22.1二次函数图象和性质(1)

合集下载

九年级数学上册 22.1二次函数的图象和性质22.1.3二次函数y=ax-h2+k的图象和性质一导学课件

九年级数学上册 22.1二次函数的图象和性质22.1.3二次函数y=ax-h2+k的图象和性质一导学课件
14.已知二次函数y=ax2+3(a≠0)与直线y=2x-3 交于点(1,b). (1)求a和b的值; (2)写出抛物线y=ax2+3的解析式,并求二 次函数y=ax2+3的最大值.
22.1.3 二次函数y=a(x-h)2+k的图 象和性质(一)
1 …核…心…目…标…..…
2 …课…前…预…习…..… 3 …课…堂…导…学…..… 4 …课…后…巩…固…..… 5 …能…力…培…优…..…
核心目标
了解二次函数y=ax2 +k与y=ax2的联系,掌握二 次函数y=ax2+k的性质.
也在此抛物线上的是( )
A.(2,1)
B.(-2,1)
C.(1,-2)
D.(-1,2)
课后巩固
10.如下图,在同一直角坐标系中,一次函数y=ax +c和二次函数y=ax2+c的图象大致为( )
A
B
C
D
课后巩固
11.如果将抛物线y=x2+2向下平移3个单位,那么
所得新抛物线=
1 2
x2;③y=-2x2+1;
④y12=
x2-3.其中形状相同的是
__________,形状相同、开口方向也相同的是
13.二__次__函__数_(y填=序mx号2+).m-2的图象的顶点在y轴的负 半轴上,且开口向上,则m的取值范围为 __________.
课后巩固
课前预习
1.如右图,在同一直角坐标系中, 画出二次函数y=x2+1,y= x2-1的图象,并填空: (1)抛物线y=x2+1的开口向 ______________,对称轴是 ______________,顶点坐标 是_______________; (2)抛物线y=x2-1的开口向_____________, 对称轴是____________,顶点坐标是

22. 二次函数y=a(x-h)2+k的图象和性质第1课时 二次函数y=ax2+k的图象和性质

22. 二次函数y=a(x-h)2+k的图象和性质第1课时 二次函数y=ax2+k的图象和性质

解析式是( C )
A.y=(x-1)2+2 B.y=(x+1)2+2
C.y=x2+1
D.y=x2+3
10.(202X·德州)在同一坐标系中,一次函数y=ax+2与二次函数y=x2+ a的图象可能是( C )
11.若抛物线y=ax2+c与抛物线y=-4x2+3关于x轴对称,则a=__4__, c=_-__3_.
15.已知抛物线y=-x2+4交x轴于A,B两点,顶点是C. (1)求△ABC的面积; (2)在抛物线y=-x2+4上是否存在点Q,使∠AQB=90°,若存在,要求出 点Q的坐标;若不存在,请说明理由.
解:(1)S△ABC=12×4×4=8 (2)存在.设 Q(m,-m2+4),连接 OQ,易知 OQ=12AB=2,∴m2+(4-m2)2=4,解得 m=±2,m=± 3. 但 m=±2 时,点 Q 在 x 轴上,不合题意,∴点 Q 坐标为( 3,1)或(-
练习2:抛物线y=- 1 x2-3的顶点坐标是___(_0_,__-__3_)_____,对称轴 2
是__y_轴_____.
知识点1:二次函数y=ax2+k的图象和性质
1.已知点(x1,y1),(x2,y2)均在抛物线y=x2-1上,下列说法中正 确的是( D )
A.若y1=y2,则x1=x2 B.若x1=-x2,则y1=-y2 C.若0<x1<x2,则y1>y2 D.若x1<x2<0,则y1>y2
练 习 1 : 将 抛 物 线 y = x2 向 上 平 移 两 个 单 位 后 的 函 数 解 析 式 为 _______________.
y=x2+2
2 . 对 于 抛 物 线 y = ax2 + k , 当 a > 0 时 , 开 口 _向__上____ , 对 称 轴 是 ___y_轴___,顶点为__(_0_,__k_)__;当x>0时,y随x的增大而_增__大_____;当x <0时,y随x的增大而__减__小____.当a<0时,开口_向__下_____,对称轴是 __y_轴___,顶点为___(_0_,__k_)__;当x>0时,y随x的增大而___减__小___;当x <0时,y随x2个单位得到抛物线y=-3x2+2,则a =____-,3c=____4.

部编数学九年级上册专题22.1二次函数的图象和性质(基础)(解析版)含答案

部编数学九年级上册专题22.1二次函数的图象和性质(基础)(解析版)含答案

专题22.1 二次函数的图象和性质目录二次函数的定义 (1)二次函数求参数 (3)二次函数一般式................................................................................................................................42y ax =性质.....................................................................................................................................42y ax =图像开口.............................................................................................................................62y ax =图像问题.............................................................................................................................7()2y a x h k =-+顶点坐标...........................................................................................................9()2y a x h k =-+性质.................................................................................................................10()2y a x h k =-+图像平移 (13)二次函数一般式配凑顶点式 (14)二次函数图像问题 (15)二次函数比较大小 (19)二次函数性质综合..........................................................................................................................21二次函数的定义【例1】下列函数中,属于二次函数的是( )A .23y x =-B .22(1)y x x =+-C .2(1)y x x =+D .22y x =-【解答】解:A .不含有x 的二次项,所以A 不符合题意;B .化简后21y x =+,不含有x 的二次项,所以B 不符合题意;C .符合题意;D .22y x -=-,不含有x 的二次项,所以D 选项不符合题意.一般的,形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数叫做二次函数。

人教版九年级上《22.1二次函数的图象和性质》练习题含答案

人教版九年级上《22.1二次函数的图象和性质》练习题含答案

二次函数图象与性质(1)1. 二次函数的定义:一般地,形如()20y ax bx c a b c a =++≠,,为常数,且的函数叫做二次函数,其中a 为二次项系数,b 为一次项系数,c 为常数项。

2. 当b =0且c =0时:二次函数变为()20y ax a =≠, (1)当a >0时,其图象如下:xyy = 2∙x 2y = x 2y = 12∙x 2y =110∙x 2O(2)当a <0时,其图象如下:可以看到:对于抛物线2y ax =,a 越大,开口越小。

3. 二次函数()20y axa =≠的图象与性质()20y ax a =>()20y ax a =<开口方向上下例题1 已知函数42)2(-++=k kx k y 是二次函数,且当0>x 时,y 随x 的增大而增大。

(1)求k 的值;(2)写出抛物线的顶点坐标和对称轴。

思路分析:由二次函数的定义,求出k 的值,然后写出顶点坐标和对称轴。

答案:(1)由二次函数的定义,得242k k +-=,解得13k =-,22k =;当3k =-时,原函数为2y x =-,当0>x 时,y 随x 的增大而减小,故3k =-不合题意,舍去; 当2k =时,原函数为24=y x ,当0>x 时,y 随x 的增大而增大,符合题意; 故2k =。

(2)抛物线24=y x 的顶点坐标为(0,0),对称轴为y 轴。

点评:注意对k 的值进行合理的取舍。

例题2 (1)已知A (1,y 1)、B (-2,y 2)、C (-2,y3)在函数y =241x 的图象上,则y 1、y 2、y 3的大小关系是 。

(2)(潍坊)已知函数y 1=x 2与函数y 2=- 12x +3的图象大致如图,若y 1<y 2,则自变量x的取值范围是 。

思路分析:(1)最直接的思路是将自变量的值代入函数表达式,求出每个点的相应的纵坐标,然后进行比较;当然也可以利用数形结合、以形助数的方法。

2024年人教版九年级数学上册教案及教学反思全册第22章 二次函数的图象和性质第1课时教案

2024年人教版九年级数学上册教案及教学反思全册第22章 二次函数的图象和性质第1课时教案

22.1 二次函数的图象和性质22.1.3 二次函数y=a(x-h)²+k的图象和性质(第1课时)一、教学目标【知识与技能】1.能画出二次函数y=ax2+k的图象;2.掌握二次函数y=ax2与y=ax2+k图象之间的联系;3.掌握二次函数y=ax2+k的图象及其性质.【过程与方法】通过画二次函数y=2x2+1与y=2x2-1的图象,感受它们与y=2x2的联系,并由此得到y=ax2与y=ax2+k的图象及性质的联系和区别.【情感态度与价值观】在通过类比的方法获取二次函数y=ax2+k的图象及其性质过程中,进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.二、课型新授课三、课时第1课时,共3课时。

四、教学重难点【教学重点】1.二次函数y=ax2与y=ax2+k的图象之间的联系;2.二次函数y=ax2+k的图象及其性质.【教学难点】二次函数y=ax2+k的性质的基本应用.五、课前准备课件、三角尺、铅笔等六、教学过程(一)导入新课这个函数的图象是如何画出来呢?(出示课件2)(二)探索新知探究一二次函数y=ax2+k图象的画法在同一直角坐标系中,画出二次函数y=x2 ,y=x2+1,y=x2-1的图象.(出示课件4)学生自主操作,画图,教师加以巡视,纠正画图过程中可能出现的失误,并引导他们进行分析,发现规律,获得感性认识.1.列表:2.描点,连线:(出示课件5)教师问:抛物线y=x2、y=x2+1、y=x2-1的开口方向、对称轴、顶点各是什么?(出示课件6)学生独立思考并整理.出示课件7:例在同一直角坐标系中,画出二次函数y=2x2+1,y=2x2-1的图象.学生自主操作,画图,教师加以巡视.解:先列表:然后描点画图:(出示课件8)教师问:抛物线y=2x2+1 , y=2x2-1的开口方向、对称轴和顶点各是什么?(出示课件9)学生独立思考并整理.探究二二次函数y=ax2+k的性质教师归纳:(出示课件10)二次函数y=ax2+k(a>0)的性质:开口方向:向上.对称轴:x=0.顶点坐标:(0,k).最值:当x=0时,有最小值,y=k.增减性:当x <0时,y 随x 的增大而减小; 当x >0时,y 随x 的增大而增大.出示课件11:在同一坐标系中,画出二次函数212y x =-,2122y x =-+,2122y x =--的图像,并分别指出它们的开口方向,对称轴和顶点坐标.学生自主操作,画图,并整理. 解:如图所示.出示课件12:在同一坐标系内画出下列二次函数的图象:;;. 学生自主操作,画图,教师巡视加以指导.231x y -=23121--=x y 23122+-=x y出示课件13,14:根据图象回答下列问题:(1)图象的形状都是;(2)三条抛物线的开口方向_______;(3)对称轴都是__________;(4)从上而下顶点坐标分别是_____________________;(5)顶点都是最____点,函数都有最____值,从上而下最大值分别为_______、_______﹑________;(6) 函数的增减性都相同:____________________________.学生独立思考并口答.⑴抛物线;⑵向下;⑶直线x=0;⑷( 0,2),(0,0),( 0,-2);⑸高;大;y=2,y=0,y=-2;⑹对称轴左侧y随x增大而增大,对称轴右侧y随x增大而减小师生共同归纳:二次函数y=ax2+k(a≠0)的性质(出示课件15)出示课件16:已知二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等,则当x=x1+x2时,其函数值为________.学生独立思考后,师生共同解答.解:由二次函数y=ax2+c图象的性质可知,x1,x2关于y轴对称,即x1+x2=0.把x=0代入二次函数表达式求出纵坐标为c.教师归纳:方法总结:二次函数y=ax2+c的图象关于y轴对称,因此左右两部分折叠可以重合,函数值相等的两点的对应横坐标互为相反数.出示课件17:抛物线y=−2x2+3的顶点坐标是________,对称轴是________,在________侧,y随着x的增大而增大;在________侧,y随着x的增大而减小.学生口答:(0,3);y轴;对称轴左;对称轴右探究三二次函数y=ax2+k的图象及平移出示课件18:从数的角度探究:出示课件19:从形的角度探究:观察图象可以发现,把抛物线y=2x2向_____平移1个单位长度,就得到抛物线_____;把抛物线y=2x2向_____平移1个单位长度,就得到抛物线y=2x2-1.学生观察图象并解答:上;y=2x2+1;下师生共同归纳:二次函数y=ax2与y=ax2+k(a≠0)的图象的关系(出示课件20)二次函数y=ax2+k的图象可以由y=ax2的图象平移得到:当k>0时,向上平移k个单位长度得到.当k<0时,向下平移k个单位长度得到.教师强调:上下平移规律:平方项不变,常数项上加下减.出示课件21:二次函数y=-3x2+1的图象是将( )A.抛物线y=-3x2向左平移3个单位得到B.抛物线y=-3x2向左平移1个单位得到C.抛物线y=3x2向上平移1个单位得到D.抛物线y=-3x2向上平移1个单位得到学生独立思考并口答:D出示课件22:想一想:教师问1.二次函数y=ax2+k图象的画法分几步?学生答:第一种方法:平移法,分两步,即第一步画y=ax2的图象;第二步把y=ax2的图象向上(或向下)平移︱k︱单位.第二种方法:描点法,分三步即列表、描点和连线.教师问2.抛物线y=ax2+k 中的a决定什么?怎样决定的?k决定什么?它的对称轴是什么?顶点坐标怎样表示?学生答:a决定开口方向和大小;k决定顶点的纵坐标.(三)课堂练习(出示课件23-27)1.将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是.2.抛物线y=2x2向下平移4个单位,就得到抛物线.3.填表:4.已知点(m,n)在y=ax2+a(a不为0)的图象上,点(-m,n)___(填“在”或“不在”)y=ax2+a(a不为0)的图象上.5.若y=x2+(k-2)的顶点是原点,则k____;若顶点位于x轴上方,则k____;若顶点位于x轴下方,则k____.6.不画函数y=-x2和y=-x2+1的图象回答下面的问题:⑴抛物线y=-x2+1经过怎样的平移才能得到抛物线y=-x2.(2)函数y=-x2+1,当x_____时,y随x的增大而减小;当x_____时,函数y有最大值,最大值y是_____,其图象与y轴的交点坐标是_____,与x轴的交点坐标是_____.(3)试说出抛物线y=x2-3的开口方向、对称轴和顶点坐标.7.对于二次函数y=(m+1)x m2-m+3,当x>0时y随x的增大而增大,则m=____.8.已知二次函数y=(a-2)x2+a2-2的最高点为(0,2),则a=____.9.抛物线y=ax2+c与x轴交于A(-2,0)﹑B两点,与y轴交于点C(0,-4),则三角形ABC的面积是_______.参考答案:1.y=x2+22.y=2x2-43.4.在5.=2;>2;<26.⑴向下平移1个单位.⑵>0;=0;1;(0,1);(-1,0),(1,0)⑶开口方向向上,对称轴是y轴,顶点坐标(0,-3).7.28.-29.8(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看. (五)课前预习预习下节课(22.1.3第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:本课时教学重点在于培养学生的比较能力,旨在希望学生通过对比发现函数图象的性质,从而进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.。

人教版数学九年级上册22.1《二次函数的图象和性质(1)》教学设计

人教版数学九年级上册22.1《二次函数的图象和性质(1)》教学设计

人教版数学九年级上册22.1《二次函数的图象和性质(1)》教学设计一. 教材分析人教版数学九年级上册第22.1节《二次函数的图象和性质(1)》是本册教材的重要内容,主要介绍二次函数的一般形式、图象特点以及一些基本性质。

通过本节内容的学习,学生可以掌握二次函数的基本知识,为后续学习二次函数的应用打下基础。

二. 学情分析九年级的学生已经学习了函数的基本概念和一次函数的性质,具备一定的函数知识基础。

但二次函数相对复杂,学生对其理解和掌握可能存在一定的困难。

因此,在教学过程中,需要注重引导学生通过观察、思考、探索等方式,自主发现和总结二次函数的性质。

三. 教学目标1.理解二次函数的一般形式和图象特点。

2.掌握二次函数的顶点坐标、开口方向和判别式的概念。

3.能够运用二次函数的性质解决一些实际问题。

四. 教学重难点1.二次函数的一般形式和图象特点。

2.二次函数的顶点坐标、开口方向和判别式的理解与应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、思考、探索等方式自主学习。

2.利用多媒体课件辅助教学,直观展示二次函数的图象和性质。

3.注重数学语言的训练,引导学生规范表达。

六. 教学准备1.多媒体课件。

2.相关练习题。

七. 教学过程1.导入(5分钟)通过展示一些实际问题,引导学生思考如何用数学模型来描述这些问题。

例如,抛物线运动、物体抛掷等。

从而引出二次函数的概念。

2.呈现(10分钟)利用多媒体课件,呈现二次函数的一般形式和图象特点。

引导学生观察并总结二次函数的性质。

3.操练(10分钟)让学生通过计算器或者绘图软件,自己动手绘制一些二次函数的图象,并观察其性质。

同时,教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示一些练习题,让学生运用所学的二次函数知识解决问题。

教师及时批改并给予反馈,帮助学生巩固所学知识。

5.拓展(10分钟)引导学生思考二次函数在实际生活中的应用,例如抛物线射门、跳水运动等。

九年级数学上册22二次函数22.1二次函数的图象和性质22.1.2二次函数y=ax2的图象和性质

九年级数学上册22二次函数22.1二次函数的图象和性质22.1.2二次函数y=ax2的图象和性质

4.函数y=ax2与y=-ax+b图象可能是(
)
B
第8页
5.下列函数中,当 x>0 时,y 随着 x 的增大而增大的是( D )
A.y=-x+1
B.y=-x-1
C.y=-x2
D.y=x2
*6.已知 m 为实数,下列各点中:A(m,-am2),B(m,-m),C(m2,
-m),D(-m,am2),抛物线 y=-ax2 一定不经过的点是____D_______.
22.1 二次函数图象和性质
22.1.2 二次函数y=ax2图象和性质
第1页
1.二次函数y=ax2图象 二次函数y=ax2图象是一条抛物线,它含有以下特点: (1)顶点在__原__点___、对称轴为__y_轴____; (2)当a>0时,抛物线开口____向__上_,a越大,抛物线开口越______小; 当a<0时,抛物线开口____向__下_,a越小,抛物线开口越_______小_. 2.二次函数y=ax2性质 (1)假如a>0,则: 当x<0时,y随x增大而_____减__小_; 当x>0时,y随x增大而_____增__大_; 当x=0时,y取最___小___值0,即y最小=__0____. (2)假如a<0,则: 当x<0时,y随x增大而_____增__大_; 当x>0时,y随x增大而_____减__小_; 当x=0时,y取最___大___值0,即y最大=__0__.
*7.如图,正方形的边长为 4,以正方形中心为原点建立平面直角 坐标系,作出函数 y=13x2 与 y=-13x2 的图象,则阴影部分的面积是
__8____.
*8.已知 a<-1,点(a-1,y1),(a,y2),(a+1,y3)都在函数 y
=x2 的图象上,则 y1,y2,y3 的大小关系是_y_1_1>__y_2_>__y__3__.

九年级数学上册 第二十二章 22.1 二次函数的图像及性质 22.1.3 二次函数y=ax2+k的图

九年级数学上册 第二十二章 22.1 二次函数的图像及性质 22.1.3 二次函数y=ax2+k的图

第二十二章 22.1.3二次函数y=ax2+k的图象和性质知识点:二次函数y=ax2+k的图象及其性质二次函数y=ax2+k的性质与二次函数y=ax2的性质很多都相同,只是图象顶点坐标及最值有所区别,但也可以由二次函数y=ax2的图象的顶点平移得到二次函数y=a x2+k的图象的顶点的坐标,因而学习二次函数y=ax2+k的性质,可在熟记二次函数y=ax2的性质的基础上类比学习.二次函数图象开口方向顶点坐标对称轴增减性最大(小)值y=ax2+ka>0k>0向上(0,k)y轴当x>0时,y随x的增大而增大;当x<0时,y随x的增大而减小当x=0时,y最小值=ka>0k<0向上(0,k)y轴当x>0时,y随x的增大而增大;当x<0时,y随x的增大而减小当x=0时,y最小值=k a<0k>0向下(0,k)y轴当x>0时,y随x的增大而减小;当x<0时,y随x的增大而增大当x=0时,y最大值=k a<0k<0向下(0,k)y轴当x>0时,y随x的增大而减小;当x<0时,y随x的增大而增大当x=0时,y最大值=k 二次函数的解析式中常数项的变化与其图象移动的关系:上加下减.考点1:二次函数y=ax2+k的图象【例1】小明在某次投篮中,球的运动路线是抛物线y=-x2+3.5的一部分(如图),若投中篮框中心,则他与篮底的距离l是( )A.3.5 mB.4 mC.4.5 mD.4.6 m答案:B点拨:由题意令y=3.05,可得3.05=-x2+3.5,解得x=±1.5(负值不符合题意,舍去),所以他与篮底的距离l=1.5+2.5=4(m).考点2:二次函数y=ax2+k的性质【例2】将抛物线y=-3x2向上平移1个单位后,得到的抛物线对应的函数解析式是.答案:y=-3x2+1点拨:由“上加下减”的规律知,该抛物线向上平移1个单位后得到的抛物线对应的函数解析式为y=-3x2+1.感谢您的支持,我们会努力把内容做得更好!。

22.1 .3二次函数的图象和性质(1)

22.1 .3二次函数的图象和性质(1)

… …
-3 9
-2
-1
1
0 0
1
2
4
3
… …
4
1
9
y
9 8
y=x2
7
6
5
4
3
倍 速 课 时 学 练
2
1
-8
-6
-4
-2
O
-1
2
4
6
8
x
在同一直角坐标系中,画出二次函数 y=x2 , y=x2+1, y=x2-1的图象. 【解析】列表:
x … … … … -3 -2 -1 0 1 2 3 … … … …
4
倍 速 课 时 学 练
2
y=x2
-5
O
5
x
-2
(1)抛物线y=x2+1、y=x2-1的开口方向、对称轴、顶点 各是什么?
(2)抛物线y=x2+1、y=x2-1与抛物线y=x2有什么关系?
(3)它们的位置是由什么决定的? 解析:(1)它们的开口方向向上,对称轴是y轴,顶点分 别是(0,1)(0,-1). 倍 速 课 时 学 练
思考
把抛物线y=2x2向上平移5个单位,会得到哪条抛物线?
倍 速 课 时 学 练 向下平移3.4个单位呢?
y=2x2+5
y=2x2-3.4
把抛物线y = 2x2向上平移5个单位,会得到哪条抛物线?向下平移3.4 个单位呢?
y 2x2 5
8
6
y 2 x2
倍 速 课 时 学 练
4
2
-4 -2 -2 -4 2
,对称轴
侧,y随着x的增大而 ,它是由抛物线y=
增大;在

22.1.1 二次函数的图像及性质1 课件 人教版数学九年级上册

22.1.1 二次函数的图像及性质1 课件 人教版数学九年级上册
注意: (1)等号左边是变量y,右边是关于自变 量x的整式
(2)a,b,c为常数,且 a≠0.
(3 )等式的右边最高次数为 2 ,可以没有
一次项和常数项,但不能没有二次项。
(4)x的取值范围是 任意实数 。
二次函数的一般形式: y=ax2+bx+c , (其中a、b、c是常数 a≠0)
二次函数的特殊形式:
(5)y= _x1_²-x
(否) (6)v= 3 r ²
(7) y=x²+x³+25 (否) (8)y=2²+2x
(是) (否)
(9)y=mx²+nx+p (m,n,p为常数)
例1、下列函数中,哪些是二次函数?若是,分别
指出二次项系数,一次项系数,常数项.
(1) y=3(x-1)²+1
(2)
y=x+
的关系,对于x的每一个值, y都有一个对应值,即y是x的
函数.
观察
函数①②③有什么共同点?
y=6x2①
d
1 2
n2
3 2
n②
y 20 x2 40x 20③
y是x的函数吗?y是x的一次函数?反比例函数?
在上面的问题中,函数都是用自变量的二次式 表示的,
定义:一般地,形如y=ax²+bx+c(a,b,c是 常数,a≠ 0)的函数叫做x的二次函数。
观察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:
x … -3 -2 -1 0 1 2 3 … y=x2 … 9 4 1 0 1 4 9 …
描点,连线 y 10 8 6 4 2
y=x2
-4 -3 -2 -1 0 1 2 3 4 x -2
二次函数 y=x2的图象 形如物体抛 射时所经过 的路线,我们 把它叫做抛 物线

22.1.3二次函数图像和性质(1)

22.1.3二次函数图像和性质(1)

的图象有什么关系?
x y=2x2 y=2x2-1
0.5 0.5 -0.5
1 2 1
1.5 7 4.5 3.5
2 8 7
… … …
探究新知
y 2x 2 5.5
3.5 10 8 6 1
9 7
1 -1 y = 2x2-1
9 7
4
2 -4 -2 -2x2
y 2x 2
5
y=2x y=2x+1
4
3 2 1 -2 -1 -1
y=2x-1
1
2
探究新知
猜想:
y 2x 2



y 2x 2 1, y 2x 2 1
-1
2 3
的图象有什么关系?
x
y=2x2
-2
8 9
-1.5 9
4.5 5.5
5.5
-0.5 3
0.5 1.5
0
0 1
1
0.5
0.5 1.5
1
2 3
向上平移 k(k>0)个单位
10 9 8 7 6 5 4 3 2 1
y
-5 -4 -3 -2 -1 o 1 2 3 4 5
x
简记为:上加下减
向下平移 k(k>0)个单位
抛物线 y=ax2+k
抛物线 y=ax2-k
例题学习
例1.抛物线y=-x2+2的对称轴是_______,顶点坐标 是_______。 例2.抛物线y=2x2向上平移3个单位,就得到抛物线 __________________; 抛物线y=2x2向下平移4个单位,就得到抛物线 __________________. 例3.函数y=-3x2+1的图象是由y=-3x2-1的图象向 ___平移 _____________得到的。

22.1二次函数的图象和性质

22.1二次函数的图象和性质
∵a= 2 >0, ∴抛物线开口向上,
顶点坐标是(1,5), 对称轴是直线 x=1.
例2 用公式法写出抛物线 y 1 x2 x 5
2
2
的开口方向、对称轴和顶点坐标.
解: a 1 ,b 1, c 5
b
2
1
2 1,
4ac b2
4
1 2
5 2
12
4
2
2a
2
1 2
4a
x
x=2
· · (0,-6)
(4,-6)
三.探究二次函数 y = ax2 + bx + c 的图象和性质
你能说说二次函数 y=ax2+bx+c 的图象和性质吗?
三.探究二次函数 y = ax2 + bx + c 的图象和性质 二次函数 y ax2 bx c 的性质:
(1)开口方向:当 a>0时,抛物线开口向上; 当 a<0时,抛物线开口向下。
抛物线y=a(x-h)2+k(a≠0)有如下特点:
1.当a﹥0时,开口向上 , 当a﹤0时,开口 向下 ,
2.对称轴是直线X=h ;
3.顶点坐标是 (h,k) 。
二次函数 开口方向 对称轴 顶点坐标
y=2(x+3)2+5 y = -3(x-1)2 -2
向上 直线x=–3 (-3,5)
向下 直线x=1 (1,-2)
(2)对称轴是直线
x b 2a
(3)顶点坐标
b 2a
,
4ac b2 4a
;
(4)最值:
如果a>0,当 x b 时,函数有最小值,
y最小=
4ac 4a
b2
,
2a

22.1《二次函数的图象和性质》课件(共5课时)

22.1《二次函数的图象和性质》课件(共5课时)

2.类比探究二次函数 y = ax2 + k 的图象和性质
归纳: 一般地,当 a>0 时,抛物线 y = ax2 + k 的对称轴是 y 轴,顶点是(0,k),开口向上,顶点是抛物线的最 低点,a 越大,抛物线的开口越小.当 x<0 时, y 随 x 的增大而减小,当 x>0 时, y 随 x 的增大而增大.
3.练习、巩固二次函数的定义
练习2 填空: (1)一个圆柱的高等于底面半径,则它的表面积 S 与底面半径 r 之间的关系式是__S_=__4_π_r_2_; (2) n 支球队参加比赛,每两队之间进行两场比 赛,则比赛场次数 m 与球队数 n 之间的关系式是 ___m_=__n(__n_-_1__)____.
某种产品现在的年产量是 20 t ,计划今后两年增加 产量.如果每一年都比上一年的产量增加 x 倍,那么两 年后这种产品的产量 y 将随计划所定的 x 的值而确定, y 与 x 之间的关系应该怎样表示?
y 20x2 40x 20
2.通过实例,归纳二次函数的定义
这三个函数关系式有什么共同点?
y 6x2 m 1 n2 1 n
2
4.小结
(1)本节课学了哪些主要内容? (2)抛物线 y = ax2 + k 与抛物线 y = ax2 的区别与联 系是什么?
5.布置作业
教科书习题 22.1 第 5 题(1).
九年级 上册
22.1 二次函数的图象和性质 (第4课时)
• 本课是在学生已经学习了二次函数 y = ax2,y = ax2+ k 的基础上,继续进行二次函数的学习,这是对二次函 数图象和性质研究的延续.
2.类比探究 y a(x h)2, y a(x h)2 k 的图 象和性质

九年级数学上册第二十二章二次函数22.1二次函数的图象和性质22.1.3二次函数y=ax_h2 k的图象和性质第1课时二

九年级数学上册第二十二章二次函数22.1二次函数的图象和性质22.1.3二次函数y=ax_h2 k的图象和性质第1课时二

ቤተ መጻሕፍቲ ባይዱ2019/5/26
最新中小学教学课件
17
谢谢欣赏!
2019/5/26
最新中小学教学课件
18
全的人,主要是担心漏掉重要内容,影响以后的复习与思考.,这样不仅失去了做笔记的意义,也将课堂“听”与“记”的关系本末倒置了﹙太忙于记录, 便无暇紧跟老师的思路﹚。 如果只是零星记下一些突出的短语或使你感兴趣的内容,那你的笔记就可能显得有些凌乱。 做提纲式笔记因不是自始至终全都埋头做笔记,故可在听课时把时间更多地用于理解所听到的内容.事实上,理解正是做好提纲式笔记的关键。 课堂笔记要注意这五种方法:一是简明扼要,纲目清楚,首先要记下所讲章节的标题、副标题,按要点进行分段;二是要选择笔记语句,利用短语、数 字、图表、缩写或符号进行速记;三是英语、语文课的重点词汇、句型可直接记在书页边,这样便于复习时查找﹙当然也可以记在笔记本上,前提是你 能听懂﹚;四是数理化生等,主要记老师解题的新思路、补充的定义、定理、公式及例题;五是政治、历史等,着重记下老师对问题的综合阐述。
讲课内容——对实际材料的讲解课可能需要做大量的笔记。 最讲授的主题是否熟悉——越不熟悉的学科,笔记就越需要完整。 所讲授的知识材料在教科书或别的书刊上是否能够很容易看到——如果很难从别的来源得到这些知识,那么就必须做完整的笔记。 有的同学一味追求课堂笔记做得“漂亮”,把主要精力放在做笔记上,常常为看不清黑板上一个字或一句话,不断向四周同学询问。特意把笔记做得很
22.1.3 二次函数y=a(x-h)2+k的 图象和性质
第1课时 二次函数y=ax2+k的 图象和性质
编后语
做笔记不是要将所有东西都写下,我们需要的只是“详略得当“的笔记。做笔记究竟应该完整到什么程度,才能算详略得当呢?对此很难作出简单回答。 课堂笔记,最祥可逐字逐句,有言必录;最略则廖廖数笔,提纲挈领。做笔记的详略要依下面这些条件而定。

22.1 二次函数的图像和性质

22.1  二次函数的图像和性质

位长度
位长度
位长度
位长度
y=ax2 (a<0)
y=a(x-
y=a(x-
y=a(x-
y=a(x-
h)2+k(a<0,h< h)2+k(a<0,h< h)2+k(a<0,h> h)2+k(a<0,h>
0,k>0)
0,k<0)
0,k>0)

0,k<0)
知识点 二次函数y=a(x-h)²+k的图象和性质
投篮命中率是衡量一名篮球球员得分能力的 重要标志,要提高投篮命中率,应该将球的运动路线 想象成抛物线,在心中建立如图所示的抛物线模型, 这种类型的抛物线解析式为y=ax2(a≠0),尽量向 高处抛出篮球,落点就是篮筐,这样投篮命中率会高 一些,同学们不妨多尝试几次,效果会不错的呦!
知识点 用待定系数法求二次函数解析式
跳台滑雪简称“跳雪”,就是运动员脚着特制 的滑雪板,沿着跳台的倾斜助滑道下滑,是冬季奥运 会比赛项目之一.运动员起跳后的飞行路线可以看 作是抛物线的一部分,运动员起跳后的竖直高度 y(单位:m)与水平距离x(单位:m)近似满足函数关系 式y=ax2+bx+c(a≠0).如图所示,记录了某运动员 起跳后的x与y的三组数据,根据上述函数模型和数 据,可推断出该运动员起跳后飞行到最高点时的水 平距离.
知识点 二次函数y=a(x-h)²+k的图象和性质
抛物线y=a(x-h)²+k左右平移时,只有常数h发生变化;上下平移
时,只有常数k发生变化.
y=ax2 (a≠0)
向左平移|h|个 向左平移|h|个 向右平移|h|个 向右平移|h|个

人教版九年级数学上册第二十二章二次函数《22.1二次函数的图象和性质》第1课时教学设计

人教版九年级数学上册第二十二章二次函数《22.1二次函数的图象和性质》第1课时教学设计

人教版九年级数学上册第二十二章二次函数《22.1二次函数的图象和性质》第1课时教学设计一. 教材分析人教版九年级数学上册第二十二章二次函数《22.1二次函数的图象和性质》第1课时,主要介绍了二次函数的图象和性质。

本节课的内容是学生对二次函数知识的深入理解,也是对之前学习的函数知识的巩固。

教材通过生动的实例和丰富的练习,帮助学生掌握二次函数的图象和性质,提高他们解决实际问题的能力。

二. 学情分析学生在之前的学习中,已经掌握了函数的基本概念和一次函数的知识,具备了一定的数学思维能力。

但是,对于二次函数的图象和性质,学生可能还存在一些困惑和误解。

因此,在教学过程中,需要关注学生的学习需求,针对性地进行讲解和辅导。

三. 教学目标1.知识与技能:使学生了解二次函数的图象和性质,能够运用二次函数解决实际问题。

2.过程与方法:通过观察、分析、归纳等方法,培养学生研究函数问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。

四. 教学重难点1.重点:二次函数的图象和性质。

2.难点:二次函数的图象和性质的内在联系和运用。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究、积极思考,提高他们解决实际问题的能力。

六. 教学准备1.教师准备:熟读教材,了解学生的学习情况,准备相关教学资源和案例。

2.学生准备:预习教材,了解二次函数的基本概念,准备参与课堂讨论。

七. 教学过程1.导入(5分钟)通过一个实际问题,引发学生对二次函数的图象和性质的思考。

例如:有一块长方形土地,欲将其分割成一个面积为100平方米的矩形和两个面积相等的圆形,如何设计分割方案?2.呈现(15分钟)呈现二次函数的图象和性质,引导学生观察、分析,发现其中的规律。

例如,通过展示二次函数y=x^2的图象,让学生观察其在不同象限的取值情况,总结其性质。

3.操练(15分钟)让学生通过实际操作,加深对二次函数图象和性质的理解。

2024年人教版九年级数学上册教案及教学反思全册第22章 二次函数的图象和性质 (第1课时)教案

2024年人教版九年级数学上册教案及教学反思全册第22章 二次函数的图象和性质 (第1课时)教案

22.1 二次函数的图象和性质22.1.4 二次函数y=ax2+bx+c的图象和性质(第1课时)一、教学目标【知识与技能】1.能通过配方法把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k的形式,以便确定它的对称轴和顶点坐标;2.会利用对称性画出二次函数的图象,掌握二次函数y=ax2+bx+c(a≠0)的平移规律;3.会用公式确定二次函数y=ax2+bx+c(a≠0)的对称轴和顶点.【过程与方法】通过思考、探索、尝试与归纳等过程,让学生能主动积极地探索新知.【情感态度与价值观】经历探求二次函数y=ax2+bx+c的对称轴和顶点坐标的过程,感悟二次函数y=ax2+bx+c与y=ax2的内在联系,体验利用抛物线的对称轴画抛物线的方法,感受数学的对称美.二、课型新授课三、课时第1课时,共2课时。

四、教学重难点【教学重点】用抛物线的对称轴画二次函数y=ax2+bx+c的图象,通过配方确定抛物线的对称轴和顶点坐标.通过配方法将二次函数的一般形式化为顶点式,探索二次函数y=ax2+bx+c的平移变换.【教学难点】用配方法推导抛物线的对称轴与顶点坐标.五、课前准备课件、三角尺、铅笔等六、教学过程(一)导入新课教师问:二次函数y=a(x-h)2+k的性质有哪些?(出示课件2)师生共同回忆:教师问:我们已经知道二次函数y=a(x-h)2+k的图象和性质,能否利用这些知识来讨论二次函数y=ax2+bx+c 图象和性质?(出示课件3)(二)探索新知探究一 画出二次函数y=ax 2+bx+c 的图象我们已经知道y=a(x-h)2+k 的图象和性质,能否利用这些知识来讨论216212y x x =-+的图象和性质?(出示课件5) 问题1:怎样将216212y x x =-+化成y=a(x-h)2+k 的形式?学生回忆配方的方法及步骤,并回答.(出示课件6)216212y x x =-+ 21(1242)2x x =-+ 2221(126642)2x x =-+-+ 2221[(126)642]2x x =-+-+ 21[(6)6]2x =-+ 21(6) 3.2x =-+ 学生回答后,教师总结并强调.(出示课件7) 配方的步骤:(1)“提”:提出二次项系数; (2)“配”:括号内配成完全平方; (3)“化”:化成顶点式.配方后的表达式通常称为配方式或顶点式. 问题2:你能说出21(6)32y x =-+的对称轴及顶点坐标吗?(出示课件8) 生答:对称轴是直线x=6,顶点坐标是(6,3). 问题3:二次函数21(6)32y x =-+可以看作是由212y x =怎样平移得到的? 生答:平移方法1:先向上平移3个单位,再向右平移6个单位得到的;平移方法2:先向右平移6个单位,再向上平移3个单位得到的. 问题4:如何画二次函数216212y x x =-+的图象?(出示课件:9) 学生自主操作,画图,教师加以巡视.并引导他们进行分析. 方法一:描点法. 1.列表.2.描点,连线:方法二:平移法.(出示课件10)问题5:结合二次函数216212y x x =-+的图象,说出其性质.(出示课件11) 生答:当x<6时,y 随x 的增大而减小;当x>6时,y 随x 的增大而增大. 开口方向:向上.对称轴:x=6. 顶点:(6,3). 例 画出函数21522y x x =-+-的图象,并说明这个函数具有哪些性质.(出示课件12)师生共同解答如下: 解:函数21522y x x =-+-通过配方可得21(1)22y x =---, 先列表:然后描点、连线,得到图象如下图:(出示课件13)生观察图象,并总结性质如下: 开口方向:向下. 顶点坐标:(1,-2). 对称轴:x=1.最值:x=1时,y 最大值=-2.当x <1时,函数值y 随x 的增大而增大;当x >1时,函数值y 随x 的增大而减小; 当x=1时,函数取得最大值,最大值y=-2.出示课件14:求二次函数y=2x 2-8x+7图象的对称轴和顶点坐标. 生板演解题过程: 解:y=2x 2-8x+722(4)7x x =-+ 22(44)87x x =-+-+ 22(2) 1.x =--因此,二次函数y=2x 2-8x+7图象的对称轴是直线x=2,顶点坐标为(2,-1). 探究二 二次函数y=ax 2+bx+c 的图象与性质出示课件15:根据下列关系你能发现二次函数y=ax 2+bx+c 的图象和性质吗?师生共同探究强化认知:y=ax 2+bx+c 224()24b ac b a x a a-++=出示课件16:显然,二次函数y 224()24b ac b a x a a-++=的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2bx a =- 因此,抛物线y=ax 2+bx+c 的对称轴是2bx a=-,顶点坐标是24,24b ac b a a ⎛⎫ ⎪⎝-⎭- . 师生共同总结整理如下:(出示课件18)出示课件19:例二次函数y=x2+2x﹣3的开口方向、顶点坐标分别是()A.开口向上,顶点坐标为(﹣1,﹣4)B.开口向下,顶点坐标为(1,4)C.开口向上,顶点坐标为(1,4)D.开口向下,顶点坐标为(﹣1,﹣4)学生自主思考后,师生共同解答如下:解析∵二次函数y=x2+2x﹣3的二次项系数为a=1>0,∴函数图象开口向上,∵y=x²+2x﹣3=(x+1)2﹣4,∴顶点坐标为(﹣1,﹣4).教师加以强调:把函数的一般式化为顶点式,再由顶点式确定开口方向、对称轴、顶点及其他性质.出示课件20:填一填.生自主思考,并填表. 答案:(1,1);x=1;最大值1; (0,-1);y 轴;最大值-1;(13-,-6);x=13-;最小值-6. 出示课件21:一次函数y=kx+b 的图象如下图所示,请根据一次函数图象的性质填空:生观察图象,并填空.k 1<0;b 1>0;k 2>0;b 2<0;k 3>0;b 3>0.出示课件22,23:二次函数y=ax 2+bx+c 的图象如下图所示,请根据二次函数的性质填空:a1___0,b1___0,c1___0;a20,b2___0,c20;a3___0,b3___0,c3___0;a4___0,b4___0,c4___0.生观察图象后,独立填空,教师加以纠正.a1>0,b1>0,c1>0;a2>0,b2<0,c2=0;a3<0,b3=0,c3>0;a4<0,b4>0,c4<0.师生共同总结:二次函数y=ax2+bx+c的图象与a、b、c的关系(出示课件24)出示课件25:例已知二次函数y=ax2+bx+c的图象如图所示,下列结论:①abc>0;②2a-b<0;③4a-2b+c<0;④(a+c)2<b2. 其中正确的个数是( )A.1 B.2 C.3 D.4生独立思考后,师生共同分析:由图象开口向下可得a<0,由对称轴在y轴左侧可得b<0,由图象与y轴交于正半轴可得c>0,则abc>0,故①正确;由对称轴x>-1可得2a-b<0,故②正确;由图象上横坐标为x=-2的点在第三象限可得4a-2b+c<0,故③正确;由图可知x=1的点在第四象限得a+b+c<0,由图象上x=-1的点在第二象限得出a-b+c>0,则(a+b+c)(a-b+c)<0,即(a+c)2-b2<0,可得(a+c)2<b2,故④正确.出示课件26:二次函数y=ax²+bx+c的图象如图所示,下列选项中正确的是()A.a>0 B.b>0 C.c<0 D.ac>0生独立思考后,自主解决.解析根据开口方向、对称轴、抛物线与y轴的交点,确定a、b、c的符号,根据对称轴和图象确定y>0或y<0时,x的范围,确定代数式的符号.①∵开口向下,∴a<0,A错误;②对称轴在y轴的右侧和a<0,可知b>0,B正确;③抛物线与y轴交于正半轴,c>0,C错误;④因为a<0,c>0,所以ac<0,D错误.(三)课堂练习(出示课件27-32)1.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x 轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤2.已知二次函数y=ax2+bx+c的x,y的部分对应值如下表:则该二次函数图象的对称轴为( )A.y 轴B.直线x=52C.直线x=2D.直线x=323.已知二次函数y=ax 2+bx+c(a ≠0)的图象如图所示,则下列结论:(1)a ,b 同号;(2)当x=–1和x=3时,函数值相等;(3)4a+b=0;(4)当y=–2时,x 的值只能取0;其中正确的是 .4.如图是二次函数y=ax 2+bx+c(a ≠0)图象的一部分,x=-1是对称轴,有下列判断:①b-2a=0;②4a-2b+c<0;③a-b+c=-9a ;④若(-3,y 1),(32,y 2)是抛物线上两点,则y 1>y 2.其中正确的是( )A .①②③B .①③④C .①②④D .②③④5.根据公式确定下列二次函数图象的对称轴和顶点坐标:()()()22(1) 21213;(2) 580319;1(3) 22;2(4)12.y x x y x x y x x y x x =-+=-+-⎛⎫=-- ⎪⎝⎭=+-6.已知函数y=-2x2+x-4,当x= 时,y 有最大值 .7.已知二次函数y=x 2-2x+1,那么它的图象大致为( )参考答案:1.A2.D3.(2)4.B5.⑴直线x=3,(3,-5);⑵直线x=8,(8,1);⑶直线x=1.25,59, 48⎛⎫- ⎪⎝⎭; ⑷直线x=0.5,19, 24⎛⎫ ⎪⎝⎭. 6.14;318- 7.B(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(22.1.4第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:本课时的主要任务是理解和掌握二次函数的一般式.我们研究函数的一般基本方法是由解析式画图象,再由图象得出性质,再反过来由函数性质研究图象的其他特征.因此本课时的教学仍可采用这种思维方法来探讨二次函数一般式的性质(如顶点坐标,对称轴以及增减性等),另外还要向学生渗透转化思想,即如何将相对复杂的一般式转化为其他解析式的形式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

做一做
在同一直角坐标系中,画出函数 y
1 2 x , y 2 x 2 的图象. 2
解:分别填表,再画出它们的图象,如图 x · · · -4 -3 -2 -1 0 1 2 3 4 · · · · · ·
· · · · · ·
y
1 2 · · x · 2
x
8 8
4.5
-1.5
2 0.5
-1
相同点:开口都向上,顶点是原 点而且是抛物线的最低点,对称 轴是 y 轴 不同点:a 要越大,抛物线的开 口越小.
y x2
8 6
y 2 x2
4
2 -4 -2 2
y
1 2 x 2
4
再做一做
画出函数
线有什么共同点和不同点.
1 y x 2 , y x 2 , y 2 x 2 2
22.1二次函数图象和性质(1)
学习目标
1、会用描点法画出y=ax2的图象,理解 抛物线的有关概念。 2、经历探索二次函数y=ax2图象性质的 过程,培养观察、思考、归纳的良好 习 惯
你会用描点法画二次函数y=x2的图象吗? 观察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:
x … -3 -2 -1 9 4 1 0 0 1 1 2 4 3 9 …
2 2 (2)抛物线 y 3 x 在x轴的 下 方(除顶点外),在对称轴的
左侧,y随着x的 增大而增大 ;在对称轴的右侧,y随着x的 增大而减小 ,当x=0时,函数y的值最大,最大值是 当x 0 ,

0时,y<0.
2、函数y=ax2和函数y=ax+a的图象在同 一坐标系中大致是图中( )
3、已知抛物线y=ax2经过点A(-2,-8)。 (1)求此抛物线的函数解析式; (2)判断点B(-1,- 4)是否在此抛物线上。 (3)求出此抛物线上纵坐标为-6的点的坐标。
y=x2 …

描点,连线
y
10 8 6 4
y = x2
?
-4 -3 -2 -1
2 0 -2 1 2 3 4 x
二次函数 y=x2的图象 形如物体抛 射时所经过 的路线,我们 把它叫做抛 物线
yx
2
这条抛物线关于 y轴对称,y轴就 是它的对称轴.
对称轴与抛物 线的交点叫做 抛物线的顶点.
议一议
3、抛物线y=ax2 与y=-ax2有何关系?
一般地,抛物线 y=ax2 的对称轴是y轴,顶点是原
点.当a>0时,抛物线的开口向上,顶点是抛物线的
最低点;当a<0时,抛物线的开口向_______, 下 顶点是
高 抛物线的最________ 点.对于抛物线 y ax 2 越大,抛物线的开口越_________ . 小
的图象,并考虑这些抛物
你画出的图象与图中相同吗?
x
· · · -4
-3 -4.5 -1.5 -4.5
-2
-1
0 0
1 -0.5 0 0.5
2
3
4 -8 2
· · · · · · · · · · · ·
1 2· · y x · -8 2
x
-2 -0.5 -1
-2 -4.5 1 1.5
y 2 x 2
4、若抛物线 y 6 x 上点P的坐标为 (2,-24),则抛物线上与P点对称的点 P’的坐标为 。
2
5、若m>0,点(m+1,y1)、 (m+2,y2)、
1 2 (m+3,y3)在抛物线 y x 上,则 4
y1、 y2、y3的大小关是 。
小结
1、二次函数y=ax2的图象是什么?
2、二次函数y=ax2的图象有何性质?
· · -2 · -8 · · ·
-0.5
-2 -0.5
0
-0.5 -2 -4.5 -8
-4 对比抛物线, y=x2和y=-x2.它 们关于x轴对称吗? 一般地,抛物线 y=ax2和y=-ax2呢?
-2 -2 -4 -6
2
4
1 2 y x 2
y x2
-8
y 2 x 2
y=ax2 (a≠0) 图 象
2
当x<0 (在对称轴的 左侧)时,y随着x的增大而 减小.
当x>0 (在对称轴的 右侧)时, y随着x的增大而 增大.
当x=-2时,y=4 当x=-1时,y=1
抛物线y=x2在x轴的 上方(除顶点外),顶点 是它的最低点,开口 向上,并且向上无限 伸展;当x=0时,函数y 的值最小,最小值是0.
当x=1时,y=1 当x=2时,y=4
0
0.5
0 0.5
2
1
4.5
1.5
8
2
y 2 x2
· · -2 · · · ·
-0.5
ቤተ መጻሕፍቲ ባይዱ4.5
yx
2
2
8
6 4 2
0.5
0
0.5 2 4.5 8
y 2 x2
1 2 y x 2
2 4
-4
-2
函数
有什么共同点和不同点?
1 2 y x , y 2x2 2
的图象与函数 y=x2
的图象相比,
解(1)把(-2,-8)代入y=ax2,得-8=a(-2)2, 解出a= -2,所求函数解析式为y= -2x2.
2 4 2 ( 1 ) (2)因为 ,所以点B(-1 ,-4) 不在此抛物线上。
(3)由-6=-2x2 ,得x2=3, x 3 所以纵坐标为-6的点有两个,它们分别是
( 3,6)与( 3,6)
y
yx
x
2
观察图象,回答问题:
(1)图象是轴对称图形吗? 如果是,它的对称轴是什么? 请你找出几对对称点?
O
(2)图象 与x轴有交点吗?如果有,交点坐标是什么? (3)当x取什么值时,y的值最小?最小值是什么? 你是如何知道的? (4)当x<0时,随着x的值增大,y 的值如何变化? 当x>0呢?
yx
1、二次函数的一般形式是怎样的? y=ax² +bx+c(a,b,c是常数,a≠ 0)
2.下列函数中 , 哪些是二次函数? 1 2
① yx ② 2 ③ y xx ④

1 2 y x 2x 4 3
y x2
x
y x2
x 1
3.一次函数的图像是什么?怎么画的? 有哪些性质?
,|a|
布置作业
教科书习题 22.1 第 3,4 题.
抛物线y=ax2 (a≠0)的形状是由|a|来确定的,一般说来, |a|越大, 抛物线的开口就越小. |a|越小 , 抛物线的开口就越大.
y 2x2
1、根据左边已画好的函数图象填空:
(1)抛物线y=2x2的顶点坐标是 , (0,0) 对称轴是 y轴 ,在 对称轴的右侧, y随着x的增大而增大;在 对称轴的左侧, 2 2 y x y随着x的增大而减小,当x= 0 时, 3 函数y的值最小,最小值是 0 ,抛物 线y=2x2在x轴的 上 方(除顶点外)。
O
a>0
y
O
a<0 y
x
开口方向 顶点坐标 对称轴 增 减 性
极值
向上 (0 ,0) y轴
x
向下 (0 ,0) y轴
当x<0时, y随着x的增大而增大。 当x>0时, y随着x的增大而减小。
当x<0时, y随着x的增大而减小。 当x>0时, y随着x的增大而增大。
x=0时,y最小=0
x=0时,y最大=0
相关文档
最新文档