七年级数学上册1.2展开与折叠练习题北师大版精
七年级数学上册 第一章 2展开与折叠例题与讲解 北师大版
2 展开与折叠1.棱柱的表面展开图棱柱是由两个完全相同的多边形底面和一些长方形侧面围成的.沿棱柱表面不同的棱剪开就可以得到不同的表面展开图.如图是棱柱的一种展开图.棱柱的表面展开图是两个完全相同的多边形(底面)和几个长方形(侧面).【例1】如图,请你在横线上写出哪种立体图形的表面能展开成下面的图形.解析:(1)三棱柱两个底面是三角形(2)六棱柱两个底面是六边形(3)长方体两个底面是长方形(4)三棱柱两个底面是三角形答案:三棱柱2.圆柱、圆锥的表面展开图(1)圆柱的表面展开图沿着圆柱的一条高把圆柱剪开,就得到圆柱的表面展开图.圆柱的表面展开图是两个圆(底面)和一个长方形(侧面),如图所示.如果两个底面圆在长方形的同一侧(如图所示),折叠后上端没有底,下端有两个底,则它不能折叠成圆柱.(2)圆锥的表面展开图如图所示,圆锥的表面展开图是一个圆(底面)和一个扇形(侧面).【例2】如图所示图形都是几何体的展开图,你能说出这些几何体的名称吗?分析:主要根据顶点、棱、面的数量及侧面展开图的形状进行判断.解:圆锥、圆柱、五棱柱.3.平面图形的折叠平面图形沿某些直线折叠可以围成一定形状的立体图形,与立体图形展开成平面图形是一个互逆过程.我们已经见过很多平面图形了,但并不是所有的平面图形都能折成几何体.根据平面展开图判断立体图形的方法:(1)能够折叠成棱柱的特征:①棱柱的底面边数=侧面的个数.②棱柱的两个底面要分别在侧面展开图的两侧.(2)圆柱的表面展开图一定是两个相同的圆形和一个长方形.(3)圆锥的表面展开图一定是一个圆形和一个扇形.(4)能够折叠成正方体的特征:①6个面都是完全相同的正方形.②正方体展开图连在一起的(指在同一条直线上的)正方形最多只能为4个.③以其中1个为底面,前、后、左、右、上面都有,且不重叠.4.正方体展开图上的数字问题正方体是立体图形的展开与折叠的代表图形,与正方体的展开图有关的数字问题主要是相对面的找法,确定了三组相对面,数字问题便可迎刃而解.正方体的平面展开图共有11种,可分为四类:(1)1-4-1型相对面的确定:①第一行与第三行的正方形是相对面;②中间一行的4个正方形中,相隔一个是相对面.(2)1-3-2型相对面的确定:①第一行的正方形与第三行的左边第1个正方形是相对面;②中间一行第1个与第3个为相对面;第2个与第三行第2个为相对面.(3)2-2-2型相对面的确定:①第一行的第1个与第二行的第2个是相对面;②第二行第1个与第三行的第2个是相对面;③第三行的第1个与第一行的第2个为相对面.(4)3-3型相对面的确定:①第一行的第1个与第3个为相对面;②第二行的第1个与第3个为相对面;③第一行的第2个与第二行的第2个为相对面.【例3-1】如图所示,哪些图形经过折叠可以围成一个棱柱?分析:(1)底面是四边形,侧面有3个,显然与三棱柱、四棱柱的特征不符;(3)的两个底面在侧面同侧,折叠后也不能围成棱柱;(2)(4)折叠后可以围成棱柱.解:(2)(4)可以.【例3-2】生活中我们经常可以见到各种各样的包装盒,你能用线将图中的实物和它的平面展开图连接起来吗?分析:根据能折叠成不同几何体的特征去判断即可.解:如图所示.【例4-1】如图所示,假定用A,B表示正方体相邻的两个面,用字母C表示与A相对的面,请在下面的正方体展开图中填写相应的字母.分析:先判断属于哪种类型,再确定相对面.前三种的相对面都是隔一个即可;第四种的A与上面第一行中的第2个是相对面.解:如图所示.【例4-2】要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为6,则x=__________,y=__________.解析:这里关键是要找到相对的面,折叠之后可知,x与1相对,所以x=5,y与3相对,所以y=3.答案:5 3【例4-3】小丽制作了一个对面图案均相同的正方体礼品盒(如图所示),则这个正方体礼品盒的平面展开图可能是( ).___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________解析:这个正方体的平面展开图属于1-4-1型的,根据规律可知,第一行的与第三行的为相对面,中间一行的第1个与第3个、第2个与第4个为相对面,故应选A.答案:A5.表面展开图的应用正方体与图案正方体前面、上面、右面有不同的图案,按不同的类型展开后,其图案也会发生相应的变化.根据展开图判断是否与模型对应的方法:(1)三个面上的不同图案不会对立,所以可排除三种图案对立的情况;(2)位置判断:相邻三个面的图案位置是否一致.当前面和上面的图案确定位置后,另一个图案是在左面还是右面,图案放置的角度是否正确.【例5】图中给出的是哪个正方体的展开图?( ).解析:显然带有黑色的面是相对的面,所以A,B错误.又因为两个黑色小正方形应该是相对的,所以选D.答案:D。
展开与折叠 同步练习北师大版七年级数学上册
北师大版七上 1.2 展开与折叠一、选择题(共15小题)1. 如图是一个正方体的表面展开图,若折叠成正方体后相对面上的两个数互为相反数,则x,y,z的值分别为( )A. 2,−3,−10B. −10,2,−3C. −10,−3,2D. −2,3,−102. 如图所示的立体图形,它的展开图是( )A. B.C. D.3. 下列图形中,是圆锥的侧面展开图的为( )A. B.C. D.4. 下列四个图形中是三棱柱的表面展开图的是( )A. B.C. D.5. 如图,如果把一个圆锥的侧面沿图示中的线剪开,则得到的图形是( )A. 三角形B. 圆C. 圆弧D. 扇形6. 如图所示的图形,是下面哪个正方体的展开图( )A. B.C. D.7. 如图中的圆柱体,表面展开后得到的平面图形是( )A. B.C. D.8. 下图所示是一个三棱柱纸盒,在下面四个图中,只有一个是这个纸盒的展开图,那么这个展开图是( )A. B.C. D.9. 如图为一直棱柱,其底面是三边长分别为5,12,13的直角三角形.若下列选项中的图形均由三个长方形与两个直角三角形组合而成,且其中一个为如图所示的直棱柱的展开图,则根据图形中标示的边长与直角符号判断,此展开图为( )A. B.C. D.10. 如图所示的正方体的展开图是( )A. B.C. D.11. 如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是( )A. B.C. D.12. 某个几何体的展开图如图所示,该几何体是( )A.长方体B.圆柱体C.球体D.圆锥体13. 一个正方体的六个面上分别写有六个字“建”、“设”、“生”、“态”、“密”、“云”.将这个正方体展开后如图所示,则该正方体在展开前,与“建”字所在面相对的面上的字是( )A. 生B. 态C. 密D. 云14. 如图是某种几何体的表面展开图,这个几何体是( )A. 圆锥B. 球C. 圆柱D. 棱柱15. 如图中,不可能围成正方体的是()A. B.C. D.二、填空题(共10小题)16. 若要使图中平面展开图折叠成正方体后,相对面上两个数之和为6,则x+y=.17. 小明用如图所示的胶滚沿从左到右的方向将图案滚涂到墙上,下列给出的四个图案中,符合图示胶滚涂出的图案是.(填写序号)18. 一个几何体的表面展开图如图所示,则这个几何体是.19. 长方体的表面沿某些棱剪开,展开成平面图形,共有个形,其中剪的过程中,需要剪条棱.20. 如图是一个没有完全剪开的正方体,若再剪开一条棱,则得到的平面展开图可能是下列六种图中的.(填写字母)21. 下列各图是几何体的表面展开图,请写出对应的几何体的名称.①②③22. 如图是正方体的展开图,则原正方体相对两个面上的数字和的最大值是.23. 如图所示的两个平面图形分别是两种包装盒的展开图,这两个包装盒的形状分别是,.24. 圆柱的侧面展开图是形.25. 一个正方体的展开图已有一部分(如图),还有一个正方形未画,现有10个位置可供选择,请问:放在哪些位置能围成正方体,放在哪些位置不能围成正方体?仔细观察下图,或许你还要动手做做呢!放在可围成正方体,放在不可以围成正方体.三、解答题(共5小题)26. 如图,在一个正方体的上面、前面、右面分别标有数字1,2,3.1的对面标有数字4,2的对面标有数字5,3的对面标有数字6.(1)求与数字3所在平面垂直的面的数字之积.(2)如果与一个面垂直的面上的数字之和是14,那么这个面上的数字是多少?27. 给出一张正方形纸片(见图),要求将其剪拼成一个上、下底面均为正方形的直四棱柱模型,使它的表面积与原正方形的面积相等.请设计一种剪拼方法,在图中用虚线标示,并作简要说明.28. 四棱柱按如图所示粗线剪开一些棱,展成平面图形,请画出平面图.29. 将一个正方体的表面沿某些棱剪开,展成以下平面图形,先想一想,再动手剪.30. 下图是一个几何体的侧面展开图.(1)请写出这个几何体的名称;(2)根据图中所标的尺寸,计算这个几何体的侧面积.答案1. B 【解析】x与10为对面,y与−2为对面,z与3为对面,∴x=−10,y=2,z=−3.2. C3. A【解析】圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.4. A5. D6. D【解析】根据正方体的展开图可得选D.7. B8. C【解析】把三棱柱纸盒往上打开为上底面,同时展开侧面,上面阴影正好与下面空白在最左边,且三角形垂直于矩形,利用空间想象能力,可以确定,C选项符合该展开图.9. D【解析】A选项中,展开图下方的直角三角形的斜边长为12,不合题意;B选项中,展开图上下两个直角三角形的直角边不能与对应的棱完全重合,不合题意;C选项中,展开图下方的直角三角形的直角边不能与对应的棱完全重合,不合题意;D选项中,展开图能折叠成一个如题图所示的直棱柱,符合题意.10. C【解析】有图案的三个面是相邻的,可以排除B、D.对于A,如果三角形和圆正确的,那么棋盘格的方向反了.11. B【解析】选项A和C中涂有颜色的一个面是底面,不能折叠成题图中的几何体;选项B能折叠成题图中的几何体;D选项中有5个三角形,故不是这个几何体的表面展开图.12. B13. D14. A【解析】圆锥的展开图为一个扇形和一个圆,故这个几何体是圆锥.故选A.15. D【解析】【分析】此题需利用正方体及其表面展开图的特点解答即可得出答案.【解析】解:选项A,B,C折叠后都可以围成一个正方体,只有D折叠后有两个面重合,不能折成正方体.故选:D.【点评】本题考查了平面图形的折叠及正方体的展开图,解决此题的关键是记住正方体展开图的基本类型1−4−1型,2−3−1型,2−2−2型,3−3型.16. 817. (1)18. 四棱锥19. 6,长方,720. A、B、E【解析】将原图沿右底面棱剪开,可得到图A所示形状;将原图沿右侧面开,可得如图B示形状;将原图沿后方底面棱剪开,可得如图E所示形状.21. 圆锥,三棱锥,圆柱22. 8【解析】根据所给出的图形可得:2和6是相对的两个面;3和4是相对两个面;1和5是相对的两个面,则原正方体相对两个面上的数字和最大值是8.23. 长方体,正方体24. 长方25. ①⑦⑧⑨,②③④⑤⑥⑩26. (1)40(2)2或5的正方形,再沿虚线折叠,即可构成一个缺少上27. 在正方形的四个角上剪出四个边长为原正方形边长的14底,而下底为正方形的直四棱柱,而剪下的四个正方形恰好能拼成这个四棱柱的上底,如图所示.28.展成平面图如图所示.29. 分别沿虚线剪开即可.30. (1) 这个几何体是六棱柱.(2) 侧面积 =(2+4)ab =6ab .。
1.2 展开与折叠 优化训练(第一课时) 2021—2022学年北师大版数学七年级上册
第一章丰富的图形世界第2节展开与折叠(第一课时)一.选择题1.图1是一个小正方体的展开图,小正方体从图2的所示位置依次翻到第1格,第2格,第3格,这时小正方体朝上一面的字是()A.常B.州C.越D.来2.如图,有一个无盖的正方体纸盒,它的下底面标有字母“M”,若沿图中的粗线将其剪开展成平面图形,这个平面图形是()A.B.C.D.3.有一个正六面体骰子放在桌面上,将骰子如图所示顺时针方向滚动,每滚动90°算一次,则滚动第2021次后,骰子朝下一面的数字是()A.5B.4C.3D.24.如图,点A,B是正方体上的两个顶点,将正方体按图中所示方式展开,则在展开图中B 点的位置为()A.B1B.B2C.B3D.B45.图①是由白色纸板拼成的立体图形,将它的两个面的外表面涂上颜色,如图②.则下列图形中,是图②的表面展开图的是()A.B.C.D.二.填空题6.如图是一个正方体骰子的表面展开图,若1点在上面,3点在左面,则点在正面.【答案】2.7.把一个边长为1cm的正方体纸盒沿棱剪开,剪成一个连在一起的平面图形,这个平面图形的周长是cm.8.如图是一正方体的平面展开图,若AB=5,则该正方体上A、B两点间的距离为.三.解答题9.如图,正方体(图1)的展开图如图2所示,在图1中M、N分别是FG、GH的中点,CM、CN、MN是三条线段;请在图2中画出CM、CN、MN这三条线段.10.如图,是一个没有完全剪开的正方体,若再剪开一条棱,得到的平面展开图可能是下列六种图中的哪一些?(写字母)11.如图1,一个边长为2cm的立方体按某种方式展开后,恰好能放在一个长方形内.(1)计算图1长方形的面积;(2)小明认为把该立方体按某种方式展开后可以放在如图2的长方形内,请你在图2中划出这个立方体的表面展开图;(图2每个小正方形边长为2cm);(3)如图3,在长12cm、宽8cm的长方形内已经画出该立方体的一种表面展开图(各个面都用数字“1”表示),请你在剩下部分再画出2个该立方体的表面展开图,把一个立方体的每一个面标记为“2”,另一个立方体的每一个面标记为“3”.第2节展开与折叠(第一课时)答案解析一.选择题1.B【解析】解:由正方体的表面展开图的“相间、Z端是对面”可知,“常”与“来”是对面,“州”与“好”是对面,“越”与“越”是对面,翻动第1次,第2次时,“好”在前面,“州”在后面,翻动第3次时,“好”在下面,“州”在上面,故选:B.2.A【解析】解:∵正方体纸盒无盖,∴底面M没有对面,∵沿图中的粗线将其剪开展成平面图形,∴底面与侧面的从左边数第2个正方形相连,根据正方体的表面展开图,相对的面之间一定相隔一个正方形可知,只有A选项图形符合.故选:A.3.D【解析】解:根据翻转规律,从第1次开始朝下的面的数字依次2、3、5、4、2、3、5、4……,又因为2021÷4=505……1,所以第2021次后朝下的面的数字为2,故选:D.4.B【解析】解:由正方体可知,点A与点B不在该正方体的同一个面上,故排除选项A;将右边的展开图复原,则只有点B2处于体对角线的两端.与左边正方体中点A与点B的位置相同.故选:B.5.B【解析】解:由图中阴影部分的位置,首先可以排除C、D,又阴影部分正方形在左,三角形在右,而且相邻,故只有选项B符合题意.故选:B.二.填空题6.2.【解析】解:这是一个正方体的平面展开图,共有六个面,其中面“3点”和面“4点”相对,面“5点”和面“2点”相对,面“6点”和面“1点”相对,如果1点在上面,3点在左面,2点在正面,可知5点在后面.故答案为:2.7.14【解析】解:∵正方体有6个表面,12条棱,要展成一个平面图形必须5条棱连接,∴要剪12﹣5=7条棱,1×(7×2)=1×14=14(cm).答:这个平面图形的周长是14cm.故答案为:14.8.2.5【解析】解:由题意可得出:正方体上A、B两点间的距离为正方形对角线长,则A、B两点间的距离为2.5.故答案为:2.5.三.解答题9.【解析】如图所示:10.【解析】解:沿后面下面剪开可得E,沿后面右面剪开可得A,沿下面右面剪开可得B.故答案为:A、B、E.11.【解析】解:(1)∵立方体的棱长为2cm,∴长方形的面积为4×2×3×2=48平方厘米;(2)如图所示:(3)如图所示:。
北师大版七年级数学上册章节同步练习题
北师大版七年级数学上册章节同步练习题(全册,共57页)目录第一章丰富的图形世界1 生活中的立体图形2 展开与折叠3 截一个几何体4 从三个方向看物体的形状单元测验第二章有理数及其运算1 有理数2 数轴3 绝对值4 有理数的加法5 有理数的减法6 有理数加减混合运算7 有理数的乘法 8 有理数的除法9 有理数的乘方 10 科学记数法11 有理数的混合运算 12 用计算器进行运算单元测验第三章整式及其加减1 字母表示数2 代数式3 整式4 整式的加减5 探索与表达规律单元测验第四章基本平面图形1 线段射线直线2 比较线段的长短3 角 4角的比较5 多边形和圆的初步认识单元测验第五章一元一次方程1 认识一元一次方程2 求解一元一次方程3 应用一元一次方程——水箱变高了4 应用一元一次方程——打折销售5 应用一元一次方程——“希望工程”义演6 应用一元一次方程——追赶小明单元测验第六章数据的收集与整理1 数据的收集2 普查和抽样调查3 数据的表示4 统计图的选择第一章丰富的图形世界1.1生活中的立体图形(1)基础题:1.如下图中为棱柱的是()2.一个几何体的侧面是由若干个长方形组成的,则这个几何体是()A.棱柱 B.圆柱 C.棱锥 D.圆锥3.下列说法错误的是()A.长方体、正方体都是棱柱 B.三棱柱的侧面是三角形C.直六棱柱有六个侧面、侧面为矩形 D.球体和圆是不同的图形4.数学课本类似于,金字塔类似于,西瓜类似于,日光灯管类似于。
5.八棱柱有个面,个顶点,条棱。
6.一个漏斗可以看做是由一个________和一个________组成的。
7.如图是一个正六棱柱,它的底面边长是3cm,高是5cm.(1)这个棱柱共有个面,它的侧面积是。
(2)这个棱柱共有条棱,所有棱的长度是。
提高题:一只小蚂蚁从如图所示的正方体的顶点A沿着棱爬向有蜜糖的点B,它只能经过三条棱,请你数一数,小蚂蚁有种爬行路线。
1.1生活中的立体图形(2)基础题:1.如图绕虚线旋转得到的几何体是()(D)(B)(C)(A)2.下列几何体中表面都是平面的是()A.圆锥 B.圆柱 C.棱柱 D.球体4.围成几何体的侧面中,至少有一个是曲面的是______________;(举一例)5.下雨看起来是一根线,这说明,时钟秒针旋转时,形成一个圆面,这说明了,三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了。
北师大版七年级数学上册章节同步练习题
北师大版七年级数学上册章节同步练习题(全册,共57页)目录第一章丰富的图形世界1 生活中的立体图形2 展开与折叠3 截一个几何体4 从三个方向看物体的形状单元测验第二章有理数及其运算1 有理数2 数轴3 绝对值4 有理数的加法5 有理数的减法6 有理数加减混合运算7 有理数的乘法8 有理数的除法9 有理数的乘方10 科学记数法11 有理数的混合运算12 用计算器进行运算单元测验第三章整式及其加减1 字母表示数2 代数式3 整式4 整式的加减5 探索与表达规律单元测验第四章基本平面图形1 线段射线直线2 比较线段的长短3 角4角的比较5 多边形和圆的初步认识单元测验第五章一元一次方程1 认识一元一次方程2 求解一元一次方程3 应用一元一次方程——水箱变高了4 应用一元一次方程——打折销售5 应用一元一次方程——“希望工程”义演6 应用一元一次方程——追赶小明单元测验第六章数据的收集与整理1 数据的收集2 普查和抽样调查3 数据的表示4 统计图的选择第一章丰富的图形世界1.1生活中的立体图形(1)基础题:1.如下图中为棱柱的是()2.一个几何体的侧面是由若干个长方形组成的,则这个几何体是()A.棱柱B.圆柱C.棱锥D.圆锥3.下列说法错误的是()A.长方体、正方体都是棱柱B.三棱柱的侧面是三角形C.直六棱柱有六个侧面、侧面为矩形D.球体和圆是不同的图形4.数学课本类似于,金字塔类似于,西瓜类似于,日光灯管类似于。
5.八棱柱有个面,个顶点,条棱。
6.一个漏斗可以看做是由一个________和一个________组成的。
7.如图是一个正六棱柱,它的底面边长是3cm,高是5cm.(1)这个棱柱共有个面,它的侧面积是。
(2)这个棱柱共有条棱,所有棱的长度是。
提高题:一只小蚂蚁从如图所示的正方体的顶点A沿着棱爬向有蜜糖的点B,它只能经过三条棱,请你数一数,小蚂蚁有种爬行路线。
1.1生活中的立体图形(2)基础题:1.如图绕虚线旋转得到的几何体是()(D)(B)(C)(A)2.下列几何体中表面都是平面的是()A.圆锥B.圆柱C.棱柱D.球体4.围成几何体的侧面中,至少有一个是曲面的是______________;(举一例)5.下雨看起来是一根线,这说明,时钟秒针旋转时,形成一个圆面,这说明了,三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了。
义务教育北师大版七年级数学上:121《正方体的展开与折叠》课时练习初一数学试题.doc
1.2展开与折叠第1课时正方体的展开与折叠A •中B •.功C •考D -祝4•下列各图小,经过折叠能围成一个立方体的是()A B 5.如图,有•一个正方体纸巾盒,它的平面展开图是(02 中档题6 •(宜城模拟)如图是止方体的展开图 > 原正方体相对两个面上的数字和最大是()01 基础题知识点正方体的展开与折叠1 •(长春中考)下列图形中,是正方体表面展开图的是()C3 •(贵阳中考)一个正方体的表面展开图如图所示,六个面上各冇一字,连起来的意思是"预祝中考 成功”,把它折成正方体后,与“成”相对的字是()匚QZ1A B 2 •如图,下列四个选项屮,不是正方体表面展开图的是()A C BDD - 10 7 •(无锡屮考)如图的止方体盒子的外表面上画有3条粗黑线,将这个止方体盒子的表面展开(外表 面朝上),展开图可能是()如图、在图屮增加1个小正方形使所得图形经过折叠能够围成一个正方体、则一共有 ___________________种方式.03 综合题9 •已知一个正方体的6个面上分别标有数字1,2,3,4,5,6,根据下图正方体的三种摆放悄况,判断每个数字对面上的数字是几.8. ABD参考答案基础题1 - C 2.C 3.B 4.A 5.B中档题6 - B 7.C 8.4综合题9 •根据正方体的特征知,相邻的面一定不是对面,所以面“1”与面“4”相对,而“2”与面“5”相对,面“3”与面“6”相对」对4,2对5,3对6.我的写字心得体会从小开始练习写字,几年来我认认真真地按老师的要求去练习写字。
以前练习写字,大多是在印有田字格或米字格的练习本上进行。
教材中田字格或米字格里的范字我都认真仿写,其难度较大。
我写起来标准难以掌握,不是靠上了,就是靠下了;不是偏左,就是偏右。
后来在老师的指导下,我练习写字时,一开始观察字的笔画偏旁在格子中的位置,做到心中有数,然后才进行仿写,并要求把字尽量写大,要写满格子。
12 展开与折叠(备作业)-2021-2022学年七年级数学上(北师大版)(解析版)
1.2展开与折叠一、单选题1.下面四个图形中,不能做成一个正方体的是()A.B.C.D.【答案】D【解析】根据空间想象能力判断出四个选项中不能拼成正方体的那个.A、B、C选项都是正确的;D选项拼起来之后会有一个面重合,不正确.故选:D.【点睛】本题考查正方体展开图的识别,解题的关键是要通过空间想象能力进行判断.2.下列图形中,是正四棱柱展开图的是()A.B.C.D.【答案】C【解析】根据正四棱柱展开图的特点即可求解.A选项,正四棱柱的展开图中应该有两个正方形,故本选项错误;B选项,正四棱柱的展开图中,两个小正方形应该分别在上下两侧,故本选项错误;C选项,该图是正四棱柱的展开图,故本选项正确;D选项,正四棱柱的展开图中应该有四个长方形,故本选项错误.故选C.【点睛】此题主要考查几何体展开图的判断,解题的关键是熟知正四棱柱展开图的特点.3.下列选项中,左边的平面图形能够折成右边封闭的立体图形的是().A.B.C.D.【答案】C【解析】根据几何体的展开图,可得答案.A选项,不能折成正方体,故该选项错误;B选项,不能折成圆锥,故该选项错误;C选项,能折成圆柱,故该选项正确;D选项,不能折成三棱柱,故该选项错误.故选C.【点睛】本题主要考查了展开图折叠成几何体,熟记常见几何体的展开图是解题的关键.4.用如图所示的纸片折成一个长方体纸盒,折得的纸盒是( ).A.B.C.D.【答案】C【解析】分别找出长方体的对面,进而可得答案.解:如图所示:根据题意可知,A的对面是A',B的对面是B',C的对面是C',A面阴影的短边与C面阴影的一边重合.故用如图所示的纸片折成一个长方体纸盒,折得的纸盒是C.故选:C.【点睛】本题考查了长方体的展开图,属于常见题型,注意从相对面入手是解题的关键.、都重合的点是()5.把下图形折叠成长方体后,与F NA.L点B.A点C.J点D.I点【答案】C【解析】根据长方体的展开图即可得.由长方体的展开图可知,矩形ABIJ、矩形HGNM、矩形DEFG是长方体的三IJ MN GF相交于一点个相邻面,边,,、都重合的点是J点则与F N故选:C.【点睛】本题考查了长方体的展开图,掌握理解长方体的展开图是解题关键.6.如图,是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面的字是()A.丽B.连C.云D.港【答案】D【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“美”与“港”是相对面,“丽”与“连”是相对面,“的”与“云”是相对面.故选D.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为A.圆锥,正方体,三棱锥,圆柱B.圆锥,正方体,四棱锥,圆柱C.圆锥,正方体,四棱柱,圆柱D.圆锥,正方体,三棱柱,圆柱【答案】D【解析】根据常见的几何体的展开图进行判断,即可得出结果.根据几何体的平面展开图,则从左到右,其对应的几何体名称分别为:圆锥,正方体,三棱锥,圆柱;故选:D【点睛】本题考查了常见几何体的展开图;熟记常见几何体的平面展开图的特征,是解决此类问题的关键.8.在课题学习中,老师要求用长为12厘米,宽为8厘米的长方形纸片制作一个无盖的长方体纸盒.三位同学分别以下列方式在长方形纸片上截去两角(图中阴影部分),然后沿虚线折成一个无盖的长方体纸盒.甲:如图1,盒子底面的四边形ABCD 是正方形;乙:如图2,盒子底面的四边形ABCD 是正方形;丙:如图3,盒子底面的四边形ABCD 是长方形,AB=2AD .将这三位同学所折成的无盖长方体的容积按从大到小的顺序排列,正确的是A .甲>乙>丙B .甲>丙>乙C .丙>甲>乙D .丙>乙>甲【答案】C【解析】 分别将甲乙丙三位同学折成的无盖长方体的容积计算出来,即可比较大小.甲:长方体的长为5cm ,宽为3 cm ,高为3 cm ,容积为353345cm ⨯⨯=乙:长方体的长为10 cm ,宽为2 cm ,高为2 cm ,容积为3102240cm ⨯⨯=丙:长方体的长为6 cm ,宽为4 cm ,高为2 cm ,容积为364248cm ⨯⨯=所以,丙>甲>乙故选C【点睛】本题主要考查了长方体的体积,掌握长方体的体积公式是解题的关键.9.将如图所示的几何体沿某些棱剪开,展开成一个平面图形,要剪开的棱数是( )A.4 条B.5 条C.6 条D.7 条【答案】B【解析】由平面图形的折叠以及立体图形的表面展开图的特点结合思考,即可得出答案.上下两个底面需要各剪开两条棱,侧面需要剪开一条棱,所以至少需要剪开5条棱,故答案选择B.【点睛】本题考查了几何体表面展开图的特征,易错易混点是学生对相关图的位置想象不准确.10.如图表示一个无盖的正方体纸盒,它的下底面标有字母“M”,沿图中的粗线将其剪开展成平面图形,这个平面展开图是()A.B.C.D.【答案】C【解析】根据无盖可知底面M没有对面,再根据图形粗线的位置,可知底面的正方形与侧面的四个正方形从左边数第2个正方形的下边,然后根据选项选择即可.解:∵正方体纸盒无盖,∴底面M没有对面,∵沿图中的粗线将其剪开展成平面图形,∴底面与侧面的从左边数第2个正方形相连,根据正方体的表面展开图,相对的面之间一定相隔一个正方形可知,只有C选项图形符合.故选C.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.沿着其中的四条棱剪开后,得到的展开图如图2所示,则剪开的四条棱11.将如图1所示的四棱锥A BCDE可以为()A.AC,AD,BC,DE B.AB,BE,DE,CDC.AC,BC,AE,DE D.AC,AD,AE,BC【答案】A【解析】根据四棱锥的展开图特点即可判断.由四棱锥的展开图可知,需剪开两条侧棱与两条底面的棱,并且侧棱需剪掉共点顶点,底面为相对的棱,故A正确;【点睛】此题主要考查四棱锥的展开图,解题的关键是熟知根据四棱锥的展开图的特点.12.将选项中的四个正方体分别展开后,所得的平面展开图与如图不同的是()A.B.C.D.【答案】B观察图形可知,将选项中的四个正方体分别展开后,所得的平面展开图与上面展开图不同的是选项B.二、填空题13.下列图形中,不能折成正方体的有___(填序号).【答案】①②④【解析】利用正方体及其表面展开图的特点解题即可得出答案.解:③可以折成正方体;①、②、④折叠后有一个面重合,缺少一个底面,故不能折成正方体.故答案为:①、②、④.【点睛】此题考查了展开图折叠成几何体.解题的关键是明确能组成正方体的“一,四,一”“三,三”“二,二,二”“一,三,二”的基本形态要记牢.14.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的平面展开图,若图中的“锦”表示正方体的右面,则“_______”表示正方体的左面.【答案】程.【解析】根据展开图得到“锦”的对面是“程”.由展开图得到“锦”的对面是“程”,故填:程.【点睛】此题考查正方体展开的平面图,需熟知正方体展开的形式,由此即可正确解答.15.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,则剪掉的这个小正方形是________【答案】丁【解析】能围成正方体的“一四一”,“二三一”,“三三”,“二二二”的基本形态要记牢.解题时,据此即可判断答案.解:将如图所示的图形剪去一个小正方形,使余下的部分不能围成一个正方体,编号为甲乙丙丁的小正方形中剪去的是丁,故答案为:丁.【点睛】本题考查了展开图折叠成正方体的知识,解题关键是根据正方体的特征,或者熟记正方体的11种展开图,只要有“田”,“凹”字格的展开图都不是正方体的表面展开图.16.如图,把某直三棱柱的表面展开图围成三棱柱后与A 重合的字母是_____.【答案】D 和M【解析】根据直三棱柱展开图特点即可判断A、D、M重合.将图形沿BF,CG、BC折叠,可得A、D、M重合,故答案为D 和M.【点睛】本题考察多面体展开图,需要一定空间想象能力.17.一个立体图形的表面展开图如图所示,这个立体图形顶点的个数是_________.【答案】6【解析】由平面图形的折叠及常见立体图形的展开图解题;这个几何体是三棱柱,它的顶点个数为6个.【点睛】本题考查立体图形的展开图,根据展开图判断立体图形是解题的关键.18.如图,要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为0,则2x y -=________.【答案】6试题分析:由图中正方体平面展开图可知:x 与2是对面,y 与4是对面,因为相对面上两个数之和为0,所以x=-2,y=-4,所以x -2y=-2-2×(-4)=-2+8=6.考点:1.正方体平面展开图;2.有理数的计算.19.将一个边长为10cm 正方形,沿粗黑实线剪下4个边长为_________cm 的小正方形,拼成一个大正方形作为直四棱柱的一个底面;余下部分按虚线折叠成一个无盖直四棱柱;最后把两部分拼在一起,组成一个完整的直四棱柱,它的表面积等于原正方形的面积.【答案】2.5试题分析:利用剪下部分拼成的图形的边长等于棱柱的底面边长求解即可.解:设粗黑实线剪下4个边长为xcm 的小正方形,根据题意列方程2x=10÷2解得x=2.5cm ,故答案为2.5.考点:展开图折叠成几何体.20.如图所示的三个图中,不是三棱柱的展开图的是_____.(只填序号)【答案】③【解析】根据三棱柱的两底展开是在矩形两端各有一个三角形,侧面展开是三个矩形,可得答案.解:三棱柱的两底展开是在矩形两端各有一个三角形,侧面展开是三个矩形,所以不是三棱柱的展开图的是③.故答案为:③.【点睛】本题考查了几何体的展开图,注意两底面是对面,展开是两个全等的三角形,侧面展开是三个矩形. 21.有一个六个面分别标上数字1、2、3、4、5、6的正方体,甲、乙、丙三位同学从不同的角度观察的结果如图所示.如果记2的对面的数字为,3m 的对面的数字为n ,则方程1x m n +=的解x 满足1,k x k k <<+为整数,则k =________.【答案】0【解析】由图甲、乙、丙可看出看出2的相对面是4;再由图乙、丙可看出3的相对面是6,从而确定m、n的值后即可确定答案.解:从图可以看出2和6、1、3、5都相邻,所以2的对面只能是4,即m=43和1、2、5、4相邻,那么3的对面是6,即n=6,∵m x+1=n,∴4x+1=6,∴1<x+1<2,∵k<x<k+1,k为整数,∴k=0.故答案为:0.【点睛】本题考查灵活运用正方体的相对面解答问题,立意新颖,是一道不错的题.22.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置水平桌面上,如图1.在图2中,将骰子向右翻滚90︒,然后在桌面上按逆时针方向旋转90︒,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是__________.【答案】5【解析】先向右翻滚,然后再逆时针旋转叫做一次变换,那么连续3次变换是一个循环.本题先要找出3次变换是一个循环,然后再求10被3整除后余数是1,从而确定第1次变换的第1步变换.解:根据题意可知连续3次变换是一循环.所以10÷3=3…1.所以是第1次变换后的图形,即按上述规则连续完成10次变换后,骰子朝上一面的点数是5.故应填:5.【点睛】本题考查了正方体相对两个面上的文字,是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.三、解答题23.如图,是一个正方体纸盒的两个表面展开图,请把-4,3,9,6,-1,2分别填入六个面中,使得折成正方体后,相对面上的两数之和与-5互为相反数.【答案】答案见解析【解析】根据相反数的性质,得与-5互为相反数的数为:5,再根据有理数加法运算和正方体展开图的性质分析,即可得到答案.与-5互为相反数的数为:5根据题意计算,展开图如下:.【点睛】本题考查了有理数和立方体展开图的知识;解题的关键是熟练掌握相反数、有理数加法运算、正方体展开图的性质,从而完成求解.24.如图是长方体的展开图,若图中的正方形边长为6cm,长方形的长为8cm,宽为6cm,请求出由展开图折叠而成的长方体的表面积和体积.【答案】表面积:264cm2,体积:288 cm3【解析】根据表面积公式,可得答案;根据长方体的体积,可得答案.解:根据题意,则表面积=6×8×4+62×2=192+72=264cm2.折叠而成的长方体的体积=6×8×6=288cm3.【点睛】本题考查了展开图折叠成几何题,利用长方体展开图中每个面都有一个全等的对面是解题关键.25.下面是一个多面体的表面展开图每个面上都标注了字母,(所有字母都写在这一多面体的外表面)请根据要求回答问题:(1)如果面F在前面,从左边看是B,那么哪一面会在上面?(2)如果从右面看是面C面,面D在后边那么哪一面会在上面?(3)如果面A在多面体的底部,从右边看是B,那么哪一面会在前面.【答案】(1)C面会在上面;(2)A面会在上面;(3)C面会在前面【解析】利用长方体及其表面展开图的特点解题.这是一个长方体的平面展开图,共有六个面,其中面“A”与面“F”相对,面“B”与面“D”相对,面“C”与面“E”相对.解:(1)由图可知,如果F面在前面,B面在左面,那么“E”面下面,∵面“C”与面“E”相对,∴C面会在上面;(2)由图可知,如果C面在右面,D面在后面,那么“F”面在下面,∵面“A”与面“F”相对,∴A面在上面.(3)由图可知,如果面A在多面体的底部,从右边看是B,那么“E”面在后面,∵面“C”与面“E”相对,∴C面会在前面【点睛】考查了几何体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.26.李明同学设计了某个产品的正方体包装盒如图所示,由于粗心少设计了其中一个顶盖,请你把它补上,使其成为一个两面均有盖的正方体盒子.(1)共有种弥补方法;(2)任意画出一种成功的设计图(在图中补充);(3)在你帮忙设计成功的图中,要把-6,8,10,-10,-8,6这些数字分别填入六个小正方形,使得折成的正方体相对面上的两个数相加得0.(直接在图中填上)【答案】(1)4;(2)见解析;(3)见解析【解析】(1)根据正方体展开图特点:中间4联方,上下各一个,中间3联方,上下各1,2,两个靠一起,不能出“田”字,符合第一种情况,中间四个连在一起,上面一个,下面有四个位置,所以有四种弥补方法;(2)利用(1)的分析画出图形即可;(3)想象出折叠后的立方体,把数字填上即可,注意答案不唯一.解:(1)根据正方体展开图特点:中间4联方,上下各一个,中间3联方,上下各1,2,两个靠一起,不能出“田”字,符合第一种情况,中间四个连在一起,上面一个,下面有四个位置,所以共有4种弥补方法,故答案为:4;(2)如图所示:;(3)如图所示:.【点睛】此题主要考查了立体图形的展开图,识记正方体展开图的基本特征是解决问题的关键.27.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:已知这个长方体纸盒高为20cm,底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.【答案】(1)8;(2)见解析;(3)200000立方厘米【解析】1)根据长方体总共有12条棱,有4条棱未剪开,即可得出剪开的棱的条数;(2)根据长方体的展开图的情况可知有4种情况;(3)设底面边长为acm,根据棱长的和是880cm,列出方程可求出底面边长,进而得到长方体纸盒的体积.解:(1)由图可得,小明共剪了8条棱,故答案为:8.(2)如图,粘贴的位置有四种情况如下:(3)∵长方体纸盒的底面是一个正方形,∴可设底面边长acm,∵长方体纸盒所有棱长的和是880cm,长方体纸盒高为20cm,∴4×20+8a=880,解得a=100,∴这个长方体纸盒的体积为:20×100×100=200000立方厘米.【点睛】本题主要考查了几何展开图,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.28.如图是从三个方向看几何体得到的形状图.(1)说出这个几何体的名称;(2)画出它的一种表面展开图;(3)若从正面看到的形状图的宽为4 cm,长为7 cm,从左面看到的形状图的宽为3 cm,从上面看到的形状图中斜边长为5 cm,求这个几何体所有棱长的和,以及它的表面积和体积.【答案】(1)三棱柱;(2)见解析;(3)这个几何体所有棱长的和为45cm,它的表面积为96cm2,体积为42cm3【解析】(1)根据三棱柱的三视图特征即可解答;(2)根据三棱柱的三视图特征,画出其表面展开图即可,答案不唯一;(3)根据题意可知,侧棱为7,共3条,两个底面三角形的三边长为3、4、5,继而相加即可求得棱长的和,结合表面积等于三个侧面与两个底面的面积和求得表面积,根据体积=底面积×侧棱即可求解.解:(1)这个几何体是三棱柱,(2)表面展开图如图所示(答案不唯一):(3)棱长和为:7×3+(3+4+5)×2=45cm表面积为:S=S(底)+S(侧)=12×3×4×2+(3+4+5)×7=96cm2体积为:V=S(底)×h=12×3×4×7=42cm3故:这个几何体所有棱长的和为45cm,它的表面积为96cm2,体积为42cm3.【点睛】本题主要考查三棱柱有关知识,解题的关键是熟练掌握三棱柱的特征,三视图,表面积及体积计算公式.29.我们知道,将一个正方体或长方体的表面沿某些棱剪开,可以展成一个平面图形.(1)下列图形中,是正方体的表面展开图的是_______.(2)如图所示的长方体,长、宽、高分别为4、3、6,若将它的表面沿某些棱剪开,展成一个平面图形.则下列图形中,可能是该长方体表面展开图的有______(填序号)(3)下列图是题(2)中长方体的一种表面展开图,它的外围周长为52,事实上,题(2)中长方体的表面展开图还有不少,聪明的你能画出一个使外围周长最大的表面展开图吗?请画出这个表面展开图,并求出它的外围周长.【答案】(1)B;(2)①②③;(3)画出这个表面展开图见解析;外围周长为70.【解析】(1)由平面图形的折叠及立体图形的表面展开图的特点解题;(2)由平面图形的折叠及立体图形的表面展开图的特点解题;(3)画出图象,根据外围周长的定义计算即可.(1)A折叠后不可以组成正方体;B折叠后可以组成正方体;C都是“2-4”结构,出现重叠现象,不能折成正方体,即不是正方体的表面展开图,故错误;D折叠后不可以组成正方体;故答案为:B;(2)可能是该长方体表面展开图的有①②③.故答案为:①②③;(3)外围周长最大的表面展开图,如图:观察展开图可知,外围周长为6×8+4×4+3×2=48+16+6=70.【点睛】本题考查了几何体的展开图,解题的关键是熟练掌握几何体的展开图的特征,属于中考常考题型.30.在一次青少年模型大赛中,小高和小刘各制作了一个模型,小高制作的是棱长为acm的正方体模型,小刘制作的是棱长为acm的正方体右上角割去一个长为3cm,宽为2cm,高为1cm的长方体模型(如图2)(1)用含a的代数式表示,小高制作的模型的各棱长度之和是___________;(2)若小高的模型各棱长之和是小刘的模型各棱长之和的56,求a的值;(3)在(2)的条件下,①图3是小刘制作的模型中正方体六个面的展开图,图中缺失的有一部分已经很用阴影表示,请你用阴影表示出其余缺失部分,并标出边的长度.②如果把小刘的模型中正方体的六个面展开,则展开图的周长是________cm;请你在图方格中画出小刘的模型中正方体六个面的展开图周长最大时的图形.【答案】(1)12a;(2)5;(3)①见解析;②72,图见解析【解析】(1)根据正方体由12条等长的棱即可计算.(2)根据立体图形求出小刘的模型的棱长之和,再根据题意即可列出关于a的方程,求出a即可.(3)①由题意可知另两个阴影再第一行和第三行第一个正方形内,再根据所给出的阴影,画出在第一行和第三行第一个正方形内的阴影即可.②展开图周长最长时,此时有12个5cm的边在展开图的最外围,画出此时的展开图,计算即可.(1)12×a=12acm (2)小高的模型的棱长之和为12acm,小刘的模型有9条长度为acm的棱,1条长度为(a-1)cm的棱,1条长度为(a-2)cm的棱,1条长度为(a-3)cm的棱,3条长度为1cm的棱,3条长度为2cm的棱,3条长度为3cm的棱,故小刘的模型的棱长之和为:9(1)(2)(3)132333(1212)a a a a a cm+-+-+-+⨯+⨯+⨯=+,根据题意可列512(1212)6a a=+解得:5a=(3)①如下图②如下图,此时展开图的周长512(12)32(31)72cm=⨯++++++=【点睛】本题考查正方体及其平面展开图,掌握正方体的几种展开图是解答本题的关键.。
北师大版七年级数学上册第一章第2节《 展开与折叠》同步练习题
北师大版七年级数学上册第一章第2节《展开与折叠》同步练习题一、选择题(本大题共12小题,共36.0分)1.下列各图不是正方体表面展开图的是()A. B. C. D.2.哪个图形经过折叠可以围成一个棱柱()A. B. C. D.3.一个几何体的展开图如图所示,这个几何体是()A.圆锥B.圆柱C.四棱柱D.四棱锥第3题第4题第5题4.如图是下列几何体()的平面展开图.A. B. C. D.5.如图,有一个正方体纸巾盒,它的平面展开图是()A. B. C. D.6.如图,将四棱锥沿某些棱剪开,展成一个平面图形,至少需要剪开()A.4条棱B.5条棱C.6条棱D.7条棱7.把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为()A.富B.强C.文D.民8.如图是一个正方体纸盒的外表面展开图,则这个正方体是()A. B. C. D.9.如图,在正方体的平面展开图中A、B两点间的距离为6,折成正方体后A、B两点是正方体的顶点,则这两个顶点的距离是()A.3B.C.6D.310.下面四个图形都是由相同的六个小正方形纸片组成,小正方形上分别贴有北京2008年奥运会吉祥物五个福娃(贝贝、晶晶、欢欢、迎迎、妮妮)的卡通画和奥运五环标志,如果分别用“贝、晶、欢、迎、妮”五个字来表示五个福娃,那么折叠后能围成如图所示正方体的图形是()A. B. C. D.第10题第11题第12题11.如图所示为一个无盖长方体盒子的展开图(重叠部分不计),根据图中数据,可知该无盖长方体的容积为()A.4B.6C.8D.1212.如过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图所示的几何体,其正确的展开图为()A. B. C. D.二、填空题(本大题共4小题,共6.0分)13.如图所示的平面纸能围成正方体盒子,请把与面A垂直的面用图中字母表示出来是______ .14.如图是某几何体的平面展开图,则这个几何体是______ .第13题第14题第15题15.将如图中的图形剪去一个正方形,使剩余的部分恰好能折成一个正方体,问应剪去哪个小正方形?______ (说出两种即可)16.以下三组图形都是由四个等边三角形组成.能折成多面体的选项序号是______ .三、解答题(本大题共7小题,共56.0分)17.下面是两种立体图形的展开图.请分别写出这两个立体图形的名称:18.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示)19.工人把一个长方形的纸盒展开时不小心多剪了一刀,结果展开后变成了两部分,如图,现在他想把这两部分粘贴成一个整体,使之能折成原来的长方体,请你帮他设计一下,应怎样粘贴?20.由6个大小相同的小正方形连成的一块硬纸板,可折叠成一个正方体纸盒,若把6个小正方形每种不同位置的排列作为一种纸样,你能做出几种这样的纸样(用图表示)?21.如图是一个正方体表面展开图,如果把它重新折成正方体,那么与点G重合的是哪两点?并用字母指出三对相对的面.22.用如图所示的长31.4cm,宽6.28cm的长方形,围成一个圆柱体,求底面圆的面积是多少平方厘米?(π取3.14)23.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了______ 条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.《展开与折叠》练习参考答案一、选择题:1. C解:根据分析可得:A、B、D是正方体表面展开图,能够折成一个正方体,而C不是正方体表面展开图,故选C.2. D解:三棱柱展开后,侧面是三个长方形,上下底各是一个三角形由此可得:只有D是三棱柱的展开图.故选:D.3. A解:因为圆锥的展开图为一个扇形和一个圆形,故这个几何体是圆锥.故选A.4.B解:由题意,可知如图是四棱台的平面展开图.故选B.5. B解:观察图形可知,一个正方体纸巾盒,它的平面展开图是.故选:B.6. A解:将四棱锥沿某些棱剪开,展成一个平面图形,至少需要剪开4条棱.故选:A.7. A解:由图1可得,“富”和“文”相对;“强”和“主”相对;“民”和“明”相对;由图2可得,小正方体从图2的位置依次翻到第4格时,“文”在下面,则这时小正方体朝上面的字是“富”,故选:A.8. C解:∵由图可知,实心圆点与空心圆点一定在紧相邻的三个侧面上,∴C符合题意.故选C.9.D解:∵AB=6,∴把正方形组合起来之后会发现A、B在同一平面的对角线上,∴该正方体A、B两点间的距离为3,故选:D.10. C解:由原正方体可知,“妮”、“迎”、“欢”三个字所在的面是相交的,而选项A、B中,“妮”和“欢”所在的面是相对的,故A,B错;D中“妮”、“迎”、“欢”三个字所在的面的位置与原正方体不符,故D错.故选C.11.B解:观察图形可知长方体盒子的长=5-(3-1)=3、宽=3-1=2、高=1,则盒子的容积=3×2×1=6.故选:B.12. B解:选项A、C、D折叠后都不符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,•与正方体三个剪去三角形交于一个顶点符合.故选:B.二、填空题:13. 解:因为正方体的表面展开图,相对的面之间一定相隔一个正方形,面“A”与“D”是相对面,它们互相平行,剩下的面都与A面垂直;所以:围成正方体盒子,与面A垂直的面用图中字母表示出来是:B、C、E、F;故答案为:B、C、E、F.14. 解:由几何体展开图可知,该几何体是三棱柱,故答案为:三棱柱.15. 解:根据有“田”字格的展开图都不是正方体的表面展开图可知,故应剪去我或喜或学,故答案为:我,喜.16. 解:只有图(1)、图(3)能够折叠围成一个三棱锥.故答案为:(1)(3).三、简答题:17.解:(1)是长方体,(2)是三棱柱.18.解:答案不惟一,如图.19.解:.20.解:如图所示:共计11种.21.解:结合图形可知,围成立方体后A与点A和点C重合;四边形ABMN与四边形FEJI,四边形LMJK与四边形CBED,四边形MJEB与四边形HIFG 相对面.22.解:31.4÷2÷3.14=5(cm),5×5×3.14=78.5(cm2).故底面圆的面积是78.5平方厘米.23. 解(1)小明共剪了8条棱,故答案为:8.(2)如图,四种情况.(3)∵长方体纸盒的底面是一个正方形,∴设最短的棱长高为acm,则长与宽相等为5acm,∵长方体纸盒所有棱长的和是880cm,∴4(a+5a+5a)=880,解得a=20cm,∴这个长方体纸盒的体积为:20×100×100=200000立方厘米.。
北师大版七年级数学上册章节同步练习题(全册)
北师大版七年级数学上册章节同步练习题(全册,共57页)目录第一章丰富的图形世界1 生活中的立体图形2 展开与折叠3 截一个几何体4 从三个方向看物体的形状单元测验第二章有理数及其运算1 有理数2 数轴3 绝对值4 有理数的加法5 有理数的减法6 有理数加减混合运算7 有理数的乘法 8 有理数的除法9 有理数的乘方 10 科学记数法11 有理数的混合运算 12 用计算器进行运算单元测验第三章整式及其加减1 字母表示数2 代数式3 整式4 整式的加减5 探索与表达规律单元测验第四章基本平面图形1 线段射线直线2 比较线段的长短3 角 4角的比较5 多边形和圆的初步认识单元测验第五章一元一次方程1 认识一元一次方程2 求解一元一次方程3 应用一元一次方程——水箱变高了4 应用一元一次方程——打折销售5 应用一元一次方程——“希望工程”义演6 应用一元一次方程——追赶小明单元测验第六章数据的收集与整理1 数据的收集2 普查和抽样调查3 数据的表示4 统计图的选择第一章丰富的图形世界1.1生活中的立体图形(1)基础题:1.如下图中为棱柱的是()2.一个几何体的侧面是由若干个长方形组成的,则这个几何体是()A.棱柱 B.圆柱 C.棱锥 D.圆锥3.下列说法错误的是()A.长方体、正方体都是棱柱 B.三棱柱的侧面是三角形C.直六棱柱有六个侧面、侧面为矩形 D.球体和圆是不同的图形4.数学课本类似于,金字塔类似于,西瓜类似于,日光灯管类似于。
5.八棱柱有个面,个顶点,条棱。
6.一个漏斗可以看做是由一个________和一个________组成的。
7.如图是一个正六棱柱,它的底面边长是3cm,高是5cm.(1)这个棱柱共有个面,它的侧面积是。
(2)这个棱柱共有条棱,所有棱的长度是。
提高题:一只小蚂蚁从如图所示的正方体的顶点A沿着棱爬向有蜜糖的点B,它只能经过三条棱,请你数一数,小蚂蚁有种爬行路线。
1.1生活中的立体图形(2)基础题:1.如图绕虚线旋转得到的几何体是()2.下列几何体中表面都是平面的是()(D)(B)(C)(A)A .圆锥B .圆柱C .棱柱D .球体4.围成几何体的侧面中,至少有一个是曲面的是______________;(举一例) 5.下雨看起来是一根线,这说明,时钟秒针旋转时,形成一个圆面,这说明了,三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了。
北师大版七年级数学上册 同步练习 全套含答案详解
北师大版七年级数学上册同步练习目录2017年秋北师大七年级上《1.1生活中的立体图形》同步练习含答案2017年秋北师大七年级上《1.2展开与折叠》同步练习含答案解析2017年秋北师大七年级上《1.4从三个方向看物体的形状》同步练习含答案解析2017年秋北师大七年级上《2.1有理数》同步练习含答案解析2017年秋北师大七年级上《2.2数轴》同步练习含答案解析2017年秋北师大七年级上《2.3绝对值》同步练习含答案解析2017年秋北师大七年级上《2.4有理数的加法》同步练习含答案解析2017年秋北师大七年级上《2.5有理数的减法》同步练习含答案解析2017年秋北师大七年级上《2.6有理数的加减混合运算》同步练习含答案解析2017年秋北师大七年级上《2.7有理数的乘法》同步练习含答案解析2017年秋北师大七年级上《2.8有理数的除法》同步练习含答案解析2017年秋北师大七年级上《2.9有理数的乘方》同步练习含答案解析2017年秋北师大七年级上《2.10科学记数法》同步练习含答案解析2017年秋北师大七年级上《2.11有理数的混合运算》同步练习含答案解析2017年秋北师大七年级上《3.1字母表示数》同步练习含答案解析2017年秋北师大七年级上《3.2代数式》同步练习含答案解析2017年秋北师大七年级上《3.3整式》同步练习含答案解析2017年秋北师大七年级上《3.4整式的加减》同步练习含答案解析2017年秋北师大七年级上《3.5探索与表达规律》同步练习含答案解析2017年秋北师大七年级上《4.1线段、射线、直线》同步练习含答案解析2017年秋北师大七年级上《4.2比较线段的长短》同步练习含答案解析2017年秋北师大七年级上《4.3角》同步练习含答案解析2017年秋北师大七年级上《4.4角的比较》同步练习含答案解析2017年秋北师大七年级上《4.5多边形和圆的初步认识》同步练习含答案解析2017年秋北师大七年级上《5.1认识一元一次方程》同步练习含答案解析2017年秋北师大七年级上《5.2求解一元一次方程》同步练习含答案解析2017年秋北师大七年级上《5.3应用一元一次方程——水箱变高了》同步练习含答案解析2017年秋北师大七年级上《5.4应用一元一次方程——打折销售》同步练习含答案解析2017年秋北师大七年级上《5.5应用一元一次方程——希望工程义演》同步练习含答案解析2017年秋北师大七年级上《5.6应用一元一次方程——能追上小明吗》同步练习含答案解析1生活中的立体图基础巩固1.(题型二)如图1-1-1,属于棱柱的有( )图1-1-1A.2个 B.3个 C.4个 D.5个2.(知识点3)雨滴从空中落下、流星从空中划过,这些现象都给我们以_____的形象;汽车的雨刷摆动、将教室前的投影幕展开,这些现象给我们以_____的形象;硬币在桌面上快速旋转、向玻璃杯中注水水面的上升,这些现象给我们以______的形象.3.(题型一)将下列物体的名称与相应的几何体用线连接起来.螺丝帽塔尖字典足球蜡烛魔方长方体正方体圆锥球圆柱棱柱4.(题型三)如图1-1-2的几何体,分别由哪个平面图形绕某条直线旋转一周得到?请画出相应的平面图形.图1-1-2能力提升5.(题型四)观察下列多面体,把下表补充完整,并回答问题.(1)根据上表中的规律推断,十四棱柱共有___个面,共有___个顶点,共有____条棱.(2)若某个棱柱由30个面构成,则这个棱柱为____棱柱.(3)若一个棱柱的底面多边形的边数为n,则它有____个侧面,共有___个面,共有____个顶点,共有_____条棱.(4)观察表中的结果,你能发现a,b,c之间有什么关系吗?请写出关系式.答案1.B解析:正方体、长方体、三棱柱是棱柱,共3个.故选B.2.点动成线线动成面面动成体解析:观察现象,我们可以从中发现它们运动的形象.3.解:4.解:如图D1-1-1.图D1-1-1能力提升5. 解:填表如下:(1)16 28 42.(2)二十八.(3)n n+2 2n3n.(4)a+c-b=2.2展开与折叠基础巩固1.(知识点1)下列选项能折叠成正方体的是()2.(知识点1)将图1-2-1的表面带有图案的正方体沿某些棱展开后,得到的图形是()图1-2-13.(题型四)图1-2-2是一个长方体形状包装盒的表面展开图.折叠制作完成后得到长方体包装盒的容积是(包装材料厚度不计)()图1-2-2A.40×40×70 B.70×70×80C.80×80×80 D.40×70×804.(题型三)若过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图1-2-3的几何体,则其表面展开图正确的为()图1-2-35.(题型一)若要使图1-2-4中的平面展开图折叠成正方体后,相对面上两个数之和为6,则x=___,y=____.图1-2-4能力提升6.(题型二)已知下列各图形都由5个大小相同的正方形组成,则其中沿正方形的边不能折成无盖小方盒的是()7.(题型四)如图1-2-5,李明用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,王华看来看去总觉得所拼图形似乎存在问题.图1-2-5(1)请你帮李明分析一下拼图是否存在问题.若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全.(2)若图中的正方形边长为2 cm,长方形的长为3 cm,宽为2 cm,请直接写出修正后所折叠而成的长方体的容积为_____ cm3.答案基础巩固1.D解析:根据正方体表面展开图的特点可知选D.2.C解析:此题只要想象出其空间立体图形与平面展开图的对应关系,就容易得出三个表面带有图案的图形的位置特征.故选C.3.D解析:先根据所给的图形折成长方体,再根据长方体的容积公式即可得出长方体包装盒的容积为40×70×80.故选D.4.B解析:选项A,C,D折叠后都不符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,与正方体三个剪去三角形交于一个顶点相符合.故选B.5. 53 解析:这是一个正方体的表面展开图,共有六个面,其中面“1”与面“x”相对,面“3”与面“y”相对,则1+x=6,3+y=6,解得x=5,y=3.能力提升6.B解析:因为选项A,D各添加一个小正方形后,均符合“一四一”型;选项C添加一个小正方形后符合“一三二”型或“二二二”型,而选项B无论怎样添加,都不符合正方体表面展开图的特征.故选B.7.解:(1)拼图存在问题,如图D1-2-1.图D1-2-1(2)12.折叠而成的长方体的容积为3×2×2=12(cm3).4 从三个方向看物体的形状基础巩固1.(题型一)图1-4-1是由6个相同的小正方体搭成的几何体,那么从上面看这个几何体得到的图形是()图1-4-12.(知识点1)如图1-4-2(1)是放置的一个水管三叉接头,若从正面看这个接头时,看到的图形如图1-4-2(2),则从上面看这个接头时,看到的图形是()图1-4-23.(题型二)由若干个相同的小正方体组合而成的一个几何体从不同方向看到的图形如图1-4-3,则组成这个几何体的小正方体的个数是()图1-4-3A.3 B.4 C.5 D.64.(知识点1)从正面、上面、左面看一个球时,看到的图形都是______.如果一个几何体从正面、上面、左面看时,看到的图形都是圆,那么这个几何体可能是______.5.(题型一)图1-4-4是一个工件的示意图,请你画出从正面、左面、上面看这个工件时所得到的图形.能力提升6.(题型三)把一个圆锥和一个正方体放在水平桌面上,当分别从正面和左面看这两个几何体时,看到的图形如图1-4-5,请问,当你从上面看这两个几何体时,看到的图形是什么?把你看到的图形画出来.图1-4-57.(题型四)某学校设计了如图1-4-6的一个雕塑,取名“阶梯”,现在工人师傅打算用油漆喷刷所有的暴露面.经测量,已知每个小正方体的棱长为0.5 m,请你帮助工人师傅算一下,需喷刷油漆的总面积是多少?图1-4-6答案基础巩固1.A解析:从上面看易得上面第一层中间有1个正方形,第二层有3个正方形,第三层左边有1个正方形.故选A.2.A解析:根据接头的实物图和从正面看到的图形可知,从上面看这个接头时,得到的图形为一个圆和一个长方形相接在一起,且圆在左边,长方形在右边.故选A.3.C 解析:综合三个方向看到的图形,我们可以得出,这个几何体的底层有3+1=4(个)小正方体,第二层有1个小正方体,因此搭成这个几何体所用的小正方体的个数是4+1=5.故选C.4.圆球5.解:从正面、左面、上面看这个工件时所得到的图形如图D1-4-1.图D1-4-1能力提升6.解:从上面看这两个几何体时所看到的图形如图D1-4-2.图D1-4-27.解:从三个方向看物体得到的形状图如图D1-4-3,则从正面与从左面看到的形状图的面积都是0.5×0.5×6=1.5(m2),从上面看到的形状图的面积是0.5×0.5×5=1.25(m2).图D1-4-3因为暴露的面是从前、后、左、右、上看到的面,从左面看到的形状图和从右面看到的形状图的面积是一样的,从前面看到的形状图和从后面看到的形状图的面积是一样的,所以需喷刷油漆的总面积为1.5×4+1.25=7.25(m2).第二章有理数及其运算1 有理数基础巩固1.(题型一)[广东广州中考]中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元,那么-80元表示()A.支出20元 B.收入20元C.支出80元 D.收入80元2.(题型二)下列说法错误的是()A.负整数和负分数统称为负有理数B.正整数、0、负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数3.(知识点3)在-3.5,227,0,π2,0.616 116 111 6…(相邻两个6之间1的个数逐次加1)中,有理数的个数为()A.1 B.2 C.3 D.44.(题型一)下列选项,具有相反意义的量是()A.增加20个与减少30个B.6个老师和7个学生C.走了100米和跑了100米D.向东行30米和向北行30米5.(题型一)吐鲁番盆地低于海平面155 m,记作-155 m,福州鼓山绝顶峰高于海平面919 m,记作_____m.6.(题型二)在有理数中,是整数而不是正数的是,是负数而不是分数的是______ .7.(知识点2)某栏目有一竞猜游戏:两人搭档,一人用语言描述,一人回答,要求描述者不能说出答案中的字或数.如果现在给的数是0,那么你给搭档描述的是_______.8.(题型二)把有理数-3,2 017,0,37,-237填入它所属的集合内(如图2-1-1).图2-1-1能力提升9.(题型一)一名足球守门员练习折返跑,从守门员守门的位置出发,向前记作正数,返回记作负数,他的记录(单位:m)如下:+5,-3,+10,-8,-6,+12,-10.(1)守门员是否回到了守门的位置?(2)守门员离开守门的位置最远是多少?10.(题型三)将一串有理数按下列规律排列,解答下列问题:(1)在A处的数是正数还是负数?(2)负数排在A,B,C,D中的什么位置?(3)第2 018个数是正数还是负数?排在对应于A,B,C,D中的什么位置?-1 4→-5 8→-9 A→B↓↑↓↑↓↑↓2→-3 6 -7 10 …C→D7222 答案 基础巩固1.C 解析:若收入为正,则支出为负,所以-80元表示支出80元.故选C.2.C 解析:负整数和负分数统称为负有理数,故A 正确,不符合题意;整数分为正整数、负整数和0,故B 正确,不符合题意;正有理数、负有理数和0组成全体有理数,故C 错误,符合题意;3.14是小数,也是分数,故D 正确,不符合题意.故选C.3.C 解析:有理数有-3.5,,0,共3个.虽然是分数形式,但π是一个无限不循环小数,不是有理数,0.616 116 111 6…(相邻两个6之间1的个数逐次加1)虽然有规律,但是不存在循环节,故也是无限不循环小数,不是有理数.所以有理数一共有3个.故选C. 4.A 解析:增加20个与减少30个是具有相反意义的量.故选A. 5.+919 解析:若低于海平面记作负数,则高于海平面应记作正数,所以高于海平面919 m 记作+919 m.6.负整数和0负整数7.既不是正数也不是负数的数(答案不唯一) 8.如图D2-1-1.图D2-1-1能力提升9.解:(1)守门员回到了守门的位置.守门员的运动情况为:前进5 m ,后退3 m ,前进10 m ,后退8 m ,后退6 m ,前进12 m ,后退10 m ,共前进了27 m ,后退了27 m.因为前进的总路程与后退的总路程相等,所以守门员回到了守门的位置.(2)几次运动后,守门员的位置相对于最初的位置分别为:前5 m ,前2 m ,前12 m ,前4 m ,后2 m ,前10 m ,0 m ,所以守门员离开守门的位置最远是12 m. 10.解:(1)在A 处的数是正数. (2)负数排在B 和D 的位置.(3)第2 018个数是正数,排在对应于C 的位置.第二章有理数及其运算2 数轴基础巩固1.(题型一)在数轴上表示-2,0,6.3,15的点中,在原点右边的点有()A. 0个B. 1个C. 2个D. 3个2.(题型三)在数轴上表示-3和2 017的点之间的距离是()A.2 017 B.2 014C.2 020 D.-2 0203.(题型二)写出两个比-4.2大的负整数:_____.4.(题型四)如图2-2-1,数轴上的点P表示的数是-1,将点P向右移动3个单位长度得到点P′,则点P′表示的数是;数轴上到原点的距离等于2的点所表示的数是______.图2-2-15.(1)(题型一)把数-4.4, 5,-1.5,3,2.2,0.5,4.1,-3在数轴上表示出来;(2)(题型一)指出如图2-2-2的数轴上A,B,C,D,O各点分别表示什么数.图2-2-2(3)(题型二)用“>”连接下列各数:32,-5,0,3.6,-3,-12,-112.能力提升6.(题型五)李林准备利用星期天休息时间到老板、经理、处长和科长的家登门拜访,王敏告诉他:“老板的家在工厂的正东方向,距离工厂8 000 m;经理的家在老板家的正西方向,距离老板家1 000 m;处长的家在经理家的正东方向,距离经理家5 000 m;科长的家在处长家的正东方向,距离处长家3 000 m.”(1)利用数轴确定四家的位置.(2)从工厂出发,走哪条路线才能使往返路程最短?7.(题型六)点A从数轴上表示+2的点开始移动,第一次先向左移动1个单位长度,再向右移动2个单位长度;从第一次移动后的位置开始,第二次先向左移动3个单位长度,再向右移动4个单位长度;从第二次移动后的位置开始,第三次先向左移动5个单位长度,再向右移动6个单位长度;……依此规律,解答下列各题.(1)第一次移动后这个点在数轴上表示的数为____;(2)第二次移动后这个点在数轴上表示的数为____;(3)第五次移动后这个点在数轴上表示的数为____;(4)第n次移动后这个点在数轴上表示的数为____;(5)如果第m次移动后这个点在数轴上表示的数为56,求m的值.答案基础巩固1.C解析:在原点右边的点所对应的数是6.3,15,共2个.故选C.2.C解析:从数轴上可以看出,表示-3的点到原点的距离为3个单位长度,表示2 017的点到原点的距离为2 017个单位长度,且两点分布在原点两侧,所以距离为2 020.故选C.3.-4,-3(答案不唯一)4. 2 - 2和25.解:(1)各数在数轴上的位置如图D2-2-1.图D2-2-1(2)点A表示的数为-2.5,点B表示的数为-0.5,点O表示的数为0,点C表示的数为2,点D表示的数为2.5.(3)将各数用数轴上的点表示,如图D2-2-2.图D2-2-2根据“在数轴上右边的点表示的数总比左边的点表示的数大”可得3.6>32>0>-12>-112>-3>-5.能力提升6.解:(1)规定一个单位长度代表1 000 m,向东为正方向,如图D2-2-3.图D2-2-3(2)李林从工厂出发,按照路线:经理家老板家处长家科长家,然后返回工厂,这样往返路程最短.(答案不唯一)7.解:(1)3.(2)4.(3)7.(4)n+2.(5)由(4)可知,m+2=56,解得m=54.第二章有理数及其运算3 绝对值基础巩固1.(题型一)|-2|的相反数是()A.-2 B.2 C.- 3 D.32.(知识点2)若|x|=-x,则x一定是()A.负数B.负数或零C.零D.正数3.(题型三)将有理数-|0.67|,-(-0.68),23,|-0.67|,0.67·,0.66用“<”连接起来为 .4.(题型三)把-3.5,|-2|,-1.5,|0|,|-3.5|在数轴上表示出来,并按从小到大的顺序排列出来.5.(题型一)化简下列各式,并解答问题:①-(-2);②+(-1/8);③-\[-(-4)\];④-\[-(+3.5)\];⑤-{-\[-(-5)\]};⑥-{-\[-(+5)\]}.问:(1)当+5前面有2 018个负号时,化简后结果是多少?(2)当-5前面有2 019个负号时,化简后的结果是多少?你能总结出什么规律?能力提升6.(题型四)出租车司机李伟一天下午的营运全是在南北走向的光明大街上进行的,假定向南为正,向北为负,他这天下午的行车记录(单位:km)如下:+15,-3,+14,-11,+10,+4,-26.(1)李伟在送第几位乘客时行驶的路程最远?最远有多远?(2)若该出租车的耗油量为0.1 L/km,则这天下午该出租车共耗油多少升?7.(题型五)认真阅读下面的材料,解答有关问题:材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5-3|表示5,3在数轴上对应的两点之间的距离;|5+3|=|5-(-3)|,所以|5+3|表示5,-3在数轴上对应的两点之间的距离;|5|=|5-0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,如果点A,B在数轴上分别表示有理数a,b,那么A,B之间的距离可以表示为|a-b|.(1)如果点A,B,C在数轴上分别表示有理数x,-2,1,那么点A到点B的距离与点A到点C的距离之和可表示为什么?(用含绝对值的式子表示)(2)利用数轴探究:①找出满足|x-3|+|x+1|=6的x的所有值;②设|x-3|+|x+1|=p,当x取不小于-1且不大于3的数时,p的值是不变的,而且是p的最小值,这个最小值是;当x在范围内取值时,|x|+|x-2|取得最小值,最小值是.答案基础巩固1.A解析:|-2|=2,所以|-2|的相反数是-2.故选A.2.B解析:根据绝对值的定义,可知x一定是负数或零.故选B.3. -|0.67|<0.66<23<|-0.67|<0.67•<-(-0.68)解析:因为-|0.67|=-0.67,|-0.67|=0.67,-(-0.68)=0.68,23=0.6•,所以-|0.67|<0.66<23<|-0.67|<0.67•<-(-0.68).4.解:将各数在数轴上表示如图D2-3-1.图D2-3-1按从小到大的顺序排列出来为:-3.5<-1.5<|0|<|-2|<|-3.5|.5.解:①-(-2)=2;②+-81=-81; ③-[-(-4)]=-4;④-[-(+3.5)]=3.5; ⑤-{-[-(-5)]}=5;⑥-{-[-(+5)]}=-5.(1)当+5前面有2 018个负号时,化简后的结果是+5. (2)当-5前面有2 019个负号时,化简后的结果是+5.总结规律:一个数的前面有奇数个负号,化简后的结果等于它的相反数,有偶数个负号,化简后的结果等于它本身. 能力提升6.解:(1)小李在送最后一名乘客时行驶的路程最远,是 26 km. (2)总耗油量为0.1×(|+15|+|-3|+|+14|+|-11|+|+10|+|+4|+|-26|)=8.3(L ). 即这天下午该出租车共耗油8.3 L.7.解:(1)点A 到点B 的距离与点A 到点C 的距离之和可表示为|x +2|+|x -1|. (2)①满足|x -3|+|x +1|=6的x 的所有值是-2,4.② 4不小于0且不大于22.第二章 有理数及其运算4 有理数的加法基础巩固1.(题型一)有理数-5与20的和与它们的绝对值之和分别为( ) A.15,15 B.25,15 C.25,25 D.15,252.(题型二)李老师的存储卡中有5 500元,取出1 800元,又存入1 500元,又取出2 200元,这时存储卡中的钱为( ) A.11 000元 B.0元 C.3 000元 D.2 500元3.(题型一)若m ,n 分别表示一个有理数,且m ,n 互为相反数,则|m +(-2)+n |= .4.(考点一)计算下列各题:(1) 354215+-+-++-+-9+7777()(4)()(); (2) 15115++-+0.125+-82(4.5)(). 5.(题型二)某检修小组乘汽车沿南北走向的公路检修输电线路,约定向南为正,向北为负,某天从M 地出发到收工时所走路程依次为(单位:km ):+10,-4,+2,-5,-2,+8,+5. (1)该检修小组收工时在M 地什么方向,距M 地多远?(2)若该汽车在行驶过程中,每千米耗油0.09升,则该汽车从M 地出发到收工时共耗油多少升? 能力提升6.(题型三)如果两个数互为相反数,那么这两个数的和为0.例如,若x 和y 互为相反数,则必有x +y =0.(1)已知|a |+a =0,求a 的取值范围.(2)已知|a -1|+(a -1)=0,求a 的取值范围. 7.(考点一)阅读下面解题过程: 计算: 解:原式== =0+ = 上面的计算,是先把带分数拆分为整数部分和小数部分后再计算,可使运算简便,这种简便运算的方法叫作拆项法.请你仿照上面的方法计算:521-2018+-+4035+-1632()(2017)().5231-5+9)17(3)6342-++-(52(5)()(9)()6331(17)(3)().42⎡⎤⎡⎤-+-+-+-⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤+++-+-⎢⎥⎣⎦[](5)(9)(3)175213(-+-+-+6324-+-+-+⎡⎤+⎢⎥⎣⎦)()()1-14()1-1.4答案 基础巩固1.D 解析:(-5)+20=15,|-5|+|20|=5+20=25.故选D.2.C 解析:根据题意,得5 500+(-1 800)+1 500+(-2 200)=3 000(元),故此时存储卡还有3 000元.故选C.3. 2 解析:因为m ,n 互为相反数,所以m +n =0,则|m +(-2)+n |= |(m +n )+(-2)|=|0+(-2)|=2.4.解:(1)15+(-73)+(-4)+75+(-74)+(-9)+72 =(75+72)+[(-73)+(-74)] + [15+(-4)+(-9)]=1+(-1)+2 =2.(2)10+815+(-4.5)+0.125+(-21) =10+815+(-4.5)+81+(-0.5)=10+(815+81)+[(-4.5)+(-0.5)]=10+2+(-5) =7.5.解:(1)(+10)+(-4)+(+2)+(-5)+(-2)+(+8)+(+5) =10-4+2-5-2+8+5 =14.答:该检修小组收工时在M 地的南边,距M 地14 km.(2)|+10|+|-4|+|+2|+|-5|+|-2|+|+8|+|+5|=36(km ),36×0.09=3.24(L ). 答:汽车从M 地出发到收工时共耗油3.24 L. 能力提升6.解:(1)因为|a |≥0,|a |+a =0,所以a ≤0.(2)因为|a -1|≥0,|a -1|+(a -1)=0,所以a -1≤0.解得a ≤1.7.解:原式=[(-2 018)+(-65)]+[(- 2 017)+(-32)]+4 035+[(-1)+(-21)] =[(-2 018)+(-2 017)+4 035+(-1)]+[(-65)+(-32)+(-21)]=(-1)+(-2)=-3.第二章有理数及其运算5 有理数的减法基础巩固1.(题型一)有理数a,b在数轴上的对应点的位置如图2-5-1,则()A.a+b<0 B.a+b>0 C.a-b=0 D.a-b<图2-5-12.(题型一)李明的练习册上有这样一道题:计算|(-3)+▉|,其中“▉”是被墨水污染而看不到的一个数,他翻看了后边的答案得知该题的计算结果为6,那么“▉”表示的数应该是 .3.(考点一)计算:(1)-2-(+10);(2)0-(-3.6);(3)(-30)-(-6)-(+6)-(-15);(4)232-3--2--1-+1.75 343()()()().4.(题型二)已知某种植物成活的主要条件是该地四季的温差不得超过20 ℃.若不考虑其他因素,在下表的四个地区中,哪个地区适合大面积的栽培这种植物?请说明理由.地区夏季最高温/℃冬季最低温/℃A地区41 -5 B地区38 20 C地区27 -17 D地区-2 -42能力提升5.(题型一)若a,b,c是有理数,|a|=3,|b|=10,|c|=5,且a,b异号,b,c同号,求a-b-(-c)的值.6.(题型一)已知M,N都为数轴上的点,当M,N分别表示下列各数时:①+3和+6;②-3和+6;③3和-6;④-3和-6.(1)请你分别求点M,N之间的距离.(2)根据(1)的求解过程,你能从中得出求数轴上任意两点间的距离的规律吗?试试看.答案 基础巩固1.B 解析:由数轴,得a >0,b <0,且|a |>|b |,所以a +b >0,a -b >0.故选B.2.-3或9 解析:因为|(-3)+▉|=6,所以(-3)+▉=6或(-3)+▉=-6. 当(-3)+▉=6时,▉=6-(-3)=6+(+3)=9;当(-3)+▉=-6时,▉=-6-(-3)=(-6)+(+3)=-3. 3.解:(1)-2-(+10)=-2+(-10)=-12. (2)0-(-3.6)=0+3.6=3.6.(3)(-30)-(-6)-(+6)-(-15)=(-30)+(+6)+(-6)+(+15)=-30+0+15=-15.(4)(-332)-(-243)-(-132)-(+1.75) =-332+243+132+(-143)=(-332+132)+ [(+243)+(-143)]=-2+1 =-1.4.解:B 地区.理由如下:A 地区的四季温差是41-(-5)=46(℃);B 地区的四季温差是38-20=18(℃);C 地区的四季温差是27-(-17)=44(℃);D 地区的四季温差是-2-(-42)=40(℃). 因为B 地区的四季温差不超过20 ℃,所以B 地区适合大面积的栽培这种植物. 能力提升5.解:因为|a |=3,所以a =3或a =-3. 因为|b |=10,所以b =10或b =-10. 因为|c |=5,所以c =5或c =-5. 又因为a ,b 异号,b ,c 同号,所以a=-3,b=10,c=5或a=3,b=-10,c=-5.当a=-3,b=10,c=5时,a-b-(-c)=-3-10-(-5)=-8 ;当a=3,b=-10,c=-5时,a-b-(-c)=3-(-10)- 5=8.所以a-b-(-c)的值为8或-8.6.解:把-6,-3,+3,+6分别用数轴上的点表示出来,如图D2-5-1.图D2-5-1(1)①点M,N之间的距离为|6|-|3|=6-3=3.②点M,N之间的距离为|6|+|-3|=6+3=9.③点M,N之间的距离为|-6|+|3|=6+3=9.④点M,N之间的距离为|-6|-|-3|=6-3=3.(2)能.在(1)中,①可以写成|6|-|3|=|6-3|=3;②可以写成|6|+|-3|=|6-(-3)|=9;③可以写成|-6|+|3|=|-6-3|=9;④可以写成|-6|-|-3|=|-6-(-3)|=3,所以点M,N之间的距离为这两个点所表示的数的差的绝对值.故求数轴上任意两点间的距离可以转化为求这两点在数轴上所表示的数的差的绝对值.第二章 有理数及其运算 6有理数的加减混合运算基础巩固1.(题型一)不改变原式的值,将6-(+3)-(-7)+(-2)写成省略加号的和的形式是( ) A.-6-3+7-2 B.6-3-7-2 C.6-3+7-2 D.6+3-7-22.(题型二)某天股票B 的开盘价为10元,上午11:00下跌了1.8元,下午收盘时上涨了1元,则该股票这天的收盘价为( )A .-0.8元B .12.8元C .9.2元D .7.2元 3.(题型三)已知|a +2|+|b -1|=0,则(a +b )-(b -a )-a =______. 4.(题型一)计算:(1) (-23)-(-38)-(+12)+(+7);(2)16-(+2.8)+(-65)+1.8; (3)-0.5-(-341)+2.75-(+521);(4)|+3118|-|-1127|-|+1119|+|-59|.5.(题型二)为了宣传节约用水的意义,李丽记录了金地庄园小区6月份1~6日每天的用水量,并根据记录结果制成折线统计图,如图2-6-1.请你求出该小区6天的平均用水量是多少吨.图2-6-1能力提升6.(题型一)数学活动课上,王老师给同学们出了一道题,规定一种新运算“☆”,对于任意有理数a 和b ,a ☆b =a -b +1,请你根据新运算,计算[2☆(-3)]☆(-2)的值.7.(题型四)(1)有1,2,3,…,11,12共12个数,请在每两个数之间添上“+”或“-”,使它们的和为0;(2)若有1,2,3,…,2 015,2 016共2 016个数字,请在每两个数之间添上“+”或“-”,使它们的和为0;(3)根据(1)(2)的规律,试判断能否在1,2,3,…,2 016,2 017共2 017个数的每两个数之间添上“+”或“-”,使它们的和为0.若能,请说明添加的方法;若不能,请说明理由.答案1.C 解析:原式=6+(-3)+(+7)+(-2)=6-3+7-2.故选C.2.C 解析:由题意可得,该股票这天的收盘价为10-1.8+1=9.2(元).故选C.3. -2 解析:因为|a +2|+|b -1|=0,所以a +2=0,b -1=0,即a =-2,b =1,则原式=a +b -b +a -a =a =-2.4.解:(1)原式=-23+38-12+7=(-23-12)+(38+7) =-35+45 =10. (2)原式=61-2.8-65+1.8=(61-65)+(-2.8+1.8)=-32 -1=-132. (3)原式=-0.5+3.25+2.75-5.5=(-0.5-5.5)+(3.25+2.75)=-6+6=0. (4)原式=3118-1027-1119+59=3118-1119-(—1027-59)=2-109=1101.5.解:若选3日的用水量为标准,则这6天的用水量分别为-2吨,+2吨,0吨,+5吨,-4吨,-1吨.所以这6天的平均用水量为[(-2)+(+2)+0+(+5)+(-4)+(-1)]÷6+32=(-2+2+0+5-4-1)÷6+32=32(吨). 答:该小区6天的平均用水量是32吨. 能力提升6.解:根据新运算法则,得[2☆(-3)]☆(-2)=[2-(-3)+1]☆(-2)=6☆(-2)=6-(-2)+1=6+2+1=9. 7.解:(1)答案不唯一,如1+12-2-11+3+10-4-9+5+8-6-7=0.(2)答案不唯一,如1+2 016-2-2 015+3+2 014-4-2 013+…+1 007+1 010-1 008-1 009=0. (3)不能.理由如下: 因为(1)与(2)是偶数个数,它们的第一个数与最后一个数的和,第二个数与倒数第二个数的和,……中间位置两个数的和都分别相等,在适当的位置添加“+”或“-”其和可以为0,而1,2,3,…,2 016,2 017共2 017个数,中间的数2 009是无法抵消的,所以根据(1)(2)的规律,不能在1,2,3,…,2 016,2 017共2 017个数的每两个数之间添上“+”或“-”,使它们的和为0.第二章 有理数及其运算7有理数的乘法基础巩固1.(知识点1)从-4,5,-3,2中任取两个数相乘,所得积最大的是( ) A.-20 B.12C.10D.-82.(知识点1、题型一)下列计算正确的是( )A .(-5)×(-4)×(-2)×(-2)=5×4×2×2=80B .(-12)×(31-41-1)=-4+3+1=0C .(-9)×5×(-4)×0=9×5×4=180D .(-2)×5-2×(-1)-(-2)×2=(-2)×(5+1-2)=-8 3.(知识点2)如果□×(-52)=1,那么“□”内应填的数是( ) A.25B.52C.-52D.-254.(题型二)绝对值小于4的所有整数的积是____.5.(题型二)有理数a ,b ,c ,d 在数轴上对应的点的位置如图2-7-1,则abc ____0,abcd ____0.(填“>”或“<”)图2-7-16.(题型二)若|a |=5,b =-2,且ab >0,则a +b =_____.7.(题型一)用简便方法计算:(1)(-231-321+12524)×(-76); (2)(-5)×(-372)+(-7)×(-372)+(-12)×372.8.(题型二)在数轴上,点A 到原点的距离为3,点B 到原点的距离为5,如果点A 表示的有理数为a ,点B 表示的有理数为b ,求a 与b 的乘积. 能力提升9.(题型三)某数学小组的10位同学站成一列玩报数游戏,规则:从前面第一位同学开始,每位同学依次报自己序号的倒数的2倍加1,第1位同学报(12+1),第2位同学报(22+1),第3位同学报(23+1),……这样得到的10个数的积为______.10.(题型一)阅读下面材料:(1+21)×(1-31)=23×32=1, (1+21)×(1+41)×(1-31)×(1-51)=23×45×32×54 =23×32×45×54=1×1=1.根据以上信息,求出下式的结果.(1+21)×(1+41)×(1+61)×…×(1+201)×(1-31)×(1-51)×(1-71)×(1-91)×…×(1-211).答案 基础巩固1.B 解析:(-4)×5=-20,(-4)×(-3)=12,(-4)×2=-8,5×(-3)=-15,5×2=10,-3×2=-6.故选B.2.A 解析:A.(-5)×(-4)×(-2)×(-2)=5×4×2×2=80,故正确;B.(-12)×(31-41-1)=-4+3+12=11,故错误;C.(-9)×5×(-4)×0=0,故错误;D.-2×5-2×(-1)-(-2)×2=-2×(5-1-2)=-4,故错误.故选A.3.D 解析:互为倒数的两个数的积为1,反之,如果两个数的积为1,那么这两个数互为倒数.所以“□”内应填的数为-25.故选D. 4. 0 解析:绝对值小于4的整数有3,2,1,0,-1,-2,-3,因为因数中有一个数为0,所以它们的积为0.5.>> 解析: 观察数轴可知,a <0,b <0,c >0,d >0,故abc >0,abcd >0.6. -7 解析:因为|a |=5,所以a =5或a =-5.又因为ab >0,b =-2,所以a =-5,所以a +b =(-5)+(-2)=-7.7.解:(1)原式=(-37-27+2549)×(-76) =(-37)×(-76)+(-27)×(-76)+2549×(-76)=2+3-2542=3258.(2)原式=5×372+7×372-12×372=372×(5+7-12)=372×0=0.8.解:由题意知,a =3或a =-3,b =5或b =-5.当点A 与点B 位于原点的同侧时,a ,b 的符号相同,则ab =3×5=15或ab =(-3)×(-5)=15; 当点A 与点B 位于原点的异侧时,a ,b 的符号相反,则ab =3×(-5)=-15或ab =(-3)×5=-15.综上所述,a 与b 的乘积为15或-15.。
展开与折叠同步练习含试卷分析详解北师大版数学七年级上
北师大版数学七年级上册第一章第2节展开与折叠课时练习一、单选题(共15小题)1、如图是一个长方体包装盒,则它的平面展开图是()A、B、C、D、2、下列四个图形中是正方体的平面展开图的是()A、B、C、D、3、如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()A、B、C、D、4、下列图形中可以作为一个三棱柱的展开图的是()A、B、C、D、5、一个几何体的表面展开图如图所示,则这个几何体是()A、四棱锥B、四棱柱C、三棱锥D、三棱柱6、下列图形中,能通过折叠围成一个三棱柱的是()A、B、C、D、7、下面图形经过折叠不能围成棱柱的是()A、B、C、D、8、如图是一个正方体纸巾盒,它的平面展开图是()A、B、C、D、9、骰子可以看做是一个小立方体(如图),它相对两面之和的点数之和是7,下面展开图中符合规则的是()A、B、C、10、如图,把左边的图形折叠起来,它会变为右面的哪幅立体图形()A、B、C、D、11、下列图形经过折叠不能围成棱柱的是()A、B、C、D、12、下面四个图形中,经过折叠能围成如图所示的几何图形的是()B、C、D、13、如图是一个立方体图形的展开图,则这个立体图形是()A、四棱柱B、四棱锥C、三棱柱D、三棱锥14、一个正方体的每个面都有一个汉字,其展开图如图所示,那么在该正方体中和“值”字相对的字是()A、记B、观C、心D、间15、如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A、的B、中C、国D、梦二、填空题(共5小题)16、如图是正方体的一种展开图,其中每个面上都标有一个数字,那么在原正方体中,与数字“2”相对的面上的数字是________.17、“仁义礼智信孝”是我们中华民族的传统美德,小明同学将这六个字分别写在一个正方体六个表面上,这个正方体的表面展开图如图所示,那么与“孝”所在面相对的面上的字是________.18、有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第次后,骰子朝下一面的点数是________.19、如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是________.20、有一个正方体的六个面上分别标有数字1、2、3、4、5、6,从三个不同的角度观察这个正方体所得到的结果如图所示,如果标有数字6的面所对面上的数字记为a ,2的面所对面上数字记为b ,那么a+b的值为________.三、解答题(共5小题)21、一个正方体6个面分别写着1、2、3、4、5、6,根据下列摆放的三种情况,那么每个数对面上的数是几?22、如图是一个正方体的展开图,标注了字母a的面是正方体的正面,如果正方体相对两个面上的整式的值相等,求整式(x+y)a的值.23、如图是一个正方体骰子的表面展开图,请根据要求回答问题:(1)如果1点在上面,3点在左面,几点在前面?(2)如果5点在下面,几点在上面?24、解答题(1)如图:是有一些相同小正方体搭建而成的几何体的俯视图,其中小正方形中的数字表示在这个位置小立方体的个数,请画出该几何体的主视图与左视图.(2)已知、b互为相反数,c、d互为倒数,m的绝对值等于2,p是数轴上到原点的距离为1的数,求:p ﹣cd+ 的值.25、回答下列问题:(1)如图所示的甲、乙两个平面图形能折什么几何体?(2)由多个平面围成的几何体叫做多面体.若一个多面体的面数为f ,顶点个数为v ,棱数为e ,分别计算第(1)题中两个多面体的f+v﹣e的值?你发现什么规律?(3)应用上述规律解决问题:一个多面体的顶点数比面数大8,且有50条棱,求这个几何体的面数.答案解析部分一、单选题(共15小题)1、【答案】A【考点】几何体的展开图【解析】【解答】由四棱柱四个侧面和上下两个底面的特征可知,A.可以拼成一个长方体;B.C.D.不符合长方体的展开图的特征,故不是长方体的展开图.【分析】考查了几何体的展开图,牢记长方体展开图的各种情形是解题关键.2、【答案】B【考点】几何体的展开图【解析】【解答】A.不是正方体的平面展开图;B.是正方体的平面展开图;C.不是正方体的平面展开图;D.不是正方体的平面展开图.【分析】考查了正方体展开图,熟练掌握正方体的表面展开图是解题的关键.3、【答案】D【考点】几何体的展开图【解析】【解答】根据正方体的表面展开图,两条黑线在一列,故A错误,且两条相邻成直角,故B错误,中间相隔一个正方形,故C错误,只有D选项符合条件.【分析】考查了几何体的展开图,注意从相对面入手.4、【答案】A【考点】几何体的展开图【解析】【解答】三棱柱展开后,侧面是三个长方形,上下底各是一个三角形由此可得:只有A是三棱柱的展开图.【分析】查了三棱柱表面展开图,注意上、下两底面应在侧面展开图长方形的两侧.5、【答案】A【考点】几何体的展开图【解析】【解答】如图所示:这个几何体是四棱锥.【分析】考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决问题的关键.6、【答案】C【考点】几何体的展开图【解析】【解答】A.折叠后少一面,故错误;B.折叠后两侧面重叠,不能围成三棱柱,故错误;C.折叠后能围成三棱柱,故正确;D.折叠后两侧面重叠,不能围成三棱柱,故错误.【分析】三棱柱表面展开图,上、下两底面应在侧面展开图长方形的两侧,且是全等的三角形,.7、【答案】D【考点】几何体的展开图【解析】【解答】A.能围成四棱柱;B.能围成五棱柱;C.能围成三棱柱;D.经过折叠不能围成棱柱.【分析】常见立体图形的平面展开图的特征,是解决此题的关键.8、【答案】B【考点】几何体的展开图【解析】【解答】根据正方体的展开图可得【分析】根据正方体的展开图,训练了学生空间想象能力.9、【答案】C【考点】几何体的展开图【解析】【解答】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A、1点与3点是相对面,4点与6点是相对面,2点与5点是相对面,所以不可以折成符合规则的骰子,故错误;B.3点与4点是相对面,1点与5点是相对面,2点与6点是相对面,所以不可以折成符合规则的骰子,故错误;C.4点与3点是相对面,5点与2点是相对面,1点与6点是相对面,所以可以折成符合规则的骰子,故正确;D.1点与5点是相对面,3点与4点是相对面,2点与6点是相对面,所以不可以折成符合规则的骰子,故错误.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形用排除法求解.10、【答案】B【考点】几何体的展开图【解析】【解答】圆面的相邻面是长方形,长方形不指向圆,【分析】根据相邻面、对面的关系,可得答案.11、【答案】B【考点】几何体的展开图【解析】【解答】A可以围成四棱柱,C可以围成五棱柱,D可以围成三棱柱,B选项侧面上多出一个长方形,故不能围成一个三棱柱.【分析】由平面图形的折叠及棱柱的展开图解题,熟记常见立体图形的表面展开图的特征是解决此题的关键.12、【答案】B【考点】几何体的展开图【解析】【解答】根据立体图形可得,展开图中三角形图案的顶点应与圆形的图案相对,而选项A,D与此不符,所以错误;三角形图案所在的面应与圆形的图案所在的面相邻,而选项C与此也不符,正确的是B.【分析】根据图中三角形,圆,正方形所处的位置关系可选出答案,考查了空间想象力.13、【答案】C【考点】几何体的展开图【解析】【解答】∵三棱柱的展开图侧面是长方形,上下面是三角形,∴上图应是三棱柱的展开图.【分析】根据立体图形的展开图是平面图形以及三棱柱的侧面展开图是长方形,上下面是三角形,可解此题.14、【答案】A【考点】几何体的展开图【解析】【解答】对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“值”字相对的字是“记”.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.15、【答案】D【考点】几何体的展开图【解析】【解答】正方体的表面展开图,相对的面之间一定相隔一个正方形,“们”与“中”是相对面,“我”与“梦”是相对面,“的”与“国”是相对面.【分析】考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手作答.二、填空题(共5小题)16、【答案】4【考点】几何体的展开图【解析】【解答】这是一个正方体的平面展开图,共有六个面,其中面“2”与面“4”相对,面“3”与面“5”相对,“1”与面“6”相对.【分析】利用正方体及其表面展开图的特点解题.17、【答案】义【考点】几何体的展开图【解析】【解答】结合展开图可知,与“孝”相对的字是“义”.【分析】根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点,结合展开图很容易找到与“孝”相对的字.18、【答案】3【考点】几何体的展开图,探索图形规律【解析】【解答】观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,∵÷4=503…2,∴滚动第次后与第二次相同,∴朝下的点数为3.【分析】观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,解题的关键是发现规律.19、【答案】的【考点】几何体的展开图【解析】【解答】正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“大”与“中”是相对面,“的”与“梦”是相对面.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形.20、【答案】7【考点】几何体的展开图【解析】【解答】由图可知,∵与1相邻的面的数字有2、3、4、6,∴1的对面数字是5,∵与4相邻的面的数字有1、3、5、6,∴4的对面数字是2,∴3的对面数字是6,∵标有数字6的面所对面上的数字记为a ,2的面所对面上数字记为b ,∴a=3,b=4,∴a+b=3+4=7.【分析】本题考查了正方体相对两个面上的文字,,由相邻面上的数字确定出相对面上的数字是解题的关键.三、解答题(共5小题)21、【答案】1对4,2对5,3对6.解答:根据正方体的特征知,相邻的面一定不是对面,所以面“1”与面“4”相对,面“2”与面“5”相对,“3”与面“6”相对.1对4,2对5,3对6.【考点】几何体的展开图【解析】【分析】根据正方体的特征知,相邻的面一定不是对面,所以面“1”与面“4”相对,面“2”与面“5”相对,“3”与面“6”相对22、【答案】81解答:根据题意得:y=3,x=6,a=2,故(x+y)a=(x+y)2=92=81.【考点】代数式求值,几何体的展开图,简单几何体的三视图【解析】【分析】由正方体的展开图的相对面和已知“相对两个面上的代数式的值相等”,可求得x、y、a 的值,再根据完全平方公式求解.23、【答案】(1)2点在前面,可知5点在后面解答:正方体的平面展开图,其中面“3点”和面“4点”相对,面“5点”和面“2点”相对,面“6点”和面“1点”相对,(1)如果1点在上面,3点在左面,2点在前面,可知5点在后面;(2)如果5点在下面,那么2点在上面【考点】几何体的展开图【解析】【分析】本题考查了正方体的表面展开图,注意正方体的空间图形,从相对面入手,分析及解答.24、【答案】(1)解答:根据俯视图上小正方形的个数,主视图、左视图,(2)答案:0或-2解答:a、b互=相反数,c、d互为倒数,m的绝对值等于2,p是数轴上到原点的距离为1的数,得a+b=0,cd=1,m=±2,p=±1,p=1时,p﹣cd+=1﹣1+0=0,当p=﹣1时,p﹣cd+=﹣1﹣1+0=﹣2,综上所述:p﹣cd+=0,或p﹣cd+=﹣2.【考点】几何体的展开图【解析】【分析】(1)根据俯视图上小正方形的个数,可的主视图、左视图;(2)根据相反数的和为零,根据倒数的积为1,根据绝对值的意义,可得答案.25、【答案】(1)长方体和五棱锥解答:图甲折叠后底面和侧面都是长方形,所以是长方体;图乙折叠后底面是五边形,侧面是三角形,实际上是五棱锥的展开图,所以是五棱锥.(2)甲:f=6,e=12,v=8,f+v﹣e=2;乙:f=6,e=10,v=6,f+v﹣e=2;规律:顶点数+面数﹣棱数=2.(3)设这个多面体的面数为x ,则x+x+8﹣50=2解得x=22.【考点】认识平面图形,几何体的展开图【解析】【分析】(1)由长方体与五棱锥的折叠及长方体与五棱锥的展开图解题.(2)列出几何体的面数,顶点数及棱数直接进行计算即可;(3)考查了欧拉公式,展开图折叠成几何体.。
北师大版七年级数学上册展开与折叠优化练习(附答案)
北师大版七年级数学上册展开与折叠优化练习(附答案)一、单选题1.如图是正方体的平面展开图,则与“梅”字相对的字是()A. 侨B. 香C. 牛D. 旺2.一个正方体的每一个面都有一个汉字,其平面展开图如图所示,那么在该正方体中和“城”字相对的字是()A. 丹B. 东C. 创D. 联3.如图是正方形的展开图,原正方体相对两个面上的数字之和的最小值是()A. 4B. 5C. 6D. 74.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm,在容器内壁离容器底部4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm的点A处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm,则该圆柱底面周长为()A. 12cmB. 14cmC. 20cmD. 24cm5.下列四个图形中,是三棱柱的平面展开图的是()A. B. C. D.二、填空题6.如图是一个正方体的表面展开图,则原正方体中“喜”面所对面上的字是________.7.立方体木块的六个面分别标有数字1、2、3、4、5、6,如图,是从不同方向观察这个立方体木块看到的数字情况,数字1和5对面的数字的和是________.8.如图是一个正方体的表面展开图,还原成正方体后,标注了字母A的面是正方体的正面,若正方体的左面与右面所标注代数式的值相等,则x的值是________.9.如图,5个边长相等的小正方形拼成一个平面图形,小丽手中还有1个同样的小正方形,她想将它与图中的平面图形拼接在一起,从而可以构成一个正方体的平面展开图,则小丽总共能有________种拼接方法.10.一个几何体的表面展开图如图所示,则这个几何体是 ________.8题9题10题三、解答题11.一个正方体6个面分别写着1、2、3、4、5、6,根据下列摆放的三种情况,那么每个数对面上的数是几?12.如图,在无阴影的方格中选出两个画出阴影,使它们与图中4个有阴影的正方形一起可以构成一个正方体的表面展开图.(在图1和图2中任选一个进行解答,只填出一种答案即可)四、作图题13.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(添加所有符合要求的正方形,添加的正方形用阴影表示)五、综合题14.一个正方体的六个面分别标有字母A,B,C,D,E,F,从三个不同方向看到的情形如图.(1)A对面的字母是________,B对面的字母是________;(请直接填写答案)(2)已知A=x,B=﹣x2+3x,C=﹣3,D=1,E=x2019,F=6.①若字母A表示的数与它对面的字母表示的数互为相反数,求E的值;②若2A﹣3B+M=0,求出M的表达式.15.我们知道,将一个正方体或长方体的表面沿某些棱剪开,可以展成一个平面图形.(1)下列图形中,是正方体的表面展开图的是________.(2)如图所示的长方体,长、宽、高分别为4、3、6,若将它的表面沿某些棱剪开,展成一个平面图形.则下列图形中,可能是该长方体表面展开图的有________(填序号)(3)下列图是题(2)中长方体的一种表面展开图,它的外围周长为52,事实上,题(2)中长方体的表面展开图还有不少,聪明的你能画出一个使外围周长最大的表面展开图吗?请画出这个表面展开图,并求出它的外围周长.答案一、单选题1. A2. C3. B4. D5. B二、填空题6. 数7. 78. 19. 4 10. 四棱锥三、解答题11. 解:根据正方体的特征知,相邻的面一定不是对面,所以面“1”与面“4”相对,面“2”与面“5”相对,“3”与面“6”相对.1对4,2对5,3对612. 解:只写出一种答案即可.图1:图2:四、作图题13. 解:五、综合题14. (1)D;E(2)解:①∵字母A表示的数与它对面的字母D表示的数互为相反数,∴x=﹣1,∴E=(﹣1)2019=﹣1;②∵2A﹣3B+M=0,∴2x﹣3(﹣x2+3x)+M=0,∴M=﹣2x+3(﹣x2+3x)=﹣3x2+7x.15. (1)B(2)①②③(3)解:外围周长最大的表面展开图,如图:观察展开图可知,外围周长为6×8+4×4+3×2=48+16+6=70.。
北师大版七(上)数学1.2.1展开与折叠(1)课时同步检测(原创)
正方体的表面展开图,相对的面之间一定相隔一个正方形,
“M”与“x”是相对面,
“-2”与“-3”是相对面,
“4x”与“2x+3”是相对面,
(1)∵正方体的左面与右面标注的式子相等,
∴4x=2x+3,
解得x=1.5;
(2)∵标注了A字母的是正方体的正面,左面与右面标注的式子相等,
∴上面和底面上的两个数字-2和-3,
18.有一个正方体,在它的各个面上分别标有数字l、2、3、4、5、6.甲、乙、丙三位同学从三个不同角度去观察此正方体,观察结果如图l、2、3所示,那么这个正方体各个面上的数字对面各是什么数字?
甲 乙 丙
图1图2图3
19.马小虎准备制作一个封闭的正方体盒子,他先用4个大小一样的正方形制成如下图所示拼接图形(实线部分),经折叠后发现还少一个面,请你在下图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(添加所有符合要求的正方形,添加的正方形用阴影表示)
15.z=2,y=7,x=﹣5.
【解析】
【分析】
利用正方体及其表面展开图的特点,根据相对面上的两个数之和为5,列出方程求出x、y、z的值.
【详解】
这是一个正方体的平面展开图,共有六个面,
其中面“z”与面“3”相对,面“y”与面“﹣2”相对,“x”与面“10”相对.
则z+3=5,y+(﹣2)=5,x+10=5,
故答案为①或②或⑥.
【点睛】
本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.
11.4
【解析】
【分析】
结合正方体的平面展开图的特征,只要折叠后能围成正方体即可,
北师大版初中数学七年级上册《1.2 展开与折叠》同步练习卷(含答案解析
北师大新版七年级上学期《1.2 展开与折叠》同步练习卷一.选择题(共30小题)1.如图,已知一个正方体的六个面上分别写着6个连续整数,且相对面上两个数的和相等.图中所能看到的数是1,3和4,则这6个整数的和是()A.9B.9或15C.15或21D.9,15或21 2.已知正方体的各个侧面分别标上字母a,b,c,d,e,f;其中a在后面()A.d在上面B.e在前面C.f在右面D.d在前面3.如图是一个正方体的表面展开图,则原正方体中与“你”字所在面相对的面上标的字是()A.遇B.见C.未D.来4.一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱5.如图是一个正方体纸盒的外表面展开图,则这个正方体是()A.B.C.D.6.下列四个图形中是正方体的平面展开图的是()A.B.C.D.7.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④8.如图是一个正方体纸盒的展开图,其中的六个正方形内分别标有数字“0”、“1”、“2”、“5”和汉字、“数”、“学”,将其围成一个正方体后,则与“5”相对的是()A.0B.2C.数D.学9.如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B在围成的正方体上的距离是()A.0B.1C.D.10.一个圆柱的侧面展开图是两邻边长分别为6和8的矩形,则该圆柱的底面圆半径是()A.B.C.或D.或11.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A.中B.考C.顺D.利12.如图是每个面上都有一个汉字的正方体的一种平面展开图,那么在原正方体中和“国”字相对的面是()A.中B.钓C.鱼D.岛13.如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是()A.传B.统C.文D.化14.在市委、市府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制了一个正方体玩具,其展开图如图所示,原正方体中与“文”字所在的面相对的面上标的字应是()A.全B.明C.城D.国15.如图是正方体的一个平面展开图,原正方体上两个“我”字所在面的位置关系是()A.相对B.相邻C.相隔D.重合16.如图是正方体的表面展开图,则与“前”字相对的字是()A.认B.真C.复D.习17.下列四个展开图中能够构成如图所示模型的是()A.B.C.D.18.将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是()A.B.C.D.19.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是()A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥20.一个正方体的每个面都有一个汉字,其展开图如图所示,那么在该正方体中和“值”字相对的字是()A.记B.观C.心D.间21.如图,已知MN是圆柱底面的直径,NP是圆柱的高,在圆柱的侧面上,过点M,P嵌有一幅路径最短的金属丝,现将圆柱侧面沿NP剪开,所得的侧面展开图是()A.B.C.D.22.如图所示的正方体的展开图是()A.B.C.D.23.过正方体中有公共顶点的三条棱的中点,切去一个三棱锥,形成如图的几何体,其展开图正确的是()A.B.C.D.24.一个正方体的六个面上分别标有2,3,4,5,6,7中的一个数字,如图表示的是这个正方体的三种放置方法,则这三种放置方法中,三个正方体下底面上所标数字之和是()A.16B.15C.14D.1325.李明为好友制作一个(如图)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是()A.B.C.D.26.如图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是()A.B.C.D.27.一枚正方体骰子,它的各面分别有1﹣6六个数字,请你根据图中A、B、C 三种状态所显示的数字,推出“?”处的数字是()A.1B.2C.3D.628.下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是()A.B.C.D.29.毕业前夕,同学们准备了一份礼物送给自己的母校.现用一个正方体盒子进行包装,六个面上分别写上“祝、母、校、更、美、丽”,其中“祝”与“更”,“母”与“美”在相对的面上.则此包装盒的展开图(不考虑文字方向)不可能是()A.B.C.D.30.下列的正方体表面展开图中,折成正方体后“快”与“乐”相对的是()A.B.C.D.二.填空题(共10小题)31.如图,立方体的六个面上标着连续的整数,若相对的两个面上所标之数的和相等.则这六个数的和为.32.如图是一个正方体的展开图,标注了字母A的面是正方体的正面,如果正方体的左面与右面所标注代数式的值相等,则x的值是.33.立方体木块的六个面分别标有数字1、2、3、4、5、6,如图,是从不同方向观察这个立方体木块看到的数字情况,数字1和5对面的数字的和是.34.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是.35.如图,5个边长相等的小正方形拼成一个平面图形,小丽手中还有一个同样的小正方形,她想将它与图中的平面图形拼接在一起,从而可以构成一个正方体的平面展开图,则小丽总共能有种拼接方法.36.将下图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,应剪去.(填序号)37.一个立方体的每个面上都标有数字1、2、3、4、5、6,根据图中该立方体A、B、C三种状态所显示的数字,可推出“?”处的数字是38.如图,下面两个正方体的六个面都按相同规律涂有红、黄、蓝、白、黑、绿六种颜色,那么黄色的对面是.39.如图,为一正方体的侧面展开图,那么“于”字所在的面与“”字所在的面是对面.40.有一个正方体的六个面上分别标有数字1、2、3、4、5、6,从三个不同的角度观察这个正方体所得到的结果如图所示,如果标有数字6的面所对面上的数字记为a,2的面所对面上数字记为b,那么a+b的值为.三.解答题(共10小题)41.如图是一个正方体的展开图,标注了字母A的面是正方体的正面,如果正方体的左面与右面所标注的式子的值相等,试求x的值.42.若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和为5,求x+y+z的值.43.一个正方体6个面分别写着1、2、3、4、5、6,根据下列摆放的三种情况,那么每个数对面上的数是几?44.如图,在无阴影的方格中选出两个画出阴影,使它们与图中4个有阴影的正方形一起可以构成一个正方体的表面展开图.(在图1和图2中任选一个进行解答,只填出一种答案即可)45.如图,是一个几何体的平面展开图;(1)这个几何体是;(2)求这个几何体的体积.(π取3.14)46.把立方体的六个面分别涂上六种不同颜色,并画上朵数不等的花,各面上的颜色与花的朵数情况列表如下:现将上述大小相同,颜色、花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图所示),那么长方体的下底面共有多少朵花?47.一个正方体,六个面上分别写着六个连续整数,且每两个相对面上的两个数的和都相等,如图所示,能看到的所写的数为16,19,20,问这6个整数的和为多少?48.如图所示,图(1)为一个长方体,AD=AB=10,AE=6,图2为图1的表面展开图(字在外表面上),请根据要求回答问题:(1)面“扬”的对面是面;(2)如果面“丽”是右面,面“美”在后面,哪一面会在上面?(3)图(1)中,M、N为所在棱的中点,试在图(2)中画出点M、N的位置;并求出图(2)中三角形ABM的面积;49.如图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和为5,求x+y+z的值.50.如图是一个正方体的平面展开图,若要使得平面展开图折叠成正方体后,相对面上的两个数之和均为5,求x、y、z的值.北师大新版七年级上学期《1.2 展开与折叠》同步练习卷参考答案与试题解析一.选择题(共30小题)1.如图,已知一个正方体的六个面上分别写着6个连续整数,且相对面上两个数的和相等.图中所能看到的数是1,3和4,则这6个整数的和是()A.9B.9或15C.15或21D.9,15或21【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:∵六个面上分别写着6个连续的整数,∴六个整数可能为1,2,3,4,5,6或0,1,2,3,4,5或﹣1,0,1,2,3,4;∵相对面上两个数的和相等,∴这6个整数只可能为﹣1,0,1,2,3,4,其和为9.故选:A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.2.已知正方体的各个侧面分别标上字母a,b,c,d,e,f;其中a在后面()A.d在上面B.e在前面C.f在右面D.d在前面【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“a”与“e”是相对面,“c”与“f”是相对面,“b”与“d”是相对面,∵a在后面,∴e在前面.故选:B.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.3.如图是一个正方体的表面展开图,则原正方体中与“你”字所在面相对的面上标的字是()A.遇B.见C.未D.来【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“遇”与“的”是相对面,“见”与“未”是相对面,“你”与“来”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱【分析】根据四棱锥的侧面展开图得出答案.【解答】解:如图所示:这个几何体是四棱锥.故选:A.【点评】此题主要考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决此类问题的关键.5.如图是一个正方体纸盒的外表面展开图,则这个正方体是()A.B.C.D.【分析】根据几何体的展开图先判断出实心圆点与空心圆点的关系,进而可得出结论.【解答】解:∵由图可知,实心圆点与空心圆点一定在紧相邻的三个侧面上,∴C符合题意.故选:C.【点评】本题考查的是几何体的展开图,此类问题从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.6.下列四个图形中是正方体的平面展开图的是()A.B.C.D.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:A、不是正方体的平面展开图;B、是正方体的平面展开图;C、不是正方体的平面展开图;D、不是正方体的平面展开图.故选:B.【点评】此题主要考查了正方体展开图,熟练掌握正方体的表面展开图是解题的关键.7.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④【分析】由平面图形的折叠及正方体的表面展开图的特点解题.【解答】解:将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体,故选:A.【点评】本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.8.如图是一个正方体纸盒的展开图,其中的六个正方形内分别标有数字“0”、“1”、“2”、“5”和汉字、“数”、“学”,将其围成一个正方体后,则与“5”相对的是()A.0B.2C.数D.学【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“数”相对的字是“1”;“学”相对的字是“2”;“5”相对的字是“0”.故选:A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9.如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B在围成的正方体上的距离是()A.0B.1C.D.【分析】将图1折成正方体,然后判断出A、B在正方体中的位置关系,从而可得到AB之间的距离.【解答】解:将图1折成正方体后点A和点B为同一条棱的两个端点,故此AB=1.故选:B.【点评】本题主要考查的是展开图折成几何体,判断出点A和点B在几何体中的位置关系是解题的关键.10.一个圆柱的侧面展开图是两邻边长分别为6和8的矩形,则该圆柱的底面圆半径是()A.B.C.或D.或【分析】分8为底面周长与6为底面周长两种情况,求出底面半径即可.【解答】解:若6为圆柱的高,8为底面周长,此时底面半径为=;若8为圆柱的高,6为底面周长,此时底面半径为=,故选:C.【点评】此题考查了几何体的展开图,利用了分类讨论的思想,分类讨论时注意不重不漏,考虑问题要全面.11.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A.中B.考C.顺D.利【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“考”是相对面,“你”与“顺”是相对面,“中”与“利”是相对面.故选:C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.12.如图是每个面上都有一个汉字的正方体的一种平面展开图,那么在原正方体中和“国”字相对的面是()A.中B.钓C.鱼D.岛【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“国”字相对的字是“鱼”.故选:C.【点评】本题考查了正方体相对的两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.13.如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是()A.传B.统C.文D.化【分析】利用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“扬”与“统”相对,面“弘”与面“文”相对,“传”与面“化”相对.故选:C.【点评】本题考查了正方体的展开图得知识,注意正方体的空间图形,从相对面入手,分析及解答问题.14.在市委、市府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制了一个正方体玩具,其展开图如图所示,原正方体中与“文”字所在的面相对的面上标的字应是()A.全B.明C.城D.国【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:由正方体的展开图特点可得:与“文”字所在的面上标的字应是“城”.故选:C.【点评】此题考查了正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.15.如图是正方体的一个平面展开图,原正方体上两个“我”字所在面的位置关系是()A.相对B.相邻C.相隔D.重合【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“国”是相对面,“我”与“祖”是相对面,“爱”与“的”是相对面.故原正方体上两个“我”字所在面的位置关系是相邻.故选:B.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.16.如图是正方体的表面展开图,则与“前”字相对的字是()A.认B.真C.复D.习【分析】由平面图形的折叠及正方体的展开图解题.对于正方体的平面展开图中相对的面一定相隔一个小正方形.【解答】解:由图形可知,与“前”字相对的字是“真”.故选:B.【点评】本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.17.下列四个展开图中能够构成如图所示模型的是()A.B.C.D.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.同时注意图示中的图案的位置关系.【解答】解:选项A、B中折叠后带图案的三个面不能相交于同一个点,与原立方体不符;选项D中折叠后图案的位置不符,所以正确的是C.故选:C.【点评】考查了展开图折叠成几何体,解决此类问题,要充分考虑带有各种符号的面的特点及位置.18.将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是()A.B.C.D.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.注意带图案的三个面相交于一点.【解答】解:由原正方体知,带图案的三个面相交于一点,而通过折叠后A、B 都不符合,且D折叠后图案的位置正好相反,所以能得到的图形是C.故选:C.【点评】考查了几何体的展开图,解决此类问题,要充分考虑带有各种符号的面的特点及位置.19.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是()A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥【分析】根据正方体、圆锥、三棱柱、圆柱及其表面展开图的特点解题.【解答】解:观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是正方体、圆柱、三棱柱、圆锥.故选:A.【点评】可根据所给图形判断具体形状,也可根据所给几何体的面数进行判断.20.一个正方体的每个面都有一个汉字,其展开图如图所示,那么在该正方体中和“值”字相对的字是()A.记B.观C.心D.间【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“值”字相对的字是“记”.故选:A.【点评】本题考查了正方体相对的两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.21.如图,已知MN是圆柱底面的直径,NP是圆柱的高,在圆柱的侧面上,过点M,P嵌有一幅路径最短的金属丝,现将圆柱侧面沿NP剪开,所得的侧面展开图是()A.B.C.D.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:因圆柱的展开面为长方形,MP展开应该是两直线,且有公共点M.故选A.【点评】此题主要考查圆柱的展开图,以及学生的立体思维能力.22.如图所示的正方体的展开图是()A.B.C.D.【分析】具体折一折,从中发挥想象力,可得正确的答案.【解答】解:根据带有各种符号的面的特点及位置,故选D.【点评】解决此类问题,要充分考虑带有各种符号的面的特点及位置.23.过正方体中有公共顶点的三条棱的中点,切去一个三棱锥,形成如图的几何体,其展开图正确的是()A.B.C.D.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:选项A、C、D折叠后都不符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,•与正方体三个剪去三角形交于一个顶点符合.故选:B.【点评】考查了截一个几何体和几何体的展开图.解决此类问题,要充分考虑带有各种符号的面的特点及位置.24.一个正方体的六个面上分别标有2,3,4,5,6,7中的一个数字,如图表示的是这个正方体的三种放置方法,则这三种放置方法中,三个正方体下底面上所标数字之和是()A.16B.15C.14D.13【分析】注意正方体的空间图形,从相对面入手,分析及解答问题.【解答】解:由图可知,“2”和“6”相对;“5”和“7”相对;“3”和“4”相对;则如图放置方法中,三个正方体下底面上所标数字分别是5,4,7,即所标数字的和为16.故选:A.【点评】此题考查了空间图形,主要培养学生的观察能力和空间想象能力.25.李明为好友制作一个(如图)正方体礼品盒,六面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是()A.B.C.D.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点,对各选项分析即可作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,A、“预”的对面是“考”,“成”的对面是“祝”,故本选项错误;B、“预”的对面是“功”,“成”的对面是“祝”,故本选项错误;C、“预”的对面是“中”,“成”的对面是“功”,故本选项正确;D、“预”的对面是“中”,“成”的对面是“祝”,故本选项错误.故选:C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.26.如图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是()A.B.C.D.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:四个方格形成的“田”字的,不能组成正方体,A错;出现“U”字的,不能组成正方体,B错;以横行上的方格从上往下看:C选项组成正方体.故选:C.【点评】如没有空间观念,动手操作可很快得到答案.需记住正方体的展开图形式:一四一呈6种,一三二有3种,二二二与三三各1种,展开图共有11种.27.一枚正方体骰子,它的各面分别有1﹣6六个数字,请你根据图中A、B、C 三种状态所显示的数字,推出“?”处的数字是()A.1B.2C.3D.6【分析】根据与1相邻的数字是2、3、4、5确定出1的相对面是6,再根据与4和5相邻的两个面确定出“?”处的数字是6.【解答】解:∵与1相邻的数字是2、3、4、5,∴1的对面是6,由A可知5在上面、4在前面时,右面是1,所以,左面是6,把A向右翻即可得到C,∴“?”处的数字是6.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,观察出图形A与C的关系是解题的关键.28.下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是()A.B.C.D.【分析】根据长方体的组成,通过结合立体图形与平面图形的相互转化,分别分析得出即可.【解答】解:A、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;B、剪去阴影部分后,无法组成长方体,故此选项不合题意;C、剪去阴影部分后,能组成长方体,故此选项正确;D、剪去阴影部分后,无法组成长方体,故此选项不合题意;故选:C.【点评】此题主要考查了展开图折叠成几何体,培养了学生的空间想象能力.29.毕业前夕,同学们准备了一份礼物送给自己的母校.现用一个正方体盒子进行包装,六个面上分别写上“祝、母、校、更、美、丽”,其中“祝”与“更”,“母”与“美”在相对的面上.则此包装盒的展开图(不考虑文字方向)不可能是()A.B.C.D.【分析】根据立方体的平面展开图规律解决问题即可.【解答】解:选项C不可能.理由:选项C,不可能围成的立方体,不符合题意,故选:C.【点评】本题考查灵活运用正方体的相对面解答问题,立意新颖,是一道不错的题.注意正方体的平面展开图中,相对的两个面中间一定隔着一个小正方形.30.下列的正方体表面展开图中,折成正方体后“快”与“乐”相对的是()A.B.C.D.【分析】利用正方体及其表面展开图的特点解题,正方体展开后不重复,共有8种图形.A,B为一种,C,D为另一种.动手折一下,出现“快”与“乐”相对即可解决了.【解答】解:A图折成正方体后“快”与“乐”不相对;B,D也不相对;C图折成正方体后“快”与“乐”相对.故选C.【点评】正方体展开后不重复,共有8种图形,掌握展开图的展法和个人的空间想象能力是解决此类问题的方法.二.填空题(共10小题)31.如图,立方体的六个面上标着连续的整数,若相对的两个面上所标之数的和相等.则这六个数的和为39.【分析】由题意“六个连续的整数”“两个相对面上的数字和相等”,则由4,5,7。
最新北师大版七年级数学上册第一章 丰富的图形世界 1.2 展开与折叠培优习题课件
围成图②所示的正方体,则图①中小正方形的顶点A,
B在围成的正方体上的距离是( B )
A.0
B.1
C.2
D.3
【点拨】图①中的平面图形围成图②中的正方体后, AB是正方体的一条棱,所以AB=1.故选B.
课堂导练
10.如图,这是一个正方体的展开图, 这个正方体是( D )
课后训练
11.如图,这是一个正方体纸盒的展开图,如果这个正方体 纸盒相对两个面上的数或式子的值相等,求a,x,y的值.
(3)能.如图所示.
外围周长为6×8+4×4+ 3×2=48+16+6=70. (提示:外围周长最大,将棱长为6的棱都剪开)
课后训练 12.如图,这是一张铁皮. (1)计算该铁皮的面积.
【点拨】本题利用了转化思想.在解决这类由表 面展开图求相应几何体的表面积或体积的问题时, 将平面图形转化成立体图形,可使问题更直观.
那么哪一面在上面? A面或E面在上面. (3)如果E面在右面,F面在后面,那么哪一面在上面?
B面或D面在上面.
精彩一题 13.如图,有一个正方体盒子,在盒子内的顶点A处有一只
蚂蚁,而在对角的顶点C1处有一块糖,蚂蚁应沿着什么 路径爬行,才能最快吃到糖?请画出蚂蚁爬行的路线.
【思路点拨】先将含有点A,C1的相邻两个 面展开到同一平面,连接AC1,则AC1即为 蚂蚁的爬行路径,再把这些爬行路径在正 方体中一一画出来即可(有6种情况).
解:该铁皮的面积为3×1×2+3×2×2+2×1×2=22(m2).
课后训练 12.如图,这是一张铁皮. (2)该铁皮能否做成一个长方体盒子
(底面固定,如图)?若能,画出它的立体图形, 并计算它的体积;若不能,请说明理由.
解:该铁皮能做成一个长方体盒子,画立体图形略. 该长方体盒子的长为3 m,宽为2 m,高为1 m, 所以它的体积为3×2×1=6(m3).
【能力培优】七年级数学上册 1.2 展开与折叠试题 (新版)北师大版
1.2 展开与折叠专题一正方体的展开与折叠1.以下各图均有彼此连接的六个小正方形纸片组成,其中不能折叠成一个正方体的是()A.B.C.D.2.如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体“着”相对的面上的汉字是()A.冷B.静C.应D.考3.将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的()A.面CDHE B.面BCEF C.面ABFG D.面ADHG4.如图1-11,有一正方体的房间,在房间内的一角A处有一只蚂蚁,它想到房间的另一角B处去吃食物,试问它采取怎样的行走路线是最近的?如果一只蜜蜂,要从A到B怎样飞是最近呢?请同学们互相讨论一下.BA专题二三棱柱、圆柱与圆锥的展开与折叠5.左图是一个三棱柱,下列图形中,能通过折叠围成该三棱柱的是()A.B.C.D.6.如下图所示的平面图形中,不可能围成圆锥的是()A.B.C.D.状元笔记:【知识要点】1.掌握正方体的展开与折叠,能根据所给平面图形判断是否能折叠成正方体.2.根据简单立体图形的形状画出它的展开图,根据展开图判断立体图形的形状.【温馨提示】1.长方体有8个顶点,12条棱,6个面,且每个面都是长方形(正方形是特殊的长方形).长方体是四棱柱,但四棱柱不一定是长方体,四棱柱的两个底面是四边形,不一定是长方形.2.一个平面展开图,折成立体图形的方式有两种:一种是向里折,一种是向外折,一般易忽略其中一种,造成漏解.3.棱柱的表面展开图是由两个相同的多边形和一些长方形连成的,沿棱柱表面不同的棱剪开,可能得到不同组合方式的平面展开图;圆柱的表面展开图是由两个相同的圆形和一个长方形连成的;圆锥的表面展开图是由一个圆形和一个扇形连成的.【方法技巧】确定正方体展开图的方法以口诀的方式总结出来:正方体经7刀剪,可得六面十四边;中间并排达四面,两旁各一随便站;三面并排在中间,单面任意双面偏;三层两面两层三,好似阶梯入云天;再问邻面何特点,“间二”“拐角”是关键;“隔1”、“Z端”是对面,识图巧排“七”“凹”“田”.参考答案:1.D解析:选项A、B、C都可以折叠成一个正方体;选项D,有“田”字格,所以不能折叠成一个正方体.故选D.考点:展开图折叠成几何体.分析:由平面图形的折叠及正方体的展开图解题.能组成正方体的“一,四,一”“三,三”“二,二,二”“一,三,二”的基本形态要记牢.2.B解析:这是一个正方体的平面展开图,共有六个面,其中面“静”与面“着”相对,面“沉”与面“应”相对,“冷”与面“考”相对.3.A解析:由图1中的红心“”标志,可知它与等边三角形相邻,折叠成正方体是正方体中的面CDHE.考点:展开图折叠成几何体.分析:由平面图形的折叠及正方体的展开图解题,注意找准红心“”标志所在的相邻面.4.解:如图(1)所示,线段AB是蚂蚁行走的最近路线;如图(2)所示,线段AB是蜜蜂飞的最近路线.(1)A (2)A5.B 解析:A .折叠后有二个侧面重合,不能得到三棱柱; B .折叠后可得到三棱柱;C .折叠后有二个底面重合,不能得到三棱柱;D .多了一个底面,不能得到三棱柱.6.D 解析:根据圆锥的侧面展开图是扇形,可以直接得出答案,D 选项不符合要求.。
最新北师大版数学七年级上册《展开与折叠》同步精品练习题
1.2 展开与折叠一、基础训练:一、填空题1.如图所示棱柱(1)这个棱柱的底面是_______边形.(2)这个棱柱有_______个侧面,侧面的形状是_______边形.(3)侧面的个数与底面的边数_______.(填“相等”或“不相等”)(4)这个棱柱有_______条侧棱,一共有_______条棱.(5)如果CC′=3 cm,那么BB′=_______cm.2.棱柱中至少有_______个面的形状完全相同.二、判断题1.长方体和正方体不是棱柱. ()2.五棱柱中五条侧棱长度相同. ()3.三棱柱中底面三条边都相同. ()4.棱柱是根据它总共有多少条棱来命名的. ()三、剪一剪,折一折,然后选择正确答案1.下面图形不能围成一个长方体的是()2.如果有一个正方体,它的展开图可能是下面四个展开图中的()3.五棱柱的棱数有()A.五条B.十条C.十五条D.十二条四、下面平面图形能围成哪种几何体的表面.二、能力提高:一、填空题1.矩形绕其一边旋转一周形成的几何体叫_______,直角三角形绕其中一个直角边旋转一周形成的几何体叫______.2.将一个无底无盖的长方体沿一条棱剪开得到的平面图形为_____________________.3.将一个无底无盖的圆柱剪开得到一个矩形,其中圆柱的_____________________等于矩形的一个边长,矩形的另一边长等于_______________.4.长方体共有________个顶点___________个面,其中有___________对平面相互平行.5.球面上任一点到球心的距离__________.6.如图1,由6个边长相等的正方形组成的长方形ABCD中,包含*在内的正方形与长方形共____个.7.如果长方体从一点出发的三条棱长分别为2、3、4,则该长方体的面积为______,体积为__________.8.用一个宽2 cm,长3 cm的矩形卷成一个圆柱,则此圆柱的侧面积为_______________.9.现实生活中的油桶、水杯等都给人以__________的形象.二、解答题10.如图2,ABCD为边长为4的正方形,M、N分别是DA、BC上的点,MN∥AB,MN交AC于O,且MD=1,沿MN折起,使∠AMD=90°制作模型,并画出折起后的图形.图2 图311.如图3,是边长为1 m的正方体,有一蜘蛛潜伏在A处,B处有一小虫被蜘蛛网粘住,请制作出实物模型,将正方体剪开,猜测蜘蛛爬行的最短路线.12.如图4,在长方形ABB1A1中,AB=6 cm,BB1=3 cm,CC1、DD1是A1B、AB三等分线段,A1B交C1C、D1D于M、N,把此图以C1C、D1D为折痕且A1A与B1B重合折成一个三棱柱侧面,制作出相应的模型,并观察折成棱柱前后A1B的变化.图413.如图5,为一扇形,将此扇形卷起使AB与AC重合,制作相应模型,并观察卷起以后,形成一个什么样的几何体及BC的变化,你能画出卷起后的几何体吗?试试看.图5 图614.如图6,折叠长方形的一边AD,点D落在BC边的点F处,当AB=8 cm,BC=10 cm时量出FC的长.学生每日提醒~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~励志名言:1、泰山不是垒的,学问不是吹的。
北师大版七年级数学上1.2展开与折叠
初中数学试卷1.2展开与折叠一、选择题(共10小题;共30分)1. 如图是一个长方体包装盒,则它的平面展开图是A. B.C. D.2. 圆锥的侧面展开图是A. 扇形B. 等腰三角形C. 圆D. 矩形3. 下列图形中,能通过折叠围成一个三棱柱的是 ( )A. B.C. D.4. 图(1)是一个小正方体的表面展开图,小正方体从图(2)所示的位置依次翻到第格、第格、第格、第格,这时小正方体朝上一面的字是 ( )A. 梦B. 水C. 城D. 美5. 将一边长为的正方形纸片折成四部分,再沿折痕折起来,恰好能不重叠地搭建成一个三棱锥,则三棱锥四个面中最小的面积是 ( )A. B. C. D.6. 将一边长为的正方形纸片折成四部分,再沿折痕折起来,恰好能不重叠地搭建成一个三棱锥,则此三棱锥四个面中最小的面积是 ( )A. B. C. D.7. 如图,点,,是正方体三条相邻的棱的中点,沿着,,三点所在的平面将该正方体的一个角切掉,然后将其展开,其展开图可能是 ( )A. B.C. D.8. 右图中是左面正方体的展开图的是 ( )A. B.C. D.9. 图1是一个正方体的展开图,该正方体从图 2 所示的位置依次翻到第格、第格、第格、第格、第格,此时这个正方体朝上一面的字是 ( )A. 我B. 的C. 梦D. 中10. 如图1 是一个小正方体的侧面展开图,小正方体从图2 所示的位置依次翻到第格、第格、第格、第格,这时小正方体朝上一面的字是 ( )A. 北B. 京C. 精D. 神二、填空题(共10小题;共50分)11. 你看这位""可爱吧!表面能展开平面图形""的是 .12. 小明在正方体盒子的每个面上都写了一个字,其平面展开图如下图所示,那么在该正方体盒子的表面,与“祝”相对的面上所写的字应是.13. 图 1 是边长为的正方形纸板,裁掉阴影部分后将其折叠成如图 2 所示的长方体盒子,已知该长方体的宽是高的倍,则它的体积是.14. 若下图是某几何体的表面展开图,则这个几何体是.15. 立方体木块的六个面分别标有数字,,,,,,下图是从不同方向观察这个立方体木块看到的数字情况,数字和对面的数字的和是.16. 以下三组图形都是由四个等边三角形组成.能折成多面体的选项序号是.17. 印刷一本书,为了使装订成书后页码恰好为连续的自然数,可按如下方法操作:先将一张整版的纸,对折一次为页,再对折一次为页,连续对折三次为页,;然后再排页码.如果想设计一本页的毕业纪念册,请你按图 1、图 2 、图 3 (图中的,表示页码)的方法折叠,在图 4 中填上按这种折叠方法得到的各页在该面相应位置上的页码.18. 马小虎准备制作一个封闭的正方体盒子,他先用个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在右图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(添加所有符合要求的正方形,添加的正方形用阴影表示).19. 有一个正方体的六个面上分别标有数字,,,,,,从三个不同的角度观察这个正方体所得到的结果如图所示,如果标有数字的面所对面上的数字记为,的面所对面上数字记为,那么的值为.20. 如图是一个没有完全剪开的正方体,若再剪开一条棱,则得到的平面展开图可能是下列六种图中的.(填写字母)三、解答题(共3小题;共39分)21. 把正方体的六个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色与花的朵数情况见下表:颜色红黄蓝白紫绿花的朵数现将上述大小相同,颜色、花朵分布也完全相同的四个正方体拼成一个水平放置的长方体,如图所示.问:长方体的下底面共有多少朵花?22. 如图所示,一个长方体的长、宽、高分别是,,,有一只蚂蚁从点出发沿棱爬行,每条棱不允许重复,则蚂蚁回到点时,最多爬行多远?并把蚂蚁所爬行的路线用字母按顺序表示出来.23. 如图所示是一个底面为正方形的长方体,把它的侧面展开后,恰好是一个边长为的正方形,求这个长方体的体积.答案第一部分1. A2. A3. C4. A5. C6. C7. D8. D9. A 10. A第二部分11. 圆锥12. “成”13.14. 圆柱15.16. (1)(3)17.18.19.20. 、、第三部分21. 因为长方体是由大小相同,颜色、花朵分布也完全相同的四个正方体拼成的,所以根据图中与红色的面相邻的有紫、白、蓝、黄色的面,可以确定出每个小正方体红色面对绿色面,与黄色面相邻的有白、蓝、红、绿色的面,所以黄色面对紫色面,与蓝色面相邻的有黄、红、绿、紫色的面,所以蓝色面对白色面,所以可知长方体下底面从左到右依次是紫色、黄色、绿色、白色,再由表格中花的朵数可知共有(朵).22. 由于不能重复且最后回到点处,那么经过的棱数便等于经过的顶点数,当走的路线最长时必过所有顶点,则选择合理的路线时尽可能多地经过长为的棱即可.,所以最多爬行.路线举例:.23.答:这个长方体的体积是.。
北师大版七年级上册数学第二章《展开与折叠》单元综合测试卷(含答案)
北师大版七年级上册数学第二章《展开与折叠》单元综合测试卷(含答案)一、选择题(每题3分,共30分)1.如果温度上升3 ℃,记作+3 ℃,那么温度下降2 ℃记作( ) A.-2 ℃ B.+2 ℃ C.+3 ℃ D.-3 ℃2.【2021·吉林】化简-(-1)的结果为( )A.-1 B.0 C.1 D.23.【2021·陕西】计算:3×(-2)=( )A.1 B.-1 C.6 D.-64.【2020·湘西州】下列各数中,比-2小的数是( )A.0 B.-1 C.-3 D.35.【2020·绍兴】某自动控制器的芯片,可植入2 020 000 000粒晶体管,2 020 000 000这个数用科学记数法可表示为( )A.0.202×1010 B.2.02×109 C.20.2×108 D.2.02×108 6.【2020·枣庄】数a,b在数轴上对应点的位置如图所示,下列判断正确的是( )A.|a|<1 B.ab>0 C.a+b>0 D.1-a>17.若a为有理数,则下列说法正确的是( )A.|a|一定是正数 B.|a|一定是负数C .-|a |一定是负数D .|a |+1一定是正数 8.下列计算正确的是( )A .⎝ ⎛⎭⎪⎫-78×15×⎝ ⎛⎭⎪⎫-117=-⎝ ⎛⎭⎪⎫78×87×15=-15B .12×⎝ ⎛⎭⎪⎫13-14-1=4-3-1=0C .(-9)×5×(-4)×0=9×5×4=180D .(-5)×(-4)×(-2)×(-2)=5×4×2×2=809.【2020·包头】点A 在数轴上,点A 所对应的数用2a +1表示,且点A 到原点的距离等于3,则a 的值为( )A .-2或1B .-2或2C .-2D .110.【2021·镇江】如图,输入数值1 921,按所示的程序运算(完成一个方框内的运算后,把结果输入下一个方框继续进行运算),输出的结果为( )A .1 840B .1 921C .1 949D .2 021 二、填空题(每题3分,共24分)11.-3的绝对值是________;-2 023的倒数是________.12.一只虫子从数轴上表示-3的点A 出发,沿着数轴正方向爬行了5个单位长度到达点B ,则点B 表示的数是________.13.用四舍五入法取近似数:2.952≈________(精确到0.1). 14.如图是某市某一天的天气预报,则该天的温差是________℃.15.已知数a 在数轴上所对应的点在原点的左侧,且|a |=2 023,则a =________.16.若x ,y 为有理数,且(5-x )4+|y +5|=0,则⎝ ⎛⎭⎪⎫x y 2 023=________.17.定义一种新运算:对任意有理数a ,b 都有a ▽b =-a -b 2,例如:2▽3=-2-32=-11,则(2 022▽1) ▽2=________.18.如图,某校园学子餐厅把WIFI 密码做成了数学题,小亮在餐厅就餐时,思索了一会儿,输入密码,顺利地连接到了学子餐厅的网络,那么他输入的密码是__________.三、解答题(19题16分,20题9分,21题7分,23题10分,其余每题12分,共66分)19.(1)【教材P 25随堂练习T 2改编】把下列各数填在相应的集合中:15,-12,0.81,-3,227,-3.1,-4,171,0,3.14,π,1.6·正数集合:{ …}; 负分数集合:{ …}; 非负整数集合:{ …}; 有理数集合:{ …}. (2)在数轴上表示下列各数,并用“<”将它们连接起来. -4,|-2.5|,-|3|,-112,-(-1),020.计算:(1)-12+20-(-2)+(-3);(2)-12022+⎝⎛⎭⎪⎫-112-38+712×(-24);(3)(-2)3×⎣⎢⎡⎦⎥⎤-0.75+⎝ ⎛⎭⎪⎫-38-|-3|2÷(-32).21.【教材P 75复习题T 13变式】已知a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2,求a +ba +b +c+m 2-cd 的值.22.【教材P 26习题T 6变式】某种水果的包装标准质量为每箱10 kg ,现抽取8箱样品进行检测,称重如下(单位:kg):10.2,9.9,9.8,10.1,9.6,10.1,9.7,10.2.为了求得这8箱样品的总质量,我们可以选取一个恰当的基准质量进行简化运算.(1)你认为选取的这个恰当的基准质量为________kg;(2)根据你选取的基准质量,用正、负数填写下表;(3)这8箱样品的总质量是多少?23.如图,A,B,C三点在数轴上,点A表示的数为-10,点B表示的数为14,点C在点A与点B之间,且AC=BC.(1)求点C表示的数;(2)甲、乙分别从A,B两点同时相向运动,甲的速度是每秒1个单位长度,乙的速度是每秒2个单位长度,求相遇点D表示的数.24.【教材P 76复习题T 26拓展】已知A ,B 两点在数轴上表示的数分别为m ,n . (1)对照数轴填写下表:(2)若将A ,B 两点之间的距离记为d ,试问d 与m ,n 有何数量关系?并用文字描述出来.(3)已知A ,B 两点在数轴上表示的数分别为x 和-1,则A ,B 两点之间的距离d 可表示为__________.如果d =3,求x 的值.参考答案一、1.A 2.C 3.D 4.C 5.B 6.D 7.D 8.D 9.A 10.D 二、11.3;-12 02312.2 13.3.0 14.10 15.-2 023 16.-1 17.2 019 18.143549三、19.解:(1)正数集合:{15,0.81,227,171,3.14,π,1.6·,…};负分数集合:⎩⎨⎧⎭⎬⎫-12,-3.1,…;非负整数集合:{15,171,0,…};有理数集合:{15,-12,0.81,-3,227,-3.1,-4,171,0,3.14,1.6·,…}.(2)|-2.5|=2.5,-|3|=-3,-(-1)=1.在数轴上表示各数如图所示.故-4<-|3|<-112<0<-(-1)<|-2.5|.20.解:(1)原式=-12+20+2-3=7;(2)原式=-1+⎝ ⎛⎭⎪⎫-32×(-24)+⎝ ⎛⎭⎪⎫-38×(-24)+712×(-24)=-1+36+9-14=30;(3)原式=(-8)×⎝ ⎛⎭⎪⎫-34-38-9÷(-9)=(-8)×⎝ ⎛⎭⎪⎫-98+1=10.21.解:由题意得a +b =0,cd =1,m =±2,所以m 2=4.故a +b a +b +c +m 2-cd =00+c+4-1=0+4-1=3. 22.解:(1)10(2)填表如下:(3)这8箱样品的总质量是10×8+(0.2-0.1-0.2+0.1-0.4+0.1-0.3+0.2)=80-0.4=79.6(kg). 23.解:(1)|-10|+|14|=24,24÷2=12,14-12=2,故点C表示的数为2.(2)24÷(1+2)×2=16,16-14=2.由于点D在原点左边,因此相遇点D表示的数为-2.24.解:(1)2;6;10;2;10;0(2)d=|m-n|.数轴上两点之间的距离,等于这两点表示的数之差的绝对值.(3)|x-(-1)|当d=3时,|x-(-1)|=3,所以x=2或x=-4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
展开与折叠练习题
1、小丽制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是()
A. B.
C. D.
2、
能把表面依次展开成如图所示的图形的是()
A.球体、圆柱、棱柱 B.球体、圆锥、棱柱
C.圆柱、圆锥、棱锥 D.圆柱、球体、棱锥
3、如图把左边的图形折叠起来围成一个正方体,应该得到右图中的()
A.B.C.D.
4、下列平面图形,不能沿虚线折叠成立体图形的是()
A. B.
C. D.
5、如图,把图折叠起来,它会成为下边的正方体()
A.B.C.D.6、一个立方体的表面展开图如图所示,将其折叠成立方体后的立体图形是()A.B.C.D.7、下列立体图形中,侧面展开图是扇形的是()
A. B. C. D.
8、将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的
()
A.面CDHE B.面BCEF C.面ABFG D.面ADHG 9、将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是()
A. B. C. D
.
10、以下各图均有彼此连接的六个小正方形纸片组成,其中不能折叠成一个正方体的是
()
A. B. C.
D.
11、一个几何体的展开图如图所示,这个几何体是()
A.三棱柱 B.三棱锥 C.四棱柱 D.四棱锥
12、骰子是6个面上分别写有数字1,2,3,4,5,6的小立方体,它任意两对面上所写的
两个数字之和为7.将这样相同的几个骰子按照相接触的两个面上的数字的积为6摆成一个几何体,这个几何体的三视图如图所示.已知图中所标注的是部分面上的数字,则“*”所代表的数是()
A.2 B.4 C.5
D.6
13、下列图形中,能通过折叠围成一个三棱柱的是()
A. B.
C. D.
14、把如图中的三棱柱展开,所得到的展开图是()
A. B.
C. D.
15、如图是一个长方体形状包装盒的表面展开图.折叠制作完成后得到长方体的容积是(包装材料厚度不计)()
A.40×40×70 B.70×70×80 C.80×80×80 D.40×70×80
16、下列图形中,是圆锥侧面展开图的是()
A. B.
C. D.
17、下面图形不能围成封闭几何体的
是
()
(A)(B)(C )(D)
18、如图,一个正方体纸盒的表面展开图,去???其中一个正方形,可以折成一个无盖
的正方体盒子,去掉的这个正方形的编号是___________(只填1个).。