三原子发射光谱法
第三章--原子发射光谱法含样题
试样的引入
电弧和火花光源主要应用于固体试样的分析,而液体和 气体试样采用等离子体光源。
金属或合金
非金属固体材料,试样需放在一个其发射光谱不会干扰 分析物的电极上。
理想的电极材料:碳。
引入方式:电极是一极呈圆柱形,一端钻有一个凹孔。 分析时,将粉碎的试样填塞在顶端的凹孔中。它是引 入试样最常用的方法。另一电极(即对电极)是稍具 圆形顶端的圆锥形碳棒,这种形状可以产生最稳定的 及重现的电弧和火花。
(三)几个概念
激发电位(或激发能) :原子由基态跃迁到激发态时 所需要的能量
主共振线:具有最低激发电位的谱线叫主共振线。一 般是由最低激发态回到基态时发射的谱线。
原子线:原子外层电子的跃迁所发射的谱线,以I表示, 如MgⅠ285.21nm为原子线。
离子线 :离子的外层电子跃迁—离子线。以II,III,IV 等表示。如MgⅡ280.27nm为一次电离离子线。
压通道,以利于进样;第三,参与放电过程。 2、中层管通入辅助气体Ar气,用于点燃等离子体。 3、内层石英管以Ar为载气,试样溶液以气溶胶形式引入
等离子体中。
用Ar做工作气体的优点:Ar为单原子惰性气体,不与 试样组份形成难离解的稳定化合物,也不象分子那样 因离解而消耗能量,有良好的激发性能,本身光谱简 单。
2) 摄谱法
摄谱步骤
由激发态直接跃迁至基态所辐射的谱线称为共振线。
由较低级的激发态(第一激发态)直接跃迁至基态的 谱线称为第一共振线,一般也是元素的最灵敏线。
当该元素在被测物质里降低到一定含量时,出现的最 后一条谱线,这是最后线,也是最灵敏线。用来测量 该元素的谱线称分析线。
二、谱线的强度
谱线的强度特性是原子发射光谱法 进行定量测定的基础。谱线强度是单位 时间内从光源辐射出某波长光能的多少, 也即某波长的光辐射功率的大小。
原子发射光谱法公式
原子发射光谱法(AES)是一种常用的光谱分析方法,可以用于元素定性分析以及元素的定量分析。
以下是原子发射光谱法中常用的公式:
1. 里德伯公式(Rydberg formula):该公式可以用来计算光谱线的波长。
其中,R 是里德伯常数,e 是电子的电荷,h 是普朗克常数,n 是主量子数,m 是电子的质量。
2. 洛伦兹公式(Lorentz formula):该公式可以用来计算光谱线的强度。
其中,I 是谱线强度,c 是光速,e 是电子的电荷,m 是电子的质量,B 是磁感应强度,g 是洛伦兹因子,v 是谱线的频率。
3. 斯托克斯公式(Stokes formula):该公式可以用来计算谱线的半宽度(即谱线在峰值一半处的宽度)。
其中,v 是谱线的频率,k 是玻尔兹曼常数,T 是绝对温度,I 是谱线强度。
这些公式在原子发射光谱法中有着重要的应用,可以帮助我们更好地理解和分析光谱数据。
原子发射光谱法和原子吸收光谱法的优缺点
原子发射光谱法(Atomic Emission Spectroscopy,AES)和原子吸收光谱法(Atomic Absorption Spectroscopy,AAS)是常用的分析方法,它们利用原子在能量激发下发射或吸收特定波长的光线来确定样品中的元素含量。
以下是它们的优缺点比较:一、原子发射光谱法优点:1. 灵敏度高:原子在激发后能发出强烈的荧光,使得检测灵敏度高。
2. 分辨率高:能够分离出元素的不同能级,对于元素的多种化合价态也有很好的分辨率。
3. 多元素分析:可以同时分析多种元素,适用于复杂样品。
4. 快速:仅需要几分钟即可得到结果。
缺点:1. 形成荧光需要外部能量输入,易受分析环境影响,如气体的压力和温度等。
2. 需要专业人员操作:仪器复杂,需要专业的技术人员进行操作和维护。
3. 样品处理复杂:由于样品需要被分解为原子态,因此需要严格的前处理过程。
4. 不能定量:由于荧光强度与供能的原子数不成比例,因此不能直接定量。
二、原子吸收光谱法优点:1. 灵敏度高:具有极高的检测灵敏度,尤其适用于微量元素的分析。
2. 定量性好:由于原子吸收的强度与元素浓度呈线性关系,因此可以直接定量。
3. 选择性好:由于不同元素的吸收谱线是独立的,因此可以区分不同元素。
4. 不受环境影响:对于气体和液体样品,只需要进行简单的前处理即可进行分析。
缺点:1. 只能测量单一元素:每个元素只有一个特定的吸收波长,因此只能测量一个元素。
2. 影响灵敏度的因素多:灵敏度受到多种因素影响,如化学基质等。
3. 仅限于溶液测量:由于需要将样品转化为气态原子,因此只适用于溶液样品。
4. 仪器复杂:仪器需要精密的光学部件以保证精确的测量结果。
无论是原子发射光谱法还是原子吸收光谱法,都有其独特的优点和缺点。
在选择分析方法时,需要考虑样品类型、分析目标和实验室条件等因素,并综合评估各种分析方法的优缺点,以选择最适合的方法。
第3讲 原子发射光谱法
最灵敏线、最后线、分析线进行定性分析。
2.定性分析的方法
A.标准样品与试样光谱比较法
相同条件下摄谱 比较特征谱线
样品(指定元素) 纯物质(指定元素)
若试样光谱中出现标准样品所含元素的2~3条 特征谱线(一般看最后线),就可以证实试样
中含有该元素,否则不含有该元素。
只适合于少数指定元素的定性分析,即判断样品中 是否含有某种或某几种指定元素时,可用此种方法
温度:6000-8000K 稳定性:很好 温度:10000K
稳定性:很好
温度:10000K,稳定性:好
交流电弧
直流电弧
温度:4000-7000K,稳定性:好
温度:4000-7000K,稳定性:差
火焰
温度:2000-3000K,稳定性:很好
如何选择光源?
• • • • • 易激发易电离元素,碱金属等——火焰光源 难挥发——直流电弧光源 难激发——交流,火花电弧 低含量——交流电弧 高含量——电弧
类型:
a、棱镜分光系统(折射) b、光栅分光系统(衍射和干涉)
1. 平面衍射光栅摄谱仪
感光板的乳剂面 物镜 凹面反射镜
平面光栅 三透镜
准光镜 反射镜 狭缝 光源
2.IRIS Advantage 中阶梯 光栅分光系统(实物图)
(三)检测器
1. 摄谱检测系统
1.1 摄谱步骤:
a.安装感光板在摄谱仪的焦面上 b.激发试样,产生光谱而感光 c.显影,定影,制成谱板 d.特征波长,定性分析 e.特征波长下的谱线强度,定量分析
谱线强度的基本公式
Iqp :谱线强度; Aqp :原子由q能态向p能态跃迁的概率 N0:基态原子数 hυqp:光子的能量;
gq 、g0:激发态和基态的统计权重(粒子在某一能级下可能 具有的几种不同的状态数) Eq :激发电位; T :温度K k :Boltzmann常数
分析化学二第3章原子发射光谱法PPT
轨道符号: s p d
二、能级图与光谱项——光谱项
基本原理
(1)核外单电子运动状态的描述
磁量子数(m ) 描述电子云在空间的不同取向
m = 0, ±1, ±2, …… ±l (即 m 共有2l ±1个取值)
自旋量子数(s ) 描述电子的自旋情况
s= 1
2
或
共有2L+1个值
二、能级图与光谱项——光谱项
(3)光谱项符号 作 用: 用来表示原子中电子特定的能级
一个光谱项符号代表原子的一个能级
基本原理
表示方法:
谱线多重性符号
主量子数
n 2S 1LJ
总角量子数(用S、P、D…表示) 内量子数, 代表不同的光谱支项
二、能级图与光谱项——光谱项
基本原理
写出基态Na的光谱项符号
2、理想的光源条件
() () () () () ()
二、AES中的光源
3、AES中常用的光源
经典光源
原子发射光谱仪
现代光源
原子发射光谱仪
二、AES中的光源
与光源相关的几个重要概念
击穿电压:使电极间击穿而发生自持放电的最小电压。 自持放电:电极间的气体被击穿后,即使没有外界的
电离作用,仍能继续保持电离,使放电持 续的现象。
1.988 10 23 J cm 5893 10 8 cm
3.37 10 19 J
(2)求gJ 和g0
Na的基态3s的光谱项为 32 S1/ 2
g0
(2J 1) 2 1 1 2
2
Na的激发态3p的光谱项为 32 P1/ 2 和 32 P3/ 2
gi
(2J 1) (2 1 1) (2 3 1) 6
原子发射光谱法的主要特点
原子发射光谱法的主要特点
原子发射光谱法(AES)是一种常用的材料分析方法,它具有以下主要特点:
1.精确性高:原子发射光谱法可以提供非常精确的元素定性定量信息。
通过使用复杂的仪器设备和先进的算法,可以准确地测量元素在样品中的浓度和分布。
2.灵敏度高:原子发射光谱法具有很高的灵敏度,可以检测到样品中微量的元素。
这使得该方法可以用于分析痕量元素,如金属杂质或合金成分。
3.选择性强:原子发射光谱法可以选择性地测量特定元素。
通过选择适当的激发条件和光谱线,可以仅对某些元素进行检测,而对其他元素不产生干扰。
4.线性范围宽:原子发射光谱法的线性范围很宽,可以从ppm(百万分之一)到ppb(十亿分之一)的浓度范围进行测量。
这使得该方法可以适应不同浓度的样品分析需求。
5.实验方法简单:原子发射光谱法的实验方法相对简单。
样品经过简单的制备和稀释后,可以直接进行分析。
这使得该方法在实验室中易于操作,并且适用于各种不同类型的样品。
总之,原子发射光谱法具有精确性高、灵敏度高、选择性强的特点,可以提供准确的元素信息,并适用于各种不同类型的样品分析。
三种原子光谱(发射,吸收与荧光)产生机理
一、概述原子光谱是研究原子内部结构和原子间相互作用的重要技术手段,也是物质分析学、化学分析学、化学物理学和光谱学等领域的重要研究内容。
原子光谱包括发射光谱、吸收光谱和荧光光谱,它们是由原子在外界作用下产生的具有特殊波长和频率的光谱。
发射光谱是原子从高能级跃迁到低能级时产生的谱线,吸收光谱是原子吸收外界光子导致能级跃迁的谱线,荧光光谱则是原子在受激激发后再跃迁回基态时放出的光谱。
本文将重点介绍三种原子光谱的产生机理。
二、发射光谱产生机理1. 激发当原子受到能量激发时,电子从基态跃迁到高能级,此时原子处于激发态,处于不稳定状态。
2. 跃迁在激发态下,原子的电子会趋向于迅速由高能级跃迁到低能级,这个跃迁的过程伴随着光子的发射。
3. 能级结构原子内部的能级结构决定了发射光谱的特性,不同元素具有不同的能级结构,因而发射光谱对于元素的鉴定和定量分析具有重要意义。
三、吸收光谱产生机理1. 能级跃迁吸收光谱是由原子吸收外界光子导致能级跃迁而产生的,能级跃迁的规律与波长和频率的关系可以用于确定原子的能级结构和特性。
2. 共振吸收当外界光子与原子的能级跃迁能量匹配时,发生共振吸收现象,这种吸收现象对于不同元素的吸收光谱研究具有重要意义。
3. 吸收光谱谱线吸收光谱谱线的位置和强度反映了原子吸收外界光子的能力,可以用于分析样品中的元素及其含量。
四、荧光光谱产生机理1. 受激激发荧光光谱是原子在受到外界激发能量后处于激发态的荧光物质产生的光谱,激发的能量可以是光子或者其他激发源。
2. 荧光发射激发后的原子处于不稳定状态,随后电子会从激发态跃迁回到基态,并伴随着荧光发射。
3. 荧光光谱应用荧光光谱在物质分析、生物学、医学和环境保护等领域有着广泛的应用,对于研究物质的结构和性质具有重要的意义。
五、总结发射光谱、吸收光谱和荧光光谱是三种重要的原子光谱,它们具有独特的产生机理和应用价值。
通过对三种原子光谱的产生机理的深入理解,不仅可以帮助人们认识原子内部的结构和性质,还有助于解决实际问题和促进科学技术的发展。
原子发射光谱法(aes)
通过测量待测样品中某一元素的特征谱线强度,与已知浓度的标准样品进行比 较,大致确定待测样品中该元素的含量范围。
定性分析
谱线识别法
通过对比已知元素的标准谱线与待测样品的谱线,确定待测样品中存在的元素种 类。
特征光谱法
利用不同元素具有独特的特征光谱,通过比对特征光谱的差异,确定待测样品中 存在的元素种类。
电热原子化器利用电热丝加热 ,使样品中的元素原子化。
化学原子化器利用化学反应将 样品中的元素转化为气态原子
。
光源
01 光源用于提供能量,使样品中的元素原子 化并产生光谱信号。
02 光源类型有多种,如电弧灯、火花放电灯 等。
03
电弧灯利用电弧放电产生高温,使样品中 的元素原子化。
04
火花放电灯利用高压电场使气体放电,产 生高温,使样品中的元素原子化。
原子发射光谱法(AES)
目 录
• 原子发射光谱法(AES)概述 • AES的仪器与设备 • AES的样品制备与处理 • AES的分析方法与技术 • AES的优缺点与挑战 • AES的未来发展与展望
01 原子发射光谱法(AES)概 述
定义与原理
定义
原子发射光谱法(AES)是一种通过测量物质原子在受激发态跃迁时发射的特定波长的光来分析物质成分的方法。
02
发射光谱仪通常包括电 子激发源、真空系统、 光学系统、检测器等部 分。
03
电子激发源用于产生高 能电子,激发原子或离 子,使其跃迁至激发态。
04
真空系统用于维持仪器 内部的高真空环境,减 少空气对光谱信号的干 扰。
原子化器
01
02
03
04
原子化器是将样品转化为原子 蒸气的装置。
原子发射光谱分析法
f
入 射 狭缝 准 直 镜
棱 镜
物 镜 焦 面
出 射 狭缝
棱镜特性
色散率:分辨率R:
色散率:指对不同波长的光被棱
镜分开的能力。它又分为角色散
率和线色散率
角色散率 dθ/dλ
:两条波长相
差 dλ 的光被棱镜色散后所分开 的角度为dθ ,则棱镜的角色散
用Ar做工作气体的优点:Ar 为单原子惰性气体,不与试样组份形 成难离解的稳定化合物,也不象分子 那样因离解而消耗能量,有良好的激 发性能,本身光谱简单。
环状结构可以分为若干区,各区 的温度不同,性状不同,辐射也
不同。
尾焰区
内焰区 焰心区
ICP光源特点 1)低检测限:蒸发和激发温度高;
2)稳定,精度高: 3)基体效应小
4、电感耦合等离子体:
组成: ICP 高频发生器 + 炬管 + 样品引入系统
绝缘屏蔽冷Leabharlann 气辅助气载气(Ar)
载气Ar + 样品
废液
样品溶液
在有气体的石英管外套装一个 高频感应线圈,感应线圈与高频 发生器连接。当高频电流通过线 圈时,在管的内外形成强烈的振 荡磁场。管内磁力线沿轴线方向, 管外磁力线成椭圆闭合回路。
第三章原子发射光 谱分析法
利用物质在被外能激发后所
产生的原子发射光谱来进行 分析的方法。
§3—1概述 一.原子发射光谱的产生: (一)原子能级与能级图
原 子 的 能 级 图:
(二)原子发射光谱的产生: 原子由激发态回到基态(或 跃迁到较低能级)时,若此以光
的形式放出能量,就得到了发射
光谱。其谱线的波长决定于跃迁 时的两个能级的能量差,即:
三.光谱分析的特点: 1.相当高的灵敏度:
第三章原子发射光谱法AtomicEmissionSpectrometry(AES)
或
log I = B log C + log A
(罗马金-赛伯公式)
Iul = Aul hul gu
Z
上式表明:
Eu
( 1-
e - x)
KT
CB
1、 log I 与 log C 成正比,构成定量分析的基础; 2、影响发射强度的因素有 Eu
Iul Iul
T X
Iul Iul
I
~C
冷却气(10-19 l/min) 辅助气(0-1 l/min) 气溶胶 载气(0.5-3.5 l/min)
ICP的工作原理:
当有高频电流通过线圈时,产生轴向磁场, 这时若用高频点火装置产生火花,形成的载流子( 离子与电子)在电磁场作用下,与原子碰撞并使之 电离,形成更多的载流子,当载流子多到足以使气 体有足够的导电率时,在垂直于磁场方向的截面上 就会感生出流经闭合圆形路径的涡流,强大的电流 产生高热又将气体加热,瞬间使气体形成最高温度 可达10000K的稳定的等离子炬。感应线圈将能量耦 合给等离子体,并维持等离子炬。当载气载带试样 气溶胶通过等离子体时,被后者加热至6000-7000K ,并被原子化和激发产生发射光谱。
电离度
离解度
nM + x= nM + nM + nM = nM + nMX
(1)
(2)
如果等离子体中气态分析物总浓度为
nt
(3)
即
n t = nM+ nM+ + nMX
则由上式可得
nM =
x) 1-( 1- ) x nMX =
( 1-
n t nM + = nt
x nt 1-( 1- )
第三章 原子发射光谱法(一).
四、发射光谱为何属于线状光谱
•能级量子化、不连续 •选择定则(跃迁具有一定的选择性)
§2 原子能级与原子光谱
一、光谱项符号
一个e: n
l
m
s
主量子数 角量子数 磁量子数 自旋量子数
多个e: n
L
S
J
内量子数
主量子数 总角量子数 总自旋量子数
1. n (主量子数) :决定了电子的能量和电子离核的远近
光源
蒸发温度 激发温度/ K 放电稳定性 应用范围
DCA (直流电弧)
高
Spark (火花)
低
4000~7000 瞬间10000
ICP
非常高
6000~8000
稍差 好
很好
定性及半定量 分析
低熔点的金属 和合金以及难 激发元素、高 含量元素的定 量分析
溶液定量分析
<五>、试样引入激发光源的方法
固体 (1)固体自电极法 (2)粉末法
C: N=2,S取1或0
4. J(内量子数)
反映了电子轨道总角动量与电子自旋总角动量之间的偶合
J= L + S
J=(L+S),(L+S-1),(L+S-2),……| L-S |
当L≥S,有2S+1个值, 当L≤S,有2L+1个值。
光谱项符号: n 2S+1LJ
2S+1:谱线的多重性 J:光谱支项
例 : Na 基态 :(1s)2(2s)2(2p)6(3s)1
直流电弧 交流电弧
电感耦合等 离子体ICP
〈一〉直流电弧(Direct Current Arc,DCA)
1.工作原理
E:直流电源,220~380V,5~30A R:镇流电阻,稳定及调节电流 L:电感,减小电流波动 G:分析间隙
第三章 原子发射光谱
第一节 原子发射光谱 分析基本原理
一、概述 二、原子发射光谱的产生 三、谱线强度 四、谱线自吸与自蚀
2018/11/30
Varian 710—ES全谱直读电感耦合等离子发射光谱仪
2018/11/30
一、概述
原子发射光谱分析法(AES): 依据各种元素的原子或离子在热激发或电激发下,由基态 跃迁到激发态,返回到基态时,发射出特征光谱,依据特征 光谱进行定性、定量的分析方法。
缺点:
第二节 原子发射光谱分析 仪器类型与结构流 程
一、光源
二、分光系统
三、检测器
2018/11/30
原子发射光谱分析的三个主要过程:
样品蒸发、原子化,原子激发并产生光辐射。 分光,形成按波长顺序排列的光谱。 检测光谱中谱线的波长和强度。
光源
分光系统
原子发射光谱仪方框图
检测器
2018/11/30
ห้องสมุดไป่ตู้
基态元素M
E 特征辐射
激发态M*
2018/11/30
二、原子发射光谱的产生
必须明确如下几个问题: (1)原子中外层电子能级分布是量子化的,△E不是连续的 ,则λ或ν也是不连续的,原子光谱是线光谱; (2)同一原子中,电子能级很多,有各种不同的能级跃迁, 所以有各种△E不同的值,即可以发射出许多不同 λ或 ν 的辐射线。但跃迁要遵循“光谱选律”,不是任何能
1. 电弧光源
电弧光源:
直流电弧发生器
(a)直流电弧;
(b)交流电弧。
(1)直流电弧:
直流电源作为激发能源,电压150 ~380V,电流5~ 30A
;石墨作电极,试样放置在一支电极(下电极)的凹槽内;使
03原子发射光谱讲解
C题目:原子发射光谱法1003 几种常用光源中,产生自吸现象最小的是( )(1) 交流电弧(2) 等离子体光源(3) 直流电弧(4) 火花光源1004 在光栅摄谱仪中解决200.0~400.0nm区间各级谱线重叠干扰的最好办法是( )(1) 用滤光片(2) 选用优质感光板(3) 不用任何措施(4) 调节狭缝宽度1005 发射光谱分析中,应用光谱载体的主要目的是( )(1) 预富集分析试样(2) 方便于试样的引入(3) 稀释分析组分浓度(4) 增加分析元素谱线强度1007 在谱片板上发现某元素的清晰的10 级线,且隐约能发现一根9 级线,但未找到其它任何8 级线,译谱的结果是( )(1) 从灵敏线判断,不存在该元素(2) 既有10 级线,又有9 级线,该元素必存在(3) 未发现8 级线,因而不可能有该元素(4) 不能确定1016 闪耀光栅的特点之一是要使入射角α、衍射角β和闪耀角θ之间满足下列条件( )(1) α=β(2) α=θ(3) β=θ(4) α=β=θ1017 下列哪个因素对棱镜摄谱仪与光栅摄谱仪的色散率均有影响?( )(1) 材料本身的色散率(2) 光轴与感光板之间的夹角(3) 暗箱物镜的焦距(4) 光线的入射角1018 某摄谱仪刚刚可以分辨310.0305 nm 及309.9970 nm 的两条谱线,则用该摄谱仪可以分辨出的谱线组是( )(1) Si 251.61 ─Zn 251.58 nm (2) Ni 337.56 ─Fe 337.57 nm(3) Mn 325.40 ─Fe 325.395 nm (4) Cr 301.82 ─Ce 301.88 nm1024 带光谱是由下列哪一种情况产生的? ( )(1) 炽热的固体(2) 受激分子(3) 受激原子(4) 单原子离子1025 对同一台光栅光谱仪,其一级光谱的色散率比二级光谱的色散率( )(1) 大一倍(2) 相同(3) 小一倍(4) 小两倍1026 用发射光谱进行定量分析时,乳剂特性曲线的斜率较大,说明( )(1) 惰延量大(2) 展度大(3) 反衬度大(4) 反衬度小1085 光栅公式[nλ= b(Sinα+ Sinβ)]中的b值与下列哪种因素有关?( )(1) 闪耀角(2) 衍射角(3) 谱级(4) 刻痕数(mm-1)1086 原子发射光谱是由下列哪种跃迁产生的?( )(1) 辐射能使气态原子外层电子激发(2) 辐射能使气态原子内层电子激发(3) 电热能使气态原子内层电子激发(4) 电热能使气态原子外层电子激发1087 用摄谱法进行光谱定性全分析时应选用下列哪种条件?( )(1) 大电流,试样烧完(2) 大电流,试样不烧完(3) 小电流,试样烧完(4) 先小电流,后大电流至试样烧完1089 光电法原子发射光谱分析中谱线强度是通过下列哪种关系进行检测的(I——光强,i——电流,V——电压)?( )(1) I→i→V(2) i→V→I (3) V→i→I (4) I→V→i1090 摄谱法原子光谱定量分析是根据下列哪种关系建立的(I——光强, N基——基态原子数,∆S——分析线对黑度差, c——浓度, I——分析线强度, S——黑度)?( )(1) I-N基(2) ∆S-lg c(3) I-lg c(4) S-lg N基1117 当不考虑光源的影响时,下列元素中发射光谱谱线最为复杂的是( )(1) K (2) Ca (3) Zn (4) Fe1174 用发射光谱法测定某材料中的Cu 元素时,得铜的某谱线的黑度值(以毫米标尺表示)为S(Cu) = 612,而铁的某谱线的黑度值S(Fe) = 609,此时谱线反衬度是 2.0,由此可知该分析线对的强度比是( )(1) 31.6 (2) 1.01 (3) 500 (4) 25.41199 以光栅作单色器的色散元件,若工艺精度好,光栅上单位距离的刻痕线数越多,则:( )(1) 光栅色散率变大,分辨率增高(2) 光栅色散率变大,分辨率降低(3) 光栅色散率变小,分辨率降低(4) 光栅色散率变小,分辨率增高1200 发射光谱定量分析选用的“分析线对”应是这样的一对线( )(1) 波长不一定接近,但激发电位要相近(2) 波长要接近,激发电位可以不接近(3) 波长和激发电位都应接近(4) 波长和激发电位都不一定接近1218 以光栅作单色器的色散元件,光栅面上单位距离内的刻痕线越少,则( )(1) 光谱色散率变大,分辨率增高(2) 光谱色散率变大,分辨率降低(3) 光谱色散率变小,分辨率增高(4) 光谱色散率变小,分辨率亦降低1220 某光栅的适用波长范围为600~200nm,因此中心波长为460nm 的一级光谱线将与何种光谱线发生重叠? ( )(1) 230nm 二级线(2) 460nm 二级线(3) 115nm 四级线(4) 除460nm 一级线外该范围内所有谱线1236 光栅摄谱仪的色散率,在一定波长范围内( )(1) 随波长增加,色散率下降(2) 随波长增加,色散率增大(3) 不随波长而变(4) 随分辨率增大而增大1237 用发射光谱进行定性分析时,作为谱线波长的比较标尺的元素是( )(1)钠(2)碳(3)铁(4)硅1238 分析线和内标线符合均称线对的元素应该是( )(1)波长接近(2)挥发率相近(3)激发温度相同(4)激发电位和电离电位相近1239 下列哪个化合物不是显影液的组分?( )(1)对苯二酚(2)Na2S2O3 (3)KBr (4)Na2SO31240 下列哪个化合物不是定影液的组分?( )(1)对甲氨基苯酚硫酸盐(2)Na2S2O3 (3)H3BO3(4)Na2SO31241 测量光谱线的黑度可以用( )(1)比色计(2)比长计(3)测微光度计(4)摄谱仪1365 火焰( 发射光谱)分光光度计与原子荧光光度计的不同部件是( )(1)光源(2)原子化器(3)单色器(4)检测器1368 下列色散元件中, 色散均匀, 波长范围广且色散率大的是( )(1)滤光片(2)玻璃棱镜(3)光栅(4)石英棱镜1377 原子发射光谱与原子吸收光谱产生的共同点在于( )(1)辐射能使气态原子内层电子产生跃迁(2)基态原子对共振线的吸收(3)气态原子外层电子产生跃迁(4)激发态原子产生的辐射1552 下面哪些光源要求试样为溶液, 并经喷雾成气溶胶后引入光源激发?( )(1) 火焰(2) 辉光放电(3) 激光微探针(4) 交流电弧1553 发射光谱分析中, 具有低干扰、高精度、高灵敏度和宽线性范围的激发光源是( )(1) 直流电弧(2) 低压交流电弧(3) 电火花(4) 高频电感耦合等离子体1554 采用摄谱法光谱定量分析, 测得谱线加背景的黑度为S(a+b), 背景黑度为S b,正确的扣除背景方法应是( )(1) S(a+b)-S b(2) 以背景黑度S b为零, 测量谱线黑度(3) 谱线附近背景黑度相同, 则不必扣除背景(4) 通过乳剂特性曲线, 查出与S(a+b)及S b相对应的I(a+b)及I b,然后用I(a+b)-I b扣除背景1555 用发射光谱法分析高纯稀土中微量稀土杂质, 应选用( )(1) 中等色散率的石英棱镜光谱仪(2) 中等色散率的玻璃棱镜光谱仪(3) 大色散率的多玻璃棱镜光谱仪(4) 大色散率的光栅光谱仪1556 电子能级差愈小, 跃迁时发射光子的( )(1) 能量越大(2) 波长越长(3) 波数越大(4) 频率越高1557 光量子的能量正比于辐射的( )(1)频率(2)波长(3)传播速度(4)周期1558 在下面四个电磁辐射区域中, 能量最大者是( )(1)X射线区(2)红外区(3)无线电波区(4)可见光区1559 在下面五个电磁辐射区域中, 波长最短的是( )(1)X射线区(2)红外区(3)无线电波区(4)可见光区1560 在下面四个电磁辐射区域中, 波数最小的是( )(1)X射线区(2)红外区(3)无线电波区(4)可见光区1561 波长为500nm的绿色光, 其能量( )(1)比紫外线小(2)比红外光小(3)比微波小(4)比无线电波小1562 常用的紫外区的波长范围是( )(1)200~360nm (2)360~800nm (3)100~200nm (4)103nm1563 以直流电弧为光源, 光谱半定量分析含铅质量分数为10-5以下的Mg时, 内标线为2833.07Å, 应选用的分析线为 ( )(1)MgⅠ2852.129Å, 激发电位为4.3eV(2)MgⅡ2802.695Å, 激发电位为12.1eV(3)MgⅠ3832.306Å,激发电位为5.9eV(4)MgⅡ2798.06Å, 激发电位为8.86eV1564 下面四个电磁辐射区中, 频率最小的是( )(1)X射线区(2)红外光区(3)无线电波区(4)可见光区1565 NaD双线[λ(D1)=5895.92Å, 由3P1/2跃迁至3S1/2; λ(D2)=5889.95Å, 由3P3/2跃迁至3S1/2]的相对强度比I(D1)/I(D2)应为( )(1) 1/2 (2) 1 (3) 3/2 (4) 21566 下面哪种光源, 不但能激发产生原子光谱和离子光谱, 而且许多元素的离子线强度大于原子线强度?( )(1)直流电弧(2)交流电弧(3)电火花(4)高频电感耦合等离子体1567 下面几种常用激发光源中, 分析灵敏度最高的是( )(1)直流电弧(2)交流电弧(3)电火花(4)高频电感耦合等离子体1568 下面几种常用的激发光源中, 最稳定的是( )(1)直流电弧(2)交流电弧(3)电火花(4)高频电感耦合等离子体1569 连续光谱是由下列哪种情况产生的?( )(1)炽热固体(2)受激分子(3)受激离子(4)受激原子1570 下面几种常用的激发光源中, 分析的线性范围最大的是( )(1)直流电弧(2)交流电弧(3)电火花(4)高频电感耦合等离子体1571 下面几种常用的激发光源中, 背景最小的是( )(1)直流电弧(2)交流电弧(3)电火花(4)高频电感耦合等离子体1572 下面几种常用的激发光源中, 激发温度最高的是( )(1)直流电弧(2)交流电弧(3)电火花(4)高频电感耦合等离子体1727 原子发射光谱仪中光源的作用是( )(1) 提供足够能量使试样蒸发、原子化/离子化、激发(2) 提供足够能量使试样灰化(3) 将试样中的杂质除去,消除干扰(4) 得到特定波长和强度的锐线光谱1728 用原子发射光谱法直接分析海水中重金属元素时, 应采用的光源是( )(1) 低压交流电弧光源(2) 直流电弧光源(3) 高压火花光源(4) I CP光源1729 矿物中微量Ag、Cu的发射光谱定性分析应采用的光源是( )(1) I CP光源(2) 直流电弧光源(3) 低压交流电弧光源(4) 高压火花光源1730 在原子发射光谱摄谱法定性分析时采用哈特曼光阑是为了( )(1) 控制谱带高度(2) 同时摄下三条铁光谱作波长参比(3) 防止板移时谱线产生位移(4) 控制谱线宽度1731 下列哪种仪器可用于合金的定性、半定量全分析测定( )(1)极谱仪(2)折光仪(3)原子发射光谱仪(4)红外光谱仪(5)电子显微镜1735 低压交流电弧光源适用发射光谱定量分析的主要原因是( )(1) 激发温度高(2) 蒸发温度高(3) 稳定性好(4) 激发的原子线多1736 发射光谱法定量分析用的测微光度计, 其检测器是( )(1) 暗箱(2) 感光板(3) 硒光电池(4) 光电倍增管1737 发射光谱摄谱仪的检测器是( )(1) 暗箱(2) 感光板(3) 硒光电池(4) 光电倍增管1738 发射光谱定量分析中产生较大背景而又未扣除分析线上的背景, 会使工作曲线的下部( )(1) 向上弯曲(2) 向下弯曲(3) 变成折线(4) 变成波浪线1739 当浓度较高时进行原子发射光谱分析, 其工作曲线(lg I ~lg c)形状为( )(1) 直线下部向上弯曲(2) 直线上部向下弯曲(3) 直线下部向下弯曲(4) 直线上部向上弯曲1751 对原子发射光谱法比对原子荧光光谱法影响更严重的因素是( )(1) 粒子的浓度(2) 杂散光(3) 化学干扰(4) 光谱线干扰2014 摄谱仪所具有的能正确分辨出相邻两条谱线的能力,称为_分辨率_ 。
第三章原子发射光谱法
Questions:
(1)用这个所谓价电子的组态可表明价电子所处的原 子轨道,也能说明原子是处于基态还是激发态,那么它 能确切表示电子所处的能级吗? (2)在这个电子组态的表示式中,没有体现磁量子数 和自旋量子数,难道它们对电子的能量没有影响吗?
2019/11/1
举个例子
例如Na价电子组态的 3p1——激发态
2019/11/1
(2)总角量子数L
各价电子角动量相互作用,按一定方式耦合而成的原 子总的角量子数。 对于有两个价电子的原子,L的取值(只能) l1+l2, l1+l2 –1, l1+l2 –2,……,| l1-l2 | 例如:价电子为np1nd1的原子 l1=1,l2=2,所以L=3,2,1三个值 当L=0,1,2,3,…时分别用大写字母
2019/11/1
(2)关于发射过程
i.发射必须符合光谱选择定则; ii.发射线的波长反映的是单个光子的辐射能量,与辐 射前后原子所处的能级有关,l=hc/(E2-E1)=hc/DE; iii. 不同元素原子的结构不同,原子的能级状态不同, 能级之间的能级差不同,因此发射谱线的波长也不同, 每种元素都有其特征谱线,可定性。
这个符号表示的激发态实际上包涵两个能量相近的能 级,因此仅仅用3p1来表示并不能准确地反映在这种 状态下Na原子的能级状况。 Why ?
2019/11/1
Spin (s) and orbital (l) motion create magnetic fields that perturb each other (couple) if fields parallel - slightly higher energy if fields antiparallel - slightly lower energy
原子发射光谱方法
原子发射光谱方法是一种常用的元素分析方法,它利用物质原子在高温、高压或电子轰击等激发条件下发射出特定波长的光来确定物质中元素的含量。
其主要原理是将待分析样品中的原子或离子激发到高能级,使其从高能级跃迁到低能级时发射出特定波长的光,通过测量发射光的强度和波长来确定元素的含量。
原子发射光谱方法主要包括以下几种:
1原子吸收光谱法(AAS):将待分析样品中的元素原子激发到高能级,使其从高能级跃迁到低能级时吸收特定波长的光,通过测量吸收光的强度和波长来确定元素的含量。
2.火焰原子发射光谱法(FAS):将待分析样品在高温火焰中燃烧,使其原子或离子激发到高能级,从而发射出特定波长的光,通过测量发射光的强度和波长来确定元素的含量。
3.电感耦合等离子体原子发射光谱法(ICP-AES):将待分析样品通过电感耦合等离子体(ICP)的高温高压条件下进行原子化,使其原子或离子激发到高能级,从而发射出特定波长的光,通过测量发射光的强度和波长来确定元素的含量。
4.原子荧光光谱法(XRF):将待分析样品中的元素原子激发到高能级,使其从高能级跃迁到低能级时发射出特定波长的X射线,通过测量发射光的强度和波长来确定元素的含量。
原子发射光谱方法具有高灵敏度、高分辨率、广泛的分析范围和快速分析速度等优点,因此在材料分析、环境监测、食品安全、生命科学等领域得到了广泛应用。
三原子分子 光谱项
三原子分子光谱项
在化学和物理学中,三原子分子是由三个原子组成的分子。
对于三原子分子,它们的光谱项是描述其能级结构的标识。
一个三原子分子的光谱项可以用以下形式表示:X^2Σ+,其中X是用于表示基态电子构型的符号。
^2表示电子自旋多重度为2。
Σ表示电子轨道角动量的总和为0,而+表示它们的基态角动量量子数J为正数。
另外,对于三原子分子,会有不同的电子态,每个电子态都有其不同的光谱项。
光谱项可以根据能级结构和角动量的性质来计算和预测。
它们在谱线的形成和谱线的分析中起着重要的作用,可以提供关于分子结构和性质的信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
溶液.碱金属. 碱土金属
二、仪器类型
(一)摄谱仪
(二) 光电 直读 光谱 仪
(三) 火焰分光光度计
双通道火焰光度计
—用于测定食品中的钠含 量、土壤中的钾含量、矿 石中的钠/钾含量等。 -可同时测定钠、钾离子浓 度。-数据可以通过接口输 出到计算机或打印机。 -测量范围: 钠 0-199.9 μg· -1 g 钾 0-9.99 μg· -1 g 锂 0-9.99 μg· -1 g -灵敏度:0.1 μg· -1钠; g -重现性:小于0.5%C.V.
分析线
对每一元素,可选择一条或几条(2~3条) 灵敏线或最后线来进行定性分析、定量分 析,这种谱线称为分析线
元素的分析线应该具备以下基本条件:
(1)它是元素的灵敏线,具有足够的强 度和灵敏度;(2)是元素的特征线组;(3)是 无自吸的共振线;(4)不应与其它干扰谱线 重叠。
(二)光谱定性分析的方法
第三章 原子发射光谱法
Atomic emission spectroscopy
§ 3-1 概述
在光学分析法中,该法发展和应用最早
一、定义
根据待测物质的气态原子或离子受激发后 所发射的特征光谱的波长及其强度来测定物质 中元素组成和含量的分析方法。
二、 发射光谱分析的基本过程 1. 在激发光源中将被测物质蒸发,解离,激 发.
最后线
当元素浓度稀释到一定程度时,坚持到最后的谱线 谱线强度与试样中元素的含量有关,当元素的含量 减少时,其谱线数目亦相应减少,随着元素含量减 少而最后消失的谱线称为该元素的最后线。最后线 往往就是元素的灵敏线,即元素的主共振线。但是, 当试样中元素含量较高时,由于产生谱线自吸现象, 元素的最后线往往不是最灵敏线 最容易辨认的元素的多重线组称为该元素的特征线 组,如铁元素的四重线组(301.62cm、301.76cm、 301.90cm、302.06cm)。
度与统计权重成正比
• k— 波尔兹曼常数(1.38×10-23J·K-1) • Ni与 Ei 成反比 ,能量越高,处于该状态的粒子数越少
• 将波耳兹曼方程式代入谱线强度公式中
Iij= Ni Aij h ij
gi I ij Aij h ij N 0e g0
Ei kT
原子线离子线都适用
——此式为谱线强度公式 统计权重 g /g ∝I i 0 ij
各种光源性质比较
光源 蒸发温度
高(阳极) 中 低
《1000 略低
激发温度
稳定性 较差 较好
好 好
应用范围
矿物,纯物质, 难挥发元素(定 性半定量分析) 金属合金低含 量元素的定量 分析 含量高元素,易 挥发,难激发元 素
直流 4000~7000 电弧 3000~4000
交流 4000~7000 电弧 1000~2000 高压 火花 火焰 光源 瞬间可达 ~10000 1000~5000
Ei kT
3. 跃迁概率 Aij
gi I ij Aij h ij N 0e g0
Ei kT
跃迁是原子的外层电子从高能态跳跃到低能 态发射光量子的过程 跃迁概率是指两能级间的跃迁在所有可能发 生的跃迁中的概率 从式中看出跃迁概率与谱线强度成正比,可 通过实验数据得到
4. 统计权重
gi I ij Aij h ij N 0e g0
原子发射光谱定性分析一般采用摄谱法。
按照分析目的和要求不同,可分为制定 元素分析和全部组分元素分析两种。
目前确认谱线最常用的方法有标准光谱 图比较法和标准试样光谱比较法。
(二)光谱定性分析的方法
1.标准试样光谱比较法
如果只定性分析少数几种指定元素,同时这几 种元素的纯物质又比较容易得到时,采用该方法识 谱比较方便。。
IijBiblioteka j• 当体系在一定温度下达到平衡时,原子在不同状 态的分布也达到平衡,分配在各激发态和基态的原 子密度应遵守波尔兹曼分布规律。各个状态的原子 数由温度 T 和激发能量 E 决定
i g i kT Ni N0 e g0 • Ni、N0— 分别为处于i能态和基态原子密度
E
• gi、g0— 分别 i 能态和基态的统计权重。谱线强
gi I ij Aij h ij N 0e kT g0
gi I ij Aij h ij N 0e 2. 温度T—关系较复杂 g0 T 既影响原子的激发过程,又影响原子的电 离过程 在一定范围内,激发温度升高谱线强度增大, 但超过某一温度,温度越高,原子发生电离 的数目越多,原子谱线强度降低,离子线谱 线强度升高。 不同元素的不同谱线各有其最佳激发温度, 激发温度与所使用的光源和工作条件有关
§ 3-3 原子发射光谱仪
常用的原子发射光谱仪有:摄谱仪;光电直读仪; 火焰分光光度计 摄谱仪 火焰分光光度计
光电直读仪
仪器基本构造 光 作 用
源
分光系统
检测系统
把发射光谱 记录或检测 下来
试样蒸发、 发射的特 原子化、 征光分开 激发
①摄谱仪
电弧.火花 棱镜.光栅 感光板
②直读光谱仪 电弧.火花 棱镜.光栅 光电倍增管 ③火焰分 光光度计 火 焰 滤光片 光电管或
基态
E
• 原子发射光谱的波长取决于跃迁前后两能级的能量
差
• 不同的元素其原子结构不同,原子的能级状态不同,
电子在不同能级间跃迁所放出的能量不同,原子发 射谱线的波长不同
• 同一种元素有许多条发射谱线,最简单的H已发现
谱线54条,Fe元素谱线4~5千条,每种元素有特征 谱线——定性分析的依据
下面介绍几种常见的谱线
§ 3-4光谱定性及定量分析
灵敏线
灵敏线——有一定强度, 能标记某元素存在的特征谱线 (最易激发或激发能较低的谱线—主共振线) 主共振线的激发能越低,产生的谱线波长越长,灵敏 线大都在长波区—可见、近红外区,如:碱金属 主共振线的激发能越高,产生的谱线波长越短,灵 敏线大都在远紫外区,如:非金属及惰性金属 主共振线的激发能中等,产生的谱线在中波区—近 紫外、可见区大部分金属及部分非金属。
二、谱线的强度
(一)谱线强度表示式 谱线强度是原子发射光谱定量分析的依据,必须了 解谱线强度与各影响因素之间的关系 设i,j两能级间跃迁所产生的谱线强度Iij表示 Iij= NiAijhij 式中: Ni—处于较高激发态原子的密度(m-3) Aij—i,j两能级间的跃迁概率 i ij —为发射谱线的频率
缺点:相对分析法,需要有标准样品对照,总量分 析,无法确定物质的空间结构和官能团
§ 3-2 原子发射法的基本原理
一、原子发射光谱的产生
在通常情况下,物质的原子处于基态,当受到外 界能量的作用时,基态原子被激发到激发态,同时还能电 离并进一步被激发。激发态的原子或离子不稳定(寿 命小于10-8 s),按光谱选择定则,以光辐射形式放 出能量,跃迁到较低能级或基态,就产生原子发射光 谱。 激发态 E*
3.感光板及曝光时间的选择
定性分析——一般采用灵敏度高的紫外 Ⅱ型感光板。曝光时间适当
4. 狭缝
为了减少谱线的重叠干扰和提高分辨率, 摄谱时狭缝宜小一些,5~7 m为宜
二、光谱半定量分析
在实际工作中常常需对试样中组成元素的含量作粗 略估计。在钢材、合金的分类,矿石品级的评定以 及在光谱定性分析中,除需要给出试样中存在那些 元素外,还需要给出元素的大致含量。这时可用半 定量分析法快速、简便的解决问题。 半定量分析法的准确度较差。
Ei kT
在激发能、激发温度一定时,上式各项均为常数:
a—与谱线性质、实验条件有关的常数
在一定条件下,I 与试样中待测元素的浓度成正比, 只在浓度低时才成立,浓度较大时,将发生自吸现象 修正式: I = a C b b:自吸系数;C低 b≈1, C 高 b﹤1 lg I = b lg C + lg a
1.原子线(Ⅰ)
由原子外层电子受激发发生 能级跃迁所产生的谱线叫原子线。 以罗马字母Ⅰ表示 Ca(Ⅰ)422.67nm为钙的原 子线 E* 激发态
原子线有许多条 E 基态
2.共振线和主共振线
• 共振线:在所有原子谱线中,凡是由各个激发态回
到基态所发射的谱线
• 主共振线:在共振线中, 从第一激发态跃迁到基 态所发射的谱线 共振线
主共振线
3. 离子线(Ⅱ,Ⅲ)
• 离子外层电子受激发发生能级跃迁所产生的谱线。 • 以罗马字母Ⅱ,Ⅲ表示 • 失去一个电子为一级电离,一级电离线 Ⅱ • 失去二个电子为二级电离,二级电离线 Ⅲ • •
Ca(Ⅱ)396.9 nm Ca(Ⅲ)376.2 nm
• Ca(Ⅱ)比Ca(Ⅰ)波长短,因它们电子构型不同 • 离子线和原子线都是元素的特征光谱—称原子光谱
棱镜.光栅 光电倍增管
一、光源(激发源) 作用:为试样的蒸发、解离、原子化、激发提供能量 对光源的要求灵敏度高,稳定性好,再现性好,使 用范围宽: 光源影响检出限、精密度和准确度。 光源的类型 (1)直流电弧光源(2)低压交流电弧光源 (3)高压火花光源(4)电感耦合高频等离子体光源 (Inductively Coupled Plasma,ICP)
Ei kT
谱线强度与统计权重成正比 5. 基态原子
谱线强度与基态原子密度N0成正比 I ∝ N0 在一定条件下, N0与试样中元素含量成正比N0∝ C, ∴谱线强度也与被测定元素含量成正比。I ∝ C
I ∝ C ——光谱定量分析的基础
gi I ij Aij h ij N 0e g0
得 I=a C
跃迁概率 Aij∝Iij 从上式看出,谱线 强度与激发电位、温度、 激发电位 E ∝-lgI i ij 处于基态的粒子数、跃 激发温度 T∝-1/lgIij 迁概率有关
(二)影响谱线强度的因素 1. 激发电位Ei