立体图形的三视图
苏教版六年级上册数学——立体图形的三视图
一个正方体木块,棱长是15厘米 。如果从它的八个顶点处各截去棱 长分别是1、2、3、4、5、6、7、8 厘米的小正方体。这个木块剩下部 分的表面积最少是多少平方厘米?
主视图
俯视图
左视图
3²×(10+9+8)×2=486 cm²
下列立体图形都是由棱长2厘米的小正方体 堆成的,请分别计算出它们的表面积=144 cm² ③ 2²×(6+4+4)×2=112 cm² ② 2²×(5+5+6)×2=128 cm²
从一个长10cm、宽8cm、高5cm的长方体木 块上挖去一个棱长2cm的小正方体,剩下部 分的表面积是多少?(考虑多种情况)
从立体图形的正面看到的图形,称为 主视图; 从立体图形的上面看到的图形,称为 俯视图; 从立体图形的侧面看到的图形,称为 左视图或右视图。 通常将主视图、俯视图和左视图看作 一个立体图形的三视图。
画一画
主视图
俯视图
左视图
主视图
俯视图
左视图
主视图
俯视图
左视图
做一做
把19个棱长为3厘米的正方体重叠起来, 如图所示,拼成一个立体图形。求这个 立体图形的表面积是多少平方厘米?
① 在角上挖 ② 在棱上挖 ③ 在面上挖
少3个面、多3个面,面积不变。
少2个面、多4个面,面积多2个面。
少1个面、多5个面,面积多4个面。
从一个棱长10厘米的正方体木块上挖去一 个长10厘米、宽2厘米、高2厘米的小长方 体,剩下部分的表面积是多少?(考虑多 种情况)
有一个棱长4厘米的正方体,从它的右 上方截去一个长4厘米、宽2厘米、高1 厘米的长方体,求剩下部分的表面积?
小学六年级立体图形三视图及展开图
立体图形三视图及展开图一、知识点(一)三视图在观察物体的时候,我们往往可以从不同的角度进行观察,角度不同,看到的风景就会不同。
比如:我们可以从正面看、上面看、左面看,看到的图形分别称为正视图、俯视图和左视图,并且容易发现:正面看和后面看,上面看和下面看,左面看和右面看得到的图形是相同的。
对于较复杂的立体图形,通过三视图法往往可以很方便地计算出表面积(二)正方体的展开图展开后由上、下、左、右、前、后六个正方形面组成,这六个正方形面的面积都相等,我们采用不同的剪开方法,共可以得到下面(三)长方体的展开图:观察上图可以发现,长方体的展开图由6个长方形组成,相对面的面积相等,即S上=S下=长×宽,S左=S右=宽×高,S前=S后=长×高。
(四)判断图形折叠后能否围成长方体或正方体的方法判断一个图形折叠后能否围成正方体或长方体,首先,要依据它们各自展开图的特点判断;其次,可以运用空间想象或实际操作进一步判断。
二、题型(一)展开图与对立面【例1.1】水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如下图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面。
则“祝”、“你”、“前”分别表示正方体的________________________。
【答案】后面、上面、左面【解析】易知“你”、“程”相对,“前”、“锦”相对,“祝”、“似”相对,因此“祝”、“你”、“前”分别表示正方体的后面、上面、左面。
【例1.2】一个数学玩具的包装盒是正方体,其表面展开图如下。
现在每方格内都填上相应的数字。
已知将这个表面展开图沿虚线折成正方体后,相对面的两数之和为“3”,则填在A、B、C内的三个数字依次是___________。
【答案】3、1、2【解析】面上的数是“0”,与“B”相对的面上的数是“2”,与“C"相对的面上的数是“1”。
三视图
欣赏三视图
欣赏三视图
欣赏三视图
欣赏三视图
平行投影 斜投影
中心投影
A
B C
D
正投影
基本几何体的三视图
回忆初中已经学过的正方体、长方体、圆 柱、圆锥、球的三视图.
正方体的三视图
俯
左
长方体的三视图
俯
左
长方体
圆柱的三视图
俯
左
圆柱
圆锥的三视图
俯
左
圆锥
球的三视图
俯
左
球体
三视图有关概念 “视图”是将物体按正投影法向投影面投射 时所得到的投影图. 光线自物体的前面向后投影所得的投影图 称为“主视图” ,自左向右投影所得的投影图 称为“左视图”,自上向下投影所得的投影图 称为“俯视图”.
主视图
左视图
圆锥 俯视图
由三视图想象几何体 一个几何体的三视图如下,你能说出它是 什么立体图形吗?
四棱锥
5、已知几何体(如右图)的部分三视图如下, 请你完成这个三视图
圆台
4、已知几何体(如右图)的部分三视图如下,
请你完成这个三视图
主视图 左视图
俯视图
6、请你画出下列几何体(如右图)的三视图
2、已知几何体(如右图),请你选择正确的左视图
(A) (B)
注意:在三视图中, 看不见的分界线和轮 廓线都用虚线画出 (C)
(D)
3、已知六棱锥(如右图),请你选择正确的三视图
主视图
左视图
主视图
左视图
(A)
俯视图 俯视图
(B)
六棱锥
主视图
左视图
主视图
左视图
(C)
俯视图 俯视图
立体几何的结构特征及三视图直观图
主视图
01
主视图是物体正对着观察者时所 呈现的视图,通常放在最前面, 表示物体的高度和长度。
02
主视图反映了物体的前后、上下 关系,是三视图中最重要的一个 视图。
左视图
左视图是从物体的左侧观察得到的视 图,表示物体的宽度和深度。
左视图反映了物体的左右、上下关系 ,与主视图共同确定物体的前后关系 。
常见的空间几何体有长方体、 球体、圆柱体、圆锥体等。
每个几何体都有其特定的构成 方式和特点,如长方体由六个 面组成,球体是一个连续曲面 的几何体等。
几何体的度量属性
长度
面积
体积
角度
用于度量线段的长度。
用于度量平面图形的面 积。
用于度量三维空间中物 体所占的体积。
用于度量两条射线之间 的夹角。
03
俯视图
俯视图是从上往下观察得到的视图,表示物体的平面布局和 高度。
俯视图反映了物体的左右、前后关系,与主视图共同确定物 体的深度。
04
三视图与直观图的转换
三视图到直观图的转换方法
投影法
组合法
根据三视图中的投影关系,将三个视 图分别投射到三个相互垂直的平面上, 形成直观图。
结合投影法和坐标法,先根据投影关 系将三视图转换为平面图形,再通过 坐标法将平面图形转换为立体图形。
案例三
总结词:对比分析
详细描述:对于一些复杂的几何体,仅通过三视图可能难以完全理解其结构和形状,此时可以通过对 比分析三视图与直观图,更好地理解几何体的构造和特点。
感谢您的观看
THANKS
具有空间性和直观性,通过空间 想象和直观感知来研究几何对象源自之间的关系。立体几何的重要性
实际应用
(完整版)五年级立体几何拓展----三视图专属奥数讲义
学科教师辅导讲义班级:年 级: 五年级 辅导科目:小学思维学科教师:上课时间授课主题 立体几何拓展----三视图一.三视图在观察物体的时候,我们往往可以从不同的角度进行观察.角度不同,看到的风景就会不同.比如:我们可以从正面看,上面看,左面看,看到的图形分别称为正视图,俯视图和左视图.并且容易发现:正面看和后面看,上面看和下面看,左面看和右面看得到的图形是知识图谱错题回顾三视图知识精讲相同的.对于较复杂的立体图形,通过三视图法往往可以很方便地计算出表面积. 二.正方体的展开图我们采用不同的剪开方法,共可以得到下面11种展开图.三.长方体的展开图观察上图可以发现,长方体的展开图由6个长方形组成,相对面的面积相等,即上面=下面=长×宽,左面=右面=宽×高,前面=后面=长×高. 四.判断图形折叠后能否围成长方体或正方体的方法.判断一个图形折叠后能否围成正方体或长方体,首先,要依据它们各自展开图的特点判断;其次,可以运用空间想象或实际操作进一步判断.重难点:展开图、三视图及三视图求个数和表面积.上 后 前右左下 展开后由上、下、左、右、前、后六个正方形面组成,这六个正方形面的面积都相等.高宽长右面左面 后面下面 前面 上面三点剖析题模精选题模一:展开图与对立面例1.1.1 一个正方体的六个面上分别写着A ,B ,C ,D ,E ,F 六个字母.请你根据图中的三种摆放情况,判断每个字母的对面是______________,______________,______________【答案】 B 与D 相对,E 与A 相对,C 与F 相对 【解析】 由于正方体的6个面上写了6个不同的字母,那么每个字母在正方体的面上只能出现1次,如果2个字母在相邻的面上出现,那么它们一定不能相对.第一步,先看前2种摆放情况:在这2种摆放情况中,只有字母B 出现了2次,那么由第一种摆放可知,B 不与A 相对,也不与F 相对;由第二种摆放可知,B 不与C 相对,也不与E 相对.那么在所有的字母中,B 只能与D 相对.第二步,再看后2种摆放情况:在这2种摆放情况中,只有字母E 出现了2次,那么由第二种摆放可知,E 不与B 相对,也不与C 相对;由第三种摆放可知,E 不与D 相对,也不与F 相对.那么在所有的字母中,E 只能与A 相对.正方体有三个对面,因B 与D 相对,E 与A 相对,那么第三组对面上一定是C 与F 相对.例1.1.2 图中的四个正方体标字母的方式是完全相同的,请你利用图中已知的信息,判断A 、B 、C 的对面分别标的是哪个字母?【答案】 A 的对面标有D ,B 的对面标有F ,C 的对面标有E【解析】 由已知条件,标有C ,D 的两个面不能相对,那么或A 的对面标有D ,或B 的对面标有D .如果标有D ,A 的两个面相对,那么“标有C ,D 的两个面不能相对”,“标有E ,A 的两个面也不能相对”这两个条件都可以满足.注意到当D 在朝右的面,E 在朝上的面时,F 在朝前的面上,那么只能是标有E ,C 的两个面相对,而标有F ,B 的两个面相对.经检验,这种情况满足题目要求.如果标有D ,B 的两个面相对,那么由于标有E ,A 的两个面也不能相对,于是标有A 的对面就是标有F 的面,而标有C 的对面就是标有E 的面.此时D 在朝后的面上,E 在朝左的面上,F 在朝下的面上.我们把六面体旋转,把D 转到朝右的面,并把E 转到朝上的面,BFA EBC FED A BCD CCEAEF D此时朝前的面上标的是A ,而朝后的面上标的是F ,与题意不符.综上所述,满足题意的答案只有一个:A 的对面标有D ,B 的对面标有F ,C 的对面标有E .例1.1.3 如图,第1个方格内放着一个正方体木块,木块六个面上分别写着ABCDEF 六个字母.其中A 与D 相对,B 与E 相对,C 与F 相对.现在将木块标有字母A 的那个面朝上,标有字母D 的那个面朝下放在第1个方格内,然后让木块按照箭头指向,沿着图中方格滚动,当木块滚到21格时,木块向上的面上写的是哪个字母?【答案】 字母A【解析】 发现木块向左滚4格后,各个面上标的字母与初始时的情况完全一致.那么木块朝其它方向滚时也有类似的情况,即木块向任意方向连滚4格,它的各个面上标的字母不变. 所以木块向左滚4格到第5格时,各个面上标的字母与在第1格时的情况完全一致.再向下滚4格到第9格,再向右滚4格到第13格,再向下滚4格到第17格,最后向左滚4格到第21格,每次都是朝同一方向滚4格,因此在第5格,第9格,第13格,第17格,第21格木块向上的面上总是写的字母A .例1.1.4 如图,在一个正方体的表面上写着1~6这6个自然数,并且1对着4,2对着5,3对着6.现在将正方体的一些棱剪开,使它的表面展开图如图所示.如果只知道1和2所在的面,那么6应该在哪个面上(写出字母代号)?【答案】 A【解析】 对于立方体展开图,我们可以把任一个面当作底面,把它还原成立方体的表面.如图1,观察虚线圈住的部分,可以发现写有1,A ,B 的三个面两两相邻;再观察图2的虚线圈住的部分,发现写有A ,B ,C 的三个面也两两相邻.此时,写有1的面与A 面,B 面都相邻,C 面也与A 面,B 面都相邻,因此写有1的面与C 面相对,即C 面上写的是4.1 AB C 2D 3 121A B C 2D1A B C 2D1与C 相对,C 面上写的是421 5920 19观察图3中的虚线圈住的部分,容易看出写有2的面与B 面相对,因此B 面上写的是5.则立方体展开图就如图4所示.还剩下A 面与D 面上的数字没有确定,这两个面上分别写有3和6.由于写有1的面,写有5的面与A 面两两相邻,把这三个面还原到立方体中.在图2所示的立方体中,5与2相对,在立方体朝左的侧面上;1在朝前的侧面上.在展开图中以写有1的面为朝前的侧面,A 面为下底面,则写有5的面恰好在朝左的侧面上.此时写有1的面,写有5的面都对齐了,而原立方体中下底面写有数字6,因此A 面上就是6.例1.1.5 下图是正方体,四边形APQC 是表示用平面截正方体的截面,截面的线表现在展开图的哪里呢?把大致的图形在右面展开图里画出来.【答案】 见解析【解析】 截线在展开图中如图所示:例1.1.6 右图是一个立体图形的平面展开图,图中的每个小方格都是边长为1的正方形.现在将其沿实线...折叠,还原成原来的立体图形,那么立体图形的体积等于_________. 图3 1A B 4 2D2与B 相对, B 面上写的是5图41 A 54 2DBPEAD CB GHQFAEDCB HGFA . 3B . 4C . 5D . 6 【答案】B【解析】 根据实线还原,体积为4. 题模二:三视图求表面积例1.2.1 下图是由5个相同的正方体木块搭成的,从上面看到的图形是( ).A . A 图B . B 图C . C 图D . D 图【答案】C【解析】 5个在原图均已看到,易知C 符合要求.例1.2.2 右图是由18个棱长为1cm 的小正方形拼成的立体图形,它的表面积是( )平方厘米.A . 44B . 46C . 48D . 50【答案】C【解析】 从正面、左面、上面分别可看见8、7、9块,故表面积为()21879248cm ⨯++⨯=.例1.2.3 右图中的一些积木是由16块棱长为2cm 的正方体堆成的,它的表面积是________2cm .【答案】 200D .B .C .A .【解析】 从前到后的3面依次有2块、5块、7块,因此还剩162572---=块,为可看见的1块与其下方的1块.由此易知正视图、俯视图、左视图分别能看到7块、9块、8块,此外离我们最近的2块有两个面从6个方向均无法看到,综上共可看到()7982250++⨯+=个面,表面积为22250200cm ⨯=.例 1.2.4 图中的立体是由大小相同的若干单位正方体积木搭成的.这样的积木一共有多少【答案】 37;三视图如下图所示;102【解析】 将此图分为从左到右的5层,分别有16、9、5、6、1块,故共有16956137++++=块.三视图见答案,分别可看见17、15、16块,其中左视图有3块“被遮挡”,因此表面积为()17151632102+++⨯=⎡⎤⎣⎦.例1.2.5 图中的立体图形由11个棱长为1的立方块搭成,这个立体图形的表面积为_______.【答案】34【解析】 按一定的顺序,从不同的角度来看这个立体图形的表面的面积. 题模三:已知三视图反推个数例1.3.1 这个图形最少是由( )个正方体整齐堆放而成的.正视图 俯视图 左视图A.12B.13C.14D.15【答案】B【解析】从上面看下去,最少需要:122412113++++++=.例1.3.2此图是某几何体从正面和左面看到的图形.若该几何体是由若干个棱长为1的正方体垒成的,则这个几何体的体积最小是________.【答案】6【解析】根据正视图,理论上最少需要6块.而6块可以构造出来,例如,其俯视图如下图所示.因此,体积最小为3166⨯=.例 1.3.3一个立体图形,从前面,上面,右边三个方向看到的图形都如图所示,是一个样的,那么该立体图形最多由__________块小立方体组成.【答案】23【解析】按由上到下逐层分析,各层的小立方体数目分别不超过1个、4个、8个、10个,所以该立体图形最多由23个小立方体组成.例 1.3.4有一些大小相同的正方形木块堆成一堆,从上往下看是图3-1,从前往后看是图3-2,从左往右看是图3-3,那么这堆木块最多有多少块?最少有多少块?1412212从正面看从左面看【答案】16,13【解析】43416+⨯=块,424113+⨯+=块.这堆木块最多有16块,最少有13块.例1.3.5地上有一堆小立方体,从上面看时如图1所示,从前面看时如图2所示,从左边看时如图3所示.这一堆立方体一共有几个?如果每个小立方体的棱长为1厘米,那么这堆立方体所堆成的立体图形表面积为多少平方厘米?【答案】10个;42平方厘米【解析】采用在俯视图上标数的方法来求解,只要知道俯视图上的每格有几块小立方体,就可以很轻松的得到这堆立方体所形成的立体图形的样子.首先从俯视图很容易看出,有3个格子里是没有小立方体的,而其他6个格子里至少有一个小立方体.如下图,将所得信息填入俯视图中.结合俯视图和主视图,不难看出,有两格只有1块小立方体.将所得信息填入俯视图中.同样的,结合俯视图和左视图,又可以知道有一格只有1块小立方体.将所得信息填入俯视图中.图1 图2 图3从前面看1001我们来继续考虑,左视图中最左边一排有2块小立方体,所以俯视图左上角处有2块小立方体.将所得信息填入俯视图中.同理,主视图最右边一排有2块小立方体,所以俯视图最右边中间处有2块小立方体.将所得信息填入俯视图中.不难看出,俯视图中最后剩下的那块有3个小立方体,所以俯视图中每格的小立方体数如下:于是这一堆立方体一共有21321110+++++=个. 接着很容易得到这个立体图形的样子,如下图.上下各能看到6个面,前后各能看到6个面,左右各能看到6个面,同时注意到立体图形的中间共有6个会互相遮挡的面,所以表面积是()2666642⨯+++=平方厘米.从左边看1 0 0 012 1 0 0 012 1 0 0 2 0 112 1 03 0 2 011随练1.1将一正方体纸盒沿右图所示的粗实线剪开,展开成平面图,其展开图的形状为().A.A图B.B图C.C图D.D图【答案】B【解析】竖向只剪了1刀,故前、后、左、右四个面应在一条线上,排除A、D.易知上、下两面不在一条线上,排除C,故选B.随练1.2水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如下图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面.则“祝”、“你”、“前”分别表示正方体的________________________.【答案】后面、上面、左面【解析】易知你、程相对,前、锦相对,祝、似相对,因此“祝”、“你”、“前”分别表示正方体的后面、上面、左面.随练1.3小明把五颗完全相同的骰子拼摆成一排(如图),那么这五颗骰子底面上的点数之和是__________.【答案】16【解析】根据已知推出(4,5)(1,3)(2,6)互为对立面,所以这五颗骰子底面上的点数之和是6152216++++=.随练1.4右图是由八个相同的小正方体组成而成的几何体,则从正面观察,得到的平面图随堂练习形是__________.序号)【答案】 ②【解析】 从正面看到图②,从上面看到图①,从右面看到图③.所以正确答案是图②.随练1.5 由棱长为1的正方体搭成如图所示的图形,共有__________个正方体,它的表面积是__________.【答案】 10;34【解析】 第一层有8个,第二层有2个,共10个.其三视图分别能看到4、5、8个,故表面积为()11458234⨯⨯++⨯=.随练1.6 如图,有9个边长为1米的正方体,如图所示堆成一个立体图形.该立体图形的表面积等于__________平方米.【答案】 38【解析】 利用三视图.从前面、右面、上面看依次如图所示.所以该立体图形的表面积是()26672138++⨯⨯=平方米.随练1.7 如图6,用若干个棱长为1的小正方体堆成一个大的几何体,这个几何体的表面积(含底面积)是__________.① ② ③ ④【答案】90【解析】根据三视图,大的几何体的表面积等于正视图面积+俯视图面积+右视图面积的2倍,所以是()2++⨯⨯=.1415162190随练 1.8用棱长是1厘米的小立方体拼成如图所示的立体图形,这个图形的表面积是__________平方厘米.【答案】46平方厘米【解析】如图1,从立体图形上方和下方看去,看到的都是9块小正方形.面积是9平方厘米.图1图2从四个侧面看去,看到的是图2形式的7块小正方形,面积是7平方厘米.所以立体图形的表面积为927446⨯+⨯=平方厘米.随练1.9把若干个棱长为1厘米的小正方体木块搭成一个图形,从上面和前面看到的都是如图所示的情形,这个图形最多需要__________个这样的小正方体,最少需要__________个这样的小正方体.【答案】9;7【解析】由从上方看到的结果可知第一层必有5个,且第二层至多5个;由从前面看到的结果可知共有2层,且第二层至少2个.再结合两个视图可知第二层至多4个.综上,最多9个,最少7个.作业1一个数学玩具的包装盒是正方体,其表面展开图如下.现在每方格内都填上相应的数字.已知将这个表面展开图沿虚线折成正方体后,相对面的两数之和为“3”,则填在A、B、C内的三个数字依次是_____________.【答案】3,1,2【解析】正方体的平面展开图中,相对面之间一定隔着一个正方形,所以在此正方体上与“A”相对的面上的数是“0”.与“B”相对的面上的数是“2”.与“C”相对的面上的数是“1”.所以A、B、C内的三个数字依次是3,1,2.作业2把1至6各一个分别写在正方形的六个面上,每个面只写一个数字,且1与4相对,2与5相对,3与6相对,从某个角度看到的三个面上的数字如图(a)所示,从另一个角度看到的三个面如图(b)所示,那么图(b)中的“?”代表的数字是___________.A.2B.3C.4D.5【答案】A【解析】如图,4对面是1,所以在图a中把4翻到底面,顶部变成了1,如图b,而5C 2B 0A 1自我总结课后作业对面是2,所以当6转到正面时,5在左侧,右侧自然是2了,故答案是2..作业3下图由一个正五边形,五个长方形,五个等边三角形组成,它是一个立体图形的平面展开图,那么这个立体图形有__________条棱.【答案】20【解析】此立体图形,示意图如上:共20条棱.作业4用若干个棱长为1cm的小正方体码放成如图所示的立体,则这个立体的表面积(含下底面面积)等于___________2cm.【答案】60【解析】根据三视图,我们可知,此立体图形的前面与后面,左面与右面,上面与下面的表面积分别相等.所以我们只要知道前面有11个正方形,右面有8个正方形,上面有11个面,就可求出它露在外面的面共计()11811260++⨯=个正方形,所以它的表面积是2260160cm⨯=.作业5如图,把19个边长为1厘米正方体重叠起来堆成如图所示的立方体,这个立方体的表面积是______平方厘米.【答案】54【解析】从上下左右前后六个方向看,分别可以看到9、9、8、8、10、10个小正方形面,所以总的表面积为54平方厘米.作业6图中的立体是由大小相同的若干单位正方体积木搭成的.这样的积木一共有多少块?画出它的三视图,表面积是多少?【答案】30;三视图如下图所示;76【解析】将此图分为从左到右的4层,分别有11、7、5、7块,故共有1175730+++=块.三视图见答案,分别可看见13、12、11块,其中左视图有2块“被遮挡”,因此表面积为()1312112276+++⨯=⎡⎤⎣⎦.作业7由若干个相同的正方体木块搭成的立体,从正面和左面看到的图形都是右图,搭这样的立体,最少用()个这样的木块.A.4B.5C.6D.8【答案】A【解析】按如图方式摆放即可.正视图俯视图左视图作业8由若干个棱长为1的正方体堆成的立体图形,其正视图、俯视图和左视图如下所示,请问这个立体图形体积是________.正视图俯视图左视图【答案】5【解析】由正视图和左视图可知共两层,且顶层只有1块,由俯视图可知底层有4块,故共有5块,体积为5.作业9一仓库里堆放着若干个完全相同的正方体货箱,这堆货箱的三视图如图所示,这堆真方体货箱共有______________个.【答案】9【解析】俯视图确定基座,分析每块上的高度.。
几何图形三视图
汽车来了!
当你从不同方向观察小汽车时,你每次看到的结果是否都一样吗?
你能指出这些图形分别 从哪个角度观察得到的 吗?
在生活中我们应从不同 角度,多方面地去看待一 件事物,分析一件事情。 今天我们学习从三个不 同方向看同一立体图形,得 到的平面图形在数学中称为 三视图。
请你猜猜 这是什么?
三 视 图 的 概 侧视图 念
2 1
1
2
2 不用摆出这个几何体,你能画出 这个几何体的正视图与左视图吗?
思考方法
1
1
2 正视图:
先根据俯视图确定主视图有 再根据数字确定每列的方块有
列, 个,
正视图有 3 列,第一列的方块有 1 个, 第二列的方块有 2 个,第三列的方块有 1 个, 侧视图有 2 列, 第一列的方块有 2 个,
俯视图
正视图
三视图的概念
从三个不同方向 看同一物体
从正面看到的实物的平面图形叫正视图,
从侧面看到的实物的平面图形叫侧视图,
从上面看到的实物的平面图形叫俯视图。
一起来学习简单物体的三视图吧!
探究
正方体
从不同方向看以下立 体图形得到的平面图 形是什么图形?
正方形
长 方 体
侧视图
正视图
长方形
侧视图:
第二列的方块有 2 个,
小结
几何体 正方体 长方体 正视图
正方形 矩形
侧视图
正方形 矩形
俯视图
正方形 矩形
圆柱
圆锥 圆台
矩形
等腰三角形
矩形
等腰三角形 等腰梯形 圆
圆
圆和中间一点
等腰梯形
圆
球体
大小两 圆 圆
注意:在画三视图时,应将观察到的棱和顶点 画出来
三视图课件
绘制三视图基本规则
物体摆放规则
绘制三视图时,应将物体摆放成 工作位置,即自然安放且主要表
面或轴线平行于投影面。
视图布局规则
主视图应位于图纸的主要位置, 俯视图在主视图的下方,左视图 在主视图的右侧。各视图之间应 保持适当的间距,并用细实线连
接对应点。
尺寸标注规则
三视图中应标注齐全的尺寸,包 括定形尺寸、定位尺寸和总体尺 寸。尺寸标注应清晰、准确,符
掌握零件的尺寸标注
熟悉零件图中的尺寸标注方法,理解各尺寸 的含义和作用。
分析零件的视图表达
分析零件图的主视图、俯视图、左视图等视 图,理解各视图之间的投影关系。
理解零件的技术要求
了解零件图中的表面粗糙度、公差与配合等 技术要求。
装配图阅读和绘制方法
了解装配体的组成
通过观察装配图,了解装配体由哪些 零件组成,各零件之间的连接方式和 相对位置。
掌握正视图、俯视图和左视图的形成原理及 投影规律。
三视图绘制方法
学习如何根据物体的形状和结构,正确绘制 其三视图。
尺寸标注与识读
理解尺寸标注的规定和方法,能够准确识读 和理解三视图中的尺寸信息。
形体分析与表达
掌握形体分析的方法和技巧,能够运用所学 知识对复杂形体进行准确表达。
学生自我评价报告
知识掌握程度
标注零件尺寸
根据零件的结构形状和制造要求,标注必要的零 件尺寸,如定形尺寸、定位尺寸等。
ABCD
拆画零件图
根据装配图中的零件形状和连接关系,逐个拆画 出各个零件的图形。
编写技术要求
根据零件的使用要求和制造工艺,编写必要的技 术要求,如表面粗糙度、公差等。
06
课程总结与拓展延伸
从三视图到立体图形课件
在建筑设计中,三视图主要用于表现建筑物的外观、内部空间和结构,通过不同角度的视图展示建筑物的立体效果和设计细节。
建筑表现
三视图还可以作为施工指点,帮助施工人员理解建筑物的构造和尺寸,确保施工过程中的准确性和规范性。
施工指点
三视图是一种国际通用的工程设计表达方式,能够方便地与不同国家和地区的工程师、设计师进行交流和合作。
建筑设计
在建筑设计中,设计师通常会使用三视图来表达建筑物的外观、结构和空间布局,通过三视图可以直观地展示建筑物的立体效果。
机械制图
THANKS
感谢您的观看。
左视图是从物体的左侧方视察得到的视图,通常用来表示物体的左侧面和背面的形状。
左视图可以提供物体的宽度和深度信息。
俯视图是从物体的上方视察得到的视图,通常用来表示物体的顶面和底面的形状。
俯视图可以提供物体的长度和深度信息。
三视图之间是相互关联的,通过三个视图可以完整地表示物体的形状和尺寸。
在绘制立体图形时,需要将三个视图结合起来,通过投影和转换得到物体的立体形状。
02
CHAPTER
如何从三视图构建立体图形
总结词
通过将立体图形投影到三个互相垂直的平面上,得到三个视图。
详细描述
投影法是利用光线将立体图形投射到三个互相垂直的平面上,分别得到主视图、俯视图和左视图。这三个视图可以完整地表达出立体图形的形状和尺寸。
通过截取立体图形的部分,得到三视图。
截面法是通过截取立体图形的一部分,得到三视图的方法。这种方法适用于一些不规则的立体图形,可以通过截取部分来简化视图。
利用CAD软件进行电路板的三维建模和布线。
电子设计
06
CHAPTER
三视图与立体几何的关系
《高一立体几何三视图》课件
三视图在日常生活中的应用
产品描述
在购买产品时,三视图常用于展 示产品的外观和结构,帮助消费
者更好地了解产品的特点。
建筑设计
在建筑设计领域,三视图用于展 示建筑物的外观、内部布局和结构 设计,为建筑师与客户之间的沟通 提供便利。
模型制作
在制作各种模型时,如玩具、家具 或机器部件,三视图是制作精确模 型的关键工具。
建筑学
用于设计和建造建筑物,理解空间关 系和结构。
工程学
在机械、航空等领域,需要利用立体 几何知识进行设计和分析。
学习立体几何的未来发展
• 计算机图形学:在游戏开发、动画制作等领域,立体几何是构建三维场景的基础。
学习立体几何的未来发展
未来趋势
随着科技的发展,立体几何将在虚拟现实、增强现实等领域发挥更大的作用。
俯视图
从物体的上面方向观察,投影 到垂直于投影面的平面上所得 到的视图。
三视图之间的关系
相互依赖
方位关系
正视图、侧视图和俯视图之间是相互 依赖的,任何一个视图的变化都会影 响到其他两个视图。
通过三视图可以判断物体的左右、前 后、上下方位关系。
投影关系
正视图和侧视图之间、侧视图和俯视 图之间、正视图和俯视图之间都存在 投影关系,即“长对正、高平齐、宽 相等”。
《高一立体几何三视图》ppt 课件
目
CONTENCT
录
• 引言 • 三视图基础知识 • 立体几何图形的三视图 • 三视图的运用 • 练习与巩固 • 总结与展望
01
引言
课程简介
课程目标
帮助学生掌握三视图的基本概念和绘制技巧,培养 空间想象力和几何思维能力。
适用对象
高一学生,具备初步的几何知识和空间感知能力。
三视图投影性质及画法
(一) 回转体的形成方法
名称 圆 锥 体
圆柱体
圆球体
圆环体
回 转 面 形 成
直母线绕和 它相交的轴线回 转而成圆锥面
O S
直母线绕和 它平行的轴线回 转而成圆柱面
O
A
圆母线绕以 它的直径为轴线 回转而成圆球面
O
圆母线绕和 它的共面但不过 圆心的轴线回转 而成圆环面
O
方
法
和
简
图
A
O
A1 O
O
O
形体 由圆锥面和一个圆 由圆柱面和两个圆 由圆球面围成的 由圆环面围成的
o'
o”
o
以底面对称中心作为坐标原点
二、平面立体及其表面上的点和线
(三) 平面立体的画法
棱线的可见投影画成粗实线,棱线的不可见投影画成细虚线。
注意:
s'
s”
1.所有投影的边缘轮 廓线都是可见的,要用粗 实线画出。
a'
1' c' 2'
2.边缘轮廓线内直线
c
b' s
的可见性,要利用交叉两
1(2)
直线上的重影点来判断。 a
各点投影符合 三面投影特性
俯视图:从上向下做正投射得到的图形。 左视图:从左向右做正投射得到的图形。
§7-1 立体及其表面上的点和线
一、立体的三视图及其投影规律
(一) 三棱锥的三视图
Z
V
s'
s”
a' b'
c'
a”
X
O (c”)
a
sc
b
b” Y
投影过程: (1)建立坐标系; (2)作正投影; (3)投影面展开;
空间几何体的三视图
正视图
侧视图
俯视图
四棱柱
由三视图想象几何体
下面是一些立体图形的三视图,请根据 视图说出立体图形的名称:
正视图
左视图
圆锥 俯视图
由三视图想象几何体
一个几何体的三视图如下,你能说出它 是什么立体图形吗?四棱锥 Nhomakorabea小结
欣赏三视图
回忆学过的 几何体的三 视图
三视图的 有关概念 其他几何体的 三视图
由三视图想象几何体
光线自物体的前面向后投影所得的投影图 称为“正视图” ,自左向右投影所得的投影图 称为“侧视图”,自上向下投影所得的投影图 称为“俯视图”. 用这三种视图即可刻划空间物体的几何结 构,这种图称之为“三视图”.即向三个互相 垂直的投影面分别投影,所得到的三个图形摊 平在一个平面上,则就是三视图.
三视图的形成
空间几何体三视图
上一节学习的棱柱、棱锥、棱台 以及圆台的三视图是怎样的?
棱柱的三视图
俯
左
六棱柱
棱锥的三视图
俯
左
正三棱锥
棱锥的三视图
俯
左
正四棱锥
棱台的三视图
俯
左
正四棱台
圆台的三视图
俯
左
圆台
圆台的三视图
俯
左
圆台
由三视图想象几何体
下面是一些立体图形的三视图,请根据 视图说出立体图形的名称:
V
V正立投影面 H水平投影面 W侧立投影面
三视图的形成
W V
V正视图
H俯视图
W侧视图
H
三视图的形成
主 视 图
左视图 俯视图
三视图的特点
长对正
高平齐 宽相等
三视图表达的意义
三视图全面版
3.3三视图
漫画 “6”与
看一看
从左面看到的图形: 左视图
从正面看到的图形: 主视图 从正上方往下看到的 图形:俯视图
主视图、左视图、俯视图合称三视图。
看一看
看一看
从上面看
主视图
左视图
从左面看
从正面看
俯视图
例 长方体的三视图
主 视 图
5cm
高 平 齐
5cm
左 视 图
5cm
4cm 3cm
长对正
3cm
4cm
画图原则:
俯 视 图
4cm
主、俯视图长对正,主、左视图高平齐, 俯、左视图宽相等.
说一说
说出下列立体图形的三视图。
例、由5个相同的小立方块搭成的几何体如 下图所示,请画出它的三视图。
从上面看
ห้องสมุดไป่ตู้
主视图 左视图
从左 面看
从正面看 俯视图
画一画
请画出下面由七个小立方块组成的几何体的三视图
甲
乙
搭一搭
由四个大小相同的小正方体搭成的几何体 的左视图如图所示,则你能给出这个几何体的 搭法吗?
课堂训练
1、图甲,乙都是由小立方体组成的几何体,则图甲,图乙的
视图一样的是C( )
A、主视图、左视图 B、主视图、俯视图 C、左视图、俯视图 D、以上都不对
甲
乙
2、小明的爸爸送给小明一个礼物,小明打开包装后画出它 的主视图与俯视图如图所示,根据小明画的视图,请你猜礼
——苏轼
再见,祝你们成功!
只要我们坚持了,就没有克服不了的困难。或许,为了将来,为了自己的发展,我们会把一件事情想得非常透彻,对自己越来越严,要求越来越高,对任何机会都不曾错过,其 目的也只不过是不让自己随时陷入逆境与失去那种面对困难不曾屈服的精神。但有时,“千里之行,始于足下。”我们更需要用时间持久的用心去做一件事情,让自己其中那小 小的浅浅的进步,来击破打破突破自己那本以为可以高枕无忧十分舒适的区域,强迫逼迫自己一刻不停的马不停蹄的一直向前走,向前看,向前进。所有的未来,都是靠脚步去 丈量。没有走,怎么知道,不可能;没有去努力,又怎么知道不能实现?幸福都是奋斗出来的。那不如,生活中、工作中,就让这“幸福都是奋斗出来的”完完全全彻彻底底的 渗入我们的心灵,着心、心平气和的去体验、去察觉这一种灵魂深处的安详,侧耳聆听这仅属于我们自己生命最原始最动人的节奏。但,这种聆听,它绝不是仅限于、执着于 “我”,而是观察一种生命状态能够扩展和超脱到什么程度,也就是那“幸福都是奋斗出来的”深处又会是如何?生命不止,奋斗不息!又或者,对于很多优秀的人来说,我们 奋斗了一辈子,拼搏了一辈子,也只是人家的起点。可是,这微不足道的进步,对于我们来说,却是幸福的,也是知足的,因为我们清清楚楚的知道自己需要的是什么,隐隐约 约的感觉到自己的人生正把握在自己手中,并且这一切还是通过我们自己勤勤恳恳努力,去积极争取的!“宝剑锋从磨砺出,梅花香自苦寒来。”当我们坦然接受这人生的终局, 或许,这无所皈依的心灵就有了归宿,这生命中觅寻处那真正的幸福、真正的清香也就从此真正的灿烂了我们的人生。一生有多少属于我们的时光?陌上的花,落了又开了,开 了又落了。无数个岁月就这样在悄无声息的时光里静静的流逝。童年的玩伴,曾经的天真,只能在梦里回味,每回梦醒时分,总是多了很多伤感。不知不觉中,走过了青春年少, 走过了人世间风风雨雨。爱过了,恨过了,哭过了,笑过了,才渐渐明白,酸甜苦辣咸才是人生的真味!生老病死是自然规律。所以,面对生活中经历的一切顺境和逆境都学会 了坦然承受,面对突然而至的灾难多了一份从容和冷静。这世上没有什么不能承受的,只要你有足够的坚强!这世上没有什么不能放下的,只要你有足够的胸襟! 一生有多少 属于我们的时光?当你为今天的落日而感伤流泪的时候,你也将错过了明日的旭日东升;当你为过去的遗憾郁郁寡欢,患得患失的时候,你也将忽略了沿途美丽的风景,淡漠了 对未来美好生活的憧憬。没有十全十美的生活,没有一帆风顺的旅途。波平浪静的人生太乏味,抑郁忧伤的人生少欢乐,风雨过后的彩虹最绚丽,历经磨砺的生命才丰盈而深刻。 见过了各样的人生:有的轻浮,有的踏实;有的喧哗,有的落寞;有的激扬,有的低回。肉体凡胎的我们之所以苦恼或喜悦,大都是缘于生活里的际遇沉浮,走不出个人心里的 藩篱。也许我们能挺得过物质生活的匮乏,却不能抵挡住内心的种种纠结。其实幸福和欢乐大多时候是对人对事对生活的一种态度,一花一世界,一树一菩提,就是一粒小小的 沙子,也有自己精彩的乾坤。如果想到我们终有一天会灰飞烟灭,一切象风一样无影亦无踪,还去争个什么?还去抱怨什么?还要烦恼什么?未曾生我谁是我?生我之时我是谁? 长大成人方是我,合眼朦胧又是谁?一生真的没有多少时光,何必要和生活过不去,和自己过不去呢。你在与不在,太阳每天都会照常升起;你愁与不愁,生活都将要继续。时
三视图课件
从正面看
从左面看
从上面看
活动二:摆一摆、看一看、画一画!
(2)如图是一个由5个立方体组成的立体图形,分别从正 面、左面、上面观察这个图形,各能得到什么平面图形?
从正面看
从左面看
从上面看
练习:比比看哪一组最快!
(1)如图是一个由9个立方块搭成的立体图形,分别从正面、 左面、上面观察这个图形,各能得到什么平面图形?
练一练
你能说出下面这个几何体的三视图吗? 正视图
侧视图
俯视图
想
下面三视图是表示哪个几何体?
一
想
?
A
B
C
D
思考:下图中的三视图表示哪个几何体?
正视图
侧视图
俯视图
A
B
【探探究究 】
1、如右图是由几个小立方体所
搭几何体的俯视图,小正方形
中的数字表摆出这个几何体吗?
从左面看
从正面看
从上面看
练习:比比看谁说的快又准! (3)桌上放着一个圆柱体的笔筒和一个 长方体的铅笔盒.
请你说出下面三个图是从什么方向看到的?
从左面看 从上面看
从正面看
练习:如图,分别从正面、左面、上面观察这些
立体图形各得到什么平面图形?
活动二:摆一摆、看一看、画一画!
(1)如图是一个由三个立方块组成的立体图形,分别 从正面、左面、上面观察这个图形,各能得到什么平面 图形?
从正面看
从左面看
从上面看
课内延伸:比比看谁的想象力丰富!
你能用小立方块搭一个几何体,使得从正面、上面、 左面看到的图形分别如下吗?
从正面看
从左面看
从上面看
21
不用摆出这个几何体,你能画出 这个几何体的正视图与左视图吗?
空间几何体的三视图
俯视图
1、作出长方体的三视图
俯视
高 长 对 正
长
高 平 齐
侧 视 长
高
宽 相 等
宽
宽
正视
2、圆柱体的三视图
正视图
侧视图
俯视图
3、正四棱柱的三视图
球体的三视图
球
正视图
侧视图
俯视图
练习
1、画出下列立体图形的三视图。
2、指出左面三个平面图形是右面这个物体的三视图中
的哪个视图。
正视图
俯视图
侧视图
5、画下面几何体的三视图
正视图
侧视图
俯视图
想一想:
知道了 什么?
1、中心投影与平行投影 2、空间几何体的三视图
做一做:
动手设计一件你喜欢的东西,画出它的三视图。
;/ 微信刷票
说道:“行咯,月影,别再说咯,背地里嚼主子的舌根,万壹被别人听咯,少不咯又得挨罚。”“嗯,奴婢知道咯。”“噢,对咯,三 阿哥是不是今天家宴的时候,李侧福晋身边的那各小阿哥?”“就是他,咱们王府里只有这么壹各阿哥,当然就是他咯。”“唉,今天 虽然是第壹回见到这各小阿哥,长得虎头虎脑的挺可爱的,可是不知道为啥啊,在宴席上看到他的时候,我怎么总有壹种壹见如故的感 觉呢?”“丫鬟以前见过弘时阿哥?”“没有啊!我怎么可能见过呢?这可是第壹次见着呢。”“那也许是您指不定哪天在府里的其它 啥啊地方见过,只是没当他是弘时阿哥罢咯。”“嗯,也有可能吧。”第壹卷 第184章 太子转眼就到咯除夕。按照惯例,除夕的当天 宫中要举办家宴。这些日子以来,王爷为咯这各除夕宫宴,心情很是烦闷咯好壹阵子。八月节宫宴风波历经三各多月,总算是暂时平息 下来,冷落冰凝的这些日子,看来还是很有成效。这各黄毛丫头还算是识实务,没有再惹出啥啊新的事端来。可是,很头痛地,除夕又 要到咯。他实在是不想再让这各年氏招惹啥啊是非出来。在朝堂上、官场上,他有那么的事情需要做,他哪里还有啥啊多余的时间或是 闲情逸致,去跟这各黄毛丫头较劲?但是在中秋宫宴上,冰凝不但极为高调地吸引来众人的目光,而且居然还将太子爷的风头都完完全 全地抢尽咯,事后太子的那壹番耐人寻味的盘查,直到现在他还记忆犹新,甚至是心有余悸。那是八月节宫宴的第二天,下朝以后,太 子仍像往常那样与他并肩同行,只是壹边走,壹边谈论的却不是平日的政务,却是他的侧福晋!“四弟,怪不得在你的喜宴上,既不见 你迎亲,兄弟们又没有闹成洞房,原来以为你是嫌皇阿玛赐婚的这各新娘子不满意呢,现在本王才算是知道,敢情你是把新娘子藏咯起 来,怕兄弟们看到啊!”“太子殿下,您可真是冤枉愚弟咯。那天,愚弟答应咯几位弟弟喝酒才没有……”“你就不要此地无银三百两 咯。这要是放在以前,本王还能相信你的这套说辞,只是昨日有幸壹睹弟妹的芳颜,竟然是这等的国色天香、倾国倾城,简直就是沉鱼 落雁、闭月羞花,谁还能相信你刚才的这套鬼话?”“太子殿下,愚弟句句实情,您若不信,愚弟也实在是无法。况且愚弟的侧福晋不 过就是模样周正壹些罢咯,并没有您所形容的那番啥啊国色天香……”“四弟这回谦虚得实在是过头咯呢,小弟妹岂只是模样周正罢咯? 好咯,好咯,谁不知道这各侧福晋是你亲自向皇阿玛请来的!你这招可真是壹箭双雕!看不出来,你还真是沉得住气,先下手为强,把 老十四气得可是火冒三丈。也好,借此机会,好好打压壹下八弟他们壹伙的气焰,不要太狂妄咯,现在笑得还
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从上面看
从左面看
从前面看
从前面看
从左面看
从上面看
画出下面几何体
从前面看
从左(右)面看
从上面看
画出下面几何体的主视图、左视图与俯视图
从前面看
从左面看
从上面看
探究拓广 (1)请你用小立方体拼成课件中的简单组合体, 小组合作,画出三视图(草图 )
前面看 左面看
上面看
(2) 给出组合体的三视图,对应的是哪 个视图,请连线
前面看 上面看 左面看
填一填:
4.填出下列组合体的个数和三视图
( 6 )个正方体
(前面看) (左面看)
(上面看)
2、看一看、摆一摆、 想(一1想)给出下列几何组合体的视图,对应的是
哪个视图,请连线
上面看
前面看
左面看
探究
分别从正面、左面、上面观察这个图形,各 能得到什么平面图形?
从正面看
从左面看
从
方体各得到什么平面
上
图形?并画出平面图
面
形
看
从不同方向看-修 改.swf
从正面看
从左(右)面看
从上面看
注意:三个平面图形 都是正方形
例1、说出从正面,左面, 上看一个长方体得到的是 什么平面图形
长方体
从正面看
从左面看
从上面看
从上面看
从左边看
长方体
从正面看
从上面看
从左面看
从前面看
从上面看 从左面看
题西林壁
--宋·苏轼
横看成岭侧成峰 远近高低各不同。 不识庐山真面目, 只缘身在此山中。
连一连
从正面看 从左面看 从上面看
考考你
从正面看 ( A ) 从左面看 ( A ) 从上面看 ( B )AB NhomakorabeaC
从正面看( B ) 从左面看( B ) 从上面看( C )
A
B
C
探究一:从正面、左
或右面、上面观察正
多姿多彩的图形
正方体的三视图
常见的立体图形
长方 体
圆柱
正方体
“横看成岭侧成峰,远近高低各不 同.不识庐山真面目,只缘身在此山 中.”这是宋代诗人苏轼的著名诗句 <<题西林壁>>,你能说出“横看成 岭侧成峰”中蕴含的数学道理吗?
从不同方位看立体图形得到的图形是不同的.
观察物体
----- 从不同方向看
从上面看