新人教版七上数学教案第一章有理数

合集下载

新人教版七年级数学上册第一章《有理数(第1课时)》教案

新人教版七年级数学上册第一章《有理数(第1课时)》教案

新人教版七年级数学上册第一章《有理数(第1课时)》教案一、内容及其解析1.内容有理数的概念,有理数的分类.2.内容解析有理数是初中数学中数的范围的第一次扩充,是在学习了正整数、0、负整数以及正分数、负分数的基础上,通过引入负数的概念而完成的.在此过程中,渗透着数的扩充以及数的运算的基本思想,是让学生感受在已有知识的基础上提出问题、研究问题的载体,也是增强学生的数感的有效载体.本节内容的核心是通过归纳已学过的数的类型,给出有理数的概念.这里没有要求学生理解抽象的定义,而是强调了通过具体实例,在对已有的数的认识基础上完成拓展.在学生有较充分的基础后,再在本章小结中把有理数的概念严格化.本课的教学重点:体会有理数的概念;体会有理数的两种不同分类方法,感受数的扩充的基本思想.二、教材解析本节课是在学习了正数、负数的概念之后,通过添加负数这一类“新数”,使数的范围扩充到有理数.教科书总结了从小学开始,通过逐步增加新的数而将数的范围逐步扩充的过程.这里渗透了数的扩充的基本思想,为以后从有理数扩充到实数的学习奠定了基础.教材在课后练习中用了“集合”这一名词,目的是渗透一些现代数学知识.这里,“集合”可暂不作为一个数学概念,只看作一个普通名词,知道所有的正整数在一起组成正整数集合,所有的负整数在一起组成负整数集合,不必再引申.三、教学目标和目标解析1.教学目标(1)理解有理数的概念;(2)掌握有理数的分类.2.目标解析(1)学生能够判断一个数是否为有理数,掌握判断依据;(2)对于给出的一组数能够按要求进行分类.了解“0”在有理数分类中的作用.四、教学问题诊断分析有理数的概念是通过例举、归纳的方法给出的,因为学生在小学已接触过负数,对有理数已经有了一定的认识,所以接受概念没有太大的困难.在有理数的分类中,因为涉及到不同的分类标准,这是学生在以往学习中很少碰到的,他们对为什么要分类,怎样确定分类标准,如何进行分类等问题,都存在一定的困难,所以需要教师加强引导.另外,0在有理数分类中是一个特例,需要特别处理.基于以上分析,确定本课的教学难点是:有理数分类中,分类标准的确定以及对0的作用的理解.五、教学过程设计问题1请大家回顾一下,从小学到现在,我们学习了哪些数?你能分别举几个例子吗? 师生活动:学生回答,老师把学生举出的数写在黑板上.【设计意图】通过学生自己举例,梳理已经学过的数,为引入有理数的概念做好铺垫. 问题2观察黑板上的这些数,你能将它们填入下面相应的圈内吗?师生活动:由学生代表板书填写.【设计意图】让学生在解决问题的过程中,明确正整数、负整数、正分数、负分数的概念,感受0的作用.为给出有理数的概念做好准备.教师讲解:正整数、0、负整数统称为整数;正分数、负分数统称为分数.整数与分数统称为有理数.按上述定义,我们有:正整数整数 零 有理数 负整数 分数 正分数 负分数 问题3 对有理数进行分类,可以加深我们对有理数的认识.从有理数的定义出发,你 还能给出与上面不同的分类方法吗?⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数师生活动:学生回答问题前,老师可提示分类线索,即在有理数的概念中,涉及到整数还是分数,正数还是负数,这就是不同分类标准的来源.按性质符号分类:正整数 正分数有理数 零负整数负分数【设计意图】让学生寻找不同的标准对有理数进行分类,以加深对有理数结构的感知,培养学生的数感.问题4 试试看,你能解决下面的问题吗?1.把下列各数填入相应的集合圈里:―18,722,3.1 415,0,2 012,―53,―0.124 847,95%教师解释:数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只给出了有限的几个数,所以应加上省略号.【设计意图】初步向学生渗透集合思想,加深对有理数概念的理解,同时体会0的作用.2.定义辨析练习(1)同桌之间,一名同学说出几个有理数,另一名同学指出每个数属于哪一类?【设计意图】增强趣味性和同学之间的合作意识.(2)下列说法正确的有几个?①零是整数;②零是有理数;③零是自然数;④零是正数;⑤零是负数.【设计意图】让同学们加深对0的认识和理解.(3)下列说法错误的有几个?①负整数和负分数统称为负有理数;正有理数 负有理数②正整数,0和负整数统称为整数;③正有理数与负有理数组成全体有理数.【设计意图】加深对有理数概念和分类的理解.3.练习、巩固概念教科书第7页练习2.问题5 请同学们回顾本节课所学知识,回答下列问题:1.有理数是怎样定义的?2.有理数有几种分类方法?具体是怎样分类的?3.有理数的学习过程中,应注意什么?师生活动:教师与学生一起回顾本节课所学主要内容,并请学生回答问题.【设计意图】通过小结,使学生梳理本节课所学内容,掌握本节课的核心:有理数的概念和分类方法.布置作业:教科书习题1.2第1题.六、目标检测设计1.把下列各数填入相应的集合的括号内:27,-5.8,2 002,76,-1,90%,3.14,0,-312,-2,1,-0.01. (1)整数集合:{ …} (2)分数集合:{ …} (3)负有理数集合:{ …} (4)正有理数集合:{ …} 【设计意图】检测学生对有理数分类方法的掌握情况.2.下列语句:(1)所有整数都是正数;(2)所有正数都是整数;(3)分数是有理数;(4)在有理数中除了负数就是正数.其中正确的语句的个数有( ).A .0个B .1个C .3个D .4个【设计意图】此题较全面地考查了有理数的概念,题目的特点是阅读量大,只要一个语句判断错误,则可能导致答错题目,是一道单选形式的多选题.检测学生是否能够认真理解概念,对有理数中的特殊元素(如0)是否能够正确理解.。

新课标人教版七年级数学上册教案 第一章

新课标人教版七年级数学上册教案 第一章

新课标人教版七年级数学上册教案第一章
新课标人教版七年级数学上册教案
第一章有理数
1.1正数和负数
★目标预设
一、知识与能力
借助生活中的实例会判断一个数是正数还是负数,能用正负数表示具有相反意义的量
二、过程与方法
1、过程:通过实例引入负数,从而指导学生会识别正负数及其表示法,能应用正负数表示具有相反意义的量。

2、方法:讨论法、探究法、讲授法、观察法。

三、情感、态度、价值观
乐于接触社会环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用
★教学重难点
一、重点:理解正数和负数的概念,判断一个数是正数还是负数,应用正负数表示具有相反意义的量
二、难点:负数的意义,理解具有相反意义的量。

★教学准备
带有负数的实例若干
★预习导学
在生活、生产、科研中,经常遇到数的表示与数的运算的问题。

例如,。

数学人教版七年级上第一章:1.2-有理数教案

数学人教版七年级上第一章:1.2-有理数教案

数学人教版七年级上第一章:1.2有理数教案1教学目标:1.1知识与技能:①借助数轴理解相反数的意义,懂得数轴上表示相反数的两个点关于原点对称,会求有理数的相反数;②利用相反数符号表示方法化简多重符号;③理解掌握绝对值的概念和意义,体会绝对值的作用。

1.2过程与方法:①用情景引出问题,采用数形结合的方法观察数轴上与原点对称的点的特点,找出这两点到原点的距离关系。

②培养学生分析、解决问题的能力,逐步渗透数形结合的思想方法。

③通过正数、负数、零的相反数和绝对值的学习,体会分类讨论的方法1.3情感态度与价值观:①逐步培养学生探索学习数学的方法。

②通过师生的活动,学生自我探究,让学生充分参与到学习中。

2教学重点/难点/易考点2.1教学重点:①理解相反数、绝对值的意义②有理数的大小比较③借助数轴利用数形结合的思想方法理解相反数、绝对值的概念和几何意义2.2教学难点①相反数的识别和理解②利用绝对值比较两个负数的大小3专家建议“数学教学是数学活动的教学”。

我们进行数学教学,不能只给学生讲结论,因为任何数学理论总是伴随着一定的数学活动,应该暴露数学活动过程。

也只有在数学活动的教学中,学生学习的主动性,才能得以发挥。

这一节课,介绍了相反数和绝对值,不是简单地告诉学生结论和方法,然后进行大量的重复性练习,而是在教师的指导下,让学生自己去思索、判断,自己得出结论,从而达到培养学生观察、归纳、概括能力的目的,体会相反数及绝对值的实际含义。

4教学方法问题引入——数形结合理解相反数、绝对值的意义——交流讨论——课程小节——巩固练习 5教学用具6教学过程6.1问题引入问题1:在数轴上表示出下面的点,2,-3,2.5,-2,3,-2.5观察所画的数轴及表示的点,这些点有什么特点?问题2:这些点有哪些不同,他们有什么关系?【教师说明】提问上面两个问题,总结同学们的回答,说明像2和-2,3和-3,2.5和-2.5他们只有符号不同,分别在原点的两侧,到原点的距离相等,那么这两个点关于原点对称。

新人教版七年级上册数学第1章有理数全章教案

新人教版七年级上册数学第1章有理数全章教案

第一章有理数§1.1正数和负数(一)教学目标:知识与技能:掌握正数和负数的概念,能区分两种不同意义的量,会用符号表示正数和负数;培养学生观察、比较和概括的思维能力。

过程与方法:教法主要采用启发式教学学法引导学生自主探索去观察、交流、归纳.情感、态度、价值观:在传授知识、培养能力的同时,注意培养学生勇于探索的精神,通过本节课的教学,渗透对立统一的辩证思想。

教学重点:实际需要产生正数与负数.教学难点:正确了解负数,能准确地举出具有相反意义的量的典型例.教学过程:(一)、提出问题在生产和生活中经常会遇见用数来表示问题,例如①天气预报2003年11月某天北京的温度为-3—30C,它的确切含义是什么?②有三个队参加足球比赛,红队胜黄队(4∶1),蓝队胜红队(1∶0),黄队胜蓝队(1∶0),如何按净胜球排名?③某机器零件的长度设计为100mm,加工图纸标注的尺寸为100±0.5(mm),这里的±0.5代表什么意思?(二)、试一试章前图中表示温度、净胜球、加工允许误差时,用到了-3,3,2,-2,0,+0.5,-0.5等等.请同学们那些数是以前没有学过的数,有–3,-2,-0.5.实际意义是零下3度,净输2球,小于尺寸0.5mm.(三)、探索新数–3,-2,-0.5有什么特征?(学生回答)正数:以前学过的大于0的数(像1、2.5、133、48等的数叫正数)七年级(上)数学教案负数:在正数前面加上负号“-”的数.(像-1、-2.5,-13,-48的数叫负数,读作负1、负2.5、负13、负48.)有时正数前面也可以加上正号“+”,正号“+”可以省略,但负号“-”一定不可以省略.一个数前面的“+”“-”叫它的符号(性质符号).强调0既不是正数,也不是负数,它是中性数.师:(以温度计为例)温度计中的0不是表示没有温度,它通常表示水结成冰时的温度,是零上温度与零下温度的分界点,因此得出:零既不是正数也不是负数。

有理数人教版数学七年级上第一章第一课时教案

有理数人教版数学七年级上第一章第一课时教案

1.2 有理数-第一课时(参考课时:2课时)1 教学目标1.1 知识与技能:①使学生理解整数、分数、有理数的概念。

并会判断一个给定的数是整数或分数或有理数。

②会初步对有理数进行分类,培养学生观察、比较和概括的思维能力。

③使学生知道数轴上有原点、正方向和单位长度,会画数轴,并用数轴上的点表示整数或分数。

④能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,知道有理数都可以用数轴上的点表示。

1.2 过程与方法:①采用启发式教学,设法引导学生去归纳、整理。

②引导同学动笔画,学生自主探索去观察、比较、交流1.3 情感态度与价值观:①在传授知识、培养能力的同时,注意培养学生勇于探索的精神,通过本节课的教学,渗透对立统一的辩证思想。

②向学生渗透对立统一的辩证唯物主义观点及数形结合的数学思想。

2 教学重点/难点/易考点2.1 教学重点①整数、分数、有理数的概念。

②数轴的三要素和有理数在数轴上的表示方法教学。

2.2 教学难点①给一个数能正确说出它属于的集合。

②有理数与数轴上点的对应关系。

3 专家建议“数学教学是数学活动的教学”。

我们进行数学教学,不能只给学生讲结论,因为任何数学理论总是伴随着一定的数学活动,应该暴露数学活动过程。

也只有在数学活动的教学中,学生学习的主动性,才能得以发挥。

这一节课,从数的分类,到数轴的介绍,不是简单地告诉学生结论和方法,然后进行大量的重复性练习,而是在教师的指导下,让学生自己去思索、判断,自己得出结论,从而达到培养学生观察、归纳、概括能力的目的。

4 教学方法情境引入——引导同学进行数的分类——有理数概念介绍——有理数的分类——集合概念初步——数轴介绍及画法——数轴与有理数对应关系——课程小结——巩固练习5 教学用具6 教学过程6.1 情境引入2004年雅典奥运会中国队战绩辉煌。

在男子110米栏决赛中,中国选手刘翔以12.91秒的成绩夺得金牌,这个成绩打破了12.96的奥运会纪录,平了世界纪录,实现了中国男子田径金牌0的突破。

人教版初中七年级上册数学教案(完整版)word版本

人教版初中七年级上册数学教案(完整版)word版本

七上数学教案有理数第一章教学目标.知识与技能 1①通过生活实例,了解学习有理数的必要性.②理解并掌握数轴、相反数、绝对值、有理数等有关概念.③通过本章的学习,掌握有理数的加、减、乘、除、乘方及简单的混合运算..过程与方法 2通过本章的学习,培养学生应用数学知识解决实际问题的能力..情感、态度与价值观 3激励学通过师生共同参与的教学活动,结合生活实例引入新课,生学习数学的兴趣,让学生真正体验到数学知识来源于生活并服务于生活.难点、教学重点这一章的主要学习目标都可以归结到有理.重点:有理数的运算运算,数轴、相反数、绝对值---数的运算上,比如有理数的有关概念法则直接目标都是落实到有理数的运近似数等内容的学习,,运算律,算上.. 有理数法则的理解,难点:负数概念的建立,绝对值意义课时分配课时内容1 正数和负数1 . 14 有理数2 . 15 有理数的加减法3 . 14 . 1 4 有理数的乘除法4 有理数的乘方5 . 12 单元复习与验收教学建议(即联系实际生活的典型例子)教师在教学过程中注意从实际问题在教师的引导和学生大胆尝试的过程中,让学生参与数学活动,引入,从而使学生自得知识,分析问题和解决问题,使学生自觉地发现问题,自觅规律..在进行有理数的有关概念的教学时: 1•)注意从实际问题引入,使学生知道数学知识来源于生活.1(如:从温度与海拔高度引入负数,从而得出有理数的概念;借助温度引出数轴,建立数(有理数)与形(数轴上的点)之间的联系.()注意借助数轴的直观性讲述相反数、绝对值,体会用字母2使学生对概念的认识能更深一步,,•体现代数的特点表示数的优越性,并为今后学习整式、方程打下基础..讲解有理数运算时,有理数加法及乘法法则的导出借助数轴 2在此,会更直观更形象更易于学生理解,法则要着重强调符号的确定基础上注意绝对值的运算,提高学生计算准确率.正数和负数1 .1教学目标.知识与技能 1①了解正数与负数的引入是实际生活的需要.②会判断一个数是正数还是负数.③会用正负数表示互为相反意义的量..过程与方法 2训练学生运,通过正负数的学习,培养学生应用数学知识的意识用新知识解决实际问题的能力..情感、态度与价值观 3让学生体激发学生学习数学的兴趣,通过师生共同的教学活动,验到数学知识来源于生活并为生活服务.教学重点难点会运用正负数表示具有相会判断一个数是正数还是负数,重点:的含义.0•反意义的量,理解难点:负数的引入和理解.教与学互动设计(一)创设情境,导入新课由同学感受高于水平面和珠穆朗玛峰和吐鲁番盆地,课件展示低于水平面的不同情况.(二)合作交流,解读探究.举出一些生活中常遇到的具有相反意义的量,如温度是零上 1米和50张课桌,汽车向东80张课桌与卖出90‣,买进5‣和零下7米等.120向西你能用小学算术中的以上都是一些具有相反意义的量,想一想数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?. 2我们把其中一种意义的量,为了用数表示具有相反意义的量,如零上温度,前进、收入、上升、高出等规定为正的,而把与它相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量(读作负)“-”负的量用学过的数前面加上用算述里学过的数表示,.号来表示(零除外)一位同学任意说出具有相反每组同学之间相互合作交流,活动意义的两个量,由其他同学用正负数表示.是正数还是负0什么样的数是负数?什么样的数是正数?讨论• 数?号的数,“-”负数是在正数前面加的数,0正数是大于【总结】既不是正数,也不是负数,是正数与负数的分界.0(三)应用迁移,巩固提高举出几对具有相反意义的量,并分别用正、负数表示.1 例【提示】、“后”与“前”,“下降”与“上升”具有相反意义的量有“收入”与“支出”等.、“得到”与“失去”、“高于”与“低于”旨在考查学生用正负数表示具这是一道开放性试题,【点评】有相反意义量的能力.克0.02在某次乒乓球检测中,一只乒乓球超过标准质量2 例克表示什么?0.03那么-•克,0.02记作+0.03表示比标准质量低【答案】克.可记为6.4%年美国的商品进出口总额比上年减少3 2001例.7.5% +可记为7.5%,中国增长-6.4% 备选例题•个时间单位,1分钟为45²山东淄博)某项科学研究以2004(10,0时为10并记为每天上午时以后记为正.例10时以前记为负,(应记为7:45上升依此类推,等等.1记为10:45,-1记为9:15如,)A.3B.-3C.-2.5D.-7.45分135相差10与7:45读懂题意是解决本题的关键.【点拨】钟.B 【答案】(四)总结反思,拓展升华正数就是我为了表示现实生活中具有相反意义的量引进了负数.们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能既不是正数0.另外,说“有正号的数是正数,有负号的数是负数”也不是负数.,2,-1填空. 1,81 个数是–81…第 -8 , -7 , 6 ,-5,4,-3.2005 个数是–2005第数字绝对值的排列是按由小到大的顺序,通过观察可见,【提示】符号是负正相间,第奇数个数为负,第偶数个数为正.从绝对值和符号两方面考虑.,本题属于找规律问题【点评】(存是小张同学一周中简记储蓄罐中钱的进出情况表1-1-1表. 2:)入记为“+”表 1-1-1 六五四三二一日星期(元)-2.6 +10 -0.9 -2.1 -1.2 +5.0 16 +)本周小张一共用掉了多少钱?存进了多少钱?1(元.31元, 6.8【答案】)储蓄罐中的钱与原来多了还是少了?2(多了.【答案】)如果不用正、负数的方法记账,你还可以怎样记账?比较3(各种记账的优劣.【答案】用文字说明,但前者更简洁.,1个同学站成一排,从左到右每个人编上号:4.数学游戏: 3.(负号)表示“蹲”“-”,.用“+”表示“站”4,3,2个同4、第1,则第+4,-3,-2,+1)由一个同学大声喊:1(2学站,第,-1个同学蹲,并保持这个姿势,然后再大声喊:3、第个同学中有改变姿势的,则表示输了,4、第2,如果第+4,+3,-2;作小小的“惩罚”个同学顺序调整一下,但每个人记作4)增加游戏难度,把2(.的游戏;1自己原来的编号,再重复所有“命令”或“数据”•)这不仅仅是游戏哟!在电脑中,3(“翻译”没有特别的例如,表示的.(特别是二进制数)都是用有理数程序,电脑就不明白你给屏幕上的卡通人下的是“站”还是“蹲”的命令,这时,就可输入正负数以区别不同的姿势.(五)课堂跟踪反馈夯实基础.填空题 1(-吨记为20吨,那么浪费+30吨记为30)如果节约用水1吨.204)如果2(. -8 年前记作8,那么4年后记作+吨表示100吨,那么+7吨记作-7)如果运出货物3(运进货.吨100物,小阳体重减少了3,记作+3kg)一年内,小亮体重增加了4(. 2kg ,则小阳增长了2 kg米,下午0.5米,记作-0.5时,水位低于标准水位12.中午 20.5时,水位又上涨了5米,下午1水位上涨了•时,1 米.时的水位;5时和下午1)用正数或负数记录下午1(时水位高多少?12时的水位比中午5)下午2(1时,水位-5米;下午0.5时,水位1)下午1(【答案】(米)0.5+1=1.5)2(米提升能力公斤,现测得甲、乙、丙三袋粮食重50.粮食每袋标准重量是 3公斤.如果超重部分用正数表示,49.8公斤,49公斤,52量如下:请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数..-0.2,-1, +2【答案】.有没有这样的有理数,它既不是正数,也不是负数? 4有,是【答案】.0.下列各数中哪些是正数?哪些是负数? 5116,3.14,0,-1.3,-2,4,,,-0.02,15- 37716,0.02,15;负数:-,3.14,1.3,4,正数:【答案】711-2,-371开放探究12.同学聚会,约定在中午 6点到会,早到的记为正,迟到的记•点,-1.5点,最迟到的同学记为3为负,结果最早到的同学记为+你知道他们分别是什么时候到的吗?最早到的同学比最迟到的同学早多少小时?点半到,最1点到,最迟的是下午9最早的同学上午【答案】个小时.4.5早的比最迟的早到.新中考题 7‣,15‣,冷库B的温度是-5²玉林)冷库A的温度是-2004(则温度高的是冷库• .A教学反思:也是非常重要的一节课,本节课是学生进入初中的第一节数学课为学生课堂上我主要采用了体验探究的教学方式,.负数的引入-----学生在动手使学生直接参与教学活动,提供了大量亲自操作的机会,进而通过教师的引导加工操作中对抽象的数学知识获取感性的认识,使学生的学习过程变为一个再从而获得新知,总结上升为理性认识,感受在解决问题的同时让学生体会到获取知识的方法,创造的过程,为学生今后获取新知以及探索和发现新过程中与他人合作的重要性,. 知打下基础有理数2 .11 有理数1 .2.教学目标.知识与技能 1①理解有理数的意义.②能把有理数按要求分类.在有理数分类的作用.0③了解.过程与方法 2培养学生分类讨论的意识和能正确地进行分类经历本节的学习,的能力.教学重点难点重点:会把已知各数填入相应的数集图里.难点:掌握有理数的两种分类.教与学互动设计(一)创设情境,导入新课我们认识的数除,通过上节课的学习同学们已经知道讨论交流了小学里所学的之外,还有另一类数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.(二)合作交流,解读探究512…5.2, -7.4,-3,,,0,-10,-9,-7,5.7,3学生列举:365你能说说这些数的特点吗?议一议、分数,也有负0学生回答,并相互补充:有小学学过的整数、整数、负分数.说明:我们把所有的这些数统称为有理数.你能对以上各种类型的数作出一张分类表吗?试一试整正数零整数负整数有理数正分数分数负分数说明:以上分类,若学生思考有困难,可加以引导:因为整数和分数那么整数又包所以有理数可分为整数和分数两大类,统称为有理数,含那些数?分数呢?(正数、那可不可以按数的性质以上按整数和分数来分,做一做负数)来分呢,试一试.正整数正有理数正分数有理数零负整数负有理数负分数)数的集合3(把所有正数组成的集合,叫做正数集合.分数集合、整数集合、什么是负数集合、试着归纳总结,试一试有理数集合.(三)应用迁移,巩固提高把下列各数填入相应的集合内:1 例812-89 ,0.67,10.l,10%,-0.23456,-,2004,0,3.1416,57… … … …分数集合整数集合负数集合正数集合【答案】228,2004,10%,,-3.1416,-7510.1,0.67,...-0.23456,-89,...负数集合正数集合812,,-3.1416,-570,2004,-89,...-0.23456,10%,10.1,0.67,...分数集合整数集合以下是两位同学的分类方法,你认为他们分类的结果正确2 例吗?为什么?正整数正有理数正分数有理数负整数负有理数负分数正数整数有理数分数负数零两者都错,前者丢掉了零,后者把正负数、整数、分【答案】. 分类标准不清楚,数混为一谈以上是对各类有理数的特点及有理数的分类进行的训【点评】练,基础性强,需要重视以下结论中正确的有(B)3例是最小的正整数0①是最小的有理数0②既是非正数,也是非负数0④不是负数0③个 D.4个C.3个 B.2个 A.1可能是什么样的数,一定为a如果用字母表示一个数,那4 例正数吗?与你的伙伴交流一下你的看法..0可能是正数,可能是负数,也可能是a不一定,【答案】全面a要求学生能用分类的思想对此题开放性较强.【点评】. 体会用字母表示数的意义,认识备选例题²浙江温州)观察下列数,按某种规律在横线上填入适当2004(6243,…你的理解是,________,,,的数,并说明你的理由.7354._________2,找出各项数的特点是本题关键所在,第一个数为【点拨】3所得的数.1后一个数是前一个数的分子,分母都加5【答案】6(四)总结反思,拓展升华提问:今天你获得了哪些知识?今天我们学习了有理数的定义然后教师总结:由学生自己小结,和有理数的两种分类方法.我们要能正确地判断一个数属于哪一类,”的含义.0要特别注意“的圈中填上适合的数,使得圈内的数依次1-2-1请你在图.1有理数集、正数集、分数集、负数集.•为整数集、所示.1-2-2答案不唯一,如图【答案】381120.4-5正有理数.有理数按正、负可分为 2零负有理数整数按整数分,可分为分数)你能自己再制定一个标准,对有理数进行另一种分类吗?1()生活中,我们也常常对事物进行分类,请你举例说明.2(的数,等于1的数,小于1)如将有理数分成大于1(【答案】的数.1例如对人按年龄可分为:)2(青年、少年、儿童、幼儿、婴儿、中年、老年..下面两个圈分别表示负数集和分数集,你能说出两个图的重 3叠部分表示什么数的集合呢?分数集合负数集合负分数答案(五)课堂跟踪反馈夯实基础.把下列各数填入相应的大括号内: 1 11-0.3 ,50%,0,3,-3,,0.125, -7220} ,3,{-7)整数集合1(11-0.3} ,50%,-3,,{0.125)分数集合2( 221-0.3} ,{-3)负分数集合3(2150%} ,0,3,,{0.125)非负数集合4(211-0.3} ,50%,0,3,-3,,0.125,{-7)有理数集合5(22.下列说法正确的是(D) 2不是自然数0B.A.整数就是自然数是整数而不是正数0D.C.正数和负数统称为有理数325(千克,)0.1±25(某商店出售的三种规格的面粉袋上写着.)千克的字样,从中任意两袋,它们质量相0.3±25(,千克)0.2•±千克. 0.6 差最大的是提升能力可以表示数,在我们现在所学的范围内,你能否试着a.字母 4可以表示什么样的数?a说明a【答案】,负整数或负分数.0可以表示正整数,正分数,个5.某校对初一新生的男生进行了引体向上的测试,以能做 5名男10超过的次数记为正数,不足的次数记为负数,其中•为标准,生的测试成绩如下: 2 -1 2 -1 3 0 -1 -2 1 0 -名男生有百分之几达标(即达标率)?10)这1(名男生共做了多少个引体向上?10)这2()1(【答案】(个)10-1=49³5)2(;50%开放探究.应用创新题 68若向东再米,12如果一个人从A地出发先走+米,8米记作+米,你能判断这个人此时在何20米,最后走-18米,又走+15走-处吗?米处.5在A地西边【答案】.新中考题 7年元月某一天的天气预报中,2004²内蒙古赤峰)我市2004(克旗的最低温度是-‣,22宁城县的最低温度是-这一天宁城‣,26(A)县的最低气温比克旗的最低气温高-8. D‣8. C‣-4. B‣4. A ‣(六)资料采撷原始的计算工具最早人类初期的计算主要是计数.计算是人类的一种思维活动,用来帮助计数的工具是人类的四肢(手、脚、手指、脚趾)或身边的,说明人们常小石头、贝壳、绳子等.中国有句古话叫“屈指可数”用手指来计算简单的数.名珍藏着一件从秘鲁出土的古代文物,在美国纽约的博物馆里,“基普”叫传基普是古人用来计数和记事的.意即打了绳结的绳子.,波斯国王在一次征战中曾命令一支部队守桥,他•世纪,6说公元前一要他们每守一天解开一个结,把一条打了结的皮带交给留守将士,直守到皮带上的结全部解完了才准撤退.人们用在绳子上打结的方法来计数和记在没有文字的我国古代,事.一件事打一个结,大事打个大结,小事打个小结,办完了一件事就解掉一个结.古人不仅用绳结计数,而且还使用小石子等其他工具来计数.例这样,晚上必须圈到栅栏里.早晨放牧到草地里,他们饲养的羊,如,傍出来一只就往罐子里扔一块小石子;早晨从栅栏里放出来的时候,如果石子全部进去一只就从罐子里拿出一块小石子.晚羊进栅栏时,拿光了,就说明羊全部进圈了;如果罐子里还剩下石子,说明有羊丢失了,必须立刻寻找.教学反思:为学生提供合我主要采用了探究式的教学方式,这节课的教学,作交流的机会,引导学生在已有知识、经验、方法的基础上去思考问,课堂气氛活跃,学习积极性高学生直接参与教学活动,.探寻结果,题另外教师也可以从学生的回答.抽象的问题简单化,通过学生的讨论,有方法型的,中受到启发教师参与学生的讨论可以增加.有技巧型的取长补,学生在讨论的过程中可以相互学习,学生的学习兴趣和动力. 深刻体会到与他人合作的重要性,短2 .2.1 数轴教学目标.知识与技能1①掌握数轴三要素,能正确画出数轴.能说出数轴上已知点所表示的②能将已知数在数轴上表示出来,数..过程与方法 2逐步形成应用①使学生受到把实际问题抽象成数学问题的训练,数学的意识.②结合本节内容,对学生渗透数形结合的重要思想方法..情感、态度与价值观 3反过来又服务于实践的辩证使学生进一步形成数学来源于实践,唯物主义观点.教学重点难点重点:数轴的概念.难点:从直观认识到理性认识,从而建立数轴概念.教与学互动设计(一)创设情境,导入新课50m在一条东西方向的马路上,有一个学校,学校东课件展示100m处分别有一个书店和一个超市,学校西150m•和西处分160m和表示书店、超市、邮局、D、C、B、A别有一个邮局和医院,分别用医院,你会画图表示这一情境吗?(学生画图)(二)合作交流,解读探究0•师:对照大家画的图,为了使表达更清楚,我们把左右两边0的数分别用正数和负数来表示,即用一直线上的点把正数、负数、也就是本节内容──数轴.•都表示出来.)引导学生学会画数轴.1(点拨第一步:画直线定原点第二步:规定从原点向右的方向为正(左边为负方向)第三步:选择适当的长度为单位长度(据情况而定)由学生观察温度计的结构和数轴的结拿出教学温度计,第四步:构是否有共同之处.对比思考:原点相当于什么;正方向与什么一致;单位长度又是什么?)有了以上基础,我们可以来试着定义数轴:2(规定了原点、正方向和单位长度的直线叫数轴.学生自己练习画出数轴.做一做4你能利用你自己画的数轴上的点来表示数试一试:,-3,1.5,7吗?0,-2的点在原点的什么位a则数轴上表示数是一个正数,a若讨论的点在原点的什么位置a置上?与原点相距多少个单位长度;表示-与原点又相距了多少个长度单位?•上?小结整数能在数轴上都找到点吗?分数呢?___________•都可以用数轴上的点表示__________所有的可见,都在原点的右边.______________都在原点的左边,(三)应用迁移,巩固提高下列所画数轴对不对?如果不对,指出错在哪里.1 例43-25321210-1210-1②①③1-1-321-1-2④⑤⑥21-1-2⑦④③正确②错.没有正方向①错.没有原点【答案】⑦错.正方向⑥正确⑤错.单位长度不统一错.没有单位长度标错70 ,-,-3,1.5,2 4试一试:用你画的数轴上的点表示例 3【答案】ABCED5-1-41-2-5420-337,,D点表示--3,C点表示1.5,B点表示4图中A点表示3.0E点表示的点在原点的什么a是一个正数,则数轴上表示数a如果3 例的点在原点的什么位置上呢?a表示-•位置上?由数轴上数的特点不准得到,正数都在原点的右边,【提示】负数都在原点左边.原点所有的有理数都可以在数轴上找个点与它对应,【答案】右边的点表示正数,原点左边的点表示负数.数与数轴上的点结合,这是一种重要的数学思想,数【点评】形结合.下列语句:①数轴上的点又能表示整数;②数轴是一条直4 例③数轴上的一个点只能表示一个数;④数轴上找不到既不表示•线;正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有(B)。

人教版初中七年级上册数学教案(完整版)

人教版初中七年级上册数学教案(完整版)

七上数学教案第一章有理数教学目标1.知识与技能①通过生活实例,了解学习有理数的必要性.②理解并掌握数轴、相反数、绝对值、有理数等有关概念.③通过本章的学习,掌握有理数的加、减、乘、除、乘方及简单的混合运算.2.过程与方法通过本章的学习,培养学生应用数学知识解决实际问题的能力. 3.情感、态度与价值观结合生活实例引入新课,通过师生共同参与的教学活动,激励学生学习数学的兴趣,让学生真正体验到数学知识来源于生活并服务于生活.教学重点、难点重点:有理数的运算.这一章的主要学习目标都可以归结到有理数的运算上,比如有理数的有关概念---数轴、相反数、绝对值,运算法则,运算律,近似数等内容的学习,直接目标都是落实到有理数的运算上.难点:负数概念的建立,绝对值意义,有理数法则的理解.课时分配内容课时1.1 正数和负数 11.2 有理数 41.3 有理数的加减法 51.4 有理数的乘除法 41.5 有理数的乘方 4单元复习与验收 2教学建议教师在教学过程中注意从实际问题(即联系实际生活的典型例子)引入,让学生参与数学活动,在教师的引导和学生大胆尝试的过程中,使学生自觉地发现问题,分析问题和解决问题,从而使学生自得知识,自觅规律.1.在进行有理数的有关概念的教学时:(1)注意从实际问题引入,使学生知道数学知识来源于生活.•如:从温度与海拔高度引入负数,从而得出有理数的概念;借助温度引出数轴,建立数(有理数)与形(数轴上的点)之间的联系.(2)注意借助数轴的直观性讲述相反数、绝对值,体会用字母表示数的优越性,体现代数的特点,•使学生对概念的认识能更深一步,并为今后学习整式、方程打下基础.2.讲解有理数运算时,有理数加法及乘法法则的导出借助数轴会更直观更形象更易于学生理解,法则要着重强调符号的确定,在此基础上注意绝对值的运算,提高学生计算准确率.1.1 正数和负数教学目标1.知识与技能①了解正数与负数的引入是实际生活的需要.②会判断一个数是正数还是负数.③会用正负数表示互为相反意义的量.2.过程与方法通过正负数的学习,培养学生应用数学知识的意识,训练学生运用新知识解决实际问题的能力.3.情感、态度与价值观通过师生共同的教学活动,激发学生学习数学的兴趣,让学生体验到数学知识来源于生活并为生活服务.教学重点难点重点:会判断一个数是正数还是负数,会运用正负数表示具有相反意义的量,理解0•的含义.难点:负数的引入和理解.教与学互动设计(一)创设情境,导入新课课件展示珠穆朗玛峰和吐鲁番盆地,由同学感受高于水平面和低于水平面的不同情况.(二)合作交流,解读探究1.举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东50米和向西120米等.想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?2.为了用数表示具有相反意义的量,我们把其中一种意义的量,如零上温度,前进、收入、上升、高出等规定为正的,而把与它相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算述里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).活动每组同学之间相互合作交流,一位同学任意说出具有相反意义的两个量,由其他同学用正负数表示.讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?•【总结】正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界.(三)应用迁移,巩固提高例1 举出几对具有相反意义的量,并分别用正、负数表示.【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.【点评】这是一道开放性试题,旨在考查学生用正负数表示具有相反意义量的能力.例2 在某次乒乓球检测中,一只乒乓球超过标准质量0.02克记作+0.02克,•那么-0.03克表示什么?【答案】表示比标准质量低0.03克.例 3 2001年美国的商品进出口总额比上年减少 6.4%可记为-6.4% ,中国增长7.5%可记为+7.5% .备选例题(2004·山东淄博)某项科学研究以45分钟为1个时间单位,•并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上升7:45应记为() A.3 B.-3 C.-2.5 D.-7.45【点拨】读懂题意是解决本题的关键.7:45与10相差135分钟.【答案】 B(四)总结反思,拓展升华为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数也不是负数.1.填空-1,2,-3,4,-5, 6 , -7 , -8 …第81个数是–81 ,第2005个数是–2005 .【提示】通过观察可见,数字绝对值的排列是按由小到大的顺序,符号是负正相间,第奇数个数为负,第偶数个数为正.【点评】本题属于找规律问题,从绝对值和符号两方面考虑. 2.表1-1-1是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):表1-1-1星期日一二三四五六(元)+16 +5.0 -1.2 -2.1 -0.9 +10 -2.6(1)本周小张一共用掉了多少钱?存进了多少钱?【答案】 6.8元,31元.(2)储蓄罐中的钱与原来多了还是少了?【答案】多了.(3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣.【答案】用文字说明,但前者更简洁.3.数学游戏:4个同学站成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.(1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;(2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复1.的游戏;(3)这不仅仅是游戏哟!在电脑中,•所有“命令”或“数据”都是用有理数(特别是二进制数)表示的.例如,没有特别的“翻译”程序,电脑就不明白你给屏幕上的卡通人下的是“站”还是“蹲”的命令,这时,就可输入正负数以区别不同的姿势.(五)课堂跟踪反馈夯实基础1.填空题(1)如果节约用水30吨记为+30吨,那么浪费20吨记为-20 吨.(2)如果4年后记作+4,那么8年前记作 -8 .(3)如果运出货物7吨记作-7吨,那么+100吨表示运进货物100吨.(4)一年内,小亮体重增加了3kg,记作+3,小阳体重减少了2 kg,则小阳增长了 2kg .2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,•水位上涨了1米,下午5时,水位又上涨了0.5米.(1)用正数或负数记录下午1时和下午5时的水位;(2)下午5时的水位比中午12时水位高多少?【答案】(1)下午1时,水位0.5米;下午5时,水位-1米(2)0.5+1=1.5(米)提升能力3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.【答案】 +2,-1,-0.2.4.有没有这样的有理数,它既不是正数,也不是负数?【答案】有,是0.5.下列各数中哪些是正数?哪些是负数?-15,-0.02,67,-171,4,-213,1.3,0,3.14,π【答案】正数:67,4,1.3,3.14,π;负数:-15,0.02,-1 71,-213开放探究6.同学聚会,约定在中午12点到会,早到的记为正,迟到的记为负,结果最早到的同学记为+3点,最迟到的同学记为-1.5点,•你知道他们分别是什么时候到的吗?最早到的同学比最迟到的同学早多少小时?【答案】最早的同学上午9点到,最迟的是下午1点半到,最早的比最迟的早到4.5个小时.7.新中考题(2004·玉林)冷库A的温度是-5℃,冷库B的温度是-15℃,•则温度高的是冷库A.教学反思:本节课是学生进入初中的第一节数学课,也是非常重要的一节课-----负数的引入.课堂上我主要采用了体验探究的教学方式,为学生提供了大量亲自操作的机会,使学生直接参与教学活动,学生在动手操作中对抽象的数学知识获取感性的认识,进而通过教师的引导加工总结上升为理性认识,从而获得新知,使学生的学习过程变为一个再创造的过程,同时让学生体会到获取知识的方法,感受在解决问题的过程中与他人合作的重要性,为学生今后获取新知以及探索和发现新知打下基础.1.2 有理数1.2.1 有理数教学目标1.知识与技能①理解有理数的意义.②能把有理数按要求分类.③了解0在有理数分类的作用.2.过程与方法经历本节的学习,培养学生分类讨论的意识和能正确地进行分类的能力.教学重点难点重点:会把已知各数填入相应的数集图里.难点:掌握有理数的两种分类.教与学互动设计(一)创设情境,导入新课讨论交流通过上节课的学习同学们已经知道,我们认识的数除了小学里所学的之外,还有另一类数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.(二)合作交流,解读探究学生列举:3,5.7,-7,-9,-10,0,13,25,-356, -7.4,5.2…议一议你能说说这些数的特点吗?学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数.说明:我们把所有的这些数统称为有理数.试一试你能对以上各种类型的数作出一张分类表吗?有理数说明:以上分类,若学生思考有困难,可加以引导:因为整数和分数统称为有理数,所以有理数可分为整数和分数两大类,那么整数又包含那些数?分数呢?做一做以上按整数和分数来分,那可不可以按数的性质(正数、负数)来分呢,试一试.有理数⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数零负整数负有理数负分数(3)数的集合把所有正数组成的集合,叫做正数集合.试一试 试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.(三)应用迁移,巩固提高例1 把下列各数填入相应的集合内: 127,3.1416,0,2004,-85,-0.23456,10%,10.l ,0.67,-89正数集合 负数集合 整数集合 分数集合 【答案】例2 以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?正数集合227,2004,10%,10.1,0.67,...负数集合-3.1416,-85,-0.23456,-89,...整数集合0,2004,-89,...分数集合127,-3.1416,-85,-0.23456,10%,10.1,0.67,...…………有理数⎧⎧⎪⎨⎪⎩⎨⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负分数有理数⎧⎪⎪⎪⎨⎪⎪⎪⎩正数整数分数负数零【答案】两者都错,前者丢掉了零,后者把正负数、整数、分数混为一谈,分类标准不清楚.【点评】以上是对各类有理数的特点及有理数的分类进行的训练,基础性强,需要重视例3以下结论中正确的有(B)①0是最小的正整数②0是最小的有理数③0不是负数④0既是非正数,也是非负数A.1个B.2个C.3个D.4个例4 如果用字母表示一个数,那a可能是什么样的数,一定为正数吗?与你的伙伴交流一下你的看法.【答案】不一定,a可能是正数,可能是负数,也可能是0.【点评】此题开放性较强.要求学生能用分类的思想对a全面认识,体会用字母表示数的意义.备选例题(2004·浙江温州)观察下列数,按某种规律在横线上填入适当的数,并说明你的理由.23,34,45,________,67,…你的理解是_________.【点拨】找出各项数的特点是本题关键所在,第一个数为23,后一个数是前一个数的分子,分母都加1所得的数.【答案】56(四)总结反思,拓展升华提问:今天你获得了哪些知识?由学生自己小结,然后教师总结:今天我们学习了有理数的定义和有理数的两种分类方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的含义.1.请你在图1-2-1的圈中填上适合的数,使得圈内的数依次为整数集、•有理数集、正数集、分数集、负数集.【答案】答案不唯一,如图1-2-2所示.2.有理数按正、负可分为⎧⎪⎨⎪⎩正有理数零负有理数-1250.4813按整数分,可分为⎧⎨⎩整数分数(1)你能自己再制定一个标准,对有理数进行另一种分类吗? (2)生活中,我们也常常对事物进行分类,请你举例说明. 【答案】 (1)如将有理数分成大于1的数,小于1的数,等于1的数.(2)例如对人按年龄可分为:婴儿、幼儿、儿童、少年、青年、中年、老年.3.下面两个圈分别表示负数集和分数集,你能说出两个图的重叠部分表示什么数的集合呢?答案 负分数 (五)课堂跟踪反馈 夯实基础1.把下列各数填入相应的大括号内: -7,0.125,12,-312,3,0,50%,-0.3 (1)整数集合{-7,3,0}(2)分数集合{0.125,12,-312,50%,-0.3} (3)负分数集合{-312,-0.3}(4)非负数集合{0.125,12,3,0,50%}分数集合负数集合(5)有理数集合{-7,0.125,12,-312,3,0,50%,-0.3}2.下列说法正确的是(D)A.整数就是自然数B.0不是自然数C.正数和负数统称为有理数D.0是整数而不是正数3.某商店出售的三种规格的面粉袋上写着(25±0.1)千克,(25±0.2•千克),(25±0.3)千克的字样,从中任意两袋,它们质量相差最大的是 0.6 千克.提升能力4.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?【答案】a可以表示正整数,正分数,0,负整数或负分数.5.某校对初一新生的男生进行了引体向上的测试,以能做5个为标准,•超过的次数记为正数,不足的次数记为负数,其中10名男生的测试成绩如下:-2 -1 2 -1 3 0 -1 -2 1 0(1)这10名男生有百分之几达标(即达标率)?(2)这10名男生共做了多少个引体向上?【答案】(1)50%;(2)5×10-1=49(个)开放探究6.应用创新题若向东8米记作+8米,如果一个人从A地出发先走+12米,再走-15米,又走+18米,最后走-20米,你能判断这个人此时在何处吗?【答案】在A地西边5米处.7.新中考题(2004·内蒙古赤峰)我市2004年元月某一天的天气预报中,宁城县的最低温度是-22℃,克旗的最低温度是-26℃,这一天宁城县的最低气温比克旗的最低气温高(A)A.4℃ B.-4℃ C.8℃ D.-8℃(六)资料采撷原始的计算工具计算是人类的一种思维活动,人类初期的计算主要是计数.最早用来帮助计数的工具是人类的四肢(手、脚、手指、脚趾)或身边的小石头、贝壳、绳子等.中国有句古话叫“屈指可数”,说明人们常用手指来计算简单的数.在美国纽约的博物馆里,珍藏着一件从秘鲁出土的古代文物,名叫“基普”,意即打了绳结的绳子.基普是古人用来计数和记事的.传说公元前6世纪,•波斯国王在一次征战中曾命令一支部队守桥,他把一条打了结的皮带交给留守将士,要他们每守一天解开一个结,一直守到皮带上的结全部解完了才准撤退.在没有文字的我国古代,人们用在绳子上打结的方法来计数和记事.一件事打一个结,大事打个大结,小事打个小结,办完了一件事就解掉一个结.古人不仅用绳结计数,而且还使用小石子等其他工具来计数.例如,他们饲养的羊,早晨放牧到草地里,晚上必须圈到栅栏里.这样,早晨从栅栏里放出来的时候,出来一只就往罐子里扔一块小石子;傍晚羊进栅栏时,进去一只就从罐子里拿出一块小石子.如果石子全部拿光了,就说明羊全部进圈了;如果罐子里还剩下石子,说明有羊丢失了,必须立刻寻找.教学反思:这节课的教学,我主要采用了探究式的教学方式,为学生提供合作交流的机会,引导学生在已有知识、经验、方法的基础上去思考问题,探寻结果.学生直接参与教学活动,学习积极性高,课堂气氛活跃,通过学生的讨论,抽象的问题简单化.另外教师也可以从学生的回答中受到启发,有方法型的,有技巧型的.教师参与学生的讨论可以增加学生的学习兴趣和动力,学生在讨论的过程中可以相互学习,取长补短,深刻体会到与他人合作的重要性.1.2.2 数轴教学目标1.知识与技能①掌握数轴三要素,能正确画出数轴.②能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.2.过程与方法①使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.②结合本节内容,对学生渗透数形结合的重要思想方法.3.情感、态度与价值观使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点.教学重点难点重点:数轴的概念.难点:从直观认识到理性认识,从而建立数轴概念.教与学互动设计(一)创设情境,导入新课课件展示在一条东西方向的马路上,有一个学校,学校东50m 和西150m•处分别有一个书店和一个超市,学校西100m和160m处分别有一个邮局和医院,分别用A、B、C、D表示书店、超市、邮局、医院,你会画图表示这一情境吗?(学生画图)(二)合作交流,解读探究师:对照大家画的图,为了使表达更清楚,我们把0•左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来.•也就是本节内容──数轴.点拨(1)引导学生学会画数轴.第一步:画直线定原点第二步:规定从原点向右的方向为正(左边为负方向)第三步:选择适当的长度为单位长度(据情况而定)第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.对比思考:原点相当于什么;正方向与什么一致;单位长度又是什么?(2)有了以上基础,我们可以来试着定义数轴: 规定了原点、正方向和单位长度的直线叫数轴. 做一做 学生自己练习画出数轴.试一试:你能利用你自己画的数轴上的点来表示数4,1.5,-3,-72,0吗?讨论 若a 是一个正数,则数轴上表示数a 的点在原点的什么位置上?与原点相距多少个单位长度;表示-a 的点在原点的什么位置上?•与原点又相距了多少个长度单位?小结 整数能在数轴上都找到点吗?分数呢?可见,所有的__________都可以用数轴上的点表示___________•都在原点的左边,______________都在原点的右边. (三)应用迁移,巩固提高例1 下列所画数轴对不对?如果不对,指出错在哪里.①4②-1021③④0⑤-101⑥0-3【答案】 ①错.没有原点 ②错.没有正方向 ③正确 ④错.没有单位长度 ⑤错.单位长度不统一 ⑥正确 ⑦错.正方向标错例2 试一试:用你画的数轴上的点表示4,1.5,-3,-73,0 【答案】图中A点表示4,B点表示1.5,C点表示-3,D点表示-73,E点表示0.例3 如果a 是一个正数,则数轴上表示数a 的点在原点的什么位置上?•表示-a 的点在原点的什么位置上呢?【提示】 由数轴上数的特点不准得到,正数都在原点的右边,负数都在原点左边.【答案】 所有的有理数都可以在数轴上找个点与它对应,原点右边的点表示正数,原点左边的点表示负数.【点评】 数与数轴上的点结合,这是一种重要的数学思想,数形结合.例4 下列语句:①数轴上的点又能表示整数;②数轴是一条直线;•③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有(B)⑦-1-2021-1-45EDC BAA.1个B.2个C.3个D.4个【提示】题中,结合数轴上的点与有理数的特点,可见①中错误的;②、③是正确的;④中可以含有0,•⑤中应该是所有的有理数都可以在数轴上找出对应的点,但并不是数轴上的点都表示有理数.例5 (1)与原点的距离为2.5个单位的点有两个,它们分别表示有理数 2.5 •和-2.5 .(2)一个蜗牛从原点开始,先向左爬了4个单位,再向右爬了7•个单位到达终点,那么终点表示的数是+3 .例6 在数轴上表示-212和123,并根据数轴指出所有大于-212而小于123的整数.【答案】 -2,-1,0,1【点评】本题反映了数形结合的思想方法.例7 数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若这个数轴上随意画出一条长2000cm的线段AB,则线段AB盖住的整点是(C)A.1998或1999 B.1999或2000C.2000或2001 D.2001或2002【提示】分两种情况分析:(1)当线段AB的起点是整点时,•终点也落在整点上,那就盖住2001个整点;(2)是当线段AB的起点不是整点时,•终点也不落在整点上,那么线段AB盖住了2000个整点.【点评】本题体现了新课程标准的探索和实践能力.备选例题(2004·新疆生产建设兵团)在数轴上,离原点距离等于3的数是________.【点拨】 不要忽视在原点的左右两边.【答案】 ±3(四)总结反思,拓展升华数轴是非常重要的工具,它使数和直线上的点建立了对立关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.一条直线的流水线上,依次有5个卡通人,•它们站立的位置在数轴上依次用点M 1、M 2、M 3、M 4、M 5表示,如图:(1)点M 4和M 2所表示的有理数是什么?(2)点M 3和M 5两点间的距离为多少?(3)怎样将点M 3移动,使它先达到M 2,再达到M 5,请用文字说明;(4)若原点是一休息游乐所,那5个卡通人到游乐所休息的总路程为多少?【答案】 (1)M 4表示2,M 2表示3;(2)相距7个单位长度;(3)先向左移动1个单位,再向右移动8个单位长度;(4)17个单5M 4M 3M 2M 1位长度.(五)课堂跟踪反馈夯实基础1.规定了原点、正方向、单位长度的直线叫数轴,所有的有理数都可从用数轴上的点来表示.2.P从数轴上原点开始,向右移动2个单位,再向左移5个单位长度,此时P点所表示的数是 -3 .3.把数轴上表示2的点移动5个单位后,所得的对应点表示的数是(C)A.7 B.-3 C.7或-3 D.不能确定4.在数轴上,原点及原点左边的点所表示的数是(D)A.正数 B.负数 C.不是负数 D.不是正数 5.数轴上表示5和-5的点离开原点的距离是 5 ,但它们分别在原点的两边.提升能力6. 1 是最小的正整数,0 是最小的非负数,0 是最大的非正数.7.与原点距离为 3.5个单位长度的点有 2 个,它们分别是3.5 和-3.5 .8.画一条数轴,并把下列数表示在数轴上:+2,-3,0.5,0,-4.5,4,313【答案】略开放探究9.在数轴上与-1相距3个单位长度的点有 2 个,为-4或2 ;长为3个单位长度的木条放在数轴上,最多能覆盖 4 个整数点.10.新中考题(2004·南京)下列四个数中,在-2到0之间的数是(A)A.-1 B.1 C.-3 D.3教学反思:这节课的学习,我主要采用了体验探究的教学方式,为学生提供了亲自操作的机会,引导学生运用已有经验、知识、方法去探索与发现等式的性质,使学生直接参与教学活动,学生在动手操作中对抽象的数学定理获取感性的认识,进而通过教师的引导加工上升为理性认识,从而获得新知,使学生的学习变为一个再创造的过程,同时让学生学到获取知识的思想和方法,体会在解决问题的过程中与他人合作的重要性,为学生今后获取知识以及探索和发现打下基础。

七年级数学上册第一章有理数单元备课教案(新版)新人教版

七年级数学上册第一章有理数单元备课教案(新版)新人教版

第一章有理数一、课标要求1.知识与技能(1)了解正数、负数的实际意义,会判断一个数是正数还是负数.(2)掌握数轴的画法,能将已知数在数轴上表示出来,•能说出数轴上已知点所表示的解.(3)理解相反数、绝对值的几何意义和代数意义,•会求一个数的相反数和绝对值.(4)会利用数轴和绝对值比较有理数的大小.2.过程与方法经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法.3.情感、态度与价值观使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言.二、本章教材分析1.主要内容:1.本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,•从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系.引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念.2.通过怎样用数简明地表示一条东西走向的马路旁的树、•电线杆与汽车站的相对位置关系引入数轴.数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:(1)数轴能反映出数形之间的对应关系;(2)数轴能反映数的性质;(3)数轴能解释数的某些概念,如相反数、绝对值、近似数;(4)数轴可使有理数大小的比较形象化.3.对于相反数的概念,•从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分.4.正确理解绝对值的概念是难点.理解绝对值的两种意义,•一种是几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离;另一种是代数意义:绝对值的几何意义是以线段长度来表示一个数的绝对值的;而绝对值的代数意义则是给出了求绝对值的法则,由绝对值的两种意义可知,有理数a•的绝对值可表示为:│a│=(0) 0(0)(0)a aaa a>⎧⎪=⎨⎪-<⎩根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:(1)任何有理数都有唯一的绝对值.(2)有理数的绝对值是一个非负数,即最小的绝对值是零.(3)两个互为相反数的绝对值相等,即│a│=│-a│.(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.(5)若│a│=│b│,则a=b,或a=-b或a=b=0.2.本单元在教材中的地位与作用:本章是数从自然数扩展到有理数,初步形成有理数的概念后,进一步学习有理数的运算,是小学算术的延续和发展。

【人教版】七上数学第一章《有理数》教案:1.2有理数教案(4课时)

【人教版】七上数学第一章《有理数》教案:1.2有理数教案(4课时)

第一章有理数1.2有理数1.2.1有理数1.理解有理数的意义.2.能把给出的有理数按要求分类.3.了解0在有理数分类中的作用.重点会把所给的各数填入它所属于的集合里.难点掌握有理数的两种分类.一、创设情境,导入新课师:同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.学生讨论.二、合作交流,解读探究师:你能列举出一些你已经学过的各类型的数吗?学生列举:3,5.7,-7,-9,-10,0,13,25,-356,-7.4,5.2,…师:你能说说这些数的特点吗?学生回答,并相互补充.教师指出,我们把所有的这些数统称为有理数.你能对以上各种类型的数作出分类吗?有理数⎩⎪⎨⎪⎧整数⎩⎨⎧正整数0负整数分数⎩⎨⎧正分数负分数说明:以上分类,若学生有因难,可加以引导:整数和分数统称为有理数,所以有理数可分为整数和分数两大类,那么整数又包含哪些数?分数呢?以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢?试一试.有理数⎩⎪⎨⎪⎧正有理数⎩⎨⎧正整数正分数零负有理数⎩⎨⎧负整数负分数说明:让学生感受分类的方法和原则,统一标准,不重不漏. 三、应用迁移,巩固提高例1:把下列各数填入相应的集合内:3.1415926,0,2008,-12,-7.88,10%,10.1,0.67,-89.正数集合负数集合整数集合分数集合例2:以下是两位同学的分类方法,你认为他们的分类结果正确吗?为什么?有理数⎩⎨⎧正有理数⎩⎨⎧正整数正分数负有理数⎩⎨⎧负整数负分数有理数⎩⎪⎨⎪⎧正数整数分数负数零四、练习与小结 练习:教材练习题. 小结:谈一谈今天你的收获. 五、作业 习题1.2第1题本课在引入了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性。

七年级数学优秀教案

七年级数学优秀教案

七年级数学优秀教案【篇一:人教版七年级上数学教案(全册)】第一章有理数单元教学内容1.本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,?从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系.引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念.2.通过怎样用数简明地表示一条东西走向的马路旁的树、?电线杆与汽车站的相对位置关系引入数轴.数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:(1)数轴能反映出数形之间的对应关系.(2)数轴能反映数的性质.(3)数轴能解释数的某些概念,如相反数、绝对值、近似数.(4)数轴可使有理数大小的比较形象化.3.对于相反数的概念,?从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分.4.正确理解绝对值的概念是难点.根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:(1)任何有理数都有唯一的绝对值.(2)有理数的绝对值是一个非负数,即最小的绝对值是零.(3)两个互为相反数的绝对值相等,即│a│=│-a│.(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.(5)若│a│=│b│,则a=b,或a=-b或a=b=0.三维目标1.知识与技能(1)了解正数、负数的实际意义,会判断一个数是正数还是负数.(2)掌握数轴的画法,能将已知数在数轴上表示出来,?能说出数轴上已知点所表示的解.(3)理解相反数、绝对值的几何意义和代数意义,?会求一个数的相反数和绝对值.(4)会利用数轴和绝对值比较有理数的大小.2.过程与方法经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法.3.情感态度与价值观使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言.重、难点与关键1.重点:正确理解有理数、相反数、绝对值等概念;会用正、?负数表示具有相反意义的量,会求一个数的相反数和绝对值.2.难点:准确理解负数、绝对值等概念.3.关键:正确理解负数的意义和绝对值的意义.课时划分1.1 正数和负数 2课时1.2 有理数 5课时1.3 有理数的加减法4课时1.4 有理数的乘除法5课时1.5 有理数的乘方 4课时第一章有理数(复习) 2课时1.1正数和负数第一课时三维目标一.知识与技能能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量.二.过程与方法借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性.三.情感态度与价值观培养学生积极思考,合作交流的意识和能力.教学重、难点与关键1.重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法.2.难点:正确理解负数的概念.3.关键:创设情境,充分利用学生身边熟悉的事物,?加深对负数意义的理解.教具准备投影仪.教学过程四、课堂引入我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的.人们由记数、排序、产生数1,2,3,?;为了表示“没有物体”、“空位”引进了数“0”,?测量和分配有时不能得到整数的结果,为此产生了分数和小数.在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2?页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%.五、讲授新课(1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,?它们与负数具有相反的意义,我们把这样的数(即以前学过的0?以外的数)叫做正数,有时在正数前11面也加上“+”(正)号,例如,+3,+2,+0.5,+,?就是3,2,0.5,,?一个数前面33的“+”、“-”号叫做它的符号,这种符号叫做性质符号.(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数.(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数.(4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度.用正负数表示具有相反意义的量(5)、把0以外的数分为正数和负数,起源于表示两种相反意义的量.?正数和负数在许多方面被广泛地应用.在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度.例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额.(6)、请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义.(7)、你能再举一些用正负数表示数量的实际例子吗?(8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量.六、巩固练习课本第3页,练习1、2、3、4题.七、课堂小结为了表示现实生活中的具有相反意义的量,我们引进了负数.正数就是我们过去学过的数(除0外),在正数前放上“-”号,就是负数,?但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数.如果原数是一个负数,那么前面放上“-”号后所表示的数反而是正数了,另外应注意“0”既不是正数,也不是负数.八、作业布置1.课本第5页习题1.1复习巩固第1、2、3题.九、板书设计1.1正数和负数第一课时1、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,?它们与负数具有相反的意义,我们把这样的数(即以前学过的0?以外的数)叫做正数,有时在正数前面11也加上“+”(正)号,例如,+3,+2,+0.5,+,?就是3,2,0.5,,?一个数前面的33“+”、“-”号叫做它的符号,这种符号叫做性质符号.2、随堂练习。

初一数学第一章教案

初一数学第一章教案

初一数学第一章教课方案【篇一:新人教版七年级上册数学第 1 章有理数全章教案[1]】第一章有理数1.1 正数和负数〔一〕教课目的:知识与技术:掌握正数和负数的看法,能划分两种不一样意义的量,会用符号表示正数和负数;培育学生察看、比较和归纳的思想能力。

过程与方法:教法主要采纳启迪式教课学法指引学生自主探究去察看、沟通、归纳.感情、态度、价值观:在教授知识、培育能力的同时,注意培育学生勇于探究的精神,通过本节课的教课,浸透对峙一致的辩证思想。

教课重点:实质需要产生正数与负数.教课难点:正确认识负数,能正确地举出拥有相反意义的量的典型例.教课过程:〔一〕、提出问题〔二〕、试一试章前图中表示温度、净胜球、加工赞同偏差时,用到了-3,3,2,- 2,0,+0.5 ,-0.5 等等.请同学们那些数是从前没有学过的数,有–3,-2,-0.5. 实质意义是零下 3 度,净输 2 球,小于尺寸0.5mm.〔三〕、探究新数–3,-2,-0.5 有什么特点?〔学生回复〕1 正数:从前学过的大于0 的数〔像1、、3 、48 等的数叫正数〕 3 1 负数:在正数前面加上负号“-〞的数.〔像-1、-2.5 ,-,-48 的数叫负数,31 读作负1、负、负、负48.〕3有时正数前面也能够加上正号“+〞,正号“+〞能够省略,但负号“-〞一定不可以够省略.一个数前面的“+〞-〞“叫它的符号〔性质符号〕.重申0 既不是正数,也不是负数,它是中性数.师:〔以温度计为例〕温度计中的0 不是表示没有温度,它往常表示水结成冰时的温度,是零上温度与零下温度的分界点,所以得出:零既不是正数也不是负数。

讲堂练习:读出以下各数,并指出此中那些是正数,那些是负数.-1,,+42 ,0,-3.14 ,120 ,-1.732 ,-. 37在现实生活中,我们经常表示一些拥有相反意义的量,利用正数和负数能够表示两种拥有相反意义的量,比如规定海平面的海拔高度为0,高于海平面的海拔高度用正数表示,低于海平面的海拔高度用负数表示,吐鲁番盆地最低处低于海平面155 米,世界最巅峰珠穆朗玛超出海平面8844 米,我们能够用正负数的来表示.珠穆朗玛峰的海拔高度为8844m ,吐鲁番盆地的海拔高度为-155m.讲堂练习:课本p3 练习〔四〕、归纳小结1、什么是正数和负数2、如何用正数和负数表示拥有相反意义的量〔五〕课内外作业课本p5:1,2,4,51.1 正数和负数〔二〕教课目的:知识与技术:在认识正负数的看法的根基上,使学生灵巧运用正负数的来表示相反意义量过程与方法:经过用正负数的来表示相反意义量的教课,培育学生察看、比较和归纳的思想能力.教法主要采纳启迪式教课学法指引学生自主探究去归纳如何用正负数来表示相反意义量感情、态度、价值观:在教授知识、培育能力的同时,注意培育学生勇于探究的精神,学会沟通教课重点:灵巧掌握正负数的看法.教课难点:灵巧运用正负数的来表示相反意义量.教课过程:〔一〕、提出问题师:为了表示物体的个数和事物的次序,产生了1,2,3,4?? 这些数,我们把它叫做什么数?生:自然数师:为了表示“没有〞,又引入了一个什么数?生:自然数0师:当丈量和计算的结果不是整数时,又引进了什么数?生:分数〔小数〕师:可见数的看法是跟着生产和生活的需要而不停展开的.请同学们想想,在现实生活中,我们经常表示一些拥有相反意义的量,利用正数和负数能够表示两种拥有相反意义的量,以上节课为例:规定海平面的海拔高度为0,高于海平面的海拔高度用正数表示,低于海平面的海拔高度用负数表示,吐鲁番盆地最低处低于海平面155米,世界最巅峰珠穆朗玛超出海平面8844 米,我们能够用正负数的来表示.珠穆朗玛峰的海拔高度为8844m ,吐鲁番盆地的海拔高度为- 155m. 师:为了能灵巧运用正负数的来表示相反意义量,我们连续学习正数与负数就节课的内容.[板书:1、1 正数与负数]〔二〕试一试让学生议论如何用正数和负数表示拥有相反意义的量.1、相反意义的量师:在现实生活中,我们经常碰到一些拥有相反意义的量,比方:a:汽车向东行驶2.5 千米和向西行驶1.5 千米;b: 气温从零上6 摄氏度降落到零下6 摄氏度;c: 风筝上涨10 米或降落5 米.指引学生明确拥有相反意义的量的特点:〔1〕有两个量〔2〕有相反的意义请学生举出一些相反意义的量的实例.教师归纳:相反意义中的一些常用词有:盈余与损失,存入与支出,增添与减少,运进与运出,上涨与降落等.〔三〕、探究如何来表示拥有相反意义的量呢?由师生议论后得出:我们把一种意义的量规定为正的,用“+〞〔读作正〕号来表示,同时把另一种与它相反意义的量规定为负的,用“-〞 〔读作负〕号来表示.比如,假如零上6℃记作+6℃〔读作正 6 摄氏度〕,那么零下6℃记作-6℃〔读作负 6 摄氏度〕,请同学们用相同的方法表示〔1〕、 〔2〕两题.生:〔1〕假如向东行驶 2.5 千米记作+2.5 千米〔读作正 2.5 千米〕,那么向西行驶 1.5 千米记作-1.5 千米〔读作负 1.5 千米〕;〔2〕如果上涨10 米记作+10 米〔读作正10 米〕,那么降落 5 米记作-5 米 〔读作负 5 米〕.师:像+6,+10 ,+2.5 等前面放有“+〞号的数叫做正数,像-6,-5,-1.5 等前面放有“-〞号的数叫做负数.再次重申正号能够省略不写,如+5 能够写成5,但负数的负号能省略不写吗?生:〔议论后得出〕不可以.例教材p4〔板书并解答〕讲堂练习教材p4 的练习学生进行“阅读与思虑〞2、增补练习,-0.35 ,11 中,正数是,负数是;〔2〕〔1〕在-2,,0,假如向东为正,那么走-50 米表示什么意思?假如向南为正,那么走-50 米又表示什么意思?人以地面一层记为0,那么 1 楼、2 楼、3 楼?? 就表示为0,1,2??那么地下第二层表示为.在同一问题中,分别用正数与负数表示的量拥有相反的意义.〔四〕、归纳小结引入负数能够简洁的表示相反意义的量,关于相反意义的量,假如此中一种量用正数表示,那么另一种量能够用负数表示. 在表示拥有相反意义的量时,把哪一种意义的量规定为正,可依据实质状况决定.要特别注意零既不是正数也不是负数,成立正负数看法后,当考虑一个数时,必定要考虑它的符号,这与从前学过的数有很大的区别.1、正数和负数;2、用正数和负数表示拥有相反意义的量.〔五〕课内外作业课本p5:3,6,7,8.1.2 有理数1.2.1 有理数教课目的:知识与技术:1.使学生理解整数、分数、有理数的看法。

初中数学有理数教案【精选5篇】

初中数学有理数教案【精选5篇】

初中数学有理数教案【精选5篇】学校数学有理数教案【篇1】教学目标:学问力量:理解有理数的概念,把握有理数的两种分类方法,能够按要求对给定的有理数进行分类。

过程与方法:通过本节的学习,培育同学正确的分类争论观点和分类力量。

情感、态度、价值观:通过本节课的学习,体验胜利的喜悦,保持学好数学的信念。

教学重点:把握有理数的两种分类方法教学难点:给定的数字将被填入它所属的集合中教学方法:问题导向法学习方法:自主探究法一、形势归纳学校我们学了整数和分数,上节课我们学了正数和负数。

谁能快速提出以下问题?1.有以下数字:15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33(1)将以上数字填入以下两组:正整数集{}和负整数集{}。

你填完了吗?(2)将以上数字填入以下两个集合:整数集合{}和分数集合{}。

你填完了吗?称整数和分数为有理数。

(教导题,板书)二、自学指导同学自学课本,依据课本查找自学的机会提纲中问题的答案;老师先做必要的板书预备,再到同学中巡察指导,并了解把握同学自学状况,为展现归纳作预备。

附:自学提纲:1.___________、____、_______统称为整数,2._______和_________统称为分数3.____ ______统称为有理数,4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整数: 、分数:;正整数:、负整数: 、正分数: 、负分数:.三、展现归纳1、找有问题的同学逐题展现自学提纲中的问题答案,同学说,老师板书;2、发动同学进行评价、补充、完善,老师依据每个题目的展现状况进行必要的讲解和强调;3、全部展现完毕后,老师对本段学问做系统梳理,关键点予以强调。

四、变式练习逐题出示,先让同学独立完成,再请有问题的同学汇报结果,老师板书,并发动其他同学评价、补充并完善,最终老师依据需要进行重点强调。

1.整数可分为:_____、______和_______,分数可分为:_______和_________.有理数按符号不同可分为正有理数,_______和________.2.推断下列说法是否正确,并说明理由。

新人教版七年级上册数学第一章有理数全章教案

新人教版七年级上册数学第一章有理数全章教案

新人教版七年级上册数学第一章有理数全章教案第一章“有理数”教材分析本章是第三学段教科书的第一章,既承接前两个学段的内容,又为进一步学习打下基础。

本章主要内容是有理数的有关概念及其运算。

首先,从实例出发引入负数,接着引进关于有理数的一些概念,在此基础上,介绍有理数的加减法运算。

引入负数是实际的需要,也是学习第三学段数学内容,特别是数与代数内容的需要。

引进数轴可以把有理数用数轴上的一个点直观地表示出来,从而可以直观地介绍相反数、绝对值,同时为用数轴引进有理数的加法法则与乘法法则作准备。

引入相反数的概念,一方面,可以加深对相反意义的量的认识,另一方面,可以为学习绝对值、有理数减法等作准备。

引入绝对值的的概念,可以加深对有理数的认识:一个有理数由符号与绝对值确定。

两个负数比较大小,有理数运算也要借助绝对值这个概念。

本章的重点是有理数的运算。

加法与乘法都是在介绍运算法则――着重是符号法则的基础上,进行基本运算,然后结合具体例子引入运算律,并运用运算律简化运算。

减法与除法,则是着重介绍如何向加法与乘法转化,从而利用加法与乘法的运算法则、运算律进行运算。

乘方是几个相同因数的乘积,也就可以利用乘法运算。

科学记数法与乘方有关,因而可进一步加以介绍。

近似数在实际问题中有广泛的应用,有必要在本章作进一步的认识。

近似数的内容与乘方也有一定的联系,例如,大数的近似数用科学记数法表示,可以清楚地看出保留的有效数字的个数。

为了加强与相关运算的联系,利用计算器计算分散安排在相关内容中。

例如,教科书用计算器计算一些负数的乘方,进而探求负数的乘方的符号规律。

学会了使用计算器进行有理数运算,较复杂的计算就可以用计算器完成。

简单的有理数运算仍需要学生熟练地用笔算完成。

本章的教学要求如下:1.通过实际例子,感受引入负数的必要性。

会用正负数表示实际问题中的数量。

2.理解有理数的意义,能用数轴上的点表示有理数。

借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母),会比较有理数的大小。

新人教版七年级数学上册全册教案

新人教版七年级数学上册全册教案

新人教版七年级上册数学全册教案第一章 有理数1. 1正数和负数备课:七年级数学教研组【教学目标】一.知识与技能:能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量.二.过程与方法:借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性.三、情感、态度与价值观:培养学生积极思考,合作交流的意识和能力.教学重点:两种意义相反的量教学难点:正确会区分两种不同意义的量教学方法:引导、探究、归纳与练习相结合教学手段:多媒体等。

【教学过程】一、预习探究1、冬天,零度以下的数在天气预报中如何表示,如某地一月份某日的平均气温大约是零下3℃,可用____数表示,记作______。

2、零上24摄氏度表示为_______,零下3.5摄氏度表示为__________。

3、如果向南走2米记为+2,那么向北走10米应表示为 。

4、地图册上亚洲西部地中海旁有一个死海湖,图上标有-392,这表明死海湖面与海平面相比 了392米。

二、课堂教学5、中国地形图上,可以看到我国有一座世界最高峰—珠穆朗玛峰,图上标着8848米,在西北部有一吐鲁番盆地,地图上标着-155米,这两个数表示的高度是相对海平面说的,你能说说8848米,-155米各表示什么吗?学生思考讨论,尝试回答大于0的数叫做 ;小于0的数,或在正数前面加“-”号的数叫 ;0既不是 也不是 。

6、判断:下列各数中,哪些是正数?哪些是负数? 12, -9.24,31, -301, 427, 31.25, 0. 7、在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么-0.03克表示什么?8、北京冬季里某天的温度为-3℃~+3℃,它的确切含义是什么?9、课堂小结:三、反馈练习:1、小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________.2、产品成本提高-10%,实际表示_________.3、甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为__这时甲乙两人相距___m.4、某种药品的说明书上标明保存温度是(20±2)℃,由此可知在__℃~__℃范围内保存才合适。

人教版七年级数学上册第一章有理数的概念(教案)

人教版七年级数学上册第一章有理数的概念(教案)
4.有理数的应用
-解决实际问题
-判断有理数的大小关系
-有理数的混合运算
5.练习题与例题
-各类有理数运算的练习题
-涉及实际应用的有理数问题
-提高学生对有理数概念的理解和应用能力例题解析
二、核心素养目标
1.培养学生数学抽象能力:通过有理数的概念学习,使学生能够抽象出数的本质属性,理解数的分类及其意义,形成数学的抽象思维。
-举例:应用有理数解决温度变化、方向位移等问题。
2.教学难点
(1)有理数概念的理解:学生容易混淆有理数与整数、分数的关系,难以把握有理数的本质。
-突破方法:通过具体例子,让学生感受到有理数包含整数和分数,理解有理数的无限性和可表示性。
(2)相反数和绝对值的概念:学生难以理解相反数的意义,以及绝对值表示的实际意义。
其次,在新课讲授环节,我注意到有些学生在理解有理数概念和性质时显得有些吃力。在讲解过程中,我尽量使用简洁明了的语言,并通过举例来阐述。然而,可能由于讲解速度过快,部分学生还没来得及消化吸收就进入了下一个环节。针对这个问题,我计划在今后的教学中适当放慢讲解速度,增加课堂互动,让学生有更多机会提问和思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.提升逻辑推理素养:引导学生掌握有理数的运算规律,学会运用逻辑推理解决问题,培养严谨的数学逻辑思维。
3.增强数学建模意识:通过实际问题的引入和解决,让学生学会运用有理数知识建立数学模型,提高解决实际问题的能力。

最新人教版七年级数学上册 第一章 有理数 优秀教案教学设计 含教学反思

最新人教版七年级数学上册 第一章 有理数 优秀教案教学设计 含教学反思

第一章有理数1.1正数和负数 (1)第1课时正数和负数的概念 (1)第2课时正数、负数以及0的意义 (3)1.2有理数 (4)1.2.1有理数 (4)1.2.2数轴 (6)1.2.3相反数 (8)1.2.4绝对值 (10)1.3有理数的加减法 (12)1.3.1有理数的加法 (12)第1课时有理数的加法 (12)第2课时相关运算律 (14)1.3.2有理数的减法 (15)第1课时有理数的减法法则 (15)第2课时有理数的加减混合运算 (17)1.4有理数的乘除法 (18)1.4.1有理数的乘法 (18)第1课时有理数的乘法 (18)第2课时相关运算律 (21)1.4.2有理数的除法 (23)第1课时有理数的除法 (23)第2课时有理数的混合运算 (24)1.5有理数的乘方 (26)1.5.1乘方 (26)第1课时有理数的乘方 (26)第2课时有理数的综合运算 (28)1.5.2科学记数法 (29)1.5.3近似数 (31)1.1正数和负数第1课时正数和负数的概念了解正数和负数的产生;知道什么是正数和负数;理解正负数表示的量的意义;知道0既不是正数,也不是负数.重点正、负数的意义.难点1.负数的意义.2.具有相反意义的量.一、新课导入活动1:创设情境,导入新课教师投影展示教材第2页图片,让学生体验自然数的产生,分数的产生离不开生产和生活的需要,可以让学生自由发表意见和感想.二、推进新课活动2:体验负数的引入的必要性教师出示温度计:安排三名同学进行如下活动:研究手中的温度计上刻度的确切含义,一名同学手持温度计,一名同学说出其中三个刻度,一名同学在黑板上速记.教师根据活动情况,如果学生不能引入符号表示,教师也可参与活动,逐步引入负数.强调:0既不是正数,也不是负数.活动3:分组活动,感受正负数的意义各组派一名同学进行如下活动:按老师的指令表演,看哪一组获胜.1.老师说出指令:向前2步,向后3步,向前-2步,向后-3步,学生按老师的指令表演.2.各小组互相监督,派一名同学汇报完成的情况.活动4:深入理解正负数的意义,提高分析解决问题的能力师投影展示问题,讲解课本例题.例:1.一个月内,小明体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个月的体重增长值.2.某年,下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.写出这些国家这一年商品进出口总额的增长率.学生讨论后解决.活动5:练习与小结练习:教材第3页练习.小结:这堂课我们学习了哪些知识?你能说一说吗?活动6:作业习题1.1第4,5,6,8题本课是有理数的第一课时,引入负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的.为了接受这个新的数,就必须对原有的数的结构进行整理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
七年级数学上册教案
第一章
有理数
2011.8
举一反三 思维拓展
量,而相反意义的向西,收人与支出;二是它们都是数量, 而且是同类的量. 经过上面的讨论交流,学生对为什么要引人负数, 对怎样用正数和负数表示两种相反意义的量有了初步 的理解,教师可以要求学生举出实际生活中类似的例 子,以加深对正数和负数概念的理解,并开拓思维. 问题 4:请同学们举出用正数和负数表示的例子. 问题 5:你是怎样理解“正整数” “负整数,’ ,’正 分数”和“负分数”的呢?请举例说明. 教科书第 5 页练习 小结与作业 围绕下面两点,以师生共同交流的方式进行: 1, 0 由于实际问题中存在着相反意义的量,所以 要引人负数,这样数的范围就扩大了; 2,正数就是以前学过的 0 以外的数(或在其前面 加“+” ,负数就是在以前学过的 0 以外的数前面加 ) “-” 。
七年级数学上册教案
第一章
有理数
2011.8
课题: 正数和负数( 课题: 1.1 正数和负数(1)
1, 整理前两个学段学过的整数、分数(包括小数)的知识,掌握 正数和负数的概念; 教学目标 2, 能区分两种不同意义的量,会用符号表示正数和负数; 3, 体验数学发展的一个重要原因是生活实际的需要,激发学生学 习数学的兴趣。 教学难点 正确区分两种不同意义的量。 知识重点 两种相反意义的量 教学过程(师生活动) 设计理念 上课开始时,教师应通过具体的例子,简要说明在 先回顾小学 前两个学段我们已经学过的数,并由此请学生思考:生 里学过的数的类 活中仅有这些“以前学过的数”够用了吗?下面的例子 型,归纳出我们 仅供参考. 已经学了整数和 师:今天我们已经是七年级的学生了,我是你们的 分数,然后,举 数学老师.下面我先向你们做一下自我介绍,我的名字 一些实际生活中 是赖大珍, 身高 1.62 米, 体重 60.5 千克, 今年 45 岁. 我 共有相反意义的 们的班级是七(3)班,有 45 个同学,其中女同学有 27 量,说明为了表 示相反意义的 个,占全班总人数的 54%… 问题 1:老师刚才的介绍中出现了几个数?分别是 量,我们需要引 什么?你能将这些数按以前学过的数的分类方法进行 入负数。这样做 设置情境 分类吗? 强调了数学的严 引入课题 学生活动:思考,交流 密性,既复习小 师:以前学过的数,实际上主要有两大类,分别是 学里学过的数, 又能激发学生的 整数和分数(包括小数) . 学习兴趣 问题 2:在生活中,仅有整数和分数够用了吗? 请同学们看书(观察本节前面的几幅图中用到了什 情境和实例使学 么数,让学生感受引入负数的必要性)并思考讨论,然 生体会生活中处 处有数学,通过 后进行交流。 (也可以出示气象预报中的气温图,地图中表示地 实例,使学生获 形高低地形图,工资卡中存取钱的记录页面等) 取大量的感性材 学生交流后,教师归纳:以前学过的数已经不够用 料,为正确建立 了,有时候需要一种前面带有“-”的新数。 相反意义的量奠 定基础。 问题 3: 前面带有 “一” 号的新数我们应怎样命名它呢? 这些问题是这节 为什么要引人负数呢?通常在日常生活中我们用正数 课的主要知识, 分析问题 和负数分别表示怎样的量呢? 教师要清楚地向 探究新知 这些问题都必须要求学生理解. 学生说明,并且 强调:用正,负数表示实际问题中具有相反意义的 要注意语言的准
2
七年级数学上册教案
第一章
有理数
2011.8
正数和负数( 1.1 正数和负数(2)
1, 通过对数“零”的意义的探讨,进一步理解正数和负数的概念; 2, 利用正负数正确表示相反意义的量(规定了指定方向变化的量) 教学目标 3, 进一步体验正负数在生产生活实际中的广泛应用,提高解决实 际问题的能力,激发学习数学的兴趣。 教学难点 深化对正负数概念的理解 知识重点 正确理解和表示向指定方向变化的量 教学过程(师生活动) 设计理念 回顾:上一节课我们知道了在实际生产和生活中存 “数 0 既不 在着两种不同意义的量,为了区分这两种量,我们用正 是正数,也不是 数表示其中一种意义的量代号,那么另一种意义的量就 负数”也应看作 用负数来表示.这就是说:数的范围扩大了(数有正数 是数定义的一部 和负数之分) .那么,有没有一种既不是正数又不是负 分.在引入负数 数的数呢? 后,0 除了表示 问题 1:有没有一种既不是正数又不是负数的数 一 个 也 没 有 以 呢? 外,还是正数和 学生思考并讨论. 负数的分界.了 (数 0 既不是正数又不是负数,是正数和负数的分 解这一层意义, 界,是基准.这个道理学生并不容易理解,可视学生的 也有助于对正负 讨论情况作些启发和引导,下面的例子供参考) 数的理解,且对 知识回顾 例如:在温度的表示中,零上温度和零下温度是两 数的顺利扩张和 与深化 种不同意义的量,通常规定零上温度用正数来表示,零 有理毅概念的建 下温度用负数来表示。那么某一天某地的最高温度是 立都有帮助。 零上 7℃,最低温度是零下 5℃时,就应该表示为+7℃ 所举的例 和-5℃,这里+7℃和-5℃就分别称为正数和负数 . 子,要考虑学生 那么当温度是零度时,我们应该怎样表示呢?(表 的可接受性. 数 “ 示为 0℃) 它是正数还是负数呢?由于零度既不是零上 0 既不是正数, , 温度也不是零下温度,所以,0 既不是正数也不是负数· 也不是负数”应 问题 2:引入负数后,数按照“两种相反意义的量” 从相反意义的这 来分,可以分成几类? 个 角 度 来 说 明.这个问题只 要初步认识即 可,不必深究. 问题 3:教科书第 4 页例题 这种用正负数描 述向指定方向变 说明:这是一个用正负数描述向指定方向变化情况的例 化情况的例子, 分析问题 子, 通常向指定方向变化用正数表示;向指定方向的 在实际生活中有 解决问题 相反方向变化用负数表示。这种描述在实际生活中有广 广泛的应用,按 泛的应用,应予以重视。教学中,应让学生体验“增长” 题意找准哪种意 和“减少”是两种相反意义的量,要求写出“体重的增 义的量应该用正
4
七年级数学上册教案
第一章
有理数
2011.8
1.2.1 有理数
1, 掌握有理数的概念,会对有理数按照一定的标准进行分类,培 养分类能力; 教学目标 2, 了解分类的标准与分类结果的相关性,初步了解“集合”的含 义; 3, 体验分类是数学上的常用处理问题的方法。 教学难点 正确理解分类的标准和按照一定的标准进行分类 知识重点 正确理解有理数的概念 教学过程(师生活动) 设计理念 在前两个学段,我们已经学习了很多不同类型的 数,通过上两节课的学习,又知道了现在的数包括了负 分类是数学 数,现在请同学们在草稿纸上任意写出 3 个数(同时请 中解决问题的常 3 个同学在黑板上写出) . 用手段,这个引 问题 1:观察黑板上的 9 个数,并给它们进行分类. 入具有开放的特 学生思考讨论和交流分类的情况. 点,学生乐于参 学生可能只给出很粗略的分类,如只分为“正数” 与 和“负数”或“零”三类,此时,教师给予引导和鼓励. 例如,对于数 5,可这样问:5 和 5. 1 有相同的类 学生自己尝 型吗?5 可以表示 5 个人, 5. 1 可以表示人数吗? 而 (不 试分类时,可能 可以)所以它们是不同类型的数,数 5 是正数中整个的 会很粗略,教师 数,我们就称它为“正整数” ,而 5. 1 不是整个的数, 给 予 引 导 和 鼓 探索新知 称为“正分数,.·…(由于小数可化为分数,以后把 励,划分数的类 ,· 小数和分数都称为分数) 型要从文字所表 通过教师的引导、鼓励和不断完善,以及学生自己 示的意义上去引 的概括,最后归纳出我们已经学过的 5 类不同的数,它 导,这样学生易 们分别是“正整数,零,负整数,正分数,负分数,. 于理解。 ’ 按照书本的说法,得出“整数” “分数”和“有理 数”的概念. 有理数的分 看书了解有理数名称的由来. 类表要在黑板或 “统称”是指“合起来总的名称”的意思. 媒体上展示,分 试一试:按照以上的分类,你能作出一张有理数的 类的标准要引导 分类表吗?你能说出以上有理数的分类是以什么为标 学生去体会 准的吗?(是按照整数和分数来划分的) 1,任意写出三个有理数,并说出是什么类型的数,与 也可以教师说出 同伴进行交流. 一些数,让学生 2,教科书第 8 页练习. 进行判断。 练一练 此练习中出现了集合的概念,可向学生作如下的说 明.把一些数放在一起,就组成了一个数的集合,简称 “数集” ,所有有理数组成的数集叫做有理数集.类似 集合的概念不必
3
七年级数学上册教案
第一章
有理数
2011.8
巩固练习 阅读思考
长值”和“进出口额的增长率” ,就暗示着用正数来表 示增长的量。 归纳:在同一个问题中,分别用正数和负数表示的 量具有相反的意义(教科书第 4 页) . 类似的例子很多,如: 水位上升-3m,实际表示什么意思呢? 收人增加-10%,实际表示什么意思呢? 等等。 可视教学中的实际情况进行补充. 教科书第 5 页练习 教科书第 6 页
数表示是解题的 关健.这种描述 具有相反数的影 子,例如第(1) 题中小明的体重 可说成是减少- 2kg, 但现在不必 向学生提出.
阅读与思考是正 负数应用的很好 例子,要花时间 让学生讨论交流
小结与作业 以问题的形式,要求学生思考交流: 1,引人负数后,你是怎样认识数 0 的,数 0 的意 义有哪些变化? 2,怎样用正负数表示具有相反意义的量? 课堂小结 用正数表示其中一种意义的量, (用正数表示其中一种意义的量,另一种量用负数表 特别地,在用正负数表示向指定方向变化的量时, 示;特别地,在用正负数表示向指定方向变化的量时, 通常把向指定方向变化的量规定为正数, 通常把向指定方向变化的量规定为正数,而把向指定方 向的相反方向变化的量规定为负数. 向的相反方向变化的量规定为负数. ) 1, 必做题:教科书第 5 页习题 1.1 第 6,7,8 题 本课作业 2, 选做题:教师自行安排练习册 本课教育评注(课堂设计理念,实际教学效果及改进设想) 1, 本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指 定方向变化的量。 2, “数 0 既不是正数,也不是负数,(要从 0 不属于两种相反意义的量中的任何一 ’ 种上来理解)也应看作是负数定义的一部分.在引人负数后,除了表示一个也没有以外, 还是正数和负数的分界。了解 0 的这一层意义,也有助于对正负数的理解,且对数的顺 利扩张和有理数概念的建立都有帮助. 由于上节课的重点是建立两种相反意义量的概念, 考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课. 3,教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式 描述的例子很多,要尽量使学生理解. 4,本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知 识在实际中的合理应用,在体验中感悟和深化知识.通过实际例子的学习激发学生学习 数学的兴趣.
相关文档
最新文档