钙依赖蛋白酶激活致轴突神经丝退变

合集下载

有机磷诱发的迟发性神经毒性的神经蛋白抗体和毒性的改善

有机磷诱发的迟发性神经毒性的神经蛋白抗体和毒性的改善
有机磷化合物诱导的迟发 性神经毒性的神经蛋白抗 体和毒性的改善
Neurotoxicology and Teratology
Hassan A.N. El-Fawal,Wilfred C. McCain Neurotoxicology Laboratory at Mercy College, USA
1. 前言
• 血清抗神经抗原自身抗体,被建议用于证 明外来物质引起的神经损伤,先前对此的 研究是基于对神经变性疾病,如帕金森, 阿尔茨海默,肌萎缩侧索硬化等。在这些 疾病病中,神经细胞的蛋白抗体、髓磷脂 和受体曾被报告过。尽管这些神经变性并 没有公认与自身免疫有关,但自身免疫的 存在对神经组织的损伤具有指示意义。因 此,在神经毒理学的背景下,我们将提供 一种有效的生物标记来评价和监测潜在的 神经毒性的进展和毒性的改善。
• 在本研究中NF-M和NF-H与临床症状得分之 间缺乏相关性,可能反映了骨架蛋白的磷 酸化状态。在OPIDN过程中神经丝蛋白的 磷酸化会导致神经丝蛋白聚集而导致其运 输减少,这在若干个研究中已被报告出来。 这可能是由于钙调蛋白的蛋白激酶活性增 强而导致,如果是这个原因,则自身抗体 会升高来对抗磷酸化,而不是对抗天然蛋 白,这或许能够解释为什么最初的抗NF-M 水平相比抗NF-L的升高是在第7天而不是第 21天,因此未来的研究将尝试检测抗磷酸 化的神经丝蛋白底物的抗体。
• 众所周知,有机磷化合物(OPs),包括农 药和工业化学品,会对神经系统产生不利 影响,有机磷农药对神经系统的急性毒性 与酯酶的抑制有关。因此,血液胆碱酯酶 活性被作为暴露和神经毒性的测量指标。 然而,其他有机磷化合物,如增塑剂,润 滑剂等,在一次暴露后可引起迟发性神经 毒性(OPIDN),这种神经病变被认为与神经 毒性酯酶(NTE)的抑制有关。NTE存在于动 物模型的神经组织和人淋巴细胞中。这就 需要一种生物指标,能够反映由这种或其 他神经毒性所引起的神经损伤和毒性的改 善。

有机磷农药中毒致神经损伤机制的研究进展

有机磷农药中毒致神经损伤机制的研究进展

有机磷农药中毒致神经损伤机制的研究进展有机磷农药(organophosphorus pesticides,OPs)是我国生产和使用最多的农药,也是引起急性中毒和致死的主要农药。

急性有机磷中毒(acute organophosphoms pesticides poisoning,AOPP)是临床常见急症,是我国农村常见的中毒性疾病。

OPs 对神经损伤是有机磷农药中毒患者致残和致死的主要原因。

对中毒患者神经系统损伤的抢救和治疗也是决定有机磷中毒患者抢救成功及预后的关键。

OPs对神经系统的毒副作用可以引致3种临床表现:①急性胆碱能危象(acute cholinergiccrisis,ACC);②迟发性周围神经病(organophosphate induceddelayedpolyneuropathy,OPIDP);③中间综合征(intermediatesyndrome,IMS)。

此外,还有一种神经发育毒性。

本文对近年来有关有机磷农药中毒所致神经损害的机制综述如下。

1 ACC发病机制ACC是在OPs中毒急性期,因OPs抑制乙酰胆碱酯(acetylcholinesterase,AChE)引起毒蕈碱样症状、烟碱样症状及中枢神经系统症状。

目前认为,有机磷农药与乙酰胆碱酯酶的酶解部位结合成磷酰化胆碱酯酶,后者比较稳定,且无分解乙酰胆碱的能力,从而使乙酰胆碱积聚,引起胆碱能神经先兴奋后抑制的一系列症状。

用乙酰胆碱能系统变化能够解释有机磷农药急性中毒的大部分症状,但对于中毒时出现脑神经系统的部分变化(如抽搐、惊厥、癫痫样发作)不能完全解释。

在治疗中,采用阿托品及胆碱酯酶重活化剂治疗效果并不理想。

动物实验发现,惊厥、癫痫发作均与γ-氨基丁酸(GABA)受体有关。

GABA受体是一种氯离子通道受体,该受体上有GABA、巴比妥、印防己毒素、农药、酒精等的结合位点[1]。

抗癫痫药物通常采用GABA受体激动剂,治疗有机磷中毒发现采用少量的苯二氮革类药物,可以提高机体中GABA含量,从而消除有机磷引起的抽搐、癫痫样发作,故而考虑GABA系统也可能参与了某些有机磷农药的中毒过程。

神经细胞的细胞周期紊乱与Alzheimer病患者大脑神经病理改变的关系

神经细胞的细胞周期紊乱与Alzheimer病患者大脑神经病理改变的关系
药物 。近儿年 研究发 现, A 在 D患者病 变脑 区的神经 元 内
不再增殖
可 作为分化 神经 元的增殖信号 , 动神 驱
细胞周期素 (yl ) ccn 及细胞 周期 索依校 的蛋 白激酶( d ) i Ck 的 表达异常增高 , 并与 A D的痴果程度密切相关 。这提示 A D的发病可能 与神经元细胞周期紊乱有关” 。 J
细胞生长。P2P4 活的  ̄ P 通路 可促 进细胞 周期 素 4/4 激 I K A
D 启动子的活化和细胞周期的运转。A 1 D脑 中病理刺激 引
增殖进行 调控 的关键点 。细胞在这些榆验点对复杂的胞内 外信号( 包括 各类 生 长因子和分 裂原 所提供 的信 号 , 以及
D A损伤情况等) N 进行整台 传递 , 作用于细胞周期的不同 阶段 , 从而引发或抑制细胞 分裂 、 殖 、 增 分化或凋亡。细胞
维普资讯
22 6 { 年 月第 2 复 3 D 1 期 £・』

. !! : .!
综 述 ・
Az i r hm 神经 细胞 的细胞 周期 紊乱 与 1 e e 病患者 大脑 神 经病理 改 变 的关 系
安 文林 孛林 贾建平
二 、 D的病理改变与细胞周期紊乱 A
1邶 与细胞周期紊 乱: 是 A 邸 D脑 中老年斑的主要成 分, 的积聚会诱 导已分化的神 经细胞 出现 期的 Ct 、 k 4 C k、b等组分增高 。一般来讲 , d6 R 神经元是终末分化细胞 ,
载、 氧应敬 、 经营养因子缺乏 、 神 基因突变等, 由于其确切 但 病因及发病机 制尚不 十分清楚 , 目前 缺乏防治 A D的有效
细胞周 期是指琏 续分裂的细胞从 一次有丝分裂结束到 下一次有丝分裂完成 所经 历的整个 序贯过程 =细胞周期分 为 4个阶段 . G 期( N 即 . D A合成前期 )S期( N 、 D A台成期 ) 、 c 期( 2 有丝分裂 后期 ) M期 ( 和 有丝分 裂期) 。与 细胞周 期

钙信号转导与神经元动态行为的分子机制探究

钙信号转导与神经元动态行为的分子机制探究

钙信号转导与神经元动态行为的分子机制探究神经元是神经系统的基本单位,具有接收、处理和传递信息的功能。

它们的动态行为受到复杂的信号传导机制的调控,其中钙离子信号是非常重要的一种。

钙信号转导机制能够调节细胞内多种生理过程,从而影响神经元的动态行为。

本文将探究钙信号转导与神经元动态行为的分子机制,以期深入了解神经元的生理过程,为神经系统疾病的治疗提供新思路。

首先,我们先了解一下钙信号转导的基本原理。

钙离子是细胞内最广泛使用的第二信使,通过与多种靶位点相互作用,调控细胞内的多种生理过程。

细胞内的钙离子浓度是非常低的,但在受到特定的信号后,可以迅速升高,达到毫摩尔甚至微摩尔的浓度。

这个大幅度的浓度升高是由于细胞膜上钙离子通道的打开,使得外部环境中钙离子进入细胞内部,从而导致了钙离子浓度的上升。

神经元的动态行为受到钙离子信号传导机制的调控,其中最主要的是钙离子波(calcium wave)和钙离子突增(calcium spike)两种。

在钙离子波的过程中,细胞膜上的钙离子通道打开后,钙离子从通道进入细胞内,形成一个钙离子激活的信号级联反应,最终产生一个波动的钙离子波。

而在钙离子突增的过程中,则是细胞膜上的钙离子通道不断打开,使得钙离子进入细胞内,最终形成一个快速上升的钙离子峰。

钙信号转导的分子机制非常复杂,大多数研究表明它涉及了多种钙调蛋白和钙离子通道的相互作用。

下面我们将对几种与神经元动态行为密切相关的钙调蛋白和钙离子通道进行简要介绍。

1. 钙/钙调蛋白依赖性蛋白激酶II(CaMKII)CaMKII是一个经典的钙调蛋白,可在神经元中快速响应钙离子信号,并调节钙离子通道的打开和关闭。

它与突触可塑性和学习记忆等过程密切相关,是神经科学领域中最热门的研究方向之一。

研究表明,在神经元中,CaMKII的活化能够形成钙离子突增,并在轴突和树突中引起一系列的亚细胞结构变化和信号转导事件。

同时,CaMKII还能够通过其自身活性调控其对钙离子的敏感度和响应性,是神经元中最为重要的钙调蛋白之一。

植物钙依赖的蛋白激酶(calci...

植物钙依赖的蛋白激酶(calci...

植物钙依赖的蛋白激酶(calcium-dependent protein kinases, CDPKs)胞质Ca2+是真核生物细胞信号转导的重要第二信使。

为了维持正常的生理、生化功能,植物细胞中Ca2+的分布严格区域化,在正常生长条件下胞质中的自由Ca2+稳定在约100-200 nM 的低水平,大量的Ca2+贮存在液泡、内质网、线粒体等细胞器中,这些细胞器中Ca2+浓度通常达到µM-mM水平(Bush,1995)。

另外,胞外Ca2+浓度也显著高于胞质的浓度。

当细胞受到外界刺激后,Ca2+从胞内储藏处和胞外流向胞质,使胞质Ca2+浓度产生瞬时的变化。

Ca2+浓度的这种变化主要是通过存在于质膜及细胞内膜上的Ca2+通道与Ca2+泵及Ca2+/ H+ 反向转运子的作用来实现的(Bush, 1995; Thuleau et al., 1998; Allen et al., 2000; Hwang et al., 2000; Harper, 2001)。

胞质自由Ca2+的变化不仅仅表现在浓度绝对值的增加,而且还表现在Ca2+流的动力学方面,如浓度变化的持续时间、振幅等,所有这些变化共同产生编码特异生物信息的Ca2+信号。

大量研究表明许多外界因素均能刺激植物细胞产生Ca2+信号,这些因素包括光、非生物胁迫(如高温、干旱、低温、高盐、机械伤害等)、生物胁迫(病原菌侵染)和植物激素(如ABA等)等(Sanders et al., 1999; Evans et al., 2001; Rudd and Franklin-Tong, 2001)。

Ca2+信号经过Ca2+传感蛋白(靶蛋白)的识别、解码进入到下游的生物过程,如磷酸化级联、基因表达的调控等(Sanders et al., 1999; Rudd and Franklin-Tong, 2001)。

钙信号的作用

钙信号的作用

Ca2+是生理活性物质,在中枢神经系统中作用倍受人们关注。

神经元不少关键的过程如:都是由细胞内或膜内、外钙离子分布的改变来调节的近年来的研究表明,肌细胞中肌浆网的Ca2+ATP酶的作用是将Ca2+从细胞内转运并存到肌浆网内部。

当Ca2+ATP酶的激活可以迅速降低胞液中Ca2+的浓度,让肌肉得到舒张。

心肌细胞内Ca2+浓度升高,可以引起心肌收缩。

神经细胞钙离子超载与老化有关。

高浓度的Ca2+可以激活内质网上Ca2+,诱导Ca2+释放酰肌醇-4,5二磷酸水解产生两种新的肌内第二信使DAG还有IP3,调节神经细胞的活动。

钙超载对细胞损伤主要有几个方面:1.酸化脱偶联,呼吸作用受抑制;丝分解,神经微管解聚,严重影响轴浆运输,导致神经元死亡。

Ca2+将死亡信号传入细胞内的机制仍然知之甚少。

当细胞内Ca2+浓度增加时,谷氨酰胺等。

在许多组织中,细胞质Ca2+增加可活化细胞膜上的K+通道,使K+沿电化学梯度从胞内扩散到胞外。

此外Ca2+还可以调节Ca2+、Cl- 和Na+通道的开启,可以活化一类非专一性的阳离子通道。

Ca2+对离子通道的活化与细胞的许多功能,特别是对细胞的兴奋性传导以及内分泌和外分泌均起着重要的调节作用。

近年研究发现,K+诱导的去极化可通过电压门控Ca2+通道导致Ca2+的内流,而谷氨酸的作用则经突触后非NMDA受体介导引起Ca2+内流。

视网膜中主要的胶质细胞受刺激后,会引起Ca2+从胞内钙库释放后流至胞内不同部位,先是在细胞顶端Ca2+浓度升高,然后以波动的形式向终足区传播。

这种Ca2+波也许是视网膜中信号传递的第二条通路。

综上所述,Ca2+在细胞功能的调节作用极大,在神经传导、肌肉收缩、形态变化、神经细胞老化、腺体细胞的分泌和视网膜细胞的信号传递等生理过程都有Ca2+的调节参与。

细胞的许多功能都依赖于细胞内外极高的Ca2+浓度差存在,一旦这种浓度差减低,细胞功能就会受到损伤,甚至引起细胞死亡。

钙失衡

钙失衡

钙失衡与AD的关系1、钙失衡能激活磷脂酶A2, 引起脂质过氧化, 产生氧自由基, 造成细胞膜的完整性的破坏。

2、钙失衡能激活Ca2+-CaM 依赖性蛋白激酶Ⅱ, 使突触前突触蛋白Ⅰ磷酸化, 引发兴奋性神经递质谷氨酸的释放。

谷氨酸( Glu)是脑内兴奋性神经递质, NMDA受体门控的通道是Glu引起的Ca2+内流的主要途径, 当其过度激活时可致细胞内钙超载, 激活系列链式反应直接导致神经元的退行性病变和迟发性坏死。

Glu还可通过受体门控通道或激活磷酸肌醇环路, 促进Ca2+内流, 进而激活钙依赖性的转谷氨酰胺酶( Transglutaminase) , 使Tau蛋白产生类似AD中NFTs的聚合物。

3、激活核酸内切酶, 引起DNA的降解, 导致细胞的凋亡。

4、细胞内Ca2+超载激活Calpain破坏细胞结构蛋白质,Calpain是Ca2+ 激活的Ca2+ 依赖性半胱氨酸中性蛋白酶( Ca2+-activated neutral protease, CANP) 。

在细胞内以无活性的形式存在, 有Ca2+ 时释放部分肽段而活化。

中枢神经系统Calpain可以降解的底物包括:①细胞骨架蛋白、actin、神经纤维蛋白、微管、微管相关蛋白Ⅱ( MAP Ⅱ) 、Tau蛋白; ②多种酶和调节蛋白, 如PKC、磷脂酶C、CaM-PKII、Ca-lcineurin; ③多种受体/通道如Glu、EGF受体, Ca2+通道( 如线粒体中的ryanodine受体通道) ; ④转录因子, 如Fos和Jun; ⑤髓鞘基质蛋白和髓鞘相关糖蛋白。

生理Ca2+水平下, Calpain通过作用于膜-细胞骨架而调控重要的信号通路; 在异常高的Ca2+水平时Calpain则具有强烈的破坏作用, 可将细胞内的蛋白质迅速水解。

5、使线粒体氧化-磷酸化脱偶联, 抑制线粒体的呼吸作用, 导致能量代谢的障碍。

6、钙的代谢失衡直接或间接地影响神经长时程突触增强( LTP) , 使神经元的可塑性降低, 出现记忆障碍。

钙蛋白酶在脊髓损伤中的意义及其抑制剂的神经保护作用

钙蛋白酶在脊髓损伤中的意义及其抑制剂的神经保护作用
细 胞 内游离 C 浓 度 增 加 、 种髓 磷 脂 蛋 白和 a 多
中 。C latt ap sai n含 有 4个 抑 制 区 , 分 子 的 C l 一 a— p sai a tt n可同 时抑 制 四分 子 C lan的活性 。随 C l ap i a— p i/ ap sai 比值 升 高 , ap sai an c la tt n的 C latt n对 C la ap i n 的抑制 作 用 降 低 , ap i C lan活 性 增 强 。C lan C l ap i/ a—
蛋 白 ( co u ue a sc td p oen mi t b l — so i e rti ,MAP ) r a 2 和 神 经丝 蛋 白( P 缺 失 ; 瘤坏 死 因子 一a分 泌 ; NF ) 肿
at ae n y ) 。C la s蛋 白分 解 系 统 至 ci tde z me 等 v ap i n
细 胞骨架 蛋 白降解 同时伴 有 轴 突变 性 及 髓磷 脂 泡 样 改 变表 明 : ap i C la n在 S I的继 发 损 伤 过 程 中 发挥 重 C 要作 用 。有学 者应 用 免疫 组化 技 术 发 现 脊髓 损 伤 后 C lan的表 达 增 强_ 。细 胞 骨 架 蛋 白 和膜 蛋 白在 ap i 3 J 维 持 中枢 神 经系统 细 胞结 构 完整 性 方 面 具有 重要 作 用, 大量 降解 可破 坏细 胞结 构 , 致 中枢 神经 系统 细 导 胞死 亡 。为预 防脊 髓 损 伤 后 继 发 性 细 胞 死 亡 , 学 有 者在 脊髓 损伤 动 物 模 型 中应 用 C lan抑 制 剂 进 行 ap i 实验 治疗 , 发现 C la ap i n抑制 剂具 有 明显 神经 保 护 作 用 ] ap s 属 于钙 离 子依 赖 性 半 胱 氨 酸 蛋 白酶 。C sa e 家族 , 参与 中枢 神 经 系 统 损 伤 后 神 经 细 胞 凋 亡 。许 多 研究 证 实 , 髓损 伤 后 ,a p s , 其是 cs a e 脊 cs ae 尤 ap s - 3活 化可 促进 神 经 细 胞凋 亡 。在 大 鼠脊髓 损 伤 动 物

北京大学药物毒理学-10神经和神经行为毒理学-药物毒理学-精品文档

北京大学药物毒理学-10神经和神经行为毒理学-药物毒理学-精品文档
肿等)
慢性中毒性脑病:神经毒物慢性重度暴露 震颤麻痹综合症(吩噻嗪类、丁酰苯类以及三环类抗精神失
常药物;锰、二硫化碳等)
中毒性精神分裂症(异烟肼、四乙基铅、二硫化碳等) 中毒性痴呆(铅、汞、铊、锰等)
你让我变坏,我让你变态
3.中毒性神经炎:有毒化学物损害周围神经导致的病变, 表现为单神经炎或多神经炎。
递质前体、合成酶、储存囊泡、摄取 及释放、受体、灭活以及降解等
(4)神经细胞再生能力差:
死亡:不能再生,神经胶质细胞形成
神经元
瘢痕。
存活:轴突损伤(可再生,但是缓慢)
(5)神经系统的保护机制:
(a)有坚固的颅骨以及坚韧的脑脊膜
脑脊膜:硬膜、蛛网膜和软膜组成
(b)血脑屏障(blood-brain barrier,BBB)
毒物损伤单一的周围神经而导致单神经炎,如铅 桡 神经麻痹;三氯乙烯 三叉神经麻痹。
多神经炎可在急性中毒的早期出现,如铊、CO中毒等。 这类药物如抗肿瘤药、抗结核药等等
你让我“发炎”,我让你功能不全
朱令事件
朱令中毒时间表:
1994.12.5,朱令首次因不明原因发病,腹、腰四肢关节痛。在北京同仁医院治疗近 一个月;病因无法确诊,头发全部掉光后病情好转出院。
1.血-脑及血-神经屏障与神经毒性损伤:
2.神经元损伤(neuronopathy):
神经元损伤有关的化学物:氨基糖甙类抗生素、铅、 汞、锰、铊等等
3.轴病(axonopathy):
己二醇 二甲基己二醇 亚胺二丙腈 吡啶硫铜
轴索损害有关的化学物:秋水仙素、紫杉醇、长春新碱、丙稀酰 胺、二硫化碳、金、有机磷、己烷等等
4.神经系统的解剖、生理学特点:
(1)中枢神经系统的新陈代谢非常活跃:

钙_钙调素依赖性蛋白激酶_及其生物学作用 (1)

钙_钙调素依赖性蛋白激酶_及其生物学作用 (1)

[收稿日期]2001-04-28 [修回日期]2001-07-163[基金项目]国家自然科学基金资助项目(39770175);国家杰出青年科学基金资助项目(39925012);国家重点基础研究规划(G 1999054000)资助项目△山东省临沂市人民医院神经科,276003T el :0539-*******;E -mail :wqb666@[文章编号] 1000-4718(2002)10-1300-03钙/钙调素依赖性蛋白激酶-Ⅱ及其生物学作用3王全保△, 王建枝(华中科技大学同济医学院,湖北武汉430030)C alcium/calmodulin -dependent protein kinase Ⅱand its biologic functionWANG Quan -bao ,WANGJian -zhi(Department o f Pathophysiology ,Tongji Medical Univer sity ,Wuhan 430030,China ) 【A R eview 】 Ca 2+/calm odulin -dependent protein kinase Ⅱ(CaMK Ⅱ)is a member of a family of Ca 2+/calm odulin -regulated protein kinases which als o includes Ca 2+/calm odulin -dependent protein kinas 2es Ⅰand Ⅲ,my osin light chain kinases and phosphorylase kinase.Unlike the other members of this family ,CaMK Ⅱis multifunctional protein kinase and distributes in a variety of tissues.It is especially abundant in neuronal system.In hippocam pus ,CaMK Ⅱis about 2%of the total protein.Studies have shown that CaMKⅡplays an im portant role in a variety of biological processes ,such as regulation of gene transcription ,synthe 2sis of neurotransmitter ,phosphorylation of cytoskeletonal protein ,hippocam pal learning and mem ory formation. [关键词] 钙调蛋白;蛋白激酶Ⅱ;学习;记忆 [KE Y WOR DS] Calm odulin ;Protein kinase -Ⅱ;Learning ;Mem ory [中图分类号] R363 [文献标识码] A 钙/钙调素依赖性蛋白激酶-Ⅱ(calcium/calm odulin -dependent protein kinase -Ⅱ,CaMK Ⅱ)是一种多功能蛋白激酶,存在于许多动物细胞内,尤其在神经组织中含量丰富。

细胞内Ca2 浓度和CaMKⅡ对学习和记忆的作用与影响的研究进展

细胞内Ca2 浓度和CaMKⅡ对学习和记忆的作用与影响的研究进展

细胞内Ca2+浓度和CaMKⅡ对学习和记忆的作用与影响的研究进展(作者:___________单位: ___________邮编: ___________)【关键词】细胞内Ca2+浓度CaMKⅡ学习记忆影响Giacobini提出了突触可塑性学说,认为突触不是静止、固定的结构。

1973年Bliss首先在麻醉家兔发现,短串高频条件刺激(强直刺激)穿通路传入纤维可在海马齿状回颗粒细胞诱导出持续10小时以上的群体锋电位和群体兴奋性突触后电位幅值增大的突触传递效能的易化现象,即长时程增强(1ong-term potentiation,LTP)现象并提出LTP 是记忆的突触模型[1]。

Greenough通过迷宫训练实验后发现大鼠枕部皮层锥体细胞有新的突触形成[2]。

这些研究为在突触水平上研究学习记忆提供了一个理想模型和细胞基础。

突触是记忆的贮存的部位。

人类的神经系统中存在成千上万个突触可能存储大量信息。

LTP的研究表明,突触前和突触后神经元内Ca2+浓度的高低均与LTP的诱导及维持有关。

有些研究者设想是否可以通过蛋白质作用使每个突触局部的生理及生化过程都能促进长时程信息的存储,从而构成记忆的分子基础。

Lisman设想存在一种作为“分子开关”的激酶在学习过程中通过磷酸化而被激活,活化的激酶还能够催化本身磷酸化,使其激酶分子在学习结束后仍能持久的保持活化状态[3]。

大量研究发现钙/钙调蛋白依赖性蛋白激酶Ⅱ(calcium/calmodulin dependent protein kinase—Ⅱ,CaMKⅡ)具有这一特性,当Ca2+内流时能够使CaMKⅡ磷酸化而被激活,活化的CaMKⅡ自身磷酸化,而且当Ca2+下降后CaMKⅡ的活性仍能保持其状态,因此,人们认为CaMKⅡ可能是记忆的分子开关。

1 Ca2+与LTPLTP是指高频刺激突触前传入纤维所引起的突触传递效能的长时间持续性增强。

主要表现为高频刺激后突触后群体锋电位(population spike, PS)幅值增大、潜伏期缩短,群体兴奋性突触后电位(population excitatory postsynaptic potential, pEPSP)幅值和斜率都增大等突触传递效能增强的现象。

钙信号通路的调控机制

钙信号通路的调控机制

钙信号通路的调控机制钙离子是一种信号转导分子,在许多细胞生物学过程中扮演着重要的角色。

钙信号通路是指通过细胞膜或内部储存钙离子的释放和重新吸收来调节细胞功能的信号通路。

钙信号通路与多种生物学过程有关,如细胞增殖、分化、凋亡、细胞运动、肌肉收缩、神经递质释放等。

钙信号的调节主要是通过钙离子调节蛋白(calmodulin、calmodulin-like protein 等)来实现。

当细胞暴露在兴奋性刺激下,就会引起细胞膜电位的变化,从而开启细胞内的离子通道,使钙离子流入细胞内。

当钙离子的浓度增高时,其会结合到调节蛋白上,调节蛋白的结构发生变化,从而影响其下游的生物学过程。

钙流入细胞内后需要被重新吸收或储存起来。

吸收钙离子的过程主要是依赖于细胞外泵和内质网钙泵。

细胞外钙泵是通过能量耗费将钙送回细胞外。

内质网钙泵则主要位于内质网和肌肉细胞的细胞质结构(即叫肌浆网),这些都是特殊形态的内质网。

钙泵将钙离子转移到内质网或肌浆网中的钙储存器中。

这种物质转移是通过一系列的蛋白信号分析模块来实现的,这些模块与钙依赖的激酶和蛋白酶相互修饰并控制相应的活性。

细胞内钙离子的浓度平衡是通过多种通路进行调节的。

初始的平衡由钙离子通道的开启和关闭控制。

细胞膜和内质网的钙通道是在钙离子稳态,即将钙离子的输入和输出控制在预定范围内,进行调节的主要机制。

当钙离子被释放到细胞内或细胞外时,并且钙泵的功能下降时,可激活钙释放通道,从而引起钙通道的开启。

这种反馈机制是通过调节细胞内钙离子浓度来实现的。

最近的一项研究表明,细胞内钙信号通路的调节是通过多种机制来实现的。

其中包括钙离子与其他分子,如PIP2(磷脂酰肌醇二磷酸)之间的相互作用以及互补调节的激酶和蛋白激酶的结合。

这些通路将细胞内的钙动力学反馈到本体控制器中,并调节其下游的生物学过程,如基因转录、蛋白质合成、细胞结构和运动。

总之,钙信号通路是一种常见的信号转导机制,它在多个生物学过程中发挥重要作用。

钙调磷酸酶在神经退行性疾病中的作用

钙调磷酸酶在神经退行性疾病中的作用

AMPA
AMPA 受体介导中枢神经系统快速兴奋性 突触传递,其在突触后膜的动态表达与长 时程增强、长时程抑制的诱发和维持有关, 参与调节学习记忆活动。它还参与谷氨酸 介导的兴奋性损伤,C a 2 + 通透性A M P A R 亚型的过度激活能导致阿尔茨海默病 神经元的功能障碍甚至死亡。
结论
• 错误折叠蛋白质的积累,能够引起内质网应 激和Ca2+稳态的变化,细胞利用错误折叠的 蛋白质尝试正确反映内质网应激带来的负面 影响.内质网应激的一个负面影响是释放钙到 细胞质中,导致了信号传导通路的阻碍,持续 的突触功能障碍和神经元细胞凋亡导致了神 经退行性疾病。最近数据表明:在大脑中有 一个关键的钙调磷酸酶,它的变化可导致神 经突触损伤和神经元细胞死亡,通过控制钙 调磷酸酶的变化,对抑制神经退行性病的产 生有一定作用。通过对这方面的研究,可能 在分子水平上增进对神经退行性病的了解和 一些必要的治疗措施的发展。
概述
神经退行性疾病 是由错误折叠的蛋白质在大脑中积
累导致神经元功能障碍。证据表明:错误折叠的蛋 白质通过诱导内质网压力和改变钙的稳态平衡来破 坏细胞 。胞质钙浓度的变化导致信号传导通路障碍, 钙介导的超活化钙调磷酸酶(CaN)是大脑中的主要 磷酸酶,能够引起大脑功能障碍和神经突触触发器 死亡,导致形成神经退行性疾病。因此,抑制钙调 磷酸酶的活性可能在脑损伤的神经退行性疾病治疗 方面是一个很有前途的策略。
钙调磷酸酶( 简称CaN ):依赖钙和钙调 蛋白的丝氨酸/苏氨酸磷酸酶,激活磷酸化的 转录因子NF-ATp,参与T细胞激活信号的转 导.
CaN的结构和功能是当前研究很活跃的领 域,由于其在神经及免疫系统中发挥着重要 的作用,尤其是90年代后证明它在T细胞活 化过程中起关键作用。

钙与神经退行性变

钙与神经退行性变

应激 使神经 元 对 兴 奋 性 中毒 的 C 介导 的细 胞 凋 a 亡更 为敏感 , 过程 中谷氨 酸受 体过分 激 活 , 然细 此 虽
胞 内钙 浓度 升高超 过 限度 。一项 以 2种不 同类 型的
合蛋 白 cli i 和小白蛋白等) a nn bd 的激活从细胞浆 内 释放 出 。诸 如 clidn这样 的钙 结 合 蛋 白通 过 缓 abni 冲细胞 内的 c 负荷来行使其作为 内源性 的对抗 a + 兴 奋性 蛋 白。
激扰 乱能 量代谢 和疾病 相 关蛋 白的聚 集( 淀粉状 蛋 白等 )反过 来 影响钙稳 态。细胞 膜 、 如 , 内质 网和 线粒体 钙调蛋 白改 变与 年龄相 关 的神 经 元机 能障碍 和疾病 相 关。衰 老对神 经元 钙调 节的有 害作 用
引起 或影响神 经退行性 疾病危 险 的遗传 与环境 因素双重调 节 。更好 的 阐明促进 或 阻止衰 老过程 中
通道 和 电压 依赖 性 钙 通 道 ( C ) 可 以 引起 细胞 VD C ,
参 与神经 元钙 稳态 失 调 和 神经 元 凋 亡 的 重要 因素 。
氧化 应激 的来 源包括 氧化磷 酸化 过程 中产 生 的超 氧
负离 子 自由基 、 由超 氧 化 物歧 化 酶 催 化 的超 氧 化 反
钙 稳 态的 细胞 和分 子机 制 , 或许 能 帮助人 们找 到治 疗干预诸 如 阿 尔茨海默病 、 帕金 森病 和 中风 等神
经性 疾病 的新 方 法 。
关键 词 : 尔茨海默病 ; 阿 淀粉 样蛋 白; 细胞 凋 亡 ; 内质 网 ; 帕金 森 病 ; 一 N 甲基 一D一 冬氨 酸 ; 天 早
摘要 :适 当控 制 细胞 膜和 细胞 区室间的钙 流量 , 对神 经元发 挥基本 功 能起 决定 性作 用 , 包括 对

钙信号在神经系统中的作用与调控

钙信号在神经系统中的作用与调控

钙信号在神经系统中的作用与调控作用钙离子是细胞内重要的次级信使,被广泛应用于信号传导调节中。

在神经系统中,钙离子用于调节许多重要的生物学过程,包括神经元发放和抑制、突触传递、细胞迁移、形态学改变和细胞凋亡等。

钙信号具有显著的空间和时间特异性,可以促进抑或抑制神经元底物的磷酸化,进而调节神经元的功能和行为。

神经元发放和抑制钙信号对神经元发放和抑制产生影响。

在多数情况下,钙通常被视为神经系统中最为重要的离子之一,它的调节对于神经元的发放与抑制具有重要作用。

在神经元中,钙离子通常通过改变膜电位或调节离子通道的打开与关闭,来影响神经元兴奋性与抑制性,进而调节神经元的释放行为。

例如,在兴奋性p神经元中,钙离子可以促进胶质细胞释放神经元释放因子,使其向邻近神经元释放化学信号,从而增强神经元发放动作电位的速率和强度。

在抑制性神经元中,钙通常通过调节离子通道的打开与关闭,使离子转移速率更快,从而增强神经元的抑制性,降低基础活性水平。

突触传递钙离子在突触传递中起着至关重要的作用。

在多数情况下,突触前钙离子传递通过电压依赖性钙离子通道。

一旦神经元释放神经递质,钙离子就可以立刻进入到细胞内,从而导致突触后膜的电位调节。

研究表明,钙离子能够在突触中起到重要的促进作用,它不仅能够增加突触传递信号的强度,还可以增加神经元中钙离子的浓度,从而促进神经元的打火行为,增强突触效能。

细胞迁移和形态学改变钙离子在神经系统中还扮演着细胞迁移和形态学改变的调节者作用。

在细胞迁移中,钙离子可以通过调节细胞骨架的动态变化,促进细胞的向前移动。

细胞膜内钙离子的释放还可以影响神经元中的钙离子浓度,在神经元内部中出现原形态改变,从而促进细胞营养吸收的改变,提高细胞的存活率和资源利用率。

细胞凋亡钙离子还可以调节神经元的凋亡过程。

在多数情况下,神经元凋亡常常被视为神经系统中的一种负面现象。

然而,钙离子在神经元凋亡中起到了重要的作用。

在神经元凋亡中,细胞内的钙离子浓度通常会升高,这会激活许多相关的酶类,同时也会影响细胞内的酶类活性,进而加速细胞凋亡的进程。

钙传递信号转导的分子机理

钙传递信号转导的分子机理

钙传递信号转导的分子机理钙离子是细胞内重要的第二信使,参与了多种细胞代谢过程,如细胞增殖、分化、分泌、凋亡等。

钙离子参与的过程成为钙传递,而钙离子在细胞内的传递和调控则通过钙传递信号转导实现。

钙传递信号转导是指细胞通过一系列的分子反应,将钙离子信号进行转导,从而影响细胞代谢活动。

这个过程涉及到多种钙离子结合蛋白和酶,如钙调蛋白、蛋白激酶、钙/钙依赖蛋白等。

这些分子通过不同的机制,在钙离子的作用下发挥重要的生物学功能。

钙调蛋白是钙离子与细胞内结合的核心蛋白。

它结构紧致、电荷分布合理,能够非常稳定地与钙离子结合。

当钙离子高浓度进入细胞时,它会与钙调蛋白结合,从而改变它的构象和空间结构。

这种改变同时也改变了钙调蛋白的生化性质,使得它可以发挥更多的功能。

如在细胞分泌过程中,钙调蛋白结合后能够激活内质网上的钙离子通道,使得大量的钙离子进入细胞质,促进物质的分泌。

除了钙调蛋白之外,还有很多其他的钙离子结合蛋白和酶。

其中一个重要的蛋白是蛋白激酶。

蛋白激酶是细胞内一类重要的酶,它能够磷酸化特定的底物,从而改变其生物学功能。

有不少蛋白激酶是依赖于钙离子信号转导的,如钙/钙依赖蛋白激酶和钙/钙依赖蛋白激酶。

它们平时处于未活化状态,当钙离子进入细胞后,能够形成钙/钙依赖复合物,这种复合物有助于激活蛋白激酶,从而发挥生物学功能。

在钙传递信号转导的过程中,还有一些其他相互作用的分子。

例如,细胞膜上有许多钙离子通道,它们能够控制钙离子进入细胞的速率和数量。

此外,一些细胞内钙离子结合蛋白如钙粘蛋白或二氢嘧啶核苷酸结合蛋白等,也能够在钙传递过程中扮演重要的角色。

这些分子之间的相互作用协同作用,形成了一个复杂的分子网络。

总体而言,钙传递信号转导是一个较为复杂的分子生物学科学。

不过,它们之间的关系却是紧密而清晰的。

从分子结构和生化反应来看,这些分子之间的作用是高度协同的,并且通过复杂的反馈机制来调节和控制。

这种分子机理为钙离子信号转导提供了稳定和高效的细胞水平调控,是细胞内钙传递过程的重要基础。

钙信号通路与神经退行性疾病的关系研究

钙信号通路与神经退行性疾病的关系研究

钙信号通路与神经退行性疾病的关系研究在人类的生命活动中,钙离子的作用非常重要,因为它在细胞的内外负责许多生物学过程的调节。

钙离子通过细胞膜表面的受体进入细胞内,进而引起运动蛋白的活化,促进细胞内信息的传导和细胞间的相互作用。

尽管生物学家在对钙信号通路的研究中已经取得了很高的成就,但是目前对钙信号通路与神经退行性疾病的关系了解还不够深入。

神经退行性疾病是一类难治性的、伴随着神经细胞不可逆性死亡和功能障碍的疾病。

这种疾病的共性是在某些细胞内聚集了一种异常的蛋白质,并导致神经细胞损伤,导致记忆力丧失、认知能力下降、肌肉萎缩等严重后果。

研究表明,钙离子作为神经元细胞的重要信号,可能参与或调节这种神经退行性疾病的发生和发展。

一、钙离子在神经元内的作用机制神经元内所包含的钙调节分子可以更直接地参与细胞的活动。

其中,神经元细胞内偏向于活跃和死亡的蛋白质和基因会被钙离子的增加或减少直接激活或阻止。

细胞内钙离子的浓度升高会促进多巴胺的释放,加剧神经元的兴奋;而钙离子的浓度降低则会抑制兴奋性药物的作用,减轻神经元的兴奋。

二、钙离子与阿尔兹海默病的关系钙离子在神经细胞中的过度流动可能引发某些神经性疾病,例如阿尔兹海默病。

在阿尔兹海默病的神经元内,需要通过高钙浓度、氧化应激等路劲刺激,才能激活酰化酶、不断堆积的神经元细胞杂质,细胞内青蛋白核聚集,导致细胞死亡。

因此,锁定某些钙调节机制或降低细胞中的钙离子浓度是治疗阿尔兹海默病的一个新思路。

三、钙离子与帕金森病的关系帕金森病也是一种重要的神经退行性疾病,它会导致少突胶质细胞的死亡,从而导致因黑色素失活而引发的动作失控。

实验表明,人类帕金森病一般钙离子内流过度,而瞳孔麻痹二苷可以阻止细胞内钙流的峰值增加,从而刺激细胞内的生理反应,缓解症状,有效治疗帕金森病。

综上所述,钙离子通过调节运动蛋白等细胞内基础机能的活化,可能参与或调节神经退行性疾病的发生。

在今后的研究中,钙信号通路与神经退行性疾病的关系值得更多的关注,对此需要精细的细胞和分子机制的研究,以期发现相关的靶向治疗方法。

钙调蛋白和钙调磷酸酶

钙调蛋白和钙调磷酸酶

钙调蛋白和钙调磷酸酶
钙调蛋白(calmodulin,CaM)和钙调磷酸酶(calcineurin)是两种与钙离子调节相关的重要蛋白质,在细胞信号传导和调控中发挥着重要作用。

钙调蛋白(calmodulin,CaM):
CaM是一种高度保守的钙离子调节蛋白,在许多生物体中都广泛存在,并参与了许多细胞功能的调控。

在没有钙离子结合时,CaM呈现出一种不活跃的状态。

而当细胞内钙离子浓度增加时,CaM会与钙离子结合形成Ca2+-CaM复合物。

Ca2+-CaM复合物可以调节许多蛋白质的活性,包括激酶、磷酸酶、离子通道等。

通过与这些靶蛋白结合,Ca2+-CaM复合物可以调节它们的活性,从而影响细胞内的信号传导和生物学响应。

钙调磷酸酶(calcineurin):
calcineurin是一种钙调节的丝氨酸/苏氨酸磷酸酶,也被称为钙调蛋白依赖性磷酸酶。

calcineurin在细胞信号传导中起着关键的作用,特别是在T细胞和神经元中。

calcineurin的活性受到钙离子和CaM的调控。

当细胞内的钙离子浓度升高时,Ca2+-CaM复合物会激活calcineurin,使其活化。

活化的calcineurin可以去磷酸化和调节多种底物蛋白,包括核因子和细胞凋亡相关蛋白,从而影响细胞的功能和命运。

总的来说,钙调蛋白和钙调磷酸酶是细胞内钙离子信号传导中的重要组成部分,它们通过与钙离子结合和活化,调节多种蛋白质的活性,参与了细胞的生理过程和生物学响应。

1。

钙-钙调蛋白依赖性蛋白激酶Ⅱ在心力衰竭发生发展中的作用

钙-钙调蛋白依赖性蛋白激酶Ⅱ在心力衰竭发生发展中的作用

钙-钙调蛋白依赖性蛋白激酶Ⅱ在心力衰竭发生发展中的作用张恩圆;李广平
【期刊名称】《中国心血管杂志》
【年(卷),期】2014(19)2
【摘要】近来发现,钙.钙调蛋白依赖性蛋白激酶Ⅱ(Calcium—Calmodulin—dependentproteinkinaseII,CaMKⅡ)在诸多心血管疾病的发生发展中起到重要作用。

越来越多的证据表明,CaMKII通路的激活会加速某些心血管疾病的发展进程,尤其在心力衰竭中,我们将就两者关系做一综述。

【总页数】3页(P155-157)
【作者】张恩圆;李广平
【作者单位】300070 天津医科大学;天津医科大学第二医院心脏科天津心脏病学研究所
【正文语种】中文
【相关文献】
1.钙调蛋白和钙/钙调蛋白依赖性蛋白激酶Ⅱ在大鼠海马发育中的变化规律 [J], 王少博;牟心红;孟斌;付正英;张引国
2.钙-钙调蛋白依赖性蛋白激酶Ⅱ在慢性疼痛中作用的研究进展 [J], 席凯文;耿鑫;余化霖;边慧
3.钙/钙调蛋白依赖性蛋白激酶Ⅱ及其抑制剂在心力衰竭中的研究进展 [J], 曲悦;马丹;刘凤岐
4.钙/钙调蛋白依赖性蛋白激酶Ⅱ在紫杉醇引起的外周神经病理性疼痛中的分子作用 [J], 张书力;李少军;袁峰;冯丹
5.氯丙烯对神经细胞内Ca^(2+),游离钙调蛋白,环腺苷酸含量和钙/钙调蛋白依赖性蛋白激酶Ⅱ活性的影响 [J], 谢克勤;孙克任;高树君;张磊
因版权原因,仅展示原文概要,查看原文内容请购买。

钙激活蛋白酶系统对细胞凋亡过程的影响概述

钙激活蛋白酶系统对细胞凋亡过程的影响概述

钙激活蛋白酶系统对细胞凋亡过程的影响概述
高士友;潘大彬
【期刊名称】《牡丹江医学院学报》
【年(卷),期】2017(038)004
【摘要】钙激活蛋白酶(Calpains)属于一类Ca2+依赖半胱氨酸蛋白水解酶超家族成员,Calpains系统与细胞凋亡关系密切,在细胞凋亡中发挥重要作用.目前研究表明Calpains系统通过调节凋亡信号传导途径参与细胞凋亡,在蛋白、分子、基因水平上调控细胞凋亡复杂过程.研究开发Calpains抑制剂对于改善细胞凋亡具有广阔的前景和意义,也为临床上治疗提供理论依据和新的方向.
【总页数】4页(P95-98)
【作者】高士友;潘大彬
【作者单位】皖南医学院研究生学院,安徽芜湖241000;皖南医学院心血管疾病研究所/弋矶山医院心内科,安徽芜湖241000
【正文语种】中文
【中图分类】R363.2
【相关文献】
1.钙激活酶-钙激活酶抑制蛋白系统对成肌细胞融合与分化的影响 [J], 韦薇;南庆贤;杜敏
2.钙激活中性蛋白酶10介导脂氧素A4所致的肾间质成纤维细胞凋亡 [J], 吴升华;陆超;董玲
3.尿激酶型纤溶酶原激活物系统对骨巨细胞瘤细胞基质金属蛋白酶-2和组织基质
金属蛋白酶抑制物-3表达的影响 [J], 徐若冰;文剑明;张萌;吕长海;肖刚;张文敏;梁惠珍
4.钙激活蛋白酶与蛋白酶体抑制剂诱导细胞凋亡的机制 [J], 张瑜;常明;韩威;胡轶虹;王秋艳;胡林森
5.丙泊酚对缺血-再灌注心肌中钙激活蛋白酶表达及细胞凋亡的影响 [J], 董振明;任建军
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

NEURAL REGENERATION RESEARCH Volume 8, Issue 36, December 2013doi:10.3969/j.issn.1673-5374.2013.36.005 [; ]Park JY, Jang YS, Shin YK, Suh DJ, Park HT. Calcium-dependent proteasome activation is required for axonal neurofilament degradation. Neural Regen Res. 2013;8(36):3401-3409.3401 Joo Youn Park, M.S., and So Young Jang, M.S.,contributed equally to this article.Corresponding author: Hwan Tae Park, M.D., Ph.D., Department of Physiology, Mitochondria Hub Regulation Center, College of Medicine, Dong-A University, Busan, South Korea, phwantae@ dau.ac.kr.Received: 2013-10-05 Accepted: 2013-11-28 (nrr-20-13)Funding: This research was supported by research funds from Dong-A University, South Korea.Author contributions: Suh DJ and Park HT designed this study and interpreted experimental results. Park JY , Jang SY and Shin YK performed experiments. Park HT obtained funds from government and wrote the manuscript. All authorsapproved the final version of this paper.Conflicts of interest: None declared.Ethical approval: Allprocedures were approved by the Dong-A University Committee on animalresearch, which follows the guide for animal experiments established by the Korean Academy of Medical Sciences, South Korean.Author statements: (1) The manuscript has been read and approved by all authors; (2) all authors meet thecriteria for authorship; and (3) each author believes that the manuscript represents honest work.Calcium-dependent proteasome activation is required for axonal neurofilament degradation*Joo Youn Park, So Young Jang, Yoon Kyung Shin, Duk Joon Suh, Hwan Tae ParkDepartment of Physiology, Mitochondria Hub Regulation Center, College of Medicine, Dong-A University, Busan, South KoreaAbstractEven though many studies have identified roles of proteasomes in axonal degeneration, the mole-cular mechanisms by which axonal injury regulates proteasome activity are still unclear. In the present study, we found evidence indicating that extracellular calcium influx is an upstream regula-tor of proteasome activity during axonal degeneration in injured peripheral nerves. In degenerating axons, the increase in proteasome activity and the degradation of ubiquitinated proteins were sig-nificantly suppressed by extracellular calcium chelation. In addition, electron microscopic findings revealed selective inhibition of neurofilament degradation, but not microtubule depolymerization or mitochondrial swelling, by the inhibition of calpain and proteasomes. Taken together, our findings suggest that calcium increase and subsequent proteasome activation are an essential initiator of neurofilament degradation in Wallerian degeneration.Key Wordsneural regeneration; peripheral nerve injury; neurofilament degradation; sciatic nerve; calcium; calpain; mitochondria; microtubule depolymerization; axon; axon degeneration; neuroregenerationINTRODUCTIONFollowing nerve injury, a catastrophic de-struction of axons occurs in the distal side of an injured axon, and the degeneration is the result of several enzymatic processes that are distinct from cell death signaling pathways [1-6]. Energy failure in axons fol-lowing nerve injury appears to result in the accumulation of intraaxonal sodium, and it subsequently leads to a rise of intraaxonal calcium levels through the activation of the reverse flow of the sodium/calcium ex-changer [1, 7-8]. One of the enzymes acti-vated by extracellular calcium influx in axons is calpain, a calcium-dependent cysteine protease, and calpain breaks down axonal cytoskeletal structures suchas neurofilaments [8-15]. Axonal degeneration encompasses the destruction of organelles, including mitochondria, as well as the de-struction of axonal cytoskeletons. In axonal degeneration following nerve injury, rod-shaped mitochondria swell and break down [16-17], and this mitochondrial failure appears to be related to the energy distur-bance observed in degenerating axons [16-18]. In contrast to the calcium-mediated de-struction of neurofilament, we recently re-ported that microtubule depolymerization and mitochondrial swelling are not tightly regulated by extracellular calcium influx [17].The ubiquitin-proteasome pathway has pre-viously been implicated in axonal degenera-tion [19-29]. Proteasomes may de grade intra-cellular molecules that promote axonal survi-val such as AKT and nicotinamide mononucleotide ade-nylyltransferase following nerve injury[20-21], thereby in-ducing axonal degeneration, or proteasomes may directly regulate the destruction of cytoskeletal proteins[22, 29]. Even though many studies have identified the roles of proteasomes in axonal degeneration, the molecular mechanisms by which axonal injury regulates protea- some activity are still unclear. In the present study, using sciatic nerve explant cultures[30-32], we tried to find evidence showing that extracellular calcium influx is an upstream regulator of proteasome activation and that proteasomes may not be related to microtubule depolymerization and mitochondrial swelling.RESULTSInhibition of extracellular calcium influx and proteasomes significantly prevented neurofilament degradation in sciatic nerve explant culturesWe employed sciatic nerve explant cultures, which is a good ex vivo model for axonal degeneration[30-32], to de-termine the molecular mechanism of axonal degenera-tion. After 3 days of incubation (3 days in vitro, 3DIV), axonal degeneration was analyzed by neurofilament (high molecular weight) immunofluorescence staining and western blot analysis. In accordance with previous findings, an extracellular calcium chelator ethylene glycol tetraacetic acid (5 mmol/L), a calpain inhibitor (calpeptin, 50 μmol/L)[33]and a proteasome inhibitor (MG132; 20 μmol/L)[34]significantly protected against axonal dege-neration (Figure 1A, B). As we previously reported[17], the repletion of energy with nicotinamide adenine dinucleo-tide, nicotinamide and methyl pyruvate also prevented axonal degeneration in sciatic nerve explant cultures (Figure 1A, B). Consistent with the results of immunoflu-orescence staining, western blot analysis showed that ethylene glycol tetraacetic acid and MG132 significantly suppressed neurofilament degradation (Figure 1C, D), indicating a role of the calcium/calpain pathway and proteasomes in neurofilament degradation in an axonal degeneration model.Calcium-dependent activation of the proteasome and calpainWe next examined the role of calcium influx and calpain activation in proteasome activation in degenerating axons. First, calpain activity in the distal stump of an injured sciatic nerve was determined in vivo (Figure 2A). It was found that a sciatic nerve axotomy induced the calpain activation in a time-dependent manner. At 48 hours after axotomy, calpain activity was increased by ~3 fold compared to uncut controls. We also observed cal-pain activation in sciatic nerve explant cultures at 2 DIV (Figure 2B). As expected, the inclusion of calpeptin and extracellular calcium chelation by ethylene glycol te-traacetic acid in explant cultures completely suppressed calpain activity. This finding suggests that extracellular calcium influx regulates calpain activity during Wallerian degeneration.We studied the activity of 20S proteasomes[35] in dege-nerating axons (Figure 2A). Proteasome activity in the distal stump was increased within 12 hours following axotomy, and maximal activity was reached at 48 hours after axotomy. We next examined whether extracellular calcium influx is involved in proteasome activation using sciatic nerve explant cultures. The addition of ethylene glycol tetraacetic acid completely suppressed protea-some activation (Figure 2B). However, calpeptin did not inhibit proteasome activation, suggesting that calcium influx, but not calpain, is the primary regulator of pro-teasome activity.Destruction of ubiquitinated proteins were inhibited by calcium chelationUbiquitinated proteins are degraded by proteasomes, and the inhibition of proteasomes with a proteasome inhibitor results in the accumulation of ubiquitinated pro-teins. Thus, extracellular calcium chelation may prevent the degradation of ubiquitinated proteins by inhibiting proteasomes. Using western blot analysis, we found that several ubiquitinated proteins were degraded in sciatic nerve explants, and the addition of ethylene glycol te-traacetic acid prevented the degradation of ubiquitinated proteins (Figure 3). Together, these findings further suggest that extracellular calcium influx is an upstream regulator of proteasomes.Proteasomes were required for neurofilament degradation but not for energy depletion, microtubule depolymerization or mitochondrial swellingIt was recently reported that extracellular calcium che-lation prevented neurofilament degradation but not energy depletion, microtubule depolymerization or mi-tochondrial swelling in degenerating axons[17]. Because proteasome activation is downstream of extracellular calcium influx in degenerating axons, proteasomes also may not play a role in energy depletion, microtubule depolymerization or mitochondrial swelling. We thus investigated the role of proteasomes in these processes using electron microscopy (Figure 4A). At 2DIV, sciatic nerves showed absolute axon degeneration and swol-len mitochondria, as demonstrated by a decreased34023403length index and increased mitochondrial diameter (Figure 4A –C, see Materials and Methods). Calpeptin (50 μmol/L) significantly suppressed axonal degener a-tion, however, calpain-protected axons contained swollen mitochondria (length index, 1.24 ± 0.28; di-ameter, 0.53 ± 0.15; Figure 4A –C) and did not show any microtubules when viewed using electron microscopy (Figure 4A). In explant cultures treated with MG132 (20 μmol/L) for 2 days, the length of mitochondria in pr o-tected axons was 1.39 ± 0.07, and the mean diameter was 0.43 ± 0.02 μm (Figure 4A –C). In addition, neuro-filaments, but not microtubules, were well preserved in MG132-treated axons (Figure 4A), suggesting that bothmitochondrial swelling and microtubule depolymeriza-tion still occur even after proteasome activity is suppressed. Extracellular calcium and proteasomes participated in neurofilament degradation in sciatic nerve explant cultures. (A) Immunofluorescence staining against high molecular weight neurofilament (NF). Immunofluorescence microscopic images of cross-sections of sciatic nerve explants cultured for 3DIV were analyzed under a laser confocal microscope. Green fluorescence dots indicate neurofilament-positive axons. DIV: day in vitro . Scale bar: 100 μm. (B) Quantitative analysis of the number of high molecular weight NF in the sciatic nerve explant cultures. a P < 0.05, vs . vehicle-treated nerve controls. ( SD). 1: Vehicle; 2: nicotinamide adenine dinucleotide (NAD; 5 mmol/L); 3: nicotinamide (NAM; 20 mmol/L); 4: methyl pyruvate (20 mmol/L); 5: NAD (5 mmol/L) + methyl pyruvate (20 mmol/L); 6: ethylene glycol tetraacetic acid (EGTA, an extracellular calcium chelator; 5 mmol/L); 7: calpeptin (50 μmol/L; a calpain inhibitor); 8: MG132 (20 μmol/L; a proteasome inhibitor). (C) Western blot analysis showing the degradation of medium chain neurofilament (NF-M) in sciatic nerve explants cultured for 3DIV. MG5: 5 μmol/L of MG132; MG20: 20 μmol/L of MG132, EGTA (5 mmol/L). (n = 3; mean ±Quantitative analysis of NF-M immunoreactive bands. The intensity of bands was displayed as relative intensity to uncut nerve control. At least three independent experiments were performed for each condition. -: No treatment. the means between groups were statistically assessed using one-way analysis of variance followed by Bonferroni a a a a a a aa β-Actin3404 Energy failure, as demonstrated by the decrease of ni-cotinamide adenine dinucleotide and ATP levels in the sciatic nerve explant cultures, is known to be an early event that precedes microtubule depolymerization and mitochondrial swelling [17]. In this study, we measured nicotinamide adenine dinucleotide and ATP levels indegenerating sciatic nerves in the presence or absenceof MG132 using sciatic nerve explant cultures (Figure 4D), and found that energy failure in degenerating axons was not rescued by MG132.DISCUSSIONIn the present study, we revealed for the first time that extracellular calcium influx affects proteasome activity in degenerating axons. This is in agreement with previous results showing that proteasome activity is regulated by calcium in neuronal and non-neuronal cells [36-39]. Our findings are novel because they show that calcium re-gulates the final steps of axonal degeneration via both calpain and proteasomes.Axonal degeneration in rodent peripheral nerves fol-lowing nerve injury shows the sequence of two mor-phologically distinct phases, a latency period and an execution period [1]. During the latency period, axonal cytoskeletons appear to be normal. However, we have recently reported that the major energy failure and mi-crotubule depolymerization begin to occur in this pe-riod [17]. During the execution period, calcium influx from outside the axons is known to be a critical factor in the catastrophic destruction of axons. Our previous findings demonstrated that the inhibition of calcium influx could not prevent energy failure and microtubule depolyme-rization further supports a specific role of calcium influx during the execution period.Calcium-induced activation of proteasome in the sciatic nerves following nerve injury.(A) Following axotomy, the distal stump of the sciatic nerves was processed to measure calpain and proteasome activity. Each time point indicates the time after axotomy (n = 3; mean ± SD). a P < 0.05, vs . uncut control nerves (0 hour, 100 %). (B) Levels of calpain and proteasome activity in sciatic nerve explant cultures. Sciatic nerve explants were cultured for 2 days in the presence or absence of ethylene glycol tetraacetic acid (EGTA; 5 mmol/L) and MG132 (20 μmol/L), and the activities were measured. At least three independent experiments were performed for each condition. -: No treatment. a P < 0.05, control nerves. Differences in the means between groups were statistically assessed using one-way analysis of variance followed by Bonferroni post hoc test.Calcium chelation suppressed the destruction of ubiquitinated proteins in degenerating axons.Sciatic nerve explants were cultured for 24 and 36 hours in the presence or absence of ethylene glycol tetraacetic acid (EGTA; 5 mmol/L). Western blot analysis wasperformed to demonstrate ubiquitinated proteins (Ubi-P) in sciatic nerve explants using an antibody against ubiquitin. -Actin: beta-actin. -Actinaaaaaaaaaa36 kDa 64 kDa 120 kDa3405In the present study, we found evidence suggesting that proteasomes might also be a late effector, not an early initiator, of axonal degeneration. First, proteasome in-hibition did not block energy depletion or microtubule depolymerization, two events that occur during the la-tency period. Second, neurofilament degradation was inhibited by proteasome inhibition. Finally, proteasomes were regulated by an extracellular calcium influx. Neuro-filaments have previously been reported as a target of the ubiquitin-proteasome pathway and calpain [22, 39-40], and thus, neurofilament degradation during axonal de-generation might also be performed by both calpain and proteasomes. It has previously been reported that mi-crotubule depolymerization in degenerating cultured axons is delayed by proteasome inhibitors [19, 21]. The reasons for the discrepancy between these findings and our results are currently unknown, although they mayhave resulted from different experimental conditions and analysis methods. For example, we used explant cul-tures, whereas they employed cultured primary neurons, and we used an electron microscopy to examine micro-tubule integrity whereas they used immunofluorescent light microscopy. It is possible that non-neuronal cellssuch as Schwann cells included in the ex vivo system have some effects on axonal degeneration. In addition,the explant culture system may require higher concentra-tion of reagent than the concentration used in cell culture. However, we could not test this possibility because weCalcium and the proteasome are late effectors in axonal degeneration.(A) Representative ultrathin longitudinal cross-sections showing protection against axonal degeneration by MG132 (20 μmol/L) and calpeptin (50 μmol/L) in sciatic nerve explant cultures. Arrowheads: Microtubules. S cale bars: 0.2 μm. (B) Mean diameters of mitochondria in degenerating axons. (C) Mean length index (length/diameter) of mitochondria in degenerating axons. (D) The decrease of NAD and ATP levels in sciatic nerve explants cultured for 1 day could not be rescued by MG132. (B Data were expressed as mean ± SD (n = 3). At least three independent experiments were performed for each condition. . uncut nerve controls (0 day). Differences in the means between groups were statistically assessed using one-way analysis of variance followed by Bonferroni post hoc test. a aa a aa a a aahave experienced that higher levels of MG132 induced non-specific toxicity on non-neuronal cells in the explant cultures. Further studies on how the ubiquitin-proteasome pathway regulates cytoskeletal degeneration at a mole-cular level will provide a better understanding of the mo-lecular mechanisms of axonal degeneration.Although calcium appeared to regulate proteasome ac-tivity in degenerating axons, we could not find the inhi-bitory effect of calpeptin on proteasome activation. This finding may indicate a calpain-independent activation of proteasomes in axonal degeneration. However, it seems too early to draw such a conclusion for the following rea-sons. First, there are more than ten calpains in eukaryotic cells that could not be suppressed by calpeptin[33]. There-fore, the potential role of calpeptin-insensitive calpains in proteasome activation cannot be excluded. Second, cal-pain-dependent proteasome activation in a proteolytic degradation has been reported[36, 38]. It may be possible that the role of calpain in proteasome activations is cell-type specific or is dependent on local milieu in a cell. Further studies on the mechanistic relation between calpain and proteasomes are required.The failure of axonal energy metabolism has been pro-posed as a key mechanism of axonal degeneration after injury[41-42]. The mechanisms by which axonal injury re-sults in energy failure are still unknown. It was recently proposed that proteasomal destruction of nicotinamide mononucleotide adenylyltransferase, a nicotinamide adenine dinucleotide source, may underlie injury-induced axonal degeneration in cultured neurons[20]. However, it is still uncertain whether nicotinamide mononucleotide adenylyltransferase destruction is indeed responsible for energy failure in degenerating axons. We found that proteasome inhibition could not rescue nicotinamide adenine dinucleotide and adenosine triphosphate (ATP) reduction in sciatic nerve explant cultures, suggesting that the ubiquitin-proteasome pathway may not partici-pate in energy failure in injured axons.Because calcium buffering by intact mitochondria is im-portant for calcium homeostasis in cells[42-44], swollen and dysfunctional mitochondria may participate in axonal degeneration by providing an intra-axonal calcium in-crease[16-17]. The activation of mitochondrial permeability transition pore is a mechanism of mitochondrial swelling in many pathological conditions and has been implicated in the loss of calcium buffering during axonal degenera-tion[42-44]. Several mitochondrial proteins including vol-tage-dependent anion channel, a component of mito-chondrial permeability transition pore, are targets of the ubiquitin-proteasome pathway and proteasomes appear to implicate in mitochondrial swelling in a pathological condition[45-49]. However, in this study, we did not observe an absolute requirement of proteasomes in mitochondrial swelling during axonal degeneration in peripheral nerves. It was recently shown that mitochondrial swelling is an outcome but not a cause of energy failure in axonal de-generation[17], and energy failure as demonstrated by nicotinamide adenine dinucleotide and ATP reduction was not rescued by proteasome inhibition in this study. Therefore, the ubiquitin-proteasome pathway may not be a principal stimulator for mitochondrial degeneration in degenerating axons. This is in agreement with a recent study showing that axonal mitochondria may not be an initiating factor for axonal degeneration[50].In conclusion, our results show a role of extracellular calcium influx in the regulation of proteasome-mediated protein degradation in axonal degeneration. This sug-gests that proteasomes are a calcium-dependent late effector of axonal degeneration.MATERIALS AND METHODSDesignA randomized, controlled ex vivo experiment.Time and settingThis experiment was performed in the Department of Physiology, Dong-A University Medical School, South Korea from June 2011 to May 2013.MaterialsA total of 102 C57BL/6 female mice were obtained from Samtaco Inc, Daejeon, South Korea for providing sciatic nerve explants. Antibodies against tubulin and ubiquitin were obtained from Sigma (St. Louis, MO, USA). Polyc-lonal antibodies against high and medium chain neurofi-lament, calpeptin and MG132 were purchased from Mil-lipore, Billerica, MA, USA. Other reagents were pur-chased from Sigma.MethodsSciatic nerve explant culturesSciatic nerve explant cultures were performed as pre-viously reported[30]. Sciatic nerves were sectioned 5 mm proximal to the tibioperoneal bifurcation with a fine iris scissor (FST Inc., Foster City, CA, USA) under anesthe-sia by intraperitoneal injection of a mixture of 10% keta-mine hydrochloride (Sanofi-Ceva, Düsseldorf, Germany;0.1 mL/100 g body weight) and Rompun (Bayer, Lever-3406kusen, Germany; 0.05 mL/100 g body weight). Right side sciatic nerves were collected, and the connective tissues surrounding the nerves were carefully detached in ice-cold calcium/magnesium-free Hank’s buffered solution under a stereomicroscope (SZX16, Olympus, Osaka, Japan). The sciatic nerves were then cut into small explants of about 3 mm in length. The explants were maintained in Dulbecco’s modified E a gle’s m e-dium (DMEM) containing 1% (v/v) heat-inactivated fetal bovine serum at 37°C with 5% CO2for the indicated time. After culture, the nerve explants were prepared for further experiments. For uncut nerve controls, sciatic nerves (right side) of adult mice were removed and then used for an analysis within minutes.Immunofluorescence stainingAfter sciatic nerve explant cultures or sciatic nerve axotomy, the sciatic nerve was fixed with 4% parafor-maldehyde overnight. The sciatic nerves were cryo-protected in 20% sucrose, and frozen cross-sections (14 μm thick) were made with a cryo stat (Frigocut, Leica, Germany), and processed for immunofluorescent staining. The slides were blocked with PBS containing 0.2% Triton X-100 and 2% bovine serum albumin for 1 hour. The sections were then incubated with a rabbit polyclonal antibody against high chain neurofilament (NF-M, 1:2 000) for 16 hours at 4°C and washed three times with PBS. Next, the slides were incubated with Alexa 488-conjugated goat anti-rabbit IgG (Amersham, Piscatway, NJ, USA;1:800) for 3 hours at room tem-perature. The sections were then washed three times with PBS, and coverslips were adhered to glass slides with a mounting medium and viewed under a laser confocal microscope (LSM510, Carl Zeiss, Germany). For the quantitative estimation of axonal degeneration, we counted the number of neurofilaments stained posi-tively from two randomly selected areas (100 μm × 100 μm) of a sciatic nerve and six nerves were used for counting.Calpain and proteasome activity assayThe quantitative measurement of calpain activity was performed using a Calpain Activity Assay Kit (BioVision, Mountain View, CA, USA). Sciatic nerves were homo-genized in an extraction buffer (Qiagen, Valencia, CA, USA) with a TissueLyser system (Qiagen). The lysates were centrifuged at 8 000 ×g, and the supernatants were used for enzymatic reactions. The calpain sub-strate was Ac-LLY-AFC, and the reaction product emited a yellow-green fluorescence measured at 505 nm with a spectrofluorometer (Molecular Devices, Sunnyvale, CA, USA). For the proteasome assay, a 20S Proteasome Assay System (Enzo, Plymouth, PA, USA) was employed. Scia-tic nerves were homogenized in an extraction buffer (Qiagen) with a TissueLyser system. The lysates were centrifuged at 8 000 ×g, and the supernatant was col-lected. The 20S proteasome substrate was Suc-LLVY- AMC, and proteasome activity was determined by mea-suring the fluorescence of the reaction product at 460 nm.Electron microscopic examination and morphometry of the mitochondriaThe processing of sciatic nerves for electron microscopy has been previously reported[17]. Briefly, sciatic nerve explant cultures were fixed in 2% glutaraldehyde in 0.1 mol/L phosphate buffer (pH, 7.2). For semithin sec-tions, 2 mm-long sciatic nerves were Epon-resin em-bedded, sectioned, stained with toluidine blue and ex-amined with an Axiophot light microscope (Carl Zeiss, Germany). Ultrathin sections were examined with a Hi-tachi transmission electron microscope equipped with a digital camera. At least three independent experiments were performed for each condition, and about 100 ran-domly selected myelinated axons from three experiments were analyzed for cytoskeletal destruction and mito-chondrial morphometry. In longitudinal sections, rod-shaped mitochondria are frequently found in axons, and we measured the length index of the mitochondria (length/diameter) to demonstrate mitochondrial swelling in degenerating axons using about 100 mitochondria. The mean length index and diameter of the mitochondria in normal axons were 6.92 and 0.21 μm, respectively (Figure 4A–C).Western blot analysisFor western blot analysis, the distal stumps of the sciatic nerves were harvested and homogenized with a polytron homogenizer in modified radioimmune precipitation as-say lysis buffer (150 mmol/L NaCl, 1% Nonidet P-40, 1 mmol/L ethylenediamine tetraacetic acid, 0.5% deox-ycholic acid, 2 µg/mL aprotinin, 1 mmol/L phenylmethyl-sulfonyl fluoride, 5 mmol/L benzamidine, 1 mmol/L so-dium orthovanadate, and 1 × protease inhibitor cocktail). The lysates were centrifuged at 8 000 ×g for 10 minutes at 4°C, and the supernatant was collected. Protein (25–35 μg) was separated by sodium dodecyl su lfate- polyacrylamide gel electrophoresis, and then transferred onto a nitrocellulose membrane (Amersham). After blocking with 0.1% Tween-20 and 5% nonfat dry milk in Tris-buffered saline (TBS, 25 mmol/L Tris-HCl pH 7.5, 140 mmol/L NaCl) at room temperature for 1 hour, the membrane was incubated with a rabbit polyclonal anti-body against medium chain neurofilament (1: 2 000;3407Sigma) or beta-actin (1:5 000; Sigma) in TBST containing 2% nonfat dry milk at 4°C overnight. After three washes with TBST for 15 minutes each, the membranes were incubated with a horseradish peroxidase-conjugated goat anti-rabbit IgG (1:3 000; Amersham) for 1 hour at room temperature. The signals were detected using the Enhanced Chemiluminescence System (Amersham).Nicotinamide adenine dinucleotide and ATP measurementsQuantitative measurement of nicotinamide adenine di-nucleotide and ATP concentration in the sciatic nerves was performed as previously reported[17]. Briefly, an En-zyChrom Assay Kit (BioAssay Systems, Hayward, CA, USA) was used for nicotinamide adenine dinucleotide measurement. After sciatic nerve explant culture, the sciatic nerves were homogenized in an extraction buffer (BioAssay Systems) and the supernatants were used for enzymatic reactions. The reaction products were chro-mogenic and were measured at 565 nm with a spectrof-luorometer. For ATP measurement, Enliten ATP Assay System (Promega, San Luis Obispo, CA, USA) was used[17]. Sciatic nerve lysates were quick frozen with liquid nitrogen, and then boiled for 3 minutes at 95°C. The extracts were centrifuged at 8 000 ×g for 20 minutes at 4°C, and the supernatant was collected. Luciferase reaction was performed with components of the assay system as Vendor’s instruction.Statistical analysisDifferences in the means between groups were statisti-cally assessed using one-way analysis of variance fol-lowed by Bonferroni post hoc test (SPSS 12.0; IBM, Ar-monk, New York, NY, USA). Data were represented as mean ± SD. The differences were considered to be sta-tistically significant at P < 0.05.REFERENCES[1] Wang JT, Medress ZA, Barres BA. Axon degeneration:molecular mechanisms of a self-destruction pathway. J Cell Biol. 2012;196:7-18.[2] Court FA, Coleman MP. Mitochondria as a central sensorfor axonal degenerative stimuli. Trends Neurosci. 2012;35:364-372.[3] Yan T, Feng Y, Zhai Q. Axon degeneration: Mechanismsand implications of a distinct program from cell death.Neurochem Int. 2010;56:529-534.[4] Martinelli P, Rugarli EI. Emerging roles of mitochondrialproteases in neurodegeneration. Biochim Biophys Acta.2010;1797:1-10. [5] Saxena S, Caroni P. Mechanisms of axon degeneration:from development to disease. Prog Neurobiol. 2007;83: 174-191.[6] Conforti L, Adalbert R, Coleman MP. Neuronal death:where does the end begin? Trends Neurosci. 2007;304: 159-166.[7] George EB, Glass JD, Griffin JW. Axotomy-inducedaxonal degeneration is mediated by calcium influx through ion-specific channels. J Neurosci. 1995;15:6445-6452. [8] Glass JD, Culver DG, Levey AI, et al. Very early activationof m-calpain in peripheral nerve during Wallerian dege-neration. J Neurol Sci. 2002;196:9-20.[9] Ma M. Role of calpains in the injury-induced dysfunctionand degeneration of the mammalian axon. Neurobiol Dis.2013;60:61-79.[10] Ma M, Ferguson TA, Schoch KM, et al. Calpains mediateaxonal cytoskeleton disintegration during Wallerian de-generation. Neurobiol Dis. 2013;56:34-46.[11] Kilinc D, Gallo G, Barbee KA. Mechanical membraneinjury induces axonal beading through localized activation of calpain. Exp Neurol. 2009;219:553-561.[12] Touma E, Kato S, Fukui K, et al. Calpain-mediated clea-vage of collapsin response mediator protein(CRMP)-2 during neurite degeneration in mice. Eur J Neurosci.2007;26:3368-3381.[13] Huh JW, Franklin MA, Widing AG, et al. Regionally distinctpatterns of calpain activation and traumatic axonal injury following contusive brain injury in immature rats. Dev Neurosci. 2006;285:466-476.[14] Thompson SN, Gibson TR, Thompson BM, et al. Rela-tionship of calpain-mediated proteolysis to the expression of axonal and synaptic plasticity markers following trau-matic brain injury in mice. Exp Neurol. 2006;201:253-265.[15] Das A, Guyton MK, Smith A, et al. Calpain inhibitor atte-nuated optic nerve damage in acute optic neuritis in rats. J Neurochem. 2013;124:133-146.[16] Barrientos SA, Martinez NW, Yoo S, et al. Axonal dege-neration is mediated by the mitochondrial permeability transition pore. J Neurosci. 2011;31:966-978.[17] Park JY, Jang SY, Shin YK, et al. Mitochondrial swellingand microtubule depolymerization are associated with energy depletion in axon degeneration. Neuroscience.2013;238:258-269.[18] Avery MA, Rooney TM, Pandya JD, et al. WldS preventsaxon degeneration through increased mitochondrial flux and enhanced mitochondrial Ca2+ buffering. Curr Biol.2012;22:596-600.[19] Zhai Q, Wang J, Kim A, et al. Involvement of the ubiqui-tin-proteasome system in the early stages of wallerian degeneration. Neuron. 2003;39:217-225.[20] Gilley J, Coleman MP. Endogenous Nmnat2 is an essen-tial survival factor for maintenance of healthy axons. PLoS Biol. 2010;8:e1000300.[21] Wakatsuki S, Saitoh F, Araki T. ZNRF1 promotes Walle-rian degeneration by degrading AKT to induce GSK3B-dependent CRMP2 phosphorylation. Nat Cell Biol.2011;13:1415-1423.3408。

相关文档
最新文档