固体物理答案4
固体物理基础课后1到10题答案
一.本章习题P272习题1.试证理想六方密堆结构中c/a=.一. 说明:C 是上下底面距离,a 是六边形边长。
二. 分析:首先看是怎样密堆的。
如图(书图(a),P8),六方密堆结构每个格点有12个近邻。
(同一面上有6个,上下各有3个)上下底面中间各有一个球,共有六个球与之相切,每个球直径为a 。
中间层的三个球相切,又分别与上下底面的各七个球相切。
球心之间距离为a 。
所以球心之间即格点之间距离均为a (不管是同层还是上下层之间)。
三. 证明:如图OA=a ,OO ’=C/2(中间层是上下面层的一半),AB=a O ’是ΔABC 的三垂线交点33'a AB AO ==∴(由余弦定理)330cos 2,30cos 230cos 2222a a x x a ax x a x ===-+=οοο633.1322384132)2()2()3()2(2222222222''≈===∴+=+=+=a c c a ac a ac OA AO OO2.若晶胞基矢c b a ρρρ,,互相垂直,试求晶面族(hkl )的面间距。
一、分析:我们想到倒格矢与面间距的关系G d ρπ2=。
倒格矢与晶面族 (hkl )的关系321b l b k b h G ρρρρ++=写出)(321b b b ρρρ与正格子基矢 )(c b a ρρρ的关系。
即可得与晶面族(hkl ) 垂直的倒格矢G ρ。
进而求得此面间距d 。
二、解:c b a ρρρΘ,,互相垂直,可令k c c j b b i a a ρρρρρρ===,,晶胞体积abc c b a v =⨯⋅=)(ρρρ倒格子基矢:kcj b i a abc b a v b j b i a k c abc a c v b ia k c jb abc c b v b ρρρρρρρρρρρρρρρρρρπππππππππ2)(2)(22)(2)(22)(2)(2321=⨯=⨯==⨯=⨯==⨯=⨯=而与 (hkl )晶面族垂直的倒格矢 222321)()()(2)(2cl b k a h G k cl j b k i a h b l b k b h G ++=∴++=++=ππρρρρρρρρ故(hkl ) 晶面族的面间距222222)()()(1)()()(222cl b k a h cl b k a h G d ++=++==πππρ3.若在体心立方晶胞的每个面中心处加一个同类原子,试说明这种晶体的原胞应如何选择?每个原胞含有几个原子?1.分析:考虑选取原胞的条件:(即布拉菲晶格的最小单元)(1)体积最小的重复结构单元(2)只包含一个格点(3)能反映晶格的周期性应将几个原子组合成一个格点,然后构成原胞。
固体物理教程答案
固体物理教程答案【篇一:黄昆固体物理课后习题答案4】>思考题1.设晶体只有弗仑克尔缺陷, 填隙原子的振动频率、空位附近原子的振动频率与无缺陷时原子的振动频率有什么差异?[解答]正常格点的原子脱离晶格位置变成填隙原子, 同时原格点成为空位,这种产生一个填隙原子将伴随产生一个空位的缺陷称为弗仑克尔缺陷. 填隙原子与相邻原子的距离要比正常格点原子间的距离小,填隙原子与相邻原子的力系数要比正常格点原子间的力系数大. 因为原子的振动频率与原子间力系数的开根近似成正比, 所以填隙原子的振动频率比正常格点原子的振动频率要高. 空位附近原子与空位另一边原子的距离, 比正常格点原子间的距离大得多, 它们之间的力系数比正常格点原子间的力系数小得多, 所以空位附近原子的振动频率比正常格点原子的振动频率要低.2.热膨胀引起的晶体尺寸的相对变化量?l/l与x射线衍射测定的晶格常数相对变化量?a/a存在差异,是何原因?[解答]la.3.kcl晶体生长时,在kcl溶液中加入适量的cacl2溶液,生长的kcl晶体的质量密度比理论值小,是何原因?[解答]2?2??由于ca离子的半径(0.99a)比k离子的半径(1.33a)小得不是太多, 所以caoo离子难以进入kcl晶体的间隙位置, 而只能取代k占据k离子的位置. 但ca一价, 为了保持电中性(最小能量的约束), 占据k离子的一个ca?2???2?比k高?将引起相邻的一个k?变成空位. 也就是说, 加入的cacl2越多, k?空位就越多. 又因为ca的原子量(40.08)?与k的原子量(39.102)相近, 所以在kcl溶液中加入适量的cacl2溶液引起k空位, 将导致kcl晶体的质量密度比理论值小.4.为什么形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量低?[解答]形成一个肖特基缺陷时,晶体内留下一个空位,晶体表面多一个原子. 因此形成形成一个肖特基缺陷所需的能量, 可以看成晶体表面一个原子与其它原子的相互作用能, 和晶体内部一个原子与其它原子的相互作用能的差值. 形成一个弗仑克尔缺陷时,晶体内留下一个空位,多一个填隙原子. 因此形成一个弗仑克尔缺陷所需的能量, 可以看成晶体内部一个填隙原子与其它原子的相互作用能, 和晶体内部一个原子与其它原子相互作用能的差值. 填隙原子与相邻原子的距离非常小, 它与其它原子的排斥能比正常原子间的排斥能大得多. 由于排斥能是正值, 包括吸引能和排斥能的相互作用能是负值, 所以填隙原子与其它原子相互作用能的绝对值, 比晶体表面一个原子与其它原子相互作用能的绝对值要小. 也就是说, 形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量要低.5.金属淬火后为什么变硬?[解答]我们已经知道晶体的一部分相对于另一部分的滑移, 实际是位错线的滑移, 位错线的移动是逐步进行的, 使得滑移的切应力最小. 这就是金属一般较软的原因之一. 显然, 要提高金属的强度和硬度, 似乎可以通过消除位错的办法来实现. 但事实上位错是很难消除的. 相反, 要提高金属的强度和硬度, 通常采用增加位错的办法来实现. 金属淬火就是增加位错的有效办法. 将金属加热到一定高温, 原子振动的幅度比常温时的幅度大得多, 原子脱离正常格点的几率比常温时大得多, 晶体中产生大量的空位、填隙缺陷. 这些点缺陷容易形成位错. 也就是说, 在高温时, 晶体内的位错缺陷比常温时多得多. 高温的晶体在适宜的液体中急冷, 高温时新产生的位错来不及恢复和消退, 大部分被存留了下来. 数目众多的位错相互交织在一起, 某一方向的位错的滑移,会受到其它方向位错的牵制, 使位错滑移的阻力大大增加, 使得金属变硬.6.在位错滑移时, 刃位错上原子受的力和螺位错上原子受的力各有什么特点?[解答]在位错滑移时, 刃位错上原子受力的方向就是位错滑移的方向. 但螺位错滑移时, 螺位错上原子受力的方向与位错滑移的方向相垂直.7.试指出立方密积和六角密积晶体滑移面的面指数.[解答]滑移面一定是密积面, 因为密积面上的原子密度最大, 面与面的间距最大, 面与面之间原子的相互作用力最小. 对于立方密积, {111}是密积面. 对于六角密积, (001)是密积面. 因此, 立方密积和六角密积晶体滑移面的面指数分别为{111}和(001).8.离子晶体中正负离子空位数目、填隙原子数目都相等, 在外电场作用下, 它们对导电的贡献完全相同吗?[解答]??由(4.48)式可知, 在正负离子空位数目、填隙离子数目都相等情况下, ab离子晶体的热缺陷对导电的贡献只取决于它们的迁移率?. 设正离子空位附近的离子和填隙离子的?a??a?ea?vi振动频率分别为和, 正离子空位附近的离子和填隙离子跳过的势垒高度分别为v????e?和ai, 负离子空位附近的离子和填隙离子的振动频率分别为bv和bi, 负离子空位附近e?e?的离子和填隙离子跳过的势垒高度分别bv为bi, 则由(4.47)矢可得?a??vea2?a?vkbte?e?av/kbt,i?a??iea2?a?kbtea2?b?ve?eai?/kbt, ?b??vkbtea2?b?ie?e?bv/kbt, ?b??ikbte?ebi?/kbt.由空位附近的离子跳到空位上的几率, 比填隙离子跳到相邻间隙位置上的几率大得多, 可e?e?以推断出空位附近的离子跳过的势垒高度, 比填隙离子跳过的势垒高度要低, 即avai,????????eb?eb???vi. 由问题1.已知, 所以有avai, bvbi. 另外, 由于a和b的离子半e??eb??a???b?径不同, 质量不同, 所以一般a, .?a???a???b???b?ivi也就是说, 一般v. 因此, 即使离子晶体中正负离子空位数目、填隙离子数目都相等, 在外电场作用下, 它们对导电的贡献一般也不会相同.9.晶体结构对缺陷扩散有何影响?[解答]扩散是自然界中普遍存在的现象, 它的本质是离子作无规则的布郎运动. 通过扩散可实现质量的输运. 晶体中缺陷的扩散现象与气体分子的扩散相似, 不同之处是缺陷在晶体中运动要受到晶格周期性的限制, 要克服势垒的阻挡, 对于简单晶格, 缺陷每跳一步的间距等于跳跃方向上的周期.10.填隙原子机构的自扩散系数与空位机构自扩散系数, 哪一个大? 为什么?[解答]填隙原子机构的自扩散系数1d2??02ae?(u2?e2)/kbt2,空位机构自扩散系数1d1??01ae?(u1?e1)/kbt2.自扩散系数主要决定于指数因子, 由问题4.和8.已知, u1u2,e1e2, 所以填隙原子机构的自扩散系数小于空位机构的自扩散系数.11.一个填隙原子平均花费多长时间才被复合掉? 该时间与一个正常格点上的原子变成间隙原子所需等待的时间相比, 哪个长?[解答]与填隙原子相邻的一个格点是空位的几率是n1/n, 平均来说, 填隙原子要跳n/n1步才遇到一个空位并与之复合. 所以一个填隙原子平均花费n1(u1?e2)/kbtt??2?en1?02的时间才被空位复合掉.由(4.5)式可得一个正常格点上的原子变成间隙原子所需等待的时间 1n2?21(u1?u2?e2)/kbt????epn1n2?02.由以上两式得ntn21.这说明, 一个正常格点上的原子变成间隙原子所需等待的时间, 比一个填隙原子从出现到被空位复合掉所需要的时间要长得多.12.一个空位花费多长时间才被复合掉?[解答]对于借助于空位进行扩散的正常晶格上的原子, 只有它相邻的一个原子成为空位时, ?eu2/kbt??它才扩散一步, 所需等待的时间是?1. 但它相邻的一个原子成为空位的几率是n1/n, 所以它等待到这个相邻原子成为空位, 并跳到此空位上所花费的时间n1(u1?e1)/kbtt??1?en1?01.13.自扩散系数的大小与哪些因素有关?[解答]填隙原子机构的自扩散系数与空位机构自扩散系数可统一写成11d??0a2e??/kbt??0a2e?n0?/rt22.可以看出, 自扩散系数与原子的振动频率?0, 晶体结构(晶格常数a), 激活能(n0?)三因素有关.14.替位式杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么? [解答]占据正常晶格位置的替位式杂质原子, 它的原子半径和电荷量都或多或少与母体原子半径和电荷量不同. 这种不同就会引起杂质原子附近的晶格发生畸变, 使得畸变区出现空位的几率大大增加, 进而使得杂质原子跳向空位的等待时间大为减少, 加大了杂质原子的扩散速度.15.填隙杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么?[解答]正常晶格位置上的一个原子等待了时间?后变成填隙原子, 又平均花费时间n?2n1后被空位复合重新进入正常晶格位置, 其中?2是填隙原子从一个间隙位置跳到相邻间隙位置所要等待的平均时间. 填隙原子自扩散系数反比于时间nt????2n1.因为所以填隙原子自扩散系数近似反比于?. 填隙杂质原子不存在由正常晶格位置变成填隙原子的漫长等待时间?, 所以填隙杂质原子的扩散系数比母体填隙原子自扩散系数要大得多.16.你认为自扩散系数的理论值比实验值小很多的主要原因是什么? [解答]目前固体物理教科书对自扩散的分析, 是基于点缺陷的模型, 这一模型过于简单, 与晶体缺陷的实际情况可能有较大差别. 实际晶体中, 不仅存在点缺陷, 还存在线缺陷和面缺陷, 这些线度更大的缺陷可能对扩散起到重要影响. 也许没有考虑线缺陷和面缺陷对自扩散系数的贡献是理论值比实验值小很多的主要原因.??17.ab离子晶体的导电机构有几种?[解答]??离子晶体导电是离子晶体中的热缺陷在外电场中的定向飘移引起的. ab离子晶体??????中有4种缺陷: a填隙离子, b填隙离子, a空位, b空位. 也就是说, ab离子晶体的导电机构有4种. 空位的扩散实际是空位附近离子跳到空位位置, 原来离子的位置变n?2n?1,????成了空位. ab离子晶体中, a空位附近都是负离子, b空位附近都是正离子. 由此可知, a空位的移动实际是负离子的移动, b空位的移动实际是正离子的移动. 因此, 在外电场作用下, a填隙离子和b空位的漂移方向与外电场方向一致, 而b填隙离子和?????a?空位的漂移方向与外电场方向相反.【篇二:黄昆版固体物理课后习题解答】>黄昆原著韩汝琦改编(陈志远解答,仅供参考)第一章晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
固体物理答案
3.1 已知一维单原子链,其中第j 个格波,在第n 个格点引起的位移nj μ为:sin()nj j j j j a t naq μωδ=++j δ为任意相位因子。
并已知在较高温度下每个格波的平均能量为B k T 。
具体计算每个原子的平方平均位移。
解:(1)根据2011sin ()2T j j j t naq dt T ωδ⎰++= 其中2jT πω=为振动周期,所以22221sin ()2nj j j j j j a t naq a μωδ=++=(2) 第j 个格波的平均动能 (3) 经典的简谐运动有:每个格波的平均动能=平均势能=12格波平均能量=12B k T 振幅222B j j k T a Nm ω=, 所以 22212B nj j jk T a Nm μω==。
而每个原子的平方平均位移为:222221()2B n nj nj j jjjjjk Ta Nm μμμω====∑∑∑∑。
3.2讨论N 个原胞的一维双原子链(相邻原子间距为a ),其2N 个格波的解。
当m M =时与一维单原子链一一对应。
解:(1)一维双原子链: 22q a aππ-≤<声学波:12222411sin ()m M mM aq mM m M ωβ-⎧⎫⎡⎤+⎪⎪=--⎨⎬⎢⎥+⎣⎦⎪⎪⎩⎭当m M =时,有2224(1cos )sin 2aqaq m m ββω-=-= 。
光学波:12222411sin ()m M mM aq mM m M ωβ+⎧⎫⎡⎤+⎪⎪=+-⎨⎬⎢⎥+⎣⎦⎪⎪⎩⎭当m M =时,有2224(1cos )cos 2aqaq m m ββω+=+= 。
(2)一维双原子链在m M =时的解 22224sin 2422cos 2aq m q aq aam βωππβω-+⎧=⎪⎪-≤<⎨⎪=⎪⎩与一维单原子链的解 224sin 2aqq m aaβππω=-≤<是一一对应的。
固体物理学 试卷答案
一、简述题1. 声子: 晶格振动中格波的能量量子. 每个振动模式的能量均以ωh 为单位,能量递增为ωh 的整数倍--声子的能量,一个格波就是一个振动模式,对应一种声子.2. 费米能: 电子按泡利不相容原理,能量从低至高逐级填充,所达到的最高能级.3. 空穴: 在能带中有某一个状态k 未被电子占据,此时能带是未满带—近满带,近满带中的电流如同一个正电荷e 所产生的,其运动速度等于处在k 状态的电子运动的速度.这种空的状态称为空穴.空穴可以看成是一个带正电荷具有正有效质量的粒子.4.能带理论的基本假设: (1)绝热近似:将固体分开为电子系统及离子实系统的一种近似方法;(2)单电子近似(自洽场近似):利用哈特里-福克方法将多电子问题归结为单电子问题;(3)周期场近似:假定单电子势场具有与晶格同样的平移对称性.二、推导题对二维简单格子,按德拜模型,求出晶格热容,并讨论高低、温极限.解:德拜模型格波为弹性波,色散关系为vq =ω,在二维波矢空间内,格波等频线是一个个圆周.在dq q q +→区间内波矢数为:()ωπωππd v S qdq S dz ⋅=⋅=22222 模式密度: ()22v S d dz d πωωω==,二维介质由两支格波,总模式密度: ()2vS g πωω= 格波振动能: ()ωωπωωωd e v S E m kT ∫−=021h h晶格热容: ()ωωωπωωωd e e kT k vS C m kT kT V ∫−⎟⎠⎞⎜⎝⎛=02221h h h 其中 ()N d v S d g m m 2020==∫∫ωπωωωωω 令 kT x ωh =, ()dx e x e kT k v Sk C D x x V ∫Θ−⎟⎠⎞⎜⎝⎛=023221h π其中 km D ωh =Θ 高温极限, x e x +≈1,Nk C V 2≈,与经典理论一致.低温极限, ∞→ΘT D ,()()361023ζ=−∫∞dx e x e x x (常数)2AT C V =在低温下二维晶格的热容量与温度的平方成正比.三、计算题已知铝为三价金属,原子量为27,密度为2.7g/cm 3, 求金属铝在K 0=T 下的费米波矢、费米能和费米速度. 解:由题设可得金属铝的电子浓度为:()()32932323m 108.1cm 108.11002.6277.23−−×=×=⎟⎠⎞⎜⎝⎛×××=n ()()()11031292312m 1075.1108.133−×=×××==ππn k F ()11.7eV J 1087.11011.921075.1100546.1218312103422=×=×××××==−−−m k F F h ε()s m k v F F /m 1003.21011.91075.1100546.16311034×=××××==−−h四、推导题设电子在周期性势场中的势能函数为:()()()()⎩⎨⎧+≤<−+−+≤<=a n x d a n d a n x na V x V 11,01,0 ,其中,d a 2=.1. 画出此势能曲线,求势能的平均值;2. 用近自由电子模型,求出晶体的第一及第二个禁带宽度.解:1.势能函数为周期性函数,取一个周期,0=n()⎩⎨⎧≤<=−≤<=d x d d d a x V x V 2,00,0画出势能曲线略. 在一个周期内求势能平均值.()000021d 1d 1V x V a x x V a V d a ===∫∫ 2.根据近自由电子近似模型,禁带宽度 n g V E 2= d x an i d x a πn -i n e a n i a V x e V a V 02002021d 1ππ−−⋅==∫=()[]1120+−n n V π π01122V V E g ==, 0222==V E g五、说明题试举一例,说明晶体中的缺陷对晶体相关性质的影响和实际应用.要点:以晶体中得某一种缺陷(空位,填隙,位错等等)为例,说明对晶体力学,光,电性质得影响,并进一步讨论实际应用.具备以上要点即可得分.六、证明题试证明:在磁场中运动的布洛赫电子,在k 空间中轨迹面积νA 和在r 空间的轨迹面积r A 之间的关系为: νA eB A r 2⎟⎠⎞⎜⎝⎛=h , 式中B 为磁场强度. 证: 在磁场中电子受到洛仑兹力的作用.由晶体电子准经典运动方程B dt r d e B v e dt k d v v v v v h ×⎟⎠⎞⎜⎝⎛−=×−= 两边对时间t 积分得:B r e k v v v h ×−=在垂直B 得平面内,线元r ∆与k ∆得关系为:k eB r ∆⎟⎠⎞⎜⎝⎛=∆h 所以电子在k 空间中轨迹面积νA 和在r 空间的轨迹面积r A 之间的关系为:νA eB A r 2⎟⎠⎞⎜⎝⎛=h。
固体物理简答题(附答案)
简答题1、原子结合成晶体时,原子的价电子产生重新分布,从而产生不同的结合力,分析离子性、共价性、金属性和范德瓦耳斯性结合力的特点。
答案:离子性结合:正、负离子之间靠库仑吸引力作用而相互靠近,当靠近到一定程度时,由于泡利不相容原理,两个离子的闭合壳层的电子云的交迭会产生强大的排斥力。
当排斥力和吸引力相互平衡时,形成稳定的离子晶体;共价性结合:靠两个原子各贡献一个电子,形成所谓的共价键;金属性结合:组成晶体时每个原子的最外层电子为所有原子所共有,因此在结合成金属晶体时,失去了最外层(价)电子的原子实“沉浸”在由价电子组成的“电子云”中。
在这种情况下,电子云和原子实之间存在库仑作用,体积越小电子云密度越高,库仑相互作用的库仑能愈低,表现为原子聚合起来的作用。
范德瓦耳斯性结合:惰性元素最外层的电子为8个,具有球对称的稳定封闭结构。
但在某一瞬时由于正、负电中心不重合而使原子呈现出瞬时偶极矩,这就会使其它原子产生感应极矩。
非极性分子晶体就是依靠这瞬时偶极矩的互作用而结合的。
2. 什么叫简正振动模式?简正振动数目、格波数目或格波振动模式数目是否是一回事?答案:为了使问题既简化又能抓住主要矛盾,在分析讨论晶格振动时,将原子间互作用力的泰勒级数中的非线形项忽略掉的近似称为简谐近似. 在简谐近似下, 由N个原子构成的晶体的晶格振动, 可等效成3N个独立的谐振子的振动. 每个谐振子的振动模式称为简正振动模式, 它对应着所有的原子都以该模式的频率做振动, 它是晶格振动模式中最简单最基本的振动方式. 原子的振动, 或者说格波振动通常是这3N个简正振动模式的线形迭加.简正振动数目、格波数目或格波振动模式数目是一回事, 这个数目等于晶体中所有原子的自由度数之和, 即等于3N.3. 长光学支格波与长声学支格波本质上有何差别?答案:长光学支格波的特征是每个原胞内的不同原子做相对振动, 振动频率较高, 它包含了晶格振动频率最高的振动模式. 长声学支格波的特征是原胞内的不同原子没有相对位移, 原胞做整体运动, 振动频率较低, 它包含了晶格振动频率最低的振动模式, 波速是一常数. 任何晶体都存在声学支格波, 但简单晶格(非复式格子)晶体不存在光学支格波.4. 长声学格波能否导致离子晶体的宏观极化?答案:长光学格波所以能导致离子晶体的宏观极化, 其根源是长光学格波使得原胞内不同的原子(正负离子)产生了相对位移. 长声学格波的特点是, 原胞内所有的原子没有相对位移. 因此, 长声学格波不能导致离子晶体的宏观极化.5. 何谓极化声子? 何谓电磁声子?答案:长光学纵波引起离子晶体中正负离子的相对位移, 离子的相对位移产生出宏观极化电场, 称长光学纵波声子为极化声子.由本教科书的(3.103)式可知, 长光学横波与电磁场相耦合, 使得它具有电磁性质, 人们称长光学横波声子为电磁声子.6、什么是声子?答案:晶格振动的能量量子。
固体物理(胡安)课后答案(可编辑)
固体物理(胡安)课后答案第一章晶体的结构及其对称性1.1石墨层中的碳原子排列成如图所示的六角网状结构,试问它是简单还是复式格子。
为什么?作出这一结构所对应的两维点阵和初基元胞。
解:石墨层中原子排成的六角网状结构是复式格子。
因为如图点A和点B的格点在晶格结构中所处的地位不同,并不完全等价,平移A→B,平移后晶格结构不能完全复原所以是复式格子。
1.2在正交直角坐标系中,若矢量,,,为单位向量。
为整数。
问下列情况属于什么点阵?(a)当为全奇或全偶时;(b)当之和为偶数时。
解:当为全奇或全偶时为面心立方结构点阵,当之和为偶数时是面心立方结构1.3 在上题中若奇数位上有负离子,偶数位上有正离子,问这一离子晶体属于什么结构?解:是离子晶体,属于氯化钠结构。
1.4 (a)分别证明,面心立方(fcc)和体心立方(bcc)点阵的惯用初基元胞三基矢间夹角相等,对fcc为,对bcc为(b)在金刚石结构中,作任意原子与其四个最近邻原子的连线。
证明任意两条线之间夹角θ均为解:(1)对于面心立方 (2)对于体心立方 (3)对于金刚石晶胞1.5 证明:在六角晶系中密勒指数为(h,k,l)的晶面族间距为证明:元胞基矢的体积倒格子基矢倒格矢:晶面间距1.6 证明:底心正交的倒点阵仍为底心正交的。
证明:简单六角点阵的第一布里渊区是一个六角正棱柱体底心正交点阵的惯用晶胞如图: 初级晶胞体积: 倒易点阵的基矢: 这组基矢确定的面是正交底心点阵1.7 证明:正点阵是其本身的倒易点阵的倒格子。
证明:倒易点阵初级元胞的体积:是初基元胞的体积而由于而或:现在证明: 又令又:代入同理 1.8 从二维平面点阵作图说明点阵不可能有七重旋转对称轴。
解: 1.9 试解释为什么:(a)四角(四方)晶系中没有底心四角和面心四角点阵。
(b)立方晶系中没有底心立方点阵。
(c)六角晶中只有简单六角点阵。
解:(a)因为四方晶系加底心,会失去4次轴。
(b)因为立方晶系加底心,将失去3次轴。
固体物理学_答案(黄昆 原著 韩汝琦改编)
《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯=(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
固体物理参考答案(前七章)
固体物理习题参考答案(部分)第一章 晶体结构1.氯化钠:复式格子,基元为Na +,Cl -金刚石:复式格子,基元为两个不等价的碳原子 氯化钠与金刚石的原胞基矢与晶胞基矢如下:原胞基矢)ˆˆ()ˆˆ()ˆˆ(213212211j i a a i k a a k j a a +=+=+= , 晶胞基矢 ka a j a a ia a ˆˆˆ321===2. 解:31A A O ':h:k;l;m==-11:211:11:111:1:-2:1 所以(1 1 2 1) 同样可得1331B B A A :(1 1 2 0); 5522A B B A :(1 1 0 0);654321A A A A A A :(0 0 0 1)3.简立方: 2r=a ,Z=1,()63434r 2r a r 3333πππ===F体心立方:()πππ833r4r 342a r 3422a 3r 4a r 4a 33333=⨯=⨯=∴===F Z ,,则面心立方:()πππ622r 4r 34434442r 4a r 4a 233ar 33=⨯=⨯=∴===F Z ,,则 六角密集:2r=a, 60sin 2c a V C = a c 362=,πππ622336234260sin 34223232=⨯⨯⨯=⨯=⎪⎭⎫ ⎝⎛a a c a r F a金刚石:()πππ163r 38r 348a r 3488Z r 8a 33333=⨯=⨯===F ,, 4. 解:'28109)31arccos(312323)ˆˆˆ()ˆˆˆ(cos )ˆˆˆ()ˆˆˆ(021*******12211=-=-=++-⋅+-=⋅=++-=+-=θθa a k j i a k j i a a a a a kj i a a kj i a a 5.解:对于(110)面:2a 2a a 2S =⋅=所包含的原子个数为2,所以面密度为22a2a22=对于(111)面:2a 2323a 22a 2S =⨯⨯= 所包含的原子个数为2,所以面密度为223a34a 232=8.证明:ABCD 是六角密堆积结构初基晶胞的菱形底面,AD=AB=a 。
固体物理习题带答案
第二章:原子的结合
1. 设原子间的互作用能表示为 u (r ) 态,则 n>m. 解:原子间的相互作用能为: u (r )
作用能处于极小值: 这时有
r
m
rn
。证明:要使两原子处于平衡状
r
m
rn
。若两原子处于平衡状态时,则其相互
du (r ) (m) m 1 (n) n 1 dr r r
子晶格的情形比较, 与 q 之间存在着两种不同的色散关系。一维复式晶体中可以存在两 种独立的格波。两种不同的格波的色散关系:
2 2
(m M ) 4mM {1 [1 sin 2 aq]1 / 2 } 2 mM (m M ) (m M ) 4mM {1 [1 sin 2 aq]1 / 2 } 2 mM (m M )
xn (t ) A cos(t 2 naq) 。试求格波的色散关系。
解:一维单原子链中,牛顿方程为:
n ( x n 1 xn 1 2 xn ) m x
若将其振动位移写成 xn (t )
A cos(t 2 naq) 代入牛顿方程,则有
2
2 [1 cos(2aq)] 因此其色散关系为 m
0 。 所 以 有
r0
m
r0
m 1
n
r0
n 1
。所以
m nm r0 。 n
0
r0
同
时
有
d 2u ( r ) (m)( m 1) m 2 (n)( n 1) n 2 2 dr r r
。
所
以
固体物理第4章 固体电子论 2011 参考答案
第四章 固体电子论 参考答案1. 导出二维自由电子气的能态密度。
解:二维情形,自由电子的能量是:22222()()22x y k E k k mm==+k2πLx xk n =,2πLy yk n =在/k =到d k k +区间:22222d 2d 2π(2π)2ππS Lm L Z kdk dE=⋅=⋅=k那么:2d ()d Z Sg E E=其中:22()πm g E =2. 若二维电子气的面密度为n s ,证明它的化学势为:2π()ln exp 1s B B n T k T m k T μ⎡⎤⎛⎫=-⎢⎥⎪⎝⎭⎣⎦解:由前一题已经求得能态密度:22()πm g E =电子气体的化学势μ由下式决定:()()222E-/E-/01d ()d πe1e1B B k Tk TL mE N g E LE μμ∞∞==++⎰⎰令()/B E k Txμ-≡,并注意到:2s Nn L =()12/1d πB xB s k Tk T mn exμ-∞-=+⎰()2/d π1B x B xxk Tk Tm e ee μ∞-=+⎰2/lnπ1BxB xk Tk T m ee μ∞-=+()/2ln 1πB k TB k T m eμ=+那么可以求出μ:2π()ln exp 1s B B n T k T m k T μ⎡⎤⎛⎫=-⎢⎥⎪⎝⎭⎣⎦证毕。
3. He 3是费米子,液体He 3在绝对零度附近的密度为0.081 g /cm 3。
计算它的费米能E F 和费米温度T F 。
解:He 3的数密度:N N M N n V M VMmρρ==⋅=⋅=其中m 是单个He 3粒子的质量。
()1123233π3πF k n m ρ⎛⎫== ⎪⎝⎭可得:2222322/33π(3)22F E n mm m ρπ⎛⎫== ⎪⎝⎭代入数据,可以算得: E F =6.8x 10-16erg = 4.3x 10-4eV .则:FF E T k ==4.97 K.4.已知银的密度为310.5/g cm ,当温度从绝对零度升到室温(300K )时,银金属中电子的费米能变化多少?解:银的原子量为108,密度为310.5/g cm ,如果1个银原子贡献一个自由电子,1摩尔物质包含有6.022x 1023个原子,则单位体积内银的自由电子数为2232310.55.910()108/6.02210n cmmρ-===⨯⨯在T=0K 时,费米能量为202/3328FhnEm π=()代如相关数据得2/3272227302812(6.6310)()3 5.910()29.110()8 3.148.8710() 5.54()Ferg s cmEg erg eV -----⎛⎫⨯⋅⨯⨯=⎪⨯⨯⨯⎝⎭≈⨯≈在≠T0K时,费米能量2020]12B F FFK TE E E π=[1-()所以,当温度从绝对零度升到室温(300K )时, 费米能变化为202012B F FFk TE E E π-=-()代如相关数据得4F FE E -⨯⨯-⨯≈⨯≈2-162-12-163.14(1.3810300)=-128.8710-1.610(erg)-10(eV )可见,温度改变时,费米能量的改变是微不足道的。
固体物理习题答案
u0i2=(h/ρ V).(1/wi) ,原子的位移量的方均值为
u0i2/2 。位移平均值=对全部本征振动频率求和后
的结果:
R2
1
2V i wi
在Debye 近似下,可用积分代替求和,上式变为:
R2
2V
wD D(w)dw 3V 0 w 2V 2 2v3
a
{ 时,(2)式变为:
w2 M1u 2cu w2M 2v2cv
,
解为w12Fra bibliotek2c M2
, w22
2c M1
,
(
M
1
M2)
(1)当 w w1 时,得到
M1 u u,与 v=v ,
M2
即必须有u=0 ,v=v。
(2)当
w w2时,得到 u= u,
M2 v v M1
,即
必须有u= u ,v=0。
M1u c v(1 e i k a ) 2c u M 2vcu(1eika)2cv
...
.
.
.
.
.....
..
.
.
.
(2)
由有解条件得到:
M1M 2w4 2c(M1 M 2 )w2 2c2 (1 cos ka) 0.......... ......( 3)
当 k kmax
(1)当 k=0 时, w2 22 c M , w2 0(7)
(2)当
k=π/a
时, w
2
20 c
M
, w2
2c
M (8)
(3)色散关系示意图:
第五章 习题答案
3.解:(a)由(4.29)知声子振幅的平方值为:
黄昆固体物理课后习题答案4
第四章 晶体的缺陷思 考 题1.设晶体只有弗仑克尔缺陷, 填隙原子的振动频率、空位附近原子的振动频率与无缺陷时原子的振动频率有什么差异?[解答]正常格点的原子脱离晶格位置变成填隙原子, 同时原格点成为空位, 这种产生一个填隙原子将伴随产生一个空位的缺陷称为弗仑克尔缺陷. 填隙原子与相邻原子的距离要比正常格点原子间的距离小,填隙原子与相邻原子的力系数要比正常格点原子间的力系数大. 因为原子的振动频率与原子间力系数的开根近似成正比, 所以填隙原子的振动频率比正常格点原子的振动频率要高. 空位附近原子与空位另一边原子的距离, 比正常格点原子间的距离大得多, 它们之间的力系数比正常格点原子间的力系数小得多, 所以空位附近原子的振动频率比正常格点原子的振动频率要低.2.热膨胀引起的晶体尺寸的相对变化量L L /∆与X 射线衍射测定的晶格常数相对变化量a a /∆存在差异, 是何原因?[解答]肖特基缺陷指的是晶体内产生空位缺陷但不伴随出现填隙原子缺陷, 原空位处的原子跑到晶体表面层上去了. 也就是说, 肖特基缺陷将引起晶体体积的增大. 当温度不是太高时, 肖特基缺陷的数目要比弗仑克尔缺陷的数目大得多. X 射线衍射测定的晶格常数相对变化量a a /Δ, 只是热膨胀引起的晶格常数相对变化量. 但晶体尺寸的相对变化量L L /Δ不仅包括了热膨胀引起的晶格常数相对变化量, 也包括了肖特基缺陷引起的晶体体积的增大. 因此, 当温度不是太高时, 一般有关系式L L Δ>a a Δ.3.KCl 晶体生长时,在KCl 溶液中加入适量的CaCl 2溶液,生长的KCl 晶体的质量密度比理论值小,是何原因?[解答]由于+2Ca离子的半径(0.99oA )比+K 离子的半径(1.33oA )小得不是太多,所以+2Ca 离子难以进入KCl 晶体的间隙位置, 而只能取代+K 占据+K 离子的位置. 但+2Ca 比+K 高一价, 为了保持电中性(最小能量的约束), 占据+K 离子的一个+2Ca 将引起相邻的一个+K 变成空位. 也就是说, 加入的CaCl 2越多, +K 空位就越多. 又因为Ca 的原子量(40.08)与K 的原子量(39.102)相近, 所以在KCl 溶液中加入适量的CaCl 2溶液引起+K 空位, 将导致KCl 晶体的质量密度比理论值小.4.为什么形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量低?[解答]形成一个肖特基缺陷时,晶体内留下一个空位,晶体表面多一个原子. 因此形成形成一个肖特基缺陷所需的能量, 可以看成晶体表面一个原子与其它原子的相互作用能, 和晶体内部一个原子与其它原子的相互作用能的差值. 形成一个弗仑克尔缺陷时,晶体内留下一个空位,多一个填隙原子. 因此形成一个弗仑克尔缺陷所需的能量, 可以看成晶体内部一个填隙原子与其它原子的相互作用能, 和晶体内部一个原子与其它原子相互作用能的差值. 填隙原子与相邻原子的距离非常小, 它与其它原子的排斥能比正常原子间的排斥能大得多. 由于排斥能是正值, 包括吸引能和排斥能的相互作用能是负值, 所以填隙原子与其它原子相互作用能的绝对值, 比晶体表面一个原子与其它原子相互作用能的绝对值要小. 也就是说, 形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量要低.5.金属淬火后为什么变硬?[解答]我们已经知道 晶体的一部分相对于另一部分的滑移, 实际是位错线的滑移, 位错线的移动是逐步进行的, 使得滑移的切应力最小. 这就是金属一般较软的原因之一. 显然, 要提高金属的强度和硬度, 似乎可以通过消除位错的办法来实现. 但事实上位错是很难消除的. 相反, 要提高金属的强度和硬度, 通常采用增加位错的办法来实现. 金属淬火就是增加位错的有效办法. 将金属加热到一定高温, 原子振动的幅度比常温时的幅度大得多, 原子脱离正常格点的几率比常温时大得多, 晶体中产生大量的空位、填隙缺陷. 这些点缺陷容易形成位错. 也就是说, 在高温时, 晶体内的位错缺陷比常温时多得多. 高温的晶体在适宜的液体中急冷, 高温时新产生的位错来不及恢复和消退, 大部分被存留了下来. 数目众多的位错相互交织在一起, 某一方向的位错的滑移, 会受到其它方向位错的牵制, 使位错滑移的阻力大大增加, 使得金属变硬.6.在位错滑移时, 刃位错上原子受的力和螺位错上原子受的力各有什么特点?[解答]在位错滑移时, 刃位错上原子受力的方向就是位错滑移的方向. 但螺位错滑移时, 螺位错上原子受力的方向与位错滑移的方向相垂直.7.试指出立方密积和六角密积晶体滑移面的面指数.[解答]滑移面一定是密积面, 因为密积面上的原子密度最大, 面与面的间距最大, 面与面之间原子的相互作用力最小. 对于立方密积, {111}是密积面. 对于六角密积, (001)是密积面. 因此, 立方密积和六角密积晶体滑移面的面指数分别为{111}和(001).8.离子晶体中正负离子空位数目、填隙原子数目都相等, 在外电场作用下, 它们对导电的贡献完全相同吗?[解答]由(4.48)式可知, 在正负离子空位数目、填隙离子数目都相等情况下, -+B A 离子晶体的热缺陷对导电的贡献只取决于它们的迁移率μ. 设正离子空位附近的离子和填隙离子的振动频率分别为+vA ν和+iA ν, 正离子空位附近的离子和填隙离子跳过的势垒高度分别为+vA E 和+iA E , 负离子空位附近的离子和填隙离子的振动频率分别为-vB ν和-iB ν, 负离子空位附近的离子和填隙离子跳过的势垒高度分别-vB E 为-iB E , 则由(4.47)矢可得Tk EB A A B vA vve T k ea /2+++-=νμ,Tk EB A A B i A iie T k ea /2+++-=νμ,Tk EB B B B vB vve T k ea /2----=νμ,Tk EB B B B i B iieTk ea /2----=νμ.由空位附近的离子跳到空位上的几率, 比填隙离子跳到相邻间隙位置上的几率大得多, 可以推断出空位附近的离子跳过的势垒高度, 比填隙离子跳过的势垒高度要低, 即+vA E <+iA E ,-vB E <-iB E . 由问题1.已知, 所以有+v A ν<+i A ν, -v B ν<-iB ν. 另外, 由于+A 和-B 的离子半径不同, 质量不同, 所以一般-+≠B A E E , -+≠B A νν.也就是说, 一般--++≠≠≠i v i vB B A A μμμμ. 因此, 即使离子晶体中正负离子空位数目、填隙离子数目都相等, 在外电场作用下, 它们对导电的贡献一般也不会相同. 9.晶体结构对缺陷扩散有何影响?[解答]扩散是自然界中普遍存在的现象, 它的本质是离子作无规则的布郎运动. 通过扩散可实现质量的输运. 晶体中缺陷的扩散现象与气体分子的扩散相似, 不同之处是缺陷在晶体中运动要受到晶格周期性的限制, 要克服势垒的阻挡, 对于简单晶格, 缺陷每跳一步的间距等于跳跃方向上的周期.10.填隙原子机构的自扩散系数与空位机构自扩散系数, 哪一个大? 为什么?[解答]填隙原子机构的自扩散系数Tk E u B ae D /)(0222221+-=ν,空位机构自扩散系数Tk E u B ae D /)(0111121+-=ν.自扩散系数主要决定于指数因子, 由问题4.和8.已知, 1u <2u ,1E <2E , 所以填隙原子机构的自扩散系数小于空位机构的自扩散系数.11.一个填隙原子平均花费多长时间才被复合掉? 该时间与一个正常格点上的原子变成间隙原子所需等待的时间相比, 哪个长?[解答]与填隙原子相邻的一个格点是空位的几率是N n /1, 平均来说, 填隙原子要跳1/n N 步才遇到一个空位并与之复合. 所以一个填隙原子平均花费T k E u B e n N t /)(0221211+==ντ的时间才被空位复合掉.由(4.5)式可得一个正常格点上的原子变成间隙原子所需等待的时间T k E u u B en n N P /)(02212222111++===νττ.由以上两式得2/2n Ne tT k u B ==τ>>1.这说明, 一个正常格点上的原子变成间隙原子所需等待的时间, 比一个填隙原子从出现到被空位复合掉所需要的时间要长得多.12.一个空位花费多长时间才被复合掉?[解答]对于借助于空位进行扩散的正常晶格上的原子, 只有它相邻的一个原子成为空位时, 它才扩散一步, 所需等待的时间是1τ. 但它相邻的一个原子成为空位的几率是N n /1, 所以它等待到这个相邻原子成为空位, 并跳到此空位上所花费的时间T k E u B e n N t /)(0111111+==ντ.13.自扩散系数的大小与哪些因素有关?[解答]填隙原子机构的自扩散系数与空位机构自扩散系数可统一写成RTN T k e a e a D B /20/2002121εεν--==.可以看出, 自扩散系数与原子的振动频率0ν, 晶体结构(晶格常数a ), 激活能(ε0N )三因素有关.14.替位式杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么?[解答]占据正常晶格位置的替位式杂质原子, 它的原子半径和电荷量都或多或少与母体原子半径和电荷量不同. 这种不同就会引起杂质原子附近的晶格发生畸变, 使得畸变区出现空位的几率大大增加, 进而使得杂质原子跳向空位的等待时间大为减少, 加大了杂质原子的扩散速度.15.填隙杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么?[解答]正常晶格位置上的一个原子等待了时间τ后变成填隙原子, 又平均花费时间21τn N 后被空位复合重新进入正常晶格位置, 其中2τ是填隙原子从一个间隙位置跳到相邻间隙位置所要等待的平均时间. 填隙原子自扩散系数反比于时间21ττn Nt +=.因为τ>>21τn N ,所以填隙原子自扩散系数近似反比于τ. 填隙杂质原子不存在由正常晶格位置变成填隙原子的漫长等待时间τ, 所以填隙杂质原子的扩散系数比母体填隙原子自扩散系数要大得多.16.你认为自扩散系数的理论值比实验值小很多的主要原因是什么?[解答]目前固体物理教科书对自扩散的分析, 是基于点缺陷的模型, 这一模型过于简单, 与晶体缺陷的实际情况可能有较大差别. 实际晶体中, 不仅存在点缺陷, 还存在线缺陷和面缺陷, 这些线度更大的缺陷可能对扩散起到重要影响. 也许没有考虑线缺陷和面缺陷对自扩散系数的贡献是理论值比实验值小很多的主要原因.17.-+B A 离子晶体的导电机构有几种?[解答]离子晶体导电是离子晶体中的热缺陷在外电场中的定向飘移引起的.-+B A 离子晶体中有4种缺陷: +A 填隙离子, -B 填隙离子, +A 空位, -B 空位. 也就是说, -+B A 离子晶体的导电机构有4种. 空位的扩散实际是空位附近离子跳到空位位置, 原来离子的位置变成了空位. -+B A 离子晶体中, +A 空位附近都是负离子, -B 空位附近都是正离子. 由此可知, +A 空位的移动实际是负离子的移动, -B 空位的移动实际是正离子的移动. 因此,A填隙离子和-B空位的漂移方向与外电场方向一致, 而-B填隙离子和在外电场作用下, ++A空位的漂移方向与外电场方向相反.。
固体物理课后习题答案
固体物理课后习题答案固体物理课后习题答案固体物理是物理学中的一个重要分支,研究物质的结构和性质。
它涉及到晶体学、电子结构、磁性、声学等多个方面。
在学习固体物理的过程中,课后习题是巩固知识、提高能力的重要途径。
下面是一些固体物理课后习题的答案,供大家参考。
1. 问题:什么是晶体?晶体的特点是什么?答案:晶体是由周期性排列的原子、离子或分子组成的固体。
晶体的特点包括:- 长程有序性:晶体的原子、离子或分子按照一定的规则排列,形成周期性的结构。
- 均匀性:晶体的结构在宏观和微观尺度上都是均匀的。
- 可预测性:晶体的结构可以通过晶体学方法进行研究和预测。
- 具有特定的物理性质:晶体的结构和周期性排列导致了其特定的物理性质,如光学性质、电学性质等。
2. 问题:什么是晶体的晶格常数?答案:晶体的晶格常数是指晶体中原子、离子或分子排列的周期性重复单位的尺寸。
晶格常数可以用来描述晶体的结构和性质。
在晶体学中,晶格常数通常用晶格常数矢量a、b、c表示,它们分别表示晶格沿着三个坐标轴的长度。
3. 问题:什么是布拉维格子?答案:布拉维格子是指晶体中的离散的点阵结构,用来描述晶体的对称性。
布拉维格子的点阵可以通过晶体的晶格常数和晶体的对称操作得到。
布拉维格子的对称性决定了晶体的物理性质,如晶体的能带结构和声子谱。
4. 问题:什么是声子?声子与固体的性质有什么关系?答案:声子是固体中的一种元激发,它代表了晶格振动的量子。
声子的能量和动量由固体的结构和性质决定。
声子的存在对固体的性质有重要影响,如导热性、电导性等。
声子的研究可以揭示固体的热力学和动力学性质。
5. 问题:什么是费米面?费米面与固体的导电性有什么关系?答案:费米面是描述固体中电子分布的一个表面,它代表了能量最高的占据态和能量最低的未占据态之间的边界。
费米面的形状和位置由固体的电子结构决定。
费米面的性质与固体的导电性密切相关。
在导电体中,费米面与导电性能直接相关,如费米面的形状和移动可以解释固体的电导率和磁性等性质。
固体物理基础 课后答案 西安电子科技大学出版社(曹全喜 雷天明 黄云霞 李桂芳 著) 第一二三四五章
0
,所以
S2 hkl
0;
2、当
h、k、l
为全奇数时,
S
2 hkl
2F
2 f
2 (4 f )2
32 f2 ;
3、当 h、k、l 全为偶数,且 h k l 4n (n 为任意整数)时,
S2 h.k .l
2Ff2 (11)
4 16 f2
64 f2
当 h、k、l 全为偶数,但 h k l 4n ,则 h k l 22n 1时,
第四条 由于本学期只教习了前 5 章,因此本解答仅包含 前 5 章内容,完整版将于寒假后奉上;
第五条 本习题解答由“苏大师”整理/解答/编排而成; 第六条 纰漏难免,欢迎指正; 第七条 不加水印 方便打印 版权所有 网传必究!
第1章 晶体结构 习题
1ǃ画出下列晶体的惯用原胞 和布拉菲格子,指明各晶体的结构以及惯用原胞、初基原 胞中的原子个数和 配位数。
Ff
i hkl
i hk l
Ff e 2
Ff 1 e 2
因为衍射强度
I
S
2 hkl
,
S2 hkl
F
2 f
1
ei
2
(
h
k
l
)
·1
e
i
2
(hk
l
)
F
2 f
2
i hkl
e2
i hk l
e2
用尤拉公式整理后:
S
2 hkl
2F
2 f
1
cos 2
(h
k
l)
讨论:1、当 h、k、l 为奇异性数(奇偶混杂)时, Ff
闪锌矿
fcc
固体物理习题答案
第四章 思考题
2、周期场是能带形成的必要条件吗? 答:周期场是由布洛赫函数描述的能带结构的必要条件。 布洛赫定理推导出周期场中单电子状态的一般属性(主要是能带 结构,参见图4.2-1 一维能带结构的表示图式),而晶格周期 势场是布洛赫定理的前提条件。 在晶体周期性结构(平移对称性)中,电子波函数 (k) 是布洛赫 函数,能量本征值和本征函数在 k 空间具有倒格矢反演和 周期性,电子波矢 k 是与平移对称性相联系的量子数 。 非晶态也具有相似的基本能带结构,即:导带、价带和禁带。 但非晶态的电子态与晶态比较有本质区别。非晶态不存在 周期性,因此 k 不再是具有类似特征的量子数。 非晶态能带中电子态分扩展态和局域态二类。扩展态的电子为 整个固体共有,可在整个固体内找到,在外场中运动类似 晶体中电子;局域态的电子基本局限在某一区域,状态波 函数只能在围绕某一不大的尺度内显著不为零,它们依靠 声子协助,进行跳跃式导电。
第一章 思考题
5、试画出体心立方和面心立方(100)、(110)、(111)面上格点的 分布图。 (100) (110) (111)
体心立方
面心立方
第一章 思考题
6、怎样判断一个体系对称性的高低?讨论对称性有何物理意义。 答: 一个物理体系对称性用其具有的对称操作集合来描述。一个体 系具有的对称操作越多,其对称性就越高。在数学上,基 本操作的集合构成 “群”,每个基本操作称为群的一个元 素。由于晶格周期性限制,描述晶体宏观对称性的“点群” 只有32种。描述晶体微观对称性的“空间群”只有230种。 一个物理体系,如知道其几何对称性,就可在一定程度上确定 它的某些物理性质。例如,若原子结构具有中心反演对称 性,则原子无固定偶极矩;若一个体系具有轴对称性,偶 极矩必在对称轴上;若有对称面,偶极矩必在对称面上。 由此可见,不必讨论体系结构细节,仅从体系的对称性,就可 对其物理性质作出某些判断。对称理论已成为定性和半定 量研究物理问题的重要方法。
4-固体物理学习题解答(完整版)
《固体物理学》部分习题参考解答第一章1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。
从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少?答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a :对于面心立方,处于面心的原子与顶角原子的距离为:R f=2 a对于体心立方,处于体心的原子与顶角原子的距离为:R b=2a那么,R f R b31.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何?答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么 1.3 二维布拉维点阵只有5种,试列举并画图表示之。
答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。
分别如图所示:1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010)(213)答:证明设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。
因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此123oo o a n hda n kd a n id=== ……… (1) 正方 a=b a ^b=90° 六方 a=b a ^b=120° 矩形 a ≠b a ^b=90° 带心矩形 a=b a ^b=90° 平行四边形 a ≠b a ^b ≠90°由于a 3=–(a 1+ a 2)313()ooa n a a n =-+把(1)式的关系代入,即得()id hd kd =-+ ()i h k =-+根据上面的证明,可以转换晶面族为 (001)→(0001),(13)→(1323),(110)→(1100),(323)→(3213),(100)→(1010),(010)→(0110),(213)→(2133)1.5 如将等体积的硬球堆成下列结构,求证球可能占据的最大面积与总体积之比为(1)简立方:6π(28(3)面心立方:6(4)六方密堆积:6(5)金刚石:16。
固体物理学课后题答案
第一章 晶体结构1.1、 如果将等体积球分别排成下列结构,设x 表示钢球所占体积与总体积之比,证明:结构 X简单立方52.06=π体心立方68.083≈π 面心立方74.062≈π 六角密排74.062≈π 金刚石34.063≈π解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06834343333====πππrra r x(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)334(3423423333≈=⨯=⨯=πππr r a r x (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)22(3443443333≈=⨯=⨯=πππr r a r x (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062)22(3443443333≈=⨯=⨯=πππr r a r x (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.06333834834833333≈=⨯=⨯=πππr r a r x 1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(c)由色散关系
ω 2 M = 2c[2 − cos(k x a) − cos(k y a)]
和周期性边界条件可以得到 k x ∈ ( −
π π
k y ∈ (−
π π
, ] a a
, ] , 所以独立解存在的 k a a
2π 空间区域是一个边长为 a 的正方形。
当 当
k = k x ,且 k y = 0 时的 ω − k 图,和 kx = k y
是 U,v 的线性齐次方程组,存在非零解的条件为
M ω 2 − 11C , C (10 + e − iKa ) C (eiKa + 10), M ω 2 − 11C
=0,解出
M 2ω 4 − 22MCω 2 + 20C 2 (1 − conKa ) = 0
2 ∴ ω± =
C ⎡ 11 ± 121 − 20 (1 − conKa ) ⎤ . ⎦ M⎣
M
将
us = ueisKa • e − iωt , Vs = VeisKa • e − iωt . 代入上式有
解答(初稿)作者
季正华
m
黄昆 固体物理 习题解答
− M ω 2u = C (10 + e − ika ) V − 11Cu , − M ω 2V = C ( eika + 10 ) u − 11CV ,
案
.k hd
所以原命题的证。
为平面格子原子的运动方程
aw .
co
m
② ③ ④ ⑤ 将①②③④⑤式代入平面格子原子的运动方程则容易得到得到色散关系(这里代入过程从 略,请自己代入计算) :
ω 2 M = 2c[2 − cos(k x a) − cos(k y a)]
解答(初稿)作者 季正华 -5-
黄昆 固体物理 习题解答
黄昆 固体物理 习题解答
第一布里渊区允许 q 的数目 对应一个 q 有两支格波:一支声学波和一支光学波。总的格波数目为 2N。
当 M=m 时
—— 两种色散关系如图所示
在长波极限(q→0,λ>>0)情况下:当 q→0 ——与一维单原子晶格格波的色散关系一致。
子晶体。
解
a/2
后 答
课
c
案
处的 ω (k ) .大略地画出色散关系.此问题模拟如 H 2 这样的双原子分
= c[( μl +1, m + μl −1, m − 2μl ,m ) + ( μl ,m +1 + μl , m −1 − 2μl ,m )]
(b)根据题意,
网
μl ,m = μ (0) exp[i (lk x a + mk y a − ωt )]
ww w
+ c( μl +1,m − μl ,m ) − c( μl , m − μl −1, m )
代回到运动方程得到
若 A、B 有非零的解,系数行列式满足:
两种不同的格波的色散关系:
——第一布里渊区
解答(初稿)作者 季正华 -2-
课
后 答
案
网
ww w
.k hd
aw .
μ 2 n = Aei[ωt − (2 na ) q ] μ 2 n +1 = Bei[ωt − (2 n +1) aq ]
co
m
时的 ω − k 图,如右图所示。
.k hd
aw .
3.5 已知 Nacl 晶体平均每对离子的相互作用能为 U (r ) = −
马德隆常数 α =1.75,n=9,平均离子间距 r0 = 2.82 Å 。 (1)试求离子在平衡位置附近的振动频率
α e2
r +
co
β
rn
m
其中 值 61 μ 进行比较。
3.2 讨论 N 个原胞的一维双原子链(相邻原子间距为 a) ,其 2N 格波 解,当 M=m 时与一维单原子链的结果一一对应.
解答(初稿)作者
季正华
-1-
黄昆 固体物理 习题解答
解:如上图所示,质量为 M 的原子位于 2n-1, 2n+1, 2n+3 ……
质量为 m 的原子位于 2n, 2n+2, 2n+4 …… 牛顿运动方程:
2 ω+ = 22C / M , 2 ω− = 0,
案
网
ww w
.k hd
3.4 考虑一个全同原子组成的平面方格子,用
后 答
常数为 c。
课
的原子在垂直于格平面的位移,每个原子质量为 M,最近邻原子的力
(a)证明运动方程为:
) = c[( μl +1,m + μl −1,m − 2μl ,m ) dt 2 + ( μl , m +1 + μl , m −1 − 2μl ,m )]
m μ 2 n = − β (2 μ 2 n − μ 2 n +1 − μ 2 n −1 ) M μ 2 n +1 = − β (2 μ 2 n +1 − μ 2 n + 2 − μ 2 n )
体系为 N 个原胞,则有 2N 个独立的方程 方程解的形式: 将
..
..
μ 2 n = Aei[ωt − (2 na ) q ] μ 2 n +1 = Bei[ωt − (2 n +1) aq ]
ω 2 与 K 的关系如下图所示.这是一个双原子(例如 H 2 )晶体。
,这里 a 是最近邻原
co
记第 l 行,第 m 列
m
当 K=0 时,
当 K= π / a 时
2 ω+ = 20C / M , 2 ω− = 2C / M ,
黄昆 固体物理 习题解答
系。
2π (c)证明独立解存在的 k 空间区域是一个边长为 a 的正方形,这就
0
其中 L 是原子链的长度, ρ 使质量密度, T0 为周期。 所以 Tnj =
1 1 2 ρ w2 KT j La j = 4 2
课
后 答
1 Tnj = T0
0
0
案
∫
L
dx ∫
T0
⎡ 1 ⎛ d μnj ⎞2 ⎤ ρ wj a2 T0 1 j 2 L∫ a2 ρ w2 ⎢ ρ⎜ ⎟ ⎥ dt = j sin(ω j t + naq j + σ j )dt = j La j 0 2 ⎝ dt ⎠ ⎥ 2T0 4 ⎢ ⎣ ⎦
ω < ω0 ⇒ ω0 − ω = Aq ⇒ q = A (ω0 − ω )
2
1 2
课
依据 ∇ qω ( q ) = −2 Aq, f (ω ) =
3 ( 2π ) ∫
V
f (ω ) =
V
( 2π )
⋅ 3
r ds V 1 A1/ 2 V 1 1/ 2 4 = ⋅ π ω − ω = ⋅ 3/ 2 (ω0 − ω ) ( 0 ) 3 1/ 2 2 2 ∇ qω (q ) ( 2π ) 2 A ( ω0 − ω ) ( 2π ) A
解:任意一个原子的位移是所有格波引起的位移的叠加,即
μ n = ∑ μ nj =∑ a j sin(ω j t + naq j + σ j )
j j
(1)
2 * 2 * = ⎜ ∑ μnj ⎟⎜ ∑ μnj μn ⎟ = ∑ μnj + ∑ μnj μnj′
⎛ ⎝
⎞⎛ ⎠⎝
⎞ ⎠
j
j
j
j ≠ j′
j
季正华
(2)计算与该频率相当的电磁波的波长,并与 Nacl 红外吸收频率的测量
案
网
ww w
-6-
黄昆 固体物理 习题解答
一维单原子链色散关系,
ω2 =
4β aq sin 2 ( ) m 2
令
ω0 =
4β aq ω = ω0 sin( ) m , 2
两边微分得到
d ω = ω0
a aq cos( )dq 2 2 d ω = ω0 a aq cos( )dq 2 2
μl ,m+1 − μl ,m ,上方 原子 与它的 相对 位移为 μl ,m − μl −1,m ,下 方原子 与它 的相对 位移 为 μl +1,m − μl ,m , 并 考 虑到力 的 方 向性, 得 到 上面平 面 格 子的每 个 原 子的力 学 方程 为:
M( d 2 μl , m dt 2 ) = c( μl ,m +1 − μl , m ) − c( μl ,m − μl , m −1 )
2
2π ndn ,且 2π ndn =
解答(初稿)作者
季正华
ww w
3.7 设三维晶格的光学振动在 q=0 附近的长波极限有 ω (q ) = ω0 − Aq
网
已知较高温度下的每个格波的能量为 KT, μ nj 的动能时间平均值为
ww w
μ2 j =
1 T0
∫
T0
a2 j sin(ω j t + naq j + σ j )dt =
1 2 aj 2
.k hd
由于 μ nj 是时间 t 的周期性函数,其长时间平均等于一个周期内的时间平均值为 (2)
aw .
相比是一小量,可以忽略不计。所以 μ n =
网
π a k= a 和 10 c.令两种原子质量相同,且最近邻间距为 2 .求在 k = 0 和
10c
•
us −1 M
o
us
•
ww w
3.3 考虑一双原子链的晶格振动, 链上最近邻原子间力常数交替为 c
.k hd
•
us +1