的边AB的长为16m或20m时,能围成一个面积为640m2的羊圈.(2)不能,理由如下:根据题意,得x72-2x=650,化简,得x2-36x+325=0,∵b2-4ac=-362-4×325=-4<0,∴该方程没有实数根.∴羊圈的面积不能达到650m222.(22-23八年级下·浙江宁波·期末)冬季来临,某超市以每件35元的价格购进某款棉帽,并以每件58的价格出售.经统计,10月份的销售量为256只,12月份的销售量为400只.(1)求该款棉帽10月份到12月份销售量的月平均增长率;(2)经市场预测,下个月份的销售量将与12月份持平,现超市为了减少库存,采用降价促销方式,调查发现,该棉帽每降价1元,月销售量就会增加20只.当该棉帽售价为多少元时,月销售利润达8400元?【答案】(1)25%(2)【分析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.(1)设该款棉帽10月份到12月份销售量的月平均增长率为x,可列出关于x的一元二次方程,解之取其符合题意的值,即可得出结论;(2)设该款棉帽售价为y元,则每件的销售利润为y-25元,利用月销售利润=每件的销售利润×月销售量,可列出关于y的一元二次方程,解之取其符合题意的值,即可得出结论.【详解】(1)解:设该款棉帽10月份到12月份销售量的月平均增长率为x,根据题意得:2561+x 2=400,解得:x 1=0.25=25%,x 2=-2.25(不符合题意,舍去)答:该款棉帽10月份到12月份销售量的月平均增长率为25%.(2)设该棉帽售价为y 元,则每件的销售利润为y -35 元,月销售量为400+2058-y =1560-20y 件根据题意得:y -35 1560-20y =8400解得:y 1=50,y 2=63(不符合题意,舍去).答:该款棉帽售价为元时,月销售利润达8400元.23.(22-23九年级上·江苏连云港·阶段练习)如图,AB 为⊙O 的直径,BC 是圆的切线,切点为B ,OC 平行于弦AD,(1)求证:DC 是⊙O 的切线;(2)直线AB 与CD 交于点F ,且DF =4,AF =2,求⊙O 的半径.【答案】(1)见解析(2)3【分析】(1)连接OD ,根据切线的性质得到OB ⊥BC ,证明△DOC ≌△BOC ,根据切线的性质得到∠ODC =∠OBC =90°,根据切线的判定定理证明结论;(2)设⊙O 的半径为r ,根据勾股定理列出方程,解方程求出⊙O 的半径.【详解】(1)证明:连接OD ,∵BC 是⊙O 的切线,∴OB ⊥BC ,∵OC ∥AD ,∴∠BOC =∠OAD ,∠DOC =∠ODA ,∵OA =OD ,∴∠ODA =∠OAD ,∴∠DOC =∠BOC ,在△DOC 和△BOC 中,OD =OB∠DOC =∠BOC OC =OC,∴△DOC ≌△BOC (SAS ),∴∠ODC =∠OBC =90°,∴OD ⊥CD ,∵OD 是⊙O 的半径,∴DC 是⊙O的切线;(2)解:设⊙O 的半径为r ,则OF =OA +AF =r +4,在Rt △ODF 中,OD 2+DF 2=OF 2,即r 2+42=(r +2)2,解得:r =3,∴⊙O 的半径为3.【点睛】本题考查的是切线的判定和性质,全等三角形的判定和性质,平行线的性质,勾股定理的,熟记经过半径的外端且垂直于这条半径的直线是圆的切线是解题的关键.24.(24-25九年级上·江苏宿迁·阶段练习)如果关于x 的一元二次方程ax 2+bx +c =0有两个实数根,且其中一个根是另一个根的3倍,那么称这样的方程为“三倍根方程”.例如,方程x 2-4x +3=0的两个根是1和3,则这个方程就是“三倍根方程”.(1)下列方程是三倍根方程的是;(填序号即可)①x 2-2x -3=0;②x 2-3x =0;③x 2+8x +12=0.(2)如果关于x 的方程x 2-8x +c =0是“三倍根方程”,求c 的值;(3)如果点p ,q 在反比例函数y =3x的图象上,那么关于的x 方程px 2-4x +q =0是“三倍根方程”吗?请说明理由.(4)如果关于x 的一元二次方程ax 2+bx +c =0a ≠0 是“3倍根方程”,那么a 、b 、c 应满足的关系是.(直接写出答案)【答案】(1)③(2)c =12;(3)方程px 2-4x +q =0是“三倍根方程”;见解析(4)3b 2-16ac =0【分析】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a.也考查了一元二次方程的解和解一元二次方程.(1)分别求出①②③三个方程的根,然后根据题中所给定义可进行求解;(2)根据“三倍根方程”的定义设关于x 的方程x 2-8x +c =0的两个根为x 1,3x 1,进而根据一元二次方程根与系数的关系及方差的解可进行求解;(3)方程px 2-4x +q =0化为方程px 2-4x +3p =0,解方程求得方程的根,根据“三倍根方程”的定义即可求出答案;(4)根据“三倍根方程”的概念得到原方程可以改写为a x -t x -3t =0,解方程即可得到结论.【详解】(1)解:由x 2-2x -3=0可得:x 1=-1,x 2=3,不满足“三倍根方程”的定义;由x 2-3x =0可得:x 1=0,x 2=3,不满足“三倍根方程”的定义;由x 2+8x +12=0可得:x 1=-2,x 2=-6,满足“三倍根方程”的定义;故答案为:③;(2)解:设关于x 的方程x 2-8x +c =0的两个根为x 1,3x 1,由一元二次方程根与系数的关系可知:x 1+3x 1=8,3x 12=c ,∴x 1=2,c =12;(3)解:∵点p ,q 在反比例函数y =3x的图象上,∴q =3p ,∴方程px 2-4x +q =0化为方程px 2-4x +3p=0,整理得px -3 px -1 =0,解得x 1=3p ,x 2=1p,∴方程px 2-4x +q =0是“三倍根方程”;(4)解:根据“三倍根方程”的概念设一元二次方程ax 2+bx +c =0(a ≠0)的两个根为t 和3t .∴原方程可以改写为a x -t x -3t =0,∴ax 2+bx +c =ax 2-4atx +3at 2,∴b =-4at c =3at 2 .解得3b 2-16ac =0.∴a ,b ,c 之间的关系是3b 2-16ac =0.故答案为:3b 2-16ac =0.25.(23-24九年级上·江苏无锡·期中)如图1,平行四边形ABCD 中,AB =8,BC =4,∠ABC =60°.点P为射线BC 上一点,以BP 为直径作⊙O 交AB 、DC 于E 、F 两点.设⊙O 的半径为x .(1)如图2,当⊙O 与DP 相切时,x =.(2)如图3,当点P 与点C 重合时,①求线段CE 长度;②求阴影部分的面积;(3)当⊙O 与平行四边形ABCD 边所在直线相切时,求x 的值;【答案】(1)4(2)①23;②2π3-3(3)x =-12+83或43【分析】(1)由平行四边形的性质可得:AB ∥CD ,AB =CD =8,得出∠DCP =∠ABC =60°,再由切线的性质可得DP ⊥BP ,得出∠CDP =30°,利用30°所对的直角边等于斜边的一半,可得CP =12CD =4,推出⊙O 的直径BP =8,即可得出答案;(2)①运用勾股定理即可求得答案;②如图2,连接OE ,利用圆周角定理可得出∠BOE =2∠BCE =60°,过点E 作EH ⊥OB 于H ,则∠OEH =30°,利用勾股定理可求得EH =3,再运用扇形面积公式和三角形面积公式即可求得答案;(3)分两种情况:①当⊙O 与直线CD 相切时,由切线性质可得∠OFC =90°,进而可得OB =OF =x ,OC =4-x ,CF =12(4-x ),再由勾股定理建立方程求解即可;②当⊙O 与直线AD 相切时,如图4,过点O 作OT ⊥AD 于T ,连接AC ,则OT =OB =x ,证明四边形ACOT 是矩形,即可得出答案【详解】(1)解:如图1,∵四边形ABCD 是平行四边形,AB =8,BC =4,∠ABC =60°.∴AB ∥CD ,AB =CD =8,∴∠DCP =∠ABC =60°,∵⊙O 与DP 相切,∴DP ⊥BP ,∴∠CPD =90°,∴∠CDP =90°-∠DCP =30°,∴CP =12CD =4,∴⊙O 的半径x =4,(2)解:①∵点P 与点C 重合,∴BC 为⊙O 的直径,∴∠BEC =90°,∴∠BCE =90°-∠CBE =30°,∴BE =12BC =2,在Rt △BCE 中,CE =BC 2-BE 2=42-22=23,②如图2,连接OE ,∵BE =BE,∴∠BOE =2∠BCE =60°,过点E 作EH ⊥OB 于H ,则∠OEH =30°,∴OH =12OE =1,∴EH =OE 2-OH 2=22-12=3,∴S 阴影=S 扇形OBE -S △OBE=60π×22360-12×2×3=2π3-3;(3)解:①当⊙O 与直线CD 相切时,如图3,∴OF ⊥CD ,∴∠OFC =90°,∵∠OCF =∠ABC =60°,∴∠COF =30°,∴CF =12OC ,∵OB =OF =x ,∴OC =4-x ,CF =124-x ,∵CF 2+OF 2=OC 2,∴124-x2+x 2=4-x 2,解得:x =-12+83或x =-12-83(舍去),②当⊙O 与直线AD 相切时,如图4,过点O 作OT ⊥AD 于T ,连接AC ,则OT =OB =x ,取AB 的中点G ,连接CG ,∴BG =AG =12AB =4=BC ,∵∠ABC =60°,∴△BCG 是等边三角形,∴CG =BC =4=AG ,∴∠BAC =∠ACG =30°,∴∠ACB =90°∴AC =82-42=43,∴∠ACO =90°,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠TOC =∠DTO =∠ATO =90°=∠ACO ,∴四边形ACOT 是矩形,∴x =OT =AC =43;综上所述,x =-12+83或43;【点睛】本题是圆的综合题,考查了圆的性质,圆周角定理,勾股定理,平行四边形的性质,矩形的判定和性质,切线的性质等,运用数形结合思想和分类讨论思想是解题关键.26.(23-24九年级上·江苏南京·阶段练习)【问题提出】我们知道:同弧或等弧所对的圆周角都相等,且等于这条弧所对的圆心角的一半,那么,在一个圆内同一条弦所对的圆周角与圆心角之间又有什么关系呢?【初步思考(1)如图1,AB 是⊙O 的弦,∠AOB =100°,点P 1、P 2分别是优弧AB 和劣弧AB 上的点,则∠AP 1B =°,∠AP 2B =°;(2)如图2,AB 是⊙O 的弦,圆心角∠AOB =m °(m <180°),点P 是⊙O 上不与A 、B 重合的一点,求弦AB 所对的圆周角∠APB 的度数为;(用m 的代数式表示)【问题解决】(3)如图3,已知线段AB ,点C 在AB 所在直线的上方,且∠ACB =135°,用尺规作图的方法作出满足条件的点C 所组成的图形(①直尺为无刻度直尺;②不写作法,保留作图痕迹);【实际应用】(4)如图4,在边长为12的等边三角形ABC 中,点E 、D 分别是边AC 、BC 上的动点,连接AD 、BE ,交于点P ,若始终保持AE =CD ,当点E 从点A 运动到点C 时,PC 的最小值是.【答案】(1)50,130;(2)180°-m 2°;(3)见解析;(4)43【分析】(1)根据圆周角定理即可求出∠AP 1B =50°,根据圆内接四边形即可求出∠AP 2B =130°;(2)分P 在优弧AB 上和P 在劣弧AB 上两种情况分类讨论即可求解;(3)作线段AB 的垂直平分线,以AB 为直径作圆,交垂直平分线于点O ,以点O 为圆心,以OA 为半径作圆,则AB (实线部分且不包含A 、B 两个端点)就是所满足条件的点C 所组成的图形;(4)先证明△ACD ≌△BAE ,得到∠BAP +∠ABP =60°,∠APB =120°,根据(3)问点P 的运动轨迹是AB,∠AOB =120°,连接CO ,证明△OAC ≌△OBC ,进而得到∠ACO =∠BCO =30°,∠AOC =∠BOC =60°∠OAC =∠OBC =90°,根据勾股定理求出OP =OB =43OC =83,根据PC ≤OC -OP ,可得PC ≥43,即可求出PC 的最小值为43.【详解】解:(1)∠AP 1B =12∠AOB =12×100°=50°,∠AP 2B =180°-∠APB =180°-50°=130°.故答案为:50,130;(2)当P 在优弧AB 上时,∠APB =12∠AOB =m 2 °;当P 在劣弧AB 上时,∠APB =180°-m 2 °;故答案为:m 2 °或180°-m 2 °(3)如图AB (实线部分且不包含A 、B 两个端点)就是所满足条件的点C 所组成的图形.证明:∵AB 为⊙P 的直径,∴∠AOB =90°,在⊙O 中,∵点C 在AB 上,由(2)得∠ACB =180°-∠AOB 2=135°,∴AB (实线部分且不包含A 、B 两个端点)就是所满足条件的点C 所组成的图形;(4)解:如图,∵△ABC 为等边三角形,∴AB =BC =AC ,∠BAC =∠ACB =60°,∵AE =CD ,∴△ACD ≌△BAE ,∴∠CAD =∠ABE ,∵∠BAP +∠ABP =∠BAP +∠CAD =∠BAC =60°,∴∠APB =120°,∴点P 的运动轨迹是AB ,∴∠AOB =120°.连接CO ,∵OA =OB ,CA =CB ,OC =OC ,∴△OAC ≌△OBC ,∴∠ACO =∠BCO =30°,∠AOC =∠BOC =60°,∴∠OAC =∠OBC =90°,在Rt △OBC 中,设OB =x x >0 ,则OC =2x ,根据勾股定理得2x 2-x 2=122,解得x =43,∴OC =2x =83,OP =OB =43,∵PC ≤OC -OP ,∴PC ≥43,∴PC的最小值为43.故答案为:43.【点睛】本题考查了圆周角定理及其推论,圆内接四边形的性质,全等三角形的判定与性质,勾股定理,三角形三边关系等知识,综合性强,难度较大,解题时要熟知相关知识,注意在解决每一步时都要应用上一步结论进行解题.。

重庆南开中学2024年九年级上学期9月月考模拟数学试卷+答案

重庆南开中学2024年九年级上学期9月月考模拟数学试卷+答案

重庆市南开中学2024-2025学年九年级上学期数学9月第一次考试模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列社交软件的标志中,是中心对称图形的是()A.B.C.D.2.(4分)下列计算正确的是()A.a2•a3=a6B.a+2a2=3a3C.(﹣3ab)2•2ab2=﹣18a3b4D.6ab3÷(﹣2ab)=﹣3b23.(4分)如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,下列比值中等于sin A的是()A.B.C.D.4.(4分)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为()A.1:2B.1:4C.4:9D.1:35.(4分)下列命题中,不一定是真命题的是()A.平行四边形的两条对角线长度相等B.菱形的两条对角线互相垂直C.矩形的两条对角线长度相等且互相平分D.正方形的两条对角线长度相等,并且互相垂直平分6.(4分)某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是()A.B.C.D.7.(4分)估算的值()A.在3和4之间B.在4和5之间C.在2和3之间D.在5和6之间8.(4分)①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为()A.50B.60C.64D.729.(4分)已知四边形ABCD和DEFG都是正方形,点F在线段AB上,连接AE、BD,BD交FG于点H.若∠AEF=α,则∠BHF=()10.(4分)在多项式a+b﹣c﹣d﹣e中,除首尾项a、﹣e外,其余各项都可去掉,去掉项的前面部分和其后面部分都加上绝对值,并用减号连接,则称此为“消减操作”.每种“消减操作”可以去掉的项数分别为一项,两项,三项.“消减操作”只针对多项式a+b﹣c﹣d﹣e进行.例如:+b“消减操作”为|a|﹣|﹣c﹣d﹣e|,﹣c与﹣d同时“消减操作”为|a+b|﹣|﹣e|,…,下列说法:①存在对两种不同的“消减操作”后的式子作差,结果不含与e相关的项;②若每种操作只去掉一项,则对三种不同“消减操作”的结果进行去绝对值,共有8种不同的结果;③若可以去掉的三项+b,﹣c,﹣d满足:(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=42,则2b+c﹣d的最大值为14.其中正确的个数是()A.0个B.1个C.2个D.3个二.填空题(共8小题,满分32分,每小题4分)11.(4分)已知,△ABC中,∠A是锐角,sin A=,则∠A的度数是.12.(4分)一个多边形的内角和是720°,这个多边形的边数是.13.(4分)如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD的度数为.14.(4分)已知a、b是一元二次方程x2﹣x﹣1=0的两个根,则代数式3a2+2b2﹣3a﹣2b的值等于.15.(4分)如图,点B在x的正半轴上,且BA⊥OB于点B,将线段BA绕点B逆时针旋转60°到BB′的位置,且点B′的坐标为(1,).若反比例函数y=(x>0)的图象经过A点,则k=.16.(4分)若关于x的一元一次不等式组有且只有2个整数解,且关于y的分式方程的解为正数,则所有满足条件的整数a的值之和为.17.(4分)如图,点E在矩形ABCD的边CD上,将△ADE沿AE翻折,点D恰好落在边BC的点F处,如果BC =10,,那么EC=.18.(4分)一个四位自然数,若满足千位数字与十位数字的差比百位数字与个位数字的差多1,则称这样的四位数为“多一数”,如:9675,9﹣7=6﹣5+1,9765是“多一数”;又如:6973,∵6﹣7≠9﹣3+1,∴6973不是“多一数”.现有一个“多一数”M,千位数字为a,百位数字为b,十位数字为c,个位数字为d(1≤c≤a≤9,0≤d≤b≤9),将M的千位数字与十位数字交换,百位数字与个位数字交换,得到新的四位数N,若,F(M)能被6整除,则a﹣c=;规定,若G(M)为完全平方数,则满足条件的“多一数”M中,最大值与最小值的差是.三.解答题(共8小题,满分78分)19.(8分)计算:(1)因式分解:9(x+y)2﹣25(x﹣y)2;(2)计算:.20.(10分)解方程:(1)x2﹣2x﹣2=0;(2).21.(10分)在第18章学习了三角形的中位线定理后,小明对这一知识进行了拓展性研究.他发现,连接梯形两腰中点的线段也具有类似的性质.探究过程如下:(1)用直尺和圆规,作线段CD的垂直平分线,垂足为点F,连接EF,连接AF并延长AF交线段BC的延长线于点M(只保留作图痕迹);(2)已知:在四边形ABCD中,AD∥BC,E为AB中点,F为CD中点,连接EF.猜想:EF∥AD∥BC,且.证明:∵F是CD中点,∴.∵AD∥BC,∴∠DAF=∠在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.请你根据该探究过程完成下面命题:连接梯形两腰中点的线段平行于两底并且.22.(10分)重庆市自发布“重庆市长江10年禁鱼通告”后,忠县内的黄钦水库自然生态养殖鱼在市场上热销,并被誉为“清凉五月天,黄钦自有贤”的美誉.2024年五一假期依依同学旅游到此,并购买了若干桂花鱼和大罗非,她发现用840元买的桂花鱼的数量比用同样价钱买大罗非的数量多20斤,且大罗非的单价是桂花鱼的1.5倍.(1)求桂花鱼、大罗非两种鱼的单价分别为多少元;(2)两种鱼在得到一致好评后,依依决定再次购买这两种鱼作为“伴手礼”.由于商家对老顾客让利,其中桂花鱼按照原单价购买,大罗非的单价每斤降低m(m>0)元,则购买的数量会比第一次购买大罗非的数量增加2m斤,第二次一共购买80斤鱼共用了1340元.求m的值.23.(10分)如图矩形ABCD中,AB=4,BC=6,点F为BC边上的三等分点(CF<BF),动点P从点A出发,沿折线A→D→C运动,到C点停止运动.点P的运动速度为每秒2个单位长度,设点P运动时间为x秒,△APF 的面积为y1.(1)请直接写出y1关于x的函数解析式,并注明自变量x的取值范围;(2)若函数,请在平面直角坐标系中画出函数y1,y2的图象,并写出函数y1的一条性质;(3)结合函数图象,直接写出当y1≤y2时x的取值范围(保留一位小数,误差不超过0.2).24.(10分)已知图1是某超市购物车,图2是超市购物车的侧面示意图,现已测得支架AC=72cm,BC=54cm,两轮轮轴的距离AB=90cm(购物车车轮半径忽略不计),DG、EH均与地面平行.(参考数据:)(1)猜想两支架AC与BC的位置关系并说明理由;(2)若FG的长度为80cm,∠EHG=60°,求购物车把手F到AB的距离.(结果精确到0.1)25.(10分)如图,直线与双曲线交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点M、N是y轴上的动点(M在N上方)且满足MN=1,连接MB,NC,求MB+MN+NC的最小值;(3)点P是双曲线上一个动点,是否存在点P,使得∠ODP=∠DOB,若存在,请直接写出所有符合条件的P 点的横坐标.26.(10分)在△ABC中,AB=AC,∠B=30°,过A作AD⊥BC于点D.(1)如图1,过D作DE⊥AB于点E,连接CE,若AE=2,求线段CE的长;(2)如图2,H为平面内一点,连接AH、CH,在△AGH中,AG=AH,∠GAH=120°,延长AG与CB交于点F,过点H作HP∥AF交BC于点P,若C、H、G在一条直线上,求证:BF=CP;(3)如图3,M为AD上一点,连接BM,N为BM上一点,若,,∠BAN﹣∠CBN=30°,连接CN,请直接写出线段CN的长.重庆市南开中学2024-2025学年九年级上学期数学9月第一次考试模拟试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列社交软件的标志中,是中心对称图形的是()A.B.C.D.【解答】解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A、C、D都不符合;是中心对称图形的只有B.故选:B.2.(4分)下列计算正确的是()A.a2•a3=a6B.a+2a2=3a3C.(﹣3ab)2•2ab2=﹣18a3b4D.6ab3÷(﹣2ab)=﹣3b2【解答】解:a2•a3=a5,故A错误,不符合题意;a与2a2不能合并,故B错误,不符合题意;(﹣3ab)2•2ab2=18a3b4,故C错误,不符合题意;6ab3÷(﹣2ab)=﹣3b2,故D正确,符合题意;故选:D.3.(4分)如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,下列比值中等于sin A的是()A.B.C.D.【解答】解:在Rt△ABC中,sin A=,在Rt△ACD中,sin A=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sin∠BCD=sin A=.故选:B.4.(4分)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为()A.1:2B.1:4C.4:9D.1:3【解答】解:∵OA:AA′=1:2,∴OA:OA′=1:3,∵△ABC和△A′B′C′是以点O为位似中心的位似图形,∴AC∥A′C′,∴△AOC∽△A′OC′,∴AC:A′C′=OA:OA′=1:3,∴△ABC和△A′B′C′的周长之比为1:3,故选:D.5.(4)A.平行四边形的两条对角线长度相等B.菱形的两条对角线互相垂直C.矩形的两条对角线长度相等且互相平分D.正方形的两条对角线长度相等,并且互相垂直平分【解答】解:A、平行四边形的两条对角线长度不一定相等,故本选项命题不一定是真命题,符合题意;B、菱形的两条对角线互相垂直,是真命题,不符合题意;C、矩形的两条对角线长度相等且互相平分,是真命题,不符合题意;D、正方形的两条对角线长度相等,并且互相垂直平分,是真命题,不符合题意;故选:A.6.(4分)某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是()A.B.C.D.【解答】解:设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是:.故选:D.7.(4分)估算的值()A.在3和4之间B.在4和5之间C.在2和3之间D.在5和6之间【解答】解:∵25<31<36,∴5<<6,∴3<﹣2<4.故选:A.8.(4分)下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为()A.50B.60C.64D.72【解答】解:观察图形发现第一个图形有8个正方形,第二个图形有8+7=15个正方形,第三个图形有8+7×2=22个正方形,…第n个图形有8+7(n﹣1)=7n+1个正方形,当n=9时,7n+1=7×9+1=64个正方形.故选:C.9.(4分)已知四边形ABCD和DEFG都是正方形,点F在线段AB上,连接AE、BD,BD交FG于点H.若∠AEF=α,则∠BHF=()A.2αB.45°+αC.22.5°+αD.90°﹣α【解答】解:过点E作EM⊥AB于点M,作EN⊥AD,交DA的延长线于N,设EF与AD交于T,如图所示:则∠N=∠EMB=∠EMA=90∵四边形ABCD和DEFG都是正方形,∴∠BEF=∠BAD=∠EFG=∠ADC=∠EDG=90°,DE=EF,∴∠N=∠EMA=∠MAN=90°,∴四边形AMEN为矩形,∴∠1+∠DTE=90°,∠2+∠FTA=90°,∵∠DTE=∠FTA,∴∠1=∠2,在△DME和△FNE中,,∴△DME≌△FNE(AAS),∴EM=EN,∴AE平分∠DAN,∴∠EAD=45°,∴∠EAF=∠BAD+∠EAD=90°+45°=135°,∴∠2=180°﹣∠EAF﹣AEF=180°﹣135°﹣α=45°﹣α,∴∠1=∠2=45°﹣α,∵BD是正方形ABCD的对角线,∴∠ADB=45°,∴∠EDH=∠1+∠ADB=45°﹣α+45°=90°﹣α,∴∠HDG=∠EDG﹣∠EDH=90°﹣(90°﹣α)=α,∴∠BHF=∠DHG=90°﹣∠HDG=90°﹣α.故选:D.10.(4分)在多项式a+b﹣c﹣d﹣e中,除首尾项a、﹣e外,其余各项都可去掉,去掉项的前面部分和其后面部分都加上绝对值,并用减号连接,则称此为“消减操作”.每种“消减操作”可以去掉的项数分别为一项,两项,三项.“消减操作”只针对多项式a+b﹣c﹣d﹣e进行.例如:+b“消减操作”为|a|﹣|﹣c﹣d﹣e|,﹣c与﹣d同时“消减操作”为|a+b|﹣|﹣e|,…,下列说法:①存在对两种不同的“消减操作”后的式子作差,结果不含与e相关的项;②若每种操作只去掉一项,则对三种不同“消减操作”的结果进行去绝对值,共有8种不同的结果;③若可以去掉的三项+b,﹣c,﹣d满足:(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=42,则2b+c﹣d的最大值为14.其中正确的个数是()A.0个B.1个C.2个D.3个【解答】解:①﹣d“闪减操作”后的式子|a+b﹣c|﹣|﹣e|,﹣c﹣d“闪减操作”后的式子|a+b|﹣|﹣e|对这两个式子作差,得(|a+b﹣c|﹣|﹣e|)﹣(|a+b|﹣|﹣e)=|a+b﹣c|﹣|﹣e|﹣|a+b|+|﹣e|=|a+b﹣c|﹣|a+b|,结果不含与e相关的项,∴①正确;②若每种操作只闪退一项,则分三种情况:+b闪减操作”后的结果|a|﹣|﹣c﹣d﹣e|,当a≥0,﹣c﹣d﹣e≥0时,|a|﹣|﹣c﹣d﹣e|=a+c+d+e,当a≥0,﹣c﹣d﹣e≤0时,|a|﹣|﹣c﹣d﹣e|=a﹣c﹣d﹣e,当a≤0,﹣c﹣d﹣e≥0时,|a|﹣|﹣c﹣d﹣e|=﹣a+c+d+e,当a≤0,﹣c﹣d﹣e≤0时,|a|﹣|﹣c﹣d﹣e|=﹣a﹣c﹣d﹣e,﹣c“闪减操作”后的结果|a+b|﹣|﹣d﹣e|,当a+b≥0,﹣d﹣e≥0时,|a+b|﹣|﹣d﹣e|=a+b+d+e,当a+b≥0,﹣d﹣e≤0时,|a+b|﹣|﹣d﹣e|=a+b﹣d﹣e,当a+b≤0,﹣d﹣e≥0时,|a+b|﹣|﹣d﹣e|=﹣a﹣b+d+e,当a+b≤0,﹣d﹣e≤0时,|a+b|﹣|﹣d﹣e|﹣a﹣b﹣d﹣e,﹣d“闪减操作”后的结果|a+b﹣c|﹣|﹣e|,当a+b﹣d≥0,﹣e≥0时,|a+b﹣c|﹣|﹣e|=a+b﹣c+e,当a+b﹣d≥0,﹣e≤0时,|a+b﹣c|﹣|﹣e|=a+b﹣c﹣e,当a+b﹣d≤0,﹣e≥0时,|a+b﹣c|﹣|﹣e|=﹣a﹣b+c+e,当a+b﹣d≤0,﹣e≤0时,|a+b﹣c|﹣|﹣e|=﹣a﹣b+c﹣e,共有12种不同的结果,∴②错误;③∵|+b|+|+b+2|=|b﹣0|+|b﹣(﹣2)|,在数轴上表示点b与0和﹣2的距离之和,∴当距离取最小值0﹣(﹣2)=2时,b的最小值为﹣2,同理|﹣c+1|+|﹣c+4|=|1﹣c|+|4﹣c|,在数轴上表示点c与1和4的距离之和,∴当距离取最小值4﹣1=3时,c的最小值为1,|﹣d+1|+|﹣d﹣6|=|1﹣d|+|﹣6﹣d|,在数轴上表示点d与1和﹣6的距离之和,∴当距离取最小值1﹣(﹣6)=7时,d的最小值为﹣6,∴当|+b|+|+b+2|,|﹣c+1|+|﹣c+4|,|﹣d+1|+|﹣d﹣6|都取最小值时,(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=2×3×7=42,∴③正确,故选:C.二.填空题(共8小题,满分32分,每小题4分)11.(4分)已知,△ABC中,∠A是锐角,sin A=,则∠A的度数是30° .【解答】解:∵∠A是锐角,sin A=,∴∠A=30°,故答案为:30°.12.(4分)一个多边形的内角和是720°,这个多边形的边数是6.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故答案为:6.13.(4分)如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD的度数为142° .【解答】解:∵l1∥l2,∠1=38°,∴∠ADP=∠1=38°,∵四边形ABCD为矩形,∴AD//BC,∴∠BPD+∠ADP=180°,∴∠BPD=180°﹣38°=142°.故答案为:142°.14.(4分)已知a、b是一元二次方程x2﹣x﹣1=0的两个根,则代数式3a2+2b2﹣3a﹣2b的值等于5.【解答】解:根据题意得a2﹣a=1,b2﹣b=1,所以3a2+2b2﹣3a﹣2b=3a2﹣3a+2b2﹣2b=3(a2﹣a)+2(b2﹣b)=3+2=5.故填515.(4分)如图,点B在x的正半轴上,且BA⊥OB于点B,将线段BA绕点B逆时针旋转60°到BB′的位置,且点B′的坐标为(1,).若反比例函数y=(x>0)的图象经过A点,则k=8.【解答】解:如图,过点B′作B′D⊥x轴于点D,∵BA⊥OB于点B,∴∠ABD=90°.∵线段BA绕点B逆时针旋转60°到BB′的位置,∴∠ABB′=60°,∴∠B′BD=90°﹣60°=30°.∵点B′的坐标为(1,),∴OD=1,B′D=,∴BB′=2B′D=2,BD==3,∴OB=1+3=4,AB=BB′=2,∴A(4,2),∴k=4×2=8.故答案为:8.16.(4分)若关于x的一元一次不等式组有且只有2个整数解,且关于y的分式方程的解为正数,则所有满足条件的整数a的值之和为8.【解答】解:,解得:,∴,解得2<a≤5.5,解分式方程得y=2a﹣5,∵y的值解为正数,∵2a﹣5>0,且2a﹣5≠3,∵a>2.5且a≠4,∴满足条件的整数a的值有3和5,∴3+5=8.故答案为:8.17.(4分)如图,点E在矩形ABCD的边CD上,将△ADE沿AE翻折,点D恰好落在边BC的点F处,如果BC =10,,那么EC=3.【解答】解:∵四边形ABCD∴AD=BC=10,∠B=∠C=∠D=90°,由折叠的性质可得AF=AD=10,∠AFE=∠D=90°,在Rt△ABF中,,∴,∴CF=BC﹣BF=4,在Rt△ABF,由勾股定理得,∴,∵∠BAF+∠BF A=90°=∠BF A+∠CFE,∴∠BAF=∠CFE,∴在Rt△EFC中,,∴,故答案为:3.18.(4分)一个四位自然数,若满足千位数字与十位数字的差比百位数字与个位数字的差多1,则称这样的四位数为“多一数”,如:9675,9﹣7=6﹣5+1,9765是“多一数”;又如:6973,∵6﹣7≠9﹣3+1,∴6973不是“多一数”.现有一个“多一数”M,千位数字为a,百位数字为b,十位数字为c,个位数字为d(1≤c≤a≤9,0≤d≤b≤9),将M的千位数字与十位数字交换,百位数字与个位数字交换,得到新的四位数N,若,F(M)能被6整除,则a﹣c=5;规定,若G(M)为完全平方数,则满足条件的“多一数”M中,最大值与最小值的差是2222.【解答】解:根据题意可知0≤a﹣c≤8,a﹣c=b﹣d+1.M=1000a+100b+10c+d,N=1000c+100d+10a+b.=,=,=10(a﹣c)+b﹣d=10(a﹣c)+a﹣c﹣1,=11(a﹣c)﹣1,∵F(M)能被6整除,∴a﹣c=5.∵c≥1,∴a≥6.当a=6时,c=1.∵a﹣c=b﹣d+1,∴d=b﹣4.∴,∵G(M)为完全平方数,∴b=3.∴d=﹣1(舍去).同理,当a=7时,c=2,M=7420;当a=8时,c=3,M=8531;当a=9时,c=4,M=9642;∴满足条件的“多一数”M中,最大值与最小值的差=9642﹣7420=2222.故答案为:5;2222.三.解答题(共8小题,满分78分)(1)因式分解:9(x+y)2﹣25(x﹣y)2;(2)计算:.【解答】解:(1)9(x+y)2﹣25(x﹣y)2=(3x+3y+5x﹣5y)(3x+3y﹣5x+5y)=﹣4(4x﹣y)(x﹣4y);(2)=1﹣•=1﹣==﹣.20.(10分)解方程:(1)x2﹣2x﹣2=0;(2).【解答】解:(1)x2﹣2x﹣2移项得x2﹣2x=2,配方得x2﹣2x+1=2+1,即(x+1)2=3,开方得,解得;;(2),去分母,得m﹣4+m+2=0,解得m=1,经检验,m=1是原方程的根.21.(10分)在第18章学习了三角形的中位线定理后,小明对这一知识进行了拓展性研究.他发现,连接梯形两腰中点的线段也具有类似的性质.探究过程如下:(1)用直尺和圆规,作线段CD的垂直平分线,垂足为点F,连接EF,连接AF并延长AF交线段BC的延长线(2)已知:在四边形ABCD中,AD∥BC,E为AB中点,F为CD中点,连接EF.猜想:EF∥AD∥BC,且.证明:∵F是CD中点,∴DF=CF.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.请你根据该探究过程完成下面命题:连接梯形两腰中点的线段平行于两底并且等于两底边之和的一半.【解答】(1)解:如图所示..(2)证明:∵F是CD中点,∴DF=CF.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.连接梯形两腰中点的线段平行于两底并且等于两底边之和的一半.故答案为:DF=CF;∠AFD=∠MFC;;等于两底边之和的一半.22.(10分)重庆市自发布“重庆市长江10年禁鱼通告”后,忠县内的黄钦水库自然生态养殖鱼在市场上热销,并被誉为“清凉五月天,黄钦自有贤”的美誉.2024年五一假期依依同学旅游到此,并购买了若干桂花鱼和大罗非,她发现用840元买的桂花鱼的数量比用同样价钱买大罗非的数量多20斤,且大罗非的单价是桂花鱼的1.5倍.(1)求桂花鱼、大罗非两种鱼的单价分别为多少元;(2)两种鱼在得到一致好评后,依依决定再次购买这两种鱼作为“伴手礼”.由于商家对老顾客让利,其中桂花鱼按照原单价购买,大罗非的单价每斤降低m(m>0)元,则购买的数量会比第一次购买大罗非的数量增加2m斤,第二次一共购买80斤鱼共用了1340元.求m的值.【解答】解:(1)设桂花鱼的单价是x元,则大罗非的单价是1.5x元,根据题意得:﹣=20,解得:x=14,经检验,x=14是所列方程的解,且符合题意,∴1.5x=1.5×14=21(元).答:桂花鱼的单价是14元,大罗非的单价是21元;(2)第一次购买大罗非的数量是840÷21=40(斤).根据题意得:14(80﹣40﹣2m)+(21﹣m)(40+2m)=1340,整理得:m2+13m﹣30=0,解得:m1=2,m2=﹣15(不符合题意,舍去).答:m的值为2.23.(10分)如图矩形ABCD中,AB=4,BC=6,点F为BC边上的三等分点(CF<BF),动点P从点A出发,沿折线A→D→C运动,到C点停止运动.点P的运动速度为每秒2个单位长度,设点P运动时间为x秒,△APF 的面积为y1.(1)请直接写出y1关于x的函数解析式,并注明自变量x的取值范围;(2)若函数,请在平面直角坐标系中画出函数y1,y2的图象,并写出函数y1的一条性质;(3)结合函数图象,直接写出当y1≤y2时x的取值范围(保留一位小数,误差不超过0.2).【解答】解:(1)当0≤x≤3时,y1==4x,当3<x≤5时,y1=﹣×6×(2x﹣6)﹣=﹣4x+24,∴y1=;(2)函数y1,y2的图象如图:函数y1的性质:当0≤x≤3时,y随x的增大而增大,当3<x≤5时,y随x的增大而减小;(3)由两个函数图像可知,当y1≤y2时x的取值范围为0<x≤2.1或x=5.24.(10分)已知图1是某超市购物车,图2是超市购物车的侧面示意图,现已测得支架AC=72cm,BC=54cm,两轮轮轴的距离AB=90cm(购物车车轮半径忽略不计),DG、EH均与地面平行.(参考数据:)(1)猜想两支架AC与BC的位置关系并说明理由;(2)若FG的长度为80cm=60°,求购物车把手F到AB的距离.(结果精确到0.1)【解答】解:(1)AC⊥BC,理由如下:∵AC=72cm,BC=54cm,AB=90cm,∴AC2+BC2=722+542=8100,AB2=8100,∴AC2+BC2=AB2,∴∠ACB=90°,∴AC⊥BC.(2)过F作FN⊥AB交AB延长线于N,过C作CM⊥AB于M,延长DG交FN于K,∵EH∥DG∥AB,∴GK⊥FN,∴四边形MNKC是矩形,∴NK=CM,∵△ABC的面积=AB•CM=AC•BC,∴90CM=72×54,∴CM=43.2(cm),∴NK=CM=43.2(cm),∵EH∥DG,∴∠FGK=∠EHG=60°,∴sin∠FGK=sin60°==,∵FG=80cm,∴FK=40≈69.28(cm),∴FN=FK+NK=69.28+43.2≈112.5(cm).∴购物车把手F到AB的距离约是112.5cm.25.(10分)如图,直线与双曲线交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点M、N是y轴上的动点(M在N上方)且满足MN=1,连接MB,NC,求MB+MN+NC的最小值;(3)点P是双曲线上一个动点,是否存在点P,使得∠ODP=∠DOB,若存在,请直接写出所有符合条件的P 点的横坐标.【解答】解:(1)根据题意可知点A(m,﹣3)在直线和双曲线的图象上,∴,解得m=﹣2,∴点A的坐标为(﹣2,﹣3),代入双曲线得:k=(﹣2)×(﹣3)=6,由图象可知点B与点A关于原点对称,∴B(2,3);(2)过点B、C分别作x轴的垂线,垂足分别为E、F,作点B关于y轴的对称点点B',并向下平移一个单位记为B'',连接B''C,则BE∥CF,B'B''=1,∴△DCF∽△DBE,∴,∵BC=2CD,B(2,3),B'(﹣2,3),B''(﹣2,2),∴,BE=3,∴CF=1,即点C的纵坐标为1,∵点C在反比例函数的图象上,∴C(6,1),B''C=,∴MB+MN+NC的最小值即为B'B''+B''C=1+;(3)当∠ODP=∠DOB时,当DP在x轴下方时,DP∥AB,设直线BC的解析式为y=kx+b,由(2)可知:B(2,3),C(6,1),∴解得,∴,当y=0时,,解得x=8,∴D(8,0),∵DP∥AB,直线AB的解析式为,∴设直线DE的解析式为,把D(8,0)代入得:12+m=∴m=﹣12,∴,由P是直线DE与反比例函数的交点可得:,解得,此时点P在第三象限,符合题意,当DP在x轴上方时,则与下方的DP关于x轴对称,可得直线DP的解析式为:,再解方程组得,此时点P在第一象限,两个都符合题意,∴点P的横坐标为:..26.(10分)在△ABC中,AB=AC,∠B=30°,过A作AD⊥BC于点D.(1)如图1,过D作DE⊥AB于点E,连接CE,若AE=2,求线段CE的长;(2)如图2,H为平面内一点,连接AH、CH,在△AGH中,AG=AH,∠GAH=120°,延长AG与CB交于点F,过点H作HP∥AF交BC于点P,若C、H、G在一条直线上,求证:BF=CP;(3)如图3,M为AD上一点,连接BM,N为BM上一点,若,,∠BAN﹣∠CBN=30°,连接CN,请直接写出线段CN的长.【解答】解:(1)∵∠B=30°,AD⊥BC,∴∠BAD=60°,∴AD=2AE=4,∴AB=2AD=8,BD=AD=4,∴BE=AB﹣AE=6,∴EF=BE=3,BF=BE=3,∵AB=AC,∴BD=CD,∴CF=2BD﹣BF=8﹣3=5,∴CE==2,(2)证明:∵∠ABC=30°,AB=AC,∴∠BAC=120°,又∵∠GAH=120°,∴∠F AB=∠CAH,∵AH=AG,∴∠AHG=30°=∠ABC,∴∠ABF=∠AHC,∴△ABF∽△AHC,∴=,∵PH∥FG,∴△CHP∽△CGF,∴=,又∵△ABC∽△AGH,∴=,∴=,∴=,∵=,∴==+1=+1=,∴CP=FB;(3)延长BM交AC于F,延长AN到E,使NE=BN,连接BE,如图3:∵∠BAN﹣∠CBN=30°,∴∠BAN=∠CBN+30°,∴∠BNE=∠BAN+∠ABN=∠CBN+∠ABN+30°=60°,∵NE=BN,∴△BEN是等边三角形,∴∠E=60°,∵∠ANB=180°﹣∠BNE=120°=∠BAC,∴△ABN∽△FBA,∴==,∠BAE=∠AFB,∴△ANF∽△BEA,∴==,∴FN===,∴BF=FN+BN=,∴AB2=BN•BF=5+,过F作FG⊥BC于F,过N作NH⊥BC于H,∵∠ACB=30°,∴FG=FC=(AB﹣AF)=AB,CG=AB,∴BG=BC﹣CG=AB﹣AB=AB,∵NH∥CF,∴===,∴NH=AB,BH=AB,∴CH=BC﹣BH=AB,∴CN2=CH2+NH2=9,∴CN=3.。

九年级数学上册月考试卷及答案【完整】

九年级数学上册月考试卷及答案【完整】

九年级数学上册月考试卷及答案【完整】第一部分:选择题
1. 请问下列哪个选项是正确的?
a. A
b. B
c. C
d. D
2. 如果 a = 2,b = 3,那么 a + b 的值是多少?
a. 4
b. 5
c. 6
d. 7
3. 三角形的内角和是多少?
a. 90度
b. 180度
c. 270度
d. 360度
4. 请问下列哪个选项是与三角形有关的公式?
a. F = ma
b. E = mc^2
c. A = 1/2bh
d. H = VQ
第二部分:填空题
1. 以下哪个数是质数:___。

2. 三角形的面积公式是___。

3. 二次方程的解的个数与 ___ 相关。

4. 下面哪个选项是平行四边形的特性之一:___。

第三部分:解答题
1. 解方程:3x + 5 = 20。

2. 计算三角形 ABC 的面积,已知底边 BC = 8 cm,高 AD = 6 cm。

答案
第一部分:选择题
1. c
2. b
3. b
4. c
第二部分:填空题
1. 2
2. A = 1/2bh
3. 二次方程的解的个数与判别式相关
4. 对角线互相平分
第三部分:解答题
1. x = 5
2. 三角形 ABC 的面积为 24 平方厘米。

以上是九年级数学上册月考试卷及答案的完整内容。

请注意,只有在详细核对题目和答案后,才可确认完全准确性。

2023-2024学年九年级(上)第一次月考数学试卷-(含答案)

2023-2024学年九年级(上)第一次月考数学试卷-(含答案)

2023-2024学年九年级(上)第一次月考数学试卷一.选择题(共10小题,共30分)1.(3分)用配方法解一元二次方程2x 2﹣3x ﹣1=0,配方正确的是()A .(x ﹣)2=B .(x ﹣)2=C .(x ﹣)2=D .(x ﹣)2=2.(3分)下列说法不正确的是()A .一组同旁内角相等的平行四边形是矩形B .一组邻边相等的菱形是正方形C .有三个角是直角的四边形是矩形D .对角线相等的菱形是正方形3.(3分)若关于x 的一元二次方程x 2﹣2x +kb +1=0有两个不相等的实数根,则一次函数y =kx +b 的大致图象可能是()A .B .C .D .4.(3分)如图,在菱形ABCD 中,CE ⊥AB 于点E ,E 点恰好为AB 的中点,则菱形ABCD 的较大内角度数为()A .100°B .120°C .135°D .150°5.(3分)某市“菜篮子工程”蔬菜基地2022年产量为100吨,预计到2024年产量可达121吨.设该基地蔬菜产量的年平均增长率为x ,则可列方程为()A.100(1+x)2=121B.121(1﹣x)2=100C.100(1+2x)=121D.100(1+x2)=1216.(3分)如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF =60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等7.(3分)四边形ABCD的对角线AC,BD相交于点O,能判定它是矩形的是()A.AO=CO,BO=OD B.AB=BC,AO=COC.AO=CO,BO=DO,AC⊥DB D.AO=CO=BO=DO8.(3分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,下列条件:(1)∠1+∠DBC=90°;(2)OA=OB;(3)∠1=∠2,其中能判定平行四边形ABCD是菱形的条件有()A.0个B.1个C.2个D.3个9.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE ⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.10.(3分)如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个二.填空题(共5小题,共15分)11.(3分)一元二次方程x2=5x的根.12.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH 的长为.13.(3分)若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是.14.(3分)如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.三.解答题(共8小题,共75分)16.(16分)用恰当的方法解下列方程:(1)x2+4x﹣2=0;(2)4x2﹣25=0;(3)(2x+1)2+4(2x+1)+4=0;(4)(x﹣1)(x﹣3)=8.17.(8分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.18.(8分)关于x的一元二次方程2﹣3+=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(﹣1)2++﹣3=0与方程2﹣3+=0有一个相同的根,求此时m的值.19.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是.20.(8分)某旅行社的一则广告如下:甲公司想分批组织员工到延安红色旅游学习.(1)如果第一批组织40人去学习,则公司应向旅行社交费元;(2)如果公司计划用29250元组织第一批员工去学习,问这次旅游学习应安排多少人参加?21.(8分)如图,在菱形ABCD中,AB=3,∠DAB=60°,点E是AD边的中点,点M 是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.22.(8分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?23.(11分)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)问题发现如图1,若点E在CB的延长线上,直接写出EG与GC的位置关系及的值;(2)操作探究将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)解决问题将图1中的△BEF绕点B顺时针旋转,若BE=1,AB=,当E,F,D三点共线时,请直接写出CE的长.参考答案与试题解析一.选择题(共10小题,共30分)1.(3分)用配方法解一元二次方程2x2﹣3x﹣1=0,配方正确的是()A.(x﹣)2=B.(x﹣)2=C.(x﹣)2=D.(x﹣)2=【分析】化二次项系数为1后,把常数项﹣右移,应该在左右两边同时加上一次项系数﹣的一半的平方.【解答】解:由原方程,得x2﹣x=,x2﹣x+=+,(x﹣)2=,故选:A.2.(3分)下列说法不正确的是()A.一组同旁内角相等的平行四边形是矩形B.一组邻边相等的菱形是正方形C.有三个角是直角的四边形是矩形D.对角线相等的菱形是正方形【分析】利用正方形的判定、平行四边形的性质,菱形的性质,矩形的判定分别判断后即可确定正确的选项.【解答】解:A、一组同旁内角相等的平行四边形是矩形,正确;B、一组邻边相等的菱形是正方形,错误;C、有三个角是直角的四边形是矩形,正确;D、对角线相等的菱形是正方形,正确.故选:B.3.(3分)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y =kx+b的大致图象可能是()A.B.C.D.【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到根的判别式大于0,求出kb的符号,对各个图象进行判断即可.【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,∴△=4﹣4(kb+1)>0,解得kb<0,A.k>0,b=0,即kb=0,故A不正确;B.k>0,b<0,即kb<0,故B正确;C.k>0,b>0,即kb>0,故C不正确;D.k<0,b<0,即kb>0,故D不正确.故选:B.4.(3分)如图,在菱形ABCD中,CE⊥AB于点E,E点恰好为AB的中点,则菱形ABCD 的较大内角度数为()A.100°B.120°C.135°D.150°【分析】连接AC,证明△ABC是等边三角形,得出∠B=60°,则∠D=60°,∠BAD =∠BCD=120°,即可得出答案.【解答】解:连接AC,如图:∵四边形ABCD是菱形,∴AB=BC,∠BAD=∠BCD,∠B=∠D,AD∥BC,∴∠BAD+∠B=180°,∵CE⊥AB,点E是AB中点,∴BC=AC=AB,∴△ABC是等边三角形,∴∠B=60°,∴∠D=60°,∠BAD=∠BCD=120°;即菱形ABCD的较大内角度数为120°;故选:B.5.(3分)某市“菜篮子工程”蔬菜基地2022年产量为100吨,预计到2024年产量可达121吨.设该基地蔬菜产量的年平均增长率为x,则可列方程为()A.100(1+x)2=121B.121(1﹣x)2=100C.100(1+2x)=121D.100(1+x2)=121【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从100吨增加到121吨”,即可得出方程.【解答】解:由题意知,设该基地蔬菜产量的年平均增长率为x,根据2022年产量为100吨,则2023年蔬菜产量为100(1+x)吨,2024年蔬菜产量为100(1+x)(1+x)吨,预计2024年产量可达121吨,即:100(1+x)(1+x)=121或100(1+x)2=121.故选:A.6.(3分)如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF =60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等【分析】证明△ABE≌△DBF(AAS),可得AE=DF,根据线段的和可知:AE+CF=AB,是一定值,可作判断.【解答】解:连接BD,∵四边形ABCD是菱形,∴AB=AD=CD,∵∠A=60°,∴△ABD是等边三角形,∴AB=BD,∠ABD=60°,∵DC∥AB,∴∠CDB=∠ABD=60°,∴∠A=∠CDB,∵∠EBF=60°,∴∠ABE+∠EBD=∠EBD+∠DBF,∴∠ABE=∠DBF,在△ABE和△DBF中,∵,∴△ABE≌△DBF(AAS),∴AE=DF,∴AE+CF=DF+CF=CD=AB,故选:D.7.(3分)四边形ABCD的对角线AC,BD相交于点O,能判定它是矩形的是()A.AO=CO,BO=OD B.AB=BC,AO=COC.AO=CO,BO=DO,AC⊥DB D.AO=CO=BO=DO【分析】根据平行四边形的判定,矩形的判定,菱形的判定逐个判断即可.【解答】解:A、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,不能推出四边形ABCD是矩形,故本选项不符合题意;B、根据AB=BC,AO=CO不能推出四边形ABCD是矩形,故本选项不符合题意;C、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项不符合题意;D、∵OA=OB=OC=OD,∴OA=OC,OB=OD,AC=BD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故本选项符合题意;故选:D.8.(3分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,下列条件:(1)∠1+∠DBC=90°;(2)OA=OB;(3)∠1=∠2,其中能判定平行四边形ABCD是菱形的条件有()A.0个B.1个C.2个D.3个【分析】由平行四边形的性质、菱形的判定、矩形的判定即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD∥BC,∴∠1=∠BCO,若∠1+∠DBC=90°时,则∠BCO+∠DBC=90°,∴∠BOC=90°,∴AC⊥BD,∴四边形ABCD是菱形;(1)能判定平行四边形ABCD是菱形;若OA=OB,则AC=BD,∴四边形ABCD是矩形;(2)不能判定平行四边形ABCD是菱形;若∠1=∠2,则∠2=∠BCO,∴AB=CB,∴四边形ABCD是菱形;(3)能判定平行四边形ABCD是菱形;故选:C.9.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE ⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.=S△AOE+S△DOE,【分析】依据矩形的性质即可得到△AOD的面积为12,再根据S△AOD 即可得到OE+EF的值.【解答】解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AC==10,∴AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴S△AOD∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.10.(3分)如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个【分析】①根据正方形的性质和角平分线的定义得:∠BAG=∠CAG=22.5°,由垂直的定义计算∠AED=90°﹣22.5°=67.5°,∠EAD=∠EAD=22.5°,得ED是AG的垂直平分线,则AE=EG,△BEG是等腰直角三角形,则AD=AB>2AE,可作判断;②证明△DAF≌△ABG(ASA),可作判断;③分别计算∠CDF=∠CFD=67.5°,可作判断;④根据对角线互相平分且垂直的四边形是菱形可作判断;⑤设BG=x,则AF=AE=x,表示OF和BE的长,可作判断.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=90°,∠BAC=45°,∵AG平分∠BAC,∴∠BAG=∠CAG=22.5°,∵AG⊥ED,∴∠AHE=∠EHG=90°,∴∠AED=90°﹣22.5°=67.5°,∴∠ADE=22.5°,∵∠ADB=45°,∴∠EDG=22.5°=∠ADE,∵∠AHD=∠GHD=90°,∴∠DAG=∠DGA,∴AD=DG,AH=GH,∴ED是AG的垂直平分线,∴AE=EG,∴∠EAG=∠AGE=22.5°,∴∠BEG=45°=∠ABG,∴∠BGE=90°,∴AE=EG<BE,∴AD=AB>2AE,故①不正确;②∵四边形ABCD是正方形,∴AD=AB,∠DAF=∠ABG=45°,∵∠ADF=∠BAG=22.5°,∴△DAF≌△ABG(ASA),∴DF=AG,故②正确;③∵∠CDF=45°+22.5°=67.5°,∠CFD=∠AFE=90°﹣22.5°=67.5°,∴∠CDF=∠CFD,∴CF=CD,故③正确;④∵∠EAH=∠FAH,∠AHE=∠AHF,∴∠AEF=∠AFE,∴AE=AF,∴EH=FH,∵AH=GH,AG⊥EF,∴四边形FGEA是菱形;故④正确;⑤设BG=x,则AF=AE=x,由①知△BEG是等腰直角三角形,∴BE=x,∴AB=AE+BE=x+x=(+1)x,∴AO==,∴OF=AO﹣AF=﹣x=,∴==,∴OF=BE;故⑤正确;本题正确的结论有:②③④⑤;故选:C.二.填空题(共5小题,共15分)11.(3分)一元二次方程x2=5x的根x1=0,x2=5.【分析】先移项,然后通过提取公因式x对等式的左边进行因式分解.【解答】解:由原方程,得x2﹣5x=0,则x(x﹣5)=0,解得x1=0,x2=5.故答案是:x1=0,x2=5.12.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH的长为.【分析】直接利用菱形的性质得出AO,DO的长,再利用三角形面积以及勾股定理得出答案.【解答】解:∵四边形ABCD是菱形,AC=24,BD=10,=×AC×BD=120,AO=12,OD=5,AC⊥BD,∴S菱形ABCD∴AD=AB==13,∵DH⊥AB,∴AO×BD=DH×AB,∴12×10=13×DH,∴DH=.故答案为:.13.(3分)若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是k≤5.【分析】分k﹣1=0和k﹣1≠0两种情况,其中k﹣1≠0时根据题意列出关于k的不等式求解可得.【解答】解:当k﹣1=0时,方程为4x+1=0,显然有实数根;当k﹣1≠0,即k≠1时,△=42﹣4×(k﹣1)×1≥0,解得k≤5且k≠1;综上,k≤5.故答案为:k≤5.14.(3分)如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为1.【分析】方法一:连接CH并延长交AD于P,连接PE,根据正方形的性质得到∠A=90°,AD∥BC,AB=AD=BC=2,根据全等三角形的性质得到PD=CF=,根据勾股定理和三角形的中位线定理即可得到结论.方法二:设DF,CE交于O,根据正方形的性质得到∠B=∠DCF=90°,BC=CD=AB,根据线段中点的定义得到BE=CF,根据全等三角形的性质得到CE=DF,∠BCE=∠CDF,求得DF⊥CE,根据勾股定理得到CE=DF==,点G,H分别是EC,FD的中点,根据相似三角形的判定和性质定理即可得到结论.【解答】解:方法一:连接CH并延长交AD于P,连接PE,∵四边形ABCD是正方形,∴∠A=90°,AD∥BC,AB=AD=BC=2,∵E,F分别是边AB,BC的中点,∴AE=CF=×2=,∵AD∥BC,∴∠DPH=∠FCH,∵∠DHP=∠FHC,∵DH=FH,∴△PDH≌△CFH(AAS),PD=CF=,∴AP=AD﹣PD=,∴PE===2,∵点G,H分别是EC,FD的中点,∴GH=EP=1;方法二:设DF,CE交于O,∵四边形ABCD是正方形,∴∠B=∠DCF=90°,BC=CD=AB,∵点E,F分别是边AB,BC的中点,∴BE=CF,∴△CBE≌△DCF(SAS),∴CE=DF,∠BCE=∠CDF,∵∠CDF+∠CFD=90°,∴∠BCE+∠CFD=90°,∴∠COF=90°,∴DF⊥CE,∴CE=DF==,∵点G,H分别是EC,FD的中点,∴CG=FH=,∵∠DCF=90°,CO⊥DF,∴∠DCO+∠FCO=∠DCO+∠CDO=90°,∴∠FCO=∠CDO,∵∠DCF=∠COF=90°,∴△COF∽△DOC,∴=,∴CF2=OF•DF,∴OF===,∴OH=,OD=,∵∠COF=∠COD=90°,∴△COF∽△DOC,∴,∴OC2=OF•OD,∴OC==,∴OG=CG﹣OC=﹣=,∴HG===1,故答案为:1.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.【分析】根据翻折的性质,可得B′E的长,根据勾股定理,可得CE的长,根据等腰三角形的判定,可得答案.【解答】解:(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,则CB=CB′,由翻折的性质,得EB=EB′,∴点E、C在BB ′的垂直平分线上,∴EC垂直平分BB′,由折叠,得EF也是线段BB′的垂直平分线,∴点F与点C重合,这与已知“点F是边BC上不与点B,C重合的一个动点”不符,故此种情况不存在,应舍去.综上所述,DB′的长为16或4.故答案为:16或4.三.解答题(共8小题,共75分)16.(16分)用恰当的方法解下列方程:(1)x2+4x﹣2=0;(2)4x2﹣25=0;(3)(2x+1)2+4(2x+1)+4=0;(4)(x﹣1)(x﹣3)=8.【分析】(1)利用公式法求解可得;(2)利用直接开平方法求解可得;(3)利用换元法求解可得;(4)整理成一般式,再利用公式法求解可得.【解答】解:(1)∵a=1,b=4,c=﹣2,∴△=42﹣4×1×(﹣2)=24>0,则x==﹣2±,即x1=﹣2+,x2=﹣2﹣;(2)∵4x2=25,∴x2=,解得x1=,x2=﹣;(3)令2x+1=a,则a2+4a+4=0,∴(a+2)2=0,解得a=﹣2,∴2x+1=﹣2,解得x1=x2=﹣1.5;(4)方程整理为一般式,得:x2﹣4x﹣5=0,解得:(x﹣5)(x+1)=0,则x﹣5=0或x+1=0,解得x1=5,x2=﹣1.17.(8分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.【分析】(1)证△MOD≌△NOB(AAS),得出OM=ON,由OB=OD,证出四边形BNDM 是平行四边形,进而得出结论;(2)由菱形的性质得出BM=BN=DM=DN,OB=BD=12,OM=MN=5,由勾股定理得BM=13,即可得出答案.【解答】(1)证明:∵AD∥BC,∴∠DMO=∠BNO,∵MN是对角线BD的垂直平分线,∴OB=OD,MN⊥BD,在△MOD和△NOB中,,∴△MOD≌△NOB(AAS),∴OM=ON,∵OB=OD,∴四边形BNDM是平行四边形,∵MN⊥BD,∴四边形BNDM是菱形;(2)解:∵四边形BNDM是菱形,BD=24,MN=10,∴BM=BN=DM=DN,OB=BD=12,OM=MN=5,在Rt△BOM中,由勾股定理得:BM===13,∴菱形BNDM的周长=4BM=4×13=52.18.(8分)关于x的一元二次方程2﹣3+=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(﹣1)2++﹣3=0与方程2﹣3+=0有一个相同的根,求此时m的值.【分析】(1)利用判别式的意义得到△=(﹣3)2﹣4k≥0,然后解不等式即可;(2)先确定k=2,再解方程2﹣3+2=0,解得x1=1,x2=2,然后分别把x=1和x=2代入元二次方程(﹣1)2++﹣3=0可得到满足条件的m的值.【解答】解:(1)根据题意得△=(﹣3)2﹣4k≥0,解得k≤;(2)满足条件的k的最大整数为2,此时方程2﹣3+=0变形为方程2﹣3+2=0,解得x1=1,x2=2,当相同的解为x=1时,把x=1代入方程(﹣1)2++﹣3=0得m﹣1+1+m﹣3=0,解得m=;当相同的解为x=2时,把x=2代入方程(﹣1)2++﹣3=0得4(m﹣1)+2+m﹣3=0,解得m=1,而m﹣1≠0,不符合题意,舍去,所以m的值为.19.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是25.【分析】(1)根据菱形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据全等三角形的判定定理得到Rt△ABE≌Rt△DCF(HL),求得矩形AEFD的面积=菱形ABCD的面积,根据等腰三角形的性质得到结论.【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,AD=BC,∵CF=BE,∴BC=EF,∴AD∥EF,AD=EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴平行四边形AEFD是矩形;(2)解:∵AB=CD,BE=CF,∠AEB=∠DFC=90°,∴Rt△ABE≌Rt△DCF(HL),∴矩形AEFD的面积=菱形ABCD的面积,∵∠ABC=60°,∴△ABC是等边三角形,∵AC=10,∴AE=AC=5,AB=10,BO=5,∵AD=EF=10,∴矩形AEFD的面积=菱形ABCD的面积=×10×10=50,故答案为:50.20.(8分)某旅行社的一则广告如下:甲公司想分批组织员工到延安红色旅游学习.(1)如果第一批组织40人去学习,则公司应向旅行社交费28000元;(2)如果公司计划用29250元组织第一批员工去学习,问这次旅游学习应安排多少人参加?【分析】(1)首先表示出40人是平均每人的费用,进而得出总费用;(2)表示出每人平均费用为:800﹣10(x﹣30),进而得出等式求出答案.【解答】解:(1)∵人数多于30人,那么每增加1人,人均收费降低10元,∴第一批组织40人去学习,则公司应向旅行社交费:40×[800﹣(40﹣30)×10]=28000(元);故答案为:28000;(2)设这次旅游应安排x人参加,∵30×800=24000<29250,∴x>30,根据题意得:x[800﹣10(x﹣30)]=29250,整理得,x2﹣110x+2925=0,解得:x1=45,x2=65∵800﹣10(x﹣30)≥500,∴x≤60.∴x=45.答:这次旅游应安排45人参加.21.(8分)如图,在菱形ABCD中,AB=3,∠DAB=60°,点E是AD边的中点,点M 是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为 1.5时,四边形AMDN是矩形;②当AM的值为3时,四边形AMDN是菱形.【分析】(1)求出△DNE≌△AME,根据全等及时向的性质得出NE=ME,根据平行四边形的判定得出即可;(2)①根据等边三角形的判定得出△ABD是等边三角形,根据等边三角形的性质求出DM⊥AB,根据矩形的判定得出即可;②求出△ABD是等边三角形,求出M和B重合,根据菱形的判定得出即可..【解答】(1)证明:∵点E是AD边的中点,∴AE=DE,∵四边形ABCD是菱形,∴DC∥AB,∴∠DNE=∠AME,在△DNE和△AME中,∴△DNE≌△AME(AAS),∴NE=ME,∵AE=DE,∴四边形AMDN是平行四边形;(2)解:①当AM=1.5时,四边形AMDN是矩形,理由是:连接BD,∵四边形ABCD是菱形,∴AD=AB=3,∵∠DAB=60°,∴△ADB是等边三角形,∴AD=BD=3,∵AM=1.5,AB=3,∴AM=BM,∴DM⊥AB,即∠DMA=90°,∵四边形AMDN是平行四边形,∴四边形AMDN是矩形,即当AM=1.5时,四边形AMDN是矩形,故答案为:1.5;②当AM=3时,四边形AMDN是菱形,理由是,此时AM=AB=3,即M和B重合,∵由①知:△ABD是等边三角形,∴AM=MD,∵四边形AMDN是平行四边形,∴四边形AMDN是菱形,故答案为:3.22.(8分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=2,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?【分析】(1)利用求根公式即可求出方程的两根;(2)仿照(1)找准关于x的一元二次方程,由根的判别式△=﹣7<0,可得出方程无解,即不存在满足要求的矩形B;(3)仿照(1)找准关于x的一元二次方程,由根的判别式△≥0,可找出m、n之间的关系.【解答】解:(1)利用求根公式可知:x1==,x2==2.故答案为:;2.(2)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣3x+2=0.∵b2﹣4ac=(﹣3)2﹣4×2×2=﹣7<0,∴该方程无解,∴不存在满足要求的矩形B.(3)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣(m+n)x+mn=0.∵矩形B存在,∴b2﹣4ac=[﹣(m+n)]2﹣4×2mn≥0,∴(m﹣n)2≥4mn.故当m、n满足(m﹣n)2≥4mn时,矩形B存在.23.(11分)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)问题发现如图1,若点E在CB的延长线上,直接写出EG与GC的位置关系及的值;(2)操作探究将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)解决问题将图1中的△BEF绕点B顺时针旋转,若BE=1,AB=,当E,F,D三点共线时,请直接写出CE的长.【分析】(1)过G作GH⊥EC于H,推出EF∥GH∥DC,求出H为EC中点,根据梯形的中位线求出EG=GC,GH=(EF+DC)=(EB+BC),推出GH=EH=BC,根据直角三角形的判定推出△EGC是等腰直角三角形即可;(2)延长EG到H,使EG=GH,连接CH,过E作BC的垂线EQ,证△EFG≌△HDG,推出DH=EF=BE,∠FEG=∠DHG,求出∠EBC=∠HDC,证出△EBC≌△HDC,推出CE=CH,∠BCE=∠DCH,求出△ECH是等腰直角三角形,即可得出答案;(3)分两种情况:①CE在BC的上方,如图3,作辅助线,构建等腰直角三角形,求出cos∠DBE=,推出∠DBE=60°,证明△GDC≌△EBC(ASA),则EC=CG,DG=EB=1,从而得结论;②CE在BC的下方,如图4,同理可得结论.【解答】解:(1)EG⊥CG,;理由是:如图1,过G作GH⊥EC于H,∵∠FEB=∠DCB=90°,∴EF∥GH∥DC,∵G为DF中点,∴H为EC中点,∴EG=GC,GH=(EF+DC)=(EB+BC)=CE,即GH=EH=HC,∴∠EGC=90°,即△EGC是等腰直角三角形,;(2)结论还成立,理由是:如图2,延长EG到H,使EG=GH,连接CH,过E作BC的垂线EQ,延长CB交EQ于R,延长CD,交EH于N,在△EFG和△HDG中,,∴△EFG≌△HDG(SAS),∴DH=EF=BE,∠FEG=∠DHG,∴EF∥DH,同理得ER∥CD,∴∠1=∠2,∴∠1=∠2=90°﹣∠3=∠4,∴∠EBC=180°﹣∠4=180°﹣∠1=∠HDC,在△EBC和△HDC中,,∴△EBC≌△HDC(SAS).∴CE=CH,∠BCE=∠DCH,∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°,∴△ECH是等腰直角三角形,∵G为EH的中点,∴EG⊥GC,,即(1)中的结论仍然成立;(3)分两种情况:①如图3,连接BD,过C作CG⊥EC,交ED的延长线于G,∵AB=,正方形ABCD,∴BD=2,Rt△BED中,cos∠DBE=,∴∠DBE=60°,∠BDF=30°∵tan∠BDE==,∴DE=BE=,∵∠ABD=45°,∴∠ABE=60°﹣45°=15°,∴∠EBC=90°+15°=105°,∵∠EDC=∠BDE+∠CDB=30°+45°=75°,∴∠CDG=180°﹣75°=105°,∴∠CDG=∠CBE,∵∠ECG=∠BCD=90°,∴∠DCG=∠BCE,∵BC=CD,∴△GDC≌△EBC(ASA),∴EC=CG,DG=EB=1,∴△ECG是等腰直角三角形,∴EG=CE,∵EG=ED+DG=+1,∴CE==;②如图4,连接BD,过C作CH⊥EC,交ED于H,同理得△DHC≌△BEC(ASA),∴EC=CH,DH=EB=1,同理可知:DE=,∴EH=DE﹣DH=﹣1,∵△ECH是等腰直角三角形,∴EH=CE,∴CE==;综上,CE的长为.。

2024-2025学年湖北省部分学校九年级(上)第一次月考数学试卷(含解析)

2024-2025学年湖北省部分学校九年级(上)第一次月考数学试卷(含解析)

2024-2025学年湖北省部分学校九年级(上)第一次月考数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.一元二次方程4x2+x−3=0中一次项系数、常数项分别是( )A. 2,−3B. 0,−3C. 1,−3D. 1,02.解方程(x+1)2=3(1+x)的最佳方法是( )A. 直接开平方法B. 配方法C. 公式法D. 因式分解法3.抛物线y=−3x2+2x−1与y轴的交点为( )A. (0,1)B. (0,−1)C. (−1,0)D. (1,0)4.若关于x的一元二次方程(k−1)x2+x+1=0有实数根,则k的取值范围是( )A. k≥54B. k>54C. k>54且k≠1 D. k≤54且k≠15.若关于x的方程x2−kx−3=0的一个根是x=3,则k的值是( )A. −2B. 2C. −12D. 126.关于x的方程|x2−2x−3|=a有且仅有两个实数根,则实数a的取值范围是( )A. a=0B. a=0或a=4C. a>4D. a=0或a>47.在手拉手学校联谊活动中,参加活动的每个同学都要给其他同学发一条励志短信,总共发了110条,设参加活动的同学有x个,根据题意,下面列出的方程正确的是( )A. 12x(x+1)=110 B. 12x(x−1)=110 C. x(x+1)=110 D. x(x−1)=1108.已知函数y=ax2+bx+c的图象如图,那么关于x的方程ax2+bx+c+2=0的根的情况是( )A. 无实数根B. 有两个相等实数根C. 有两个同号不等实数根D. 有两个异号实数根9.二次函数y=ax2+bx+c,若ab<0,a−b2>0,点A(x1,y1),B(x2,y2)在该二次函数的图象上,其中x1<x2,x1+x2=0,则( )A. y1=−y2B. y1>y2C. y1<y2D. y1、y2的大小无法确定10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc<0;②b>a+c;③2a−b=0;④b2−4ac<0.其中正确的结论个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题:本题共5小题,每小题3分,共15分。

2024-2025学年初中九年级上学期数学第一次月考卷及答案(北师大版)

2024-2025学年初中九年级上学期数学第一次月考卷及答案(北师大版)

2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:第1章~第3章(北师版)。

5.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷一.单项选择题(本题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.下列方程中,是一元二次方程的是()A.xx2−3xx−5=−5B.2xx2−yy−1=0C.xx2−xx(xx+2.5)=0D.aaxx2+bbxx+cc=02.下列命题为真命题的是()A.有两边相等的平行四边形是菱形B.有一个角是直角的平行四边形是菱形C.对角线互相垂直的平行四边形是矩形D.有三个角是直角的四边形是矩形3.若关于xx的方程xx2+mmxx−6=2.则mm为()A.−2B.1 C.4 D.−34.a是方程xx2+2xx−1=0的一个根,则代数式aa2+2aa+2020的值是()A.2018 B.2019 C.2020 D.20215.如图,在正方形AAAAAAAA中,EE为AAAA上一点,连接AAEE,AAEE交对角线AAAA于点FF,连接AAFF,若∠AAAAEE=35°,则∠AAFFAA的度数为()A.80°B.70°C.75°D.45°6.有一块长40m,宽32m的矩形种植地,修如图等宽的小路,使种植面积为1140m2,求小路的宽.设小路的宽为x,则可列方程为()A.(40﹣2x)(32﹣x)=1140 B.(40﹣x)(32﹣x)=1140C.(40﹣x)(32﹣2x)=1140 D.(40﹣2x)(32﹣2x)=11407.在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是()A.2 B.12 C.18 D.248.如图,在菱形AAAAAAAA中,对角线AAAA,AAAA相交于点OO,EE是AAAA的中点,若菱形的周长为20,则OOEE的长为()A.10 B.5 C.2.5D.19.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为xx人,则根据题意可列方程为()A.xx(xx−1)=110B.xx(xx+1)=110C.(xx+1)2=110D.(xx−1)2=11010.关于xx的一元二次方程kkxx2−2xx−1=0有两个不相等的实数根,则kk的取值范围是()A.kk>−1B.kk>−1且kk≠0C.kk<1D.kk<1且kk≠011.如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则EF的长为()A.74B.95C.1910D.76�312.如图,在正方形AAAAAAAA中,AAAA=4,E为对角线AAAA上与点A,C不重合的一个动点,过点E作EEFF⊥AAAA于点F,EEEE⊥AAAA与点G,连接AAEE,FFEE,有下列结论:①AAEE=FFEE.②AAEE⊥FFEE.③∠AAFFEE=∠AAAAEE.④FFEE的最小值为3,其中正确结论的序号为()A.①②B.②③C.①②③D.①③④第Ⅱ卷二.填空题(本题共6小题,每小题3分,共18分.)13.一元二次方程5xx2+2xx−1=0的一次项系数二次项系数常数项.14.xx1,xx2为一元二次方程xx2−2xx−10=0的两根,则1xx1+1xx2=.15.如图,矩形ABCD中,对角线AC、BD相交于点O,若OB=2,∠ACB=30°,则AB的长度为.16.如图所示,菱形AAAAAAAA的对角线AAAA、AAAA相交于点OO.若AAAA=6,AAAA=8,AAEE⊥AAAA,垂足为EE,则AAEE的长为.17.如图,将一张长方形纸片AAAAAAAA沿AAAA折起,重叠部分为ΔΔAAAAEE,若AAAA=6,AAAA=4,则重叠部分ΔΔAAAAEE的面积为.18.如图,在正方形AAAAAAAA中,AAAA=6,点E,F分别在边AAAA,AAAA上,AAEE=AAFF=2,点M在对角线AAAA上运动,连接EEEE和EEFF,则EEEE+EEFF的最小值等于.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)解下列方程:(1)3xx2−4xx−1=0;(2)2�xx−3�2=xx2−920.(8分)已知方程xx2+�kk+1−6=0是关于xx的一元二次方程.(1)求证:对于任意实数kk方程中有两个不相等的实数根.(2)若xx1,xx2是方程的两根,kk=6,求1xx1+1xx2的值.21.(8分)如图,在菱形AAAAAAAA中,对角线AAAA,AAAA交于点OO,AAEE⊥AAAA交AAAA延长线于EE,AAFF∥AAEE交AAAA延长线于点FF.(1)求证:四边形AAEEAAFF是矩形;(2)若AAEE=4,AAAA=5,求AAAA的长.22.(10分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某食品公司为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如图两幅统计图.请根据以上信息回答:(1)参加本次调查的有______人,若该居民区有8000人,估计整个居民区爱吃D粽的有______人.(2)请将条形统计图补充完整;(3)食品公司推出一种端午礼盒,内有外形完全相同的A、B、C、D粽各一个,小王购买了一个礼盒,并从中任意取出两个食用,请用列表或画树状图的方法,求他恰好能吃到C粽的概率.23.(8分)阅读材料,回答问题.材料1:为了解方程�xx2�2−13xx2+36=0,如果我们把xx2看作一个整体,然后设yy=xx2,则原方程可化为yy2−13yy+36=0,经过运算,原方程的解为xx1,2=±2,xx3,4=±3,我们把以上这种解决问题的方法通常叫做换元法.材料2:已知实数mm,nn满足mm2−mm−1=0,nn2−nn−1=0,且mm≠nn,显然mm,nn是方程xx2−xx−1=0的两个不相等的实数根,由韦达定理可知mm+nn=1,mmnn=−1.根据上述材料,解决以下问题:(1)为解方程xx4−xx2−6=0,可设yy=____,原方程可化为____.经过运算,原方程的解是____.(2)应用:若实数aa,bb满足:2aa4−7aa2+1=0,2bb4−7bb2+1=0且aa≠bb,求aa4+bb4的值;24.(10分)中秋期间,某商场以每盒140元的价格购进一批月饼,当每盒月饼售价为180元时,每天可售出60盒.为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每盒月饼降价2元,那么商场每天就可以多售出5盒.(1)设售价每盒下降xx元,则每天能售出______盒(用含xx的代数式表示);(2)当月饼每盒售价为多少元时,每天的销售利润恰好能达到2550元;(3)该商场每天所获得的利润是否能达到2700元?请说明理由.25.(12分)在数学实验课上,老师让学生以“折叠筝形”为主题开展数学实践探究活动.定义:两组邻边分别相等的四边形叫做“筝形”.(1)概念理解:如图1,将一张纸对折压平,以折痕为边折出一个三角形,然后把纸展平,折痕为四边形AAAAAAAA.判断四边形AAAAAAAA的形状:筝形(填“是”或“不是”);(2)性质探究:如图2,已知四边形AAAAAAAA纸片是筝形,请用测量、折叠等方法猜想筝形的角、对角线有什么几何特征,然后写出一条性质并进行证明;(3)拓展应用:如图3,AAAA是锐角△AAAAAA的高,将△AAAAAA沿边AAAA翻折后得到△AAAAEE,将△AAAAAA沿边AAAA翻折后得到△AAAAFF,延长EEAA,FFAA交于点G.①若∠AAAAAA=50°,当△AAAAEE是等腰三角形时,请直接写出∠AAAAAA的度数;②若∠AAAAAA=45°,AAAA=2,AAAA=5,AAEE=EEEE=FFEE,求AAAA的长.26.(12分)探究式学习是新课程倡导的重要学习方式,某兴趣小组学习正方形以后做了以下探究:在正方形AAAAAAAA中,E,F为平面内两点.【初步感知】(1)如图1,当点E在边AAAA上时,AAEE⊥AAFF,且B,C,F三点共线.请写出AAEE与FFAA的数量关系______;【深入探究】(2)如图2,当点E在正方形AAAAAAAA外部时,AAEE⊥AAFF,AAEE⊥EEFF,E,C,F三点共线.若AAEE=2,AAEE=4,求AAEE的长;【拓展运用】(3)如图3,当点E在正方形AAAAAAAA外部时,AAEE⊥EEAA,AAEE⊥AAFF,AAEE⊥AAEE,且D,F,E三点共线,猜想并证明AAEE,AAEE,AAFF之间的数量关系.2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

2024-2025学年初中九年级上学期第一次月考数学试题及答案(苏科版)

2024-2025学年初中九年级上学期第一次月考数学试题及答案(苏科版)

2024-2025学年度第一学期第一次月考模拟试卷一、单选题1. 下列是一元二次方程的是( )A. 20ax bx c ++=B. 22x x −=C. ()222x x x −=−D. 11x x+= 2. 一元二次方程2310x x −−=的根的情况为( )A. 无实数根B. 有一个实数根C. 有两个相等的实数根D. 有两个不相等的实数根3. 一元二次方程2430x x −+=配方后变形为( )A. ()241x −=B. ()221x −=C. ()241x +=D. ()221x += 4. 若关于x 一元二次方程2690kx x −+=有两个不相等的实数根,则k 的取值范围是( )A. 1k >B. 0k ≠C. 1k <D. 1k <且0k ≠ 5. 将抛物线2y x =先向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线对应的函数解析式为( )A. ()223y x =−+B. ()232y x =−+ C. ()223y x =++ D. ()232y x =−− 6. 若()()()1232,,1,,2,A y B y C y −是抛物线()221y x a =−+上的三点,则123,,y y y 为的大小关系为( )A 123y y y >> B. 132y y y >> C. 321y y y >> D. 312y y y >> 7. 若抛物线242y kx x =−−与x 轴有两个交点,则k 的取值范围为( )A. 2k >−B. 2k ≥−C. 2k >−且0k ≠D. 2k ≥−且0k ≠ 8. 二次函数2y ax bx c =++图象上部分点的对应值如下表则使0y <的x 的取值范围为( ) x 3− 2− 1− 01 2 3 4 y 60 4− 6− 6− 4− 0 6A. 0x <B. 12x >C. 23x −<<D. 2x <−或3x >的.二、填空题9. 已知m 是方程2520x x −−=的一个根,则22101m m −−=______. 10. 一元二次方程()2110x k x +++=有两个相等的实数根,那么k 的值为_____. 11. 若关于x 的一元二次方程()22240m x mx m −++−=有一个根是0,则m 的值为________ 12. 用一根长22cm 的铁丝围成面积是230cm 的矩形.假设矩形的一边长是cm x ,则可列出方程_____________________13. 如图,已知抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点,则关于x 的不等式2ax bx c kx m ++≥+的解集是________.14. 抛物线()232y x =−−−的顶点坐标是________ .15. 已知二次函数()214y x =+−,当02x ≤≤时,函数值y 取值范围为__________16. 飞机着陆后滑行的距离(米)关于滑行时间(秒)的函数解析式为260 1.5s t t =−,则飞机着陆后滑行_________秒才停下来.17. 如图所示,,A B 分别为22(2)1y x =−−图象上的两点,且直线AB 垂直于y 轴,若2AB =,则点B 的纵坐标为________.18. 如图,横截面为抛物线的山洞,山洞底部宽为8米,最高处高163米,现要水平放置横截面为正方形的箱子,其中两个顶点在抛物线上的大箱子,在大箱子的两侧各放置一个横截面为正方形的小箱子,则小箱子的正方形的最大边长为______米.三、解答题19. 商场销售某种拖把,已知这种拖把的进价为80元/套,售价为120元/套,商场每天可销售20套、国庆假期临近,该商场决定采取适当的降价措施,经调查:这种拖把的售价每降价1元,平均每天可多售出2套,设这种拖把每套降价x 元.(1)降价后每套拖把盈利______元,平均每天可销售______套(用含x 的代数式表示);(2)为扩大销售量,尽快减少库存,当每套拖把降价多少元时,该商场销售这种拖把平均每天能盈利1242元?(3)该商场销售这种拖把平均每天的盈利能否达到1400元?若能,求出x 的值;若不能,请说明理由. 20. 解方程:(1)2(2x 1)9+=;(2)2x 2﹣4x =1(配方法);(3)22x 5x 10−+=;(4) ()2(x 3)4x 3x 0−−−= 21. 随着科技的发展,某省正加快布局以5G 等为代表的新兴产业.据统计,目前该省5G 基站数量约为1.5万座,计划到今年底,全省5G 基站数是目前的4倍;到后年底,全省5G 基站数量将达到17.34万座.(1)计划在今年底,全省5G 基站数量是多少万座?(2)按照计划,从今年底到后年底,全省5G 基站数量的年平均增长率为多少?22. 如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个2m 宽的门(建在EF 处,另用其他材料).(1)当羊圈的边AB 的长为多少米时,能围成一个面积为2640m 的羊圈?(2)羊圈的面积能达到2650m 吗?如果能,请你给出设计方案;如果不能,请说明理由.23. 已知函数()214y x =−−+.(1)当x =____________时,抛物线有最大值,____________.(2)当x ____________时,y 随x 的增大而增大.(3)该函数可以由函数2y x =−的图象经过怎样的平移得到?(4)该抛物线与x 轴交于点____________,与y 轴交于点____________.(写坐标)(5)在下面的坐标系中画出该抛物线的图象.24. 已知图象的顶点坐标是()2,1,且与x 轴的一个交点坐标是()3,0,求此二次函数的解析式. 25. 已知:二次函数()221y x m x m =−++−. (1)求证:该抛物线与x(2)设抛物线与x 轴的两个交点是A B 、(A 在原点左边,B 在原点右边),且3AB =,求此时抛物线的解析式.26. 若直线5y x =−与y 轴交于点A ,与x 轴交于点B ,二次函数2y ax bx c =++的图象经过点A ,点B ,且与x 轴交于点()1,0C −.(1)求二次函数解析式;(2)若点P 为直线AB 下方抛物线上一点,连接PA ,PB ,求ABP 面积的最大值及此时点P 的坐标;是的2024-2025学年度第一学期第一次月考模拟试卷一、单选题1. 下列是一元二次方程的是( )A. 20ax bx c ++=B. 22x x −=C. ()222x x x −=−D. 11x x += 【答案】B【解析】【分析】本题主要考查了一元二次方程的识别.本题根据一元二次方程的定义解答.【详解】解:A 、当0a ≠时,20ax bx c ++=是一元二次方程,故本选项不符合题意; B 、22x x −=是一元二次方程,故本选项符合题意;C 、变形为22x =不是一元二次方程,故本选项不符合题意;D 、11x x+=含有分式,不是一元二次方程,故本选项不符合题意; 故选:B2. 一元二次方程2310x x −−=的根的情况为( )A. 无实数根B. 有一个实数根C. 有两个相等的实数根D. 有两个不相等的实数根【答案】D【解析】【分析】本题考查一元二次方程根的情况,涉及一元二次方程根的判别式,由题中一元二次方程得到判别式,即可判断答案,熟记一元二次方程根的情况与判别式符号关系是解决问题的关键.【详解】解:一元二次方程2310x x −−=, 3,1,1a b c ==−=−,()()21431∴∆−−××−112=+130=>,∴一元二次方程2310x x −−=的根的情况为有两个不相等的实数根,故选:D .3. 一元二次方程2430x x −+=配方后变形为( )A. ()241x −=B. ()221x −=C. ()241x +=D. ()221x +=【答案】B【解析】【分析】本题考查了解一元二次方程—配方法,掌握配方法是解题的关键.先把常数项移到方程右边,再把方程两边加上4,然后把方程左边写成完全平方形式即可.【详解】解:2430x x −+=,∴243x x −=−,∴24434x x −+=−+,即()221x −=.故选:B4. 若关于x 的一元二次方程2690kx x −+=有两个不相等的实数根,则k 的取值范围是( )A. 1k >B. 0k ≠C. 1k <D. 1k <且0k ≠ 【答案】D【解析】【分析】本题考查了一元二次方程的定义和一元二次方程根的判别式.根据一元二次方程根的判别式,即可求解.【详解】解:∵关于x 的一元二次方程2690kx x −+=有两个不相等的实数根,∴()26490k ∆=−−×>,且0k ≠,解得:1k <且0k ≠,即k 的取值范围是1k <且0k ≠.故选:D5. 将抛物线2y x =先向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线对应的函数解析式为( )A. ()223y x =−+B. ()232y x =−+ C. ()223y x =++ D. ()232y x =−− 【答案】B【解析】【分析】本题考查函数图象的平移,解题的关键是要熟练掌握函数的平移规律:“左加右减,上加下减”,根据函数图象平移规律即可得到答案.【详解】解:将抛物线2y x =先向上平移2个单位长度,得到22y x =+,再向右平移3个单位长度,得到()232y x =−+, 故选:B .6. 若()()()1232,,1,,2,A y B y C y −是抛物线()221y x a =−+上三点,则123,,y y y 为的大小关系为( )A. 123y y y >>B. 132y y y >>C. 321y y y >>D. 312y y y >>【答案】B【解析】【分析】本题主要考查了二次函数的性质,掌握当抛物线开口方向向上时,离对称轴越远,函数值越大成为解题的关键.先确定抛物线的对称轴,再确定抛物线开口向上,此时离对称轴越远,函数值越大,据此即可解答.【详解】解:∵()221y x a =−+,∴抛物线的对称轴为直线1x =,开口向上,∴离对称轴越远,函数值越大,∵点()12,A y −离对称轴最远,点()21,B y 在对称轴上,∴132y y y >>.故选:B .7. 若抛物线242y kx x =−−与x 轴有两个交点,则k 的取值范围为( )A. 2k >−B. 2k ≥−C. 2k >−且0k ≠D. 2k ≥−且0k ≠ 【答案】C【解析】【分析】本题主要考查了二次函数与一元二次方程之间的关系,二次函数的定义,二次函数与x 轴有两个交点,则与之对应的一元二次方程有两个不相等的实数根,据此利用判别式求出k 的取值范围,再结合二次项系数不为0即可得到答案.【详解】解:∵抛物线242y kx x =−−与x 轴有两个交点, 的∴()()2Δ44200k k =−−×−⋅> ≠ , ∴2k >−且0k ≠,故选:C .8. 二次函数2y ax bx c =++图象上部分点的对应值如下表则使0y <的x 的取值范围为( ) x 3− 2− 1− 01 2 3 4 y 60 4− 6− 6− 4− 0 6A. 0x <B. 12x >C. 23x −<<D. 2x <−或3x >【答案】C【解析】 【分析】本题主要考查了二次函数的性质,先求出二次函数的表达式,再根据与x 轴的交点即可求出0y <的x 的取值范围,解题的关键是求出二次函数2y ax bx c ++的表达式.【详解】解:由表格可知2y ax bx c ++经过()2,0−,()3,0,()0,6−,设解析式为()()23y a x x =+−∴()()02036a +−=−, 解得:1a =,∴抛物线解析式为()()2236y x x x x =+−=−−,∴抛物线图象开口向上,与x 轴的交点为()2,0−,()3,0,∴0y <时x 的取值范围是23x −<<,故选:C .二、填空题9. 已知m 是方程2520x x −−=的一个根,则22101m m −−=______. 【答案】3【解析】【分析】本题考查一元二次方程的根的定义、代数式求值,根据一元二次方程的根的定义,将m 代入2520x x −−=,求出252m m −=,即可求出22101m m −−的值.【详解】解:∵m 是方程2520x x −−=的一个根,∴252m m −=,∴()2221012512213,m m m m −−=−−=×−=故答案为:3. 10. 一元二次方程()2110x k x +++=有两个相等的实数根,那么k 的值为_____. 【答案】1或3−【解析】【分析】本题考查了根的判别式:一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.根据判别式的意义得到()2Δ1410k =+−×=,然后解关于k 的方程即可. 【详解】解:由题意得:()2Δ1410k =+−×=,即:()214k +=,解得:1k =或3−,故答案为:1或3−. 11. 若关于x 的一元二次方程()22240m x mx m −++−=有一个根是0,则m 的值为________ 【答案】2−【解析】【分析】此题考查了一元二次方程的定义及方程的解的定义,将0x =代入方程求出2m =±,再根据一元二次方程的定义求出2m ≠,由此得到答案,正确理解一元二次方程的定义及方程的解的定义是解题的关键.【详解】解:将0x =代入()22240m x mx m −++−=,得240m −=, 解得2m =±,∵20m −≠,∴2m ≠,∴2m =−,故答案为2−.12. 用一根长22cm 的铁丝围成面积是230cm 的矩形.假设矩形的一边长是cm x ,则可列出方程_____________________ 【答案】22=302x x −【解析】【分析】本题考查了一元二次方程的运用,要掌握运用长方形的面积计算公式S ab =来解题的方法.本题可根据长方形的周长可以用x 表示另一边长的值,然后根据面积公式即可列出方程.【详解】解:一边长为 c m x ,则另一边长为22cm 2x −, 得22=302x x −. 故答案为:22=302x x −. 13. 如图,已知抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点,则关于x 的不等式2ax bx c kx m ++≥+的解集是________.【答案】30x −≤≤【解析】【分析】本题考查了二次函数与不等式的关系,主要利用了数形结合的思想,解题关键在于对图象的理解,题目中的不等式的含义为:二次函数的图象在一次函数图象上方时,自变量x 的取值范围.根据图象,写出抛物线在直线上方部分的x 的取值范围即可.【详解】∵抛物线2y ax bx c ++与直线y kx m =+交于()3,1A −−、()0,3B 两点, ∴由函数图象可得,不等式2ax bx c kx m ++≥+的解集是30x ≤≤﹣,故答案为:30x −≤≤.14. 抛物线()232y x =−−−的顶点坐标是________ . 【答案】()3,2− 【解析】【分析】本题考查了二次函数2()y a x h k =−+(a ,h ,k 为常数,0a ≠)性质,2()y a x h k =−+是抛物线的顶点式,a 决定抛物线的形状和开口方向,其顶点是(,)h k ,对称轴是直线x h =. 【详解】解:物线()232y x =−−−的顶点坐标是()3,2−.故答案为:()3,2−.15. 已知二次函数()214y x =+−,当02x ≤≤时,函数值y 的取值范围为__________ 【答案】35y −≤≤##53x ≥≥− 【解析】【分析】本题考查二次函数的图象与性质,根据题意得当1x >−时,y 随x 的增大而增大,求得当0x =时,=3y −;2x =时,5y =,即可求解.【详解】解:由题意得,10a =>,对称轴1x =−, ∴当1x >−时,y 随x 增大而增大, ∵当0x =时,=3y −;2x =时,5y =,∴当02x ≤≤时,函数值y 的取值范围为35y −≤≤, 故答案为:35y −≤≤.16. 飞机着陆后滑行的距离(米)关于滑行时间(秒)的函数解析式为260 1.5s t t =−,则飞机着陆后滑行_________秒才停下来. 【答案】20 【解析】【分析】本题主要考查二次函数的应用,飞机停下时,也就是滑行距离最远时,即在本题中需求出s 最大时对应的t 值,根据顶点坐标的实际意义可得答案. 【详解】∵()2260 1.5 1.520600s t t t =−=−−+, ∴当20t =时,s 取得最大值600, ∴飞机着陆后滑行20秒才停下来.的的故答案:20.17. 如图所示,,A B 分别为22(2)1y x =−−图象上的两点,且直线AB 垂直于y 轴,若2AB =,则点B 的纵坐标为________.【答案】1 【解析】【分析】本题主要考查二次函数图象的对称性,能够熟练运用对称轴求点的横坐标是解题关键.求出对称轴后根据对称性求点B 横坐标,再代入解析式即可解答. 【详解】解:∵()2221y x =−−, ∴抛物线对称轴为直线2x =, ∵2AB =,∴点B 横坐标为213+=,将3x =代入()2221y x =−−得1y =, ∴点B 的纵坐标为1. 故答案为:118. 如图,横截面为抛物线的山洞,山洞底部宽为8米,最高处高163米,现要水平放置横截面为正方形的箱子,其中两个顶点在抛物线上的大箱子,在大箱子的两侧各放置一个横截面为正方形的小箱子,则小箱子正方形的最大边长为______米.【解析】为【分析】本题主要考查了二次函数的实际应用,先建立解析中坐标系,则()4,0A ,设大小正方形的边长分别为2m ,n ,则点B 、C 的坐标分别为:()(),2,m m m n n +,,利用待定系数法求出抛物线解析式为211633y x =−+,再把B 、C 坐标代入求解即可.【详解】解:建立如下平面直角坐标系,则点()4,0A ,设大小正方形的边长分别为2m ,n ,则点B 、C 的坐标分别为:()(),2,m m m n n +,、设抛物线的表达式为:()21603y ax a =+≠, 将点A 的坐标代入上式得:160163a =+,解得13a =−,∴抛物线的表达式为:213y x =− 将点B 、C 的坐标代入上式得:()2211623311633m m n m n =−+ =−++①②,由①得1228m m ==−,(舍去),解得:2m n = = 或2m n = =(舍去),米.. 三、解答题19. 商场销售某种拖把,已知这种拖把的进价为80元/套,售价为120元/套,商场每天可销售20套、国庆假期临近,该商场决定采取适当的降价措施,经调查:这种拖把的售价每降价1元,平均每天可多售出2套,设这种拖把每套降价x 元.(1)降价后每套拖把盈利______元,平均每天可销售______套(用含x 的代数式表示);(2)为扩大销售量,尽快减少库存,当每套拖把降价多少元时,该商场销售这种拖把平均每天能盈利1242元?(3)该商场销售这种拖把平均每天的盈利能否达到1400元?若能,求出x 的值;若不能,请说明理由. 【答案】(1)()40x −,2x(2)每套拖把降价17元时,能让利于顾客并且商家平均每天能赢利1242元; (3)不能,理由见解析 【解析】【分析】此题考查了一元二次方程的实际应用,解题的关键是正确分析题目中的等量关系. (1)设每套拖把降价x 元,根据题意列出代数式即可;(2)设每套拖把降价x 元,则每套的销售利润为()40x −元,平均每天的销售量为()202x +套,根据题意列出一元二次方程求解即可;(3)设每套拖把降价y 元,则每套的销售利润为()12080y −−元,平均每天的销售量为()202y +套,根据题意列出一元二次方程,然后依据判别式求解即可. 【小问1详解】解:设每套拖把降价x 元,则每天销售量增加2x 套,即每天销售()202x +套, 每套拖把盈利()1208040x x −−=−元.故答案为:()40x −,()202x +; 【小问2详解】解:设每套拖把降价x 元,则每套的销售利润为()40x −元,平均每天的销售量为()202x +套,依题意得:()()402021242x x −+=, 整理得:2302210x x −+=,解得:121317x x ==,. 又∵需要尽快减少库存,∴17x =.答:每套拖把降价17元时,能让利于顾客并且商家平均每天能赢利1242元; 【小问3详解】解:商家不能达到平均每天盈利1400元,理由如下:设每套拖把降价y 元,则每套的销售利润为()12080y −−元,平均每天的销售量为()202y +套,依题意得:()()120802021400y y −−+=, 整理得:2303000y y −+=. ∵()22Δ43041300300<0b ac =−=−−××=−, ∴此方程无实数解, 即不可能每天盈利1400元. 20. 解方程:(1)2(2x 1)9+=; (2)2x 2﹣4x =1(配方法); (3)22x 5x 10−+=;(4) ()2(x 3)4x 3x 0−−−=【答案】(1)121,2x x ==−;(2)1211x x ;(3)12x x ;(4)1233,5x x == 【解析】【分析】(1)直接开平方法解方程即可;(2)先方程两边除以2,将二次项系数化为1,再在方程两边同时加上1,配方开平方即可解答; (3)确定a 、b 、c ,求出△值,当判断方程有解时,带入公式求解即可; (4)整理方程,利用因式分解法解方程即可. 【详解】(1)2(2x 1)9+= 开平方,得:2x 13+=±, 解得:121,2x x ==−; (2)22x 41x −=,二次项系数化为1,得:21x 22x −=, 配方,得:21x 2112x −+=+, 即23(x 1)2−=,开方,得:1x −=解得:1211x x (3)22x 5x 10−+= ∵a=2,b=﹣5,c=1,∴△=224(5)42117b ac −=−−××=﹥0,∴x =,解得:12x x =(4)()2(x 3)4x 3x 0−−−= ()2(x 3)4x 30x +−−=(3)(53)0x x −−=∴30x −=或530x −=,解得:1233,5x x ==. 【点睛】本题考查解一元二次方程的方法,熟练掌握一元二次方程的各种解法的步骤和注意点,灵活选用解法是解答的关键.21. 随着科技的发展,某省正加快布局以5G 等为代表的新兴产业.据统计,目前该省5G 基站数量约为1.5万座,计划到今年底,全省5G 基站数是目前的4倍;到后年底,全省5G 基站数量将达到17.34万座.(1)计划在今年底,全省5G 基站数量是多少万座?(2)按照计划,从今年底到后年底,全省5G 基站数量的年平均增长率为多少? 【答案】(1)6万座 (2)70% 【解析】【分析】本题考查有理数乘法的应用,一元二次方程的实际应用:(1)根据计划到今年底,全省5G 基站数是目前的4倍,列出算式计算即可;(2)设全省5G 基站数量的年平均增长率为x ,根据题意,列出一元二次方程,进行求解即可 【小问1详解】解:由题意得:1.546×=(万座); 答:计划在今年底,全省5G 基站数量是6万座. 【小问2详解】解:设全省5G 基站数量的年平均增长率为x ,由题意得:()26117.34x +=,解得:120.7, 2.7x x ==−(不符合题意,舍去); 答:全省5G 基站数量的年平均增长率为70%.22. 如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个2m 宽的门(建在EF 处,另用其他材料).(1)当羊圈的边AB 的长为多少米时,能围成一个面积为2640m 的羊圈?(2)羊圈的面积能达到2650m 吗?如果能,请你给出设计方案;如果不能,请说明理由. 【答案】(1)当羊圈的边AB 的长为16m 或20m 时,能围成一个面积为2640m 的羊圈 (2)羊圈的面积不能达到2650m ,理由见解析 【解析】【分析】本题考查了一元二次方程的应用,根据题意列出一元二次方程,解一元二次方程是解题的关键. (1)设羊圈的边AB 的长为m x ,则边BC 的长为()722m x -根据题意列出一元二次方程,解方程即可求解;(2)同(1)的方法建立方程,根据方程无实根即可求解. 【小问1详解】解:设羊圈的边AB 的长为m x ,则边BC 的长为()722m x -,根据题意,得()722640x x −=,化简,得2363200x x −+=,解方程,得116x =,220x =,当116x =时,72240x −=, 当220x =时,72232x −=.答:当羊圈的边AB 的长为16m 或20m 时,能围成一个面积为2640m 的羊圈. 【小问2详解】不能,理由如下:根据题意,得()722650x x −=, 化简,得2363250x x −+=,()22436432540b ac −=−×=−−< , ∴该方程没有实数根. ∴羊圈的面积不能达到2650m 23. 已知函数()214y x =−−+.(1)当x =____________时,抛物线有最大值,是____________. (2)当x ____________时,y 随x 的增大而增大.(3)该函数可以由函数2y x =−的图象经过怎样的平移得到?(4)该抛物线与x 轴交于点,与y 轴交于点____________.(写坐标) (5)在下面的坐标系中画出该抛物线的图象.【答案】(1)1;4 (2)1<(3)见解析 (4)(1,0)−和(3,0);(0,3) (5)见解析 【解析】【分析】本题考查了二次函数的性质、抛物线与x 轴的交点坐标、二次函数图象与几何变换以及二次函数的最值,熟练掌握二次函数的性质是解题的关键.(1)根据二次函数的顶点式找出抛物线的顶点坐标,再根据二次项系数为1−得出抛物线开口向下,由此即可得出结论;(2)根据抛物线开口方向结合抛物线的对称轴,即可找出单增区间;(3)找出函数2y x =−的顶点坐标,结合函数2(1)4y x =−−+的顶点坐标,即可找出平移的方法; (4)令0y =可得出关于x 的一元二次方程,解方程求出x 值,由此得出抛物线与x 轴的交点坐标;令0x =求出y 值,由此即可得出抛物线与y 轴的交点坐标;(5)列表,描点,连线即可画出该抛物线的图象. 【小问1详解】解: 函数解析式为2(1)4y x =−−+,∴抛物线的开口向下,顶点坐标为(1,4). ∴当1x =时,抛物线有最大值,是4.故答案为:1;4; 【小问2详解】解: 抛物线的开口向下,对称轴为1x =,∴当1x <时,y 随x 的增大而增大.故答案为:1<; 【小问3详解】解: 函数2y x =−的顶点坐标为(0,0),∴将函数2y x =−的图象先向右平移1个单位长度,再向上平移4个单位长度即可得出函数2(1)4y x =−−+的图象.【小问4详解】解:令0y =,则有2(1)40x −−+=, 解得:11x =−,23x =,∴该抛物线与x 轴的交点坐标为(1,0)−和(3,0).当0x =时,2(01)43y =−−+=, ∴该抛物线与y 轴的交点坐标为(0,3).故答案为:(1,0)−和(3,0);(0,3). 【小问5详解】 解:列表:x 1−0 1 2 3 y343描点,连线,该抛物线的图象如图:.24. 已知图象的顶点坐标是()2,1,且与x 轴的一个交点坐标是()3,0,求此二次函数的解析式. 【答案】()221y x =−−+ 【解析】【分析】本题主要考查了求二次函数解析式,先把解析式设顶点式,再利用待定系数法求解即可. 【详解】解:设此二次函数解析式为()()2210y a x a =−+≠,把()3,0代入()()2210y a x a =−+≠中得:()20321a =−+,解得1a =−,∴此二次函数解析式为()221y x =−−+. 25. 已知:二次函数()221y x m x m =−++−.(1)求证:该抛物线与x 轴一定有两个交点;(2)设抛物线与x 轴的两个交点是A B 、(A 在原点左边,B 在原点右边),且3AB =,求此时抛物线的解析式.【答案】(1)见解析 (2)2y x x 2−− 【解析】【分析】(1)根据()()22Δ2418m m m =+−−=+的符号,即可求解,为(2)由根与系数关系,列出()()2224A B A B A B AB x x x x x x =−=+−⋅,即可求解,本题考查了根的判别式,根据系数关系,解题的关键是:熟练掌握根的判别式,根据系数关系.【小问1详解】证明:()()22Δ2418m m m =+−−=+,20m ≥ ,2Δ880m ∴=+≥>,故抛物线与x 轴一定有两个交点,【小问2详解】解:令0y =,得()2210x m x m −++−=, 由(1)知Δ0>,2A B x x m ∴+=+,1A B x x m ⋅=−,()()()()22224241A B A B A B AB x x x x x x m m =−=+−⋅=+−−, ()()22419m m ∴+−−=,解得1m =±,A 在原点左边,B 在原点右边,10A B x x m ∴⋅=−<,1m ∴<,1m ∴=−,故抛物线的表达式为:2y x x 2−−.26. 若直线5y x =−与y 轴交于点A ,与x 轴交于点B ,二次函数2y ax bx c =++的图象经过点A ,点B ,且与x 轴交于点()1,0C −.(1)求二次函数的解析式;(2)若点P 为直线AB 下方抛物线上一点,连接PA ,PB ,求ABP 面积的最大值及此时点P 的坐标;【答案】(1)245y x x =−−(2)当52x =时,ABP S 最大,最大为1258,这时点P 的坐标为535,24 − 【解析】【分析】本题考查二次函数的综合应用,熟练掌握的图像和性质是解题的关键. (1)利用待定系数法求函数解析式即可;(2)过点P 作PQ x ⊥轴交AAAA 于点Q ,设点P 的坐标为()2,45x x x −−,则点Q 的坐标为(),5x x −,则25PQ x x =−+,然后根据ABPS PQ OB =⋅ 计算即可. 【小问1详解】解:当xx =0时,5y =−,∴点A 的坐标为()0,5−, 当0y =时,50x −=,解得5x =,∴点B 的坐标为()5,0,设抛物线的解析式为()()51y a x x =−+,代入()0,5−得:55a −=−,解得:1a =,∴二次函数的解析式为()()25145y x x x x =−+=−−; 【小问2详解】解:过点P 作PQ x ⊥轴交AAAA 于点Q ,设点P 的坐标为()2,45x x x −−,则点Q 的坐标为(),5x x −, ∴225(45)5PQ x x x x x =−−−−=−+, ∴()2211551255522228ABP S PQ OB x x x =⋅=×−+×==−−+ , 当52x =时,ABP S 最大,最大为1258,这时点P 的坐标为535,24 − .。

九年级上册数学第一次月考试卷(含答案)

九年级上册数学第一次月考试卷(含答案)

九年级月考(一)数学试题一.选择题(10×4)1.二次函数2(1)2y x =-+的最小值是( )A .2-B .2C .1-D .12.如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为A. 0B. -1C. 1D. 23.二次函数22(1)3y x =-+的图象的顶点坐标是( ) A .(13),B .(13)-,C .(13)-,D .(13)--,4.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是 ( )5.将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大A. 7B. 6C. 5D. 4 6. 如图所示,A (1x ,1y )、B (2x ,2y )、C (3x ,3y )是函数xy 1=的图象在第一象限分支上的三个点,且1x <2x <3x ,过A 、B 、C 三点分别作坐标轴的垂线,得矩形ADOH 、BEON 、CFOP ,它们的面积分别为S 1、S 2、S 3,则下列结论中正确的是( ) A .S 1<S 2<S 3 B .S 3 <S 2< S 1C .S 2< S 3< S 1D .S 1=S 2=S 37.已知反比例函数的图像经过点(a ,b ),则它的图像一定也经过 ( ) A (-a ,-b ) B (a ,-b ) C (-a ,b ) D (0,0)8.在平面直角坐标系中,如果抛物线y =2x 2不动,而把x 轴、y 轴分别向上、 向右平移2个单位,那么在新坐标系下抛物线的解析式是A .y =2(x -2)2 + 2B .y =2(x + 2)2-2C .y =2(x -2)2-2D .y =2(x + 2)2 + 2y–1 33O xP1 xy C OA B9.如图,正方形ABOC 的边长为2,反比例函数ky x=过点A ,则k 的值是( ) A .2 B .2- C .4 D .4-10.一个函数的图象如图,给出以下结论: ①当0x =时,函数值最大;②当02x <<时,函数y 随x 的增大而减小; ③存在001x <<,当0x x =时,函数值为0.其中正确的结论是( ) A .①② B .①③C .②③D .①②③五、填空题(5×5)11.如图,一名男生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是21251233y x x =-++.则他将铅球推出的距离是 m . 12.数学课本上,用“描点法”画二次函数2y ax bx c =++的图象时,列了如下表格:x… 2-1- 0 1 2 … y…162- 4-122- 2-122- …根据表格上的信息回答问题:该二次函数2y ax bx c =++在3x =时,y =13. 已知函数22y x x c =-++的部分图象如图所示,则c=______,当x______时,y 随x 的增大而减小. 14.如图,在反比例函数2y x=(x<0)的图象上,有点P 1(x 1,y 1),p 2(x 2,y 2)若x 1<x 2,则y 1___y 2 .15.如图,在平面直角坐标系中,函数ky x=(0x >,常数0k >)的图象经过点(12)A ,,()B m n ,,(1m >),过点B 作y 轴的垂线,垂足为C .若ABC △的面积为2,则点B 的坐标为 .(第10(第7题)ox13y OxC A (1,2)B (m ,n )三.解答题(85分)16.(8分)已知一次函数y =ax +b 的图像与反比例函数4y x=的图像交于A (2,2),B (-1,m ),求一次函数的解析式.17.(8分)已知二次函数y=x 2-2x-1。

九年级上册数学第一次月考试卷含答案

九年级上册数学第一次月考试卷含答案

九年级上册数学第一次月考试卷含答案选择题 (每题4分,共40分)1. 在数轴上, 表示 -2/3 数点处的有理数是:A. -2B. -1C. 0D. 12. 若 a 是大于 0 的实数,那么 a 的倒数是:A. -aB. 1/aC. aD. -1/a3. 已知正整数 a, b 满足 a^b = 3^2. 则 a = _____ b = ______.A. 3, 2B. 2, 3C. 9, 1D. 1, 94. 当 x = 3 时,方程 4x - 5 = 7 - 3x 的解是:A. 5B. 2C. -2D. -55. 若 a 和 b 是正整数且 a:b = 5:3, 则 a + b 是 _______.A. 5:3B. 3:5C. 8:3D. 8:5...简答题 (每题10分,共50分)1. 用各自的最大公约数来判断下列各对分数是否互为约简分数,若是,写“是”,如果不是,写“否”。

A. 9/27, 4/6B. 12/18, 2/3C. 5/15, 20/60答案:A. 否B. 是C. 否2. 已知正整数 a, b 满足 a + b = 35, a - b = 11. 求 a 和 b 的值。

答案:a = 23,b = 123. 解下列方程组:3x + 2y = 7x - 2y = -5答案:x = -1, y = 34. 如果直接投放到垃圾箱的生活垃圾为 x,一桶放生垃圾的容量为 y,那么 x 与 y 的关系图象是什么样的?答案:直线...计算题 (共10分)1. 已知一组数据:4,7,9,10,11,15,18. 求这组数据的平均数。

答案:64/72. 按秒计的1分钟是多少秒?答案:60秒...。

2024-2025学年九年级上册数学第一次月考试卷03【沪科版】

2024-2025学年九年级上册数学第一次月考试卷03【沪科版】

2024-2025学年九年级上册数学第一次月考试卷02【沪科版】数学试卷 第I 卷(选择题)一、单选题(每题4分,共40分) 1.下列函数中,属于反比例函数的是( ) A.y= -2x B.1kx y -= C.x6y = D.2x 5y =2.二次函数y= -32x +2 图象的顶点坐标为( ) A.(0、0) B.(-3,-2) C.(-3,2) D.(0,2)3.已知正方形ABCD 设AB=x ,则正方形的面积y 与x 之间的函数关系式为( )A.y=4xB.y=2xC.4y x = D.y =x4.下列函数中①y=3x+1 ②y=42x -3x ③2x 4y =④y=5-22x ,是二次函数的有( )A.②B.②③④C.②③D.②④5.二次函致y=a 2x +bx+c 图象的大致位置如图,下列判断错误的是( )A.a <0B.b >0C.c >0D.0a2b>6.把抛物线y=2x +bx+c 的图象向右平移3个单位,再向下平2个单位,所得图象的解析式为y=2x -3x+5,则()A.b=3,c=7B.b=6,c=3C.b= -9,c= -5D.b= -9,c=217.函数y=a 2x +c 与y=xac 在同一直角坐标系中的图象大致是( )A. B. C. D.8.反比例函数的图像经过点(1,-2),则此函数的解析式是( ) A.y=2x B.x2y -= C.2x 1y -= D.x 21y = 9.二次函数y=2x +px+q 当0≤x ≤1时,此函数最大值与最小值的差( ) A.与p 、q 的值都有关 B.与p 无关,但与q 有关 C.与p 、q 的值都无关D.与p 有关,但与q 无关10.二次函数y=a 2x +bx+c (a ,b ,c 为常数)中的x 与的部分对应值如下表:x -1 0 1 3 y -1353给出了结论:(1)二次函数y=a 2x +bx+c 有最大值,最大值为5: (2)ac <0:(3)x >1时,y 的值随x 值的增大而减小: (4)3是方程a 2x +(b-1)x+c=0的一个根:(5)当-1<x <3时a 2x +(b-1)x+c >0.则其中正确结论的个数是( ) A.4 C.3 C.2 D.1第II 卷(非选择题)二、填空题(每题5分,共20分)11.已知二次函数f(x)=c bx x 212++图像的对称轴为直线x=4,则f(1)f(3)(填“>”或“<”)12.当a-1≤x ≤a 时,函数y=2x -2x+l 的最小值为1,则a 的值为 13.若反比例函数y=()10m 2x 1m -+的图象经过第二、四象限,则m 的值为14.若点A(-2.y 1),B(-1,y 2),C (l ,y 3)都在反比例函数为x3k 2k y 2+-=(k为常数)的图象上,则y 1、y 2、y 3的大小关系为三、解答题(共80分)15.(8分)己知二次函数y= -2x +(m-2)x+m+1.试证明:不论m 取何值,这个二次函数的图象必与x 轴有两个交点16.(8分)已知二次函数y=2x +bx+c 的图象经过点(0,2)和(1,-1),二次函数图象的顶点坐标和对称轴。

九年级月考数学试卷及答案

九年级月考数学试卷及答案

第一学期第一次月考测试题九年级数学(时间:120分钟满分:120分)一、选择题:(每小题3分;共30分)。

1.下列四张扑克牌图案;属于中心对称的是()2.一元二次方程x2-x=0的根是()A.x=1 B.x=0 C.x1=0;x2=1 D.x1=0;x2=-13.一元二次方程4x2+1=4x的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根5.方程x2+4x+1=0的解是()A.x1=2+3;x2=2- 3 B.x1=2+3;x2=-2+ 3C.x1=-2+3;x2=-2- 3 D.x1=-2-3;x2=2+ 36.已知二次函数y=-(x+k)2+h;当x>-2时;y随x的增大而减小;则函数中k的取值范围是()A.k≥-2 B.k≤-2 C.k≥2 D.k≤27.某种电脑病毒传播的非常快;如果一台电脑被感染;经过两轮感染后就会有81台电脑被感染;若病毒得不到有效控制;三轮感染后;被感染的电脑有()台.A.81 B.648 C.700 D.7298.抛物线的顶点坐标为(-2;3);开口方向和大小与抛物线y=x2相同;则其解析式为()A.y=(x-2)2+3 B.y=(x+2)2-3C.y=(x+2)2+3 D.y=-(x+2)2+39.在同一直角坐标系中;函数y=mx+m和函数y=mx2+2x+2(m是常数;且m≠0)的图象可能是()10.已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示;则下列结论 ①a +b +c <0②a ﹣b +c <0③b +2a <0④abc >0(5)b 2<4ac;其中正确的个数是( )A .1个B .2个C .3个D .4个二、填空题(每小题3分;共18分)11.一元二次方程x 2-6x +c =0有一个根是2;则另一个根是 .12.已知抛物线y =ax 2+bx +c (a ≠0)与x 轴的两个交点的坐标分别是(-3;0);(2;0);则方程ax 2+bx +c =0(a ≠0)的解是 .13、某次聚会上;每两人都握了一次手;所有人共握手36次;参加这次聚会的有 人.14.已知二次函数y =x 2+bx +c 的图象过点A (1;m );B (3;m );若点M (-2;y 1);N (-1;y 2);K(8;y 3)也在二次函数y =x 2+bx +c 的图象上;将y 1;y 2;y 3按从小到大的顺序用“<”连接;结果是 .15.若且;则一元二次方程必有一个定根;它是_______.16.如图;在平面直角坐标系中;菱形OABC 的顶点A 在x 轴正半轴上;顶点C 的坐标为(4;3).D 是抛物线26y x x =-+上一点;且在x 轴上方.则△BCD 的最大值为 .三、解答题:17.(16分)用适当方法解下列方程:(1)x2+4x+4=9 (2)3x(2x+1)=4x+2.(3)3(x﹣1)2=x(x﹣1) (4)3x2-6x-2=0.18、已知关于x的方程x2-(m+2)x+(2m-1)=0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级第一次月考数学试卷(考试时间:120分钟 总分:150分 )一、选择题:(本大题有10小题,每小题4分,共40分。

每小题只有一个正确的选项!)1、将抛物线2y x =向下平移3个单位长度,得到抛物线的表达式为( ) A .y=x 2﹣3 B .y=x 2+ 3 C .y =(x -3)2 D .y =(x +3)22、如图2,在⊙O 中,弦AB 与CD 交于点M ,∠C=45°,∠AMD=75°,则∠D 的度数是( ) A .15°B .25°C .30°D .75°3、抛物线y =(x +1)2- 4的开口方向、顶点坐标分别是( ) A .开口向上,顶点坐标为(﹣1,﹣4) B .开口向下,顶点坐标为(1,4) C .开口向上,顶点坐标为(1,4) D .开口向下,顶点坐标为(﹣1,﹣4)4、设抛物线2(3)4y x =--的对称轴为直线l ,若点M 在直线l 上,则点M 的坐标可能是( ) A .(1,0)B .(3,0)C .(-3,0)D .(0,-4)5、如图5,四边形ABCD 内接于⊙O ,四边形ABCO 是平行四边形,则∠ADC=( ) A. 450 B. 500 C. 600 D. 7506、如图6,点D (0,3),O (0,0),C (4,0)在⊙A 上,BD 是⊙A 的一条弦, 则sin ∠OBD=( )A .B .C .D .7、二次函数y=ax 2+bx+c (a ≠0)的图象如图7所示,下列结论:①a <0;②c >0;③a-b+c <0;④b 2﹣4ac >0,其中正确的个数是( ) A .1 B .2 C .3 D .4(图2)(图5)(图6)(图7)8、二次函数y=ax2+bx+c的图像如图所示,则一次函数y=ax+b与反比例函数y=cx在同一平面直角坐标系内的图像大致为()9、若二次函数y=ax2﹣2ax+c的图象经过点(﹣1,0),则方程ax2﹣2ax+c=0的解为()A.x1=﹣3,x2=﹣1 B.x1=1,x2=3 C.x1=﹣1,x2=3 D.x1=﹣3,x2=1 10、如图10,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度大小不变,则以点A为圆心,线段AP长为半径的圆的面积S与点P的运动时间t之间的函数图象大致为()二、填空题:(本大题有8小题,每小题4分,共32分。

)11、二次函数y=x2+4x-3中,当x=-1时,y的值是_________。

12、抛物线y=-5x2的对称轴为。

13、若抛物线y=x2+bx+c经过A(-2,0),B(4,0)两点,则这条抛物线的解析式为____________。

14、已知二次函数y=(x-2)2+3,当x时,y随x的增大而减小。

15、如图15,∠A是⊙O的圆周角,若∠OBC=55°,则∠A=度。

16、已知⊙O的半径为4,点p与圆心O的距离为d,且方程x2-4x+d=0有实数根,则点p在⊙O。

(填位置关系)17、如图17,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则tan D=。

图1018、Rt △ABC 中,∠C=90°,AC=6,BC=8,如果以点C 为圆心,r 为半径,且⊙C 与斜边AB 仅有一个公共点,那么半径r 的取值范围是 。

(第15题图) (第17题图)三、解答题:(本大题有8 小题,共78分。

)19、(8分)已知:二次函数y=x 2-2x-3的图像与x 轴交于A 、B 两点(点A 在左边),与y 轴交于点C ,求:S ⊿ABC 的面积。

20、(8分)如图,已知A ,B ,C ,D 是⊙O 上的四点,延长DC 、AB 相交于点E ,若BC=BE 。

求证:DA=DE 。

(第20题图)21、(8分)已知:抛物线经过A (1,0)和B (4,0)两点,交y 轴的正半轴于C 点且BC =5,求:该抛物线的解析式。

22、(8分)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E。

(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长。

B(第22题图)23、(10分)如图,抛物线y =ax2+bx-5(a≠0)经过点A(4,-5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D。

(1)、求这条抛物线的表达式;(2)、连结AB、BC、CD、DA,求四边形ABCD的面积;(第23题图)24、(10分)如图,A 、P 、B 、C 是圆上的四个点,∠APC =∠CPB =60°,AP 、CB 的延长线相交于点D 。

(1)求证:△ABC 是等边三角形;(2)若∠P AC =90°,AB =23,求PD 的长。

(第24题图) 25、(12分)为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等。

设BC 的长度是x 米,矩形区域ABCD 的面积为y 平方米。

(1)求y 与x 之间的函数关系式,并注明自变量x 的取值范围; (2)x 取何值时,y 有最大值?最大值是多少?(第25题图)PDCBA26、(14分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且经过A(1,0),C(0,3)两点,与x轴的另一个交点为B。

⑴、若直线y=mx+n经过B,C两点,求直线BC和抛物线的解析式;⑵、在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求此时点M的坐标;⑶、设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P 的坐标。

第26题图九年级第一次月考数学参考答案一、选择题:(4*10=40)1-5 ACABC 6-10 DDBCA二、填空题:(4*8=32)11、-7 12、直线x=0(或y轴)13、y=x2-2x-8 14、x≤2(或x<2)15、35 16、内或上17、18、r=4.8或6<r≤8三、解答题:19、(8分)解:令y=0,则x2-2x-3=0,解得:x1=3,x2=﹣1 ∴点A(-1,0)、点B(3,0)令x=0,则y=-3,∴点C(0,-3)∴AB=4,0C=3∴S⊿ABC =1/2×4×3=620、(8分)证明:∵A,B,C,D是⊙O上的四点∴∠A+∠BCD=180○∵∠BCE+∠BCD=180○∴∠A=∠BCE又∵BC=BE∴∠E=∠BCE∴∠A=∠E∴DA=DE21、(8分)解:∵抛物线经过A(1,0)和B(4,0)两点∴设抛物线的解析式为:y=a(x-1)(x-4)在Rt△BOC中,OB=4,BC=5,∴OC=3∴点C(0,3)∴3=a(0-1)(0-4) 解得a=3/4∴抛物线的解析式为y=3/4(x-1)(x-4)即y= 3/4x2-15/4x+322、(8分)(1)证明:连接AE.∵AC为⊙O的直径,∴∠AEC=90°,∴AE⊥BC.又∵AB=AC,∴BE=CE.(2)解:连接DE .∵四边形ACED 为⊙O 的内接四边形, ∴∠BED =∠BAC , 又∵∠B =∠B , ∴△BED ∽△BAC .∴BE BDBA BC =. ∵BE=CE=3,∴BC=6.又∵BD=2,∴AB=9.∴AC=9.23、(10分)解:(1)、∵抛物线y =ax 2+bx -5与y 轴交于点C . ∴C (0,-5),∴OC =5.∵OC =5OB ,∴OB =1.又点B 在x 轴的负半轴上,∴B (-1,0). ∴抛物线经过点A (4,-5)和点B (-1,0). ∴1645550a b a b +-=-⎧⎨--=⎩,解得15a b =⎧⎨=-⎩.∴这条抛物线的表达式为y =x 2-4x -5.(2) 由y =x 2-4x -5,得顶点D 的坐标是(2,-9).连结AC . ∵点A 的坐标是(4,-5),点C 的坐标是(0,-5), ∴AC ⊥y 轴 ∴S △ABC =12×4×5=10,S △ACD =12×4×4=8, ∴S 四边形ABCD =S △ABC +S △ACD =18. 24、(10分)(1)证明:由题意可得∠BPC =∠BAC ,∠APC =∠ABC . ∵∠BPC =∠APC =60°, ∴∠BAC =∠ABC =60° ∴△ABC 是等边三角形(2)解:∵∠P AC =90°,∴PC 是圆的直径,∴∠PBC =90°,∴∠PBD =90° ∵△ABC 是等边三角形,∴AC =BC =32. ∴∠BPC ==60°,∴PB =260tan 32=︒÷。

∵∠APC =60°,∴∠DPB =60°,∴PD =2PB =4.25、(12分)解:(1)设AE =a ,由题意,得AE ·AD =2BE ·BC ,AD =BC , ∴BE =12a,AB =32a . 由题意,得2x +3a +2·12a =80, ∴a =20-12x . ∴331··(20)222y AB BC a x x ===-,即2330(040)4y x x x =-+<<. (2)∵223330(20)30044y x x x =-+=--+∴当x=20时,y 有最大值,最大值是300平方米.25、(14分)解:(1)依题意,得1,20,3.ba abc c ⎧-=-⎪⎪++=⎨⎪=⎪⎩解得1,2,3.a b c =-⎧⎪=-⎨⎪=⎩∴抛物线解析式为322+--=x x y . ∵对称轴为x =-1,且抛物线经过A (1,0),∴B (-3,0).把B (-3,0)、C (0,3)分别代入直线y =mx +n ,得30,3.m n n -+=⎧⎨=⎩ 解之,得1,3.m n =⎧⎨=⎩∴直线BC 的解析式为3+=x y . (2)∵MA =MB ,∴MA +MC =MB +MC .∴使MA +MC 最小的点M 应为直线BC 与对称轴x =-1的交点. 设直线BC 与对称轴x =-1的交点为M ,把x =-1 代入直线3+=x y ,得y =2. ∴M (-1,2)第25题(3)设P (-1,t ),结合B (-3,0),C (0, 3),得BC 2=18,PB 2=(-1+3)2+t 2=4+t 2, PC 2=(-1)2+(t -3)2=t 2-6t +10.①、若B 为直角顶点,则BC 2+PB 2=PC 2,即 18+4+t 2=t 2-6t +10. 解得t =-2. ② 若C 为直角顶点,则BC 2+PC 2=PB 2,即 18+t 2-6t +10=4+t 2.解得t =4. ③ 若P 为直角顶点,则PB 2+PC 2=BC 2,即4+t 2+t 2-6t +10=18.解得t 1=2173+,t 2=2173-. 综上所述,满足条件的点P 共有四个,分别为1P (-1,-2), 2P (-1,4), 3P (-1,2173+) ,4P (-1,2173-).。

相关文档
最新文档