第八章解线性方程组的迭代法

合集下载

数值分析第四版习题和答案解析

数值分析第四版习题和答案解析

第四版数值分析习题第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少6. 设028,Y =按递推公式1n n Y Y -=…)计算到100Y .(五位有效数字),试问计算100Y 将有多大误差7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字.8. 当N 充分大时,怎样求211Ndx x +∞+⎰9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝210. 设212S gt =假定g 是准确的,而对t 的测量有±秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小.11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多大这个计算过程稳定吗12.计算61)f =,1.4≈,利用下列等式计算,哪一个得到的结果最好3-- 13.()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大若改用另一等价公式ln(ln(x x =-计算,求对数时误差有多大14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b cs a b c ∆∆∆∆≤++第二章 插值法1. 根据定义的范德蒙行列式,令2000011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xx x ----==证明()n V x 是n 次多项式,它的根是01,,n x x -,且101101()(,,,)()()n n n n V x V x x x x x x x ---=--.2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3. 给出f (x )=ln x 的数值表用线性插值及二次插值计算ln 的近似值.4. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i) 0()(0,1,,);nkkj j j x l x xk n =≡=∑ii) 0()()1,2,,).nkj j j x x l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8maxmax a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()x f x e =的等距节点函数表,若用二次插值求x e 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少9. 若2nn y =,求4n y ∆及4n y δ. 10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)k f x k m ∆≤≤是m k -次多项式,并且()0(m l f x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆.12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n n n n f x a a x a x a x --=++++有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i) 若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+.16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦及0182,2,,2f ⎡⎤⎣⎦.17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18.求一个次数不高于4次的多项式()P x,使它满足(0)(1)P P k=-+并由此求出分段三次埃尔米特插值的误差限.19.试求出一个最高次数不高于4次的函数多项式()P x,以便使它能够满足以下边界条件(0)(0)0P P='=,(1)(1)1P P='=,(2)1P=.20.设[](),f x C a b∈,把[],a b分为n等分,试构造一个台阶形的零次分段插值函数()nxϕ并证明当n→∞时,()nxϕ在[],a b上一致收敛到()f x.21.设2()1/(1)f x x=+,在55x-≤≤上取10n=,按等距节点求分段线性插值函数()hI x,计算各节点间中点处的()hI x与()f x的值,并估计误差.22.求2()f x x=在[],a b上的分段线性插值函数()hI x,并估计误差.23.求4()f x x=在[],a b上的分段埃尔米特插值,并估计误差.24.给定数据表如下:试求三次样条插值并满足条件i)(0.25) 1.0000,(0.53)0.6868; S S'='=ii)(0.25)(0.53)0. S S"="=25.若[]2(),f x C a b∈,()S x是三次样条函数,证明i)[][][][] 222()()()()2()()()b b b ba a a af x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰;ii)若()()(0,1,,)i if x S x i n==,式中ix为插值节点,且01na x x x b=<<<=,则[][][]()()()()()()()()()b a S x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26.编出计算三次样条函数()S x系数及其在插值节点中点的值的程序框图(()S x可用式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =.3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式.4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式.5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式. 8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最小r 是否唯一 9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式. 10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nT x 是在[]0,1上带权ρ=的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式.13. 设()xf x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若n f L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差.15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n n F x H ∈也是奇(偶)函数. 17. 求a 、b 使[]22sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义()(,)()();()(,)()()()();bbaaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积19. 用许瓦兹不等式估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22.()f x x =在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.sin (1)arccos ()n n x u x +=是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin 2f x x=在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差.25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.26. 用最小二乘法求一个形如2y a bx =+的经验公式,使它与下列数据拟合,并求均方误差.27. 观测物体的直线运动,得出以下数据:28. 在某化学反应里,根据实验所得分解物的浓度与时间关系如下:用最小二乘拟合求.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: (1)101()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(2)21012()()(0)()hhf x dx A f h A f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)1,4n =⎰; (4),6n =.3. 直接验证柯特斯公式具有5次代数精度.4. 用辛普森公式求积分1xedx-⎰并计算误差.5. 推导下列三种矩形求积公式:(1)2()()()()()2baf f x dx b a f a b a 'η=-+-⎰; (2)2()()()()()2baf f x dx b a f b b a 'η=---⎰;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰.6. 证明梯形公式和辛普森公式当n →∞时收敛到积分()baf x dx⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)8.1x e dx-,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是S a =θ,这里a 是椭圆的半长轴,c 是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长.10. 证明等式3524sin3!5!n nn n ππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =,和处的导数值,并估计误差.()f x 的值由下表给出:第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。

用迭代法求解方程及线性方程组。

用迭代法求解方程及线性方程组。

实验题目:用迭代法求解方程及线性方程组。

实验问题:函数的迭代是数学研究中的一个非常重要的思想工具。

哪怕是对一个相当简单的函数进行迭代,都可以产生异常复杂的行为,并由此而衍生了一些崭新的学科分支,如分形和混沌。

同时,迭代在各种数值计算算法以及其他学科领域的诸多算法中处于核心的地位。

首先,我们来探讨利用迭代求解方程的近似解。

实验目的:1. 学会基本Mathematica 语句并用其解决实际问题。

2. 了解Mathematica 系统 。

3. 用Mathematica 解决在求方程解的迭代过程。

1.方程求解给定实数域上光滑的实值函数f(x)以及初值0x 定义数列,,1,0),(1 ==+n x f x n n (1) ,,1,0, =n x n 称为f (x )的一个迭代序列。

给定迭代函数f(x)以及一个初值0x 利用(1)迭代得到数列,,1,0, =n x n 如果数列n x 收敛于一个*x ,则有)(**x f x = (2) 即*x 是方程x=f(x)的解。

由此启发我们用如下的方法球方程g(x)=0的近似解。

将方程g(x)=0改写为等价的方程x=f(x), (3) 然后选取一初值利用(1)做迭代。

迭代数列n x 收敛的极限就是方程g(x)=0的解。

用上述方程求方程的根的一个首要问题是迭代是否收敛?经过试验我们知道,使得迭代序列收敛并尽快收敛到方程g(x)=0的某一解的条件是迭代函数f(x)在解的附近的导数的绝对值近两小。

这启发我们将迭代方程修改成x x f x h x )1()()(λλ-+== (4) 我们需要选取λ使得01)('|)('|=-+=λλx f x h得)('11x f -=λ 于是1)(')()(---=x f xx f x x h特别地,如果f(x)=g(x)+x ,则我们得到迭代公式.,1,0,)(')(1 =-=+n x x n n x g x g n n (5) 2.线性方程组的迭代求解给定一个n 元线性方程组⎪⎩⎪⎨⎧=++=++n n nn nn n n b x a x a b x a x a 111111 (6)或写成距阵的形式Ax=b, (7)其中)(ij a A =是n 阶方程,T n x x x ),,(1 = 及T n b b b ),,(1 =均为n 维列向量。

计算方法 第八章 解线性方程组的迭代法 高斯迭代法 迭代法的收敛性

计算方法 第八章 解线性方程组的迭代法 高斯迭代法 迭代法的收敛性

3
1 1 1 1 1 1 1 1 1
1 . . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0
0 2 1 7 5 8 8 2 1 6 9 3 8 9 1 1
1 1 1 1 1 1 1 1 1
1 . 1. 1 . 1 9 . 1 9 . 1 9 . 1 9 . 1 9 . 1 9 . 1 9 . 1 9 . 1 9
x3 0 1.1644 1.282054 1.297771 1.299719 1.299965 1.299996 1.299999 1.3
16
开始
输入aij , bi , N , , i, j 1 N
N 线形方程组组数 A 系数矩阵aij B 常数矩阵bi X 迭代过程中的解xi Y-上一轮迭代的解yi a b 将b的值赋给a 计算步骤: i 1, 2 n 1 .输入原始数据aij j 1, 2 n bi i 1, 2 n , n 2输入初使迭代值x (0) . xi 0, yi 0, i 1, 2 n 3.迭代计算x ( k ) i 1 n j 1 n 如 i j ,则xi 4.精度判断 i 1 n 如 xi yi 则j 1 n yi xi 转第三步再计算 bi aij x j aii
量利用最新的迭代值,得到
xi( k 1)
i 1 n 1 (bi aij x (jk 1) aij x k ) (i 1, 2, , n) j aii j 1 j i 1
上式称为 Gauss-Seidel 迭代法. 13
§8.2 高斯-塞德尔迭代法
( ( ( ( ( x1 k 1) 1 ( a12 x 2k ) a13 x 3k ) a14 x4k ) a1n x nk ) b1 ) a11 ( ( ( ( ( x 2k 1) 1 ( a 21 x1 k 1) a 23 x 3k ) a 24 x4k ) a 2 n x nk ) b2 ) a 22 ( ( ( ( ( x 3k 1) 1 ( a 31 x1 k 1) a 32 x 2k 1) a 34 x4k ) a 3 n x nk ) b3 ) a 33

解线性方程组的迭代法

解线性方程组的迭代法

解线性方程组的迭代法Haha送给需要的学弟学妹摘要:因为理论的分析表明,求解病态的线性方程组是困难的,但是实际情况是否如此,需要我们来具体检验。

系数矩阵H 为Hilbert 矩阵,是著名的病态问题。

因而决定求解Hx b =此线性方程组来验证上述问题。

详细过程是通过用Gauss 消去法、J 迭代法、GS 迭代法和SOR 迭代法四种方法求解Hx b =线性方程组。

关键词:病态方程组、Gauss 消去法、J 迭代法、GS 迭代法、SOR 迭代法目录:一、问题背景介绍二、建立正确额数学模型 三、求解模型的数学原理1、Gauss 消去法求解原理2、Jacobi 迭代法求解原理3、G-S 迭代法求解原理4、SOR 迭代法求解原理5、Jacobi 和G-S 两种迭代法收敛的充要条件 四、计算过程(一)Hilbert 矩阵维数n=6时1、Gauss 消去法求解2、Jacobi 迭代法求解3、G-S 迭代法求解4、SOR 迭代法求解(二)Hilbert 矩阵维数n=20、50和100时1、G-S 迭代法求解图形2、SOR 迭代法求解图形 五、编写计算程序 六、解释计算结果1、Gauss 消去法误差分析2、G-S 迭代法误差分析3、SOR 迭代法误差分析G-S 迭代法与SOR 迭代法的误差比较 七、心得体会正文:一、问题背景介绍。

理论的分析表明,求解病态的线性方程组是困难的。

实际情况是否如此,会出现怎样的现象呢?二、建立正确的数学模型。

考虑方程组Hx b =的求解,其中系数矩阵H 为Hilbert 矩阵,,,1(), , ,1,2,,1i j n n i j H h h i j n i j ⨯===+-这是一个著名的病态问题。

通过首先给定解(为方便计算,笔者取x 的各个分量等于1),再计算出右端,b Hx =这样Hx b =的解就明确了,再用Gauss 消去法、J 迭代法、GS 迭代法和SOR 迭代法四种方法分别求解,Hx b =将求解结果与给定解比较,而后求出上述四种方法的误差,得出哪种方法比较好。

数值方法线性方程组的迭代法

数值方法线性方程组的迭代法

迭代法的特点
若在求解过程中 xkx*(k) ,由 xk+1=(xk)产生的迭代 xk 向x*的逼近 ,在数次迭代求解 之后,由于机器跳动产生的xk 值误差或是有效数字产生的舍 入误差,都会在第k+1次迭代 计算中自动弥补过来或逐步纠 正过来。因此,在 迭代求解 过程中产生的各种误差是可以 忽略的,即迭代求解无累积误 差,实际上, xk只是解的一个 近似,机器的舍入误差并不改 变它的此性质。
x ( k ) x* B k ( x ( 0) x*) 由 x ( k ) x * B k ( x ( 0) x*) B k x ( 0) x * B k x ( 0) x *

lim
k
x(k ) x *

定理2:若||B||<1,则迭代法
对矩阵也有类似的结论
下一页
如果 矩阵 A=(aij)满足 n |aii|> |aij|
j=1,ji
i=1,2,……n,
则称方阵A是严格(行)对角占优的.
U
A=
a11 a21 … an1
a12 a13 … a22 a23 … … … … an3 an4 …
-4 2 1 1 -9 7 2 -6 10
定理1:对任意初始向量x(0)及任意右段向量 g,由此产生的迭代向 量序列{x(k)}收敛的充要条件是
B 1
证明:必要性:设{x(k)}收敛,其极限为 x*
x * Bx* g
,则
x ( k ) x * B x ( k 1) x * B k x ( 0 ) x * 两边取极限
引言
• 直接法是通过有限步运算后得到线性方程组的 解,解线性方程组还有另一种解法,称为迭代 法,它的基本思想是将线性方程组 Ax=b 化为 • x=Bx+f • 再由此构造向量序列{x (k)}: • x(k+1)=Bx (k)+f • 若{x (k)}收敛至某个向量x *,则可得向量x *就是 所求方程组 AX=b 的准确解. • 线性方程组的迭代法主要有Jocobi迭代法、 Seidel迭代法和超松弛(Sor)迭代法.

解线性方程组的迭代法

解线性方程组的迭代法

0.9906
0.0355
5 1.01159 0.9953
1.01159 0.01159
6 1.000251 1.005795 1.000251 0.005795
7 0.9982364 1.0001255 0.9982364 0.0017636
可见,迭代序列逐次收敛于方程组的解, 而且迭代7次得到精确到小数点后两位的近似解.
a11x1 a12x2 a13x3 b1 a21x1 a22x2 a23x3 b2 a31x1 a32x2 a33x3 b3
从而得迭代公式
x1
a12 a11
x2
a13 a11
x3
b1 a11
x2
a21 a22
x1
a23 a22
x3
b2 a22
x3
a31 a33
M 00.8 00..75
但(M)=0.8<1,所以迭代法 x(k+1)=Mx(k)+g 是收敛的.
由(3.5)式可见,‖M‖越小收敛越快,且当‖x (k) -x(k-1) ‖很小时,‖x(k) –x*‖就很小,实际中用‖x (k) x(k-1) ‖<作为
迭代终止的条件。 例如,对例1中的Jacobi迭代计算结果
+‖x(k+1) –x*‖‖M‖‖x(k) –x(k-1)‖+‖M‖‖x(k) –x*‖ 从而得‖x(k) –x*‖‖M‖‖x (k) -x(k-1) ‖/(1- ‖M‖)
(3.5) (3.6)
估计式(3.5)得证。利用(3.5)式和
‖x(k+1) 得到
-x(k)
‖‖M‖‖x
(k)
-x(k-1)

解线性方程组 的迭代法

线性方程组迭代法

线性方程组迭代法

线性方程组迭代法
线性方程组迭代法,又称坐标下降法,是一种用于解线性方程组的迭代求解方法,常用于线性规划以及单纯形法等技术。

早在上世纪50年代,此方法就在解决
线性规划问题中得到了广泛应用,到目前为止,这种技术仍然广泛使用。

线性方程组迭代法是一种基于不断迭代调整变量,使目标函数达到最优结果的
迭代求解法。

其基本步骤是:
(1) 初始化目标函数变量:首先,初始化线性方程组的目标函数的变量;
(2) 评估梯度:选择合适的算法计算目标函数的梯度;
(3) 根据该梯度更新变量:更新目标函数变量的值,使得在此次更新之后的值
更加有利于满足线性方程组的要求;
(4) 重复上述步骤,直到目标函数足够接近最优值为止;
线性方程组迭代法能够快速地求解出线性规划问题的最优解,因此,它在计算
机上经常被用来优化问题,进而提高系统运行效率。

随着网络技术的发展,线性方程组迭代法在互联网领域得到了广泛应用,这在大大缩短了计算机程序的运行时间,提高了互联网的效率。

同时,线性方程组迭代法也有助于提高系统的性能,改善用户的体验,提升企业的品牌形象。

线性方程组的迭代解法及收敛分析

线性方程组的迭代解法及收敛分析
2.8098
1.9583
0.8468
0.2974
9
1.0975
2.0954
2.8217
1.9788
0.8847
0.2533
10
1.0850
2.0738
2.8671
1.9735
0.8969
0.2041
11
1.0673
2.0645
2.8802
1.9843
0.9200
0.1723
12
1.0577
2.0509
2.9077
1.9828
0.9303
0.1400
13
1.0463
2.0437
2.9191
1.9887
0.9448
0.1174
14
1.0392
2.0350
2.9363
1.9886
0.9527
0.0959
15
1.0318
2.0297
2.9451
1.9920
0.9620
0.0801
16
1.0267
2.0241
Keywords:MATLAB,Mathematical model,Iterative method,ConvergenceSystem of linear equations
1
在实际生活中,存在着大量求解线性方程组的问题。这些方程组具有数据量大,系数矩阵稀疏,在一定精度保证下,只需要求解近似解等特点。线性方程组的迭代解法特别适合于这类方程组的求解,它具有程序设计简单,需要计算机的贮存单元少等特点,但也有收敛性与收敛速度问题。因此,研究线性方程组的迭代解法及收敛分析对于解决实际问题具有非常重要的作用。

线性代数方程组迭代法PPT课件

线性代数方程组迭代法PPT课件

超松弛法
收敛速度快
总结词
总结词
计算量较大
ABCD
详细描述
超松弛法具有较快的收敛速度,尤其对于大型线 性方程组,能够显著减少迭代次数。
详细描述
由于超松弛法的计算量较大,因此在实际应用中 可能需要考虑计算效率的问题。
CHAPTER 04
迭代法的实现步骤
初始化
设置初值
为方程组的解向量设定一个初始值。
迭代法的应用场景
当方程组的系数矩阵难以直接求解时 ,迭代法可以作为一种有效的替代方 案。
在科学计算、工程技术和经济领域中 ,许多问题可以转化为线性代数方程 组求解,而迭代法在这些领域有广泛 的应用。
迭代法的优缺点
优点
迭代法通常比直接法更加灵活和通用,对于大规模和高维度的线性代数方程组, 迭代法更加高效。
缺点
迭代法需要选择合适的迭代公式和参数,并且需要满足收敛条件,否则可能无 法得到正确的解。此外,迭代法的计算过程比较复杂,需要较高的计算成本。
CHAPTER 02
迭代法的基本原理
迭代法的数学模型
迭代法是一种求解线性代数方程组的数值方法,通过不断迭代逼近方程的 解。
迭代法的数学模型通常表示为:$x_{n+1} = T(x_n)$,其中$x_n$表示第 $n$次迭代时的近似解,$T(x)$表示迭代函数。
03
非线性方程组的迭代法在求解优化问题、控制问题 等领域有广泛应用。
在优化问题中的应用
01
迭代法在优化问题中也有广泛应用,如求解无约束优化问题、 约束优化问题和多目标优化问题等。
02
常见的优化问题迭代法包括梯度下降法、牛顿法和共轭梯度法
等。
这些方法通过不断迭代来逼近最优解,广泛应用于机器学习、

解线性方程组的迭代法实际应用

解线性方程组的迭代法实际应用

解线性方程组的迭代法实际应用
现今,互联网行业的发展速度越来越快,数据和信息的传播变得越来越重要,因此,熟练掌握并利用数据和信息变得越来越必要。

迭代法是解决线性方程组最重要的算法之一,在互联网行业中也有广泛的应用。

迭代法能够有效的求出不同的近似解,而且计算速度较快,能够满足互联网行业的快速发展。

比如运行在分布式环境中的搜索引擎,其中有大量的系统参数,如摆放有系统服务器到网络以及运行配置等,这些参数有很多线性方程组,这些线性方程组很难使用传统的数学方法来求解,而使用迭代法可以快速得到这些方程组的答案,为搜索引擎提供良好的运行环境。

另外,现代的宽带技术和视频技术极大的提高了节目的传输效率。

它们的实现依赖于复杂的线性方程,迭代法可以有效的帮助实现技术的快速发展。

此外,依靠迭代法的快速求解,将抗性算法转换为原始算法,也可以有效改进网络的性能,比如入侵检测算法中,使用迭代引入抗性算法来更新原始算法,结合专业技术确定加密规则,从而更有效的防止非法攻击。

总之,迭代法在互联网行业中发挥着重要作用,在搜索引擎、宽带技术和入侵检测算法等方面,迭代法及其所需技术都可以极大地提升网络系统的效率,确保互联网系统的可靠性和安全性,完善互联网的运作环境。

成都市中考满分作文-第八章 线性方程组的迭代解法范文

成都市中考满分作文-第八章 线性方程组的迭代解法范文

第八章 线性方程组的迭代解法7.1 引言解线性方程组的直接方法得到的解是理论上准确的,但是我们可以看得出,它们的计算量都是n 3数量级,存储量为n 2量级,这在系数矩阵A 的规模比较小的时候还比较合适(如:矩阵维数n<400)。

但是,当A 为大型稀疏矩阵时,再利用直接法时就会耗费大量的时间和存储单元。

因此我们有必要引入一类新的方法:迭代法。

从第六章方程求根的迭代方法可以推测:迭代法:从线性方程组一个初始的近似解(向量)出发,反复套用同一个迭代公式,构造一个无穷序列,逐步逼近方程组精确解的方法(一般有限步内得不到精确解)。

特点:该方法具有存储单元较少、程序设计简单、原始系数矩阵在计算过程中始终不变等优点,但是存在收敛性及收敛速度方面的问题。

例8.1(P201)如何设计方程组的迭代公式线性方程组: 等价的迭代方程组: 迭代过程:Ax b = ⇒x Bx f =+ ⇒ ()()1k k x Bx f +=+可以写成多种等价的迭代方程组,例如 :()A I A I x I A x b Bx f =+-⇒=+-=+()11A D A D x I D A x D b Bx f --=+-⇒=-+=+,()0ii a ≠ (例8.1)()11A L D U x D L U x D b Bx f --=++⇒=++=+,()0ii a ≠ Jacobi 迭代注:--A L D U =的形式如下121311112111212322122222313211212300000000 n n n n n n n n nn nn n n n a a a a a a a a a a a a a a A a a a a a a a a a a -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦L -D -U 问题:1、是否任意一个等价的迭代方程组,按迭代法做出的向量序列都一定逐步逼近方程组的解呢?2、如何保证收敛性? 定义8.1对于给定的方程组x Bx f =+,用式子 ()()()()()()10211.......k k x Bx fx Bx fx Bx f +⎧=+⎪=+⎪⎨⎪⎪=+⎩ 逐步代入求近似解的方法称为迭代法(或称为一阶定常迭代法,这里B 与迭代次数k 无关)。

线性方程组求解的迭代算法

线性方程组求解的迭代算法

线性方程组求解的迭代算法线性方程组是数学中常见的问题之一,求解线性方程组是很多科学和工程领域中必需的基本任务。

而迭代算法是一种常见的求解线性方程组的方法之一,通过不断逼近线性方程组的解来达到求解的目的。

本文将介绍一些常见的线性方程组迭代算法及其原理。

一、雅可比迭代法雅可比迭代法是最早被提出的线性方程组迭代算法之一。

其思想是通过不断迭代,在每一步都利用先前求得的近似解来逼近方程组的解。

具体算法如下:假设给定的线性方程组为Ax=b,其中A为系数矩阵,b为常数向量,x为未知向量。

1. 首先,将方程组转化为x=D^-1(b-Rx),其中D为一个对角矩阵,R为矩阵A的剩余部分。

2. 设定一个初始解向量x0。

3. 迭代计算:重复执行以下步骤,直到满足终止条件。

a. 计算下一次迭代的解向量:x_k+1 = D^-1(b-Rx_k),其中k为当前迭代的次数。

b. 检查终止条件是否被满足,如果是,则停止迭代;否则,返回步骤a。

雅可比迭代法的收敛性与系数矩阵A的特征值有关。

当A是严格对角占优矩阵时,迭代法收敛。

二、高斯-赛德尔迭代法高斯-赛德尔迭代法是雅可比迭代法的一种改进方法。

在每一次迭代中,新的解向量x_k+1的计算会利用到之前已经计算得到的近似解向量的信息,从而加快迭代的速度。

具体算法如下:1. 设定一个初始解向量x0。

2. 迭代计算:重复执行以下步骤,直到满足终止条件。

a. 对于每个方程i,计算下一次迭代的解向量的每个分量:x_k+1[i] = (1/A[i][i]) * (b[i]-Σ(A[i][j]*x_k[j],其中j为1到i-1之间的所有整数。

b. 检查终止条件是否被满足,如果是,则停止迭代;否则,返回步骤a。

高斯-赛德尔迭代法相比于雅可比迭代法,在每一次迭代中都会利用到之前计算得到的近似解向量的信息,因此收敛速度更快。

三、超松弛迭代法超松弛迭代法是对雅可比迭代法和高斯-赛德尔迭代法的进一步改进。

通过引入松弛因子ω,可以加速迭代的收敛速度。

数值分析李庆杨版习题及答案

数值分析李庆杨版习题及答案

第四版数值分析习题答案第一章 绪论习题参考答案1. ε(lnx )≈***()()r x x xεεδ==。

2.1******()()()()0.02n nnr nn n x x x n x x n xxxεεεε-=≈==。

3. *1x 有5位有效数字,*2x 有2位有效数字,*3x 有4位有效数字,*4x 有5位有效数字,*5x 有2位有效数字。

4.******4333124124()()()()0.5100.5100.510 1.0510x x x x x x εεεε----++≈++=⨯+⨯+⨯=⨯************123231132123()()()()0.214790825x x x x x x x x x x x x εεεε≈++=****62224***24441()()()8.85566810x x x x x x x εεε-≈-=⨯。

5.1()1()()()0.00333333r r r V R V V V εεεε=≈===。

6.33100111()100101010022Y ε--=⨯⨯⨯=⨯。

7.12855.982x =≈,21280.0178655.982x ==≈≈。

8. 21arc 12N dx tgN x π+∞=-+⎰9.121()()0.0052x S S εεε-=≈=。

10. ()()0.1S g t t g t εε≈=,2()2()0.2()12r g t t t S t t gt εεε≈==,故t 增加时S 的绝对误差增加,相对误差减小。

11. 1081001()10()102y y εε==⨯,计算过程不稳定。

12.61)0.005051f =≈,1.4=,则611)0.004096f ==,20.005233f ==,33(30.008f =-=,40.005125f ==,5991f =-=,4f 的结果最好。

13.(30) 4.094622f =-,开平方时用六位函数表计算所得的误差为41102ε-=⨯,分别代入等价公式)1x x (ln )x (f ),1x x (ln )x (f 2221++-=--=中计算可得411()ln(1(60103102f x εε--=+≈=+=⨯⨯=⨯,47211()ln(1108.3310602f ε--=+≈=⨯⨯=⨯。

线性方程组的迭代法

线性方程组的迭代法

1 20 D 1b
1 8
24 1.2 12 1.5 1 15 30 2
x1( k 1) 0 0.1 0.15 x1( k ) 1.2 ( k 2) x ( k ) 1.5 0 0.125 2 x2 0.125 ( ( x3k 1) 0.133 3 0.2 0 x3k ) 2.0
将方程组AX=b的系数A分解成 A=D+L+U 其中D=diag(a11,a22,,ann) ,L和U分别是A的 对角线下方元素和上方元素组成的严格下三角 阵与严格上三角阵. 即

0 0 a2 1 0 A a n1 an 2

0 a1 1 0 0 0 a1 2 0 0 a2 2 0 0 0 0 0 0 an n 0 0

k 1 r k 1 0 0 (k )

所以Gauss-Seidel迭代 法收敛.
定理 超松弛法收敛的必要条件为 0<<2

证 设其迭代矩阵G的特征值为1,2,, n , 由于迭代收敛,故有 max i 1 1 i n 从而 det G 12 n (max i ) n 1
a
j 1 j i
n
ij
aii
n
(i 1,2, , n )
aij aii 1

GJ

max
1i n j 1 j i
从而Jacobi迭代收敛

* * * * 设方程组的精确解为 X ( x1 , x2 , xn )

松弛迭代法解线性方程组

松弛迭代法解线性方程组

---------------------------------------------------------------最新资料推荐------------------------------------------------------松弛迭代法解线性方程组计算方法第八章上机作业沈欢北京大学工学院,北京100871 2012-05-011问题描述编制松弛法求解线性方程组的程序:分别取松弛因子ω =0, 0.1, 0.2,…2.0(间隔为0.1),求解线性方程组Ax = b ,其中 ? ? 1 1 1 1 1 2 3 4 5 ? 1 1 1 1 1 ? ? 2 3 4 5 6 ? ?1 1 1 1 1 ? ? A=? ? 3 4 5 6 7 ? ? 1 1 1 1 1 ? ? 4 5 6 7 8 ?1 5 1 6 1 7 1 8 1 9(1)? ? ? ? b=? ? ? ?1 0 0 0 0? ? ? ? ? ? ? ?(2)→ → 要求精度为 ? x ?? x ? &lt; 10?4 (1) 经过计算判断对那些ω 迭代收敛? (2) 记下迭代次数,据此判断对哪个ω 迭代收敛最快。

2SOR方法描述? → → → → x k+1 = ωL? x k+1 + [(1 ? ω )I + ωU ]? x k + ω? g松弛法迭代的矩阵形式为: (3)其中,常数ω 称为松弛因子。

ω &lt; 1称为低松弛或亚松弛法。

ω &gt; 1称为超松弛法,ω = 1时为Seidal迭代法。

收敛最快的松弛因子称为最优松弛因子,一般要由经验或通过试算来确定。

选取适当的松弛因子,SOR迭代要比Jacobi 迭代或Seidal迭代快很多。

11/ 8在编制计算机程序的过程中使用分量形式进行迭代:i?1 +1 xk = i j =1(?ω ?aij k+1 aij k bi (?ω ? )xj + (1 ? ω )xk )xj + ω ?i + aii aii aii j =i+1n(4)其中,i=1,2,.....,n。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1:
例2:
把方程组改成:
定理8.1: 对任何初始向量X(0),和常数项f,有迭代格式
则有:
所以有:
或者写成:
必须:
由定理6.4即知ρ(M)<1
下面验证一下定理,对例1,迭代矩阵:
特征方程:
计算得:
例2的迭代矩阵:
特征方程:
用||M|| 估计, ||M|| <1是收敛的充分条件 定理8.2: 若迭代矩阵M的范数||M||=q<1,则迭代格式X(k+1)=MX(k)+f的第k次迭 代X(k)对于准确解X*的误差估计:
证明:由前面关系式:
也就是说
因此:
另外一种估计:
证明:由于
即:
2、赛德尔迭代法(Seidel迭代):
迭代过程:
令:
用矩阵格式表示如下:
3、松弛法:
Seidel迭代格式为: 现令: 于是:
用分量表示为:
前面介绍的几种迭代格式,可以统一表示成下面形式
其中,M是迭代矩阵,f是常数项 对简单迭代法来说:
对Seidel迭代法来说: 对松弛法来说:
8.2 迭代法的收敛性及误差估计
第八章 解线性方程组的迭代法
1、迭代法的基本思想:
构造一个向量序列{X(n)},使其收敛到某个极限向量X*,而X*就是要求 的方程组AX=b的准确解
2、关于迭代法的几个问题:
(1)如何构造迭代序列
(2)构造的序列在什么情况下收敛 (3)如果收敛,收敛的速率如何
(4)近似解的误差估计
8.1 几种常用的迭代格式 1、简单迭代法(Jacobi迭代):
用矩阵表示:AX=b 改写成便于迭代的形式:假设aii不为0,令
则原方程可改写成:
若令:
容易看出:
用矩阵符号可表示为: 代入上式右端 得:
再把X(1)代入得X(2) ,如此继续下去
迭代格式表示如下:
这样可以得到一个迭代序列{X(k)},当k→∞时,若序列{X(k)}收敛到X*, X* 就是方程的解,也即
相关文档
最新文档