新人教版七年级上《有理数》测试题1(含答案)
人教版七年级数学上册《第一章有理数》测试卷-附含答案
人教版七年级数学上册《第一章有理数》测试卷-附含答案1.设|a |=4 |b |=2 且|a +b |=-(a +b ) 则a -b 所有值的和为( ) A .-8 B .-6 C .-4 D .-2点中可能是原点的为( )A .A 点B .B 点C .C 点D .D 点10010AB BC CD DE ===, 则数9910所对应的点在线段( )上.A .AB B .BC C .CD D .DE【详解】 AB BC =14AB ∴=4.计算202020222 1.5(1)3⎛⎫-⨯⨯- ⎪⎝⎭的结果是( )A .23B .32C .23-D .32-20202019 1.53⨯⋅⋅⋅⨯个个20193个在一个由六个圆圈组成的三角形里图中圆圈里 要求三角形每条边上的三个数的和S 都相等 那么S 的最大值是( )A .-9B .-10C .-12D .-13【答案】A【详解】解:六个数的和为:()()()()()()12345621-+-+-+-+-+-=- 最大三个数的和为:()()()1236-+-+-=- S=[(21)(6)]39-+-÷=-. 填数如图:故选A.6.|x﹣2|+|x﹣4|+|x﹣6|+|x﹣8|的最小值是a ||||||1a b ca b c++=-那么||||||||ab bc ac abcab bc ac abc+++的值为()A.﹣2B.﹣1C.0D.不确定【答案】45或23【详解】解:∵|x|=11 |y|=14 |z|=20∵x=±11 y=±14 z=±20.∵|x +y |=x +y |y +z |=﹣(y +z ) ∵x +y ≥0 y +z ≤0.∵x +y ≥0.∵x =±11 y =14. ∵y +z ≤0 ∵z =﹣20当x =11 y =14 z =﹣20时 x +y ﹣z =11+14+20=45; 当x =﹣11 y =14 z =﹣20时 x +y ﹣z =﹣11+14+20=23. 故答案为:45或23.8.若|a|+|b|=|a+b| 则a 、b 满足的关系是_____. 【答案】a 、b 同号或a 、b 有一个为0或同时为0 【详解】∵|a|+|b|=|a+b|∵a 、b 满足的关系是a 、b 同号或a 、b 有一个为0 或同时为0 故答案为a 、b 同号或a 、b 有一个为0 或同时为0.9.计算:11111111111111234201723420182342018⎛⎫⎛⎫⎛⎫----⋯-⨯+++⋯+-----⋯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11112342017⎛⎫⨯+++⋯+= ⎪⎝⎭_________.12017++=12018++=1111111111)]()[1()]()2017232018232018232017⨯+++--+++⨯+++++1[1(2018m -+)(2018m m -+a +2b +3c +4d 的最大值是_____. 【答案】81【详解】解:∵a b c d 表示4个不同的正整数 且a +b 2+c 3+d 4=90 其中d >1 ∵d 4<90 则d =2或3 c 3<90 则c =1 2 3或4b 2<90 则b =1 2 3 4 5 6 7 8 9a <90 则a =1 2 3 … 89 ∵4d ≤12 3c ≤12 2b ≤18 a ≤89 ∵要使得a +2b +3c +4d 取得最大值则a 取最大值时 a =90﹣(b 2+c 3+d 4)取最大值 ∵b c d 要取最小值 则d 取2 c 取1 b 取3 ∵a 的最大值为90﹣(32+13+24)=64 ∵a +2b +3c +4d 的最大值是64+2×3+3×1+4×2=81 故答案为:81.11.如图 将一个半径为1个单位长度的圆片上的点A 放在原点 并把圆片沿数轴滚动1周 点A 到达点A '的位置 则点A '表示的数是 _______;若起点A 开始时是与—1重合的 则滚动2周后点A '表示的数是______.【答案】 2π或2π- 41π-或41π--对数轴上分别表示数a和数b的两个点A B之间的距离进行了探究:(1)利用数轴可知5与1两点之间距离是;一般的数轴上表示数m和数n的两点之间距离为.问题探究:(2)请求出|x﹣3|+|x﹣5|的最小值.问题解决:(3)如图在十四运的场地建设中有一条直线主干道L L旁依次有3处防疫物资放置点A B C已知AB=800米BC=1200米现在设计在主干道L旁修建防疫物资配发点P问P建在直线L上的何处时才能使得配发点P到三处放置点路程之和最短?最短路程是多少?()1求A、B两点之间的距离;()2点C、D在线段AB上AC为14个单位长度BD为8个单位长度求线段CD的长;()3在()2的条件下动点P以3个单位长度/秒的速度从A点出发沿正方向运动同时点Q 以2个单位长度/秒的速度从D点出发沿正方向运动求经过几秒点P、点Q到点C的距离相等.)12a++b-=60b=;6)1218-=;在线段ABAC=AB=1418BC∴=18=CD BD()3设经过AD AB=①当点P的数学工具 它使数和数轴上的点建立起对应关系 揭示了数与点之间的内在联系 它是“数形结合”的基础.例如 式子2x -的几何意义是数轴上x 所对应的点与2所对应的点之间的距离;因为()+=--x 1x 1 所以1x +的几何意义就是数轴上x 所对应的点与-1所对应的点之间的距离.结合数轴与绝对值的知识回答下列问题:(1)若23x -= 则x = ;32x x -++的最小值是 .(2)若327x x -++= 则x 的值为 ;若43113x x x ++-++= 则x 的值为 .(3)是否存在x 使得32143x x x +-+++取最小值 若存在 直接写出这个最小值及此时x 的取值情况;若不存在 请说明理由.当P 在A 点左侧时2255PA PB PA AB PA +=+=+>;同理当P 在B 点右侧时2255PA PB PB AB PB +=+=+>;。
人教版七年级数学上册第一章《有理数》综合测试卷(含答案)
人教版七年级数学上册第一章《有理数》综合测试卷(含答案)一、选择题(共11小题;共55分)1. 5的倒数是( )A. 5B. 15C. −5 D. −152. 如图所示,体育课上,小丽的铅球成绩为6.4m,她投出的铅球落在( )A. 区域①B. 区域②C. 区域③D. 区域④3. 一个数的平方一定是( )A. 正数B. 负数C. 非正数D. 非负数4. 在数轴上,原点及原点右边的点表示( )A. 正数B. 整数C. 非负数D. 有理数5. 去年11月份我市某一天的最高气温是10∘C,最低气温是−1∘C,那么这一天的最高气温比最低气温高( )A. −9∘CB. −11∘CC. 9∘CD. 11∘C6. 绝对值小于3的整数有( )A. 2个B. 3个C. 5个D. 6个7. −3的相反数是( )A. −3B. 13C. −13D. 38. 下列说法:①−14是相反数;②−a一定是负数;③互为相反数的两个数的符号必相反;④0.5与2互为相反数;⑤任何一个有理数都有相反数.其中正确的有( )A. 1个B. 2个C. 3个D. 4个9. 某仓库有粮500吨,某天上午运出30吨,下午又运进20吨,则仓库现有粮( )A. 490吨B. 510吨C. 450吨D. 550吨10. 若数轴上点A,B表示的数分别为8和−15,则点A,B之间的距离可以表示为( )A. 8+(−15)B. 8−(−15)C. (−8)+15D. (−8)−1511. 如果两个有理数的积为零,即ab=0,那么下列说法中必定正确的是( )A. a一定是零B. b一定是零C. a和b一定都是零D. a和b中至少有一个是零二、填空题(共5小题;共25分)12. 如果∣−x∣=412,那么x=.13. −423的绝对值是,相反数是,倒数是.14. 比较大小:−2−312.(填“<”或“>”)15. 计算:−2×3=,(−2)÷(−4)=,(−4)2=.16. 若有理数a的倒数等于它本身,则a2020=.三、解答题(共5小题;共70分)17. 若a、b互为相反数,c、d互为倒数,m是最大的负整数,求a+b−cd−m的值.18. 计算:(1)45×12÷13;(2)1516÷32−14;(3)2.5×(25−13)+2.1;(4)215÷(1.1−34)+15×35.19. 如图所示,在数轴上有三个点A,B,C,请回答下列问题.(1)将点B向左移动3个单位长度后,三个点所表示的数谁最小?是多少?(2)将点A向右移动4个单位长度后,三个点所表示的数谁最小?是多少?(3)将点C向左移动6个单位长度后,点B与点C表示的数谁大?(4)要使三个点表示相同的数,如何移动其中两点?有几种移法?20. 观察下列各式的规律:①1×3−22=3−4=−1;②2×4−32=8−9=−1;③3×5−42=15−16=−1.请按以上规律写了出第4个算式,用含有字母的式子表示第n个算式为,并证明21. 某检修小组乘汽车自A地出发,检修南北走向的供电线路.南记为正,北记为负.一天所走路程(单位:千米)为:+10,−3,+4,−2,−8,+16,−2,+12,+8,−5.问:(1)最后他们是否回到A地?若没有,则在A地的什么方向?距离A地多远?(2)若每千米耗油0.08升,则今天共耗油多少升?参考答案1. B【解析】根据倒数的概念.答案B . 2. D3. D4. C5. D6. C 【解析】绝对值小于 3 的整数有 ±1,±2,0,一共 5 个.7. D 【解析】−3 的相反数是 3.8. A9. A10. B11. D12. ±41213. 423,423,−31414. >【解析】因为 ∣−2∣<∣∣−312∣∣,所以 −2>−312.故答案为:>.15. −6,12,16【解析】−2×3=−6;(−2)÷(−4)=12;(−4)2=16.16. 1【解析】由题意,得 a =1 或 a =−1.当 a =1 时,a 2020=1;当 a =−1 时,a 2020=1.综上所述,a 2020=1.17. 根据题意得: a +b =0 , cd =1 , m =−1 ,则原式 =0−1+1=0 .18. (1) 115.(2) 38.(3) 2415.(4)263525.19. (1)从数轴上可以看出,将点B向左移动3个单位长度后,至−5处,此时点B表示的数为−5,因为点A表示的数为−4,点C表示的数为3,所以点B表示的数最小,是−5.(2)从数轴上可以看出,将点A向右移动4个单位长度后,至0处,此时点A表示的数为0,因为点B表示的数为−2,点C表示的数为3,所以点B表示的数最小,是−2.(3)从数轴上可以看出,将点C向左移动6个单位长度后,至−3处,此时点C表示的数为−3,因为点B表示的数为−2,所以点B表示的数大.(4)把点A向右移动2个单位长度,点C向左移动5个单位长度;或把点B、点C分别向左移动2个单位长度、7个单位长度;或把点A、点B分别向右移动7个单位长度、5个单位长度,都可以使三个点表示的数相同,因此共有三种移法.20. 4×6−52=24−25=−1;n(n+2)−(n+1)2=−1.证明如下:左边=n(n+2)−(n+1)2=n2+2n−n2−2n−1=−1,右边=−1.∴左边=右边21. (1)(+10)+(−3)+(+4)+(−2)+(−8)+(+16)+(−2)+(+12)+(+8)+(−5) =10−3+4−2−8+16−2+12+8−5=10+4+16+12+8−3−2−8−2−5=50−20=30.所以没有回到A地,在A地南方30千米处.(2)∣+10∣+∣−3∣+∣+4∣+∣−2∣+∣−8∣+∣+16∣+∣−2∣+∣+12∣+∣+8∣+∣−5∣=10+3+4+2+8+16+2+12+8+5=70(千米).70×0.08=5.6升.所以今天共耗油5.6升.。
七年级上册数学第一章《有理数》测试题(含答案)人教版
七年级数学第一章:《有理数》测试题班级: 姓名:一、选择题(每小题3分共36分)1、a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是 ( C ) (A)a+b<0 (B)a+c<0(C)a -b>0 (D)b -c<0 a b 0 c2、若两个有理数的和是正数,那么一定有结论( D )(A )两个加数都是正数; (B )两个加数有一个是正数; (C )一个加数正数,另一个加数为零; (D )两个加数不能同为负数 3、654321-+-+-+……+2005-2006的结果不可能是: ( B ) A 、奇数 B 、偶数 C 、负数 D 、整数 4、、两个非零有理数的和是0,则它们的商为: (B )A 、0B 、-1C 、+1D 、不能确定5、下列计算正确的是( D )A 、-2+1=-3B 、-5-2=-3C 、-112-=D 、1)1(2-=-6、近几年安徽省教育事业加快发展,据2005年末统计的数据显示,仅普通初中在校生就约有334万人,334万人用科学记数法表示为(D )A 、0.334×710人B 、33.4×510人C 、3.34×210人D 、3.34×610人 7、下列各对数互为相反数的是( B )A 、-(-8)与+(+8)B 、-(+8)与+︱-8︱C 、-2222)与(-D 、-︱-8︱与+(-8)8、计算(-1)÷(-5)×51的结果是(C )A 、-1B 、1C 、251D 、-259、下列说法中,正确的是( C )A 、有最小的有理数B 、有最小的负数C 、有绝对值最小的数D 、有最小的正数10、小明同学在一条南北走向的公路上晨练,跑步情况记录如下:(向北为正,单位:m ):500,-400,-700,800 小明同学跑步的总路程为( C )A 、800 mB 、200 mC 、2400 mD 、-200 m 11、已知︱x ︱=2,y 2=9,且x ·y<0,则x +y=( D )A 、5B 、-1C 、-5或-1D 、±1 12、已知数轴上的A 点到原点的距离为2个单位长度,那么在数轴上到A 点的距离是3个单位长度的点所表示的数有( B )A 、1个B 、2个C 、3个D 、4个 二、填空题(每小题3分共30分)1、如果数轴上的点A 对应的数为-1.5,那么与A 点相距3个单位长度的点所对应的有理数为 5.25.4或- 。
新人教版七年级上册数学章节测试题及答案
新人教版七年级数学上册《第1章有理数》一、选择题(30分)1.随着时间的变迁,三溪的气候变得与过去大不一样,今年夏天的最高气温是39℃,而冬天的最低气温是﹣5℃,那么三溪今年气候的最大温差是( )℃.A.44 B.34 C.﹣44 D.﹣342.|﹣3|的相反数是( )A.3 B.﹣3 C .D .﹣3.下列说法不正确的是( )A.0既不是正数,也不是负数B.0的绝对值是0C.一个有理数不是整数就是分数D.1是绝对值最小的正数4.在数﹣,0,4.5,|﹣9|,﹣6.79中,属于正数的个数是( )A.2 B.3 C.4 D.55.一个数的相反数是3,这个数是( )A.﹣3 B.3 C .D .6.若|a|=﹣a,a一定是( )A.正数 B.负数 C.非正数D.非负数7.近似数2.7×103是精确到( )A.十分位B.个位 C.百位 D.千位8.把数轴上表示数2的点移动3个单位后,表示的数为( )A.5 B.1 C.5或1 D.5或﹣19.大于﹣2.2的最小整数是( )A.﹣2 B.﹣3 C.﹣1 D.010.若|x|=4,且x+y=0,那么y的值是( )A.4 B.﹣4 C.±4 D.无法确定二、填空题(本题共30分)11.若上升15米记作+15米,则﹣8米表示__________.12.平方是它本身的数是__________.13.计算:|﹣4|×|+2.5|=__________.14.绝对值等于2的数是__________.15.绝对值大于1并且不大于3的整数是__________.16.最小的正整数是__________,最大的负整数是__________.17.比较下面两个数的大小(用“<”,“>”,“=”)(1)1__________﹣2;(2)__________﹣0.3;(3)|﹣3|__________﹣(﹣3).18.如果点A表示+3,将A向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是__________.19.数据810000用科学记数法表示为__________.20.观察下面一列数,根据规律写出横线上的数,﹣;;﹣;;__________;__________;…;第2013个数是__________.三、解答题(共60分)21.把下列各数的序号填在相应的数集内:①1 ②﹣③+3.2 ④0 ⑤⑥﹣6.5 ⑦+108 ⑧﹣4 ⑨﹣6(1)正整数集合{ …}(2)正分数集合{ …}(3)负分数集合{ …}(4)负数集合{ …}.22.在数轴上把下列各数表示出来,并用从小到大排列出来2.5,﹣2,|﹣4|,﹣(﹣1),0,﹣(+3)23.(16分)计算:(1)2﹣5+4﹣(﹣7)+(﹣6)(2)(﹣24)÷6(3)(﹣18)÷2×÷(﹣16)(4)43﹣.24.已知a是最大的负整数,b是﹣2的相反数,c与d互为倒数,计算:a+b﹣cd的值.25.规定a⊗b=ab﹣1,试计算:(﹣2)⊗(﹣3)⊗(﹣4)的值.26.云云的爸爸驾驶一辆汽车从A地出发,且以A为原点,向东为正方向.他先向东行驶15千米,再向西行驶25千米,然后又向东行驶20千米,再向西行驶40千米,问汽车最后停在何处?已知这种汽车行驶100千米消耗的油量为8.9升,问这辆汽车这次消耗了多少升汽油?27.为迎接2008年北京奥运会,某体育用品公司通过公开招标,接到一批生产比赛用的篮球业务,而比赛用的篮球质量有严格规定,其中误差±5g符合要求,现质检员从中抽取6个篮球进行检查,检查结果如下表:单位:g①②③④⑤⑥+3 ﹣2 +4 ﹣6 +1 ﹣3(1)有几个篮球符合质量要求?(2)其中质量最接近标准的是几号球?为什么?新人教版七年级数学上册《第1章有理数》一、选择题(30分)1.随着时间的变迁,三溪的气候变得与过去大不一样,今年夏天的最高气温是39℃,而冬天的最低气温是﹣5℃,那么三溪今年气候的最大温差是( )℃.A.44 B.34 C.﹣44 D.﹣34【考点】有理数的减法.【专题】应用题.【分析】用最高温度减去最低温度,然后根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:39﹣(﹣5)=39+5=44℃.故选A.【点评】本题考查了有理数的减法运算,熟记减去一个数等于加上这个数的相反数是解题的关键.2.|﹣3|的相反数是( )A.3 B.﹣3 C .D .﹣【考点】绝对值;相反数.【分析】根据相反数的定义:只有符号不同的两个数叫互为相反数.【解答】解:|﹣3|的相反数是﹣3.故选B.【点评】本题考查绝对值与相反数的意义,是一道基础题.可能会混淆倒数、相反数和绝对值的概念,错误地认为﹣3的绝对值等于,或认为﹣|﹣3|=3,把绝对值符号等同于括号.3.下列说法不正确的是( )A.0既不是正数,也不是负数B.0的绝对值是0C.一个有理数不是整数就是分数D.1是绝对值最小的正数【考点】有理数.【分析】根据有理数的分类,以及绝对值得性质:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0,进行分析即可.【解答】解:A、0既不是正数,也不是负数,说法正确;B、0的绝对值是0,说法正确;C、一个有理数不是整数就是分数,说法正确;D、1是绝对值最小的正数,说法错误,0.1的绝对值比1还小.故选:D.【点评】此题主要考查了绝对值和有理数的分类,关键是掌握绝对值得性质.4.在数﹣,0,4.5,|﹣9|,﹣6.79中,属于正数的个数是( )A.2 B.3 C.4 D.5【考点】正数和负数.【分析】根据大于0的数是正数,找出所有的正数,然后再计算个数.【解答】解:|﹣9|=9,∴大于0的数有4.5,|﹣9|,共2个.故选A.【点评】本题主要考查大于0的数是正数的定义,是基础题.5.一个数的相反数是3,这个数是( )A.﹣3 B.3 C .D .【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:3的相反数是﹣3,故选:A.【点评】本题考查了相反数,注意相反数是相互的,不能说一个数是相反数.6.若|a|=﹣a,a一定是( )A.正数 B.负数 C.非正数D.非负数【考点】绝对值.【分析】根据负数的绝对值等于他的相反数,可得答案.【解答】解:∵非正数的绝对值等于他的相反数,|a|=﹣a,a一定是非正数,故选:C.【点评】本题考查了绝对值,注意负数的绝对值等于他的相反数.7.近似数2.7×103是精确到( )A.十分位B.个位 C.百位 D.千位【考点】近似数和有效数字.【分析】由于2.7×103=2700,而7在百位上,则近似数2.7×103精确到百位.【解答】解:∵2.7×103=2700,∴近似数2.7×103精确到百位.故选C.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起,到这个数完为止,所有这些数字叫这个数的有效数字.8.把数轴上表示数2的点移动3个单位后,表示的数为( )A.5 B.1 C.5或1 D.5或﹣1【考点】数轴.【专题】计算题.【分析】在数轴上找出表示2的点,向左或向右移动3个单位即可得到结果.【解答】解:把数轴上表示数2的点移动3个单位后,表示的数为5或﹣1.故选D【点评】此题考查了数轴,熟练掌握数轴的意义是解本题的关键.9.大于﹣2.2的最小整数是( )A.﹣2 B.﹣3 C.﹣1 D.0【考点】有理数大小比较.【分析】由于﹣2.2介于﹣2和﹣3之间,所以大于﹣2.2的最小整数是﹣2.【解答】解:∵﹣3<﹣2.2<﹣2,∴大于﹣2.2的最小整数是﹣2.故选:A.【点评】本题解题的关键是准确确定所给数值的大小,是一道基础题目,比较简单.10.若|x|=4,且x+y=0,那么y的值是( )A.4 B.﹣4 C.±4 D.无法确定【考点】相反数;绝对值.【分析】首先根据绝对值的性质可得x=±4,再根据x+y=0分情况计算即可.【解答】解:∵|x|=4,∴x=±4,∵x+y=0,∴当x=4时,y=﹣4,当x=﹣4时,y=4,故选:C.【点评】此题主要考查了绝对值,关键是熟悉绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.二、填空题(本题共30分)11.若上升15米记作+15米,则﹣8米表示下降8米.【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”是相对的,∵上升15米记作+15米,∴﹣8米表示下降8米.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12.平方是它本身的数是0,1.【考点】有理数的乘方.【专题】推理填空题.【分析】根据平方的性质,即正数的平方是正数,0的平方是0,负数的平方是正数,进行回答.【解答】解:平方等于它本身的数是0,1.故答案为:0,1.【点评】此题考查了有理数的乘方.注意:倒数等于它本身的数是1,﹣1;平方等于它本身的数是0,1;相反数等于它本身的数是0;绝对值等于它本身的数是非负数.13.计算:|﹣4|×|+2.5|=10.【考点】有理数的乘法.【分析】一个数的绝对值为正数,再根据有理数的乘法法则求解.【解答】解:|﹣4|×|+2.5|=4×2.5=10.故应填10.【点评】能够求解一些简单的有理数的运算问题.14.绝对值等于2的数是±2.【考点】绝对值.【专题】计算题.【分析】根据绝对值的意义求解.【解答】解:∵|2|=2,|﹣2|=2,∴绝对值等于2的数为±2.故答案为±2.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.15.绝对值大于1并且不大于3的整数是±2,±3.【考点】绝对值.【专题】计算题.【分析】找出绝对值大于1且不大于3的整数即可.【解答】解:绝对值大于1并且不大于3的整数是±2,±3.故答案为:±2,±3.【点评】此题考查了绝对值,熟练掌握绝对值的意义是解本题的关键.16.最小的正整数是1,最大的负整数是﹣1.【考点】有理数.【分析】根据有理数的相关知识进行解答.【解答】解:最小的正整数是1,最大的负整数是﹣1.【点评】认真掌握正数、负数、整数的定义与特点.需注意的是:0是整数,但0既不是正数也不是负数.17.比较下面两个数的大小(用“<”,“>”,“=”)(1)1>﹣2;(2)<﹣0.3;(3)|﹣3|=﹣(﹣3).【考点】有理数大小比较.【分析】本题对有理数进行比较,看清题意,一一进行比较即可.【解答】解:(1)1为正数,﹣2为负数,故1>﹣2.(2)可将两数进行分母有理化,﹣=﹣,﹣0.3=﹣,则﹣<﹣0.3.(3)|﹣3|=3,﹣(﹣3)=3,则|﹣3|=﹣(﹣3).【点评】本题考查有理数的大小比较,对分式可将其化为分母相同的形式,然后进行比较即可.18.如果点A表示+3,将A向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是﹣1.【考点】数轴.【分析】本题可根据数轴上点的移动和数的大小变化规律,左减右加来计算.【解答】解:依题意得该数为:3﹣7+3=﹣1.故答案为:﹣1.【点评】考查了数轴,正负数在实际问题中,可以表示具有相反意义的量.本题中,向左、向右具有相反意义,可以用正负数来表示,从而列出算式求解.19.数据810000用科学记数法表示为8.1×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:810000=8.1×105,故答案为:8.1×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.20.观察下面一列数,根据规律写出横线上的数,﹣;;﹣;;﹣;;…;第2013个数是﹣.【考点】规律型:数字的变化类.【专题】规律型.【分析】观察不难发现,分子都是1,分母是从1开始的连续自然数,并且第奇数个数是负数,第偶数个数是正数,然后依次写出即可.【解答】解:﹣;;﹣;;﹣;;…,第2013个数是﹣.故答案为:﹣;;﹣.【点评】本题是对数字变化规律的考查,注意从分子、分母和正负情况考虑即可,是基础题.三、解答题(共60分)21.把下列各数的序号填在相应的数集内:①1 ②﹣③+3.2 ④0 ⑤⑥﹣6.5 ⑦+108 ⑧﹣4 ⑨﹣6(1)正整数集合{ …}(2)正分数集合{ …}(3)负分数集合{ …}(4)负数集合{ …}.【考点】有理数.【分析】(1)根据大于0的整数是正整数,可得正整数集合;(2)根据大于0的分数是正分数,可得正分数集合;(3)根据小于0的分数是负分数,可得负分数集合;(4)根据小于0的数是负数,可得负数集和.【解答】解:(1)正整数集合{1,108,…};(2)正分数集合{+3.2,,…};(3)负分数集合{﹣,﹣6.5,…} (4)负数集合{﹣,﹣6.5,﹣4,﹣6…}.【点评】本题考查了有理数,注意负整数和负分数统称负数.22.在数轴上把下列各数表示出来,并用从小到大排列出来2.5,﹣2,|﹣4|,﹣(﹣1),0,﹣(+3)【考点】有理数大小比较;数轴.【分析】根据数轴的特点在数轴上标出各数,然后根据数轴上的数右边的总比左边的大排列即可.【解答】解:|﹣4|=4,﹣(﹣1)=1,﹣(+3)=﹣3,﹣(+3)<﹣2<0<﹣(﹣1)<2.5<|﹣4|.【点评】本题考查了数轴,有理数的大小比较,比较简单,熟记数轴上的数右边的总比左边的大是解题的关键.23.(16分)计算:(1)2﹣5+4﹣(﹣7)+(﹣6)(2)(﹣24)÷6(3)(﹣18)÷2×÷(﹣16)(4)43﹣.【考点】有理数的混合运算.【专题】计算题.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式变形后,利用乘法分配律计算即可得到结果;(3)原式利用除法法则变形,约分即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=2﹣5+4+7﹣6=2;(2)原式=(﹣24﹣)×=﹣4﹣=﹣4;(3)原式=﹣18×××(﹣)=;(4)原式=64﹣(81﹣)=64﹣81+=37.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.已知a是最大的负整数,b是﹣2的相反数,c与d互为倒数,计算:a+b﹣cd的值.【考点】有理数的混合运算;有理数;相反数;倒数.【专题】计算题.【分析】根据相反数与倒数的定义得到a=﹣1,b=2,cd=1,然后代入a+b﹣cd得﹣1+2﹣1,然后进行加减运算即可.【解答】解:∵a是最大的负整数,b是﹣2的相反数,c与d互为倒数,∴a=﹣1,b=2,cd=1,∴a+b﹣cd=﹣1+2﹣1=0.【点评】本题考查了有理数的混合运算:先算乘方,再算乘除,然后进行加减运算;有括号先算括号.也考查了相反数与倒数.25.规定a⊗b=ab﹣1,试计算:(﹣2)⊗(﹣3)⊗(﹣4)的值.【考点】有理数的混合运算.【专题】新定义.【分析】原式利用已知的新定义计算即可得到结果.【解答】解:根据题中的新定义得:(﹣2)⊗(﹣3)=6﹣1=5,则原式=5⊗(﹣4)=﹣20﹣1=﹣21.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.26.云云的爸爸驾驶一辆汽车从A地出发,且以A为原点,向东为正方向.他先向东行驶15千米,再向西行驶25千米,然后又向东行驶20千米,再向西行驶40千米,问汽车最后停在何处?已知这种汽车行驶100千米消耗的油量为8.9升,问这辆汽车这次消耗了多少升汽油?【考点】数轴;相反数.【分析】(1)根据有理数的加法,可得答案;(2)根据单位耗油量乘以路程,可得答案.【解答】解:(1)+15﹣25+20﹣40=﹣30(千米),答:在A地西30千米处;②15+|﹣25|+20+|﹣40|=100(千米),8.9×=8.9(升).答:本次耗油为8.9升.【点评】本题考查了数轴,利用了有理数的加法运算.27.为迎接2008年北京奥运会,某体育用品公司通过公开招标,接到一批生产比赛用的篮球业务,而比赛用的篮球质量有严格规定,其中误差±5g符合要求,现质检员从中抽取6个篮球进行检查,检查结果如下表:单位:g①②③④⑤⑥+3 ﹣2 +4 ﹣6 +1 ﹣3(1)有几个篮球符合质量要求?(2)其中质量最接近标准的是几号球?为什么?【考点】正数和负数.【专题】图表型.【分析】(1)根据题意,只要每个篮球的质量标记的正负数的绝对值不大于5的,即符合质量要求;(2)篮球的质量标记的正负数的绝对值越小的越接近标准.【解答】解:(1)|+3|=3,|﹣2|=2,|﹣4|=4,|﹣6|=6,|+1|=1,|﹣3|=3;只有第④个球的质量,绝对值大于5,不符合质量要求,其它都符合,所以有5个篮球符合质量要求.(2)因|+1|=1在6个球中,绝对值最小,所以⑤号球最接近标准质量.【点评】本题主要考查了正负数表示相反意义的量,注意绝对值越小的越接近标准.新人教版七年级上册《第2章整式的加减》一、选择题(共10小题,每小题3分,满分30分)1.单项式﹣3πxy2z3的系数是( )A.﹣πB.﹣1 C.﹣3π D.﹣32.下面计算正确的是( )A.3x2﹣x 2=3 B.3a2+2a3=5a5C.3+x=3x D.﹣0.25ab+ba=03.下列运算中,正确的是( )A.3a+5b=8ab B.3y2﹣y2=3C.6a3+4a3=10a6D.5m2n﹣3nm2=2m2n4.下列去括号正确的是( )A.﹣(2x+5)=﹣2x+5 B.C.D.5.若单项式2x n y m﹣n与单项式3x3y2n的和是5x n y2n,则m与n的值分别是( ) A.m=3,n=9 B.m=9,n=9 C.m=9,n=3 D.m=3,n=36.单项式﹣3πxy2z3的系数和次数分别是( )A.﹣π,5 B.﹣1,6 C.﹣3π,6 D.﹣3,77.代数式2a2+3a+1的值是6,那么代数式6a2+9a+5的值是( )A.20 B.18 C.16 D.158.已知2x3y2和﹣x3m y2是同类项,则式子4m﹣24的值是( )A.20 B.﹣20 C.28 D.﹣289.已知a是一位数,b是两位数,将a放在b的左边,所得的三位数是( ) A.ab B.a+b C.10a+b D.100a+b10.原产量n吨,增产30%之后的产量应为( )A.(1﹣30%)n吨B.(1+30%)n吨 C.n+30%吨D.30%n吨二、填空题(每小题3分,共18分)11.单项式的系数是__________,次数是__________.12.多项式2x2y﹣+1的次数是__________.13.任写一个与﹣a2b是同类项的单项式__________.14.多项式3x+2y与多项式4x﹣2y的差是__________.15.李明同学到文具商店为学校美术组的30名同学购买铅笔和橡皮,已知铅笔每支m元,橡皮每块n元,若给每名同学买两支铅笔和三块橡皮,则一共需付款__________元.16.按如图程序输入一个数x,若输入的数x=﹣1,则输出结果为__________.三、计算:(每小题20分,共20分)17.(1)a+2b+3a﹣2b.(2)(3a﹣2)﹣3(a﹣5)(3)3x2﹣3x2﹣y2+5y+x2﹣5y+y2.(4)(4a2b﹣5ab2)﹣(3a2b﹣4ab2)四、先化简下式,再求值.(每小题6分,共12分)18.化简求值:3a2b﹣[2ab2﹣2(﹣a2b+4ab2)]﹣5ab2,其中a=﹣2,b=.19.先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x)+3(x2y2+y),其中x=﹣1,y=2.五、解答题:(每小题分,共20分)20.已知A=2x2﹣1,B=3﹣2x2,求B﹣2A的值.21.计算某个整式减去多项式ab﹣2bc+3a+bc+8ac时,一个同学误认为是加上此多项式,结果得到的答案是﹣2ab+bc+8ac.请你求出原题的正确答案.新人教版七年级上册《第2章整式的加减》一、选择题(共10小题,每小题3分,满分30分)1.单项式﹣3πxy2z3的系数是( )A.﹣πB.﹣1 C.﹣3π D.﹣3【考点】单项式.【分析】依据单项式的系数的定义解答即可.【解答】解:单项式﹣3πxy2z3的系数是﹣3π.故选:C.【点评】本题主要考查的是单项式系数,明确π是一个数轴不是一个字母是解题的关键.2.下面计算正确的是( )A.3x2﹣x2=3 B.3a2+2a3=5a5C.3+x=3x D.﹣0.25ab+ba=0【考点】整式的加减.【分析】先判断是否为同类项,若是同类项则按合并同类项的法则合并.【解答】解:A、3x2﹣x2≠=2x2=3,故A错误;B、3a2与2a3不可相加,故B错误;C、3与x不可相加,故C错误;D、﹣0.25ab+ba=0,故D正确.故选:D.【点评】此题考查了合并同类项法则:系数相加减,字母与字母的指数不变.3.下列运算中,正确的是( )A.3a+5b=8ab B.3y2﹣y2=3C.6a3+4a3=10a6D.5m2n﹣3nm2=2m2n【考点】合并同类项.【分析】根据合并同类项的法则结合选项进行求解,然后选出正确选项.【解答】解:A、3a和5b不是同类项,不能合并,故本选项错误;B、3y2﹣y2=2y2,计算错误,故本选项错误;C、6a3+4a3=10a3,计算错误,故本选项错误;D、5m2n﹣3nm2=2m2n,计算正确,故本选项正确.故选D.【点评】本题考查了合并同类项的知识,解答本题的关键是掌握合并同类项的法则.4.下列去括号正确的是( )A.﹣(2x+5)=﹣2x+5 B .C .D .【考点】去括号与添括号.【专题】常规题型.【分析】去括号时,若括号前面是负号则括号里面的各项需变号,若括号前面是正号,则可以直接去括号.【解答】解:A、﹣(2x+5)=﹣2x﹣5,故本选项错误;B 、﹣(4x﹣2)=﹣2x+1,故本选项错误;C 、(2m﹣3n)=m﹣n,故本选项错误;D 、﹣(m﹣2x)=﹣m+2x,故本选项正确.故选D.【点评】本题考查去括号的知识,难度不大,注意掌握去括号的法则是关键.5.若单项式2x n y m﹣n与单项式3x3y2n的和是5x n y2n,则m与n的值分别是( )A.m=3,n=9 B.m=9,n=9 C.m=9,n=3 D.m=3,n=3【考点】合并同类项.【分析】根据同类项的概念,列出方程求解.【解答】解:由题意得,,解得:.故选C.【点评】本题考查了合并同类项,解答本题的关键是掌握同类项定义中的相同字母的指数相同.6.单项式﹣3πxy2z3的系数和次数分别是( )A.﹣π,5 B.﹣1,6 C.﹣3π,6 D.﹣3,7【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义,单项式﹣3πxy2z3的系数和次数分别是﹣3π,6.故选C.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.注意π是数字,应作为系数.7.代数式2a2+3a+1的值是6,那么代数式6a2+9a+5的值是( )A.20 B.18 C.16 D.15【考点】代数式求值.【专题】计算题.【分析】根据题意2a2+3a+1的值是6,从而求出2a2+3a=5,再把该式左右两边乘以3即可得到6a2+9a的值,再把该值代入代数式6a2+9a+5即可.【解答】解:∵2a2+3a+1=6,∴2a2+3a=5,∴6a2+9a=15,∴6a2+9a+5=15+5=20.故选A.【点评】本题考查了代数式求值,解题的关键是利用已知代数式求出6a2+9a的值,再代入即可.8.已知2x3y2和﹣x3m y2是同类项,则式子4m﹣24的值是( )A.20 B.﹣20 C.28 D.﹣28【考点】同类项.【专题】计算题.【分析】根据同类项相同字母的指数相同可得出m的值,继而可得出答案.【解答】解:由题意得:3m=3,解得m=1,∴4m﹣24=﹣20.故选B.【点评】本题考查同类项的知识,比较简单,注意掌握同类项的定义.9.已知a是一位数,b是两位数,将a放在b的左边,所得的三位数是( )A.ab B.a+b C.10a+b D.100a+b【考点】列代数式.【分析】a放在左边,则a在百位上,据此即可表示出这个三位数.【解答】解:a放在左边,则a在百位上,因而所得的数是:100a+b.故选D.【点评】本题考查了利用代数式表示一个数,关键是正确确定a是百位上的数字.10.原产量n吨,增产30%之后的产量应为( )A.(1﹣30%)n吨B.(1+30%)n吨 C.n+30%吨D.30%n吨【考点】列代数式.【专题】应用题.【分析】原产量n吨,增产30%之后的产量为n+n×30%,再进行化简即可.【解答】解:由题意得,增产30%之后的产量为n+n×30%=n(1+30%)吨.故选B.【点评】本题考查了根据实际问题列代数式,列代数式要分清语言叙述中关键词语的意义,理清它们之间的数量关系.二、填空题(每小题3分,共18分)11.单项式的系数是﹣,次数是3.【考点】单项式.【分析】根据单项式系数与次数的定义解答.单项式中数字因数叫做单项式的系数.单项式的次数就是所有字母指数的和.【解答】解:单项式的系数是﹣,次数是1+2=3.故答案为﹣,【点评】本题考查了单项式的系数与次数的定义,需注意:单项式中的数字因数叫做这个单项式的系数;单项式中,所有字母的指数和叫做这个单项式的次数.12.多项式2x2y﹣+1的次数是3.【考点】多项式.【分析】多项式的次数是多项式中最高次项的次数,根据定义即可求解.【解答】解:多项式2x2y ﹣+1的次数是3.故答案为:3.【点评】本题考查了多项式的次数,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.13.任写一个与﹣a2b是同类项的单项式a2b.【考点】同类项.【专题】开放型.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),即可解答.【解答】解:与﹣a2b是同类项的单项式是a2b(答案不唯一).故答案是:a2b.【点评】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.14.多项式3x+2y与多项式4x﹣2y的差是﹣x+4y.【考点】整式的加减.【专题】计算题.【分析】由题意可得被减数为3x+2y,减数为4x﹣2y,根据差=被减数﹣减数可得出.【解答】解:由题意得:差=3x+2y﹣(4x﹣2y),=﹣x+4y.故填:﹣x+4y.【点评】本题考查整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.15.李明同学到文具商店为学校美术组的30名同学购买铅笔和橡皮,已知铅笔每支m元,橡皮每块n元,若给每名同学买两支铅笔和三块橡皮,则一共需付款60m+90n元.【考点】列代数式.【分析】根据题意列出代数式.【解答】解:由题意得:付款=60m+90n【点评】本题考查代数式的知识,关键要读清题意.16.按如图程序输入一个数x,若输入的数x=﹣1,则输出结果为4.【考点】代数式求值.【专题】图表型.【分析】根据图示的计算过程进行计算,代入x的值一步一步计算可得出最终结果.【解答】解:当x=﹣1时,﹣2x﹣4=﹣2×(﹣1)﹣4=2﹣4=﹣2<0,此时输入的数为﹣2,﹣2x﹣4=﹣2×(﹣2)﹣4=4﹣4=0,此时输入的数为0,﹣2x﹣4=0﹣4=﹣4<0,此时输入的数为﹣4,﹣2x﹣4=﹣2×(﹣4)﹣4=8﹣4=4>0,所以输出的结果为4.故答案为:4.【点评】此题考查了代数式求值的知识,属于基础题,解答本题关键是理解图标的计算过程,难度一般,注意细心运算.三、计算:(每小题20分,共20分)17.(1)a+2b+3a﹣2b.(2)(3a﹣2)﹣3(a﹣5)(3)3x2﹣3x2﹣y2+5y+x2﹣5y+y2.(4)(4a2b﹣5ab2)﹣(3a2b﹣4ab2)【考点】整式的加减.【分析】(1)(3)直接合并同类项即可;(2)(4)先去括号,再合并同类项即可.【解答】解:(1)原式=4a;(2)原式=3a﹣2﹣3a+15=13;(3)原式=(3﹣3+1)x2﹣(1﹣1)y2+(5﹣5)y=x2;(4)原式=4a2b﹣5ab2﹣3a2b+4ab2=a2b﹣ab2.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.四、先化简下式,再求值.(每小题6分,共12分)18.化简求值:3a2b﹣[2ab2﹣2(﹣a2b+4ab2)]﹣5ab2,其中a=﹣2,b=.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=3a2b﹣2ab2﹣2a2b+8ab2﹣5ab2=a2b+ab2,当a=﹣2,b=时,原式=2﹣=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x)+3(x2y2+y),其中x=﹣1,y=2.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=2x2﹣2y2﹣3x2y2﹣3x+3x2y2+3y=2x2﹣2y2﹣3x+3y,当x=﹣1,y=2时,原式=2﹣8+3+6=3.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.五、解答题:(每小题分,共20分)20.已知A=2x2﹣1,B=3﹣2x2,求B﹣2A的值.【考点】整式的加减.【专题】计算题.【分析】将A和B的式子代入可得B﹣2A=3﹣2x2﹣2(2x2﹣1),去括号合并可得出答案.【解答】解:由题意得:B﹣2A=3﹣2x2﹣2(2x2﹣1),=3﹣2x2﹣4x2+2=﹣6x2+5.【点评】本题考查整式的加减运算,比较简单,注意在计算时要细心.21.计算某个整式减去多项式ab﹣2bc+3a+bc+8ac时,一个同学误认为是加上此多项式,结果得到的答案是﹣2ab+bc+8ac.请你求出原题的正确答案.【考点】整式的加减.【分析】设该整式为A,求出A的表达式,进而可得出结论.【解答】解:∵A+(ab﹣2bc+3a+bc+8ac)=﹣2ab+bc+8ac,∴A=(﹣2ab+bc+8ac)﹣(ab﹣2bc+3a+bc+8ac)=﹣2ab+bc+8ac﹣ab+2bc﹣3a﹣bc﹣8ac=﹣3ab+2bc﹣3a,∴A﹣(ab﹣2bc+3a+bc+8ac)=(﹣3ab+2bc﹣3a)﹣(ab﹣2bc+3a+bc+8ac)=﹣3ab+2bc﹣3a﹣ab+2bc﹣3a﹣bc﹣8ac=﹣4ab+3bc﹣6a﹣8ac.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.第三章一元一次方程(2)考试范围:第三章一元一次方程;考试时间:100分钟;命题人:天涯剑客QQ:2403336035题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题共42分)评卷人得分一、选择题(1--6题每题2分,7--16每题3分,共计42分)1.下列运用等式的性质对等式进行的变形中,正确的是().A.若x y=,则55x y-=+B.若a b=,则ac bc=C .若a bc c=,则23a b = D .若x y =,则x ya a=2.若 与kx -1=15的解相同则k 的值为( ). A.2 B.8 C.-2 D.6 3.下列方程①x-2=x3,②x=0,③y +3=0,④x +2y =3,⑤x 2=2x,⑥x x 61312=+中是一元一次方程的有( ).A .2个B .3个C .4个D .5个4.某顾客以八折的优惠价买了一件商品,比标价少付了30元,那么他购买这件商品花了 A .70元 B .120元 C .150元 D .300元 5.把方程21-331-23+=+x x x 去分母正确的是 A .)1(3-18)1-2(218+=+x x xB .)1(3)12(3+-=-+x x xC.)1(18)12(18+-=-+x x x D .)1(33)12(23+-=-+x x x6.若37-213m m 与+互为相反数,则m 的值为( ) A 、43 B 、34 C 、43- D 、34-7.一个商店把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2400元,则彩电标价是( ) A .3200元 B .3429元 C .2667元 D .3168元8.用“●”“■”“”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”的个数为( ).A 、5B 、4C 、3D 、29.某商店在某一时间以每件50元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该家商店( ) A 、亏损6.7元 B 、盈利6.7元 C 、不亏不盈 D 、以上都不正确10.若,,都是不等于零的数,且,则( )A .2B .-1C .2或-1D .不存在 11.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是A .2(1)313x x -+=B .2(1)313x x ++=C .23(1)13x x ++=D .23(1)13x x +-=12.日历上竖列相邻的三个数,它们的和是39,则第一个数是( ) A.6 B.12 C.13 D.14 13.如果是方程31的解,那么关于的方程的解是( ) A.-10 B.0 C.34D.4 14.若与互为相反数,则a=( )A .B .10C .D .﹣1015.小郑的年龄比妈妈小28岁,今年妈妈的年龄正好是小郑的5倍,小郑今年的年龄是【 】 A .7岁 B .8岁 C .9岁 D .10岁16.相传有个人不讲究说话艺术常引起误会。
2022年人教版七年级上册第1章《有理数》测试卷(附答案)(1)
第1章有理数测试卷〔1〕一、选择题〔本大题10小题,每题3分,共30分〕1.〔3分〕在1,0,2,﹣3这四个数中,最大的数是〔〕A.1 B.0 C.2 D.﹣32.〔3分〕2的相反数是〔〕A.B.C.﹣2 D.23.〔3分〕﹣5的绝对值是〔〕A.5 B.﹣5 C.D.﹣4.〔3分〕﹣2的倒数是〔〕A.2 B.﹣2 C.D.﹣5.〔3分〕以下说法正确的选项是〔〕A.带正号的数是正数,带负号的数是负数B.一个数的相反数,不是正数,就是负数C.倒数等于本身的数有2个D.零除以任何数等于零6.〔3分〕在有理数中,绝对值等于它本身的数有〔〕A.1个 B.2个 C.3个 D.无穷多个7.〔3分〕比﹣2大3的数是〔〕A.1 B.﹣1 C.﹣5 D.﹣68.〔3分〕以下算式正确的选项是〔〕A.3﹣〔﹣3〕=6 B.﹣〔﹣3〕=﹣|﹣3|C.〔﹣3〕2=﹣6 D.﹣32=99.〔3分〕据报道,2021年第一季度,广东省实现地区生产总值约1.36万亿元,用科学记数法表示为〔〕×1012×1012×1011×1011元×103是精确到〔〕A.十分位B.个位C.百位D.千位二、填空题〔本大题6小题,每题4分,共24分〕11.〔4分〕如果温度上升3℃记作+3℃,那么下降3℃记作.12.〔4分〕|a|=4,那么a=.13.〔4分〕在数轴上,与表示﹣3的点距离2个单位长度的点表示的数是.14.〔4分〕比拟大小:3223.15.〔4分〕假设〔a﹣1〕2+|b+2|=0,那么a+b=.16.〔4分〕观察以下依次排列的一列数:﹣2,4,﹣6,8,﹣10…按它的排列规律,那么第10个数为.三、解答题〔一〕〔本大题3小题,每题6分,共18分〕17.〔6分〕把以下各数在数轴上表示出来,并用“>“号连结起来.﹣3,﹣1.5,﹣1,2.5,4.18.〔6分〕﹣8﹣6+22﹣919.〔6分〕计算:﹣8÷〔﹣2〕+4×〔﹣5〕.四、解答题〔二〕〔本大题3小题,每题7分,共21分〕20.〔7分〕小强有5张卡片写着不同的数字的卡片:他想从中取出2张卡片,使这2张卡片上数字乘积最大.你知道应该如何抽取吗?最大的乘积是多少吗?21.〔7分〕计算:〔﹣+﹣〕×〔﹣12〕.22.〔7分〕计算:﹣22+3×〔﹣1〕4﹣〔﹣4〕×2.五、解答题〔三〕〔本大题3小题,每题9分,共27分〕23.〔9分〕假设|a|=5,|b|=3,求a+b的值.24.〔9分〕某班抽查了10名同学的期末成绩,以80分为基准,超出的记作为正数,缺乏的记为负数,记录的结果如下:+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10〔1〕这10名同学中最高分数是多少?最低分数是多少?〔2〕这10名同学的平均成绩是多少.25.〔9分〕一辆汽车沿着南北方向的公路来回行驶,某天早晨从A地出发,晚上最后到达B地,约定向北正方向〔如:+7表示汽车向北行驶7千米〕,当天行驶记录如下:+18,﹣9,+7,﹣14,﹣6,12,﹣6,+8.〔单位:千米〕问:〔1〕B地在A地的何方,相距多少千米?〔2〕假设汽车行驶1千米耗油0.35升,那么这一天共耗油多少升?参考答案与试题解析一、选择题〔本大题10小题,每题3分,共30分〕1.〔3分〕在1,0,2,﹣3这四个数中,最大的数是〔〕A.1 B.0 C.2 D.﹣3【考点】有理数大小比拟.【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣3<0<1<2,应选:C.【点评】此题考查了有理数比拟大小,正数大于0,0大于负数是解题关键.2.〔3分〕2的相反数是〔〕A.B.C.﹣2 D.2【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:2的相反数是﹣2,应选:C.【点评】此题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣〞号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.〔3分〕﹣5的绝对值是〔〕A.5 B.﹣5 C.D.﹣【考点】绝对值.【分析】根据绝对值的性质求解.【解答】解:根据负数的绝对值等于它的相反数,得|﹣5|=5.应选A.【点评】此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.4.〔3分〕﹣2的倒数是〔〕A.2 B.﹣2 C.D.﹣【考点】倒数.【分析】根据倒数的定义,假设两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣2×〔〕=1,∴﹣2的倒数是﹣.应选D.【点评】主要考查倒数的概念及性质.倒数的定义:假设两个数的乘积是1,我们就称这两个数互为倒数,属于根底题.5.〔3分〕以下说法正确的选项是〔〕A.带正号的数是正数,带负号的数是负数B.一个数的相反数,不是正数,就是负数C.倒数等于本身的数有2个D.零除以任何数等于零【考点】有理数.【分析】利用有理数的定义判断即可得到结果.【解答】解:A、带正号的数不一定为正数,例如+〔﹣2〕;带负号的数不一定为负数,例如﹣〔﹣2〕,故错误;B、一个数的相反数,不是正数,就是负数,例如0的相反数是0,故错误;C、倒数等于本身的数有2个,是1和﹣1,正确;D、零除以任何数〔0除外〕等于零,故错误;应选:C.【点评】此题考查了有理数,熟练掌握有理数的定义是解此题的关键.6.〔3分〕在有理数中,绝对值等于它本身的数有〔〕A.1个 B.2个 C.3个 D.无穷多个【考点】绝对值.【分析】根据绝对值的意义求解.【解答】解:在有理数中,绝对值等于它本身的数有0和所有正数.应选D.【点评】此题考查了绝对值:假设a>0,那么|a|=a;假设a=0,那么|a|=0;假设a<0,那么|a|=﹣a.7.〔3分〕比﹣2大3的数是〔〕A.1 B.﹣1 C.﹣5 D.﹣6【考点】有理数的加法.【分析】先根据题意列出算式,然后利用加法法那么计算即可.【解答】解:﹣2+3=1.应选:A.【点评】此题主要考查的是有理数的加法法那么,掌握有理数的加法法那么是解题的关键.8.〔3分〕以下算式正确的选项是〔〕A.3﹣〔﹣3〕=6 B.﹣〔﹣3〕=﹣|﹣3|C.〔﹣3〕2=﹣6 D.﹣32=9【考点】有理数的乘方;相反数;有理数的减法.【分析】根据有理数的减法和有理数的乘方,即可解答.【解答】解:A、3﹣〔﹣3〕=6,正确;B、﹣〔﹣3〕=3,﹣|﹣3|=﹣3,故本选项错误;C、〔﹣3〕2=9,故本选项错误;D、﹣32=﹣9,故本选项错误;应选:A.【点评】此题考查了有理数的减法和有理数的乘方,解决此题的关键是熟记有理数的乘方和有理数的减法.9.〔3分〕据报道,2021年第一季度,广东省实现地区生产总值约1.36万亿元,用科学记数法表示为〔〕×1012×1012×1011×1011元【考点】科学记数法—表示较大的数.【分析】根据科学记数法的表示方法:a×10n,可得答案.【解答】×1012元,应选:B.【点评】此题考查了科学记数法,科学记数法中确定n的值是解题关键,指数n 是整数数位减1.×103是精确到〔〕A.十分位B.个位C.百位D.千位【考点】近似数和有效数字.【分析】×103×103精确到百位.【解答】解:∵×103=2700,∴×103精确到百位.应选C.【点评】此题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起,到这个数完为止,所有这些数字叫这个数的有效数字.二、填空题〔本大题6小题,每题4分,共24分〕11.〔4分〕如果温度上升3℃记作+3℃,那么下降3℃记作﹣3℃.【考点】正数和负数.【分析】此题主要用正负数来表示具有意义相反的两种量:上升记为正,那么下降就记为负.【解答】解:∵温度上升3℃记作+3℃,∴下降3℃记作﹣3℃.故答案为:﹣3℃.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,那么和它意义相反的就为负.12.〔4分〕|a|=4,那么a=±4.【考点】绝对值.【分析】∵|+4|=4,|﹣4|=4,∴绝对值等于4的数有2个,即+4和﹣4,另外,此类题也可借助数轴加深理解.在数轴上,到原点距离等于4的数有2个,分别位于原点两边,关于原点对称.【解答】解:∵绝对值等于4的数有2个,即+4和﹣4,∴a=±4.【点评】绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.此题是绝对值性质的逆向运用,此类题要注意答案一般有2个,除非绝对值为0的数才有一个为0.13.〔4分〕在数轴上,与表示﹣3的点距离2个单位长度的点表示的数是﹣5或﹣1.【考点】数轴.【专题】探究型.【分析】由于所求点在﹣3的哪侧不能确定,所以应分在﹣3的左侧和在﹣3的右侧两种情况讨论.【解答】解:当所求点在﹣3的左侧时,那么距离2个单位长度的点表示的数是﹣3﹣2=﹣5;当所求点在﹣3的右侧时,那么距离2个单位长度的点表示的数是﹣3+2=﹣1.故答案为:﹣5或﹣1.【点评】此题考查的是数轴的特点,即数轴上右边的点表示的数总比左边的大.14.〔4分〕比拟大小:32>23.【考点】有理数的乘方;有理数大小比拟.【专题】计算题.【分析】分别计算32和23,再比拟大小即可.【解答】解:∵32=9,23=8,∴9>8,即32>23.故答案为:>.【点评】此题考查了有理数的乘方以及有理数的大小比拟,是根底知识要熟练掌握.15.〔4分〕假设〔a﹣1〕2+|b+2|=0,那么a+b=﹣1.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b,然后相加即可得解.【解答】解:根据题意得,a﹣1=0,b+2=0,解得a=1,b=﹣2,所以,a+b=1+〔﹣2〕=﹣1.故答案为:﹣1.【点评】此题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.〔4分〕观察以下依次排列的一列数:﹣2,4,﹣6,8,﹣10…按它的排列规律,那么第10个数为20.【考点】规律型:数字的变化类.【分析】观察不难发现,这列数的绝对值是从2开始的连续偶数,并且第偶数个数是正数,第奇数个数是负数,然后写出第10个数即可.【解答】解:∵﹣2,4,﹣6,8,﹣10…,∴第10个数是正数数,且绝对值为2×10=20,∴第10个数是20,故答案为:20.【点评】此题是对数字变化规律的考查,比拟简单,难点在于从绝对值和符号两个局部考虑求解.三、解答题〔一〕〔本大题3小题,每题6分,共18分〕17.〔6分〕把以下各数在数轴上表示出来,并用“>“号连结起来.﹣3,﹣1.5,﹣1,2.5,4.【考点】有理数大小比拟;数轴.【分析】先在数轴上表示各个数,再比拟即可.【解答】解:4>>﹣1>>﹣3.【点评】此题考查了有理数的大小比拟,数轴的应用,能正确在数轴上表示各个数是解此题的关键,注意:在数轴上表示各个数,右边的数总比左边的数大.18.〔6分〕﹣8﹣6+22﹣9【考点】有理数的加减混合运算.【分析】直接进行有理数的加减运算.【解答】解:原式=﹣23+22=﹣1.【点评】此题考查有理数的运算,属于根底题,注意运算的顺序是关键.19.〔6分〕计算:﹣8÷〔﹣2〕+4×〔﹣5〕.【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘除运算,再计算加减运算即可得到结果.【解答】解:原式=4﹣20=﹣16,故答案为:﹣16【点评】此题考查了有理数的混合运算,熟练掌握运算法那么是解此题的关键.四、解答题〔二〕〔本大题3小题,每题7分,共21分〕20.〔7分〕小强有5张卡片写着不同的数字的卡片:他想从中取出2张卡片,使这2张卡片上数字乘积最大.你知道应该如何抽取吗?最大的乘积是多少吗?【考点】规律型:数字的变化类.【分析】分析几个数可知要使抽取的数最大,需同时抽两个最大正数或两个最小的负数,即可使乘积最大.【解答】解:抽取﹣3和﹣8.最大乘积为〔﹣3〕×〔﹣8〕=24.【点评】两个负数的乘积为正数,且这两个负数越小,其乘积越大.21.〔7分〕计算:〔﹣+﹣〕×〔﹣12〕.【考点】有理数的混合运算.【专题】计算题.【分析】根据有理数的混合运算的运算方法,应用乘法分配律,求出算式的值是多少即可.【解答】解:〔﹣+﹣〕×〔﹣12〕=〔﹣〕×〔﹣12〕+×〔﹣12〕﹣×〔﹣12〕=2﹣9+5=﹣2【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意乘法运算定律的应用.22.〔7分〕计算:﹣22+3×〔﹣1〕4﹣〔﹣4〕×2.【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=﹣4+3+8=7.【点评】此题考查了有理数的混合运算,熟练掌握运算法那么是解此题的关键.五、解答题〔三〕〔本大题3小题,每题9分,共27分〕23.〔9分〕假设|a|=5,|b|=3,求a+b的值.【考点】有理数的加法;绝对值.【分析】|a|=5,那么a=±5,同理b=±3,那么求a+b的值就应分几种情况讨论.【解答】解:∵|a|=5,∴a=±5,同理b=±3.当a=5,b=3时,a+b=8;当a=5,b=﹣3时,a+b=2;当a=﹣5,b=3时,a+b=﹣2;当a=﹣5,b=﹣3时,a+b=﹣8.【点评】正确地进行讨论是此题解决的关键.规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.24.〔9分〕某班抽查了10名同学的期末成绩,以80分为基准,超出的记作为正数,缺乏的记为负数,记录的结果如下:+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10〔1〕这10名同学中最高分数是多少?最低分数是多少?〔2〕这10名同学的平均成绩是多少.【考点】正数和负数.【分析】〔1〕根据正负数的意义解答即可;〔2〕求出所有记录的和的平均数,再加上基准分即可.【解答】解:〔1〕最高分为:80+12=92分,最低分为:80﹣10=70分;〔2〕8﹣3+12﹣7﹣10﹣3﹣8+1+0+10=8+12+1+10+0﹣3﹣7﹣10﹣3﹣8=31﹣31=0,所以,10名同学的平均成绩80+0=80分.【点评】此题主要考查了正负数的意义,解题关键是理解“正〞和“负〞的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,那么另一个就用负表示.25.〔9分〕一辆汽车沿着南北方向的公路来回行驶,某天早晨从A地出发,晚上最后到达B地,约定向北正方向〔如:+7表示汽车向北行驶7千米〕,当天行驶记录如下:+18,﹣9,+7,﹣14,﹣6,12,﹣6,+8.〔单位:千米〕问:〔1〕B地在A地的何方,相距多少千米?〔2〕假设汽车行驶1千米耗油0.35升,那么这一天共耗油多少升?【考点】正数和负数.【专题】应用题.【分析】〔1〕把当天记录相加,然后根据正数和负数的规定解答即可;〔2〕先求出行驶记录的绝对值的和,再乘以0.35计算即可得解.【解答】解:〔1〕18﹣9+7﹣14﹣6+12﹣6+8=45﹣35=10,所以,B地在A地北方10千米;〔2〕18+9+7+14+6+12+6+8=80千米80×0.35=28升.【点评】此题主要考查了正负数的意义,解题关键是理解“正〞和“负〞的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,那么另一个就用负表示.第二十四章二次函数周周测1一、选择题〔共16小题〕1.如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么AB 的值为〔〕A.3 B.2C.3D.22.如图,OA是⊙O的半径,弦BC⊥OA,D是⊙O上一点,假设∠ADB=28°,那么∠AOC 的度数为〔〕A.14°B.28°C.56°D.84°3.如图,⊙O的直径CD过弦EF的中点G,∠DCF=20°,那么∠EOD等于〔〕A.10°B.20°C.40°D.80°4.如图,点C,D是半圆上的三等分点,连接AC,BC,CD,OD,BC和OD相交于点E.那么以下结论:①∠CBA=30°,②OD⊥BC,③OE=AC,④四边形AODC是菱形.正确的个数是〔〕A.1 B.2 C.3 D.45.如图,圆心角∠BOC=78°,那么圆周角∠BAC的度数是〔〕A.156°B.78°C.39°D.12°6.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,那么∠BOC等于〔〕A.60°B.70°C.120°D.140°7.如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,那么∠AEB的度数为〔〕A.36°B.46°C.27°D.63°8.如图,A、B、C是⊙O上的三点,且∠ABC=70°,那么∠AOC的度数是〔〕A.35°B.140°C.70°D.70°或140°9.以下四个图中,∠x是圆周角的是〔〕A.B.C.D.10.〔2021•龙岩〕如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,那么弦AB 的长为〔〕A.B.2 C.2D.411.如图,在⊙O中,∠OAB=22.5°,那么∠C的度数为〔〕A.135°B.122.5°C.115.5°D.112.5°12.如图,⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,那么∠BCD等于〔〕A.116°B.32°C.58°D.64°13.如图,在⊙O中,直径CD⊥弦AB,那么以下结论中正确的选项是〔〕A.AD=AB B.∠BOC=2∠D C.∠D+∠BOC=90°D.∠D=∠B14.如图,在⊙O中,∠CBO=45°,∠CAO=15°,那么∠AOB的度数是〔〕A.75°B.60°C.45°D.30°15.如图,⊙O是△ABC的外接圆,∠OCB=40°,那么∠A的度数是〔〕A.40°B.50°C.60°D.100°16.如图,AB是⊙O的直径,AB垂直于弦CD,∠BOC=70°,那么∠ABD=〔〕A.20°B.46°C.55°D.70°二、填空题〔共13小题〕17.如图,点A、B、C、D在⊙O上,OB⊥AC,假设∠BOC=56°,那么∠ADB=______度.18.如图,点A、B、C在⊙O上,假设∠C=30°,那么∠AOB的度数为______°.19.如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,那么∠BOD=______.20.〔2021•盘锦〕如图,⊙O直径AB=8,∠CBD=30°,那么CD=______.21.在圆中,30°的圆周角所对的弦的长度为2,那么这个圆的半径是______.22.如图,⊙O是△ABC的外接圆,假设∠BOC=100°,那么∠BAC=______.23.如图,AB是⊙O的直径,点C在⊙O上,点P在线段OA上运动.设∠BCP=α,那么α的最大值是______.24.如图,P是⊙O外一点,A、B、C是⊙O上的三点,∠AOB=60°,PA、PB分别交于M、N两点,那么∠APB的范围是______.25.如下图⊙O中,∠BAC=∠CDA=20°,那么∠ABO的度数为______.26.点O是△ABC外接圆的圆心,假设∠BOC=110°,那么∠A的度数是______.27.如图,点A、B、C、D都在⊙O上,∠ABC=90°,AD=3,CD=2,那么⊙O的直径的长是______.28.如图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,那么∠BOC=______度.29.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,那么∠AED的余弦值是______.三、解答题〔共1小题〕30.〔1〕甲市共有三个郊县,各郊县的人数及人均耕地面积如表所示:人均耕地面积/公郊县人数/万顷A 20B 5C 10求甲市郊县所有人口的人均耕地面积〔精确到0.01公顷〕;〔2〕先化简下式,再求值:,其中,;〔3〕如图,A,B,C,D是⊙O上的四点,延长DC,AB相交于点E,假设BC=BE.求证:△ADE是等腰三角形.答案一、选择题〔共16小题〕1.A;2.C;3.C;4.D;5.C;6.D;7.A;8.B;9.C;10.C;11.D;12.B;13.B;14.B;15.B;16.C;二、填空题〔共13小题〕17.28;18.60;19.80°;20.4;21.2;22.50°;23.90°;24.0°<∠APB<30°;25.50°;26.55°或125°;27.;28.52;29.;三、解答题〔共1小题〕30.。
人教版数学七年级上册第一章《有理数》检测试试题(含答案)
人教版数学七年级上册第一章《有理数》检测试题一、选择题1.-1的相反数是( )A.-1B.0C.1D.-1或12.计算(-1)2020的结果是( )A.-1B.1C.-2020D.20203.若x =-(-2)×3,则x 的倒数是( )A.-16B.16C.-6D.64.已知有理数a 、b 在数轴上对应点如图所示,则下列式子正确的是( )A .ab >0B .︱a ︱>︱b ︱C .a -b >0D .a +b >05.比较-12,-13,14的大小,下列选项中正确的结果是( ) A.-12<-13<14 B.-12<14<-13C.14<-13<-12D.-13<-12<14 6.有以下两个结论:①任何一个有理数和它的相反数之间至少有一个有理数;②如果一个有理数有倒数,则这个有理数与它的倒数之间至少有一个有理数.则( )A.①,②都不对B.①对,②不对C.①,②都对D.①不对,②对7.若a +b <0,ab <0,则( )A.a >0,b >0B.a <0,b <0C.a ,b 两数一正一负,且正数的绝对值大于负数的绝对值D.a ,b 两数一正一负,且负数的绝对值大于正数的绝对值8.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg ,(25±0.2)kg ,(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差( )BA.0.8kgB.0.6kgC.0.5kgD.0.4kg9.一根1m 长的小棒,第一次截去它的13,第二次截去剩下的13,如此截下去,第五次后剩下的小棒的长度是( )C A.513⎛⎫ ⎪⎝⎭m B.[1-513⎛⎫ ⎪⎝⎭]m C.523⎛⎫ ⎪⎝⎭m D.[1-523⎛⎫ ⎪⎝⎭]m 10.若ab ≠0,则a a +b b的取值不可能是( ) A.0 B.1C.2D.-2 二、填空题11.-15的绝对值是_______;立方等于-8的数是_______. 12.一种商品原价120元,按八折(即原价的80%)出售,则现售价应为_______元. 0 1 -1 b a13.对于式子-(-4),下列理解:①可表示-4的相反数;②可表示-1与-4的乘积;③可表示-4的绝对值;④运算结果等于4.其中理解错误的有_______个.14.数轴距离原点3个单位的点有_______个,他们分别表示数是_______.15.比-312大而比213小的所有整数的和为_______.16.多伦多与北京的时间差为-12小时(正数表示同一时刻比北京时间早的时数),如果北京时间是10月1日14:00,那么多伦多时间是_______.17.某校师生在为某地地震灾区举行的爱心捐款活动中总计捐款18.49 万元.把18.49 万用科学记数法表示并保留两个有效数字为_______.18.规定a※b=5a2+2b-1,则(-4)※6的值为_______.19.大家知道5=50-,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离.又如式子63-,它在数轴上的意义是表示6的点与表示3的点之间的距离.类似地,式子5a+在数轴上的意义是_______.20.为了求1+2+22+23+…+22020的值,可令S=1+2+22+23+…+22020,则2S=2+22+23+24+…+22021,因此2S-S=22021-1,所以1+2+22+23+24+…+22020=22021-1,仿照以上推理计算出1+5+52+53+…+52020的值是_______.三、解答题21.计算:(1)-9÷3+(12-23)×12+32;(2)713×(-9)+713×(-18)+713;(3)-691516×8.22.一条小虫沿一根东西方向放着的长杆向东以2.5米/分的速度爬行4分钟后,又向西爬行6分钟.问此时它距出发点的距离是多少?23.马虎同学在做题时画一条数轴,数轴上原有一点A,其表示的数是-2,由于一时粗心把数轴上的原点标错了位置,使A点正好落在-2的相反数的位置,请你帮帮马虎同学,借助于这个数轴要把这个数轴画正确,原点应向哪个方向移动几个单位长度.24.我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?25.若1+2+3+…+31+32+33=17×33,试求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值.26.我国古代有一道有趣的数学题,“井深10米,一只蜗牛从井底向上爬,白天向上爬2米,夜间又滑下1米,问小蜗牛几天可以爬出深井?”27.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向(1)求收工时距A地多远?(2)在第几次纪录时距A地最远?(3若每km耗油0.3升,问共耗油多少升?参考答案:一、1.C;2.B;3.A;4.C.点拨:由数轴上a、b对应点的位置可知0<a<1,b<-1,故a、b异号,即ab<0,否定A选项;又︱a︱<1,︱b︱>1,即︱a︱<︱b︱,选项B 错误;因为a>0>b,所以a-b>0,选项C正确;由︱a︱<︱b︱且a>0,b<0,得a+b<0,选项D错误;5.A.点拨:因为正数大于一切负数,所以三个数中14最大.又因为︱-1 2︱=12=36,︱-13︱=13=26,︱-12︱>︱-13︱,所以-12<-13,即-12<-13<14;6.A.点拨:①中的说法我们可以想象在一条数轴上原点的两边如±1,±2,…这样的两个非零有理数之间存在“间隙”,也就是说它们之间一定有另外的有理数.但是0的相反数是0,0和它的相反数0之间就没有“间隙”了,所以①错;②中按照①的分析方法,如果一个数的倒数等于它本身,那么说法②就是错的,我们知道1的倒数是1,-1的倒数是-1,显然②这种说法也不对;7.D;8.B;9.C;10.B.点拨:本题可利用分析的方法考虑.因为ab≠0,所以ab>0或ab<0.若ab>0,则可能有两种情况:a>0,b>0或a<0,b<0.当a>0,b>0时,aa+bb=1+1=2;当a<0,b<0时,aa+bb=-1-1=-2;若ab<0,则可能有两种情况:a>0,b<0或a<0,b>0;当a>0,b<0时,aa+bb=1-1=0;当a<0,b>0时,aa+bb=-1+1=0.可能出现的结果有0,2,-2,所以应选B.二、11.15、-2;12.96;13.2.点拨:②和③理解错误;14.2个、+3和-3;15.-3;16.2:00;17.1.8×105.点拨:因为18.49万=184900,所以用科学记数可表示为1.849×105,保留两个有效数字在8后的数要舍去为1.8×105;18.61.点拨:因为a※b=2a2+5b-1,所以(-4)※6=2×(-4)2+5×6-1=61;19.表示a的点与表示-5的点之间的距离;20.4152021-.点拨:不妨模仿条件中的求解方法,设S=1+5+52+53+…+52020,再在两边同乘以5,得5S=5+52+53+…+52021,两式相减,得5S-S=52021-1,即S=4152021-.三、21.(1)-9÷3+(12-23)×12+32=-3+12×12-23×12+9=-3+6-8+9=4.(2)7 13×(-9)+713×(-18)+713=713×(-9-18+1)=713×(-26)=-14.(3)-691516×8=-(70-116)×8=-(70×8-116×8)=-55912.点拨:(1)中涉及有理数的加、减、乘、除与乘方,用运算法则进行运算,其中可以运用分配律简化运算,(12-23)×12=12×12-23×12=6-8=-2;(2)中各部分含有相同因数713,所以可想到逆用分配律计算;(3)题先确定符号,然后把绝对值691516化成(70-116)再与8相乘比较简便.解:评析:在进行有理数的计算时,切记要灵活.在拿到题目之前先要看看题目的特点,选择恰当的运算性质,尤其是分配律的正向和反向应用,正确应用运算律会起到事半功倍的效果.22.设向东速度为2.5米/分,向西为-2.5米/分.2.5×4+(-2.5)×6=10-15=-5(米).答:它在距出发点西边5米的地方.点拨:我们一般规定向东为正,即向东速度为2.5米/分;向西为负,即向西速度为-2.5米/分.评析:本题是一道有理数乘法与数轴知识综合运用的应用题,可以利用数轴的直观性使问题变得简单.23.向左移动4个单位长度.24.101011=1×25+0×24+1×23+0×22+1×21+1×20=32+0+8+0+2+1=43.25.1-3+2-6+3-9+4-12+…+31-93+32-96+33-99=(1+2+3+…+31+32+33)+(-3-6-9-…-99)=17×33-3(1+2+3+…+31+32+33)=17×33-3×17×33=-2×17×33.26.把向上爬记为正数,向下滑记为负数,由蜗牛一天爬1米;蜗牛最后一天可以爬出井,在此之前它要爬10-2=8(米);所以蜗牛要先爬8天,加上最后一天,总共是9天.答:蜗牛要9天可以爬出深井.点拨:如果把向上爬记为正数,向下滑记为负数,则蜗牛一天爬(2+(-1)=1)米,那么蜗牛爬了8天,就爬8米,剩下2米,第9天就可以爬出来了.27.(1)因为(-4)+(+7)+(-9)+(+8)+(+6)+(-5)+(-2)=+1,所以收工时距A 地1 km.(2)五.(3)因为一天中共行驶的路程=4-+7++9-+8++6++5-+2-发=41(km ),而41×0.3=12.3(升),所以共耗油12.3升.。
人教版数学七年级上册第一章有理数综合检测(附答案)
人教版数学七年级上学期第一章有理数测试一.选择题1.下列各组数中,互为相反数的是( )A. +2与|﹣2|B. +(+2)与﹣(﹣2)C. +(﹣2)与﹣|+2|D. ﹣|﹣2|与﹣(﹣2)2.一个点从数轴上表示﹣2的点开始,向右移动7个单位长度,再向左移动4个单位长度.则此时这个点表示的数是( )A 0 B. 2 C. l D. ﹣13.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是( )A. a+b<0B. a+b>0C. a﹣b<0D. a•b>04.下列计算正确的是( )A. 2×32=36B. ﹣0.5÷14=2C. ﹣3÷14×4=﹣3 D. (﹣34)×(﹣8)=65.下列说法正确的个数有( )①负分数一定是负有理数②自然数一定是正数③﹣π是负分数④a一定是正数⑤0是整数A. 1个B. 2个C. 3个D. 4个6.15的绝对值是( )A. 5B. -15C. ﹣5D.157.计算:|–5+3|的结果是( )A. –8B. 8C. –2D. 28.下列式子中正确的是( ) A ﹣24=﹣16B. ﹣24=16C. (﹣2)4=8D. (﹣2)4=﹣169.在有理数(﹣1)2、-(﹣32)、﹣|﹣2|、(﹣2)3、﹣22中负数有( )个. A. 4B. 3C. 2D. 110.如图,数轴上每两个相邻的点之间距离均为1个单位长度,数轴上的点Q,R 所表示数的绝对值相等,则点P 表示的数为( )A. 0B. 3C. 5D. 7二.填空题11.若x 2=4,则x=_____;若|a ﹣2|=3,则a=_____.12.升降机运行时,如果下降13米记作“﹣13米”,那么当它上升25米时,记作_____.13.点A 在数轴上距离原点2个单位长度,将点沿着数轴向右移动3个单位长度得到点B ,则点B 表示的数是_____.14.化简:(1)﹣(﹣2005)=_____ (2)﹣|﹣2018|=_____15.绝对值是4数是_____.平方得36的数是_____. 16.计算:﹣8÷(﹣2)×12=_____. 三.解答题17.计算:43116(2)31-+÷-⨯--. 18.把下列各数填入相应的大括号里: -7 ,-0.5 ,-13,0 ,-98% ,8.7 ,2018 . 负整数集合:{ …}; 非负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …}.19.若a,b 互为相反数,c,d 互为倒数,m 到原点的距离为2,求2(a+b)+3cd-|-m|的值. 20.有理数, ,在数轴上的位置如图所示,试化简:a c a b b a b c +-+--++21.一只小虫从某点A出发,在一条直线上来回爬行,假定把向右爬行路程记为正数,向左爬行的路程记为负数,则爬行各段路程单位:(厘米)依次为:+6,﹣4,+10,﹣7,﹣6,+12,﹣10.(1)小虫爬完最后一段路程时距离出发点A多远?(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间?22.出租车司机李叔叔从公司出发,在南北方向人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km):第1批第2批第3批第4批第5批5km 2km ﹣4km ﹣3km 6km(1)接送完第5批客人后,李叔叔在公司什么方向?距离公司多少千米?(2)若该出租车的计价标准为:行驶路程不超过3km收费8元,超过3km的部分按每千米1.5元收费,在这过程中李叔叔共收到车费多少元?23.定义☆运算观察下列运算:(+3)☆(+15)=+18(﹣14)☆(﹣7)=+21,(﹣2)☆(+14)=﹣16(+15)☆(﹣8)=﹣23,0☆(﹣15)=+15(+13)☆0=+13.(1)请你认真思考上述运算,归纳☆运算的法则:两数进行☆运算时,同号_____,异号______.特别地,0和任何数进行☆运算,或任何数和0进行☆运算,______.(2)计算:(+11)☆[0☆(﹣12)]=_____.(3)若2×(2☆a)﹣1=3a,求a的值.答案与解析一.选择题1.下列各组数中,互为相反数的是( )A. +2与|﹣2|B. +(+2)与﹣(﹣2)C. +(﹣2)与﹣|+2|D. ﹣|﹣2|与﹣(﹣2)【答案】D【分析】由相反数的定义对四个选项一一判断即可.【详解】A.+2=2,|﹣2|=2,+2=|﹣2|,此选项错误;B.+(+2)=2,﹣(﹣2)=2,+(+2)=﹣(﹣2),此选项错误;C.+(﹣2)=﹣2,﹣|+2|=﹣2,+(﹣2)=﹣|+2|,此选项错误;D.﹣|﹣2|=﹣2,﹣(﹣2)=2,﹣|﹣2|+[﹣(﹣2)]=0,﹣|﹣2|与﹣(﹣2)互为相反数,此选线正确.故选D.【点睛】本题主要考查相反数的概念:a与b互为相反数⇔a+b=0.2.一个点从数轴上表示﹣2的点开始,向右移动7个单位长度,再向左移动4个单位长度.则此时这个点表示的数是( )A. 0B. 2C. lD. ﹣1【答案】C【解析】向右移动个单位长度,向右移动个单位长度为,故选.3.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是( )A a+b<0 B. a+b>0 C. a﹣b<0 D. a•b>0【答案】A【解析】【分析】首先由数轴上表示的数的规律及绝对值的定义,得出b<0<a,且|b|>|a|,然后根据有理数的加法、减法及乘法法则对各选项进行判断.【详解】由图可知,b<0<a,且|b|>|a|.A、根据有理数的加法法则,可知b+a<0,正确;B、错误;C、∵a>b,∴a-b>0,错误;D、∵a>0,b<0,∴ab<0,错误.【点睛】此题考查了有理数的加法、减法及乘法法则.结合数轴解题,体现了数形结合的优点,给学生渗透了数形结合的思想.4.下列计算正确的是( )A. 2×32=36B. ﹣0.5÷14=2C. ﹣3÷14×4=﹣3 D. (﹣34)×(﹣8)=6【答案】D【解析】分析】各项计算得到结果,即可作出判断.【详解】A、原式=2×9=18,不符合题意;B、原式=-12×4=-2,不符合题意;C、原式=-3×4×4=-48,不符合题意;D、原式=34×8=6,符合题意,故选D.【点睛】此题考查了有理数的乘方,有理数的乘除法,熟练掌握运算法则是解本题的关键.5.下列说法正确的个数有( )①负分数一定是负有理数②自然数一定是正数③﹣π是负分数④a一定是正数⑤0是整数A. 1个B. 2个C. 3个D. 4个【答案】B【解析】分析:根据有理数的分类,可得答案.详解:①负分数一定是负有理数,故①正确;②自然数一定是非负数,故②错误;③-π是负无理数,故③错误④a可能是正数、零、负数,故④错误;⑤0是整数,故⑤正确;故选B.点睛:本题考查了有理数的分类,利用有理数的分类是解题关键,注意a可能是正数、零、负数.6.15的绝对值是( )A. 5B. -15C. ﹣5D.15【答案】D【解析】【分析】根据一个正数的绝对值是本身即可求解.【详解】15的绝对值是15.故选D.【点睛】本题考查了绝对值的知识,掌握绝对值的意义是解答本题的关键,解题时要细心.7.计算:|–5+3|的结果是( )A. –8B. 8C. –2D. 2【答案】D【解析】分析:原式绝对值里边利用异号两数相加的法则计算,再利用绝对值的代数意义化简即可得到结果.详解:原式=|-2|=2,故选D.点睛:此题考查了有理数的加法,熟练掌握加法法则是解本题的关键.8.下列式子中正确的是( )A. ﹣24=﹣16B. ﹣24=16C. (﹣2)4=8D. (﹣2)4=﹣16 【答案】A【解析】【分析】根据乘方的定义计算可得.【详解】A.﹣24=﹣16,故A正确;B.﹣24=-16,故B错误;C.(﹣2)4=16,故C错误;D.(﹣2)4=16,故D错误.故选A.【点睛】本题主要考查有理数的乘方,解题的关键是掌握有理数的乘方的定义及-a n与(-a)n的区别.9.在有理数(﹣1)2、-(﹣32)、﹣|﹣2|、(﹣2)3、﹣22中负数有( )个.A. 4B. 3C. 2D. 1 【答案】B【解析】【分析】各式利用乘方的意义,绝对值的代数意义计算,找出负数即可.【详解】有理数(-1)2=1,-(-32)=32、-|-2|=-2、(-2)3=-8、-22=-4,其中负数有3个,故选B.【点睛】此题考查了有理数的乘方,以及正数与负数,熟练掌握运算法则是解本题的关键.10.如图,数轴上每两个相邻的点之间距离均为1个单位长度,数轴上的点Q,R所表示数的绝对值相等,则点P 表示的数为( )A. 0B. 3C. 5D. 7【答案】C【解析】【分析】根据绝对值的意义推出原点的位置,再得出P表示的数.【详解】设数轴的原点为O,依图可知,RQ=4,又∵数轴上的点Q,R所表示数的绝对值相等,∴OR=OQ=RQ=2,∴OP=OQ+OR=2+3=5,故选C【点睛】本题考核知识点:绝对值.解题关键点:理解绝对值的意义,找出原点.二.填空题11.若x2=4,则x=_____;若|a﹣2|=3,则a=_____.【答案】(1). ±2(2). 5 或﹣1【解析】【分析】根据题目中的方程和绝对值,可以求得相应的x的值和a的值.【详解】解:∵x2=4,∴x=±2,∵|a-2|=3,∴a-2=3或a-2=-3,解得,a=5或a=-1,故答案为±2,5或-1.【点睛】本题考查有理数的乘方、绝对值,解答本题的关键是明确有理数乘方和绝对值的意义.12.升降机运行时,如果下降13米记作“﹣13米”,那么当它上升25米时,记作_____.【答案】+25米.【解析】【分析】在表示具有相反意义的量时,先规定的量为正,则与之相反意义的量为负,在表示相反意义量时,要注意加单位.【详解】因为升降机运行时,如果下降13米记作“﹣13米”,所以当它上升25米时,记作+25米,故答案为+25米.【点睛】本题主要考查正数和负数的意义,解决本题的关键时要熟练掌握用正数和负数表示具有相反意义的量.13.点A在数轴上距离原点2个单位长度,将点沿着数轴向右移动3个单位长度得到点B,则点B表示的数是_____.【答案】1或5【解析】【分析】此题借助数轴用数形结合的方法求解.由于点A与原点0的距离为2,那么A应有两个点,分别位于原点两侧,且到原点的距离为2,这两个点对应的数分别是-2和2.A向右移动3个单位长度,通过数轴上“右加左减”的规律,即可求得平移后点A表示的数.【详解】点A在数轴上距离原点2个单位长度,当点A在原点左边时,点A表示的数是-2,将A向右移动3个单位长度,此时点A表示的数是-2+3=1;当点A在原点右边时,点A表示的数是2,将A向右移动3个单位,得2+3=5.故答案为1或5.【点睛】此题考查数轴问题,根据正负数在数轴上的意义来解答:在数轴上,向右为正,向左为负.14.化简:(1)﹣(﹣2005)=_____(2)﹣|﹣2018|=_____【答案】(1). 2005(2). ﹣2018【解析】【分析】利用相反数和绝对值的意义,化简即可.【详解】(1)因为-2005的相反数是2005,所以-(-2005)=2005;(2)因为|-2018|=2018,所以-|-2018|=-2018.故答案为(1)2005,(2)-2018.【点睛】本题考查了相反数的意义和绝对值的化简,掌握相反数、绝对值的意义是解决本题的关键.15.绝对值是4的数是_____.平方得36的数是_____.【答案】(1). 4,﹣4(2). 6,﹣6【解析】【分析】利用绝对值,以及平方根定义计算即可求出值.【详解】绝对值是4的数是4,-4;平方得36的数是6,-6,故答案为4,-4;6,-6【点睛】此题考查了有理数的乘方,以及绝对值,熟练掌握乘方的意义是解本题的关键.16.计算:﹣8÷(﹣2)×12=_____.【答案】2 【解析】 【分析】原式从左到右依次计算即可得到结果. 【详解】原式=118=222⨯⨯. 故答案为2.【点睛】此题考查了有理数的乘除法混合运算,熟练掌握运算法则是解本题的关键.三.解答题17.计算:43116(2)31-+÷-⨯--. 【答案】-9. 【解析】 【分析】原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果. 【详解】原式()11684189=-+÷-⨯=--=-.【点睛】此题考查了有理数混合运算,熟练掌握运算法则是解本题的关键. 18.把下列各数填入相应的大括号里: -7 ,-0.5 ,-13,0 ,-98% ,8.7 ,2018 . 负整数集合:{ …}; 非负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …}. 【答案】-7;0,2018; 8.7; -0.5, - 13,-98%. 【解析】 【分析】根据实数的分类和性质进行判断即可. 【详解】解:负整数集合: { -7, …}; 非负整数集合:{ 0,2018, …};正分数集合: { 8.7, …};负分数集合:{ -0.5, - 13 ,-98% , …}. 【点睛】本题考查的是实数的分类和性质,解答此题应熟知以下概念:实数包括有理数和无理数;实数可分为正数、负数和0.19.若a,b 互为相反数,c,d 互为倒数,m 到原点的距离为2,求2(a+b)+3cd-|-m|的值.【答案】1【解析】【分析】首先求得m 的值,利用相反数,倒数的定义求出a+b 与cd 的值,代入原式计算即可得到结果 【详解】解:∵有理数m 所表示的点到原点距离2个单位,∴m=2或-2;根据题意得:a+b=0,cd=1,当m=2时,原式=1;当m=-2时,原式=1,则原式的值为1.【点睛】此题考查了代数式求值,数轴,相反数,以及倒数,熟练掌握各自的定义是解本题的关键. 20.有理数, ,在数轴上的位置如图所示,试化简:a c a b b a b c +-+--++【答案】3a c b --+【解析】解:根据数轴可得0a >,0b <,0c <且a b c <<,∴0a c +<,0a b c -->,0b a -<,0b c +<,∴a c a b c b a b c +-----++ ()()()a c a b c b a b c =-----+--+a c abc b a b c =---+++---3a c b =--+.故答案为3a c b --+.点睛:本题考查了数轴,绝对值的性质,以及合并同类项,根据数轴判断出a 、b 、c 的正负情况以及绝对值的大小是解题的关键.21.一只小虫从某点A 出发,在一条直线上来回爬行,假定把向右爬行路程记为正数,向左爬行的路程记为负数,则爬行各段路程单位:(厘米)依次为:+6,﹣4,+10,﹣7,﹣6,+12,﹣10.(1)小虫爬完最后一段路程时距离出发点A多远?(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间?【答案】(1)1厘米;(2)110秒.【解析】【分析】(1)把记录到所有数字相加,即可求解;(2)记录到的所有的数字的绝对值的和,除以0.5即可.【详解】(1)∵+6﹣4+10﹣7﹣6+12﹣10=1,∴小虫爬完最后一段路程时距离出发点A1厘米远;(2)(6+4+10+7+6+12+10)÷0.5=55÷0.5=110(秒).答:小虫共爬行了110秒.【点睛】此题主要考查正负数在实际生活中的应用,掌握有理数的加减运算是解答此题的关键.22.出租车司机李叔叔从公司出发,在南北方向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km):(1)接送完第5批客人后,李叔叔在公司什么方向?距离公司多少千米?(2)若该出租车的计价标准为:行驶路程不超过3km收费8元,超过3km的部分按每千米1.5元收费,在这过程中李叔叔共收到车费多少元?【答案】(1)6千米处;(2)49元.【解析】【分析】(1)根据有理数加法即可求出答案.(2)根据题意列出算式即可求出答案.【详解】(1)5+2+(﹣4)+(﹣3)+6=6(km)答:接送完第五批客人后,该驾驶员在公司的南边6千米处;(2)[8+(5﹣3)×1.5]+8+[8+(4﹣3)×1.5]+8+[8+(6﹣3)×1.5]=11+8+9.5+8+12.5=49(元)答:在这个过程中李叔叔共收到车费49元.【点睛】本题考查了正负数的意义,解题的关键是熟练运用正负数的意义.23.定义☆运算观察下列运算:(+3)☆(+15)=+18(﹣14)☆(﹣7)=+21,(﹣2)☆(+14)=﹣16(+15)☆(﹣8)=﹣23,0☆(﹣15)=+15(+13)☆0=+13.(1)请你认真思考上述运算,归纳☆运算的法则:两数进行☆运算时,同号_____,异号______.特别地,0和任何数进行☆运算,或任何数和0进行☆运算,______.(2)计算:(+11)☆[0☆(﹣12)]=_____.(3)若2×(2☆a)﹣1=3a,求a的值.【答案】(1)两数运算取正号,并把绝对值相加;两数运算取负号,并把绝对值相加;等于这个数的绝对值;(2)23 ;(3)a为3或-1.【解析】【分析】(1)观察运算,即可得出运算法则;(2)根据法则计算即可;(3)分三种情况讨论:①a=0,②a>0,③a<0.【详解】(1)同号两数运算取正号,并把绝对值相加;异号两数运算取负号,并把绝对值相加等于这个数的绝对值;(2)原式=(+11) ☆(+12) =23 ;(3)①当a=0时,左边=2×2-1=3,右边=0,左边≠右边,所以a≠0;②当a﹥0时,2×(2+a)-1=3a,解得:a=3;③当a﹤0时,2×[-(2+a) ]-1=3a,解得:a=-1.综上所述:a为3或-1.【点睛】本题主要考查了有理数的混合运算,解题的关键是根据新定义列出关于x的一元一次方程.。
七年级数学上册第一章《有理数》测试题1(含解析)(新版)新人教版
第一章《有理数》单元测试题一、选择题(每小题只有一个正确答案)1.﹣的相反数是()A. 4 B.﹣ C. D.﹣42.如果规定收入为正,支出为负.收入500 元记作500元,那么支出237元应记作()A.﹣500元 B.﹣237元 C. 237元 D. 503.下列说法正确的是()A.正数和负数统称有理数 B.正整数和负整数统称为整数C.小数不是分数 D.整数和分数统称为有理数4.在,+7, 0,,中,负数有()A. 4个 B. 3个 C. 2个 D. 1个5.下列说法中错误的是()A.正分数、负分数统称分数 B.零是整数,但不是分数C.正整数、负整数统称整数 D.零既不是正数,也不是负数6.下列各数:,,,,,,…中,有理数的个数有()A. 4个 B. 5个 C. 6个 D. 0个7.设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,a,b,c三个数的和为()A.﹣1 B. 0 C. 1 D.不存在8.“厉害了我的国”一档电视节目展示了我国国内生产总值由2006年的3645亿元增长到2017年的82.712万亿元,用科学记数法表示应为()A.0.82712×1014 B.8.2712×1013 C.8.2712×1014 D.8.2712×10129.如果a、b互为相反数,且b≠0,则式子a+b,,|a|﹣|b|的值分别为()A. 0,1,2 B. 1,0,1 C. 1,﹣1,0 D. 0,﹣1,010.数轴上一点表示的有理数为,若将点向右平移个单位长度后,点表示的有理数应为()A. B. C. D.11.京九铁路的全长用四舍五入法得到近似数为,则它精确到( ) A.万位 B.十万位 C.百万位 D.千位12.若,,,的大小关系是()A. B. C. D.二、填空题13.比较大小:________;________;________14.如果定义为与中较大的一个,那么________.15.下列算式中,①,②,③,④,⑤.计算错误的是________.(填序号)16.若m、n互为相反数,x、y互为倒数,则m+n+xy+=__.17.已知|x|=5,|y|=4,且x>y,则2x+y的值为____________.三、解答题18.将下列各数填入相应的集合中:—7 , 0,, —2.55555……, 3.01, +9 , 4.020020002…, +10﹪,有理数集合:{ };无理数集合:{ };整数集合:{ };分数集合:{ }19.计算:(1)|-3|-5×(-)+(-4); (2)(-2)2-4÷(-)+(-1)2017.20.计算:(1)-18×;(2)(-1)3-÷3×[2-(-3)2].21.把下列各数表示的点画在数轴上,并用“”把这些数连接起来,然后指出哪些是负数、哪些是分数、哪些是非负整数.,,,,,22.已知a,b互为相反数,且a≠0,c,d为倒数,m的绝对值为3,求m(2a+2b)2015+(cd)2016+()2017-m2的值.23.蜗牛从某点O开始沿一东西方向直线爬行,规定向东爬行的路程记为正数,向西爬行的路程记为负数.爬过的各段路程依次为(单位:厘米):,,,,,,.通过计算说明蜗牛是否回到起点O.蜗牛离开出发点O最远时是多少厘米?在爬行过程中,如果每爬厘米奖励粒芝麻,则蜗牛一共得到多少粒芝麻?24.阅读下面的解题过程:计算:(-15)÷×6.解:原式=(-15)÷×6(第一步)=(-15)÷(-1)(第二步)=-15.(第三步)回答:(1)上面解题过程中有两处错误,第一处是第________步,错误的原因是________________;第二处是第________,错误的原因是________________.(2)把正确的解题过程写出来.参考答案1.C【解析】【分析】根据只有符号不同的两个数互为相反数,即可得出答案.【详解】解:的相反数是.故答案为:C.【点睛】此题主要考查相反数的意义,熟记相反数的意义是解题的关键.2.B【解析】【分析】根据条件“收入为正、支出为负”进行解答.【详解】依题意,规定收入为正,支出为负,那么支出237元应记作﹣237元,选项B正确. 【点睛】本题考查用正负数表示两个具有相反意义的量,属基础题.3.D【解析】【分析】根据有理数的分类及整数,分数的概念解答即可.【详解】A中正有理数,负有理数和0统称为有理数,故A错误;B中正整数,负整数和0统称为整数,故B错误;C中小数3.14是分数,故C错误;D中整数和分数统称为有理数,故D正确.故选D.【点睛】本题考查了有理数,整数,分数的含义.掌握有理数,整数,分数的含义是解题的关键.4.C【解析】【分析】根据小于0的数即为负数解答可得.【详解】在,+7, 0,,数中,负数有-1,共2个,故选C.【解答】解:在-4,0,-1.5,3,-2,15数中,负数有-4、-1.5、-2这3个,故选:B.【点评】本题主要考查正数和负数,熟练掌握负数的概念是解题的关键.5.C【解析】【分析】根据有理数、分数、整数的含义和分类,逐项判断即可.【详解】:∵正分数、负分数统称分数,∴选项A正确;∵零是整数,但不是分数,∴选项B正确;∵正整数、负整数、0统称整数,∴选项C不正确;∵零既不是正数,也不是负数,∴选项D正确.故选C.【点睛】此题主要考查了有理数、分数、整数的含义和分类,要熟练掌握,解答此题的关键是要明确:0是自然数.6.C【解析】【分析】根据有理数的定义解答即可.【详解】在﹣6,﹣3.14,﹣π,,0.307,4,0.212121…中,有理数有﹣6,﹣3.14,,0.307,4,0.212121…共6个.故选C.【点睛】本题考查了有理数的定义,掌握有理数是有限小数或无限循环小数是解题的关键.7.A【解析】【分析】先根据自然数,整数,有理数的概念分析出a,b,c的值,再进行计算.【详解】∵最小的自然数是0,最大的负整数是﹣1,绝对值最小的有理数是0,∴a+b+c=0+(﹣1)+0=﹣1,故选A.【点睛】本题考查了有理数的加法运算,解题的关键是知道最小的自然数是0,最大的负整数是-1,绝对值最小的有理数是0.8.B【解析】【分析】科学记数法,是指把一个大于10(或者小于1)的整数记为a×10n的形式(其中1 ≤| a| <10 )的记数法.【详解】82.712万亿= 8.2712×1013故选:B【点睛】本题考核知识点:科学记数法. 解题关键点:理解科学记数法意义.9.D【解析】【详解】∵a、b互为相反数,且b≠0,∴a+b=0,=﹣1,|a|﹣|b|=0,则式子a+b,,|a|﹣|b|的值分别为0,﹣1,0.故选D.10.C【解析】【分析】根据平移的性质,进行分析选出正确答案.【详解】﹣2+3=1.故A点表示的有理数应为1.故选C.【点睛】本题考查了数轴,利用点在数轴上左减右加的平移规律是解决问题的关键.11.B【解析】【分析】根据近似数精确到哪一位,应当看末位数字5实际在哪一位,写出原数即可得出答案.【详解】∵2.5×106=2500000,5在十万位,∴2.5×106精确到十万位;故选:B.【点睛】考查近似数的精确度问题,解决问题的关键是正确区分精确度与有效数字的确定方法. 12.A【解析】【分析】根据﹣1<m<0,可得:0<m2<1,<﹣1,据此判断出m,m2,的大小关系即可.【详解】∵﹣1<m<0,∴0<m2<1,<﹣1,∴<m<m2.故选A.【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.13.【解析】【分析】先根据乘方的定义进行计算,再根据有理数大小比较方法比较即可求解.【详解】解:∵43=64,34=81,64<81,∴43<34;∵(-5)2=25,52=25,∴(-5)2=52;∵-|-3|=-3,-(-3)=3,-3<3,∴-|-3|<-(-3).故答案为:<;=;<.【点睛】考查了有理数大小比较,本题的关键是根据乘方的定义进行计算,求出结果.14.【解析】【分析】根据规则计算出与,比较大小即可得到答案.【详解】∵-(﹣3)×2=6,-(﹣3)+2=5,∴(﹣3)*2=6.故答案为:6.【点睛】本题考查了有理数的乘法,根据规律解题是解题的关键.15.①②③④【解析】【分析】根据有理数的乘方,有理数的除法和乘法的法则,计算得到结果,即可作出判断.【详解】① ﹣(﹣2)2=﹣4,故错误;②﹣5÷×5=﹣125,故错误;③=,故错误;④(﹣3)2×(﹣)=﹣3,故错误;⑤﹣33=﹣27.故错误.故答案为:①②③④.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.16.0【解析】【分析】互为相反数的两个数的和为0,商为-1,互为倒数的两个数的积为1.【详解】∵m、n互为相反数,x、y互为倒数,∴m+n=0,,xy=1∴原式=0+1+(-1)=0.【点睛】本题主要考查的是相反数和倒数的性质,属于中等难度题型.明确互为相反数的两个数的和为零,互为倒数的两个数的积为1是解决这个问题的基础.17.6或14【解析】【分析】根据绝对值的性质可得x=±5,y=±4,再根据x>y,可得①x=5,y=4,②x=5,y=﹣4,然后可得2x+y的值.【详解】∵|x|=5,|y|=4,∴x=±5,y=±4.∵x>y,∴①x=5,y=4,2x+y=14;②x=5,y=﹣4,2x+y=6.故答案为:6或14.【点睛】本题主要考查了有理数的加法和绝对值,关键是掌握绝对值等于一个正数的数有两个.18.—7 , 0,, —2.55555……, 3.01, +9,+10﹪;4.020020002…,;—7 ,0, +9 ;, —2.55555……, 3.01, +10﹪.【解析】【分析】根据有理数,无理数,整数,分数的概念进行分类即可.【详解】有理数集合:{ —7 , 0,, —2.55555……, 3.01, +9,+10﹪ };无理数集合:{ 4.020020002…, };整数集合:{ —7 , 0, +9 };分数集合:{ , —2.55555……, 3.01, +10﹪ }【点睛】考查有理数,无理数,整数,分数的概念,整数和分数统称为有理数;无理数指的是无限不循环小数;整数包含正整数,0和负整数.19.(1)2;(2)9.【解析】【分析】(1)先化简绝对值、进行乘法运算,然后再进行加减法运算即可;(2)先进行乘方运算、再进行乘除运算、最后进行加减运算即可得.【详解】(1) )|-3|-5×(-)+(-4)=3-(-3)-4=3+3-4=2;(2) (-2)2-4÷(-)+(-1)2017=4-(-6)-1=4+6-1=9.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序与运算法则是解题的关键.20.(1)-6;(2) .【解析】分析:(1)运用乘法分配律计算可得;(2)根据有理数混合运算顺序和运算法则计算可得.详解:(1)原式=-9-12+15=-6.(2)原式=-1-××(-7)=-1+=.点睛:本题主要考查有理数的混合运算,熟练掌握有理数的混合运算的顺序和法则是解题的关键.21.见解析.【解析】【分析】首先在数轴上表示各数,再根据在数轴上表示的两个有理数,右边的数总比左边的数大比较大小;再根据负数小于0和有理数的分类找出负数、分数、非负整数.【详解】,负数:,;分数:,,;非负数:,,,.【点睛】考查了有理数的大小比较以及有理数的分类,掌握在数轴上表示的两个有理数,右边的数总比左边的数大是解题的关键.22.-9.【解析】【分析】根据相反数、互为倒数、正整数的性质,推出a+b=0,cd=1,m=1,整体代入即可解决问题. 【详解】由题意得a+b=0,cd=1,=-1,|m|=3,∴m=±3,∴m2=(±3)2=9,∴原式=m[2(a+b)]2015+12016+(-1)2017-9=m(2×0)2015+1+(-1)-9=-9.【点睛】本题考查有理数的混合运算、相反数、互为倒数、正整数的性质等知识,属于中考常考题型. 23.(1)是回到起点O;(2)8厘米;(3)108.【解析】【分析】(1)分别相加,看是否为0,为0则回到了起点O;(2)分别计算绝对值,再比较大小即可;(3)计算绝对值的和,就是总路程,列式可得结论.【详解】(1)﹣6+12﹣10+5﹣3+10﹣8=0.所以蜗牛可以回到起点O.(2)|﹣6|=6,|﹣6+12|=6,|﹣6+12﹣10|=4,|﹣6+12﹣10+5|=1,|﹣6+12﹣10+5﹣3|=2,|﹣6+12﹣10+5﹣3+10|=8,所以蜗牛离开出发点O最远时是8厘米;(3)(6+12+10+5+3+10+8)×2=54×2=108答:蜗牛一共得到108粒芝麻.【点睛】本题考查了正数和负数的意义和有理数的加减法,解题的关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量;相加减时要注意同号相加比较简便.24.第二运算顺序错误第三步符号错误【解析】分析:(1)从第一步到第二步,先计算除法,再计算乘法,所以第1处是第二步,错误原因是运算顺序错误;然后根据有理数除法的运算方法,可得第2处是第三步,错误原因是符号错误.(2)根据有理数除法、乘法的运算方法,从左向右,求出算式的值是多少即可.详解:(1)上面解题过程中有两处错误,第一处是第二步,错误的原因是运算顺序错误,第二处是第三步,错误的原因是符号错误.(2)(﹣15)÷()×6=(﹣15)×6=(﹣15)×(﹣6)×6=90×6=540.故答案为:二、运算顺序错误;三、符号错误.点睛:(1)此题主要考查了有理数除法的运算方法,要熟练掌握,解答此题的关键是要明确:除以一个不等于0的数,等于乘这个数的倒数.(2)此题还考查了有理数乘法的运算方法,要熟练掌握,解答此题的关键是要明确:两数相乘,同号得正,异号得负,并把绝对值相乘.。
人教版初中七年级数学上册第一章《有理数》测试题(含答案解析)
人教版初中七年级数学上册第一章《有理数》测试题(含答案解析)一、选择题1.(0分)2--的相反数是()A.12-B.2-C.12D.2D解析:D【分析】|-2|去掉绝对值后为2,而-2的相反数为2.【详解】2--的相反数是2,故选:D.【点睛】本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0.2.(0分)下列各数中,互为相反数的是()A.+(-2)与-2 B.+(+2)与-(-2) C.-(-2)与2 D.-|-2|与+(+2)D解析:D【解析】【分析】先将各选项中的数字化简,然后根据相反数的定义进行判断即可.【详解】A. +(-2)=-2,-2=-2,故A选项中的两个数不互为相反数;B. +(+2)=2, -(-2)=2,故B选项中的两个数不互为相反数;C. -(-2)=2,2=2,故C选项中的两个数不互为相反数;D. -|-2|=-2,+(+2)=2,-2与2互为相反数,故D选项中的两个数互为相反数,故选D.【点睛】本题考查了相反数的概念,涉及了绝对值化简等,熟练掌握相关知识是解题的关键. 3.(0分)已知a、b在数轴上的位置如图所示,将a、b、-a、-b从小到排列正确的一组是()A.-a<-b<a<b B.-b<-a<a<bC.-b<a<b<-a D.a<-b<b<-a D解析:D【解析】【分析】根据数轴表示数的方法得到a<0<b,且|a|>b,则-a>b,-b>a,然后把a,b,-a,-b从大到小排列.【详解】∵a <0<b ,且|a|>b ,∴a <-b <b <-a ,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.4.(0分)下列有理数大小关系判断正确的是( )A .11910⎛⎫-->-⎪⎝⎭ B .010>- C .33-<+D .10.01->- A 解析:A【分析】先化简各式,然后根据有理数大小比较的方法判断即可.【详解】 ∵1199⎛⎫--= ⎪⎝⎭,111010--=-,11910>-, ∴11910⎛⎫-->-- ⎪⎝⎭,故选项A 正确; ∵1010-=,010<, ∴010<-,故选项B 不正确; ∵33-=,33+=, ∴33-=+,故选项C 不正确; ∵11-=,0.010.01-=,10.01>,∴10.01-<-,故选项D 不正确.故选:A .【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.5.(0分)在数轴上距原点4个单位长度的点所表示的数是( ).A .4B .-4C .4或-4D .2或-2C解析:C【解析】解:距离原点4个单位长度的点在原点的左边和右边各有一个,分别是4和-4,故选C .6.(0分)用计算器求243,第三个键应按()A.4 B.3 C.y x D.=C 解析:C【解析】用计算器求243,按键顺序为2、4、y x、3、=.故选C.点睛:本题考查了熟练应用计算器的能力,解题关键是熟悉不同的按键功能.7.(0分)如果a,b,c为非零有理数且a + b + c = 0,那么a b c abca b c abc+++的所有可能的值为(A.0 B.1或- 1 C.2或- 2 D.0或- 2A解析:A【分析】根据题意确定出a,b,c中负数的个数,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:∵a、b、c为非零有理数,且a+b+c=0∴a、b、c只能为两正一负或一正两负.①当a、b、c为两正一负时,设a、b为正,c为负,原式=1+1+(-1)+(-1)=0,②当a、b、c为一正两负时,设a为正,b、c为负原式1+(-1)+(-1)+1=0,综上,a b c abca b c abc+++的值为0,故答案为:0.【点睛】此题考查了绝对值,有理数的混合运算,熟练掌握运算法则是解本题的关键.8.(0分)一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案()A.少5 B.少10 C.多5 D.多10D解析:D【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10.故选D.9.(0分)计算-3-1的结果是()A.2 B.-2 C.4 D.-4D解析:D【解析】试题-3-1=-3+(-1)=-(3+1)=-4.故选D.10.(0分)计算(-2)2018+(-2)2019等于( )A .-24037B .-2C .-22018D .22018C 解析:C【分析】直接利用偶次方,奇次方的性质化简各数得出答案.【详解】解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2)=-22018故选:C.【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键.二、填空题11.(0分)23(2)0x y -++=,则x y 为______.﹣8【分析】根据绝对值的非负性和偶次方的非负性求出xy 的值然后代入代数式中计算即可【详解】解:∵∴x-3=0y+2=0解得:x=3y=﹣2∴==﹣8故答案为:﹣8【点睛】本题考查代数式求值绝对值乘方解析:﹣8【分析】根据绝对值的非负性和偶次方的非负性求出x 、y 的值,然后代入代数式中计算即可.【详解】解:∵23(2)0x y -++=,∴x-3=0,y+2=0,解得:x=3,y=﹣2,∴x y =3(2)-=﹣8,故答案为:﹣8.【点睛】本题考查代数式求值、绝对值、乘方运算,熟练掌握绝对值和偶次方的非负性是解答的关键. 12.(0分)(1)-23与25的差的相反数是_____. (2)若|a +2|+|b -3|=0,则a -b =_____. (3)-13的绝对值比2的相反数大_____.-5【分析】(1)先计算两个数的差再计算相反数即可;(2)由绝对值的非负性求出ab 的值再求出答案即可;(3)由题意列出式子进行计算即可得到答案【详解】解:(1)根据题意则;(2)∵|a +2|+|b - 解析:1615 -5 123【分析】 (1)先计算两个数的差,再计算相反数即可;(2)由绝对值的非负性,求出a 、b 的值,再求出答案即可;(3)由题意列出式子进行计算,即可得到答案.【详解】解:(1)根据题意,则221616()()351515---=--=; (2)∵|a +2|+|b -3|=0,∴20a +=,30b -=,∴2a =-,3b =,∴235a b -=--=-;(3)根据题意,则111(2)22333---=+=; 故答案为:1615;5-;123. 【点睛】 本题考查了绝对值的意义,相反数,列代数式求值,解题的关键是熟练掌握题意,正确的列出式子,从而进行解题.13.(0分)我国“杂交水稻之父”袁隆平主持研究的某种超级杂交稻平均亩产820千克,某地今年计划栽种这种超级杂交稻30万亩,预计今年这种超级杂交稻的产量_____千克(用科学记数法表示)46×108【分析】本题已知的是亩产量和亩数要求总产量就要利用三者之间的关系式先计算总产量通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案【详解】解:依题意得: 解析:46×108【分析】本题已知的是亩产量和亩数,要求总产量,就要利用三者之间的关系式先计算总产量.通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案.【详解】解:依题意得:820×300000=246000000=2.46×108.故答案为:2.46×108.【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.(0分)33278.5 4.5 1.67--=____(精确到千分位)【分析】根据有理数的运算法则进行运算再精确到精确到千分位【详解】故答案为【点睛】此题主要考查近似数解题的关键是熟知有理数的运算法则解析: 2.559-【分析】根据有理数的运算法则进行运算,再精确到精确到千分位.【详解】33278.5 4.55231.6 2.56 2.5597823543--=-≈- 故答案为 2.559-.【点睛】此题主要考查近似数,解题的关键是熟知有理数的运算法则.15.(0分)运用加法运算律填空:(1)[(-1)+2]+(-4)=___=___;(2)117+(-44)+(-17)+14=____=____.(-1)+(-4)+2-3117+(-17)+(-44)+1470【分析】(1)根据同号相加的特点利用加法的交换律先计算(-1)+(-4);(2)利用抵消的特点利用加法的交换律和结合律进行简便计算【 解析:[(-1)+(-4)]+2 -3 [117+(-17)]+[(-44)+14] 70【分析】(1)根据同号相加的特点,利用加法的交换律,先计算(-1)+(-4);(2)利用抵消的特点,利用加法的交换律和结合律进行简便计算.【详解】(1)同号相加较为简单,故:[(-1)+2]+(-4)=[(-1)+(-4)]+2=-3(2)117和(-17)可通过抵消凑整,(-44)和14也可通过抵消凑整,故:117+(-44)+(-17)+14=[117+(-17)]+[(-44)+14]=70.【点睛】本题考查有理数加法的简算,解题关键是灵活利用加法交换律和结合律,凑整进行简算. 16.(0分)气温由﹣20℃下降50℃后是__℃.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的解析:-70【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.【详解】解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.∵-20-50=-20+(-50)=-70∴答案为:-70.【点睛】本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键. 17.(0分)在数轴上与表示 - 2的点的距离为3个单位长度的点所表示的数是 _________ .-5或1【分析】根据题意得出两种情况:当点在表示-2的点的左边时当点在表示-2的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-2的点的左边时数为-2-3=-5;②当点在表示-2的点的解析:-5或1【分析】根据题意得出两种情况:当点在表示-2的点的左边时,当点在表示-2的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-2的点的左边时,数为-2-3=-5;②当点在表示-2的点的右边时,数为-2+3=1;故答案为-5或1.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况.在数轴上到一个点的距离相等的点有两个,一个在这个点的左边,一个在这个点的右边.18.(0分)若2(1)20a b -+-=,则2015()a b -= _______________.-1【分析】直接利用偶次方的性质以及绝对值的性质得出ab 的值进而得出答案【详解】由题意得:a -1=0b ﹣2=0解得:a =1b =2故=(1﹣2)2015=-1故答案为-1【点睛】本题考查了非负数的性质解析:-1【分析】直接利用偶次方的性质以及绝对值的性质得出a ,b 的值,进而得出答案.【详解】由题意得:a -1=0,b ﹣2=0,解得:a =1,b =2,故2015()a b -=(1﹣2)2015=-1.故答案为-1.【点睛】本题考查了非负数的性质,正确得出a ,b 的值是解题的关键.19.(0分)(1)用四舍五入法,对5.649取近似值,精确到0.1的结果是____;(2)用四舍五入法,把1 999.508取近似值(精确到个位),得到的近似数是____;(3)用四舍五入法,把36.547精确到百分位的近似数是____.(1)56(2)2000(3)3655【分析】(1)精确到哪一位即对下一位的数字进行四舍五入据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可【详解】解解析:(1)5.6 (2)2000 (3)36.55【分析】(1)精确到哪一位,即对下一位的数字进行四舍五入,据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可.【详解】解:(1)5.649≈5.6.(2)1999.58≈2000(3)36.547≈36.55故答案为:5.6;2000;36.55【点睛】本题考查了近似数:经过四舍五入得到的数为近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位的说法.20.(0分)绝对值小于4.5的所有负整数的积为______.24【分析】找出绝对值小于45的所有负整数求出之积即可【详解】解:绝对值小于45的所有负整数为:-4-3-2-1∴积为:故答案为:24【点睛】此题考查了有理数的乘法以及绝对值熟练掌握运算法则是解本题解析:24【分析】找出绝对值小于4.5的所有负整数,求出之积即可.【详解】解:绝对值小于4.5的所有负整数为:-4,-3,-2,-1,∴积为:4(3)(2)(1)24-⨯-⨯-⨯-=,故答案为:24.【点睛】此题考查了有理数的乘法,以及绝对值,熟练掌握运算法则是解本题的关键.三、解答题21.(0分)计算:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭;(2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭; 解析:(1)6;(2)11.【分析】(1)先变成省略括号和形式,同时把小数化分数,把分数相加,同号相加,最后异号相加即可;(2)先算乘方,去绝对值和带分数化假分数,再计算乘法,最后计算加减法即可.【详解】解:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭, =1312744+-+, =1217+-,=13-7,=6;(2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭, =()351124444⎛⎫++⨯--⨯- ⎪⎝⎭=11235++-=11.【点睛】本题考查含有乘方的有理数混合,掌握有理数混合运算的法则,解答的关键是熟练掌握运算法则和运算顺序.22.(0分)计算:(1)()()()923126--⨯-+÷-(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭. 解析:(1)1;(2)-1.【分析】(1)先算乘除,再算加减即可求解;(2)先算乘方,后算除法,最后算加减即可求解.【详解】(1)()()()923126--⨯-+÷-=962--=1;(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭=11 891632 -+-÷=1 893216-+-⨯=892-+-=-1.【点睛】此题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.23.(0分)将n个互不相同的整数置于一排,构成一个数组.在这n个数字前任意添加“+”或“-”号,可以得到一个算式.若运算结果可以为0,我们就将这个数组称为“运算平衡”数组.(1)数组1,2,3,4是否是“运算平衡”数组?若是,请在以下数组中填上相应的符号,并完成运算;1 2 3 4 =(2)若数组1,4,6,m是“运算平衡”数组,则m的值可以是多少?(3)若某“运算平衡”数组中共含有n个整数,则这n个整数需要具备什么样的规律?解析:(1)是,+1-2-3+4=0;(2)m=±1,±3,±9,±11;(3)这n个整数互不相同,在这n个数字前任意添加“+”或“-”号后运算结果为0.【分析】(1)根据“运算平衡”数组的定义即可求解;(2)根据“运算平衡”数组的定义得到关于m的方程,解方程即可;(3)根据“运算平衡”数组的定义可以得到n个数的规律.【详解】解:(1)数组1,2,3,4是“运算平衡”数组,+1-2-3+4=0;(2)要使数组1,4,6,m是“运算平衡”数组,有以下情况:1+4+6+m=0;-1+4+6+m=0;1-4+6+m=0;1+4-6+m=0;1+4+6-m=0;-1-4+6+m=0;-1+4-6+m=0;-1+4+6-m=0;1-4-6+m=0;1-4+6-m=0;1+4-6-m=0;-1-4-6+m=0;-1-4+6-m=0,-1+4-6-m=0,1-4-6-m=0;-1-4-6-m=0;共16中情况,经计算得m=±1,±3,±9,±11;(3)这n个整数互不相同,在这n个数字前任意添加“+”或“-”号后运算结果为0.【点睛】本题考查了新定义问题,理解“运算平衡”数组的定义是解题关键.24.(0分)计算:(1)157(36)2612⎛⎫--⨯-⎪⎝⎭(2)2138(2)3⎛⎫⨯-+÷-⎪⎝⎭解析:(1)33;(2)1.【分析】(1)根据乘法分配律可以解答本题;(1)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)原式=157(36)(36)(36)2612⨯--⨯--⨯-= -18+30+21=33; (2)原式= -1+2=1.【点睛】 本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.25.(0分)计算:(1)23(2)14⎛⎫-⨯- ⎪⎝⎭;(2)2331(2)592-+-⨯--÷. 解析:(1)1-;(2)47-.【分析】(1)原式先计算乘方和括号内,然后再计算乘法即可得到答案;(2)原式先计算乘方和化简绝对值,再计算乘除法,最后计算加减运算即可得到答案.【详解】解:(1)23(2)14⎛⎫-⨯- ⎪⎝⎭ 3414⎛⎫=⨯- ⎪⎝⎭ 144⎛⎫=⨯- ⎪⎝⎭1=-.(2)2331(2)592-+-⨯--÷ 21(8)593=-+-⨯-⨯ 1406=---47=-.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.26.(0分)某市质量监督局从某公司生产的婴幼儿奶粉中,随意抽取了20袋进行检查,超过标准质量的部分记为正数,不足的部分记为负数,抽查的结果如下表:(1)这批样品每袋的平均质量比标准质量多(或少)多少克?(2)若每袋奶粉的标准质量为480克,则抽样检测的这些奶粉的总质量是多少克? 解析:(1)多1.75克;(2)9635克【分析】(1)先计算出平均质量,若正则比标准质量多,若负则比标准质量少;(2)抽样总质量等于标准总质量加上超出的质量,或等于平均每袋质量乘以抽取的袋数.【详解】解:(1)()()15505551035110203520 1.571-÷=÷=⎡⨯+-⨯+⎤⎣⨯++⨯++⎦⨯⨯(克).所以这批样品每袋的平均质量比标准质量多1.75克.(2)()5428001.56793+⨯=(克)所以抽样检测的这些奶粉的总质量为9635克.【点睛】本题考查了有理数的混合运算和正负数的意义.有理数混合运算的顺序:先算乘除再算加减,有括号的先算括号里面的.27.(0分)计算:(1)()110822⎫⎛---÷-⨯-⎪⎝⎭(2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭ 解析:(1)12- ;(2)0【分析】(1)先去绝对值,同时把除变乘,再计算乘法,最后加减即可(2)先计算乘方和括号内的,把除变乘,再计算乘法,最后加减法即可【详解】(1)()110822⎫⎛---÷-⨯-⎪⎝⎭ =1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ =102--=-12(2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭=()()2386154-⨯---⨯-=243660--+=0【点睛】本题考查有理数的混合运算,解答的关键是熟练掌握运算法则和运算顺序.28.(0分)计算:(1)()2131753-⨯---+ (2)311131484886⎛⎫-+⨯- ⎪⎝⎭解析:(1)6;(2)58. 【分析】 (1)先计算乘方,再计算乘法,最后计算加减即可;(2)带分数化成假分数,利用乘法分配律去掉括号,再计算加减即可.【详解】(1)()2131753-⨯---+ 29753=-⨯++ 675=-++6=;(2)311131484886⎛⎫-+⨯- ⎪⎝⎭ 1591148484886=-+⨯-⨯ 3096888=-+- 30916888=-- 58=. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.。
新人教版初中数学七年级数学上册第一单元《有理数》测试题(含答案解析)(1)
一、选择题1.下列各式中,不相等的是( ) A .(﹣5)2和52 B .(﹣5)2和﹣52 C .(﹣5)3和﹣53 D .|﹣5|3和|﹣53|2.定义一种新运算2x y x y x+*=,如:2212122+⨯*==.则()(42)1**-=( ) A .1 B .2 C .0 D .-23.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >0 4.-1+2-3+4-5+6+…-2011+2012的值等于A .1B .-1C .2012D .10065.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( ) A .1,2 B .1,3 C .4,2D .4,36.将(-3.4)3,(-3.4)4,(-3.4)5从小到大排列正确的是( )A .(-3.4)3<(-3.4)4<(-3.4)5B .(-3.4)5<(-3.4)4<(-3.4)3C .(-3.4)5<(-3.4)3<(-3.4)4D .(-3.4)3<(-3.4)5<(-3.4)4 7.下列运算正确的是( ) A .()22-2-21÷=B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=- D .133( 3.25)6 3.2532.544⨯--⨯=-8.一个数的绝对值是3,则这个数可以是( ) A .3B .3-C .3或者3-D .139.下列关系一定成立的是( ) A .若|a|=|b|,则a =b B .若|a|=b ,则a =b C .若|a|=﹣b ,则a =bD .若a =﹣b ,则|a|=|b|10.如果a ,b ,c 为非零有理数且a + b + c = 0,那么a b c abc a b c abc+++的所有可能的值为(A .0B .1或- 1C .2或- 2D .0或- 211.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此下去,第六次后剩下的绳子长度为( )A .312⎛⎫ ⎪⎝⎭米 B .512⎛⎫ ⎪⎝⎭米 C .612⎛⎫ ⎪⎝⎭米 D .1212⎛⎫ ⎪⎝⎭米 12.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .a+b <0B .a+b >0C .a ﹣b <0D .ab >0二、填空题13.计算(﹣1)÷6×(﹣16)=_____. 14.已知|a |=3,|b |=2,且ab <0,则a ﹣b =_____. 15.数轴上表示 1 的点和表示﹣2 的点的距离是_____. 16.数轴上A 、B 两点所表示的有理数的和是 ________.17.已知0a >,0b <,b a >,比较a ,a -,b ,b -四个数的大小关系,用“<”把它们连接起来:_______.18.若a ,b 互为相反数,c ,d 互为倒数,且0a ≠,则200720082009()()()aa b cd b++-=___________.19.计算:(-0.25)-134⎛⎫- ⎪⎝⎭+2.75-172⎛⎫+ ⎪⎝⎭=___. 20.(1)用四舍五入法,对5.649取近似值,精确到0.1的结果是____; (2)用四舍五入法,把1 999.508取近似值(精确到个位),得到的近似数是____; (3)用四舍五入法,把36.547精确到百分位的近似数是____.三、解答题21.在数轴上,一只蚂蚁从原点O 出发,它先向左爬了2个单位长度到达点A ,再向右爬了3个单位长度到达点B ,最后向左爬了9个单位长度到达点C . (1)写出A ,B ,C 三点表示的数;(2)根据点C 在数轴上的位置回答,蚂蚁实际上是从原点出发,向什么方向爬了几个单位长度?22.将n 个互不相同的整数置于一排,构成一个数组.在这n 个数字前任意添加“+”或“-”号,可以得到一个算式.若运算结果可以为0,我们就将这个数组称为“运算平衡”数组. (1)数组1,2,3,4是否是“运算平衡”数组?若是,请在以下数组中填上相应的符号,并完成运算; 1 2 3 4 =(2)若数组1,4,6,m 是“运算平衡”数组,则m 的值可以是多少?(3)若某“运算平衡”数组中共含有n 个整数,则这n 个整数需要具备什么样的规律? 23.某农户家准备出售10袋大米,称得质量如下:(单位:千克) 182,180,175,173,182,185,183,181,180,183(1)填空:以180千克作为基准数,可用正、负数表示这10袋大米的质量与180的差为 ;(2)试计算这10袋大米的总质量是多少千克?24.在数轴上表示下列各数:14, 1.5,3,0,2.5,52----,并将它们按从小到大的顺序排列.25.321032(2)(3)5-÷---⨯26.计算: (1)13|38|44⎛⎫--+- ⎪⎝⎭(2)2202111(1)236⎛⎫-+⨯-÷ ⎪⎝⎭(3)22110.51339⎛⎫⨯-÷ ⎪⎝⎭ (4)157(48)2812⎡⎤⎛⎫-⨯--+ ⎪⎢⎥⎝⎭⎣⎦【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】本题运用有理数的乘方,相反数以及绝对值的概念进行求解. 【详解】选项A :22(5)(5)(5)5-=--=选项B :22(5)(5)(5)525-=--==;25(55)25-=-⨯=- ∴22(5)5-≠-选项C :3(5)(5)(5)(5)125-=---=-;35(555)125-=-⨯⨯=-∴33(5)5-=-选项D :35555555125-=-⨯-⨯-=⨯⨯=;35(555)125125-=-⨯⨯=-= ∴3355-=- 故选B . 【点睛】本题考查了有理数的乘方,相反数(只有正负号不同的两个数互称相反数),绝对值(一个有理数的绝对值是这个有理数在数轴上的对应点到原点的距离),其中正数和零的绝对值是其本身,负数的绝对值是它的相反数.2.C解析:C 【分析】先根据新定义计算出4*2=2,然后再根据新定义计算2*(-1)即可. 【详解】 4*2=4224+⨯ =2, 2*(-1)= ()2212+⨯- =0. 故(4*2)*(-1)=0. 故答案为C . 【点睛】定义新运算是近几年的热门题型,首先要根据新运算正确列出算式,本题考查了有理数混合运算,根据新运算定义正确列出算式并熟练掌握有理数的运算法则是解答本题的关键.3.B解析:B 【分析】先弄清a,b,c 在数轴上的位置及大小,根据实数大小比较方法可以解得. 【详解】从a 、b 、c 、d 在数轴上的位置可知:a <b <0,d >c >1; A 、|a|>|b|,故选项正确;B 、a 、c 异号,则|ac|=-ac ,故选项错误;C 、b <d ,故选项正确;D 、d >c >1,则c+d >0,故选项正确. 故选B. 【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.4.D解析:D 【解析】解:原式=(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2011+2012)=+1+1+1+…+1=1006.故选D .点睛:本题考查了有理数的混合运算,正确根据式子的特点进行正确分组是关键.5.A解析:A 【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30, 30+4×3=42, 故选A .点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.6.C解析:C 【解析】(-3.4)3、 (-3.4)5的积为负数,且(-3.4)3的绝对值小于 (-3.4)5的绝对值,所以(-3.4)3>(-3.4)5 ;(-3.4)4的积为正数,根据正数大于负数,即可得(-3.4)5<(-3.4)3<(-3.4)4,故选C.7.D解析:D 【分析】根据有理数的乘方运算可判断A 、B ,根据有理数的乘除运算可判断C ,利用乘法的运算律进行计算即可判断D . 【详解】A 、()22-2-2441÷=-÷=-,该选项错误;B 、33343191217-2-332727⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,该选项错误; C 、1335539355-÷⨯=-⨯⨯=-,该选项错误; D 、13132713273( 3.25)6 3.25 3.25 3.25 3.25()32.5444444⨯--⨯=-⨯-⨯=-⨯+=,该选正确; 故选:D . 【点睛】本题考查了有理数的混合运算.注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.8.C解析:C【解析】试题∵一个数的绝对值是3,可设这个数位a,∴|a|=3,∴a=±3故选C.9.D解析:D【分析】根据绝对值的定义进行分析即可得出正确结论.【详解】选项A、B、C中,a与b的关系还有可能互为相反数,故选项A、B、C不一定成立,D.若a=﹣b,则|a|=|b|,正确,故选D.【点睛】本题考查了绝对值的定义,熟练掌握绝对值相等的两个数的关系是相等或互为相反数是解题的关键.10.A解析:A【分析】根据题意确定出a,b,c中负数的个数,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:∵a、b、c为非零有理数,且a+b+c=0∴a、b、c只能为两正一负或一正两负.①当a、b、c为两正一负时,设a、b为正,c为负,原式=1+1+(-1)+(-1)=0,②当a、b、c为一正两负时,设a为正,b、c为负原式1+(-1)+(-1)+1=0,综上,a b c abca b c abc+++的值为0,故答案为:0.【点睛】此题考查了绝对值,有理数的混合运算,熟练掌握运算法则是解本题的关键.11.C解析:C【分析】根据乘方的意义和题意可知:第2次后剩下的绳子的长度为(12)2米,那么依此类推得到第六次后剩下的绳子的长度为(12)6米.【详解】∵1-12=12,∴第2次后剩下的绳子的长度为(12)2米;依此类推第六次后剩下的绳子的长度为(12)6米.故选C.【点睛】此题主要考查了乘方的意义.其中解题是正确理解题意是解题的关键,能够根据题意列出代数式是解题主要步骤.12.A解析:A【分析】根据数轴判断出a、b的符号和取值范围,逐项判断即可.【详解】解:从图上可以看出,b<﹣1<0,0<a<1,∴a+b<0,故选项A符合题意,选项B不合题意;a﹣b>0,故选项C不合题意;ab<0,故选项D不合题意.故选:A.【知识点】本题考查了数轴、有理数的加法、减法、乘法,根据数轴判断出a、b的符号,熟知有理数的运算法则是解题关键.二、填空题13.【分析】根据有理数乘除法法则进行计算【详解】解:(-1)÷6×(-)=-×(−)=故答案为【点睛】此题考查了有理数的乘除法熟练掌握法则是解本题的关键解析:136.【分析】根据有理数乘除法法则进行计算.【详解】解:(-1)÷6×(-16),=-16×(−16),=1 36.故答案为1 36.【点睛】此题考查了有理数的乘除法,熟练掌握法则是解本题的关键.14.5或﹣5【分析】先根据绝对值的定义求出ab的值然后根据ab<0确定ab 的值最后代入a﹣b中求值即可【详解】解:∵|a|=3|b|=2∴a=±3b=±2;∵ab<0∴当a=3时b=﹣2;当a=﹣3时b解析:5或﹣5【分析】先根据绝对值的定义,求出a、b的值,然后根据ab<0确定a、b的值,最后代入a﹣b中求值即可.【详解】解:∵|a|=3,|b|=2,∴a=±3,b=±2;∵ab<0,∴当a=3时b=﹣2;当a=﹣3时b=2,∴a﹣b=3﹣(﹣2)=5或a﹣b=﹣3﹣2=﹣5.故填5或﹣5.【点睛】本题主要考查的是有理数的乘法、绝对值、有理数的减法,熟练掌握相关法则是解题的关键.15.3【分析】直接根据数轴上两点间的距离公式求解即可【详解】∵|1-(-2)|=3∴数轴上表示-2的点与表示1的点的距离是3故答案为3【点睛】本题考查的是数轴熟知数轴上两点间的距离公式是解答此题的关键解析:3【分析】直接根据数轴上两点间的距离公式求解即可.【详解】∵|1-(-2)|=3,∴数轴上表示-2的点与表示1的点的距离是3.故答案为3.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.16.-1【解析】由数轴得点A表示的数是﹣3点B表示的数是2∴AB两点所表示的有理数的和是﹣3+2=﹣1故答案为-1【解析】由数轴得,点A 表示的数是﹣3,点B 表示的数是2, ∴ A ,B 两点所表示的有理数的和是﹣3+2=﹣1, 故答案为-1.17.b <-a <a <-b 【分析】先在数轴上标出ab-a-b 的位置再比较即可【详解】解:∵a >0b <0|b|>|a|∴b <-a <a <-b 故答案为:b <-a <a <-b 【点睛】本题考查了数轴相反数和有理数的大小解析:b <-a <a <-b 【分析】先在数轴上标出a 、b 、-a 、-b 的位置,再比较即可. 【详解】解:∵a >0,b <0,|b|>|a|, ∴b <-a <a <-b , 故答案为:b <-a <a <-b .【点睛】本题考查了数轴,相反数和有理数的大小比较,能知道a 、b 、-a 、-b 在数轴上的位置是解此题的关键.18.2【分析】利用相反数倒数的性质确定出a+bcd 的值代入原式计算即可求出值【详解】解:根据题意得:a+b=0cd=1则原式=0+1-(-1)=2故答案为:2【点睛】此题考查了有理数的混合运算熟练掌握运解析:2 【分析】利用相反数,倒数的性质确定出a+b ,cd 的值,代入原式计算即可求出值. 【详解】解:根据题意得:a+b=0,cd=1,1ab=- 则原式=0+1-(-1)=2. 故答案为:2. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.-175【分析】根据减法法则将减法全部转化为加法同时把分数化成小数然后利用加法的交换结合律进行计算【详解】解:原式=-025+325+275-75=(-025-75)+(325+275)=-775+解析:-1.75 【分析】根据减法法则将减法全部转化为加法,同时把分数化成小数,然后利用加法的交换结合律【详解】解:原式=-0.25+3.25+2.75-7.5=(-0.25-7.5)+( 3.25+2.75)=-7.75+6=-1.75.故答案为:-1.75.【点睛】本题考查了有理数加减混合运算,一般思路是先把加减法统一为加法,然后利用加法的运算律进行计算.20.(1)56(2)2000(3)3655【分析】(1)精确到哪一位即对下一位的数字进行四舍五入据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可【详解】解解析:(1)5.6 (2)2000 (3)36.55【分析】(1)精确到哪一位,即对下一位的数字进行四舍五入,据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可.【详解】解:(1)5.649≈5.6.(2)1999.58≈2000(3)36.547≈36.55故答案为:5.6;2000;36.55【点睛】本题考查了近似数:经过四舍五入得到的数为近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位的说法.三、解答题21.(1)A,B,C三点表示的数分别是-2,1,-8;(2)向左爬了8个单位.【分析】(1)向左用减法,向右用加法,列式求解即可写出答案;(2)根据C点表示的数,向右为正,向左为负,继而得出答案.【详解】解:(1)A点表示的数是0-2=-2,B点表示的数是-2+3=1,C点表示的数是1-9=-8;(2)∵O点表示的数是0;C点表示的数是-8,∴蚂蚁实际上是从原点出发,向左爬了8个单位.【点睛】本题考查了数轴的知识及有理数的加减法的应用,属于基础题,比较简单,理解向左用减法,向右用加法,是关键.22.(1)是,+1-2-3+4=0;(2)m=±1,±3,±9,±11;(3)这n个整数互不相同,在这n个数字前任意添加“+”或“-”号后运算结果为0.【分析】(1)根据“运算平衡”数组的定义即可求解;(2)根据“运算平衡”数组的定义得到关于m的方程,解方程即可;(3)根据“运算平衡”数组的定义可以得到n个数的规律.【详解】解:(1)数组1,2,3,4是“运算平衡”数组,+1-2-3+4=0;(2)要使数组1,4,6,m是“运算平衡”数组,有以下情况:1+4+6+m=0;-1+4+6+m=0;1-4+6+m=0;1+4-6+m=0;1+4+6-m=0;-1-4+6+m=0;-1+4-6+m=0;-1+4+6-m=0;1-4-6+m=0;1-4+6-m=0;1+4-6-m=0;-1-4-6+m=0;-1-4+6-m=0,-1+4-6-m=0,1-4-6-m=0;-1-4-6-m=0;共16中情况,经计算得m=±1,±3,±9,±11;(3)这n个整数互不相同,在这n个数字前任意添加“+”或“-”号后运算结果为0.【点睛】本题考查了新定义问题,理解“运算平衡”数组的定义是解题关键.23.(1)+2,0,−5,-7,+2,+5,+3,+1,0,+3;(2)1804千克【分析】(1)规定超出基准数为正数,则不足部分用负数表示,即可;(2)把第(1)题10个数相加,再加上180×10,即可.【详解】(1)以180千克为基准数,超过180千克的记作正数,低于180千克的记作负数,那么各袋大米的质量分别为:+2,0,−5,-7,+2,+5,+3,+1,0,+3,故答案是:+2,0,−5,-7,+2,+5,+3,+1,0,+3;(2)(+2+0−5-7+2+5+3+1+0+3)+ 180×10=1804(千克),答:这10袋大米的总质量是1804千克.【点睛】本题主要考查正负数的意义以及有理数的加减法的实际应用,熟练掌握有理数的加减法运算法则,是解题的关键.24.图见解析,153 1.50 2.542--<-<-<<<【分析】在数轴上表示出各数,再按照从左到右的顺序用“<”号把它们连接起来即可.【详解】解: 5=-5--如图所示:故:1531.502.542--<-<-<<<. 【点睛】本题考查的是有理数的大小比较,熟知数轴的特点是解答此题的关键. 25.﹣31.【分析】根据有理数的混合运算法则计算即可.【详解】解:321032(2)(3)5-÷---⨯=10-32÷(﹣8)-9×5=10-(﹣4)-45=10+4-45=14-45=﹣31.【点睛】此题主要考察了有理数的混合运算,解题关键是掌握有理数混合运算法则. 26.(1)4;(2)13;(3)14-;(4)26. 【分析】(1)先把绝对值化简,再进一步计算可得答案;(2)先计算乘方、除法转化为乘法,再进一步计算即可;(4)先算括号里面的,再把除法化为乘法,进一步计算即可; (4)利用乘法分配律展开,再进一步计算即可.【详解】(1)13|38|44⎛⎫--+- ⎪⎝⎭ =13544-- =5-1=4;(2)2202111(1)236⎛⎫-+⨯-÷ ⎪⎝⎭ =11269-+⨯⨯=-1+4 3=13;(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭=211 1()1 369⨯-÷=519() 3610⨯-⨯=14 -;(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦=157 (48)()(48)(48)2812 -⨯---⨯+-⨯=24+30-28=26.【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.。
人教版七年级上册数学《有理数》测试题(含答案)
七年级数学单元测试题(一)有理数1、选择题(每题3分, 共30分)A 、有一种记分方法:以80分为准, 88分记为+8分, 则某同学得分为74分, 应记为( )A 、+74 分 B.分 C.+6分 D.分B 、下列各数中, 最小的正数是( )3、 B.0 C 、1 D 、24、下列说法中正确的是( )A.0可以用数轴上的点来表示B.数轴上所有的点都表示有理数C.数轴上找不到既不表示正数也不表示负数的点D.数轴上表示的点一定在原点的右边A 、4.2的相反数是( )A 、 B. C.2 D.B 、若, 则和的关系为( )和相等 B.和互为相反数A 、C.和相等或互为相反数 D.以上答案都不对B 、下列计算, 正确的是( )B.7、C. D 、8、与)()(y x ---相等的式子是( )8、 B. C. D.9、下列说法错误的是( )一个数同1相乘, 仍得这个数 B.一个数同相乘, 得原数的相反数9、C 、互为相反数的数的积为1 D 、一个数同0相乘, 得010、计算31327⨯÷-的结果是( ) 10、 B.27 C. D.311、计算223)2(5)3(--+-的值为( )二、A.2 B.5 C. D.11、填空题(每题4分, 共24分)12、比较大小: .13、1030这个数用科学记数法可表示为 .14、12的相反数与7-的绝对值的和是 .数轴上点A, B 的位置如图所示, 若点A 左侧有一点C 满足AB=AC, 则点C 表示的数为 .15、一个数的倒数是, 这个数是 .三、若是的相反数, =5, 则的值为 .解答题一(每题6分, 共18分)17、计算: 18、计算19、计算:四、解答题二(每题7分, 共21分)20、检查5袋水泥的质量, 把超过标准质量的克数记为正数, 不足标准质量的克数记为负数, 记录结果如下表所示:水泥编号1 2 3 4 5 与标准质量的差 100+ 50- +80 70- 30-(1)用绝对值判断最接近标准质量的是几号水泥;质量最大的水泥比质量最小的水泥重多少克?如图, 在数轴上有三个点A.B.C, 请回答下列问题:若将点B 沿数轴向左移动3个单位长度, 则此时A.B.C 三个点所表示的数中哪个数最小? 最小的数是多少?若将点A 沿数轴向右移动4个单位长度, 则此时A 、B 、C 三个点所表示的数中哪个数最小?最小的数是多少?22.已知, 互为相反数, , 互为倒数, 的绝对值为2, 求的值.23、解答题三(每题9分, 共27分)(1)小虫从某点A出发, 在一直线上来回爬行, 假定向右爬行的路程记为正数, 向左爬行的路程记为负数, 爬行的各段路程依次为(单位:):, , , , , , .(2)小虫最后是否回到出发点A?小虫离开原点最远是多少厘米?在爬行过程中, 如果每爬行1奖励一粒芝麻, 则小虫一共得到多少粒芝麻?先阅读并填空, 再解答问题:(1)我们知道, , ,(2), .(3)作含有的式子表示你所发现的规律: .计算: +….(1)现有一组有规律排列的数: 1, , 2, , 3, , 1, , 2, , 3, , …, 其中1, , 2, , 3, 这六个数按此规律重复出现.(2)第50个数是什么?把从第1个数开始的前2025个数相加, 结果是多少?从第1个数起, 把连续若干个数的平方加起来, 如果和为510, 则共有多少个数的平方相加?有理数参考答案一、DCADC DCCCD二、> 12. 13. 14. 15. 16.或三、解: 原式18、解: 原式)55()1220(+-++-= )212523(75-+==08+- 2775⨯= =8- 25=19、解: 原式四、(2)解: (1)因为5袋水泥中与标准质量的差的绝对值最小的是5号水泥, 所以最接近标准质量的是5号水泥;21、质量最大的是1号水泥, 比标准质量多100, 质量最小的是4号水泥, 比标准质量少, 所以质量最大的水泥比质量最小的水泥重(1)解: 点A 表示, 点B 表示, 点C 表示3(2)将点B 沿数轴向左移动3个单位长度后表示, 此时点B 表示的数最小, 是. 将点A 沿数轴向右移动4个单位长度后表示0, 此时点B 表示的数最小, 是解: 由, 互为相反数, 则;由、互为倒数, 则;由的绝对值为2, 则当时, 原式;当时, 原式.4)2()10()2(3-=-⨯+--⨯=五、解: (1)所以小虫最后回到出发点A.(2)第一次爬行距离原点是cm 5;第二次爬行距离原点是)(235cm =-;第三次爬行距离原点是)(12102cm =+;第四次爬行距离原点是)(4812cm =-; 第五次爬行距原点是)(2264cm =-=-;第六次爬行距离原点是)(10122cm =+-; 第七次爬行距离原点是)(01010cm =-;从上面可以看出小虫离开原点最远是12.cm 小虫爬行的总路程为:24、, 所以小虫一共得到54粒芝麻.(2)解: (1);(3)111+-n n (4)原式816161414121(21-+-+-=+…)2024120221-+)2024121(21-= 40481020=1012255= (2)解: (1)因为……2, 所以第50个数是(3)因为……3, , , 所以从第1个数开始的前2025个数相加, 结果是2. , ……6, 且, , 所以共有111个数的平方相加.。
七年级数学上册第一章《有理数》测试卷-人教版(含答案)
七年级数学上册第一章《有理数》测试卷-人教版(含答案)一.选择题(共6小题,满分18分)1.下列说法正确的是()A.﹣a一定是负数B.|a|一定是正数C.|a|一定不是负数D.﹣|a|一定是负数2.下列各数中为负整数的是()A.B.C.2018D.﹣20183.下列说法正确的是()A.1的相反数是﹣1B.1的倒数是﹣1C.1的绝对值是±1D.在数轴上1在原点左边4.如图,O为原点,数轴上A,B,O,C四点,表示的数与点A所表示的数是互为相反数的点是()A.点B B.点O C.点A D.点C5.下列说法正确的有()①|a﹣b|=a﹣b,则a≥b②数轴上到某点距离相等的两个点对应的数相等③abc<0,则④|a+b|=|a﹣b|,则b=0A.1个B.2个C.3个D.4个6.下列分解素因数正确的是()A.2=1×2B.12=3×4C.22=2×11D.42=1×2×3×7二.填空题(共6小题,满分18分)7.(﹣3)+(﹣3)=.8.“一只闹钟一个月内误差不超过±0.3秒”,这句话的含义是.9.数轴上A点表示的数是5,那么同一数轴上与A点相距6个单位长度的点表示的数是.10.若|x﹣4|=4﹣x,则x的取值范围是.11.的倒数是.12.设有理数a,b,c满足a+b+c>0,abc<0,则a,b,c中正数的个数为.三.解答题(共9小题,满分64分)13.计算:0÷(﹣2)﹣2314.计算:(1)12﹣(﹣8)+(﹣6)﹣15;(2)(﹣0.5)﹣(﹣2)+3.75﹣5;(3)﹣53+(﹣5)3﹣0.22÷(﹣0.4);(4)()×(﹣48)﹣(﹣2)3÷;(5)﹣12020﹣|﹣6|××(﹣2)2÷;(6)﹣199×8.15.计算:(1)×(﹣)÷3(2)﹣22﹣(﹣2)2+(﹣)÷1﹣(1﹣23)16.m是6的绝对值的相反数,n比m的绝对值大3,求m,n的值.17.已知a,b互为相反数,c,d互为倒数,x的绝对值是2,试求:x2﹣(a+b+cd)x+(a+b)2024+(﹣cd)2025的值.18.把下面的直线补充成一条数轴,然后在数轴上标出下列各数:﹣3,,0,﹣,2.(1)上面的数中,绝对值最大的是;的相反数是;(2)从中选取两个不同的数组成乘法算式,积最大的算式是.19.把下列各数分别填入相应的集合里.﹣4,﹣|﹣|,0,,﹣3.14,2021,﹣(+5),+1.88(1)正数集合:{…};(2)负数集合:{…};(3)整数集合:{…};(4)分数集合:{…}.20.某同学在计算﹣4﹣N时,误将﹣N看成了+N,从而算得结果是5.请你帮助算出正确结果.21.观察下列等式:,,,将以上三个等式两边分别相加得:.(1)直接写出下列各式的计算结果:=.(2)猜想并写出:=.参考答案一.选择题(共6小题,满分18分)1.解:①当a>0时,﹣a<0,|a|>0,﹣|a|<0;②当a=0时,﹣a=0,|a|=0,﹣|a|=0;③当a<0时,﹣a>0,|a|>0,﹣|a|<0.综上所述:﹣a可以是正数、0、负数;|a|可以是正数、0;﹣|a|可以是负数、0.故选:C.2.解:负整数,即:是负数又是整数,因此是﹣2018,故选:D.3.解:A.1的相反数是﹣1,正确;B.1的倒数是1,错误;C.1的绝对值是1,错误;D.在数轴上1在原点右边,错误.故选:A.4.解:由数轴有,点A,B到原点O的距离相等,并且位于原点两侧,故选:A.5.解:根据绝对值的意义,一个非负数的绝对值等于它本身,因此①正确;数轴上到某点距离相等的两个点对应的数不一定相等,也不一定是互为相反数,因此②不正确,∵abc<0,则a、b、c三个数中有1个负数,或3个负数,若只有1个负数,设a<0,则b>0,c>0,于是有:=﹣1,=1,=﹣1,=﹣1,此时,+++=﹣2,若有3个负数,设a<0,则b<0,c<0,于是有:=1,=1,=1,=﹣1,此时,+++=2,因此③正确,当a=0时,|a+b|=|a﹣b|也成立,因此④不正确,故正确的个数有:2个,故选:B.6.解:A、2=1×2,1既不是素数也不是合数,故选项A不合题意;B、12=3×4,因为4不是素因数,故选项B不合题意;C、22=2×11,因为2,11都是素因数,所以正确,故选项C符合题意;D、42=1×2×3×7,因为1不是素因数,故选项D不合题意;故选:C.二.填空题(共6小题,满分18分)7.解:(﹣3)+(﹣3)=﹣(3+3)=﹣6.故答案为﹣6.8.解:在闹钟的预订时间提前0.3秒或延后0.3秒,故答案提前0.3秒或延后0.3秒.9.解:在点A的左边与点A相距6个单位的点所表示的数为5﹣6=﹣1;在点A的右边与点A相距6个单位的点所表示的数为5+6=11,故答案为:﹣1或11.10.解:∵|x﹣4|=4﹣x,∴x﹣4≤0,解得x≤4.故答案为:x≤4.11.解:的倒数是,故答案为:12.解:∵abc<0,∴a,b,c中有一个负数或三个负数,∵a+b+c>0,∴a,b,c中负数只有一个,即正数的个数为2.故答案为:2.三.解答题(共9小题,满分64分)13.解:0÷(﹣2)﹣23=0﹣8=﹣8.14.解:(1)12﹣(﹣8)+(﹣6)﹣15=12+8+(﹣6)+(﹣15)=(12+8)+[(﹣6)+(﹣15)]=20+(﹣21)=﹣1;(2)(﹣0.5)﹣(﹣2)+3.75﹣5=(﹣)+2+3+(﹣5)=[(﹣)+(﹣5)]+(2+3)=(﹣6)+6=0;(3)﹣53+(﹣5)3﹣0.22÷(﹣0.4)=﹣125+(﹣125)﹣×(﹣)=﹣125+(﹣125)+=﹣250+=﹣249;(4)()×(﹣48)﹣(﹣2)3÷=×(﹣48)﹣×(﹣48)﹣×(﹣48)﹣(﹣8)×2=(﹣36)+8+4+16=﹣8;(5)﹣12020﹣|﹣6|××(﹣2)2÷=﹣1﹣6××4×2=﹣1﹣16=﹣17;(6)﹣199×8=(﹣200+)×8=﹣200×8+×8=﹣1600+=﹣1599.15.解:(1)×(﹣)÷3=×(﹣)×=﹣;(2)﹣22﹣(﹣2)2+(﹣)÷1﹣(1﹣23)=﹣4﹣4﹣﹣(1﹣8)=﹣4﹣4﹣+7=﹣1.16.解:6的绝对值的相反数是﹣6,即m=﹣6,n=|m|+3=|﹣6|+3=9,∴m=﹣6,n=9.17.解:由题意得:a+b=0,cd=1,x=2或﹣2,当x=2时,原式=4﹣2﹣1=1;当x=﹣2时,原式=4+2﹣1=5.18.解:画图如下:(1)上面的数中,绝对值最大的是﹣3,的相反数是,故答案为:﹣3;;(2)从中选取两个不同的数组成乘法算式,积最大的算式是:﹣3×()=.故答案为:.19.解:(1)正数集合:{,2021,+1.88,…};(2)负数集合:{﹣4,﹣|﹣|,﹣3.14,﹣(+5),…};(3)整数集合:{﹣4,0,2021,﹣(+5),…};(4)分数集合:{﹣|﹣|,,﹣3.14,+1.88,…}.故答案为:,2021,+1.88;﹣4,﹣|﹣|,﹣3.14,﹣(+5);﹣4,0,2021,﹣(+5);﹣|﹣|,,﹣3.14,+1.88.20.解:由题意,得﹣4+N=5,∴N=5+4=9,∴﹣4﹣N=﹣4﹣9=﹣13.21.解:(1)根据题意得:原式=1﹣+﹣+…+﹣=1﹣=;(2)根据题意得:=(﹣).故答案为:(1);(2)=(﹣)。
人教版数学七年级上册第一章有理数综合测试题(含答案)
人教版数学七年级上学期第一章有理数测试一.选择题(共10小题)1.如果温度上升10℃记作+10℃,那么温度下降6℃记作( )A. +10℃B. 10℃C. +6℃D. ﹣6℃2.若|a|+a=0,则a是( )A. 零B. 负数C. 负数或零D. 非负数3.计算﹣13﹣9的值( )A ﹣22 B. ﹣4 C. 22 D. ﹣194.﹣7+5相反数是( )A. 2B. ﹣2C. ﹣8D. 85.如果有理数a、b、c满足,a+b+c=0,abc>0,那么a、b、c中负数的个数是( )A. 0 ;B. 1 ;C. 2 ;D. 3 ;6.计算(-8)×(-2)÷(- 12)的结果为( )A. 16B. -16C. 32D. -327.我县人口约为530060人,用科学记数法可表示为( )A 53006×10人 B. 5.3006×105人 C. 53×104人 D. 0.53×106人8.若x的相反数是﹣2,|y|=5,则x+y的值为( )A ﹣7 B. 7 C. ﹣7或7 D. ﹣3或79.一天早晨的气温为3℃,中午上升了6℃,半夜又下降了7℃,则半夜的气温是( )A. ﹣5℃B. ﹣2℃C. 2℃D. ﹣16℃10.小虎做了以下4道计算题,请你帮他检查一下,他一共做对了( )①0﹣(﹣1)=1;②12÷(﹣12)=﹣1;③﹣12+13=﹣16;④(﹣1)2017=﹣2017.A. 1题B. 2题C. 3题D. 4题二.填空题(共8小题)11.如果正午(中午12:00)记作0小时,午后2点钟记作+2小时,那么上午10点钟可表示为_________.12.﹣2.5绝对值是_____.13.如果﹣2+△=﹣6,那么“△”表示的数是_____.14.计算:1-2+3-4+5-6+……+2017-2018+2019的值为___________.15.若|a|=8,|b|=5,且ab<0,那么a﹣b=_____.16.计算(﹣1)÷6×(﹣16)=_____.17.规定一种新运算:a⊗b=(a+b)b,如:2⊗3=(2+3)×3=15,则(﹣2)⊗2=_____.18.若|a|=2,|b|=3,若ab>0,则|a+b|=_____.三.解答题(共7小题)19.计算:(1)20+(﹣15)﹣(﹣17);(2)(﹣18)÷9×(﹣29 );(3)(16﹣23+34)×(﹣24);(4)﹣14﹣32÷[(﹣2)3+4].20.在数轴上分别标出表示有理数2.5,﹣2的点A,B,并求|AB|.21.已知|x+4|=5,(1﹣y)2=9,且x﹣y<0,求2x+y的值.22.规定一种新的运算:a★b=a×b﹣a﹣b2+1,例如3★(﹣4)=3×(﹣4)﹣3﹣(﹣4)2+1,请用上述规定计算下面各式:(1)2★8;(2)(﹣7)★[5★(﹣2)]23.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超出或不足的部分分别用正数、负数来表示,记录如下表与标准质量的差值(单位:千克)﹣3 ﹣2 0 1 1.5 2.51箱数 1 4 3 4 5 3若每袋标准质量为450g,则这批样品的总质量是多少?24.某检修站,甲乘一辆汽车,约定向东为正,从A地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6.(1)计算收工时,甲在A地的哪一边,距A地多远?(2)若每千米汽车耗油0.5升,求出发到收工时甲耗油多少升?25.小明妈妈在某玩具厂工作,厂里规定每个工人每周要生产某种玩具,原计划每天生产20个,但由于种种原因,实际每天生产个数与原计划每天生产个数相比有出入.下表是小明妈妈某周的生产情况记录表(增产记为正、减产记为负):(1)根据表格可知小明妈妈本周五生产玩具多少个;(2)根据表格可知小明妈妈本周实际生产玩具多少个;(3)该厂实行“每日计件工资制”,每生产一个玩具可得工资5元;若当天超额完成,则每增产一个另奖3元;若当天未完成原计划生产个数,则每减产一个倒扣2元,求小明妈妈本周的工资总额是多少元?答案与解析一.选择题(共10小题)1.如果温度上升10℃记作+10℃,那么温度下降6℃记作( )A. +10℃B. 10℃C. +6℃D. ﹣6℃【答案】D【解析】【分析】根据正数和负数的定义和已知得出即可.【详解】解:温度上升10℃记作+10℃,温度下降6℃记作﹣6℃,故选D .【点睛】本题考查了正数和负数,能理解正数和负数的定义是解此题的关键.2.若|a|+a=0,则a 是( )A. 零B. 负数C. 负数或零D. 非负数 【答案】C【解析】【分析】根据绝对值的性质,从而得到答案.【详解】当a =0时,|a |+a =0,当a 为负数时,|a |+a =-a +a =0,当a 为非负数时,|a |+a =a +a =2a ≠0,综上所述,故答案选C.【点睛】本题主要考查了绝对值的性质,解本题的要点在于了解一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.计算﹣13﹣9的值( )A. ﹣22B. ﹣4C. 22D. ﹣19 【答案】A【解析】【分析】根据减去一个数等于加上这个数的相反数,进行运算即可.【详解】解:()13913922--=-+-=-,故选A .【点睛】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.4.﹣7+5的相反数是( )A. 2B. ﹣2C. ﹣8D. 8【答案】A【解析】【分析】先计算﹣7+5的值,再求它的相反数.【详解】﹣7+5=-2,-2的相反数是2.所以B选项是正确的.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.5.如果有理数a、b、c满足,a+b+c=0,abc>0,那么a、b、c中负数的个数是( )A. 0 ;B. 1 ;C. 2 ;D. 3 ;【答案】C【解析】分析:先根据abc>0,结合有理数乘法法则,易知a、b、c中有2个负数或没有一个负数(都是正数),而都是正数,则a+b+c>0,不符合a+b+c=0的要求,于是可得a、b、c中必有2个负数.解答:解:∵abc>0,∴a、b、c中有2个负数或没有一个负数,若没有一个负数,则a+b+c>0,不符合a+b+c=0的要求,故a、b、c中必有2个负数.故选C.6.计算(-8)×(-2)÷(- 12)的结果为( )A. 16B. -16C. 32D. -32 【答案】D【解析】【分析】先把除法转化为乘法,然后根据乘法法则计算即可.【详解】(-8)×(-2)÷(- 1 2 )=(-8)×(-2) ×(- ) =-32.故选D.【点睛】本题考查了乘除混合运算,一般先把除法转化为乘法,再按照乘法法则计算.7.我县人口约为530060人,用科学记数法可表示为( )A. 53006×10人B. 5.3006×105人C. 53×104人D. 0.53×106人【答案】B【解析】【分析】根据科学记数法的定义及表示方法进行解答即可.【详解】解:∵530060是6位数,∴10的指数应是5,故选B.【点睛】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.8.若x的相反数是﹣2,|y|=5,则x+y的值为( )A. ﹣7B. 7C. ﹣7或7D. ﹣3或7【答案】D【解析】【分析】首先根据相反数的定义求出x的值,绝对值的定义可以求出y的值,然后就可以求出x+y的值.【详解】∵-x=-2,|y|=5,∴x=2,y=±5,∴当x=2,y=5时,x+y=7;当x=2,y=-5时,x+y=-3.故选D.【点睛】此题主要考查了绝对值的定义及性质,解题时首先利用绝对值的定义求出y的值,然后代入代数式计算即可求解.9.一天早晨的气温为3℃,中午上升了6℃,半夜又下降了7℃,则半夜的气温是( )A. ﹣5℃B. ﹣2℃C. 2℃D. ﹣16℃【答案】C【解析】【分析】根据题意设上升为正,下降为负,直接列出算式即可.【详解】解:根据题意知半夜的温度为:367972+-=-=(℃),故选C .【点睛】本题考查了有理数的加减混合运算法则,解题时认真审题,弄清题意,列出算式后再按照有理数的加减混合运算法则计算.10.小虎做了以下4道计算题,请你帮他检查一下,他一共做对了( )①0﹣(﹣1)=1;②12÷(﹣12)=﹣1;③﹣12+13=﹣16;④(﹣1)2017=﹣2017. A. 1题B. 2题C. 3题D. 4题【答案】C【解析】【分析】根据有理数的加减运算法则及除法和乘方的运算法则逐一计算可得. 【详解】解:①()01011--=+=,他计算正确; ②11122⎛⎫÷-=- ⎪⎝⎭,他计算正确; ③11111,23236⎛⎫-+=--=- ⎪⎝⎭他计算正确; ④()201711-=-,他计算错误; 他做对了3道题.故选C .【点睛】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和 运算法则及其运算律.二.填空题(共8小题)11.如果正午(中午12:00)记作0小时,午后2点钟记作+2小时,那么上午10点钟可表示_________.【答案】-2【解析】【分析】根据正数和负数的意义解题即可.【详解】正午(中午12:00)记作0小时,午后2点钟记作+2小时,10-12=-2,则上午10点钟可表示为-2.【点睛】本题考查了正数和负数的意义,理解“正”和“负”的相对性是解题的关键.12.﹣2.5的绝对值是_____.【答案】2.5【解析】【分析】根据绝对值的含义和求法解答.【详解】解: 2.5-的绝对值是2.5,故答案为2.5.【点睛】此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:① 当a 是正有理数时,a 的绝对值是它本身a ;②当a 是负有理数时,a 的绝对值是它的相反数﹣a ;③当a 是零时,a 的绝对值是零.13.如果﹣2+△=﹣6,那么“△”表示的数是_____.【答案】-4【解析】【分析】根据有理数的加法解答即可.【详解】解:因为26-+=-,所以()624=---=-,故答案为4-.【点睛】本题主要考查的是有理数的加法,掌握有理数的加法法则是解题的关键.14.计算:1-2+3-4+5-6+……+2017-2018+2019的值为___________.【答案】1010【解析】【分析】首先把数字分组:(1-2)+(3-4)+(5-6)+…+(2017-2018)+2019,算出前面有多少个-1相加,再加上2019即可.【详解】解:1-2+3-4+5-6+…+2015-2016+2017-2018+2019=(1-2)+(3-4)+(5-6)+…+(2017-2018)+2019=-1009+2019=1010.【点睛】此题考查有理数的加减混合运算,注意数字合理分组,按照分组后的规律计算得出结果即可. 15.若|a|=8,|b|=5,且ab <0,那么a ﹣b=_____.【答案】±13【解析】【分析】根据绝对值和有理数的乘法得出a,b 的值,进而利用有理数的加减运算法则计算得出答案.【详解】解:因为若|a|=8,|b|=5,且ab <0,所以85a b =-=,或85a b ==-,,所以8513a b -=--=-或()8513--=,故答案为±13. 【点睛】此题主要考查了有理数的乘法和加减,正确掌握运算法则是解题关键.16.计算(﹣1)÷6×(﹣16)=_____. 【答案】136 . 【解析】【分析】根据有理数乘除法法则进行计算.【详解】解:(-1)÷6×(-16), =-16×(−16), =136. 故答案为136. 【点睛】此题考查了有理数的乘除法,熟练掌握法则是解本题的关键.17.规定一种新运算:a ⊗b=(a+b)b ,如:2⊗3=(2+3)×3=15,则(﹣2)⊗2=_____.【答案】0【解析】【分析】根据新运算,直接运算得结果.【详解】解:()()222220.-⊗=-+⨯=故答案为0【点睛】本题考查了新运算及有理数的混合运算.题目比较简单,解决本题的关键是理解新 运算的规定.18.若|a|=2,|b|=3,若ab >0,则|a+b|=_____.【答案】5【解析】【分析】由条件可以求出a 、b 的值,再由ab >0可以知道a 、b 同号,据此确定a,b 的值,从而可以求出结论.【详解】解:∵|a|=2,|b|=3,∴a=±2,b=±3, ∵ab >0,∴a=2,b=3或23a b =-=-,,当a=2,b=3时,|a+b|=|2+3|=5;当23a b ,=-=-时,()2355a b +=-+-=-=;综上,|a+b|=5,故答案为5.【点睛】本题考查了有理数的乘法,解决本题的关键是根据绝对值性质求出a,b 的值,然后分两种情况解题.三.解答题(共7小题)19.计算:(1)20+(﹣15)﹣(﹣17);(2)(﹣18)÷9×(﹣29); (3)(16﹣23+34)×(﹣24); (4)﹣14﹣32÷[(﹣2)3+4].【答案】(1)22;(2)49;(3)﹣6;(4)7. 【解析】【分析】(1)先化简,再计算加减法;(2)从左往右依此计算即可求解;(3)根据乘法分配律简便计算;(4)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【详解】(1)原式201517,=-+3715,=-=22;(2)原式()22,9⎛⎫=-⨯- ⎪⎝⎭4.9= (3)原式()()()123242424,634=⨯--⨯-+⨯- 41618,=-+-6=-;(4)原式()132[84],=--÷-+()1324,=--÷-18,=-+=7.【点睛】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.在数轴上分别标出表示有理数2.5,﹣2的点A,B ,并求|AB|.【答案】在数轴上2.5,﹣2处标出点A,B 如图所示见解析,AB=4.5.【解析】分析】直接根据数轴上两点间的距离公式求解即可.【详解】在数轴上2.5,﹣2处标出点A,B 如图所示,()2.52 4.5AB =--=.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.21.已知|x+4|=5,(1﹣y)2=9,且x ﹣y <0,求2x+y 的值.【答案】6或20-或14-【解析】【分析】根据绝对值和偶次幂得出x,y 的值,进而解答即可.【详解】因为|x+4|=5,(1﹣y)2=9,且0x y -<,所以x=1,y=4,或92x y =-=-,,或94x y ,,=-=当x=1,y=4时,2x+y=6;当92x y =-=-,时,2x+y=20-; 当94x y =-=,时,2x+y= 14-.即2x+y 的值为6或20-或14-.【点睛】本题考查有理数的乘方、绝对值的性质,解题的关键是根据绝对值和偶次幂得出x,y 的值.22.规定一种新的运算:a ★b=a×b ﹣a ﹣b 2+1,例如3★(﹣4)=3×(﹣4)﹣3﹣(﹣4)2+1,请用上述规定计算下面各式:(1)2★8;(2)(﹣7)★[5★(﹣2)]【答案】(1)﹣49;(2)﹣190.【解析】【分析】(1)将a=2,b=8代入公式计算可得;(2)先计算()52-★,得其结果为18-,再计算()()718--★.【详解】(1)2★8228281,=⨯--+162641,=--+49=-;(2)∵()()()25252521,-=⨯----+★ 10541,=---+18=-,∴()()()()7[52]718,--=--★★★()()()()27187181,=-⨯-----+12673241,=+-+190=-.【点睛】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.23.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超出或不足的部分分别用正数、负数来表示,记录如下表若每袋标准质量为450g ,则这批样品的总质量是多少?【答案】这批样品总质量是9008g .【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意计算解答作答.【详解】依题意,得 312414 1.55 2.538g -⨯-⨯+⨯+⨯+⨯=,450×20=9000g,9000+8=9008g,答:这批样品的总质量是9008g .【点睛】主要考查正负数在实际生活中应用.解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.24.某检修站,甲乘一辆汽车,约定向东为正,从A 地出发到收工时,行走记录为(单位:千米):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6.(1)计算收工时,甲在A 地的哪一边,距A 地多远?(2)若每千米汽车耗油0.5升,求出发到收工时甲耗油多少升?【答案】(1)甲在A地的东边,且距离A地39千米;(2)出发到收工时共耗油32.5升.【解析】【分析】(1)只需求得所有数据的和,若和为正数,则甲在A地的东边,若和为负数,则甲在A地的西边,结果的绝对值即为离A地的距离;(2)只需求得所有数的绝对值的和,即为所走的总路程,再根据每千米汽车耗油0.5升,求得总耗油.【详解】(1)15﹣2+5﹣1+10﹣3﹣2+12+4﹣5+6=+39(千米).则甲在A地的东边,且距离A地39千米;(2)15+2+5+1+10+3+2+12+4+5+6=65(千米),65×0.5=32.5(升).则出发到收工时共耗油32.5升.【点睛】此题考查了正数和负数的实际意义,即在实际问题中,表示具有相反意义的量.25.小明妈妈在某玩具厂工作,厂里规定每个工人每周要生产某种玩具,原计划每天生产20个,但由于种种原因,实际每天生产个数与原计划每天生产个数相比有出入.下表是小明妈妈某周的生产情况记录表(增产记为正、减产记为负):(1)根据表格可知小明妈妈本周五生产玩具多少个;(2)根据表格可知小明妈妈本周实际生产玩具多少个;(3)该厂实行“每日计件工资制”,每生产一个玩具可得工资5元;若当天超额完成,则每增产一个另奖3元;若当天未完成原计划生产个数,则每减产一个倒扣2元,求小明妈妈本周的工资总额是多少元?【答案】(1)小明妈妈星期五生产玩具为19个;(2)小明妈妈本周实际生产玩具为145;(3)小明妈妈这一周的工资总额是756元.【解析】【分析】(1)根据记录可知,小明妈妈星期五生产玩具20﹣1=19个;(2)先把增减的量都相加,然后根据有理数的加法运算法则进行计算,再加上计划生产量即可;(3)先计算每天的工资,再相加即可求解;【详解】(1)小明妈妈星期五生产玩具20﹣1=19个,--+-+++⨯=,(2)小明妈妈本周实际生产玩具71148160207145故答案为145;(3)()()1455786311412,⨯+++⨯-++⨯ 7256332,=+-=756(元)答:小明妈妈这一周的工资总额是756元.【点睛】主要考查正负数在实际生活中的应用.要注意弄清楚题意,仔细求解.。
人教版初中数学七年级上册第一章 《有理数》测试题(含答案)
第一章 《有理数》测试题一、单选题(每小题只有一个正确答案)1.25-的倒数是( ) A .25 B .52 C .52- D .12- 2.判断下列说法正确的是( )A .正数和负数统称为有理数B .正分数和小数统称为分数C .正整数集、负整数集并列在一起构成整数集D .一个有理数不是整数就是分数3.已知关于x 的代数式25x -与52x -互为相反数,则x 的值为( )A .9B .9-C .1D .1-4.某市去年完成了城市绿化面积28210000m .将“8210000”用科学记数法可表示( )A .482110⨯B .582.110⨯C .70.82110⨯D .68.2110⨯5.如果高出海平面 20 米,记作+20 米,那么-30 米表示( )A .高出海平面 30 米B .低于海平面 30 米C .不足 30 米D .低于海平面 20 米6.与1的和是3的数是( )A .﹣4B .﹣2C .2D .4 7.一家快餐店一周中每天的盈亏情况如下(盈利为正):37元,-26元,-15元,27元,-7元,128元,98元,这家快餐店总的盈亏情况是( )A .盈利了290元B .亏损了48元C .盈利了242元D .盈利了-242元8.下列说法正确的有( )①数轴原点两旁的两个数互为相反数;②若 a ,b 互为相反数,则 a+b=0;③如果一个数的绝对值等于它本身,那么这个数是正数;④-3.14 既是负数,分数,也是有理数.A .1B .2C .3D .49.已知有理数a 、b 在数轴上的位置如图所示,下列结论正确的是( )A .a+b >0B .ab <0C .b —a >0D .a >b 10.27-的倒数与绝对值等于221的数的积为( )A .13B .13- C .13或13- D .4147或4147- 11.30269精确到百位的近似数是( )A .303B .30300C .330.230⨯D .43.0310⨯12.若a 是负数,则下列各式不正确的是( )A .a 2=(﹣a )2B .a 2=|a 2|C .a 3=(﹣a )3D .a 3=﹣(﹣a 3)二、填空题13.﹣13的相反数是_____,倒数是_____,绝对值是_____. 14.如图,数轴上点A 表示的数是________.15.已知a 是最大的负整数,b 是最小的正整数,c 是绝对值最小的数,则(a +c )÷b =___________.16.已知|a|=5,|b|=3,且|a ﹣b|=b ﹣a ,那么a+b=_____.17.若定义一种新的运算,规定a cb d =ab-cd,则14 23-=_____.三、解答题18.把下列各数分别填在相应的集合内:-11,4.8,73,-2.7,16 ,3.141 592 6,-34,73,0. 正分数集合:{ };负分数集合:{ };非负整数集合:{ };非正整数集合:{ }.19.计算题:(1)(-20)-(+3)-(-5) (2)(3) |-3|×(-5)÷(- ) (4) ( )(5) (6)( )×4(7) ( ) ( ) ( )(8)20.用科学记数法表示下列各数.(1);(2);(3);(4).21.下表记录了七(1)班一个组学生的体重情况,假设平均体重是50 kg,超出记为正,不足记为负.(1)谁最重?谁最轻?(2)最重的同学比最轻的同学重多少?22.已知水结成冰的温度是,酒精冻结的温度是.现有一杯酒精的温度为,放在一个制冷装置里、每分钟温度可降低,要使这杯酒精冻结,需要几分钟?(精确到分钟)23.已知,互为相反数,,互为倒数,且,求的值.24.把下列各数表示的点画在数轴上,并用“<”把这些数连接起来.-5, |-1.5|,, 0,(-2)2.用“<”把这些数连接起来:______________________________________.25.某电力局维修队从电力局出发,在一条南北方向的公路上巡回维修,假定向南的路线记为正数,走过的各段路程依次为(单位:千米)﹣600,+4050,﹣805,+380,﹣1600(1)维修队最后是否能回到电力局?(2)维修队最后收工时在本局什么方向,距本局多远?(3)维修队离开本局最远时是多少?(4)如果每千米耗油2升,那么在整个维修过程中用了多少升油?参考答案1.C2.D3.C4.D5.B6.C7.C8.B9.D10.C11.D12.C13.13-31314.-115.-116.﹣2或﹣8.17.1418.详见解析.19.(1)-18;(2)-5;(3)9;(4)-25;(5)-15;(6)-399;(7)0;(8)40.20.见解析21.(1)小天最重,小丽最轻;(2)小天比小丽重13 kg.22.需要分钟.23.-3.24.用“<”把这些数连接起来:-5<-<0<<25.(1)维修队最后没有回到电力局;(2)维修队最后收工时在本局北边,距本局425千米;(3)维修队离开本局最远时是3450千米;(4)在整个维修过程中用了14870升油.。
人教版初中七年级数学上册第一章《有理数》测试题(含答案解析)
1.数学考试成绩85分以上为优秀,以85分为标准,老师将某一小组五名同学的成绩记为+9、-4、+11、-7、0,这五名同学的实际成绩最高的应是( )A .94分B .85分C .98分D .96分D 解析:D【分析】根据85分为标准,以及记录的数字,求出五名学生的实际成绩,即可做出判断.【详解】解:根据题意得:859=94,854=81,8511=96,857=78,850=85+-+--即五名学生的实际成绩分别为:94;81;96;78;85,则这五名同学的实际成绩最高的应是96分.故选D .【点睛】本题考查了正数和负数的识别,有理数的加减的应用,正确理解正负数的意义是解题的关键.2.下列各组运算中,其值最小的是( )A .2(32)---B .(3)(2)-⨯-C .22(3)(2)-+-D .2(3)(2)-⨯- A解析:A【分析】根据有理数乘除和乘方的运算法则计算出结果,再比较大小即可.【详解】A ,()23225---=-;B ,()()326-⨯-=;C ,223(3)(2)941=++=--D ,2(3)(2)9(2)18-⨯-=⨯-=-最小的数是-25故选:A .【点睛】本题考查了有理数的混合运算和有理数大小的比较,熟练掌握相关的法则是解题的关键. 3.下列说法中,①a - 一定是负数;② a -一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有( )A .2个B .3个C .4个D .5个A解析:A【分析】 根据正数和负数、绝对值、倒数等相关的性质,逐一判断即可.【详解】①-a 不一定是负数,若a 为负数,则-a 就是正数,故说法不正确;②|-a|一定是非负数,故说法不正确;③倒数等于它本身的数为±1,说法正确;④0的平方为0,故说法不正确;⑤一个数减去一个负数,差大于被减数,故说法不正确;⑥如果两个数的和为正数,那么这两个数中至少有一个正数,故说法正确.说法正确的有③、⑥,故选A .【点睛】本题主要考查有理数的加法、正数和负数、绝对值、倒数,能熟记相关的定义及其性质是解决此类题目的关键.4.已知︱x ︱=4,︱y ︱=5且x >y ,则2x-y 的值为( )A .-13B .+13C .-3或+13D .+3或-1C解析:C【分析】 由4x =,5y =可得x=±4,y=±5,由x >y 可知y=-5,分别代入2x-y 即可得答案.【详解】 ∵4x =,5y =,∴x=±4,y=±5,∵x >y ,∴y=-5,当x=4,y=-5时,2x-y=2×4-(-5)=13,当x=-4,y=-5时,2x-y=2×(-4)-(-5)=-3,∴2x-y 的值为-3或13,故选:C .【点睛】本题主要考查了绝对值的性质,能够根据已知条件正确地判断出x ,y 的值是解答此题的关键.5.下列各数中,互为相反数的是( )A .+(-2)与-2B .+(+2)与-(-2)C .-(-2)与2D .-|-2|与+(+2)D解析:D【解析】【分析】先将各选项中的数字化简,然后根据相反数的定义进行判断即可.【详解】A. +(-2)=-2,-2=-2,故A 选项中的两个数不互为相反数;B. +(+2)=2, -(-2)=2,故B 选项中的两个数不互为相反数;C. -(-2)=2,2=2,故C 选项中的两个数不互为相反数;D. -|-2|=-2,+(+2)=2,-2与2互为相反数,故D 选项中的两个数互为相反数,故选D.【点睛】本题考查了相反数的概念,涉及了绝对值化简等,熟练掌握相关知识是解题的关键. 6.若21(3)0a b -++=,则b a -=( )A .-412B .-212C .-4D .1C解析:C【解析】【分析】根据非负数的性质可得a-1=0,b+3=0,求出a 、b 后代入式子进行计算即可得.【详解】由题意得:a-1=0,b+3=0,解得:a=1,b=-3,所以b-a=-3-1=-4,故选C.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.7.若一个数的绝对值的相反数是17-,则这个数是( ) A .17- B .17+ C .17± D .7± C解析:C【分析】根据绝对值的代数意义和相反数的定义进行分析解答即可.【详解】∵相反数为17-的数是17,而17-或17的绝对值都是17, ∴这个数是17-或17. 故选C.【点睛】熟知“绝对值的代数意义和相反数的定义”是解答本题的关键.8.在日历纵列上圈出了三个数,算出它们的和,其中正确的一个是()A.28 B.34 C.45 D.75C解析:C【分析】日历纵列上圈出相邻的三个数,下边的数总比上边上的数大7,设中间的数是a,则上边的数是a- 7,下边的数是a+ 7,则三个数的和是3a,因而一定是3的倍数,且3数之和一定大于等于24,一定小于等于72,据此即可判断.【详解】日历纵列上圈出相邻的三个数,下边的数总比上边的数大7,设中间的数是a,则上边的数是a - 7,下边的数是a+ 7,则三个数的和是3a,因而一定是3的倍数,当第一个数为1,则另两个数为8,15,则它们的和为24,当第一个数为17,则另两个数为24,31,则它们的和为72,所以符合题意的三数之和一定在24到72之间,所以符合题意的只有45,所以C选项是正确的.【点睛】此题主要考查了一元一次方程的应用和有理数的计算,正确理解图表,得到日历纵列上圈出相邻的三个数的和一定是3的倍数以及它的取值范围是关键.9.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是()A.点C B.点D C.点A D.点B B解析:B【分析】由题意可知转一周后,A、B、C、D分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A,2所对应的点是B,3对应的点是C,4对应的点是D,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D,故答案选B.【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.10.-1+2-3+4-5+6+…-2011+2012的值等于A.1 B.-1 C.2012 D.1006D解析:D【解析】解:原式=(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2011+2012)=+1+1+1+…+1=1006.故选D.点睛:本题考查了有理数的混合运算,正确根据式子的特点进行正确分组是关键.11.下列正确的是( )A .5465-<- B .()()2121--<+- C .1210823-->D .227733⎛⎫--=-- ⎪⎝⎭A 解析:A【分析】根据不等式的性质对各选项进行判断即可.【详解】解:(1)∵5465>,∴5465-<-,故选项A 符合题意; (2)∵-(-21)=21,+(-21)=-21,21>-21,∴()()2121--+->,故选项B 错误; (3)∵11210=108223---<,故选项C 错误; (4)∵227=-733--,227=733⎛⎫-- ⎪⎝⎭,∴227733⎛⎫---- ⎪⎝⎭<; 故选:A .【点睛】此题主要考查了有理数的大小比较,熟练掌握有理数比较大小的方法是解答此题的关键. 12.下列运算正确的是( )A .()22-2-21÷=B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=- D .133( 3.25)6 3.2532.544⨯--⨯=- D 解析:D【分析】根据有理数的乘方运算可判断A 、B ,根据有理数的乘除运算可判断C ,利用乘法的运算律进行计算即可判断D .【详解】A 、()22-2-2441÷=-÷=-,该选项错误;B 、33343191217-2-332727⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,该选项错误; C 、1335539355-÷⨯=-⨯⨯=-,该选项错误; D 、13132713273( 3.25)6 3.25 3.25 3.25 3.25()32.5444444⨯--⨯=-⨯-⨯=-⨯+=,该选正确; 故选:D .【点睛】本题考查了有理数的混合运算.注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.13.把实数3⨯用小数表示为()6.1210-A.0.0612 B.6120 C.0.00612 D.612000C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】6.12×10−3=0.00612,故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.计算-2的结果是()A.0 B.-2 C.-4 D.4A解析:A【详解】解:因为|-2|-2=2-2=0,故选A.考点:绝对值、有理数的减法15.已知有理数a,b在数轴上表示的点如图所示,则下列式子中正确的是()A.a+b<0 B.a+b>0 C.a﹣b<0 D.ab>0A解析:A【分析】根据数轴判断出a、b的符号和取值范围,逐项判断即可.【详解】解:从图上可以看出,b<﹣1<0,0<a<1,∴a+b<0,故选项A符合题意,选项B不合题意;a﹣b>0,故选项C不合题意;ab<0,故选项D不合题意.故选:A.【知识点】本题考查了数轴、有理数的加法、减法、乘法,根据数轴判断出a、b的符号,熟知有理数的运算法则是解题关键.1.3-的平方的相反数的倒数是___________.【分析】根据倒数相反数平方的概念可知【详解】−3的平方是99的相反数是-9-9的倒数是故答案为【点睛】此题考查倒数相反数平方的概念及性质解题关键在于掌握各性质定义解析:1 9 -【分析】根据倒数,相反数,平方的概念可知.【详解】−3的平方是9,9的相反数是-9,-9的倒数是1 9 -故答案为1 9 -.【点睛】此题考查倒数,相反数,平方的概念及性质.解题关键在于掌握各性质定义.2.一条数轴上有点A、B、C,其中点A、B表示的数分别是16-、9,现以点C为折点,将放轴向右对折,若点A对应的点A'落在点B的右边,若3A B'=,则C点表示的数是______.【分析】根据可得点为12再根据与以为折点对折即为中点即可求解【详解】解:翻折后在右侧且所以点为12∵与以为折点对折则为中点即【点睛】本题考查数轴上两点间的距离得到为中点是解题的关键解析:2-【分析】根据3A B'=可得点A'为12,再根据A与A'以C为折点对折,即C为A,A'中点即可求解.【详解】解:翻折后A'在B右侧,且3A B'=.所以点A'为12,∵A与A'以C为折点对折,则C为A,A'中点,即1216:22C-=-.【点睛】本题考查数轴上两点间的距离,得到C为A,A'中点是解题的关键.3.绝对值小于2018的所有整数之和为________.0【分析】根据绝对小于2018可得许多互为相反数的数根据互为相反数的和等于可得答案【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2解析:0【分析】根据绝对小于2018,可得许多互为相反数的数,根据互为相反数的和等于,可得答案.【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2017=0,故答案为0.【点睛】本题考查了有理数的加法,先根据绝对值小于2018写出各数,再根据有理数的加法,得出答案.4.观察下面一列数:—1,2,—3,4,—5,6,—7,…,将这列数排成下列形式.按照上述规律排下去,那么第10行从左边数第9个数是______;数—201是第______行从左边数第______个数90155【分析】根据数的排列每一行的最后一个数的绝对值等于行数的平方并且奇数都是负数偶数都是正数求出第9行的最后一个数的绝对值然后加上9即为第10行从左边数第9个数;求出与201最接近平方数为19解析:90, 15, 5.【分析】根据数的排列,每一行的最后一个数的绝对值等于行数的平方,并且奇数都是负数,偶数都是正数,求出第9行的最后一个数的绝对值,然后加上9即为第10行从左边数第9个数;求出与201最接近平方数为196,即可得解.【详解】∵第9行的最后一个数的绝对值为92=81,∴第10行从左边数第9个数的绝对值是81+9=90,∵90是偶数,∴第10行从左边数第9个数是正数,为90,∵142=196,201-196=5,∴数-201是第15行从左边数起第5个数.故答案为90,15,5.【点睛】本题是对数字变化规律的考查,观察出每一行的最后一个数的绝对值等于行数的平方是解题的关键.5.(1)-23与25的差的相反数是_____. (2)若|a +2|+|b -3|=0,则a -b =_____.(3)-13的绝对值比2的相反数大_____.-5【分析】(1)先计算两个数的差再计算相反数即可;(2)由绝对值的非负性求出ab 的值再求出答案即可;(3)由题意列出式子进行计算即可得到答案【详解】解:(1)根据题意则;(2)∵|a +2|+|b - 解析:1615 -5 123【分析】 (1)先计算两个数的差,再计算相反数即可;(2)由绝对值的非负性,求出a 、b 的值,再求出答案即可;(3)由题意列出式子进行计算,即可得到答案.【详解】解:(1)根据题意,则221616()()351515---=--=; (2)∵|a +2|+|b -3|=0,∴20a +=,30b -=,∴2a =-,3b =,∴235a b -=--=-;(3)根据题意,则111(2)22333---=+=; 故答案为:1615;5-;123. 【点睛】 本题考查了绝对值的意义,相反数,列代数式求值,解题的关键是熟练掌握题意,正确的列出式子,从而进行解题.6.运用加法运算律填空:(1)[(-1)+2]+(-4)=___=___;(2)117+(-44)+(-17)+14=____=____.(-1)+(-4)+2-3117+(-17)+(-44)+1470【分析】(1)根据同号相加的特点利用加法的交换律先计算(-1)+(-4);(2)利用抵消的特点利用加法的交换律和结合律进行简便计算【 解析:[(-1)+(-4)]+2 -3 [117+(-17)]+[(-44)+14] 70【分析】(1)根据同号相加的特点,利用加法的交换律,先计算(-1)+(-4);(2)利用抵消的特点,利用加法的交换律和结合律进行简便计算.【详解】(1)同号相加较为简单,故:[(-1)+2]+(-4)=[(-1)+(-4)]+2=-3(2)117和(-17)可通过抵消凑整,(-44)和14也可通过抵消凑整,故:117+(-44)+(-17)+14=[117+(-17)]+[(-44)+14]=70.【点睛】本题考查有理数加法的简算,解题关键是灵活利用加法交换律和结合律,凑整进行简算.7.用计算器求2.733,按键顺序是________;使用计算器计算时,按键顺序为,则计算结果为________.73xy3=-2【分析】首先确定使用的是xy键先按底数再按yx键接着按指数最后按等号即可【详解】解:(1)按照计算器的基本应用用计算机求2733按键顺序是273xy3=;(2)-8×5÷20=-40解析:73,x y,3,=-2【分析】首先确定使用的是x y键,先按底数,再按y x键,接着按指数,最后按等号即可.【详解】解:(1)按照计算器的基本应用,用计算机求2.733,按键顺序是2.73、x y、3、=;(2)-8×5÷20=-40÷20=-2.【点睛】此题主要考查了利用计算器进行数的乘方,关键是计算器求幂的时候指数的使用方法.8.气温由﹣20℃下降50℃后是__℃.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的解析:-70【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.【详解】解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.∵-20-50=-20+(-50)=-70∴答案为:-70.【点睛】本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键.9.下面是七年级一班在学校举行的足球赛中的成绩,现规定赢球为“正”,输球为“负”,打平为“0”,请按照示例填空:例:若上半场输了2个球,下半场输了1个球,则全场输了3个球,也就是(-2)+(-1)=-3;(1)若上半场赢了3个球,下半场输了2个球,则全场赢了____个球,也就是____;(2)若上半场输了3个球,下半场赢了2个球,则全场输了___个球,也就是_____;(3)若上半场赢了3个球,下半场打平,则全场赢了___个球,也就是____.3+(-2)=11(-3)+2=-133+0=3【分析】根据定义赢球记为正输球记为负打平记为0先用有理数表示出输赢情况然后根据有理数的加减运算求解【详解】(1)上半场赢了3个为3下半场输了2个记为(解析:3+(-2)=1 1 (-3)+2=-1 3 3+0=3【分析】根据定义,赢球记为“正”,输球记为“负”,打平记为“0”,先用有理数表示出输赢情况,然后根据有理数的加减运算求解.【详解】(1)上半场赢了3个,为3,下半场输了2个,记为(-2),也就是:3+(-2)=1;(2)上半场输了3个,为(-3),下半场赢了2个,记为2,也就是:(-3)+2=-1;(3)上半场赢了3个,为3,下半场打平,记为0,也就是:3+0=3.【点睛】本题考查用正负数表示相反意义的量,并求解有理数的加法,解题关键是用正负数正确表示出输赢球的数量关系.10.给下面的计算过程标明运算依据:(+16)+(-22)+(+34)+(-78)=(+16)+(+34)+(-22)+(-78)①=[(+16)+(+34)]+[(-22)+(-78)]②=(+50)+(-100)③=-50.④①______________;②______________;③______________;④______________.①加法互换律;②加法结合律;③有理数的加法法则;④有理数的加法法则【分析】根据有理数加法法则相关运算律:交换律:a+b=b+a;结合律(a+b)+c=a+(b+c)依此即可求解【详解】第①步交换了加解析:①加法互换律;②加法结合律;③有理数的加法法则;④有理数的加法法则【分析】根据有理数加法法则,相关运算律:交换律:a+b=b+a;结合律(a+b)+c=a+(b+c).依此即可求解.【详解】第①步,交换了加数的位置;第②步,将符号相同的两个数结合在一起;第③步,利用了有理数加法法则;第④步,同样应用了有理数的加法法则.故答案为加法交换律;加法结合律;有理数加法法则;有理数加法法则.【点睛】考查了有理数的加法,关键是熟练掌握计算法则,灵活运用运算律简便计算. 11.计算:(-0.25)-134⎛⎫- ⎪⎝⎭+2.75-172⎛⎫+ ⎪⎝⎭=___.-175【分析】根据减法法则将减法全部转化为加法同时把分数化成小数然后利用加法的交换结合律进行计算【详解】解:原式=-025+325+275-75=(-025-75)+(325+275)=-775+解析:-1.75【分析】根据减法法则将减法全部转化为加法,同时把分数化成小数,然后利用加法的交换结合律进行计算.【详解】解:原式=-0.25+3.25+2.75-7.5=(-0.25-7.5)+( 3.25+2.75)=-7.75+6=-1.75.故答案为:-1.75.【点睛】本题考查了有理数加减混合运算,一般思路是先把加减法统一为加法,然后利用加法的运算律进行计算.1.计算:(1)()()()923126--⨯-+÷-(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭. 解析:(1)1;(2)-1.【分析】(1)先算乘除,再算加减即可求解;(2)先算乘方,后算除法,最后算加减即可求解.【详解】(1)()()()923126--⨯-+÷-=962--=1;(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭ =11891632-+-÷=1893216-+-⨯ =892-+-=-1.【点睛】 此题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.2.计算(1)(-5)+(-7);(2)(-1)100×5+(-2)4÷4解析:(1)-12;(2)9【分析】(1)同号相加,取相同符号,并把绝对值相加,据此计算即可;(2)先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:(1)(-5)+(-7)=-(5+7)=-12.(2)(-1)100×5+(-2)4÷4=5+16÷4=5+4=9.【点睛】本题主要考查了有理数的加法及有理数的混合运算,熟练掌握运算法则是解本题的关键. 3.计算:()2213113244812⎛⎫-+--⨯-- ⎪⎝⎭. 解析:13【分析】运用乘法的分配律去括号,再按有理数混合运算的顺序计算.【详解】解:原式()19692=-+---()85=--13=【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.4.把4-,4.5,0,12-四个数在数轴上分别表示出来,再用“<”把它们连接起来.解析:数轴表示见解析,140 4.52-<-<<.【分析】先根据数轴的定义将这四个数表示出来即可,再根据数轴上的表示的数,左边的总小于右边的用“<”将它们连接起来即可得.【详解】将这四个数在数轴上分别表示出来如下所示:则140 4.52-<-<<.【点睛】本题考查了数轴,熟练掌握数轴的定义是解题关键.。
2024新人教版七年级上册数学第一章《有理数》单元测试卷(含答案)
8.如图,点4在数轴上表示的数为1,将点A向左移动4个单位长度得到点6,则点3表示的数为
()
A ------------------------- --------------- A
01
A. -2
B. -3
C. -5
D. 5
9.在数轴上,到表示-1的点的距离等于6的点表示的数是( )
A. 5
B. -7
(2)负分数集合:{-5.15, _0 -5%,……}.
17. 0, 2.
18. 120.
故答案为:-5.15, -0. 4,- 5%; (3)非负数集合:{+5, ().06, O, π, 1.5, ........}. 故答案为:+5, 0.06, 0, m 1.5; (4)有理数集合:{-8, +5, 0.06, ∙5.15, 0, _0.
23. (8分)(1)如果同=5,以=2,且小6异号,求a、b的值. (2)若Ial=5, |" = 1,且求内力的值.
第3页共6页
24. (8分)如图,灰太狼和喜羊羊、美羊羊、沸羊羊、懒羊羊在5X5的方格(每个小方格的边长 表示10米距离)图上沿着网格线运动.灰太狼从点A处出发去寻找点& G O, E处的某只羊, 规定:向上、向右走为正,向下、向左走为负.例如从点A到点B记为Af3( + 1, +3),从点3 到点A记为B-A (-1, -3),其中第一个数表示左右方向的移动情况,第二个数表示上下方向
发,到收工时所走路程(单位:千米)分别为:+10, -3, +4, +2, -8, +13, -2, +12, +8,
+5.
(1)收工时在A地的
新人教版七年级数学上册第一章有理数单元测试题及答案-(1)
第一章有理数单元测试题(2)一、精心选一选: 1、a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是 ()(A) a+b<0 (B) (C) a — b>0 (D) a+c<0 b — c<0 1 1 1 1ab 0c 2、若两个有理数的和是正数,那么 一疋有结论 ( ) (A )两个加数都是正数; (B ) 两个加数有- 个是正数; (C ) 一个加数正数,另一个加数为零; (D )两个加数不能同为负数 3、1 2 3 4 5 6+……+2005— 2006的结果不可能是: ( ) A 、奇数 B 、偶数 C 、负数 D 、整数4、、两个非零有理数的和是 0,则它们的商为: () A 、0 B 、-1 C 、 + 1 D 、不能确定5、观察等式:1 + 3 = 4= 2 2, 1+ 3 + 5 = 9= 32, 1+ 3+ 5+ 7 = 16 = 4 2 , 1 + 3 +5+ 7+ 9=25 = 5 2 ,猜想:(1) 1 + 3+5+ 7 …+ 99 = ________ ;(2) 1+ 3+ 5+ 7 +•••+( 2n-1 ) = __(结果用含n 的式子表示,其中n =1,2,3, 计算|3.14 - 卜 的结果是 _______ 」 6、7、 规定图形表示运算a - b + c,图形表示运算x z y w .11(直接写出答案).2000 =15、有1 0 0 0个数排一行,其中任意相邻的三个数中,中间的数等于它前后两数的和,若第一个数和第二个数都是1,则 1000个数的和等于() (A) 1000 (B)1 (C)0 (D)—1 6每天供给地球光和热的太阳与我们的距离非常遥远, 它距地球的距离约为千米, 将150000000千米用 9.观察下面一列数,根据规律写出横线上的数,;…….第2003个数是科学记数法表示为( A . 0.15 X 109千米 B . ) 1.5 X 108 千米C. 15X 107 千米 D . 1.5X 107 千米 *7 . ( 2) 2004 3 (2) 2003的值为( ). A . 2 2003 B . 22003 C 20042 D 22004 10、已知mm ,化简m 2所得的结果:*8、已知数轴上的三点 A B C 分别表示有理数a , 1, 1,那么a 1表示() A. A 、B 两点的距离 B .A 、C 两点的距离 D . A C 两点到原点的距离之和12 3 4 14 15 , *等( 2 4 6 8 28 301 r 1 1 1 A B . -C D .4 4 2 2 — 填空题:C. A 、B 两点到原点的距离之和 1、如果数轴上的点 ). A 对应的数为-1.5,那么与A 点相距3个单位长度的点所对应的有理数为 2、倒数是它本身的数是 _______________ ;相反数是它本身的数是 ________________ ;绝对值是它本身的数 3、 观察下列算式:* ■- - ' , _「 •,-•■'-- ,•丨•二I 一: :■,请你在观察规律之后并用你得到的规律填空:——'—— ----- 一 .4、 如果 | x +8 | = 5,那么 x= ________________ 。
人教版七年级数学上册 第1章 有理数 综合测试卷(含答案)
人教版数学七年级上册第一章有理数综合测试卷(时间90分钟,满分120分)题号一二三总分得分第Ⅰ卷(选择题)一.选择题(本大题共10小题,每小题3分,共30分)1.下列说法中正确的是()A.任何有理数的绝对值都是正数B.最大的负有理数是-1C.0是最小的数D.如果两个数互为相反数,那么它们的绝对值相等2.若m-2的相反数是5,那么-m的值是( )A.+7 B.-7C.+3 D.-33.在有理数|-1|,(-1)2018,-(-1),(-1)2019,-|-1|中,负数的个数是()A.0个B.1个C.2个D.3个4.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是()C .(+39)+(-7)D .(+39)-(+7)6.已知a >0,b <0,|a|<|b|<1,那么下列判断正确的是( ) A .1-b >-b >1+a >a B .1+a >a >1-b >-b C .1+a >1-b >a >-b D .1-b >1+a >-b >a7.近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到23 000公里,将23 000用科学记数法表示应为( ) A .2.3×104 B .23×103 C .2.3×103 D .0.23×1058. 运用加法的运算律计算(+613)+(-18)+(+423)+(-6.8)+18+(-3.2)最适当的是( )A .[(+613)+(+423)+18]+[(-18)+(-6.8)+(-3.2)]B .[(+613)+(-6.8)+(+4)=+[(-18)+18+(-3.2)]C .[(+613)+(-18)=+[(+4)+(-6.8)]+[18+(-3.2)]D .[(+613)+(+423)]+[(-18)+18]+[(-3.2)+(-6.8)]9.若ab≠0,则a |a|+|b|b 的值不可能是( )A .2B .0C .-2D .110.计算机是将信息转换成二进制数进行处理的.二进制即“逢2进1”,如(1101)2表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1=13,那么将二进制(1 111)2转换成十进制形式是数( ) A .8 B .15 C .20 D .30第Ⅱ卷(非选择题)二.填空题(共8小题,3*8=24)11.如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分80分应记作__________. 12.数轴上一个点先向左移动2个单位长度,再向右移动6个单位长度,终点所表示的数是-2,那么原来的点表示的数是_________.13. 若m ,n 互为相反数,x ,y 互为倒数.求2019m +2019n -2020xy 的值是_______________.14.若a 和b 是符号相反的两个数,在数轴上a 所对应的点和b 所对应的点相距6个单位长度,如果a =2,则b 的值为________.15.在数轴上与表示-1的点相距4个单位长度的点表示的数是___________.17.如图是一个计算程序,若输入a 的值为-1,则输出的结果应为_________.18.-32,(-2)3,(-13)2,(-12)3的大小顺序是________________________________.三.解答题(共9小题,66分)19. (6分)已知|x|=5,|y|=3,且x>y.求x +y 的值.20. (6分) 有一根长为64米的钢筋,第一次截去一半,第二次截去剩下的一半,如此下去,截去第六次后剩下的钢筋长多少米?21. (6分)武汉市质量技术监督局从某食品厂生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,把超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:克) -6 -2 0 1 3 4 袋数143453(1)若标准质量为450克,则抽样检测的20袋食品的总质量为多少克? (2)若该种食品的合格标准为450±5 g ,求该食品的抽样检测的合格率.22. (6分)在社会实践活动中,环保小组甲、乙、丙三位同学一起连续5天调查高峰时段10分钟内通过解放路的车流情况(向东为正,向西为负).作了如下记录:(1)若每辆汽车排放的尾气一样多,哪一天的污染指数最高?哪一天的污染指数最低?(2)假如车流量不超过60辆时,空气质量为良,车流量超过60辆时,空气质量为差,请你对这五天的空气质量作一个评价.23. (6分)阅读第①小题的计算方法,再计算第②小题. ①-556+(-923)+1734+(-312)解:原式=[(-5)+(-56)]+[(-9)+(-23)]+(17+34)+[(-3)+(-12)]=[(-5)+(-9)+(-3)+17]+[(-56)+(-23)+(-12)+34]=0+(-114)=-114. 上述这种方法叫做拆项法.灵活运用加法的交换律、结合律可使运算简便. ②仿照上面的方法计算:(-2 01923)+(-2 02056)+4 038+(-12).24. (8分)计算: (1)-191718×6;(2)-370×(-14)+0.25×24.5+512×25%.(3)(-1)3-14×[2-(-3)2];(4)-|-9|÷(-3)+(12-23)×12-(-3)2;25. (8分)小华在电脑上设计了一个有理数运算程序:输入a ,加*键,再输入b ,且a≠b ,得到运算a*b =ab÷(a -b).(1)求2*(-3)和(-3)*2的值;(2)猜想a*b 与b*a 的关系(不必说明理由);(3)若|x +4|=m*n ,|y -8|=n*m ,且m≠n ,求yx -xy 的值.26. (10分)计算 (1)-223+52-45-52-13;(2)(-76+34+1112-1324)×3÷(-112);(3)(-3)2-(-12)×(13-56)+(-22)÷(-23).第1个等式:a1=11×3=12×(1-13);第2个等式:a2=13×5=12×(13-15);第3个等式:a3=15×7=12×(15-17);第4个等式:a4=17×9=12×(17-19);……请解答下列问题:(1)按以上规律列出第5个等式:a5=_______=_____________;(2)求a1+a2+a3+a4+…+a100的值.参考答案:11. -3分 12. -6 13. -2020 14. -4 15. 3或-5 16. 3或13 17. 718. (-13)2>(-12)3>(-2)3>-3219. 解:因为|x|=5,所以x =±5. 因为|y|=3,所以y =±3. 由题意,可知x >y , 所以x =5,y =±3. x +y =5±3=8或220. 解:由题意可得64×(12)6=64×164=1(米),答:截去第六次后剩下的钢筋长1米21. 解:(1)450×20+(-6)+(-2)×4+1×4+3×5+4×3 =9000-6-8+4+15+12 =9017(克) (2)1920=95% 22. 解:(1)25+40=65(辆), 20+20=40(辆),30+20=50(辆), 35+50=85(辆),35+20=55(辆). 因为40<50<55<65<85,所以第四天的污染指数最高,第二天的污染指数最低 (2)因为65>60,40<60,50<60,85>60,55<60,所以第二天、第三天、第五天空气质量为良,第一天、第四天空气质量为差 23. 解:原式=(-2 019-23)+(-2 020-56)+4 038+(-12)=(-2 019-2 020+4 038)+(-23-56-12)=(-1)+(-23-56-12)24. 解:(1)原式=(-20+118)×6=-20×6+118×6=-120+13=-11923(2)原式=370×14+14×2412+512×14=14×(370+2412+512) =14×400 =100(3)原式=-1-14×[2-9]=-1-14×[-7]=-1+74=34(4)原式=-9÷(-3)+(- 16)×12-9=3-2-9 =-825. 解:(1)2*(-3)=2×(-3)÷[2-(-3)]=-65,(-3)*2=(-3)×2÷[(-3)-2]=65(2)a*b 与b*a 互为相反数(3)因为m*n 与n*m 互为相反数,所以|x +4|+|y -8|=0, x +4=0,y -8=0,解得x =-4,y =8, 所以yx -xy =-2+32=3026. 解:(1)-223+52-45-52-13=(-223-13)+(52-52)-45=-3+0-45=-345;(2)(-7+3+11-13)×3÷(-1)=-76×(-36)+34×(-36)+1112×(-36)-1324×(-36)=42-27-33+392=32; (3)(-3)2-(-12)×(13-56)+(-22)÷(-23)=9+12×13-12×56+(-4)×(-32)=9+4-10+6 =9. 27. 解:(1)19×11,12×(19-111) (2)a 1+a 2+a 3+a 4+…+a 100=12×(1-13)+12×(13-15)+…+12×(1199-1201)=12×(1-13+13-15+…+1199-1201) =12×(1-1201) =100201。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级第一章《有理数》测试
时间:45分钟 满分:100分
一、填空题(每小题2分,共28分)
1. 在数+8.3、 4-、8.0-、 51-、 0、 90、 334-、|24|--中,________________是正数,____________________________不是整数。
2.+2与2-是一对相反数,请赋予它实际的意义:______________________________________。
3.35
-
的倒数的绝对值是___________。
4.用“>”、“<”、“=”号填空;
(1)1___02.0-; (2)43___5
4; (3)][)75.0(___)43(-+---;
(4)14
.3___722--。
5.绝对值大于1而小于4的整数有____________,其和为_________。
6.用科学记数法表示13 040 000,应记作_____________________。
7.若a 、b 互为相反数,c 、d 互为倒数,则 (a + b)33-(cd)4 =__________。
8.123456-+-+-+…20012002+-的值是__________________。
9.大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成__________个。
10.数轴上表示数5-和表示14-的两点之间的距离是__________。
11.若
0|2|)1(2=++-b a ,则b a +=_________。
12.平方等于它本身的有理数是_____________,
立方等于它本身的有理数是______________。
13.在数5-、 1、 3-、 5、 2-中任取三个数相乘,其中最大的积是___________,最小的积是____________。
14.第十四届亚运会体操比赛中,十名裁判为某体操运动员打分如下:10、 9.7、 9.85、
9.93、 9.6、 9.8、 9.9、 9.95、 9.87、 9.6,去掉一个最高分,去掉一个最低分,其余8个分数的平均分记为该运动员的得分,则此运动员的得分是_________。
15.两个非零有理数的和为零,则它们的商是( )
A .0
B .1-
C .+1
D .不能确定
16.一个数和它的倒数相等,则这个数是( )
A .1
B .1-
C .±1
D .±1和0
17.如果a a -=||,下列成立的是( )
A .0>a
B .0<a
C .0≥a
D .0≤a
18.用四舍五入法按要求对0.05019分别取近似值,其中错误的是(
) A .0.1(精确到0.1)
B .0.05(精确到百分位)
C .0.05(保留两个有效数字)
D .0.0502(精确到0.0001)
19.计算1011)2()2(-+-的值是( )
A .2-
B .21)2(-
C .0
D .102-
20.有理数a 、b 在数轴上的对应的位置如图所示:
则( )
0-11a b
A .a + b <0
B .a + b >0
C .a -b = 0
D .a -b >0
21.下列各式中正确的是( )
A .22)(a a -=
B .33)(a a -=
C .|| 22a a -=-
D .|| 33a a =
三、计算(每小题5分,共35分)
26.)1279543(+--÷361
27.|97|-÷2
)4(31)5132(-⨯--
28.
3
2
2)
4
3
(
6
)
12
(
7
3
1
1-
⨯
⎥⎦
⎤
⎢⎣
⎡
÷
-
+
-
-
四、解答题(每小题8分,共16分)
29.某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、-3、-5、+4、-8、+6、-3、-6、-4、+10。
(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?
30.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过
这批样品的平均质量比标准质量多还是少?多或少几克?若每袋标准质量为450克,则抽样检测的总质量是多少?
五、附加题(每小题5分,共10分)
1.如果规定符号“﹡”的意义是a﹡b=
ab
a b
+,求2﹡(3)
-﹡4的值。
2.已知|1|
x+= 4,2
(2)4
y+=,求x y
+的值。
有理数参考答案
1.+8.3、90;
+8.3、8.0-、51-、334-。
2.向前走2米记为+2米,向后走2米记为2-米。
3.5
3
4.<,>,=,<。
5.±2,±3; 0。
6.1.304×107。
7.-3
8.-1001。
9.512.(即29 = 512)
10.9.
11.-1。
12.0,1; 0,±1。
13.75; -30。
14.9.825.
15.B
16.C
17.D
18.C
19.D
20.A
21.A
22.-29
23.-40
24.41
25.6
26.-26
27.-11/3
28.-169/196
29.(1)0km ,就在鼓楼;
(2)139.2元。
30.(1)多24克;
(2)9024克。
附加题
1.2.4.
2.3或-1或-5或-9。