2011年山东省聊城市中考数学试题(word版答案扫描)
2011 山东省各地历年中考数学试题、模拟题集及答案
山东省中考数学试题、模拟题集及答案目录历年试题集及答案2010年山东省济南市中考数学试卷2009年山东省德州市中考数学试题及答案2008年山东省青岛市中考数学试题及答案2007年山东省淄博市中考数学试卷及答案2006年山东省烟台市中考试题数学试题和答案A. 2005年山东省临沂市中考试题数学(非课改实验区用)及答案2005年山东省临沂市中考数学试题(课改实验区用)模拟题集及答案2011山东圆精中考选试题2010~2011学年度第二学期模拟试卷济南市2010年初三年级学业水平考试数 学 试 题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分120分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.考试时间120分钟.2.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用2B 铅笔涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的地方.3.选择题选出答案后,用2B 铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,答案写在试卷上无效.4.数学考试不允许使用计算器,考试结束后,应将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共48分)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.2+(-2)的值是 A .-4B .14C .0D .42.一组数据0、1、2、2、3、1、3、3的众数是 A .0B .1C .2D .33.图中的几何体是由7个大小相同的小正方体组成的,该几何体的俯视图为4.作为历史上第一个正式提出“低碳世博”理念的世博会,上海世博会从一开始就确定以“低碳、和谐、可持续发展的城市”为主题.如今在世博场馆和周边共运行着一千多辆新能源汽车,为目前世界上规第4题图A .B .C .D .第3题图第10题图yxO -1 2 ABCDMNO 第9题图5分数人数(人)156分 020108分 10分第7题图模最大的新能源汽车示范运行,预计将减少温室气体排放约28400吨.将28400吨用科学记数法表示为A .0.284×105吨 B .2.84×104吨 C .28.4×103吨D .284×102吨5.二元一次方程组42x y x y -=⎧⎨+=⎩的解是A .37x y =⎧⎨=-⎩B .11x y =⎧⎨=⎩C .73x y =⎧⎨=⎩D .31x y =⎧⎨=-⎩6.下列各选项的运算结果正确的是A .236(2)8x x =B .22523a b a b -=C .623x x x ÷=D .222()a b a b -=- 7.在一次体育课上,体育老师对九年级一班的40名同学进行了立定跳远项目的测试,测试所得分数及相应的人数如图所示,则这次测试的平均分为 A .53分 B .354分 C .403分 D .8分8.一次函数21y x =-+的图象经过哪几个象限 A .一、二、三象限 B .一、二、四象限 C .一、三、四象限D .二、三、四象限9.如图所示,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点,则cos ∠OMN 的值为A .12B 2C 3D .110.二次函数22y x x =--的图象如图所示,则函数值y <0时x 的取值范围是A .x <-1B .x >2C .-1<x <2D .x <-1或x >2A BCDPE第12题图⑴ 1+8=?1+8+16=?⑵ ⑶1+8+16+24=?第11题图……11.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n (n 是正整数)的结果为A .2(21)n +B .2(21)n -C .2(2)n +D .2n 12.如图所示,矩形ABCD 中,AB =4,BC =43E 是折线段A -D -C 上的一个动点(点E 与点A 不重合),点P 是点A 关于BE 的对称点.在点E 运动的过程中,使△PCB 为等腰三角形的点E 的位置共有A .2个B .3个C .4个D .5个ABC DEF第14题图第16题图第17题图济南市2010年初三年级学业水平考试数 学 试 题注意事项:1.第Ⅱ卷共6页.用蓝、黑色钢笔或圆珠笔直接答在考试卷上. 2.答卷前将密封线内的项目填写清楚.第Ⅱ卷(非选择题 共72分)二、填空题(本大题共5个小题,每小题3分,共15分.把答案填在题中的横线上.)13.分解因式:221x x ++= .14.如图所示,△DEF 是△ABC 沿水平方向向右平移后的对应图形,若∠B =31°,∠C =79°,则∠D 的度数是 度.15.解方程23123x x =-+的结果是 . 16.如图所示,点A 是双曲线1y x=-在第二象限的分支上的任意一点,点B 、C 、D 分别是点A 关于x 轴、原点、y 轴的对称点,则四边形ABCD 的面积是 .ABCD第19题图17.如图所示,△ABC 的三个顶点的坐标分别为A (-1,3)、B (-2,-2)、C (4,-2),则△ABC 外接圆半径的长度为 .三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.) 18.(本小题满分7分)⑴解不等式组:224x xx +>-⎧⎨-⎩≤⑵如图所示,在梯形ABCD 中,BC ∥AD ,AB =DC ,点M 是AD 的中点. 求证:BM =CM .19.(本小题满分7分)0(3)-⑵如图所示,△ABC 中,∠C =90°,∠B =30°,AD 是△ABC 的角平分线,若AC 求线段AD 的长.BACDM第18题图第21题图20.(本小题满分8分)如图所示,有一个可以自由转动的圆形转盘,被平均分成四个扇形,四个扇形内分别标有数字1、2、-3、-4.若将转盘转动两次,每一次停止转动后,指针指向的扇形内的数字分别记为a 、b (若指针恰好指在分界线上,则该次不计,重新转动一次,直至指针落在扇形内).请你用列表法或树状图求a 与 b 的乘积等于2的概率.21.(本小题满分8分)如图所示,某幼儿园有一道长为16米的墙,计划用32120平方米的矩形草坪ABCD .求该矩形草坪BC 边的长.第20题图第22题图22.(本小题满分9分)如图所示,菱形ABCD 的顶点A 、B 在x 轴上,点A 在点B 的左侧,点D 在y 轴的正半轴上,∠BAD =60°,点A 的坐标为(-2,0).⑴求线段AD 所在直线的函数表达式.⑵动点P 从点A 出发,以每秒1个单位长度的速度,按照A →D →C →B →A 的顺序在菱形的边上匀速运动一周,设运动时间为t 秒.求t 为何值时,以点P 为圆心、以1为半径的圆与对角线AC 相切?ABCN MPAMN1 CP 2B A CMNP 1 P 2 P 2009 …… ……B第23题图2第23题图1第23题图323.(本小题满分9分)已知:△ABC 是任意三角形.⑴如图1所示,点M 、P 、N 分别是边AB 、BC 、CA 的中点.求证:∠MPN =∠A . ⑵如图2所示,点M 、N 分别在边AB 、AC 上,且13AM AB =,13AN AC =,点P 1、P 2是边BC 的三等分点,你认为∠MP 1N +∠MP 2N =∠A 是否正确?请说明你的理由.⑶如图3所示,点M 、N 分别在边AB 、AC 上,且12010AM AB =,12010AN AC =,点P 1、P 2、……、P 2009是边BC 的2010等分点,则∠MP 1N +∠MP 2N +……+∠MP 2009N =____________.(请直接将该小问的答案写在横线上.)x24.(本小题满分9分)如图所示,抛物线223y x x =-++与x 轴交于A 、B 两点,直线BD 的函数表达式为y =+l 与直线BD 交于点C 、与x 轴交于点E .⑴求A 、B 、C 三个点的坐标.⑵点P 为线段AB 上的一个动点(与点A 、点B 不重合),以点A 为圆心、以AP 为半径的圆弧与线段AC 交于点M ,以点B 为圆心、以BP 为半径的圆弧与线段BC 交于点N ,分别连接AN 、BM 、MN .①求证:AN =BM .②在点P 运动的过程中,四边形AMNB 的面积有最大值还是有最小值?并求出该最大值或最小值.济南市2010年初三年级学业水平考试数学试题参考答案及评分标准一、选择题二、填空题13. 2(1)x + 14. 70 15. 9x=-三、解答题18.(1)解:224x xx +-⎧⎨-⎩>≤解不等式①,得1x ->, ················· 1分 解不等式②,得2x ≥-, ················· 2分 ∴不等式组的解集为1x ->. ················· 3分 (2) 证明:∵BC ∥AD ,AB =DC ,∴∠BAM =∠CDM , ·················· 1分 ∵点M 是AD 的中点,∴AM =DM , ····················· 2分∴△ABM ≌△DCM , ·················· 3分 ∴BM =CM . ····················· 4分 19.(1)解:原式0(3)- ·············· 1分2+1 ···················· 2分 -1 ····················· 3分(2)解:∵△ABC 中,∠C =90º,∠B =30º,∴∠BAC =60º,∵AD 是△ABC 的角平分线,∴∠CAD =30º, ···················· 1分①②∴在Rt△ADC 中,cos30ACAD =︒············· 2分··········· 3分=2 . ·············· 4分20.解:a 与b 的乘积的所有可能出现的结果如下表所示:····························· 6分 总共有16种结果,每种结果出现的可能性相同,其中ab=2的结果有2种, ································ 7分∴a 与 b 的乘积等于2的概率是18. (8)分21.解:设BC 边的长为x 米,根据题意得 ············· 1分 321202xx-=, ····················4分 解得:121220x x ==,, ··················· 6分∵20>16,∴220x =不合题意,舍去, ················ 7分 答:该矩形草坪BC 边的长为12米. ············ 8分 22. 解:⑴∵点A 的坐标为(-2,0),∠BAD =60°,∠AOD =90°,∴OD =OA ·tan60°=∴点D 的坐标为(0,), ··············· 1分 设直线AD 的函数表达式为y kx b =+,20k b b -+=⎧⎪⎨=⎪⎩,解得k b ⎧=⎪⎨=⎪⎩AB CM N P 1 第23题图P 21 2O xy B CDP 1P 2P 3P 4123 4 A第22题图∴直线AD 的函数表达式为33y x =+. ·········· 3分 ⑵∵四边形ABCD 是菱形, ∴∠DCB =∠BAD =60°, ∴∠1=∠2=∠3=∠4=30°,AD =DC =CB =BA =4, ···················· 5分 如图所示:①点P 在AD 上与AC 相切时,AP 1=2r =2,∴t 1=2. ························ 6分②点P 在DC 上与AC 相切时,CP 2=2r =2,∴AD +DP 2=6,∴t 2=6. ········· 7分 ③点P 在BC 上与AC 相切时,CP 3=2r =2,∴AD +DC +CP 3=10,∴t 3=10. ········· 8分 ④点P 在AB 上与AC 相切时,AP 4=2r =2,∴AD +DC +CB +BP 4=14, ∴t 4=14,∴当t =2、6、10、14时,以点P 为圆心、以1为半径的圆与对角线AC 相切. ··············· 9分23. ⑴证明:∵点M 、P 、N 分别是AB 、BC 、CA 的中点, ∴线段MP 、PN 是△ABC 的中位线,∴MP ∥AN ,PN ∥AM , ······ 1分∴四边形AMPN 是平行四边形, · 2分 ∴∠MPN =∠A . ······· 3分DCMNO A B P 第24题图lxyFE ⑵∠MP 1N +∠MP 2N =∠A 正确. ····· 4分 如图所示,连接MN , ······· 5分 ∵13AM AN AB AC ==,∠A =∠A , ∴△AMN ∽△ABC , ∴∠AMN =∠B ,13MN BC =, ∴MN ∥BC ,MN =13BC , ······· 6分∵点P 1、P 2是边BC 的三等分点,∴MN 与BP 1平行且相等,MN 与P 1P 2平行且相等,MN 与P 2C 平行且相等, ∴四边形MBP 1N 、MP 1P 2N 、MP 2CN 都是平行四边形, ∴MB ∥NP 1,MP 1∥NP 2,MP 2∥AC ,·················· 7分 ∴∠MP 1N =∠1,∠MP 2N =∠2,∠BMP 2=∠A , ∴∠MP 1N +∠MP 2N =∠1+∠2=∠BMP 2=∠A . ················· 8分 ⑶∠A . ············· 9分24.解:⑴令2230x x -++=,解得:121,3x x =-=, ∴A (-1,0),B (3,0) ······· 2分 ∵223y x x =-++=2(1)4x --+, ∴抛物线的对称轴为直线x =1,将x =1代入333y x =-+y 3 ∴C (1,3. ········ 3分 ⑵①在Rt△ACE 中,tan∠CAE =3CEAE= ∴∠CAE =60º,由抛物线的对称性可知l 是线段AB 的垂直平分线, ∴AC=BC ,∴△ABC 为等边三角形, ················· 4分 ∴AB = BC =AC = 4,∠ABC=∠ACB = 60º, 又∵AM=AP ,BN=BP , ∴BN = CM ,∴△ABN ≌△BCM ,∴AN =BM . ························ 5分 ②四边形AMNB 的面积有最小值. ············· 6分 设AP=m ,四边形AMNB 的面积为S ,由①可知AB = BC= 4,BN = CM=BP ,S △ABC ×42= ∴CM=BN= BP=4-m ,CN=m , 过M 作MF ⊥BC ,垂足为F ,则MF =MC )m -,∴S △CMN =12CN MF =12m )m -=2+,······· 7分 ∴S =S △ABC -S △CMN=2)22)m -+···················· 8分∴m =2时,S 取得最小值··············· 9分绝密★启用前 试卷类型:A德州市二○○九年中等学校招生考试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷2页为选择题,24分;第Ⅱ卷8页为非选择题,96分;全卷共10页,满分120分,考试时间为120分钟.2.答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅰ卷(选择题 共24分)一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高(A)-10℃ (B)-6℃ (C)6℃ (D)10℃2.计算()4323b a --的结果是(A)12881b a (B )7612b a (C )7612b a - (D )12881b a -3.如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠EFB =65°,则∠AED ′等于 (A ) 70° (B ) 65° (C ) 50°(D ) 25°4.已知点M (-2,3 )在双曲线xky =上,则下列各点一定在该双曲线上的是 (A )(3,-2 ) (B )(-2,-3 ) (C )(2,3 ) D )(3,2)5.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是EDBC′FCD ′ A(第3题图)①正方体②圆柱③圆锥④球(第5题图)(A )①②(B )②③ (C ) ②④(D ) ③④6.不等式组⎪⎩⎪⎨⎧≥--+ 2.3,21123x x x >的解集在数轴上表示正确的是7.将直径为60cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为(A )10cm (B )30cm (C )45cm (D )300cm 8.如图,点A 的坐标为(-1,0),点B 在直线y =xB 的坐标为(A )(0,0) (B )(22,22-) (C )(-21,-21) (D )(-22,-22绝密★启用前 试卷类型:A德州市二○○九年中等学校招生考试数 学 试 题第Ⅱ卷(非选择题 共96分)(A ) (B )(C ) (D ) (第8题图)注意事项:1.第Ⅱ卷共8页,用钢笔或圆珠笔直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分.9.据报道,全球观看北京奥运会开幕式现场直播的观众达2 300 000 000人,创下全球直播节目收视率的最高记录.该观众人数可用科学记数法表示为____________人. 10.甲、乙两位棉农种植的棉花,连续五年的单位面积产量(千克/亩)统计如下表,则产量较稳定的是棉农_________________.11.若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为____________. 12.若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x 的解,则k的值为 .13.如图,在4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P1.则其旋转中心一定是__________.14.如图,在四边形ABCD 中,已知AB 不平行CD ,∠ABD =∠ACD ,请你添加一个条件: ,使得加上这个条件后能够推出AD ∥BC 且AB =CD . 15.将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折得 分评 卷 人B C DAO(第14题图) E(第15题图)AB ′C F B M 11(第13题图)痕为EF.已知AB=AC=3,BC=4,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是.16.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y kx b=+(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B n的坐标是______________.三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.17.(本题满分7分)化简:22222369x y x y yx y x xy y x y --÷-++++.(第16题图)得分评卷人18. (本题满分9分)某中学对全校学生60秒跳绳的次数进行了统计,全校平均次数是100次.某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如下(每个分组包括左端点,不包括右端点):求:(1)该班60秒跳绳的平均次数至少是多少?是否超过全校平均次数?(2)该班一个学生说:“我的跳绳成绩在我班是中位数”,请你给出该生跳绳成绩的所在范围.(3)从该班中任选一人,其跳绳次数达到或超过校平均次数的概率是多少?19. (本题满分9分)如图,⊙O 的直径AB =4,C 为圆周上一点,AC =2,过点C 作⊙O 的切线l ,过点B 作l 的垂线BD ,垂足为D ,BD 与⊙O 交于点 E .(1) 求∠AEC 的度数;(2)求证:四边形OBEC 是菱形.得 分评 卷 人得 分评 卷 人(第19题图)(第18题图)6080 100 120140 160 180 次数20. (本题满分9分)为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.(1)求2007年同期试点产品类家电销售量为多少万台(部)?(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,•手机每部800元,已知销售的冰箱(含冰柜)数量是彩电数量的23倍,求彩电、冰箱、手机三大类产品分别销售多少万台(部),并计算获得的政府补贴分别为多少万元?21. (本题满分10分)如图,斜坡AC 的坡度(坡比)为1:3,AC =10米.坡顶有一旗杆BC ,旗杆顶端B 点与A 点有一条彩带AB 相连,AB =14米.试求旗杆BC 的高度.得 分 评 卷 人得 分评 卷 人ABC(第21题图)D22. (本题满分10分)某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD 是矩形,其中AB =2米,BC =1米;上部CDG 是等边三角形,固定点E 为AB 的中点.△EMN 是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN 是可以沿设施边框上下滑动且始终保持和AB 平行的伸缩横杆. (1)当MN 和AB 之间的距离为0.5米时,求此时△EMN 的面积;(2)设MN 与AB 之间的距离为x 米,试将△EMN 的面积S (平方米)表示成关于x 的函数;(3)请你探究△EMN 的面积S (平方米)有无最大值,若有,请求出这个最大值;若没有,请说明理由.23. (本题满分10分)已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG .(1)求证:EG =CG ;(2)将图①中△BEF 绕B点逆时针旋转45º,如图②所示,取DF 中点G ,连接EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)得 分评 卷 人得 分评 卷 人FBD第23题图①BDE第23题图②DB第23题图③E ABC(第22题图)德州市二○○九年中等学校招生考试 数学试题参考解答及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种或两种解法,对考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一、二、填空题:(本大题共8小题,每小题4分,共32分) 9.2.3×109; 10.乙;11.-2;12.43;13.点B 14.∠DAC =∠ADB ,∠BAD =∠CDA ,∠DBC =∠ACB ,∠ABC =∠DCB ,OB =OC ,OA =OD ; 15.127或2; 16.()121,2n n --. 三、解答题:(本大题共7小题, 共64分) 17.(本小题满分7分)解:原式=3x y x y-+•222269x xy y x y ++-2yx y -+………………………1分 =3x yx y -+•()()()23x y x y x y ++-2y x y-+………………………4分 =32x y yx y x y +-++ …………………………………………6分 =x yx y++=1. ……………………………………………7分18.(本小题满分9分)解:(1)该班60秒跳绳的平均次数至少是:50216051407120191001380460⨯+⨯+⨯+⨯+⨯+⨯=100.8.因为100.8>100,所以一定超过全校平均次数. …………………3分(2)这个学生的跳绳成绩在该班是中位数,由4+13+19=36,所以中位数一定在100~120范围内. …………………………………………6分(3)该班60秒跳绳成绩大于或等于100次的有:19+7+5+2=33(人), ……………………………………………………………………………8分 6605033.=.所以,从该班任选一人,跳绳成绩达到或超过校平均次数的概率为0.66. ………………………………………………………… 9分 19.(本题满分9分)(1)解:在△AOC 中,AC =2,∵ AO =OC =2,∴ △AOC 是等边三角形.………2分 ∴ ∠AOC =60°,∴∠AEC =30°.…………………4分 (2)证明:∵OC ⊥l ,BD ⊥l .∴ OC ∥BD . ……………………5分 ∴ ∠ABD =∠AOC =60°.∵ AB 为⊙O 的直径,∴ △AEB 为直角三角形,∠EAB =30°.…………………………7分 ∴∠EAB =∠AEC .∴ 四边形OBEC 为平行四边形. …………………………………8分 又∵ OB =OC =2.∴ 四边形OBEC 是菱形. …………………………………………9分 20.(本题满分9分)解:(1)2007年销量为a 万台,则a (1+40%)=350,a =250(万台). …………………………………………………………………………3分(2)设销售彩电x 万台,则销售冰箱23x 万台,销售手机(350-25x )万台.由题意得:1500x +2000×x 23+800(35052-x )=500000. ……………6分解得x =88. ………………………………………………………7分 ∴ 31322x =,53501302x -=.所以,彩电、冰箱(含冰柜)、手机三大类产品分别销售88万台、132万台、130万部.………………………………………………………………8分 ∴ 88×1500×13%=17160(万元),132×2000×13%=34320(万元), 130×800×13%=13520(万元).获得的政府补贴分别是17160万元、34320万元、13520万元. ……9分 21.(本题满分10分)解:延长BC 交AD 于E 点,则CE ⊥AD .……1分在Rt △AEC 中,AC =10,由坡比为1:3可知:∠CAE =30°.………2分(第20题图) AB CED∴ CE =AC ·sin30°=10×21=5,………3分 AE =AC ·cos 30°=10×23=35.……5分 在Rt △ABE 中,BE =22AE AB -=()223514-=11.……………………………8分∵ BE =BC +CE ,∴ BC =BE -CE =11-5=6(米).答:旗杆的高度为6米. …………………………………………10分22.(本题满分10分) 解:(1)由题意,当MN 和AB 之间的距离为0.5米时,MN 应位于DC 下方,且此时△EMN 中MN 边上的高为0.5米. 所以,S △EMN =5.0221⨯⨯=0.5(平方米). 即△EMN 的面积为0.5平方米. …………2分 (2)①如图1所示,当MN 在矩形区域滑动,即0<x ≤1时,△EMN 的面积S =x ⨯⨯221=x ;……3分②如图2所示,当MN 在三角形区域滑动, 即1<x <31+时,如图,连接EG ,交CD 于点F ,交MN 于点H , ∵ E 为AB 中点,∴ F 为CD 中点,GF ⊥CD ,且FG =3. 又∵ MN ∥CD ,∴ △MNG ∽△DCG .∴ GF GH DC MN =,即MN =.……4分故△EMN 的面积S=12x=x x )331(332++-; …………………5分综合可得:()()⎪⎩⎪⎨⎧+⎪⎪⎭⎫ ⎝⎛++-≤=31133133102<<.<,x x x x x S ……………………………6分 (3)①当MN 在矩形区域滑动时,x S =,所以有10≤<S ;………7分②当MN 在三角形区域滑动时,S =x x )331(332++-. 因而,当2312+=-=a b x (米)时,S 得到最大值,NE A B C图2最大值S =a b ac 442-=)()(3343312-⨯+-=3321+(平方米). ……………9分∵13321>+, ∴ S 有最大值,最大值为3321+平方米. ……………………………10分23.(本题满分10分)解:(1)证明:在Rt △FCD 中,∵G 为DF 的中点,∴ CG =12FD .………… 1分 同理,在Rt △DEF 中, EG =12FD . ………………2分 ∴ CG =EG .…………………3分(2)(1)中结论仍然成立,即EG =CG .…………………………4分 证法一:连接AG ,过G 点作MN ⊥AD 于M ,与EF 的延长线交于N 点. 在△DAG 与△DCG 中,∵ AD =CD ,∠ADG =∠CDG ,DG =DG ,∴ △DAG ≌△DCG .∴ AG =CG .………………………5分在△DMG 与△FNG 中,∵ ∠DGM =∠FGN ,FG =DG ,∠MDG =∠NFG ,∴ △DMG ≌△FNG .∴ MG =NG在矩形AENM 中,AM =EN . ……………6分 在Rt △AMG 与Rt △ENG 中, ∵ AM =EN , MG =NG , ∴ △AMG ≌△ENG . ∴ AG =EG .∴ EG =CG . ……………………………8分证法二:延长CG 至M ,使MG =CG ,连接MF ,ME ,EC , ……………………4分在△DCG 与△FMG 中,∵FG =DG ,∠MGF =∠CGD ,MG =CG , ∴△DCG ≌△FMG .∴MF =CD ,∠FMG =∠DCG .∴MF ∥CD ∥AB .………………………5分∴EF MF ⊥.在Rt △MFE 与Rt △CBE 中,∵ MF =CB ,EF =BE , ∴△MFE ≌△CBE .∴MEF CEB ∠=∠.…………………………………………………6分 ∴∠MEC =∠MEF +∠FEC =∠CEB +∠CEF =90°. …………7分DFB 图 ①B D N 图 ②(一)B D 图 ②(二)∴ △MEC 为直角三角形. ∵ MG = CG , ∴ EG =21MC .∴ EG CG =.………………………………8分 (3)(1)中的结论仍然成立,即EG =CG .其他的结论还有:EG ⊥CG .……10分2008年山东省青岛市中考数学试题(考试时间:120分钟;满分120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功! 1.请务必在指定位置填写座号,并将密封线内的项目填写清楚.2.本试题共有24道题,其中1—7题为选择题,请将所选答案的标号,写在第7题后面给出表格的相应位置上:8—14题为填空题,请将做出的答案填写在第14题后面给出表格的相应位置上;15—24题请在试题给出的本题位置上做答. 一、选择题(本题满分21分,共有7道小题,每小题3分)下列每小题都给出标号为A ,B ,C ,D 的四个结论,其中只有一个是正确的.每小题选对得分;不选,选错或选出的标号超过一个的不得分,请将1—7各小题所选答案的标号填写在第7小题后面表格的相应位置上.1.14-的相反数等于( ) A .14 B .14- C .4D .4-2.下列图形中,轴对称图形的个数是( )A.1 B.2 C.3 D.4 3.已知1O 和2O 的半径分别为3cm 和2cm ,圆心距124O O =cm ,则两圆的位置关系是( )A .相切B .内含C .外离D .相交4.某几何体的三种视图如右图所示,则该几何体可能是( )A .圆锥体B .球体C .长方体D .圆柱体5.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有( ) A .18个 B .15个 C .12个 D .10个主视图 左视图 俯视图6.如果点11()A x y ,和点22()B x y ,是直线y kx b =-上的两点,且当12x x <时,12y y <,那么函数ky x=的图象大致是( )7.如图,把图①中的ABC △经过一定的变换得到图②中的A B C '''△,如果图①中ABC △上点P 的坐标为()a b ,,那么这个点在图②中的对应点P '的坐标为( ) A .(23)a b --,B .(32)a b --,C .(32)a b ++,D .(23)a b ++,请将1—7各小题所选答案的标号填写在下表的相应位置上:题号 1 2 3 4 5 6 7 答案二、填空题(本题满分21分,共有7道小题,每小题3分)请将8—14各小题的答案填写在第14小题后面表格的相应位置上. 8.计算:0122-+= .9.化简:293x x -=- .10.如图,在矩形ABCD 中,对角线AC BD ,相交于点O ,若60AOB ∠=,4AB =cm ,则AC 的长为 cm .11.如图,AB 是O 的直径,弦CD AB ⊥于E ,如果10AB =,8CD =,那么AE 的长为 .12.为了帮助四川地震灾区重建家园,某学校号召师生自愿捐款.第一y x O y x O y x O y x O A . C . D . 3 2 1 -1 O -2 -3 -3 -2 -1 1 2 3 x y 图① 3 21 -1 O -2 -3-3 -2 -1 1 2 3 xy 图② P A B C A ' B 'C ' P '次捐款总额为20000元,第二次捐款总额为56000元,已知第二次捐款人数是第一次的2倍,而且人均捐款额比第一次多20元.求第一次捐款的人数是多少?若设第一次捐款的人数为x ,则根据题意可列方程为 .13.某市广播电视局欲招聘播音员一名,对A B ,两名候选人进行了两项素质测试,两人的两项测试成绩如右表所示.根据实际需要,广播电视局将面试、综合知识测试的得分按3:2的比例计算两人的总成绩,那么 (填A 或B )将被录用.14.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF 长为10cm .母线()OE OF 长为10cm .在母线OF 上的点A 处有一块爆米花残渣,且2FA =cm ,一只蚂蚁从杯口的点E 处沿圆锥表面爬行到A 点.则此蚂蚁爬行的最短距离为 cm .请将8—14各小题的答案填写在下表的相应位置上:题号 8 9 10 11 答案题号 12 13 14 答案三、作图题(本题满分6分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.如图,AB AC ,表示两条相交的公路,现要在BAC ∠的内部建一个物流中心.设计时要求该物流中心到两条公路的距离相等,且到公路交叉处A 点的距离为1000米.(1)若要以1:50000的比例尺画设计图,求物流中心到公路交叉处A 点的图上距离; (2)在图中画出物流中心的位置P .解:(1)测试项目测试成绩A B 面试 90 95 综合知识测试 85 80 AFE O 第14题图ACB (2) 1cm四、解答题(本题满分72分,共有9道小题) 16.(本小题满分6分)用配方法解一元二次方程:2220x x --=.17.(本小题满分6分)某市为调查学生的视力变化情况,从全市九年级学生中抽取了部分学生,统计了每个人连续三年视力检查的结果,并将所得数据处理后,制成折线统计图和扇形统计图如下:解答下列问题:(1)该市共抽取了多少名九年级学生?(2)若该市共有8万名九年级学生,请你估计该市九年级视力不良(4.9以下)的学生大约有多少人?(3)根据统计图提供的信息,谈谈自己的感想(不超过30字).18.(本小题满分6分)小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色.此时小刚得1分,否则小明得1分.这个游戏对双方公平吗?请说明理由.若你认为不公平,如何修改规则才能使游戏对双方公平?时间(年) 02006 2007 2008 被抽取学生视力在4.9以下 的人数变化情况统计图 A40% B30%C 20%D 10% A :4.9以下B :4.9-5.1C :5.1-5.2D :5.2以上 (每组数据只含最低值不含最高值) 被抽取学生2008年的视 力分布情况统计图19.(本小题满分6分) 在一次课题学习课上,同学们为教室窗户设计一个遮阳蓬,小明同学绘制的设计图如图所示,其中,AB 表示窗户,且2AB =米,BCD 表示直角遮阳蓬,已知当地一年中在午时的太阳光与水平线CD 的最小夹角α为18.6,最大夹角β为64.5.请你根据以上数据,帮助小明同学计算出遮阳蓬中CD 的长是多少米?(结果保留两个有效数字)(参考数据:sin18.60.32=,tan18.60.34=,sin 64.50.90=,tan 64.5 2.1=)20.(本小题满分8分)2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A 种船票600元/张,B 种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A ,B 两种船票共15张,要求A 种船票的数量不少于B 种船票数量的一半.若设购买A 种船票x 张,请你解答下列问题: (1)共有几种符合题意的购票方案?写出解答过程; (2)根据计算判断:哪种购票方案更省钱?21.(本小题满分8分) 已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE CG =,连接BG 并延长交DE 于F .(1)求证:BCG DCE △≌△;(2)将DCE △绕点D 顺时针旋转90得到DAE '△, 判断四边形E BGD '是什么特殊四边形?并说明理由.ABCDEF E 'G22.(本小题满分10分)某服装公司试销一种成本为每件50元的T 恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y (件)与销售单价x (元)的关系可以近似的看作一次函数(如图).(1)求y 与x 之间的函数关系式;(2)设公司获得的总利润(总利润=总销售额-总成本)为P 元,求P 与x 之间的函数关系式,并写出自变量x 的取值范围;根据题意判断:当x 取何值时,P 的值最大?最大值是多少?23.(本小题满分10分)实际问题:某学校共有18个教学班,每班的学生数都是40人.为了解学生课余时间上网情况,学校打算做一次抽样调查,如果要确保全校抽取出来的学生中至少有10人在同一班级,那么全校最少需抽取多少名学生?建立模型:为解决上面的“实际问题”,我们先建立并研究下面从口袋中摸球的数学模型: 在不透明的口袋中装有红、黄、白三种颜色的小球各20个(除颜色外完全相同),现要确保从口袋中随机摸出的小球至少有10个是同色的,则最少需摸出多少个小球? 为了找到解决问题的办法,我们可把上述问题简单化:(1)我们首先考虑最简单的情况:即要确保从口袋中摸出的小球至少有2个是同色的,则最少需摸出多少个小球?假若从袋中随机摸出3个小球,它们的颜色可能会出现多种情况,其中最不利的情况就是它们的颜色各不相同,那么只需再从袋中摸出1个小球就可确保至少有2个小球同色,即最少需摸出小球的个数是:134+=(如图①);(2)若要确保从口袋中摸出的小球至少有3个是同色的呢?我们只需在(1)的基础上,再从袋中摸出3个小球,就可确保至少有3个小球同色,即最少需摸出小球的个数是:1327+⨯=(如图②)(3)若要确保从口袋中摸出的小球至少有4个是同色的呢?我们只需在(2)的基础上,再从袋中摸出3个小球,就可确保至少有4个小球同色,即最少需摸出小球的个数是:13310+⨯=(如图③):(10)若要确保从口袋中摸出的小球至少有10个是同色的呢?我们只需在(9)的基础上,再从袋中摸出3个小球,就可确保至少有10个小球同色,即最少需摸出小球的个数是:13(101)28+⨯-=(如图⑩)60 70y (件) 红黄 红 黄白白 红 黄 白红 红 红白白白 黄 黄黄红 红红白白白 黄 黄黄 白 … 红 黄9个9个...。
2011年中考数学试题及答案(Word版)
A OBCD A B C ED 中考数学试题一、选择题(本题共32分,每小题4分)1.- 34的绝对值是【 】A .- 4 3B . 4 3C .- 3 4D . 342.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为【 】A .66.6×107B .0.666×108C .6.66×108D .6.66×107 3.下列图形中,即是中心对称又是轴对称图形的是【 】A .等边三角形B .平行四边形C .梯形D .矩形 4.如图,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O , 若AD =1,BC =3,则OAOC的值为【 】 A . 1 2 B . 1 3 C . 1 4 D . 195则这10个区县该日最高气温的人数和中位数分别是【 】A .32,32B .32,30C .30,32D .32,316.一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为【 】 A .5 18 B . 1 3 C . 2 15 D . 1157.抛物线y =x 2-6x +5的顶点坐标为【 】A .(3,-4)B .(3,4)C .(-3,-4)D .(-3,4)8.如图,在△ABC 中,∠ACB =90°,∠BAC =30°,AB =2,D 是AB 边上的一个动点(不与点A 、B 重合),过点D 作CD 的垂线交射线CA 于点E .设AD =x ,CE =y ,则下列图象中,能表示y 与x 的函数关系图象大致是【 】二、填空题(本题共16分,每小题4分)9.若分式x ―8x的值为0,则x 的值等于________. 10.分解因式:a 3―10a 2+25a =______________.11.若右图是某几何体的表面展开图,则这个几何体是__________.12.在右表中,我们把第i 行第j 列的数记为a ij (其中i ,j 都是不大于5的正整数),对于表中的每个数a ij ,规定如下:当i ≥j 时,a ij =1;当i <j 时,a ij =0.例如:当i =2,j =1时,a =a =1.按此规定,a =_____;表中的25个数中,共有_____A .B .C .D .FE x13.计算:01)2(2730cos 221π-++-⎪⎭⎫⎝⎛- .14.解不等式:4(x -1)>5x -6.15.已知a 2+2ab +b 2=0,求代数式a (a +4b )-(a +2b )(a -2b )的值.16.如图,点A 、B 、C 、D 在同一条直线上,BE ∥DF ,∠A =∠F ,AB =FD .求证:AE =FC .17.如图,在平面直角坐标系xOy 中,一次函数y =-2x 的图象与反比例函数y = kx 的图象的一个交点为A (-1,n ).(1)求反比例函数y = kx的解析式;(2)若P 是坐标轴上一点,且满足P A =OA ,直接写出点P 的坐标.18.列方程或方程组解应用题:京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的 37.小王用自驾车方式上班平均每小时行驶多少千米?A B C D19.如图,在△ABC 中,∠ACB =90°,D 是BC 的中点,DE ⊥BC ,CE ∥AD .若AC =2,CE =4,求四边形ACEB 的周长.21.以下是根据北京市国民经济和社会发展统计公报中的相关数据,绘制统计图的一部分.请根据以上信息解答下列问题:(1)2008年北京市私人轿车拥有是多少万辆(结果保留三个有效数字)? (2)补全条形统计图;(3)汽车数量增多除造成交通拥堵外,还增加了碳排放量,为了了解汽车碳排放量的情况,小明同学通过网络了解到汽车的碳排放量与汽车排量有关.如:一辆排量为1.6L 的轿车,如果一年行驶1万千米,这一年,它碳排放量约为2.7吨.于是他调查了他所居住小区的150辆私人轿车,不同排量的轿车数量如下表所示.如果按照小明的统计数据,请你通过计算估计,2010年北京市仅排量为1.6L 的这类私人轿车(假设每辆车平均一行行驶1万千米)的碳排放总量约为多少万吨? 北京市2001~2010年私人轿车拥有量的年增长率统计图 北京市2001~2010年 私人轿车拥有量统计图A E F 图3 22.阅读下面材料:小伟遇到这样一个问题:如图1,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O .若梯形ABCD 的面积为1,试求以AC 、BD 、AD +BC 的长度为三边长的三角形的面积.小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他先后尝试了翻折、旋转、平移的方法,发现通过平移可以解决这个问题.他的方法是过点D 作AC 的平行线交BC 的延长线于点E ,得到的△BDE 即是以AC 、BD 、AD +BC 的长度为三边长的三角形(如图2).参考小伟同学的思考问题的方法,解决下列问题:如图3,△ABC 的三条中线分别为AD 、BE 、CF .(1)在图3中利用图形变换画出并指明以AD 、BE 、CF的长度为三边长的一个三角形(保留画图痕迹); (2)若△ABC 的面积为1,则以AD 、BE 、CF 的长度为三边长的三角形的面积等于_______.24.(7分)在□ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F .(1)在图1中,证明:CE =CF ; (2)若∠ABC =90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数; (3)若∠ABC =120°,FG ∥CE ,FG =CE ,分别连结DB 、DG (如图3),求∠BDG 的度数.B BADADC C EE G FABC DE GF 图1图2图3BBCADOADCEO图2图1数学试卷答案及评分参考13、解:()0122730221π-++-⎪⎭⎫⎝⎛- cos=1332322++⨯- =13332++- =332+.14、解:去括号,得6544->-x x移项, 得6454->-x x合并, 得2->-x 解得 2<x所以原不等式的解集是2<x . 15、解:()()()b a b a b a a 224-+-+ =()22244b a ab a --+ =244b ab +∵0222=++b ab a ∴0=+b a∴原式=()b a b +4=0. 16、证明:∵BE ∥DF , ∴∠ABE=∠D .在△ABE 和△FDC 中,∴△ABE ≌△FDC . ∴AE =FC .17、解(1)∵A (-1,n )在一次函数x y 2-=∴n =2-×(1-)=2.∴点A 的坐标为(-1,2).∵点A 在反比例函数xky =的图象上,∴2-=k .∴反比例函数的解析式为xy 2-=. ∠ABE=∠D AB=FD∠A=∠F18、解:设小王用自驾车方式上班平均每小时行使x 千米. 依题意,得xx 18739218⨯=+ 解得 27=x .经检验,27=x 是原方程的解,且符合题意. 答;小王用自驾车方式上班平均每小时行使27千米. 四、解答题19、解:∵∠ACB=90°,DE ⊥BC , ∴AC ∥DE .又∵CE ∥AD ,∴四边形ACED 的是平行四边形. ∴DE=AC=2.在Rt △CDE 中,由勾股定理得3222=-=DE CE CD . ∵D 是BC 的中点, ∴BC=2CD=34.在Rt △ABC 中,由勾股定理得13222=+=BC AC AB . ∵D 是BC 的中点,DE ⊥BC , ∴EB=EC=4.∴四边形ACEB 的周长= AC+CE+EB+BA=10+132. 21、解(1)146×(1+19%) =173.74≈174(万辆).∴2008年北京市私人轿车拥有量约是174万辆.(2)如右图. (3)276×15075×2.7=372.6(万吨) 估计2010年北京市仅排量为1.6L的这类私人轿车的碳排放总量约为372.6万吨.22、解:△BDE 的面积等于1 . (1)如图.以AD 、BE 、CF 的长度为三边长的一个三角形是 △CFP . (2)以AD 、BE 、CF 的长度为三边长的三角形的面积等于43. . 24、(1)证明:如图1. ∵AF 平分∠BAD , ∴∠BAF=∠DAF .∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD .∴∠DAF=∠CEF ,∠BAF=∠F .E∴CE =CF .(2)∠BDG =45°.(3)分别连结GB 、GE 、GC (如图2) ∵AB ∥DC ,∠ABC =120°, ∴∠ECF=∠ABC=120°.∵FG ∥CE 且FG =CE ,∴四边形CEGF 是平行四边形. 由(1)得CE =CF , ∴□CEGF 是菱形.∴EG =EC ,∠GCF=∠GCE=21∠ECF= 60°.∴△ECG 是等边三角形.∴EG =CG , ① ∠GEC=∠EGC=60°. ∴∠GEC=∠GCF .∴∠BEG=∠DCG . ②由AD ∥BC 及AF 平分∠BAD 可得∠BAE =∠AEB . ∴AB=BE .在□ABCD 中,AB=DC . ∴BE=DC . ③ 由①②③得△BEG ≌△DCG . ∴BG=DG ,∠1=∠2.∴∠BGD=∠1+∠3=∠2+∠3=∠EGC=60°. ∴∠BDG=2180BGD∠- =60°.图2。
2011山东聊城中考数学试题.doc
12abc 山东省聊城市2011年中考数学试题一、选择题(本大题共12小题,每小题3分,满分36分)1.-3的绝对值是( )A .-3B .3C . 1 3D .- 132.如图,空心圆柱的左视图是( )3.今年5月,我市第六次人口普查办公室发布了全市常住人口为578.99万人,用科学记数法可表示(保留2个有效数字)为( )A .58×105人B .5.8×105人C .5.8×106人D .0.58×107人 4.如图,已知a ∥b ,∠1=50º,则∠2=( ) A .40º B .50º C .120º D .130º 5.下列运算不正确的是( ) A .a 5+a 5=2a 5 B .(-2a 2)3=-2a 6 C .2a 2·a -1=2a D .(2a 3-a 2)÷a 2=2a -1 6.下列事件属于必然事件的是( ) A .在1个标准大气压下,水加热到100ºC 沸腾 B .明天我市最高气温为56ºC C .中秋节晚上能看到月亮 D .下雨后有彩虹7.已知一个菱形的周长是20cm ,两条对角线的比为4∶3,则这个菱形的面积是( ) A .12cm 2 B .24cm 2 C .48cm 2 D .96cm 2 8.某小区20户家庭的日用电量(单位:千瓦时)统计如下:日用电量(单位:千瓦时)4567810户数1 3 6 5 4 1这20户家庭日用电量的众数、中位数分别是( )A .6,6.5B .6,7C .6,7.5D .7,7.59.下列四个图象表示的函数中,当x <0时,函数值y 随自变量x 的增大而减小的是( )10.如图,用围棋子按下面的规律摆图形,则摆第n 个图形需要围棋子的枚数为( ) A .5nB .5n -1C .6n -1D .2n 2+111.如图,矩形OABC 的顶点O 是坐标原点,边OA 在x 轴上,边OC 在y 轴上.若矩形OA 1B 1C 1与矩形OABC 关于点O 位似,且矩形OA 1B 1C 1的面积等于矩形OABCx x x x yyyyO O O O A .B .C .D .A .B .C .D . n =1 n =2 n =3 …AB O A B α O A BC y x46 面积的14,则点B 1的坐标是( )A .(3,2)B .(-2,-3)C .(2,3)或(-2,-3)D .(3,2)或(-3,-2) 12.某公园草坪的防护栏由100段形状相同的抛物线形构件组成,为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m (如图),则这条防护栏需要不锈钢支柱的总长度至少为( )A .50mB .100mC .160mD .200m二、填空题(本大题共5小题,每小题3分,满分15分)13.化简:20-5= .14.如图,在□ABCD 中,AC 、BD 相交于点O ,点E 是AB 的中点.若OE =3cm ,则AD 的长是 cm .15.化简: a 2-b 2 a 2+2ab +b 2÷ 2a -2ba +b= . 16.如图,圆锥的底面半径OB =10cm ,它的侧面展开图的扇形的半径AB =30cm ,则这个扇形圆心角α的度数是 .17.某校举行物理实验操作测试,共准备了三项不同的实验,要求每位学生只参加其中的一项实验,由学生自己抽签确定做哪项实验.在这次测试中,小亮和大刚恰好做同一项实验的概率是 .三、解答题(本大题共8小题,满分69分)18.(7分)解方程:x (x -2)+x -2=0.19.(8分)今年“世界水日”的主题是“城市用水:应对都市化挑战”.为了解城市居民用水量的情况,小亮随机抽查了阳光小区50户居民去年每户每月的用水量,将得到的数据整理并绘制了这50户居民去年每月总用水量的折线统计图和频数、频率分布表如下: (1)表中a = ,d = .(2)这50户居民每月总用水量超过550m 3的月份占全年月份的百分率是多少(精确到1%)? (3)请根据折线统计图提供的数据,估计该小区去年每户居民平均月用水量是多少?组别频数 频率350<x ≤400 1112400<x ≤450 1 112450<x ≤500 216500<x ≤550 a b 550<x ≤600 cd 600<x ≤650 1 112650<x ≤700 216x 表示50户居民月总用水量(m 3) 月份1 2 3 4 5 6 7 8 9 10 11 12 月总用水量(m 3) O350 400 450 500 550 600 650 700 378648489 456345550 574423689 536669600 A EBCDO20.5 0.4 单位:mA P C O BED 20.(8分)将两块大小相同的含30º角的直角三角板(∠BAC =∠B 1A 1C =30º)按图1的方式放置,固定三角板A 1B 1C ,然后将三角板ABC 绕直角顶点C 顺时针方向旋转(旋转角小于90º)至图2所示的位置,AB 与A 1C 交于点E ,AC 与A 1B 1交于点F ,AB 与A 1B 1交于点O . (1)求证:△BCE ≌△B 1CF ; (2)当旋转角等于30º时,AB 与A 1B 1垂直吗?请说明理由.21.(8分)被誉为东昌三宝之首的铁塔,始建于北宋时期,是我市现存的最古老的建筑.铁塔由塔身和塔座两部分组成.为了测得铁塔的高度,小莹利用自制的测角仪,在C 点测得塔顶E 的仰角为45º,在D 点测得塔顶E 的仰角为60º.已知测角仪AC 的高为1.6m ,CD 的长为6m ,CD 所在的水平线CG ⊥EF 于点G .求铁塔EF 的高(精确到0.1m ).22.(8分)徒骇河风景区建设是今年我市重点工程之一.某工程公司承担了一段河底清淤任务,需清淤4万方,清淤1万方后,该公司为提高施工进度,又新增一批工程机械参与施工,工效提高到原来的2倍,共用25天完成任务.问该工程公司新增工程机械后每天清淤多少方?23.(8分)如图,AB 是半圆的直径,点O 是圆心,点C 是OA 的中点,CD ⊥OA 交半圆于点D ,点E 是BD⌒的中点,连接AE 、OD ,过点D 作DP ∥AE 交BA 的延长线于点P .(1)求∠AOD 的度数;(2)求证:PD 是半圆O 的切线.24.(10分)如图,已知一次函数y =kx +b 的图象交反比例函数42(0)my x x-=>的图象于点A 、B ,交x轴于点C .(1)求m 的取值范围;(2)若点A 的坐标是(2,-4),且BC AB = 13,求m 的值和一次函数的解析式.CBB 1A (A 1)A 1AEFC BB 1图1图2A B F C D GE45º 60º25.(12分)如图,在矩形ABCD 中,AB =12cm ,BC =8cm .点E 、F 、G 分别从点A 、B 、C 同时出发,沿矩形的边按逆时针方向移动,点E 、G 的速度均为2cm/s ,点F 的速度为4cm/s ,当点F 追上点G (即点F 与点G 重合)时,三个点随之停止移动.设移动开始后第t s 时,△EFG 的面积为S cm 2. (1)当t =1s 时,S 的值是多少?(2)写出S 与t 之间的函数解析式,并指出自变量t 的取值范围;(3)若点F 在矩形的边BC 上移动,当t 为何值时,以点B 、E 、F 为顶点的三角形与以C 、F 、G 为顶点的三角形相似?请说明理由。
2011年中考数学试题及答案
2011年中考考试试卷数 学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第1页至第2页,第Ⅱ卷第3页至第10页.试卷满分120分,考试时间100分钟.考试结束后,将试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题 共30分)注意事项:1.答第Ⅰ卷前,考生务必先将自己的姓名、准考证号,用蓝、黑色墨水的钢笔(签字笔)或圆珠笔填在“答题卡”上;用2B 铅笔将考试科目对应的信息点涂黑;在指定位置粘贴考试用条形码.2.答案答在试卷上无效,每小题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.2sin 30°的值等于( )A .1 BCD .22.在艺术字中,有些字母是中心对称图形,下面的5个字母中,是中心对称图形的有( )A .2个B .3个C .4个D .5个3.若x y ,为实数,且20x +=,则2009x y ⎛⎫ ⎪⎝⎭的值为( )A .1B .1-C .2D .2- 4.边长为a 的正六边形的内切圆的半径为( ) A .2a B .a CD .12a5.右上图是一根钢管的直观图,则它的三视图为( )A .B .C .D . 6.为参加2009年“天津市初中毕业生升学体育考试”,小刚同学进行了刻苦的练习,在投掷实心球时,测得5次投掷的成绩(单位:m )为:8,8.5,9,8.5,9.2.这组数据的众H I N A数、中位数依次是( )A .8.5,8.5B .8.5,9C .8.5,8.75D .8.64,97.在ABC △和DEF △中,22AB DE AC DF A D ==∠=∠,,,如果ABC △的周长是16,面积是12,那么DEF △的周长、面积依次为( ) A .8,3 B .8,6 C .4,3 D .4,6 8.在平面直角坐标系中,已知线段AB 的两个端点分别是()()41A B --,,1,1,将线段AB 平移后得到线段A B '',若点A '的坐标为()22-,,则点B '的坐标为( )A .()43,B .()34,C .()12--,D .()21--, 9.如图,ABC △内接于O ⊙,若28OAB ∠=°,则C ∠的大小为( )A . 28°B .56°C .60°D .62°10.在平面直角坐标系中,先将抛物线22y x x =+-关于x 轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( ) A .22y x x =--+ B .22y x x =-+- C .22y x x =-++ D .22y x x =++第(9)题2009年天津市初中毕业生学业考试试卷数 学第Ⅱ卷(非选择题 共90分)注意事项:1.答第Ⅱ卷前,考生务必将密封线内的项目和试卷第3页左上角的“座位号”填写清楚. 2. 第Ⅱ卷共8页,用蓝、黑色墨水的钢笔(签字笔)或圆珠笔直接答在试卷上.二、填空题:本大题共8小题,每小题3分,共24分,请将答案直接填在题中横线上. 11= .12.若分式22221x x x x --++的值为0,则x 的值等于 .13.我们把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形.若一个四边形ABCD 的中点四边形是一个矩形,则四边形ABCD 可以是 . 14.已知一次函数的图象过点()35,与()49--,,则该函数的图象与y 轴交点的坐标为__________ _.15.某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分打八折.设一次购书数量为本,付款金额为y 元,请填写下表:16.为了解某新品种黄瓜的生长情况,抽查了部分黄瓜株上长出的黄瓜根数,得到下面的条形图,观察该图,可知共抽查了________株黄瓜,并可估计出这个新品种黄瓜平均每株结________根黄瓜.17.如图,是由12个边长相等的正三角形镶嵌而成的平面图形,则图中的平行四边形共有_______个.18.如图,有一个边长为5的正方形纸片ABCD ,要将其剪拼成边长分别为a b ,的两个小正方形,使得2225a b +=.①a b ,的值可以是________(写出一组即可);②请你设计一种具有一般性的裁剪方法,在图中画出裁剪线,并拼接成两个小正方形,同时说明该裁剪方法具有一般性: __________________________________________ _________________________________________ _________________________________________第(17)题黄瓜根数/株第(16)题三、解答题:本大题共8小题,共66分.解答应写出文字说明、演算步骤或证明过程. 19.(本小题6分) 解不等式组5125431x x x x ->+⎧⎨-<+⎩,.20.(本小题8分)已知图中的曲线是反比例函数5m y x-=(m 为常数)图象的一支. (Ⅰ) 这个反比例函数图象的另一支在第几象限?常数m 的取值范围是什么? (Ⅱ)若该函数的图象与正比例函数2y x =的图象在第一象内限的交点为A ,过A 点作x 轴的垂线,垂足为B ,当OAB △的面积为4时,求点A 的坐标及反比例函数的解析式.21.(本小题8分)有3个完全相同的小球,把它们分别标号为1,2,3,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球.(Ⅰ)采用树形图法(或列表法)列出两次摸球出现的所有可能结果; (Ⅱ)求摸出的两个球号码之和等于5的概率.如图,已知AB 为O ⊙的直径,PA PC ,是O ⊙的切线,A C ,为切点,30BAC ∠=° (Ⅰ)求P ∠的大小;(Ⅱ)若2AB =,求PA 的长(结果保留根号).23.(本小题8分)在一次课外实践活动中,同学们要测量某公园人工湖两侧A B ,两个凉亭之间的距离.现测得30AC =m ,70BC =m ,120CAB ∠=°,请计算A B ,两个凉亭之间的距离.P CAO注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路填空,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填空,只需按照解答题的一般要求,进行解答即可.如图①,要设计一幅宽20cm ,长30cm 的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2∶3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?分析:由横、竖彩条的宽度比为2∶3,可设每个横彩条的宽为2x ,则每个竖彩条的宽为3x .为更好地寻找题目中的等量关系,将横、竖彩条分别集中,原问题转化为如图②的情况,得到矩形ABCD .结合以上分析完成填空:如图②,用含x 的代数式表示: AB =____________________________cm ; AD =____________________________cm ; 矩形ABCD 的面积为_____________cm 2; 列出方程并完成本题解答.图②图①已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D . (Ⅰ)若折叠后使点B 与点A 重合,求点C 的坐标;(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值范围; (Ⅲ)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.已知函数212y x y x bx c αβ==++,,,为方程120y y -=的两个根,点()1M T ,在函数2y 的图象上. (Ⅰ)若1132αβ==,,求函数2y 的解析式; (Ⅱ)在(Ⅰ)的条件下,若函数1y 与2y 的图象的两个交点为A B ,,当ABM △的面积为112时,求t 的值; (Ⅲ)若01αβ<<<,当01t <<时,试确定T αβ,,三者之间的大小关系,并说明理由.参考答案及评分标准评分说明:1.各题均按参考答案及评分标准评分.2.若考生的非选择题答案与参考答案不完全相同但言之有理,可酌情评分,但不得超过该题所分配的分数.一、选择题:本大题共10小题,每小题3分,共30分.1.A 2.B 3.B 4.C 5.D 6.A 7.A 8.B 9.D 10.C 二、填空题:本大题共8小题,每小题3分,共24分.1112.213.正方形(对角线互相垂直的四边形均可) 14.()01-,15.56,80,156.816.60;1317.21 18.①3,4(提示:答案不惟一);②裁剪线及拼接方法如图所示:图中的点E 可以是以BC 为直径的半圆上的任意一点(点B C ,除外).BE CE ,的长分别为两个小正方形的边长. 三、解答题:本大题共8小题,共66分 19.本小题满分6分 解:5125431x x x x ->+⎧⎨-<+⎩ ,①②由①得2x >, ························································································································ 2分由②得,52x >-···················································································································· 4分 ∴原不等式组的解集为2x >································································································ 6分 20.本小题满分8分.解:(Ⅰ)这个反比例函数图象的另一支在第三象限. ························································· 1分 因为这个反比例函数的图象分布在第一、第三象限, 所以50m ->,解得5m >. ································································································ 3分(Ⅱ)如图,由第一象限内的点A 在正比例函数2y x =的图象上,设点A 的坐标为()()00020x x x >,,则点B 的坐标为()00x ,,0014242OAB S x x =∴= △,·,解得02x =(负值舍去).∴点A 的坐标为()24,. ·········································································································· 6分 DCA E 2 31 2 3又 点A 在反比例函数5m y x-=的图象上, 542m -∴=,即58m -=. ∴反比例函数的解析式为8y x=. ··························································································· 8分 21.本小题满分8分.解(Ⅰ)法一:根据题意,可以画出如下的树形图:从树形图可以看出,摸出两球出现的所有可能结果共有6种; 法二:根据题意,可以列出下表:从上表中可以看出,摸出两球出现的所有可能结果共有6种. ············································· 4分 (Ⅱ)设两个球号码之和等于5为事件A .摸出的两个球号码之和等于5的结果有2种,它们是:()()2332,,,.()2163P A ∴==. ··················································································································· 8分 22.本小题满分8分.解(Ⅰ)PA 是O ⊙的切线,AB 为O ⊙的直径, PA AB ∴⊥.90BAP ∴∠=°.30BAC ∠= °,9060CAP BAC ∴∠=-∠=°°.················································································· 2分 又PA 、PC 切O ⊙于点A C ,. PA PC ∴=.PAC ∴△为等边三角形. 60P ∴∠=°. ··························································································································· 5分(Ⅱ)如图,连接BC , 则90ACB ∠=°.在Rt ACB △中,230AB BAC =∠=,°,AC AB ∴=·cos 2BAC ∠=cos 30°=PAC △为等边三角形, PA AC ∴=.1 2 32 13 3 1 2 第一个球 第二个球 P C B A O第二个球 第一个球 (1,3) (2,3) (1,2) (3,2)(3,1) (2,1) 3 2 1 1 2 3PA ∴=··························································································································· 8分 23.本小题满分8分解:如图,过C 点作CD 垂直于AB 交BA 的延长线于点D . ············································· 1分 在Rt CDA △中,3018018012060AC CAD CAB =∠=-∠=︒-︒=︒,°. ···················· 2分CD AC ∴=·sin 30CAD ∠=·sin 60=°AD AC =·cos 30CAD ∠=·cos 60°=15. 又在Rt CDB △中,22270BC BD BC CD == ,-,65BD ∴==. ··························································································· 7分651550AB BD AD ∴=-=-=,答:A B ,两个凉亭之间的距离为50m. ················································································ 8分24.本小题满分8分.解(Ⅰ)220630424260600x x x x ---+,,; ·································································· 3分(Ⅱ)根据题意,得2124260*********x x ⎛⎫-+=-⨯⨯ ⎪⎝⎭. ············································· 5分 整理,得2665500x x -+=.解方程,得125106x x ==,(不合题意,舍去). 则552332x x ==,. 答:每个横、竖彩条的宽度分别为53cm ,52cm. ································································· 8分25.本小题满分10分.解(Ⅰ)如图①,折叠后点B 与点A 重合, 则ACD BCD △≌△.设点C 的坐标为()()00m m >,. 则4BC OB OC m =-=-. 于是4AC BC m ==-.在Rt AOC △中,由勾股定理,得222AC OC OA =+,即()22242m m -=+,解得32m =. ∴点C 的坐标为302⎛⎫⎪⎝⎭,. ········································································································· 4分图①图②图③(Ⅱ)如图②,折叠后点B 落在OA 边上的点为B ', 则B CD BCD '△≌△. 由题设OB x OC y '==,, 则4B C BC OB OC y '==-=-,在Rt B OC '△中,由勾股定理,得222B C OC OB ''=+.()2224y y x ∴-=+,即2128y x =-+ ···················································································································· 6分 由点B '在边OA 上,有02x ≤≤,∴ 解析式2128y x =-+()02x ≤≤为所求.∴ 当02x ≤≤时,y 随x 的增大而减小,y ∴的取值范围为322y ≤≤. ······················································································· 7分(Ⅲ)如图③,折叠后点B 落在OA 边上的点为B '',且B D OB ''∥. 则OCB CB D ''''∠=∠.又CBD CB D OCB CBD ''''∠=∠∴∠=∠ ,,有CB BA ''∥. Rt Rt COB BOA ''∴△∽△. 有OB OCOA OB''=,得2OC OB ''=. ···················································································· 9分 在Rt B OC ''△中,设()00OB x x ''=>,则02OC x =. 由(Ⅱ)的结论,得2001228x x =-+,解得000808x x x =-±>∴=-+,∴点C 的坐标为()016. ····················································································· 10分 26.本小题满分10分.解(Ⅰ)212120y x y x bx c y y ==++-= ,,,()210x b x c ∴+-+=. ··································································································· 1分 将1132αβ==,分别代入()210x b x c +-+=,得 ()()22111110103322b c b c ⎛⎫⎛⎫+-⨯+=+-⨯+= ⎪ ⎪⎝⎭⎝⎭,,解得1166b c ==,. ∴函数2y 的解析式为2y 25166x x =-+. ····································································· 3分(Ⅱ)由已知,得AB =,设ABM △的高为h ,311212ABM S AB h h ∴===△·1144=.根据题意,t T -=,由21166T t t =++,得251166144t t -+-=. 当251166144t t -+=-时,解得12512t t ==;当251166144t t -+=时,解得34t t ==.t ∴的值为555121212,,. ······················································································ 6分 (Ⅲ)由已知,得222b c b c T t bt c αααβββ=++=++=++,,.()()T t t b ααα∴-=-++, ()()T t t b βββ-=-++,()()22b c b c αβααββ-=++-++,化简得()()10b αβαβ-++-=.01αβ<<< ,得0αβ-≠, 10b αβ∴++-=.有1010b b αββα+=->+=->,. 又01t <<,0t b α∴++>,0t b β++>,∴当0t a <≤时,T αβ≤≤;当t αβ<≤时,T αβ<≤;当1t β<<时,T αβ<<. ································································································· 10分。
山东聊城中考数学试题.doc
12abc O A B C y x4 6 山东省聊城市2011年中考数学试题一、选择题(本大题共12小题,每小题3分,满分36分)1.-3的绝对值是( )A .-3B .3C . 1 3D .- 132.如图,空心圆柱的左视图是( )错误!未指定书签。
3.今年5月,我市第六次人口普查办公室发布了全市常住人口为578.99万人,用科学记数法可表示(保留2个有效数字)为( )A .58×105人B .5.8×105人C .5.8×106人D .0.58×107人 4.如图,已知a ∥b ,∠1=50º,则∠2=( ) A .40º B .50º C .120º D .130º 5.下列运算不正确的是( ) A .a 5+a 5=2a 5 B .(-2a 2)3=-2a 6 C .2a 2·a -1=2a D .(2a 3-a 2)÷a 2=2a -1 6.下列事件属于必然事件的是( ) A .在1个标准大气压下,水加热到100ºC 沸腾 B .明天我市最高气温为56ºC C .中秋节晚上能看到月亮 D .下雨后有彩虹7.已知一个菱形的周长是20cm ,两条对角线的比为4∶3,则这个菱形的面积是( ) A .12cm 2 B .24cm 2 C .48cm 2 D .96cm 2 8.某小区20户家庭的日用电量(单位:千瓦时)统计如下:日用电量(单位:千瓦时)4567810户数1 3 6 5 4 1这20户家庭日用电量的众数、中位数分别是( )A .6,6.5B .6,7C .6,7.5D .7,7.59.下列四个图象表示的函数中,当x <0时,函数值y 随自变量x 的增大而减小的是( ) 错误!未指定书签。
10.如图,用围棋子按下面的规律摆图形,则摆第n 个图形需要围棋子的枚数为( ) A .5nB .5n -1C .6n -1D .2n 2+111.如图,矩形OABC 的顶点O 是坐标原点,边OA 在x 轴上,边OC 在y 轴上.若矩形OA 1B 1C 1与矩形OABC 关于点O 位似,且矩形OA 1B 1C 1的面积等于矩形OABC面积的 14,则点B 1的坐标是( )A .(3,2)B .(-2,-3)C .(2,3)或(-2,-3)D .(3,2)或(-3,-2) 12.某公园草坪的防护栏由100段形状相同的抛物线形构件组成,为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m (如图),则这条防护栏需要不锈钢支柱的总长度至少为( )A .50mB .100mC .160mD .200m二、填空题(本大题共5小题,每小题3分,满分15分)A D 20.5 0.4 单位:m n =1 n =2 n =3 …A P C O BED AB O A B α 13.化简:20-5= .14.如图,在□ABCD 中,AC 、BD 相交于点O ,点E 是AB 的中点.若OE =3cm ,则AD 的长是 cm .15.化简: a2-b2 a2+2ab +b2 ÷ 2a -2ba +b= .16.如图,圆锥的底面半径OB =10cm ,它的侧面展开图的扇形的半径AB =30cm ,则这个扇形圆心角α的度数是 .17.某校举行物理实验操作测试,共准备了三项不同的实验,要求每位学生只参加其中的一项实验,由学生自己抽签确定做哪项实验.在这次测试中,小亮和大刚恰好做同一项实验的概率是 .三、解答题(本大题共8小题,满分69分)18.(7分)解方程:x (x -2)+x -2=0.19.(8分)今年“世界水日”的主题是“城市用水:应对都市化挑战”.为了解城市居民用水量的情况,小亮随机抽查了阳光小区50户居民去年每户每月的用水量,将得到的数据整理并绘制了这50户居民去年每月总用水量的折线统计图和频数、频率分布表如下: (1)表中a = ,d = .(2)这50户居民每月总用水量超过550m 3的月份占全年月份的百分率是多少(精确到1%)? (3)请根据折线统计图提供的数据,估计该小区去年每户居民平均月用水量是多少? 错误!未指定书签。
山东省十三地市2011年中考数学试卷汇编(共8份有详解)-1
2011年山东省菏泽市中考数学试卷—解析版一、选择题(下列各题的四个选项中,只有一顶符合题意,每小题4分,共32分)1、﹣的倒数是()A、B、C、﹣D、﹣考点:倒数。
分析:根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:∵﹣×()=1,,∴﹣的倒数是.故选D.点评:此题主要考查了倒数的定义,需要掌握并熟练运用.2、(2011•菏泽)为了加快3G网络建设,我市电信运营企业将根据各自发展规划,今年预计完成3G投资2800万元左右,将2800万元用科学记数法表示为多少元时,下列记法正确的是()A、2.8×103B、2.8×106C、2.8×107D、2.8×108考点:科学记数法—表示较大的数。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将2800万元用科学记数法表示为2.8×107元.故选C.点评:本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、(2010•枣庄)将一副三角板按图中方式叠放,则角α等于()A、30°B、45°C、60°D、75°考点:三角形的外角性质;平行线的性质。
专题:计算题。
分析:利用两直线平行,内错角相等和三角形的一个外角等于与它不相邻的两个内角的和计算.解答:解:如图,根据两直线平行,内错角相等,∴∠1=45°,根据三角形的一个外角等于与它不相邻的两个内角的和,∴∠α=∠1+30°=75°.故选D.点评:本题利用了两直线平行,内错角相等和三角形的一个外角等于与它不相邻的两个内角的和.4、(2011•菏泽)实数a在数轴上的位置如图所示,则化简后为()A、7B、﹣7C、2a﹣15D、无法确定考点:二次根式的性质与化简;实数与数轴。
2011山东聊城中考数学及答案
2011年山东省聊城市初中学业水平统一考试数学试题亲爱的同学,伴随着考试的开始,你又走到了一个新的人生驿站.请你在答题之前,一定要仔细阅读以下说明:1..试题由第Ⅰ卷和第Ⅱ卷组成,共6页,第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分,共120分,考试时间为120分钟.2..答第Ⅰ卷前,请将姓名、考试号、考试科目填涂在答题卡上,每题选出答案后,都必须用2B铅笔把答题卡上赌赢题目的答案标号(ABCD)涂黑.如需改动,必须用橡皮擦干净,再改涂其他答案.3..将第Ⅱ卷试题的答案直接写在答卷上,考试结束,将答题卡、答卷和试题一并交回.4..可以使用计算器.愿你放松心情,认真审题,慎密思考,细心演算,交一份满意的答卷.第Ⅰ卷(选择题共36分)一、选择题(本题共12个小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1.(2011山东聊城,1,3分)-3的绝对值是()A.-3 B.3 C.13D.13【答案】B2.(2011山东聊城,2,3分)如图,空心圆柱的左视图是()【答案】C3.(2011山东聊城,3,3分)今年5月,我市第六次人口普查办公室发布了全市常住人口为578.99万人,用科学记数法(保留2个有效数字)可以表示为()A.58×105人B.5.8×105人C. 5.8×106人D.0.58×107人【答案】C4.(2011山东聊城,4,3分)如图,已知a∥b,∠1=50°,则∠2的度数是()A.40°B.50°C.120°D.130°【答案】D5. (2011山东聊城,5,3分)下列运算不正确的是( )A .5552a a a +=B .()32622aa -=- C .2122a a a -⋅= D .()322221a a a a -÷=- 【答案】B6. (2011山东聊城,6,3分)下列事件属于必然事件的是( )A .在1个标准大气压下,水加热到100℃沸腾;B .明天我市最高气温为56℃;C .中秋节晚上能看到月亮D .下雨后有彩虹【答案】A7. (2011山东聊城,7,3分)已知一个菱形的周长是20cm ,两条对角线的比是4∶3,则这个菱形的面积是( )A .12cm 2B . 24cm 2C . 48cm 2D . 96cm 2【答案】B8. (这 A . 6,6.5 B . 6,7 C . 6,7.5 D . 7,7.5【答案】A9. (2011山东聊城,9,3分)下列四个函数图象中,当x<0时,函数值y 随自变量x的增大而减小的是( )【答案】D10. (2011山东聊城,10,3分)如图,用围棋子按下面的规律摆图形,则摆第n 个图形需要围棋子的枚数是( )A.5n B.5n-1 C.6n-1 D.2n2+1【答案】C11.(2011山东聊城,11,3分)如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的14,那么点B′的坐标是()A.(3,2)B.(-2,-3)C.(2,3)或(-2,-3)D.(3,2)或(-3,-2)【答案】D12.(2011山东聊城,12,3分)某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A.50m B.100mC.160m D.200m【答案】C第Ⅱ卷(非选择题共84分)二、填空题(本题共5个小题,每小题3分,共15分,只要求填写最后结果)13.(2011山东聊城,13,3_____________.【答案】514.(2011山东聊城,14,3分)如图,在□ABCD中,AC、BD相交于点O,点E是AB 的中点,OE=3cm,则AD的长是__________cm.【答案】615. (2011山东聊城,15,3分)化简:2222222a b a b a ab b a b--÷+++=__________________. 【答案】21 16. (2011山东聊城,16,3分)如图,圆锥的底面半径OB 为10cm ,它的展开图扇形的半径AB 为30cm ,则这个扇形的圆心角a 的度数为____________.【答案】120°17. (2011山东聊城,17,3分)某学校举行物理实验操作测试,共准备了三项不同的实验,要求每位学生只参加其中的一项实验,由学生自己抽签确定做哪项试验.在这次测试中,小亮和大刚恰好做同一项实验的概率是______________. 【答案】31 三、解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤)18.(2011山东聊城,18,7分)解方程:()220x x x -+-=【答案】(x -2)(x +1)=0,解得x =2或x =-119.(2011山东聊城,19,8分)今年“世界水日”的主题是“城市用水:应对都市化挑战”.为了解城市居民用水量的情况,小亮随机抽查了阳光小区50户居民去年每户每月的用水量,将得到的数据整理并绘制了这50户居民去年每月总用水量的折线图和频数、频率分布表如下:注:x 表示50户居民月总用水量(m)(1)表中的a =________;d =___________.(2)这50户居民每月总用水量超过550m3的月份占全年月份的百分率是多少(精确到1%)?(3)请根据折线统计图提供的数据,估计该小区去年每户居民平均月用水量是多少?【答案】(1)3,61;(2)这50户居民月总用水量超过550m 3的月份有5个,占全年月份的百分率为(5÷12)×100%=42%(3)(378+641+456+543+550+667+693+600+574+526+423)÷50÷12=109m 320.(2011山东聊城,20,8分)将两块大小相同的含30°角的直角三角板(∠BAC =∠B ′A ′C=30°)按图①方式放置,固定三角板A ′B ′C ,然后将三角板ABC 绕直角顶点C 顺时针方向旋转(旋转角小于90°)至图②所示的位置,AB 与A ′C 交于点E ,AC 与A ′B ′交于点F ,AB 与A ′B ′相交于点O .(1)求证:△BCE ≌△B ′CF ;(2)当旋转角等于30°时,AB 与A ′B ′垂直吗?请说明理由.【答案】(1)因∠B =∠B /,BC =B /C ,∠BCE =∠B /CF ,所以△BCE ≌△B ′CF ;(2)AB 与A ′B ′垂直,理由如下:旋转角等于30°,即∠ECF =30°,所以∠FCB /=60°,又∠B =∠B /=60°,根据四边形的内角和可知∠BOB /的度数为360°-60°-60°-150°=90°,所以AB 与A ′B ′垂直21.(2011山东聊城,21,8分)被誉为东昌三宝之首的铁塔,始建于北宋时期,是我市现存的最古老的建筑,铁塔由塔身和塔座两部分组成(如图①).为了测得铁塔的高度,小莹利用自制的测角仪,在C 点测得塔顶E 的仰角为45°,在D 点测得塔顶E 的仰角为60°,已知测角仪AC 的高为1.6米,CD 的长为6米,CD 所在的水平线C G ⊥EF 于点G (如图②),求铁塔EF 的高(结果精确到0.1米).【答案】设E G =x 米,在Rt △CE G 中,∵∠EC G =45°,∴∠CE G =45°,∴∠EC G =∠CE G ,∴C G =E G ,=x 米,在Rt △DE G 中,∠ED G =60°,t an ∠EDB =DG EG ,∴D G =360tan x x =,∵C G -D G =CD =6, ∴3x x -=6,解得x =9+33,∴EF =E G +F G =9+33+16≈158,所以铁塔高约为158米22.(2011山东聊城,22,8分)徒骇河风景区建设是今年我市重点工程之一,某工程公司承担了一段河底清淤任务,需清淤4万方,清淤1万方后,该公司为提高施工进度,又新增一批工程机械参与施工,工效提高到原来的2倍,共用25天完成任务,问该工程公司新增工程机械后每天清淤多少方?【答案】设新增机械后每天清淤x 万方,依题意有:2514211=-+x x ,解得x =0.2,检验可知x =0.2是方程的根,所以该工程新增工程机械后每天清淤2000方23.(2011山东聊城,23,8分)如图,AB 是半圆的直径,点O 是圆心,点C 是OA 的中点,CD ⊥OA 交半圆于点D ,点E 是 BD的中点,连接OD 、AE ,过点D 作D P ∥AE 交BA 的延长线于点P ,(1)求∠AOD 的度数;(2)求证:P D 是半圆O 的切线;【答案】(1)∵点C 是OA 的中点,∴OC =21OA =21OD ,∵CD ⊥OA ,∴∠OCD =90°,在Rt △OCD 中,cos ∠COD =21=OD OC ,∴∠COD =60°,即∠AOD =60°, (2)证明:连接OC ,点E 是BD 弧的中点,DE 弧=BE 弧,∴∠BOE =∠DOE =21∠DOB =21 (180°-∠COD )=60°,∵OA =OE ,∴∠EAO =∠AEO ,又∠EAO +∠AEO =∠EOB =60°,∴∠EAO =30°,∵P D ∥AE ,∴∠P =∠EAO =30°,由(1)知∠AOD =60°,∴∠P DO =180°-(∠P +∠P OD )=180°-(30°+60°)=90°,∴P D 是圆O 的切线24.(2011山东聊城,24,10分)如图,已知一次函数y =kx +b 的图象交反比例函数42m y x-=(x>0)图象于点A 、B ,交x 轴于点C . (1)求m 的取值范围; (2)若点A 的坐标是(2,-4),且13BC AB =,求m 的值和一次函数的解析式;【答案】(1)因反比例函数的图象在第四象限,所以4-2m <0,解得m >2;(2)因点A (2,-4)在反比例函数图象上,所以-4=224m -,解得m =6,过点A 、B 分别作A M ⊥OC 于点M ,B N ⊥OC 于点N ,所以∠B N C =∠A M C =90°,又因为∠BC N =∠A M C ,所以△BC N ∽△AC M ,所以AC BC AM BN =,因为31=AB BC ,所以41=AC BC ,即41=AM BN ,因为A M =4,所以B N =1,所以点B 的纵坐标为-1,因为点B 在反比例函数的图象上,所以当y =-1时,x =8,所以点B 的坐标为(8,-1),因为一次函数y =kx +b 的图象过点A (2,-4),B (8,-1),所以⎩⎨⎧-=+-=+1842b k b k ,解得⎪⎩⎪⎨⎧-==521b k ,所以一次函数的解析式为y =21x -525.(2011山东聊城,25,12分)如图,在矩形ABCD 中,AB =12cm ,BC =8cm ,点E 、F 、G 分别从点A 、B 、C 三点同时出发,沿矩形的边按逆时针方向移动,点E 、G 的速度均为2cm/s ,点F 的速度为4cm/s ,当点F 追上点G (即点F 与点G 重合)时,三个点随之停止移动.设移动开始后第t 秒时,△EF G 的面积为S (cm2).(1)当t =1秒时,S 的值是多少?(2)写出S 和t 之间的函数解析式,并指出自变量t 的取值范围.(3)若点F 在矩形的边BC 上移动,当t 为何值时,以点E 、B 、F 为顶点的三角形与以F 、C 、G 为顶点的三角形相似?请说明理由.【答案】(1)如图甲,当t =1秒时,AE =2,EB =10,BF =4,FC =4,C G =2,由S =S 梯形E G C G -S EBF -S FC G =21(10+2)×8-21×10×4-21×4×2=24(2)如图(甲),当0≤t ≤2时,点E 、F 、G 分别在AB 、BC 、CD 上移动,此时AE =2t ,EB =12-2t ,BF =4t ,FC =8-4t ,S =8t 2-32t +48(0≤t≤2)(3)如图乙,当点F 追上点G 时,4t =2t =8,解得t =4,当2<t≤4时,CF =4t -8,C G =2t ,F G =C G -CF =8-2t ,即S =-8t +32(2<t≤4),(3)如图(甲),当点F 在矩形的边BC 上移动时,0≤t≤2,在EFF 和FC G 中,B =C=90,,①若CG BF FC EB =,即t t t t 2448212=--,解得t =32,又t =32满足0≤t≤2,所以当t =32时△EBF ∽△G CF ②若CF BF GC EB =,即t t t t 4842212-=-,解得t =23,又t =23满足0≤t≤2,所以当t =23时△EBF ∽△G CF ,综上知,当t =32或23时,以点E 、B 、F 为顶点的三角形与以F 、C 、G 为顶点的三角形相似。
山东省聊城市中考数学真题及答案D
一、选择题(本题共12个小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1.在实数﹣,﹣2,0,中,最小的实数是()A.﹣2 B.0 C.﹣ D.2.如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为()A.28° B.38° C.48° D.88°3.地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是()A.7.1×10﹣6B.7.1×10﹣7C.1.4×106D.1.4×1074.把8a3﹣8a2+2a进行因式分解,结果正确的是()A.2a(4a2﹣4a+1) B.8a2(a﹣1) C.2a(2a﹣1)2D.2a(2a+1)25.某体校要从四名射击选手中选拔一名参加省体育运动会,选拔赛中每名选手连续射靶10次,他们各自的平均成绩及其方差S2如表所示:甲乙丙丁(环)8.4 8.6 8.6 7.6S20.74 0.56 0.94 1.92如果要选出一名成绩高且发挥稳定的选手参赛,则应选择的选手是()A.甲 B.乙 C.丙 D.丁6.用若干个大小相同的小正方形体组合成的几何体的主视图和俯视图如图所示,下面所给的四个选项中,不可能是这个几何体的左视图的是()A. B. C. D.7.二次函数y=ax2+bx+c(a,b,c为常数且a≠0)的图象如图所示,则一次函数y=ax+b与反比例函数y=的图象可能是()A. B. C. D.8.在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.729.如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45° B.50° C.55° D.60°10.不等式组的解集是x>1,则m的取值范围是()A.m≥1 B.m≤1 C.m≥0 D.m≤011.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115° B.120° C.130° D.140°12.聊城“水城之眼”摩天轮是亚洲三大摩天轮之一,也是全球首座建筑与摩天轮相结合的城市地标,如图,点O是摩天轮的圆心,长为110米的AB是其垂直地面的直径,小莹在地面C 点处利用测角仪测得摩天轮的最高点A的仰角为33°,测得圆心O的仰角为21°,则小莹所在C点到直径AB所在直线的距离约为(tan33°≈0.65,tan21°≈0.38)()A.169米 B.204米 C.240米 D.407米二、填空题(本题共5个小题,每小题3分,只要求填写最后结果)13.计算:= .14.如果关于x的一元二次方程kx2﹣3x﹣1=0有两个不相等的实根,那么k的取值范围是.15.如图,已知圆锥的高为,高所在直线与母线的夹角为30°,圆锥的侧面积为.16.如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是.17.如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2015B2016C2016的顶点B2016的坐标是.三、解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤)18.计算:(﹣).19.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C (﹣1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A1B2C2关于原点O成中心对称图形,写出△A1B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A2B3C3,写出△A2B3C3的各顶点的坐标.20.如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.21.为了让书籍开拓学生的视野,陶冶学生的情操,向阳中学开展了“五个一”课外阅读活动,为了解全校学生课外阅读情况,抽样调查了50名学生平均每天课外阅读时间(单位:min),将抽查得到的数据分成5组,下面是尚未完成的频数、频率分布表:组别分组频数(人数)频率1 10≤t<30 0.162 30≤t<50 203 50≤t<70 0.284 70≤t<90 65 90≤t<110(1)将表中空格处的数据补全,完成上面的频数、频率分布表;(2)请在给出的平面直角坐标系中画出相应的频数直方图;(3)如果该校有1500名学生,请你估计该校共有多少名学生平均每天阅读时间不少于50min?22.为加快城市群的建设与发展,在A,B两城市间新建条城际铁路,建成后,铁路运行里程由现在的120km缩短至114km,城际铁路的设计平均时速要比现行的平均时速快110km,运行时间仅是现行时间的,求建成后的城际铁路在A,B两地的运行时间.23.如图,在直角坐标系中,直线y=﹣x与反比例函数y=的图象交于关于原点对称的A,B 两点,已知A点的纵坐标是3.(1)求反比例函数的表达式;(2)将直线y=﹣x向上平移后与反比例函数在第二象限内交于点C,如果△ABC的面积为48,求平移后的直线的函数表达式.24.如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E为OB的中点,连接CE 并延长交⊙O于点F,点F恰好落在的中点,连接AF并延长与CB的延长线相交于点G,连接OF.(1)求证:OF=BG;(2)若AB=4,求DC的长.25.如图,已知抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).CD垂直于y 轴,交抛物线于点D,DE垂直与x轴,垂足为E,l是抛物线的对称轴,点F是抛物线的顶点.(1)求出二次函数的表达式以及点D的坐标;(2)若Rt△AOC沿x轴向右平移到其直角边OC与对称轴l重合,再沿对称轴l向上平移到点C与点F重合,得到Rt△A1O1F,求此时Rt△A1O1F与矩形OCDE重叠部分的图形的面积;(3)若R t△AOC沿x轴向右平移t个单位长度(0<t≤6)得到Rt△A2O2C2,Rt△A2O2C2与Rt△OED重叠部分的图形面积记为S,求S与t之间的函数表达式,并写出自变量t的取值范围.2016年山东省聊城市中考数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1.在实数﹣,﹣2,0,中,最小的实数是()A.﹣2 B.0 C.﹣ D.【考点】实数大小比较.【分析】根据负数的绝对值越大,这个数越小,然后根据正数大于0,负数小于0进行大小比较即可.【解答】解:实数﹣,﹣2,0,中,最小的实数是﹣2,故选A【点评】此题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.2.(2016·山东聊城)如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为( )A.28° B.38° C.48° D.88°【考点】平行线的性质.【分析】根据平行线的性质得到∠1=∠B=68°,由三角形的外角的性质即可得到结论.【解答】解:如图,∵AB∥CD,∴∠1=∠B=68°,∵∠E=20°,∴∠D=∠1﹣∠E=48°,故选C.【点评】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.3.地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是()A.7.1×10﹣6B.7.1×10﹣7C.1.4×106D.1.4×107【考点】整式的除法.【分析】直接利用整式的除法运算法则结合科学记数法求出答案.【解答】解:∵地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,∴地球的体积约是太阳体积的倍数是:1012÷1.4×1018≈7.1×10﹣7.故选:B.【点评】此题主要考查了整式的除法运算,正确掌握运算法则是解题关键.4.把8a3﹣8a2+2a进行因式分解,结果正确的是()A.2a(4a2﹣4a+1) B.8a2(a﹣1) C.2a(2a﹣1)2D.2a(2a+1)2【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式2a,进而利用完全平方公式分解因式即可.【解答】解:8a3﹣8a2+2a=2a(4a2﹣4a+1)=2a(2a﹣1)2.故选:C.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.5.某体校要从四名射击选手中选拔一名参加省体育运动会,选拔赛中每名选手连续射靶10次,他们各自的平均成绩及其方差S2如表所示:甲乙丙丁(环)8.4 8.6 8.6 7.6S20.74 0.56 0.94 1.92如果要选出一名成绩高且发挥稳定的选手参赛,则应选择的选手是()A.甲 B.乙 C.丙 D.丁【考点】方差.【分析】从平均成绩分析乙和丙要比甲和丁好,从方差分析甲和乙的成绩比丙和丁稳定,综合两个方面可选出乙.【解答】解:根据平均成绩可得乙和丙要比甲和丁好,根据方差可得甲和乙的成绩比丙和丁稳定,因此要选择一名成绩高且发挥稳定的学生参赛,因选择乙,故选:B【点评】此题主要考查了方差和平均数,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.用若干个大小相同的小正方形体组合成的几何体的主视图和俯视图如图所示,下面所给的四个选项中,不可能是这个几何体的左视图的是()A. B. C. D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】由俯视图可得此几何体底面有5个小正方形分为3列3排,根据主视图可得这个几何体的左视图有2层高,依此即可求解.【解答】解:由俯视图可得此几何体底面有5个小正方形分为3列3排,根据主视图可得这个几何体的左视图有2层高,可得这个几何体的左视图不可能是3层高.故选:C.【点评】此题主要考查了画三视图,关键是根据主视图和俯视图分析出每排小正方体的个数.7.二次函数y=ax2+bx+c(a,b,c为常数且a≠0)的图象如图所示,则一次函数y=ax+b与反比例函数y=的图象可能是()A. B. C. D.【考点】反比例函数的图象;一次函数的图象;二次函数的图象.【专题】函数及其图象.【分析】根据二次函数y=ax2+bx+c的图象,可以判断a、b、c的正负情况,从而可以判断一次函数y=ax+b与反比例函数y=的图象分别在哪几个象限,从而可以解答本题.【解答】解:由二次函数y=ax2+bx+c的图象可知,a>0,b<0,c<0,则一次函数y=ax+b的图象经过第一、三、四象限,反比例函数y=的图象在二四象限,故选C.【点评】本题考查反比例函数的图象、一次函数的图象、二次函数的图象,解题的关键是明确它们各自图象的特点,利用数形结合的思想解答问题.8.在如图的2016年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.72【考点】一元一次方程的应用.【分析】设第一个数为x,则第二个数为x+7,第三个数为x+14.列出三个数的和的方程,再根据选项解出x,看是否存在.【解答】解:设第一个数为x,则第二个数为x+7,第三个数为x+14故三个数的和为x+x+7+x+14=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=27.故任意圈出一竖列上相邻的三个数的和不可能是72.故选:D.【点评】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.9.如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45° B.50° C.55° D.60°【考点】圆内接四边形的性质;圆心角、弧、弦的关系;圆周角定理.【分析】先根据圆内接四边形的性质求出∠ADC的度数,再由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.【解答】解:∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵=,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.故选B.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.10.不等式组的解集是x>1,则m的取值范围是()A.m≥1 B.m≤1 C.m≥0 D.m≤0【考点】不等式的解集.【专题】计算题;一元一次不等式(组)及应用.【分析】表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.【解答】解:不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0,故选D【点评】此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.11.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115° B.120° C.130° D.140°【考点】翻折变换(折叠问题).【分析】根据折叠的性质和矩形的性质得出∠BFE=∠EFB',∠B'=∠B=90°,根据三角形内角和定理求出∠CFB'=50°,进而解答即可.【解答】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°,∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.【点评】本题考查了矩形的性质,折叠的性质,三角形的内角和定理的应用,能综合运用性质进行推理和计算是解此题的关键,注意:折叠后的两个图形全等.12.聊城“水城之眼”摩天轮是亚洲三大摩天轮之一,也是全球首座建筑与摩天轮相结合的城市地标,如图,点O是摩天轮的圆心,长为110米的AB是其垂直地面的直径,小莹在地面C 点处利用测角仪测得摩天轮的最高点A的仰角为33°,测得圆心O的仰角为21°,则小莹所在C点到直径AB所在直线的距离约为(tan33°≈0.65,tan21°≈0.38)()A.169米 B.204米 C.240米 D.407米【考点】解直角三角形的应用-仰角俯角问题.【分析】过C作CD⊥AB于D,在Rt△ACD中,求得AD=CD•tan∠ACD=CD•tan33°,在Rt△BCO 中,求得OD=CD•tan∠BCO=CD•tan21°,列方程即可得到结论.【解答】解:过C作CD⊥AB于D,在Rt△ACD中,AD=CD•tan∠ACD=CD•tan33°,在Rt△BCO中,OD=CD•tan∠BCO=CD•tan21°,∵AB=110m,∴AO=55m,∴A0=AD﹣OD=CD•tan33°﹣CD•tan21°=55m,∴CD==≈204m,答:小莹所在C点到直径AB所在直线的距离约为204m.故选B.【点评】此题主要考查了仰角与俯角的问题,利用两个直角三角形拥有公共直角边,能够合理的运用这条公共边是解答此题的关键.二、填空题(本题共5个小题,每小题3分,只要求填写最后结果)13.计算:= 12 .【考点】二次根式的乘除法.【分析】直接利用二次根式乘除运算法则化简求出答案.【解答】解:=3×÷=3=12.故答案为:12.【点评】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.14.如果关于x的一元二次方程kx2﹣3x﹣1=0有两个不相等的实根,那么k的取值范围是k >﹣且k≠0.【考点】根的判别式.【分析】根据一元二次方程的定义和△的意义得到k≠0且△>0,即(﹣3)2﹣4×k×(﹣1)>0,然后解不等式即可得到k的取值范围.【解答】解:∵关于x的一元二次方程kx2﹣3x﹣1=0有两个不相等的实数根,∴k≠0且△>0,即(﹣3)2﹣4×k×(﹣1)>0,解得:k>﹣且k≠0.故答案为:k>﹣且k≠0.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.15.如图,已知圆锥的高为,高所在直线与母线的夹角为30°,圆锥的侧面积为2π.【考点】圆锥的计算.【专题】计算题.【分析】先利用三角函数计算出BO,再利用勾股定理计算出AB,然后利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算圆锥的侧面积.【解答】解:如图,∠BAO=30°,AO=,在Rt△ABO中,∵tan∠BAO=,∴BO=tan30°=1,即圆锥的底面圆的半径为1,∴AB==2,即圆锥的母线长为2,∴圆锥的侧面积=•2π•1•2=2π.故答案为2π.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是.【考点】概率公式;概率的意义.【分析】求出随机闭合开关S1,S2,S3,S4,S5中的三个,共有几种可能情况,以及能让灯泡L1,L2同时发光的有几种可能,由此即可解决问题.【解答】解:∵随机地闭合开关S1,S2,S3,S4,S5中的三个共有10种可能,能够使灯泡L1,L2同时发光有2种可能(S1,S2,S4或S1,S2,S5).∴随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是=.故答案为.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.17.如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2015B2016C2016的顶点B2016的坐标是(21008,0).【考点】正方形的性质;规律型:点的坐标.【分析】首先求出B1、B2、B3、B4、B5、B6、B7、B8、B9的坐标,找出这些坐标的之间的规律,然后根据规律计算出点B2016的坐标.【解答】解:∵正方形OA1B1C1边长为1,∴OB1=,∵正方形OB1B2C2是正方形OA1B1C1的对角线OB1为边,∴OB2=2,∴B2点坐标为(0,2),同理可知OB3=2,∴B3点坐标为(﹣2,2),同理可知OB4=4,B4点坐标为(﹣4,0),B5点坐标为(﹣4,﹣4),B6点坐标为(0,﹣8),B7(8,﹣8),B8(16,0)B9(16,16),B10(0,32),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,∵2016÷8=252∴B2016的纵横坐标符号与点B8的相同,横坐标为正值,纵坐标是0,∴B2016的坐标为(21008,0).故答案为:(21008,0).【点评】本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍.三、解答题(本题共8个小题,共69分,解答题应写出文字说明、证明过程或推演步骤)18.计算:(﹣).【考点】分式的混合运算.【专题】计算题;分式.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=•=•=﹣.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.19.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C (﹣1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A1B2C2关于原点O成中心对称图形,写出△A1B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A2B3C3,写出△A2B3C3的各顶点的坐标.【考点】坐标与图形变化-旋转;坐标与图形变化-平移.【专题】作图题.【分析】(1)利用点C和点C1的坐标变化得到平移的方向与距离,然后利用此平移规律写出顶点A1,B1的坐标;(2)根据关于原点对称的点的坐标特征求解;(3)利用网格和旋转的性质画出△A2B3C3,然后写出△A2B3C3的各顶点的坐标.【解答】解:(1)如图,△A1B1C1为所作,因为点C(﹣1,3)平移后的对应点C1的坐标为(4,0),所以△ABC先向右平移5个单位,再向下平移3个单位得到△A1B1C1,所以点A1的坐标为(2,2),B1点的坐标为(3,﹣2);(2)因为△ABC和△A1B2C2关于原点O成中心对称图形,所以A2(3,﹣5),B2(2,﹣1),C2(1,﹣3);(3)如图,△A2B3C3为所作,A3(5,3),B3(1,2),C3(3,1);【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.20.如图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.【考点】菱形的判定.【专题】证明题.【分析】先证明△AEF≌△CED,推出四边形ADCF是平行四边形,再证明∠DAC=∠ACB,推出DA=DC,由此即可证明.【解答】证明:∵AF∥CD,∴∠AFE=∠CDE,在△AFE和△CDE中,,∴△AEF≌△CED,∴AF=CD,∵AF∥CD,∴四边形ADCF是平行四边形,∵∠B=90°,∠ACB=30°,∴∠CAB=60°,∵AD平分∠CAB,∴∠DAC=∠DAB=30°=∠ACD,∴DA=DC,∴四边形ADCF是菱形.【点评】本题考查菱形的判定、全等三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用这些知识解决问题,属于基础题,中考常考题型.21.为了让书籍开拓学生的视野,陶冶学生的情操,向阳中学开展了“五个一”课外阅读活动,为了解全校学生课外阅读情况,抽样调查了50名学生平均每天课外阅读时间(单位:min),将抽查得到的数据分成5组,下面是尚未完成的频数、频率分布表:组别分组频数(人数)频率1 10≤t<30 0.162 30≤t<50 203 50≤t<70 0.284 70≤t<90 65 90≤t<110(1)将表中空格处的数据补全,完成上面的频数、频率分布表;(2)请在给出的平面直角坐标系中画出相应的频数直方图;(3)如果该校有1500名学生,请你估计该校共有多少名学生平均每天阅读时间不少于50min?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【专题】计算题;数据的收集与整理.【分析】(1)根据总人数50,以及表格中的数据确定出所求数据,填写表格即可;(2)根据表格中的数据作出相应的频数直方图,如图所示;(3)由时间不少于50min的百分比,乘以1500即可得到结果.【解答】解:(1)根据题意填写如下:组别分组频数(人数)频率1 10≤t<30 8 0.162 30≤t<50 20 0.403 50≤t<70 14 0.284 70≤t<90 6 0.125 90≤t<110 2 0.04(2)作出条形统计图,如图所示:(3)根据题意得:1500×(0.28+0.12+0.04)=660(人),则该校共有660名学生平均每天阅读时间不少于50min.【点评】此题考查了频数分布直方图,用样本估计总体,以及频数分布表,弄清题中的数据是解本题的关键.22.为加快城市群的建设与发展,在A,B两城市间新建条城际铁路,建成后,铁路运行里程由现在的120km缩短至114km,城际铁路的设计平均时速要比现行的平均时速快110km,运行时间仅是现行时间的,求建成后的城际铁路在A,B两地的运行时间.【考点】分式方程的应用.【分析】设城际铁路现行速度是xkm/h,设计时速是(x+110)xkm/h;现行路程是120km,设计路程是114km,由时间=,运行时间=现行时间,就可以列方程了.【解答】解:设城际铁路现行速度是xkm/h.由题意得:×=.解这个方程得:x=80.经检验:x=80是原方程的根,且符合题意.则×=×=0.6(h).答:建成后的城际铁路在A,B两地的运行时间是0.6h.【点评】考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.23.如图,在直角坐标系中,直线y=﹣x与反比例函数y=的图象交于关于原点对称的A,B 两点,已知A点的纵坐标是3.(1)求反比例函数的表达式;(2)将直线y=﹣x向上平移后与反比例函数在第二象限内交于点C,如果△ABC的面积为48,求平移后的直线的函数表达式.【考点】反比例函数与一次函数的交点问题.【分析】(1)将y=3代入一次函数解析式中,求出x的值,即可得出点A的坐标,再利用反比例函数图象上点的坐标特征即可求出反比例函数的表达式;(2)根据A、B点关于原点对称,可求出点B的坐标以及线段AB的长度,设出平移后的直线的函数表达式,根据平行线间的距离公式结合三角形的面积即可得出关于b的一元一次方程,解方程即可得出结论.【解答】解:(1)令一次函数y=﹣x中y=3,则3=﹣x,解得:x=﹣6,即点A的坐标为(﹣6,3).∵点A(﹣6,3)在反比例函数y=的图象上,∴k=﹣6×3=﹣18,∴反比例函数的表达式为y=﹣.(2)∵A、B两点关于原点对称,∴点B的坐标为(6,﹣3),∴AB==6.设平移后的直线的函数表达式为y=﹣x+b(b>0),即x+2y﹣2b=0,直线y=﹣x可变形为x+2y=0,∴两直线间的距离d==b.∴S△ABC=AB•d=×6×b=48,解得:b=8.∴平移后的直线的函数表达式为y=﹣x+8.【点评】本题考查了反比例函数与一次函数交点的问题、反比例函数图象上点的坐标特征.三角形的面积公式以及平行线间的距离公式,解题的关键是:(1)求出点A的坐标;(2)找出关于b的一元一次方程.本题属于中档题,难度不大,解决该题型题目时,利用平行线间的距离公式要比通过解直角三角形简洁不少.24.如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E为OB的中点,连接CE 并延长交⊙O于点F,点F恰好落在的中点,连接AF并延长与CB的延长线相交于点G,连接OF.(1)求证:OF=BG;(2)若AB=4,求DC的长.【考点】相似三角形的判定与性质.【分析】(1)直接利用圆周角定理结合平行线的判定方法得出FO是△ABG的中位线,即可得出答案;(2)首选得出△FOE≌△CBE(ASA),则BC=FO=AB=2,进而得出AC的长,再利用相似三角形的判定与性质得出DC的长.【解答】(1)证明:∵以Rt△ABC的直角边AB为直径作⊙O,点F恰好落在的中点, ∴=,∴∠AOF=∠BOF,∵∠ABC=∠ABG=90°,∴∠AOF=∠ABG,∴FO∥BG,∵AO=BO,∴FO是△ABG的中位线,∴FO=BG;(2)解:在△FOE和△CBE中,,∴△FOE≌△CBE(ASA),∴BC=FO=AB=2,∴AC==2,连接DB,∵AB为⊙O直径,∴∠ADB=90°,∴∠ADB=∠ABC,∵∠BCD=∠ACB,∴△BCD∽△ACB,∴=,∴=,解得:DC=.【点评】此题主要考查了相似三角形的判定与性质以及全等三角形的判定与性质等知识,正确得出△BCD∽△ACB是解题关键.25.如图,已知抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).CD垂直于y 轴,交抛物线于点D,DE垂直与x轴,垂足为E,l是抛物线的对称轴,点F是抛物线的顶点.(1)求出二次函数的表达式以及点D的坐标;(2)若Rt△AOC沿x轴向右平移到其直角边OC与对称轴l重合,再沿对称轴l向上平移到点C与点F重合,得到Rt△A1O1F,求此时Rt△A1O1F与矩形OCDE重叠部分的图形的面积;(3)若Rt△AOC沿x轴向右平移t个单位长度(0<t≤6)得到Rt△A2O2C2,Rt△A2O2C2与Rt△OED重叠部分的图形面积记为S,求S与t之间的函数表达式,并写出自变量t的取值范围.【考点】二次函数综合题.【分析】(1)用待定系数法求抛物线解析式;(2)由GH∥A1O1,求出GH=1,再求出FH,S重叠部分=S△A1O1F﹣S△FGH计算即可;(3)分两种情况①直接用面积公式计算,②用面积差求出即可.【解答】解:(1)∵抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).∴设抛物线的解析式为y=a(x+3)(x﹣9),∵C(0,4)在抛物线上,∴4=﹣27a,∴a=﹣,∴设抛物线的解析式为y=﹣(x+3)(x﹣9)=﹣x2+x+4,∵CD垂直于y轴,C(0,4)∴﹣x2+x+4=4,∴x=6,∵D(6,4),(2)如图1,∵点F是抛物线y=﹣x2+x+4的顶点,∴F(3,),∴FH=,∵GH∥A1O1,∴,∴,∴GH=1,∵Rt△A1O1F与矩形OCDE重叠部分是梯形A1O1HG,∴S重叠部分=S△A1O1F﹣S△FGH=A1O1×O1F﹣GH×FH=×3×4﹣×1×=.(3)①当0<t≤3时,如图2,∵C2O2∥DE,∴,∴,∴O2G=t,∴S=S△OO2G=OO2×O2G=t×t=t2, ②当3<t≤6时,如图3,∵C2H∥OC,∴,∴,∴C2H=(6﹣t),∴S=S四边形A2O2HG=S△A2O2C2﹣S△C2GH=OA×OC﹣C2H×(t﹣3)=×3×4﹣×(6﹣t)(t﹣3)=t2﹣3t+12∴当0<t≤3时,S=t2,当3<t≤6时,S=t2﹣3t+12.【点评】此题是二次函数综合题,主要考查了待定系数法求函数解析式,平行线分线段成比例定理,三角形的面积计算,解本题的关键是画出图形.。
山东省聊城市中考数学试卷(含答案和解析)
山东省聊城市中考数学试卷一、选择题(本题共12小题,每小题3分.在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)(2014•聊城)在﹣,0,﹣2,,1这五个数中,最小的数为().2.(3分)(2014•聊城)如图是一个三棱柱的立体图形,它的主视图是().C D.3.(3分)(2014•聊城)今年5月10日,在市委宣传部、市教育局等单位联合举办的“走复兴路,圆中国梦”中学生4.(3分)(2014•聊城)如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2的度数为()3+=C﹣=3.÷=2)x+))7.(3分)(2014•聊城)如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()9.(3分)(2014•聊城)如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BEDF是菱形,且EF=AE+FC,则边BC的长为().10.(3分)(2014•聊城)如图,一次函数y1=k1x+b的图象和反比例函数y2=的图象交于A(1,2),B(﹣2,﹣1)两点,若y1<y2,则x的取值范围是()11.(3分)(2014•聊城)如图,在平面直角坐标系中,将△ABC绕点P旋转180°,得到△A1B1C1,则点A1,B1,C1的坐标分别为()12.(3分)(2014•聊城)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的是()二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)13.(3分)(2014•聊城)不等式组的解集是_________.14.(3分)(2014•聊城)因式分解:4a3﹣12a2+9a=_________.15.(3分)(2014•聊城)如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为120°,这个扇形的面积为_________.16.(3分)(2014•聊城)如图,有四张卡片(形状、大小和质地都相同),正面分别写有字母A、B、C、D和一个不同的算式,将这四张卡片背面向上洗匀,从中随机抽取两张卡片,这两张卡片上的算式只有一个正确的概率是_________.17.(3分)(2014•聊城)如图,在x轴的正半轴上依次间隔相等的距离取点A1,A2,A3,A4,…,A n分别过这些点做x轴的垂线与反比例函数y=的图象相交于点P1,P2,P3,P4,…P n作P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,…,P n B n﹣1⊥A n﹣1P n﹣1,垂足分别为B1,B2,B3,B4,…,B n﹣1,连接P1P2,P2P3,P3P4,…,P n﹣1P n,得到一组Rt△P1B1P2,Rt△P2B2P3,Rt△P3B3P4,…,Rt△P n﹣1B n﹣1P n,则Rt△P n﹣1B n﹣1P n的面积为_________.三、解答题(本题共8个小题,共69分.解答应写出文字说明、证明过程或推演步骤)18.(7分)(2014•聊城)解分式方程:+=﹣1.19.(8分)(2014•聊城)为提高居民的节水意识,向阳小区开展了“建设节水型社区,保障用水安全”为主题的节水宣传活动,小莹同学积极参与小区的宣传活动,并对小区300户家庭用水情况进行了抽样调查,他在300户家庭中,随机调查了50户家庭5月份的用水量情况,结果如图所示.(1)试估计该小区5月份用水量不高于12t的户数占小区总户数的百分比;(2)把图中每组用水量的值用该组的中间值(如0~6的中间值为3)来替代,估计改小区5月份的用水量.20.(8分)(2014•聊城)如图,四边形ABCD是平行四边形,作AF∥CE,BE∥DF,AF交BE与G点,交DF与F点,CE交DF于H点、交BE于E点.求证:△EBC≌△FDA.21.(8分)(2014•聊城)如图,美丽的徒骇河宛如一条玉带穿城而过,沿河两岸的滨河大道和风景带称为我市的一道新景观.在数学课外实践活动中,小亮在河西岸滨河大道一段AC上的A,B两点处,利用测角仪分别对东岸的观景台D进行了测量,分别测得∠DAC=60°,∠DBC=75°.又已知AB=100米,求观景台D到徒骇河西岸AC的距离约为多少米(精确到1米).(tan60°≈1.73,tan75°≈3.73)22.(8分)(2014•聊城)某服装店用6000元购进A,B两种新式服装,按标价售出后可获得毛利润3800元(毛利(2)如果A中服装按标价的8折出售,B中服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?23.(8分)(2014•聊城)甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车行驶多长时间时,两车恰好相距50km.24.(10分)(2014•聊城)如图,AB,AC分别是半⊙O的直径和弦,OD⊥AC于点D,过点A作半⊙O的切线AP,AP与OD的延长线交于点P.连接PC并延长与AB的延长线交于点F.(1)求证:PC是半⊙O的切线;(2)若∠CAB=30°,AB=10,求线段BF的长.25.(12分)(2014•聊城)如图,在平面直角坐标系中,△AOB的三个顶点的坐标分别是A(4,3),O(0,0),B(6,0).点M是OB边上异于O,B的一动点,过点M作MN∥AB,点P是AB边上的任意点,连接AM,PM,PN,BN.设点M(x,0),△PMN的面积为S.(1)求出OA所在直线的解析式,并求出点M的坐标为(1,0)时,点N的坐标;(2)求出S关于x的函数关系式,写出x的取值范围,并求出S的最大值;(3)若S:S△ANB=2:3时,求出此时N点的坐标.2014年山东省聊城市中考数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分.在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)(2014•聊城)在﹣,0,﹣2,,1这五个数中,最小的数为().﹣D=2.(3分)(2014•聊城)如图是一个三棱柱的立体图形,它的主视图是().C D.3.(3分)(2014•聊城)今年5月10日,在市委宣传部、市教育局等单位联合举办的“走复兴路,圆中国梦”中学生4.(3分)(2014•聊城)如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2的度数为()3+=C﹣=3.÷==2×==2)x+))x=,x+)+))7.(3分)(2014•聊城)如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为(),取得的是红球的概率与不是红球的概率相同,所以9.(3分)(2014•聊城)如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BEDF是菱形,且EF=AE+FC,则边BC的长为().BE==2BF=BE=2CF=AE=10.(3分)(2014•聊城)如图,一次函数y1=k1x+b的图象和反比例函数y2=的图象交于A(1,2),B(﹣2,﹣1)两点,若y1<y2,则x的取值范围是()11.(3分)(2014•聊城)如图,在平面直角坐标系中,将△ABC绕点P旋转180°,得到△A1B1C1,则点A1,B1,C1的坐标分别为()12.(3分)(2014•聊城)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的是()=,,二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)13.(3分)(2014•聊城)不等式组的解集是﹣<x≤4.,>﹣,<<14.(3分)(2014•聊城)因式分解:4a3﹣12a2+9a=a(2a﹣3)2.15.(3分)(2014•聊城)如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为120°,这个扇形的面积为300π.16.(3分)(2014•聊城)如图,有四张卡片(形状、大小和质地都相同),正面分别写有字母A、B、C、D和一个不同的算式,将这四张卡片背面向上洗匀,从中随机抽取两张卡片,这两张卡片上的算式只有一个正确的概率是.,故答案为:17.(3分)(2014•聊城)如图,在x轴的正半轴上依次间隔相等的距离取点A1,A2,A3,A4,…,A n分别过这些点做x轴的垂线与反比例函数y=的图象相交于点P1,P2,P3,P4,…P n作P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,…,P n B n﹣1⊥A n﹣1P n﹣1,垂足分别为B1,B2,B3,B4,…,B n﹣1,连接P1P2,P2P3,P3P4,…,P n﹣1P n,得到一组Rt△P1B1P2,Rt△P2B2P3,Rt△P3B3P4,…,Rt△P n﹣1B n﹣1P n,则Rt△P n﹣1B n﹣1P n的面积为..=(﹣×(﹣×﹣)[],∴,×,∴)×﹣)×﹣×﹣×[﹣×﹣).故答案为三、解答题(本题共8个小题,共69分.解答应写出文字说明、证明过程或推演步骤)18.(7分)(2014•聊城)解分式方程:+=﹣1.19.(8分)(2014•聊城)为提高居民的节水意识,向阳小区开展了“建设节水型社区,保障用水安全”为主题的节水宣传活动,小莹同学积极参与小区的宣传活动,并对小区300户家庭用水情况进行了抽样调查,他在300户家庭中,随机调查了50户家庭5月份的用水量情况,结果如图所示.(1)试估计该小区5月份用水量不高于12t的户数占小区总户数的百分比;(2)把图中每组用水量的值用该组的中间值(如0~6的中间值为3)来替代,估计改小区5月份的用水量.20.(8分)(2014•聊城)如图,四边形ABCD是平行四边形,作AF∥CE,BE∥DF,AF交BE与G点,交DF与F点,CE交DF于H点、交BE于E点.求证:△EBC≌△FDA.21.(8分)(2014•聊城)如图,美丽的徒骇河宛如一条玉带穿城而过,沿河两岸的滨河大道和风景带称为我市的一道新景观.在数学课外实践活动中,小亮在河西岸滨河大道一段AC上的A,B两点处,利用测角仪分别对东岸的观景台D进行了测量,分别测得∠DAC=60°,∠DBC=75°.又已知AB=100米,求观景台D到徒骇河西岸AC的距离约为多少米(精确到1米).(tan60°≈1.73,tan75°≈3.73)的方程﹣=EB=.米,即﹣=100≈22.(8分)(2014•聊城)某服装店用6000元购进A,B两种新式服装,按标价售出后可获得毛利润3800元(毛利(2)如果A中服装按标价的8折出售,B中服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?.23.(8分)(2014•聊城)甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车行驶多长时间时,两车恰好相距50km.,x=x=,小时或小时,两车恰好相距24.(10分)(2014•聊城)如图,AB,AC分别是半⊙O的直径和弦,OD⊥AC于点D,过点A作半⊙O的切线AP,AP与OD的延长线交于点P.连接PC并延长与AB的延长线交于点F.(1)求证:PC是半⊙O的切线;(2)若∠CAB=30°,AB=10,求线段BF的长.AB=5=25.(12分)(2014•聊城)如图,在平面直角坐标系中,△AOB的三个顶点的坐标分别是A(4,3),O(0,0),B(6,0).点M是OB边上异于O,B的一动点,过点M作MN∥AB,点P是AB边上的任意点,连接AM,PM,PN,BN.设点M(x,0),△PMN的面积为S.(1)求出OA所在直线的解析式,并求出点M的坐标为(1,0)时,点N的坐标;(2)求出S关于x的函数关系式,写出x的取值范围,并求出S的最大值;(3)若S:S△ANB=2:3时,求出此时N点的坐标.,xx+9x+b b=,x+,得(,xMB××(+有最大值,最大值为:=x+9×(。
2011年中考数学考试试题答案
1 / 12高中阶段教育学校招生统一考试数 学全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题 共30分)注意事项:每小题选出的答案不能答在试卷上,须用2B 铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1. -3的绝对值是( )A. 3B. -3C.13 D. 13- 2. “中国国家馆”作为2010年上海世博会的主题场馆,充分体现了中国文化的精神与气质. 资料表明,在建设过程中使用的一种工艺,需要对中国馆的大台阶进行约5.4×107次加工. 其中5.4×107表示的数为( )A. 5 400 000B. 54 000 000C. 540 000 000D. 5 400 000 000 3. 小明调查了本班同学最喜欢的课外活动项目,并作出如图1所示的扇形统计图,则从图中可以直接看出的信息是( )A. 全班总人数B. 喜欢篮球活动的人数最多C. 喜欢各种课外活动的具体人数D. 喜欢各种课外活动的人数占本班总人数的百分比4. 顺次连接边长为2的等边三角形三边中点所得的三角形的周长为( )A. 1B. 2C. 3D. 45. 用一个平面截一个几何体,得到的截面是四边形,则这个几何体可能是( ) A. 球体 B. 圆柱 C. 圆锥 D. 三棱锥6. 若实数a 、b 满足5a b +=,2210a b ab +=-,则ab 的值是( ) A. -2B. 2图1图22 / 12C. -50D. 507. 如图2,A 为⊙O 上一点,从A 处射出的光线经圆周4次反射后到达F 处. 如果反射前后光线与半径的夹角均为50°,那么∠AOE 的度数是( )A. 30°B. 40°C. 50°D. 80°8. 为缓解考试前的紧张情绪,某校九年级举行了“猪八戒背媳妇”的趣味接力比赛. 比赛要求每位选手在50米跑道上进行折返跑,其中有50米必须“背媳妇”. 假设某同学先跑步后“背媳妇”,且该同学跑步、“背媳妇”均匀速前进,他与起点的距离为s ,所用时间为t ,则s 与t 的函数关系用图象可表示为()A. B. C. D.9. 在同一平面内,如果两个多边形(含内部)有除边界以外的公共点,则称两多边形有“公共部分”.如图3,若正方形ABCD 由9个边长为1的小正方形镶嵌而成,另有一个边长为1的正方形与这9个小正方形中的n 个有“公共部分”,则n 的最大值为( ) A. 4 B. 5 C. 6 D. 710. 如图4,已知点A 1,A 2,…,A 2011在函数2y x =位于第二象限的图象上,点B 1,B 2,…,B 2011在函数2y x =位于第一象限的图象上,点C 1,C 2,…,C 2011在y 轴的正半轴上,若四边形111OA C B 、1222C A C B ,…,2010201120112011C A C B 都是正方形,则正方形2010201120112011C A C B 的边长为( )A. 2010B. 2011C. 20102D. 20112图3图43 / 12高中阶段教育学校招生统一考试数 学第Ⅱ卷(非选择题 共90分)题号 二 三总 分总分人171819202122232425得分注意事项:本卷共6页,用黑色或蓝色钢笔或圆珠笔直接答在试卷上.请注意准确理解题意、明确题目要求,规范地表达、工整地书写解题过程或结果.二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.11. 9的平方根为____________.12. 第16届亚运会将于2010年11月12日至27日在中国广州进行,各类门票现已开始销售. 若部分项目门票的最低价和最高价如图5所示,则这六个项目门票最高价的中位数是____________ .13. 若菱形一边的垂直平分线经过这个菱形的一个顶点,则此菱形较大内角的度数为_______.14. 若关于x 的方程2220x m x m m -+-=无实数根,则实数m 的取值范围是____________.15. 如图6,已知△ABC是等腰直角三角形,CD 是斜边AB 的中线,△ADC 绕点D 旋转一定角度得到△A DC '',A D '交AC 于点E ,DC '交BC 于点F ,连接EF ,若25A E ED '=,则EF A C ''=_________ . 16. 给出下列命题:① 若方程2560x x +-=的两根分别为1x ,2x ,则121156x x +=;② 对于任意实数x 、y ,都有2233()()x y x xy y x y -++=-;③ 如果一列数3,7,11,…满足条件:“以3为第一个数,从第二个数开始每一个数与它前面相邻的数的差为4”,那么99不是这列数中的一个数;④若※表示一种运算,且1※2=1,3※2=7,4※4=8,…,按此规律,则可能有a ※b =3a -b . 其中所有正确命题的序号是__________________ .图6图54 / 12三、解答题:(本大题共9个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分7分)化简:2162393m m m -÷+--.18.(本小题满分7分)在为迎接“世界环境日”举办的“保护环境、珍爱地球”晚会上,主持人与观众玩一个游戏:取三张完全相同、没有任何标记的卡片,分别写上“物种”、“星球”和“未来”,并将写有文字的一面朝下,随机放置在桌面上,然后依次翻开三张卡片.(1) 用列表法(或树状图)求翻开卡片后第一张是“物种”且第二张是“星球”的概率; (2) 主持人规定:若翻开的第一张卡片是“未来”,观众获胜,否则主持人获胜. 这个规定公平吗?为什么?19.(本小题满分8分)如图7,已知A 、B 、C 是数轴上异于原点O 的三个点,且O 为AB 的中点,B为AC 的中点. 若点B 对应的数是x ,点C 对应的数是2x -3x ,求x 的值.图75 / 1220.(本小题满分8分)已知关于x 的不等式组4(1)23,617x x x ax -+>⎧⎪+⎨-<⎪⎩有且只有三个整数解,求a 的取值范围.21.(本小题满分8分)如图8,已知直线l :y =kx +b 与双曲线C :my x=相交于点A (1,3)、B (32-,-2),点A 关于原点的对称点为P .(1) 求直线l 和双曲线C 对应的函数关系式; (2) 求证:点P 在双曲线C 上;(3) 找一条直线l 1,使△ABP 沿l 1翻折后,点P 能落在双曲线C 上. (指出符合要求的l 1的一个解析式即可,不需说明理由)图86 / 1222.(本小题满分8分)在军事上,常用时钟表示方位角(读数对应的时针方向),如正北为12点方向,北偏西30°为11点方向. 在一次反恐演习中,甲队员在A 处掩护,乙队员从A 处沿12点方向以40米/分的速度前进,2分钟后到达B 处. 这时,甲队员发现在自己的1点方向的C 处有恐怖分子,乙队员发现C 处位于自己的2点方向(如图9). 假设距恐怖分子100米以外为安全位置.(1) 乙队员是否处于安全位置?为什么?(2) 因情况不明,甲队员立即发出指令,要求乙队员沿原路后撤,务必于15秒内到达安全位置. 为此,乙队员至少..应用多快的速度撤离?(结果精确到个位. 参考数据:13 3.6≈0,14 3.74≈.)23.(本小题满分8分)如图10-1,已知AB 是⊙O 的直径,直线l 与⊙O 相切于点B ,直线m 垂直AB 于点C ,交⊙O 于P 、Q 两点. 连结AP ,过O 作OD ∥AP 交l 于点D ,连接AD 与m 交于点M .(1) 如图10-2,当直线m 过点O 时,求证:M 是PO 的中点;(2) 如图10-1,当直线m 不过点O 时,M 是否仍为PC 的中点?证明你的结论.图9图10-1 图10-27 / 1224.(本小题满分9分)如图11,在直角梯形ABCD 中,已知AD ∥BC ,AB =3,AD =1,BC =6,∠A =∠B =90°.设动点P 、Q 、R 在梯形的边上,始终构成以P 为直角顶点的等腰直角三角形,且△PQR 的一边与梯形ABCD 的两底边平行.(1) 当点P 在AB 边上时,在图中画出一个符合条件的△PQR (不必说明画法); (2) 当点P 在BC 边或CD 边上时,求BP 的长.图118 / 1225.(本小题满分9分)如图12,已知直线22y x =+交y 轴于点A ,交x 轴于点B ,直线l :39y x =-+交x 轴于点C .(1) 求经过A 、B 、C 三点的抛物线的函数关系式,并指出此函数的函数值随x 的增大而增大时,x 的取值范围;(2) 若点E 在(1)中的抛物线上,且四边形ABCE 是以BC 为底的梯形,求梯形ABCE 的面积; (3) 在(1)、(2)的条件下,过E 作直线EF ⊥x 轴,垂足为G ,交直线l 于F . 在抛物线上是否存在点H ,使直线l 、直线FH 和x 轴所围成的三角形的面积恰好是梯形ABCE 面积的12?若存在,求点H 的横坐标;若不存在,请说明理由.图12高中阶段教育学校招生统一考试数学试题参考答案及评分意见说明:1. 解答题中各步骤所标记分数为考生解答到这一步应得的累计分数.2. 参考答案一般只给出该题的一种解法,如果考生的解法和参考答案所给解法不同,请参照本答案及评分意见给分.3. 考生的解答可以根据具体问题合理省略非关键步骤.4. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分.5. 给分和扣分都以1分为基本单位.6. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.一、选择题(每小题3分,共10个小题,满分30分):1-5. ABDCB;6-10. ABCCD.二、填空题(每小题3分,共6个小题,满分18分):11.±3;12.800元;13. 120°;14.m<0;15.57;16.①②④.(注:12、13题有无单位“元”或“°”均不扣分. ) 三、解答题(共9个小题,满分72分):17.解:原式=1633(3)(3)2mm m m-+++-····················································3分=1333m m+++···················································································5分=43m+. ··························································································7分18.(1) 解一:列表如下: ············································································································3分∴第一张是“物种”且第二张是“星球”的概率是16. ······························4分解二:树状图如下:9 / 1210 / 12···························· 3分∴ 第一张是“物种”且第二张是“星球”的概率是16. ············································(2) 这个规定不公平. ··········································································5分因为观众获胜的概率是13,主持人获胜的概率是23. ·································7分19.解:由已知,点O 是AB 的中点,点B 对应的数是x ,∴ 点A 对应的实数为-x . ····································································1分 ∵ 点B 是AC 的中点,点C 对应的数是2x -3x , ∴ (2x -3x )-x =x -(-x ). ··········································································4分 整理,得2x -6x =0,解之得 x =0,或x =6. ···············································6分 ∵ 点B 异于原点,故x =0应舍去. ∴ x 的值为6. ·····································7分 20.解:由4(1)23x x -+>得,x >2; ···························································2分由617x ax +-<得,x <a +7. ··································································5分依题意得,不等式组的解集为2<x <a +7. ··················································6分 又 ∵ 此不等式组有且只有三个整数解,故整数解只能是x =3,4,5, ∴ 5<a +7≤6,则-2<a ≤-1. ·································································8分 (注:未取等号扣1分)21. 解:(1) 将点A 、B 的坐标代入y =kx +b ,有31,32().2k b k b =⨯+⎧⎪⎨-=⨯-+⎪⎩ ·············································································2分 解得,2k =,b =1,即直线l 对应的函数关系为y =2x +1. ·····························3分将点A (1,3)(或B )的坐标代入my x =,得m =3,∴ 双曲线C 对应的函数关系为y =3x. ·····················································4分(2) ∵ P 为点A 关于原点的对称点,∴ 点P 的坐标为(-1,-3),符合双曲线C 的函数关系,故点P 在双曲线C 上. ·················································································6分(3) l 1的解析式为y =x ,或y =-x . ·····························································8分 (注:写出一个解析式即得2分.) 22.解:(1) 乙队员不安全. ······················································· 1分易求AB =80米. ∵ ∠BAC =∠C =30°,∴ BC =AB =80米<100米. ·························· 3分 ∴ 乙队员不安全.(2) 过C 点作CD ⊥AB ,垂足为D ,在AB 边上取一点B 1,使CB 1=100. ······················································································ 4分在Rt △CBD 中,∠CBD =60°,BC =80,则BD =40,CD =403. ···· 5分在Rt △1CDB 中,由勾股定理知22112013B D B C CD =-=, ·····················6分11 / 12而20134015-≈2.13米/秒, ·······························································7分 依题意,乙队员至少应以3米/秒的速度撤离. ··········································8分 (注:结果为2米/秒,本步不给分.)23.(1) 证明:连接PD ,∵ 直线m 垂直AB 于点C ,直线l 与⊙O 相切于点B ,AB 为直径,∴ ∠POA =∠DBA =90°.又∵ AP ∥OD ,∴ ∠P AO =∠DOB . ························································1分 又∵ AO =BO ,∴ △APO ≌△ODB . ·······················································2分 ∴ AP =OD ,∴ 四边形APDO 是平行四边形, ·········································3分 ∴ M 是PO 的中点. ···········································································4分(其他解法:证△APO ≌△ODB 后,据中位线定理证12OM BD =;或证△DPO ≌△DBO ,得∠DPO =∠DBO =90°,从而证四边形APDO 是平行四边形等.)(2) M 是PC 的中点. 证明如下:∵AP ∥OD ,∴ ∠P AO =∠DOB ,又 ∠PCA =∠DBO =90°,∴ △APC ∽△ODB ,∴ PC AC BD BO=.①·····················································5分 又易证△ACM ∽△ABD ,∴ AC MC AB BD=. ·················································6分 又∵ AB =2OB ,∴ 2AC MC OB BD =,∴2AC MC OB BD=.② ····································7分 由①②得,2PC MC BD BD=,∴ PC =2MC ,即M 是PC 的中点. ·························8分 24.(1) 如图.(注:答案不唯一,在图中画出符合条件的图形即可) ······················2分(2) ① 当P 在CD 边上时,由题意,PR ∥BC ,设PR =x .可证四边形PRBQ 是正方形,∴ PR =PQ =BQ =x .过D 点作DE ∥AB ,交BC 于E ,易证四边形ABED 是矩形.∴ AD =BE =1,AB =DE =3. ··········································· 3分又 PQ ∥DE ,∴△CPQ ∽△CDE ,PQ CQ DE CE=. ∴ 635x x -=, ························································ 4分 ∴ x =94,即BP =942. ············································ 5分 (注:此时,由于∠C ≠45°,因此斜边RQ 不可能平行于BC . 在答题中未考虑此问题者不扣分.) ② 当P 在BC 边上,依题意可知RQ ∥BC .过Q 作QF ⊥BC ,易证△BRP ≌△FQP ,则PB =PF . ········· 6分易证四边形BFQR 是矩形,设BP =x ,则BP =BR =QF =PF =x ,BF =RQ =2x . ·················· 7分∵ QF ∥DE ,∴ △CQF ∽△CDE ,∴ QF CF DE CE =. ······································8分12 / 12 ∴6235x x -=,∴ x =1811. ···································································9分 (注:此时,直角边不可能与两底平行. 在答题中未考虑此问题者不扣分.)25.(1) ∵ 直线AB 的解析式为22y x =+,∴ 点A 、B 的坐标分别为A (0,2),B (-1,0).又直线l 的解析式为39y x =-+,∴ 点C 的坐标为(3,0). ··························1分 由上,可设经过A 、B 、C 三点的抛物线的解析式为y =a (x +1)(x -3),将点A 的坐标代入,得 a =23-,∴ 抛物线的解析式为224233y x x =-++. ·····2分 ∴ 抛物线的对称轴为x =1.由此可知,函数值随x 的增大而增大时,x 的取值范围是x ≤1. ···················3分 (注:本步结果无等号不扣分.)(2) 过A 作AE ∥BC ,交抛物线于点E . 显然,点A 、E 关于直线x =1对称,∴ 点E 的坐标为E (2,2). ····································································4分故梯形ABCE 的面积为 S =12(2+4)×2=6. ··················································5分 (3) 假设存在符合条件的点H ,作直线FH 交x 轴于M ,由题意知,3CFM S =. 设F (m ,n ),易知m =2,将F (2,n )的坐标代入y =-3x +9中,可求出n =3,则FG =3. ························6分∴ 132CFM S FG CM ==,∴ CM =2. 由C (3,0)知,1M (5,0),2M (1,0), ·······················································7分设FM 的解析式为y =kx +b ,由1M (5,0),F (2,3)得,F 1M 的解析式为y =-x +5,则F 1M 与抛物线的交点H 满足: 25,24 2.33y x y x x =-+⎧⎪⎨=-++⎪⎩整理得,22790x x -+=, ∵ △<0,∴ 不符合题意,舍去. ······················· 8分由2M (1,0),F (2,3)得,F 2M 的解析式为y =3x -3,则F 2M 与抛物线的交点H 满足:233,24 2.33y x y x x =-⎧⎪⎨=-++⎪⎩整理得,225150x x +-=, ∴ 51454x -±=. ··············································································9分 即:H点的横坐标为51454-±.。
山东聊城市中考数学试题及答案(解析版).docx
2014年山东省聊城市中考数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分.在每小题给出的四个选项中,只有一项符合题 目要求)1皿•聊城)在诗0,・2,討这五个数中,最小的数为(考点:有理数大小比较.分析:用数轴法,将各选项数字标于数轴之上即可解本题.解答:解:画一个数轴,将A 二0、B 二■丄、O ・2、D ), E=1标于数轴之上,2 3可得:C BADE■ ~~2~3—4~5^ •・・c 点位于数轴最左侧,是最小的数 故选C.点评:本题考查了数轴法比较有理数大小的方法,牢记数轴法是解题的关键.考点:简单儿何体的三视图.分析:根据从正面看得到的图形是主视图,可得答案. 解答:解;从正面看是矩形,看不见的棱用虚线表示,故选:B.点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图,注意看不到的棱用 虚线表示.3. (3分)(2014・聊城)今年5月10 B,在市委宣传部、市教育局等单位联合举办的“走复 兴路,圆中国梦〃中学生演讲比赛中,7位评委给参赛选手张阳同学的打分如表:A. 0B. 一丄~2C.・2 D ・ 12. (3分)(2014*聊城)如图是一个三棱柱的立体图形,它的主视图是(考点:众数分析:根据众数的定义,从表中找出出现次数最多的数即为众数.解答:解:张阳同学共有7个得分,其屮92分出现3次,次数最多,故张阳得分的众数为 92分. 故选B.点评:考查了众数的概念:一组数据中岀现次数最多的数叫该组数据的众数.4. (3分)(2014*聊城)如图,将一块含有30。
角的直角三角板的两个顶点叠放在矩形的两考点:平行线的性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和求11!Z3,再根据两直线平行, 同位角相等可得Z2=Z3.解答:解:由三角形的外角性质,Z3=30°4-Z1=30O +27O =57°,・・•矩形的对边平行,・・・ Z2=Z3=57°.点评:本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性 质,熟记性质是解题的关键.5. (3分)(2014・聊城)下列计算正确的是( ) A. 273x3^/3=673 B. 伍+貞二丫伝 C. 5^5 - 272=3^3 D.考点:二次根式的加减法;二次根式的乘除法.评委代号 A B C D E F G 评分90 928692 90 95 92则张阳同学得分的众数为( )A. 95B. 92C. 90D. 86分析:根据二次根式的乘除,可判断A、D,根据二次根式的加减,可判断B、C.解答:解:A、2^3 X 3A/3=2X 373X3=18,故A 错误;B、被开方数不能相加,故B错误;C、被开方数不能相减,故C错误;D、佢一亦二扌!長|二誓,故D正确;故选:D.点评:本题考查了二次根式的加减,注意被开方数不能相加减.6.(3分)(2014*聊城)用配方法解一元二次方程ax2+bx+c=0 (a^O),此方程可变形为()A.(x+上)2=2a b2 - 4ac4 a2B.(x+2) 2=2a4ac b24 a2c.(x-A) 2:b 2 - 4ac D.(x-A) 2:4ac - b22a4a22a4a2考点:解一元二次方程■配方法分析:先移项,把二次项系数化成1,再配方,最后根据完全平方公式得出即可. 解答:解:ax2+bx+c=O,2ax^+bx= - c,x2+—x=-—,a ax2A+(A)(A) a 2a a 2a2 b2 _ 4ac4 a2故选A.点评:本题考查了用配方法解一元二次方程的应用,解此题的关键是能正确配方,题目比较好,难度适中.7.(3分)(2014•聊城)如图,点P是ZAOB外的一点,点M, N分别是ZAOB两边上的点,点P关于OA的対称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的PN=3cm, MN=4cm,则线段QR的长为()A. 4.5B. 5.5 C・ 6.5 D・7考点:轴对称的性质分析:利用轴对称图形的性质得H5PM二MQ, PN二NR,进而利用MN=4cm,得出NQ的长, 即可得出QR的长.解答:解:•・•点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,/.PM=MQ, PN二NR,VPM=2.5cm, PN=3cm, MN=4cm,/.RN=3cm, MQ=2.5cm, NQ=MN - MQ=4 - 2.5= 1.5 (cm), 则线段QR 的长为:RN+NQ=3+1.5=4.5 (cm).故选:A.点评:此题主要考查了轴对称图形的性质,得出PM=MQ, PN=NR是解题关键.8.(3分)(2014*聊城)下列说法中不正确的是()A.抛掷一枚硬币,硬币落地吋正面朝上是随机事件B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C.任意打开七年级下册数学教科书,正好是97页是确定事件D.一个盒子中有白球m个,红球6个,黑球n个(每个除了颜色外都相同).如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m与n的和是6考点:随机事件;概率公式分析:根据必然事件、不可能事件、随机事件的概念以及概率的求法即可作出判断.解答:解:A.抛掷一枚硬币,硬币落地时正面朝上是随机事件,此说法正确;B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件,此说法正确;C.任意打开七年级下册数学教科书,正好是97页是不确定事件,故此说法错误;取得的是红球的概率与不是红球的概率相同,所以m+n=6,此说法正确•故选:C.点评:考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念以及概率的求法.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.(3分)(2014*聊城)如图,在矩形ABCD屮,边AB的长为3,点E, F分别在AD, BC 上,连接BE, DF, EF, BD.若四边形BEDF是菱形,且EF二AE+FC,则边BC的长为考点:矩形的性质;菱形的性质.分析:根据矩形的性质和菱形的性质得ZABE= ZEBD= ZDBC=30°, AB 二BO=3,因为四边 形BEDF 是菱形,所以BE, AE 可求出进而可求出BC 的长. 解答:解:・・•四边形ABCD 是矩形,・•・ ZA=90°, 即BA 丄BF,•・•四边形BEDF 是菱形, ・・・EF 丄BD, ZEBO=ZDBF, ・\AB=B0=3, ZABE=ZEBO,•I ZABE= ZEBD= ZDBC=30°, ABE=—2忑,cos30・・・BF 二BE=2亦,・.・EF 二AE+FC, AE=CF, EO=FO ・・・CF 二AE 二屈 ・・・BC=BF+CF=3屈 故选B ・点评:本题考查了矩形的性质、菱形的性质以及在直角三角形中30。
2011年山东省聊城中考数学试题及答案(全word版)
12a b c2011年山东省聊城市中考数学试题一、选择题(本大题共12小题,每小题3分,满分36分)1.-3的绝对值是( )A .-3B .3C . 1 3D .- 132.如图,空心圆柱的左视图是( )3.今年5月,我市第六次人口普查办公室发布了全市常住人口为578.99万人,用科学记数法可表示(保留2个有效数字)为( )A .58×105人B .5.8×105人C .5.8×106人D .0.58×107人 4.如图,已知a ∥b ,∠1=50º,则∠2=( )A .40ºB .50ºC .120ºD .130º 5.下列运算不正确的是( ) A .a 5+a 5=2a 5 B .(-2a 2)3=-2a 6C .2a 2·a -1=2aD .(2a 3-a 2)÷a 2=2a -1 6.下列事件属于必然事件的是( ) A .在1个标准大气压下,水加热到100ºC 沸腾 B .明天我市最高气温为56ºC C .中秋节晚上能看到月亮 D .下雨后有彩虹 7.已知一个菱形的周长是20cm ,两条对角线的比为4∶3,则这个菱形的面积是( ) A .12cm 2 B .24cm 2 C .48cm 2 D .96cm 2 8.某小区20户家庭的日用电量(单位:千瓦时)统计如下:日用电量(单位:千瓦时)4567810户数1 3 6 5 4 1这20户家庭日用电量的众数、中位数分别是( )A .6,6.5B .6,7C .6,7.5D .7,7.59.下列四个图象表示的函数中,当x <0时,函数值y 随自变量x 的增大而减小的是( )10.如图,用围棋子按下面的规律摆图形,则摆第n 个图形需要围棋子的枚数为( ) A .5nB .5n -1C .6n -1D .2n 2+111.如图,矩形OABC 的顶点O 是坐标原点,边OA 在x 轴上,边OC 在y 轴上.若矩形OA 1B 1C 1与矩形OABC 关于点O 位似,且矩形OA 1B 1C 1的面积等于矩形OABCx x x x yyyyO O O O A .B .C .D .A .B .C .D . n =1 n =2 n =3 …AB O A B α O A BC y x46 面积的14,则点B 1的坐标是( )A .(3,2)B .(-2,-3)C .(2,3)或(-2,-3)D .(3,2)或(-3,-2) 12.某公园草坪的防护栏由100段形状相同的抛物线形构件组成,为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m (如图),则这条防护栏需要不锈钢支柱的总长度至少为( )A .50mB .100mC .160mD .200m二、填空题(本大题共5小题,每小题3分,满分15分)13.化简:20-5= .14.如图,在□ABCD 中,AC 、BD 相交于点O ,点E 是AB 的中点.若OE =3cm ,则AD 的长是 cm .15.化简: a 2-b 2 a 2+2ab +b 2÷ 2a -2ba +b= . 16.如图,圆锥的底面半径OB =10cm ,它的侧面展开图的扇形的半径AB =30cm ,则这个扇形圆心角α的度数是 .17.某校举行物理实验操作测试,共准备了三项不同的实验,要求每位学生只参加其中的一项实验,由学生自己抽签确定做哪项实验.在这次测试中,小亮和大刚恰好做同一项实验的概率是 .三、解答题(本大题共8小题,满分69分)18.(7分)解方程:x (x -2)+x -2=0.19.(8分)今年“世界水日”的主题是“城市用水:应对都市化挑战”.为了解城市居民用水量的情况,小亮随机抽查了阳光小区50户居民去年每户每月的用水量,将得到的数据整理并绘制了这50户居民去年每月总用水量的折线统计图和频数、频率分布表如下: (1)表中a = ,d = .(2)这50户居民每月总用水量超过550m 3的月份占全年月份的百分率是多少(精确到1%)? (3)请根据折线统计图提供的数据,估计该小区去年每户居民平均月用水量是多少?A EBCDO20.5 0.4 单位:m20.(8分)将两块大小相同的含30º角的直角三角板(∠BAC =∠B 1A 1C =30º)按图1的方式放置,固定三角板A 1B 1C ,然后将三角板ABC 绕直角顶点C 顺时针方向旋转(旋转角小于90º)至图2所示的位置,AB 与A 1C 交于点E ,AC 与A 1B 1交于点F ,AB 与A 1B 1交于点O . (1)求证:△BCE ≌△B 1CF ; (2)当旋转角等于30º时,AB 与A 1B 1垂直吗?请说明理由.21.(8分)被誉为东昌三宝之首的铁塔,始建于北宋时期,是我市现存的最古老的建筑.铁塔由塔身和塔座两部分组成.为了测得铁塔的高度,小莹利用自制的测角仪,在C 点测得塔顶E 的仰角为45º,在D 点测得塔顶E 的仰角为60º.已知测角仪AC 的高为1.6m ,CD 的长为6m ,CD 所在的水平线CG ⊥EF 于点G .求铁塔EF 的高(精确到0.1m ).组别 频数 频率350<x ≤400 1112400<x ≤450 1 112450<x ≤500 216500<x ≤550 a b 550<x ≤600 c d 600<x ≤650 1 112650<x ≤700 216x 表示50户居民月总用水量(m 3) 月份1 2 3 4 5 6 7 8 9 10 11 12 月总用水量(m 3) O350 400 450 500 550 600 650 700 378648489 456345550 574423689 536669600 CBB 1A (A 1)A 1AEFC BB 1图1图2ABFC D G E45º 60ºA PC O BED 22.(8分)徒骇河风景区建设是今年我市重点工程之一.某工程公司承担了一段河底清淤任务,需清淤4万方,清淤1万方后,该公司为提高施工进度,又新增一批工程机械参与施工,工效提高到原来的2倍,共用25天完成任务.问该工程公司新增工程机械后每天清淤多少方?23.(8分)如图,AB 是半圆的直径,点O 是圆心,点C 是OA 的中点,CD ⊥OA 交半圆于点D ,点E 是BD⌒的中点,连接AE 、OD ,过点D 作DP ∥AE 交BA 的延长线于点P .(1)求∠AOD 的度数;(2)求证:PD 是半圆O 的切线.24.(10分)如图,已知一次函数y =kx +b 的图象交反比例函数42(0)my x x-=>的图象于点A 、B ,交x 轴于点C . (1)求m 的取值范围;(2)若点A 的坐标是(2,-4),且BC AB = 13,求m 的值和一次函数的解析式.25.(12分)如图,在矩形ABCD 中,AB =12cm ,BC =8cm .点E 、F 、G 分别从点A 、B 、C 同时出发,沿矩形的边按逆时针方向移动,点E 、G 的速度均为2cm/s ,点F 的速度为4cm/s ,当点F 追上点G (即点F 与点G 重合)时,三个点随之停止移动.设移动开始后第t s 时,△EFG 的面积为S cm 2. (1)当t =1s 时,S 的值是多少?(2)写出S 与t 之间的函数解析式,并指出自变量t 的取值范围;(3)若点F 在矩形的边BC 上移动,当t 为何值时,以点B 、E 、F 为顶点的三角形与以C 、F 、G 为顶点的三角形相似?请说明理由。
山东省十三地市2011年中考数学试卷汇编(共8份有详解)
2011年烟台市初中学生学业考试数 学 试 题说明:1.本试题分为Ⅰ卷和Ⅱ卷两部分,第Ⅰ卷为选择题,第Ⅱ卷为非选择题.考试时间120分钟,满分150分.2.答题前将密封线内的项目填写清楚.3.考试过程中允许考生进行剪、拼、折叠等实验.第Ⅰ卷注意事项:请考生将自己的姓名、准考证号、考试科目涂写在答题卡上.每小题选出答案后,用2B 铅笔把答题卡对应题目的答案标号涂黑,如要改动,必须用橡皮擦干净,再选涂其它答案.一、选择题(本题共12个小题,每小题4分,共48分)每小题都给出标号为A ,B ,C ,D 四个备选答案,其中有且只有一个是正确的......... 1. (2011山东烟台,1,4分) (-2)0的相反数等于( )A.1B.-1C.2D.-2【答案】B【思路分析】(-2)0=1,1的相反数是-1,故选B.【方法规律】此题考查实数的基础知识. 任何非零数的零次幂为1;互为相反数两数符号相反,绝对值相同.【易错点分析】对零次幂的意义把握不牢,可致错. 【关键词】实数:零次幂,相反数 【难度】★☆☆☆☆ 【题型】常规题2. (2011山东烟台,2,4分) 从不同方向看一只茶壶,你认为是俯视效果图的是( )【答案】A【思路分析】俯视图是从上面看到的平面图形,也是在水平投影面上的正投影. 易判断选A.AB CD【方法规律】此题考查三视图的判断. 试题选材生活,给试卷平添亮点,具有一定的吸引力.解此类题需具有将立体图形与平面图形相互转化的能力. 画物体的三视图时,应遵循这样的画图规则:“主、俯两图长对正,主、左两图高平齐,左、俯两图宽相等”.另外要注意看得见部分的轮廓线画成实线,看不见部分的轮廓线画成虚线.【易错点分析】易忽略应有的轮廓线.【关键词】三视图【难度】★☆☆☆☆【题型】常规题,新题3.(2011山东烟台,3,4分)下列计算正确的是()A.a2+a3=a5B. a6÷a3=a2C. 4x2-3x2=1D.(-2x2y)3=-8 x6y3【答案】D【思路分析】A不能合并;B结果应为a3;C 结果应为x2;D正确. 故选D【方法规律】此题考查整式运算的基础知识,需全面掌握合并同类项、幂的运算等整式运算的基础知识.【易错点分析】A、B、C三个选项都有可能误选.【关键词】整式运算:合并同类项,幂的运算性质.【难度】★☆☆☆☆【题型】常规题4. (2011山东烟台,4,4分)不等式4-3x≥2x-6的非负整数解有()A.1 个B. 2 个C. 3个D. 4个【答案】C【思路分析】解不等式得x≤2,其非负整数解为0,1,2,故选C.【方法规律】此题考查一元一次不等式的解法及特殊解的判断. 需会解一元一次不等式,会判断其特殊解.【易错点分析】易忽略0,误选B.【关键词】一元一次不等式解法,特殊解【难度】★☆☆☆☆【题型】常规题5. (2011山东烟台,5,4分)如果2(21)12a a-=-,则()A.a<12B. a≤12C. a>12D. a≥12【答案】B【思路分析】因为二次根式具有非负性,所以1-2a≥0,解得a≤12,故选B.【方法规律】此题考查二次根式性质及其应用,同时考查不等式的解法. 当a≥0时,2a=a;当a<0时,2a=-a.此题可直接利用非负性列不等式求解. 具有非负思想是解此类题的关键.【易错点分析】对知识掌握不灵活,错列不等式,误选B.【关键词】二次根式的非负性【难度】★★☆☆☆【题型】常规题,易错题6. (2011山东烟台,6,4分)如图,梯形ABCD 中,AB ∥CD ,点E 、F 、G 分别是BD 、AC 、DC 的中点. 已知两底差是6,两腰和是12,则△EFG 的周长是( )A.8B.9C.10D.12【答案】B【思路分析】连BF 与DC 相交,易证EF 等于两底差的一半;由三角形中位线定理,可得EG +FG 等于两腰和的一半. 这样可得△EFG 的周长是9,故选B.【方法规律】此题考查三角形中位线定理,及梯形知识. 灵活添加辅助线,得到“两对角线中点的连线是两底差的一半”是解此题关键,另外具有整体思想,也是解此类题所必不可少的思想方法.【易错点分析】因不会解致错. 【关键词】三角形中位线,梯形 【难度】★★☆☆☆ 【题型】常规题7. (2011山东烟台,7,4分)如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m 和8m.按照输油中心O 到三条支路的距离相等来连接管道,则O 到三条支路的管道总长(计算时视管道为线,中心O 为点)是( )A2m B.3m C.6m D.9m【答案】C 【思路分析】此题可转化为求三角形内切圆的半径. 由勾股定理可得斜边为10,设内切圆半径为r ,则利用面积法可得:12r(6+8+10)=12×6×8,解得r=2. 从而管道为2×3=6(m ),故选C.O(第7题图)A B CDEFG(第6题图)【方法规律】命题者独具匠心,试题设计新颖别致,为试卷又一亮点. 解此题需具有一定的数学功底,能够进行数学建模,并巧用面积法解题,或利用切线长定理解决.【易错点分析】因不会致错.【关键词】三角形内切圆,勾股定理【难度】★★☆☆☆【题型】新题8. (2011山东烟台,8,4分)体育课上测量立定跳远,其中一组六个人的成绩(单位:米)分别是:1.0,1.3,2.2,2.0,1.8,1.6,,则这组数据的中位数和极差分别是()A.2.1,0.6B. 1.6,1.2C.1.8,1.2D.1.7,1.2【答案】D【思路分析】将数据按顺序排列:1.0,1.3,1.6,1.8,2.0,2.2,易判断中位数为1.6 1.82=1.7;极差为2.2-1.0=1.2. 故选D.【方法规律】此题考查统计量的计算. 掌握中位数、极差的概念即可获解.【易错点分析】易忽略将数据按大小顺序排列,误选A.【关键词】统计量:中位数,极差【难度】★☆☆☆☆【题型】常规题9. (2011山东烟台,9,4分)如果△ABC中,sin A=cos B=22,则下列最确切的结论是()A. △ABC是直角三角形B. △ABC是等腰三角形C. △ABC是等腰直角三角形D. △ABC是锐角三角形【答案】C【思路分析】因为sin A=cos B=22,所以∠A=∠B=45°,所以△ABC是等腰直角三角形.故选C.【方法规律】此题考查特殊角的三角函数,及三角形的分类. 掌握特殊角的三角函数值即可获解.【易错点分析】易判断不全面,可能误选A或B.【关键词】特殊角的三角函数,三角形分类.【难度】★☆☆☆☆【题型】常规题10. (2011山东烟台,10,4分)如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是()A.m=n,k>h B.m=n ,k<hC.m>n,k=h D.m<n,k=h【答案】A 【思路分析】由两抛物线的解析式可判断其顶点坐标,再根据坐标意义即可判断答案选A【方法规律】此题主要考查二次函数的基础知识,会根据顶点式判断出顶点坐标便易获解.【易错点分析】有可能混淆横、纵坐标,误选D. 【关键词】二次函数 【难度】★☆☆☆☆ 【题型】常规题11. (2011山东烟台,11,4分)在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有( )A. 1 个B. 2 个C.3 个D. 4个【答案】C【思路分析】利用图象可判断①②④正确,③错误,故选C.【方法规律】此题赋常规题以新背景,体现了数学与现实生活的紧密联系性. 试题考查函数图象的识别. 解题关键是能够将实际问题情境与函数图象相互转换,能够从图象的横、纵两个方向分别获取信息,判断相应的实际意义.【易错点分析】误判①错误,从而错选B. 【关键词】函数图象 【难度】★☆☆☆☆ 【题型】常规题12. (2011山东烟台,12,4分) 如图,六边形ABCDEF 是正六边形,曲线2乙甲乙甲815105 1.510.5Ox /时y/千米(第11题图)20FK 1K 2K 3K 4K 5K 6K 7……叫做“正六边形的渐开线”,其中1FK ,12K K ,23K K ,34K K ,45K K ,56K K ,……的圆心依次按点A ,B ,C ,D ,E ,F 循环,其弧长分别记为l 1,l 2,l 3,l 4,l 5,l 6,…….当AB =1时,l 2 011等于( )A.20112πB. 20113πC. 20114πD. 20116π【答案】B【思路分析】可以发现规律:每段弧的度数都等于60°,1n n K K -的半径为n ,所以l 2 011 =602011180π⨯=20113π.【方法规律】此题考查弧长计算,正六边形知识,以及规律探索的能力,为本卷亮点试题. 从简单的特殊情形中探索得到变化规律是解此类题的关键.【易错点分析】规律归纳错误 【关键词】弧长计算,规律探索 【难度】★☆☆☆☆【题型】新题,规律探索题第Ⅱ卷二、填空题(本题共6个小题,每小题4分,满分24分).13. (2011山东烟台,13,4分)微电子技术的不断进步,使半导体材料的精细加工尺寸大幅度缩小.某种电子元件的面积大约为0.000 000 7平方毫米,用科学记数法表示为 平方毫米.【答案】7×10-7【思路分析】0.000 000 7=7×10-7,故填7×10-7.【方法规律】此题考查科学记数法. 此类试题一般背景新颖,与时俱进,解题需掌握科学记数法的形式10n a ⨯,及a 的取值范围,n 的确定方法.【易错点分析】可能忽略指数中的负号,误写成7×107 【关键词】实数:科学记数法 【难度】★☆☆☆☆ 【题型】常规题14. (2011山东烟台,14,4分)等腰三角形的周长为14,其一边长为4,那么,它的底边为 .【答案】4或6(第12题图)A B CD EF K 1 K 2K 3K 4K 5K 6K 7【思路分析】此题应分两种情况讨论,4可能为底边,也可能为腰长,且两种情况都成立.【方法规律】此题考查等腰三角形的概念,三角形三边关系,及分类讨论思想. 解题关键明确此类题需分类讨论,且注意检验各情况是否成立.【易错点分析】忽略4是底边的情况,只填6. 【关键词】等腰三角形,三角形三边关系. 【难度】★☆☆☆☆ 【题型】常规题15. (2011山东烟台,15,4分)如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是 .【答案】12【思路分析】易判断黑色部分的面积为大圆的一半,故填12. 【方法规律】此题考查概率的简单计算. 对于此类几何概型问题,按照公式:()A P A 事件所有可能结果所组成的图形面积所有可能结果所组成的图形面积计算即可.【易错点分析】一般不会出错. 【关键词】概率 【难度】★☆☆☆☆ 【题型】常规题16. (2011山东烟台,16,4分)如图,△ABC 的外心坐标是__________.【答案】(-2,-1)【思路分析】三角形的外心为三边垂直平分线的交点,观察图形,画出AB 、BC 的垂直平分线,即可获解.【方法规律】此题综合考查三角形外心、平面直角坐标系等的知识. 解题关键是掌握三角形的外心为三边(任选两边)垂直平分线的交点,能利用网格特点,画出两边的垂直平分线.【易错点分析】对外心概念不掌握致错. 【关键词】三角形的外心 【难度】★☆☆☆☆ 【题型】操作题17. (2011山东烟台,17,4分)如图,三个边长均为2的正方形重叠在一起,O 1、O 2是其中两个正方形的中心,则阴影部分的面积是.(第15题图)O xyB CA (第16题图)【答案】2【思路分析】正方形为旋转对称图形,绕中心旋转每90°便与自身重合. 可判断每个阴影部分的面积为正方形面积的14,这样可得答案填2.【方法规律】此题考查正方形的旋转对称性. 解题关键是掌握正n 边形旋转360n︒与自身重合.【易错点分析】不掌握其中规律,不会做. 【关键词】正方形 【难度】★★★☆☆ 【题型】运动变换题18. (2011山东烟台,18,4分)通过找出这组图形符号中所蕴含的内在规律,在空白处的横线上填上恰当的图形.【答案】【思路分析】观察图形,可发现规律:每个图形都是由两个英文大写字母构成的轴对称图形,且按顺序排列,其中奇数位置上下对称,偶数位置为左右对称.【方法规律】此题同12题,都是典型题变式而来,都属规律探索题. 考查规律探索能力,及轴对称的知识. 发现其中变化规律是解题关键.【易错点分析】因发现不了其中规律,或归纳规律不全面而致错. 【关键词】探索规律 轴对称 【难度】★★★★☆ 【题型】探索规律三、解答题(本大题共8各小题,满分78分). 19. (2011山东烟台,19,6分)先化简再计算:22121x x x x x x --⎛⎫÷- ⎪+⎝⎭,其中x 是一元二次方程2220x x --=的正数根. 【解】原式=2(1)(1)21(1)x x x x x x x +--+÷+=21(1)x x x x -⋅-=11x -. 解方程得2220x x --=得, 1130x =+>,2130x =-<.(第17题图) O 2O 1所以原式=1131+-=13(或33). 【思路分析】应先进行分式的化简运算,再解一元二次方程,求出其正解,最后代值计算.【方法规律】此题综合考查分式计算,一元二次方程的解法,代数式的求值. 掌握相关计算方法即可获解.【易错点分析】“-”号处理错误,导致分式化简,解方程错误. 最易出错是21x x x --的化简.【关键词】分式计算,解一元二次方程,代数式求值 【难度】★★☆☆☆ 【题型】计算题20. (2011山东烟台,20,8分)小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60米,下坡路每分钟走80米 ,上坡路每分钟走40米,从家里到学校需10分钟,从学校到家里需15分钟.请问小华家离学校多远?【解】设平路有x 米,坡路有y 米 10,608015.6040x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩解这个方程组,得 300,400.x y =⎧⎨=⎩所以x +y =700.所以小华家离学校700米.【思路分析】由题目中的两个等量关系“从家里到学校需10分钟,从学校到家里需15分钟”可列二元一次方程组求解.【方法规律】此题考查利用列方程解决实际问题. 找到等量关系,并明确基础数量关系:时间=路程/速度,便可列出方程组解决.【易错点分析】不会列方程组 【关键词】二元一次方程组的应用 【难度】★★☆☆☆ 【题型】实际应用题21. (2011山东烟台,21,8分)综合实践课上,小明所在小组要测量护城河的宽度。
山东省聊城市中考数学真题试题(含解析)
一、选择题(共12小题,每小题3分,满分36分) 1. ( 3分)(2015?聊城)-丄的绝对值等于()3考平行线的判定与性质.• 占: 八、、♦分 根据同位角相等,两直线平行这一定理可知 a // b ,再根据两直线平行,同旁内角互补析:即可解答.解 解:•••/ 仁/ 2=58°, 答:••• a / b ,•••/ 3+Z 5=180°,即/5=180°—/ 3=180°- 70° =110°,•••/ 4=/ 5=110°, 故选C.A . -3 B. 3 C.—D.1考 绝对值..占:分 根据当a 是负有理数时,a 的绝对值是它的相反数-a 可得答案.析:解 解:-丄的绝对值等于J1,答:33故选D.占 八本题主要考查了绝对值,关键是掌握①当 a 是正有理数时, a 的绝对值是它本身 a ; 评: 当a 是负有理数时,a 的绝对值是它的相反数- a ;③当a 是零时, a 的绝对”值是零2.( 3分)(2015?聊城)直线a 、b 、c 、d 的位置如图所示,如果/ 1=58°, / 2=58°, / 3=70° 那么/4等于( )②C. 110D. 116点本题主要考查了平行线的判定和性质,对顶角相等,熟记定理是解题的关键.评:3. (3分)(2015?聊城)电视剧《铁血将军》在我市拍摄,该剧展示了抗日英雄范筑先的光辉形象•某校为了了解学生对“民族英雄范筑先”的知晓情况,从全校2400名学生中随机抽取了100名学生进行调查•在这次调查中,样本是()A. 2400名学生B. 100名学生C. 所抽取的100名学生对“民族英雄范筑先”的知晓情况D. 每一名学生对“民族英雄范筑先”的知晓情况考点:总体、个体、样本、样本容量.分析:首先判断出这次调查的总体是什么,然后根据样本的含义:从总体中取出的一部分个体叫做这个总体的一个样本,可得在这次调查中,样本是所抽取的100名学生对“民族英雄范筑先”的知晓情况,据此解答即可.解答:解:根据总体、样本的含义,可得在这次调查中,总体是:2400名学生对“民族英雄范筑先”的知晓情况,样本是:所抽取的100名学生对“民族英雄范筑先”的知晓情况.故选:C.点评:此题主要考查了总体、个体、样本、样本容量的含义和应用,要熟练掌握,解答此题的关键是要明确:①总体:我们把所要考察的对象的全体叫做总体;②个体:把组成总体的每一个考察对象叫做个体;③样本:从总体中取出的一部分个体叫做这个总体的一个样本;④样本容量:一个样本包括的个体数量叫做样本容量.4. (3分)(2015?聊城)某几何体的三视图如图所示,这个几何体是()A. 圆锥B.圆柱C.三棱柱D.三棱锥考由三视图判断几何体.•占:八、、♦分由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状. 析:解解:由主视图和左视图为三角形判断出是锥体,答:由俯视图是圆形可判断出这个几何体应该是圆锥.故选:A.点考查了由三视图判断几何体,主视图和左视图的大致轮廓为三角形的几何体为锥体, 评:俯视图为圆就是圆锥.5. (3分)(2015?聊城)下列运算正确的是()2 3 5 3、 2 6A. a +a =aB. ( - a )=aC. ab2?3a2b=3a2b2D. - 2a6-a2=- 2a3考点:单项式乘单项式;合并同类项;幕的乘方与积的乘方;整式的除法. 分析:根据合并同类项法则、幕的乘方、单项式乘除法的运算方法,利用排除法求解. 解答:解:A a2与a3不是同类项,不能合并,故本选项错误;B、(- a3)2=a6,正确;C、应为ab2?3a2b=3a3b3,故本选项错误;D、应为-2a6+a2=- 2a4,故本选项错误.故选:B.点评:本题主要考查了合并同类项的法则,幕的乘方的性质,单项式的乘除法法则,熟练掌握运算法则是解题的关键.6. (3分)(2015?聊城)不等式x-3W 3x+1的解集在数轴上表示如下,其中正确的是()考在数轴上表示不等式的解集;解一元一次不等式.占:八、、♦分不等式移项,再两边同时除以2,即可求解.析:解答.解:不等式得:x>- 2,其数轴上表示为:-故选B点本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号评:这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.7. (3分)(2015?聊城)下列命题中的真命题是()A. 两边和一角分别相等的两个三角形全等B. 相似三角形的面积比等于相似比C. 正方形不是中心对称图形D. 圆内接四边形的对角互补考点:命题与定理.•分析:直接根据全等三角形的判定定理、相似三角形的性质、中心对称图形的定义以及圆内接四边形的性质对各个选项作出判断即可.解答:解:A、两边和一角分别相等的两个三角形全等,这个角不一定是已知两边的夹角,此选项错误;B、相似三角形的面积比等于相似比的平方,此选项错误;C、正方形是中心对称图形,此选项错误;D圆内接四边形的对角互补,此选项正确;故选D.点评:本题主要考查了命题与定理的知识,解答本题的关键是熟练掌握全等三角形的判定、相似三角形的性质、中心对称图形的定义以及圆内接四边形的性质,此题难度不大.& ( 3分)(2015?聊城)为了了解一路段车辆行驶速度的情况,交警统计了该路段上午7::0至9:00来往车辆的车速(单位:千米/时),并绘制成如图所示的条形统计图.这些车速的众数、中位数分别是()A. 众数是80千米/时,中位数是60千米/时B. 众数是70千米/时,中位数是70千米/时C. 众数是60千米/时,中位数是60千米/时D. 众数是70千米/时,中位数是60千米/时考点:众数;条形统计图;中位数.分析:在这些车速中,70千米/时的车辆数最多,则众数为70千米/时;处在正中间位置的车速是60千米/时,则中位数为60千米/时•依此即可求解.解答:解:70千米/时是出现次数最多的,故众数是70千米/时,这组数据从小到大的顺序排列,处于正中间位置的数是60千米/时,故中位数是60千米/时.故选:D.点评:本题考查了条形统计图;属于基础题,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.9. (3分)(2015?聊城)图(1)是一个小正方体的表面展开图,小正方体从图(2)所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上一面的字是()A. 梦B.水C.城D.美考专题:正方体相对两个面上的文字.占:八、、♦分根据两个面相隔一个面是对面,再根据翻转的规律,可得答案.析:解解:第一次翻转梦在下面,第二次翻转中在下面,第三次翻转国在下面,第四次翻转答:城在下面,城与梦相对,故选:A.点本题考查了正方体相对两个面上的文字,两个面相隔一个面是对面,注意翻转的顺序评:确定每次翻转时下面是解题关键.10. (3分)(2015?聊城)湖南路大桥于今年5月1日竣工,为徒骇河景区增添了一道亮丽的风景线.某校数学兴趣小组用测量仪器测量该大桥的桥塔高度,在距桥塔AB底部50米的C处,测得桥塔顶部A的仰角为41.5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2
a b c
2011年山东省聊城市中考数学试题
一、选择题(本大题共12小题,每小题3分,满分36分)
1.-3的绝对值是【 】
A .-3
B .3
C . 1 3
D .- 1
3
2
.如图,空心圆柱的左视图是【 】
3.今年5月,我市第六次人口普查办公室发布了全市常住人口为
578.99万人,用科学记数法可表示(保留2个有效数字)为【 】
A .58×105人
B .5.8×105人
C .5.8×106人
D .0.58×107人
4.如图,已知a ∥b ,∠1=50º,则∠2=【 】
A .40º
B .50º
C .120º
D .130º
5.下列运算不正确的是【 】 A .a 5+a 5=2a 5 B .(-2a 2)3=-2a 6 C .2a 2·a -1=2a D .(2a 3-a 2)÷a 2=2a -1
6.下列事件属于必然事件的是【 】 A .在1个标准大气压下,水加热到100ºC 沸腾 B .明天我市最高气温为56ºC C .中秋节晚上能看到月亮 D .下雨后有彩虹
7.已知一个菱形的周长是20cm ,两条对角线的比为4∶3,则这个菱形的面积是【 】 A .12cm 2 B .24cm 2 C .48cm 2 D .96cm 2 8.某小区20户家庭的日用电量(单位:千瓦时)统计如下:
日用电量(单位:千瓦时)
4
5
6
7
8
10
户数
1 3 6 5 4 1
这20户家庭日用电量的众数、中位数分别是【 】
A .6,6.5
B .6,7
C .6,7.5
D .7,7.5 9.下列四个图象表示的函数中,当x <0时,函数值y 随自变量x 的增大而减小的是【 】
10.如图,用围棋子按下面的规律摆图形,则摆第n
个
图形需要围棋子的枚数为【 】 A .5n B .5n -1 C .6n -1
x x x x y
y
y
y
O O O O A .
B .
C .
D .
A .
B .
C .
D . n =1
n =2
n =3
…
A B O A B α O A B C y x
4 6 D .2n 2+1
11.如图,矩形OABC 的顶点O 是坐标原点,边OA 在x 轴上,边OC 在y 轴上.若矩形
OA 1B 1C 1与矩形OABC 关于点O 位似,且矩形OA 1B 1C 1的面积等于矩形OABC
面积的 1
4
,则点B 1的坐标是【 】
A .(3,2)
B .(-2,-3)
C .(2,3)或(-2,-3)
D .(3,2)或(-3,-2)
12.某公园草坪的防护栏由100段形状相同的抛物线形构件组成,为了牢固起见,每段护栏
需要间距0.4m 加设一根不锈钢的支柱,防护栏
的最高点距底部0.5m (如图),则这条防护栏需要不锈钢支柱的总长度至少为【 】
A .50m
B .100m
C .160m
D .200m
二、填空题(本大题共5小题,每小题3分,满分15分)
13.化简:20-5= .
14.如图,在□ABCD 中,AC 、BD 相交于点O ,点E 是AB 的中点. 若OE =3cm ,则AD 的长是 cm .
15.化简: a 2-b 2
a 2+2a
b +b 2 ÷ 2a -2b
a +b
= . 16.如图,圆锥的底面半径OB =10cm ,它的侧面展开图的扇形
的半径AB =30cm ,则这个扇形圆心角α的度数是 .
17.某校举行物理实验操作测试,共准备了三项不同的实验,要求每位学生只参加其中的一
项实验,由学生自己抽签确定做哪项实验.在这次测试中,小亮和大刚恰好做同一项实验的概率是 .
三、解答题(本大题共8小题,满分69分)
18.(7分)解方程:x (x -2)+x -2=0.
19.(8分)今年“世界水日”的主题是“城市用水:应对都市化挑战”.为了解城市居民用
水量的情况,小亮随机抽查了阳光小区50户居民去年每户每月的用水量,将得到的数据整理并绘制了这50户居民去年每月总用水量的折线统计图和频数、频率分布表如下: (1)表中a = ,d = .
(2)这50户居民每月总用水量超过550m 3的月份占全年月份的百分率是多少(精确到1%)?
(3)请根据折线统计图提供的数据,估计该小区去年每户居民平均月用水量是多少?
A E
B C
D O 2
0.5 0.4 单位:m
20.(8分)将两块大小相同的含30º角的直角三角板(∠BAC =∠B 1A 1C =30º)按图1的方式
放置,固定三角板A 1B 1C ,然后将三角板ABC 绕直角顶点C 顺时针方向旋转(旋转角小于90º)至图2所示的位置,AB 与A 1C 交于点E ,AC 与A 1B 1交于点F ,AB 与A 1B 1交于点O .
(1)求证:△BCE ≌△B 1CF ; (2)当旋转角等于30º时,AB 与A 1B 1垂直吗?请说明理由.
组别 频数 频率
350<x ≤400 1
1
12
400<x ≤450 1 1
12
450<x ≤500 2
1
6
500<x ≤550 a b 550<x ≤600 c d 600<x ≤650 1 1
12
650<x ≤700 2
1
6
x 表示50户居民月总用水量(m 3) 月份
1 2 3 4 5 6 7 8 9 10 11 12 月总用水量(m 3) O
350 400 450 500 550 600 650 700 378
648
489 456
345
550 574
423
689 536
669
600 C B
B 1
A (A 1)
A 1
A
E
F
C B
B 1
图1
图2
A P C O B
E
D 21.(8分)被誉为东昌三宝之首的铁塔,始建于北宋时期,是我
市现存的最古老的建筑.铁塔由塔身和塔座两部分组成.为了测得铁塔的高度,小莹利用自制的测角仪,在C 点测得塔顶E 的仰角为45º,在D 点测得塔顶E 的仰角为60º.已知测角仪AC 的高为1.6m ,CD 的长为6m ,CD 所在的水平线CG ⊥EF 于点G .求铁塔EF 的高(精确到0.1m ).
22.(8分)徒骇河风景区建设是今年我市重点工程之一.某工程公司承担了一段河底清淤任
务,需清淤4万方,清淤1万方后,该公司为提高施工进度,又新增一批工程机械参与施工,工效提高到原来的2倍,共用25天完成任务.问该工程公司新增工程机械后每天清淤多少方?
23.(8分)如图,AB 是半圆的直径,点O 是圆心,点C 是OA 的中点,CD ⊥OA 交半圆于
点D ,点E 是BD ⌒
的中点,连接AE 、OD ,过点D 作DP ∥AE 交BA 的延长线于点P .
(1)求∠AOD 的度数;
(2)求证:PD 是半圆O 的切线.
A B F
C D G
E
45º 60º
24.(10分)如图,已知一次函数y =kx +b 的图象交反比例
函数
y = 4-2m
x
(x >0)的图象于点A 、B ,交x 轴于点C .
(1)求m 的取值范围;
(2)若点A 的坐标是(2,-4),且
BC AB = 1
3
,求m 的值和一
次函数的解析式.
25.(12分)如图,在矩形ABCD 中,AB =12cm ,BC =8cm .点E 、F 、G 分别从点A 、B 、
C 同时出发,沿矩形的边按逆时针方向移动,点E 、G 的速度均
为2cm/s ,点F 的速度为4cm/s ,当点F 追上点G (即点F 与点G
重合)时,三个点随之停止移动.设移动开始后第t s 时,△EFG 的面积为S cm 2.
(1)当t =1s 时,S 的值是多少?
(2)写出S 与t 之间的函数解析式,并指出自变量t 的取值范围;
(3)若点F 在矩形的边BC 上移动,当t 为何值时,以点B 、E 、F
为顶点的三角形与以C 、F 、G 为顶点的三角形相似?请说明理由
.
A E
B
F
C
G D
O C
B
A
x
y
2 -4。