七年级数学下册第四章三角形教案1(新版)北师大版
南开区三中七年级数学下册第四章三角形1认识三角形第1课时三角形的内角和教案新版北师大版
1认识三角形第1课时三角形的内角和【知识与技能】进一步认识三角形的有关概念及其根本要素,掌握三角形内角和定理和直角三角形中两锐角的关系。
【过程与方法】通过观察、操作、讨论等活动,培养学生的动手实践能力和语言表达能力;通过小组合作学习,培养集体协作学习的能力及概括能力。
【情感态度】让学生在自主参与、合作交流的活动中,体验成功的喜悦,树立自信,激发学习数学的兴趣。
【教学重点】三角形的相关概念;内角和定理;直角三角形两锐角关系的探究和归纳。
【教学难点】三角形角之间的关系的应用.一、情景导入,初步认知1。
如何表示线段、射线和直线?2。
如何表示一个角?【教学说明】复习与回忆学生以前学习的几何图形的概念、线段及角的表示法、线段的测量等知识,为认识三角形概念、表示法、三要素、边的关系的学习奠定了根底。
二、思考探究,获取新知探究1:三角形的相关概念。
1。
能从下列图中找出4个不同的三角形吗?2.与同伴交流各自找到的三角形.3。
这些三角形有什么共同的特点?【归纳结论】三角形定义:由不在同一直线上的三条线段,首尾顺次相接所组成的图形叫做三角形.4.三角形包含哪些元素呢?这些元素如何表示呢?5.我们在前面学习了角、平行等,为了书写方便,使用了角、平行的符号。
那么三角形可以用什么样的符号表示呢?【归纳结论】三角形的三要素:边:〔如图〕三边AB、BC、AC,也可以用a、b、c来表示。
顶点:〔如图)三个顶点,顶点A,顶点B,顶点C.内角:(如图〕三个内角,∠A,∠B,∠C.6.三角形的表示法:“三角形"用符号“△",如图的三角形记作:△ABC(或△BCA或△CBA等〕.注:顶点字母与顺序无关【教学说明】在提问学生的根底上,得出三角形的定义,培养学生的语言表达能力;在学生操作及交流的根底上,得出三角形的三要素及三角形的表示法。
探究2:三角形的内角和定理每个学生画出一个三角形,并将它的内角剪下,分小组做拼角实验,能否拼出一个或几个角的和为180°.为什么是180°.通过小组合作交流,讨论有几种拼合方法?开展小组竞赛(看哪个小组发现多?说理清楚。
七年级数学下册 认识三角形(第四课时)教案 北师大版
教学设计思想:本节内容需四课时讲授;三角形是学生在小学就已熟悉的图形,本节以观察房子的顶部框架中所包含的三角形出发,让学生经历从现实世界中抽象出几何模型的过程,复习三角形的有关概念,认识三角形的基本要素(边、角、顶点)及其表示方法,进一步展开对三角形性质的讨论。
首先结合生活实例引入三角形的概念、表示方法。
接着运用观察和测量等方法获得三角形的性质,同时运用已有的结论进行简单的推理,从而得到“三角形任意两边之和大于第三边”;对于“三角形任意两边之差小于第三边”的性质只须通过测量等活动归纳得出结论即可,无须用不等式证明。
在探索“三角形内角和为180°”这个结论时,学生在以前的学习中已经通过操作获得了这个结论,教师此时应引导学生在操作中进行自觉地思考,思考能否利用平行线的有关事实说明这个结论,将直观和说理结合起来。
教学目标(一)知识与技能1.熟记三角形的高线的定义.2.掌握三角形的高线的画法.(二)过程与方法1.通过观察、操作、想象、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力.2.认识三角形的高线,并能在具体的三角形中作出它们.(三)情感与价值观要求通过折纸、画图等活动,培养学生的动手能力,提高学生的识图技能,使学生的思维变得更灵活.教学重点三角形的高线的定义.教学难点直角三角形和钝角三角形的三条高的认识和理解,尤其是画出它们是本节课的难点.教学方法探求发现法让学生在现实情景中探求问题,在动手操作中发现规律,从而使他们掌握新的内容.教具准备上节课的电脑课件.电脑课件:直角三角形、钝角三角形的高.投影片.教学安排4课时.教学过程Ⅰ.巧设现实情景,引入新课[师]同学们好,大家来看大屏幕如图5-37,△ABC中,有一条红色线段,一端点在顶点A处,另一端点从点B沿着BC 边移动到点C,观察移动过程中形成的无数条线段(AD,AE,AF,AG……)中,有没有特殊位置的线段?你认为有哪些特殊位置?图5-37[生]老师,这个问题上节课已经解决了.这些线段中有三条线段的位置比较特殊,它们分别是三角形的角平分线、中线和高线.[师]对.上节课我们已探讨了三角形的中线和角平分线,这节课来研究三角形的高线.Ⅱ.讲授新课[师]从刚才移动的过程中,知道:AG⊥BC,这时我们说AG就是△ABC的高,那么三角形的高是如何定义的呢?从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.(height)图5-38如图5-38,线段AG是BC边上的高.注意:三角形的高是线段.由定义可知:AG是△ABC中BC边上的高,那么有∠AGB=90°,∠AGC=90°,∠AGB=∠AGC.教师演示视频——三角形的高三角形的高是从三角形的一个顶点向它的对边所在的直线作垂线,顶点与垂足之间的线段.那么如何过三角形的一个顶点,画出它的对边的垂线呢?我们先来回忆:过一点如何作一条直线的垂线?[生甲]可以利用折纸的方法,对折直线所在的纸片,使直线重合,折痕过已知点,这样折痕就是过已知点垂直于已知直线的垂线.(甲同学演示)[生乙]也可以用三角尺来画.把三角尺的一条直角边与已知直线重合,移动三角尺,使它的另一条直角边经过已知点,画直线,这样即可画出过一点并与已知直线垂直的直线.[生丙]也可以利用量角器来画.[师]很好,同学们利用几种方法,画出了过已知点并与已知直线垂直的直线,那能不能画出三角形的高呢?下面我们来做一做.每人准备一个锐角三角形纸片.(1)你能画出这个三角形的三条高吗?你能用折纸的方法得到它们吗?(2)这三条高之间有怎样的位置关系?将你的结果与同伴进行交流.[生甲]我能画出这个锐角三角形的三条高,用折纸的方法也能得到它们.这三条高相交于一点.如图5-39.图5-39线段AD、BE、CF是△ABC的三条高,它们相交于点O.[师]很好,大家能画出锐角三角形的三条高,并且知道这三条高都在三角形内,且相交于一点,那么直角三角形的三条高,你能画出来吗?钝角三角形呢?大家来议一议在纸上画出一个直角三角形和一个钝角三角形.(1)画出直角三角形的三条高,它们有怎样的位置关系?(2)你能折出钝角三角形的三条高吗?你能画出它们吗?(3)钝角三角形的三条高交于一点吗?它们所在的直线交于一点吗?将你的结果与同伴进行交流.[生乙]直角三角形中,只有一条高,如图5-40,在Rt△ABC中,CD是直角三角形ABC的高.图5-40[生丙]不对,直角三角形的两边互相垂直.所以:直角边AC、BC也应该是Rt△ABC 的高,即:AC是BC边上的高,BC也是AC边上的高.Rt△ABC的三条高分别是AC、BC、CD,它们相交于一点,这个点是三角形的一个顶点.[师]丙同学说得对吗?[生齐声]对.[师]很好.直角三角形有一条高在三角形的内部,而另两条高恰是它的两条直角边.下面我们来看钝角三角形.即问题(2).[生丁]我画出钝角三角形后,只能折出它的一条高,而其他两条找不到.[生戊]其他的两条高在三角形的外边.如图5-41:图5-41线段AD、BE、CF是钝角三角形ABC的高.[师]对,下面我们看问题.如图5-42,△ABC的高AD.(1)当点C沿着CB向点B方向移动.当点C与点D重合时,此时AD是△ABC的高吗?由此你发现了什么?(2)将点C继续沿着CB向点B方向移动,当点C、点B不重合且在AD的同侧,此时AD是△ABC的高吗?由此你发现了什么?图5-42(一个问题解决完后,再解决第2个)[生甲]当点C沿着CB向点B方向移动,点C与点D重合时,这时∠ACB=90°,这时由原来的锐角三角形变为直角三角形,此时AD仍是△ABC的高,只是比较特殊,AC与AD 为同一条线段了.即:直角边也是直角三角形的高.[生乙]将点C继续沿着CB向点B方向移动,当点C、点B不重合且在AD的同侧,此时的三角形为钝角三角形.因为AD仍然垂直于BC所在的直线,所以AD是△ABC的高,只是它在三角形的外面.[师]同学们分析得很透彻,那你能画出或折出钝角三角形的高吗?[生]能.[师]很好,钝角三角形的高有什么特点呢?[生丙]钝角三角形有三条高,一条高在三角形内,另两条高在三角形外.[师]对,那钝角三角形的三条高交于一点吗?[生丁]不.[师]那么这三条高所在的直线交于一点吗?(学生讨论)[生]钝角三角形的三条高所在的直线交于一点.如图5-43.图5-43[师]很好,由此我们知道了:三角形的三条高所在的直线交于一点.接下来,同学们想一想:分别指出图5-44中△ABC的三条高.图5-44[生甲]图(1)中的三条高分别为:AB、BC、BD.[生乙]图(2)中的三条高分别为:BF、AD、CE.[师]好,接下来我们做一练习来熟悉掌握三角形的三条重要线段.Ⅲ.课堂练习(一)补充1.分别画出图5-45中一组直角三角形的所有高.图5-452.分别画出图5-46中一组钝角三角形的所有高.图5-463.分别画出图5-47中各个三角形的所有角平分线.图5-474.分别画出图5-48各个三角形的所有的中线.图5-485.从上面画直角三角形、钝角三角形的高、角平分线、中线,你发现了什么?以下有三种情况,根据你画图的实践,用序号字母填写下表(有几种可能情况填写几个字母).A.在三角形的内部B.在三角形的边上C.在三角形的外部锐角三角形直角三角形钝角三角形角平分线中线高线答案:1.如图5-49.图5-492.如图5-50.图5-503.如图5-51.图5-51 4.略5.如下表:锐角三角形直角三角形钝角三角形角平分线A A A中线A A A高线A A、B A、C(二)看课本P126~127,然后小结.Ⅳ.课时小结这节课我们重点探讨了三角形的高.三角形的高不一定都在三角形的内部.锐角三角形的三条高都在三角形的内部;直角三角形中,有两条高恰好是它的两条直角边;钝角三角形中,两锐角所对边上的高都在三角形的外部.三角形的三条高所在的直线相交于一点.到现在为止,我们学习了三角形的三种重要线段:角平分线、中线和高线.这三种重要线段都是用连结顶点——对边(或对边所在直线)上一个特殊点的方法来定义的.大家要掌握它们的定义,并且会在图形中准确地作出这些线段.Ⅴ.课后作业.(一)课本P127习题5.4 1、2、3(二)1.预习内容 P128~1302.预习提纲(1)什么是全等图形?(2)全等图形有什么性质.板书设计§5.1.4 认识三角形一、三角形的高线从三角形的一个顶点向它的对边所在直线作垂线,顶点与垂足之间的线段.注意:三角形的高是线段,与垂线有区别.。
北师大版数学七年级下册第四章:1、认识三角形 课件(共65张PPT)
1.三角形内角和定理:三角形三个内角的和等于180°.
2.三角形内角和定理的应用:①在三角形中,已知任意两个内角的度数可以 求出第三个内角的度数;②已知三角形三个内角的关系,可以求出各个内角 的度数;③求一个三角形中各角之间的关系.
3.三角形按角分类:
直角三角形:有一个角是直角的三角形 锐角三角形:三个角都是锐角的三角形 钝角三角形:有一个角是钝角的三角形
∠A、∠C的公共边是
.
,∠A的对边是
栏目索引
,
图4-1-3 答案 ∠B;BC;AC 解析 △ABC中,AB与BC的夹角是∠B,∠A的对边是BC,∠A、∠C的公共 边是AC.
1 认识三角形
知识点二 三角形三个内角之间的关系
栏目索引
4.(2017广西南宁中考)如图4-1-4,△ABC中,∠A=60°,∠B=40°,则∠C等于
其所在直 直角三角形
线)的交
点位置 钝角三角形
交点在三角形内 交点在直角顶点处 交点在三角形外
三条中线交于三 角形内一点(这一 点称为三角形的 重心)
交点在三角形内
共同点
每个三角形都有三条高、三条中线、三条角平分线,它们(或它们所在的直线) 都分别交于一个点,它们都是线段
1 认识三角形
栏目索引
知识拓展
(1)得到线段垂直;(2)得到角相等 (1)得到线段相等; (2)得到面积相等
得到角相等
1 认识三角形
栏目索引
线段 的位置
锐角三角形 直角三角形
钝角三角形
三条高全在三角形内
三条中线全在三
角形内 一条高在三角形内,另外两条
与两直角边重合
三条角平分线全 在三角形内
三角形内一条,三角形外两条
北师大版七下数学第四章4.1认识三角形教学设计
2.难点:三角形内角和定理的应用及三角形分类的深化理解。
在实际问题中,学生需要能够灵活运用内角和定理进行计算和解决问题。此外,对于三角形分类的深化理解,特别是等腰三角形和等边三角形的性质,学生在理解上可能存在一定的难度。
(二)教学设想
1.利用多媒体和实物教学资源,增强学生对三角形概念的理解。
通过展示实物模型、动态图解等,帮助学生形象地理解三角形的定义和性质。同时,设计互动环节,让学生动手操作,如用牙签和软泥构建三角形,加深对三角形构成要素的认识。
4.小组合作:
以小组为单位,共同解决教材第88页的探究题4。小组成员需要互相讨论、协作,共同完成解答。这个作业旨在培养学生的团队协作能力和解决问题的能力。
5.拓展阅读:
阅读教材第89页的“你知道吗?”部分,了解三角形在其他学科领域的应用,拓宽知识视野。
6.总结反思:
完成本节课学习后,请学生撰写学习心得,内容包括对本节课知识点的理解、学习过程中的困惑与收获、对作业的意见和建议等。通过反思,帮助学生更好地总结学习经验,提高自我学习能力。
3.通过几何画板等教学软件,让学生直观感受三角形的性质,提高学习兴趣。
结合现代教育技术,使用几何画板等教学软件,让学生直观地感受三角形的性质,激发学生的学习兴趣,提高课堂参与度。
(三)情感态度与价值观
1.培养学生对几何图形的热爱,激发学生学习数学的兴趣。
通过本章节的学习,让学生感受几何图形的美丽和趣味性,培养学生对几何图形的热爱,进而激发学生学习数学的兴趣。
2.三角形的分类及性质。
+++第四章++三角形++单元教学设计++2023-2024学年北师大版七年级数学下册
北师大版七年级下册第四章三角形单元教学设计一、单元分析1、本单元知识框架图2、单元教材分析三角形是最简单的多边形,也是研究其它多边形的基础,在解决实际问题中也有着广泛的应用。
全等三角形是学生进一步学习几何图形的基础。
三角形全等的条件使用方便,但要让学生确信这些事实,还需要进行充分的探索。
因此,在教学时重心应落在“探索”二字上。
在探索图形性质过程中,使学生经历画图、观察、比较、推理、交流等活动,给学生充分的实践和探究的空间,目的是使学生通过自己的探索和与同伴的交流发现三角形的有关结论,积累了数学活动经验,进一步发展空间观念和推理能力,增强了动手操作与说理的相互结合,逐步培养学生逻辑思考能力和有条理的表达。
3、单元学情分析七年级学生在学习了“相交线与平行线”过程中,学生已经积累了一些几何学习和活动经验,具有一定的说理能力,能就简单问题进行有条理的思考与表达。
本单元内容分4个主题,分别探究三角形的性质、边角关系、全等及应用。
同时,七年级学生正处于求知欲、探索欲强烈的年龄,他们对身边的事物充满了好奇,他们非常喜欢动手操作,有较强的表现欲。
因此,教学时可充分调动学生的探索欲望,激发他们的求知欲,使学生积极探索,同时学生也具备了一定的归纳总结的表达能力,基本上能在教师的引导下就某一探索展开讨论。
4、单元教学目标1)熟悉三角形的概念及三角形的三条重要线段,掌握全等图形的性质,三角形全等的判定条件及利用三角形的全等测距离;2)在熟悉用尺规作三角形的基础上培养实践能力,学会用学过的数学知识解决实际问题,提升应用能力;3)熟悉利用三角形的全等解决简单4)合理运用三角形全等的条件解决一些简单问题,培养学生分析问题和解决问题的能力,培养学生的小组合作意识和合作能力;5)通过观察、操作、想象、推理、交流等活动,发展空间观念,进一步积累数学活动经验,发展推理能力和有条理的表达能力;6)培养学生合作意识,进一步提高分析的实际问题,领会数学的应用价值,培养学习数学的兴趣;解决问题的能力,让学生感受到数学来源于生活,又服务于生活的意识,提高审题能力,理解数学的应用价值,培养学习数学的兴趣。
北师大版七年级数学下册4.1《认识三角形》教案
举例:在突破三角形边的关系的难点时,教师可以设计一些实际操作的活动,如让学生用尺子和线段拼出符合条件的三角形,通过动手实践来加深理解。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《认识三角形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否见过三角形的形状?”比如,自行车的三角架、衣服架等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索三角形的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解三角形的基本概念。三角形是由三条线段首尾相连所围成的封闭图形。它在几何学中有着非常重要的地位,许多实际问题都可以通过三角形来解决。
2.案例分析:接下来,我们来看一个具体的案例。通过分析三角形在桥梁建设中的应用,了解三角形如何帮助我们解决实际问题。
北师大版七年级数学下册4.1《认识三角形》教案
一、教学内容
本节课选自北师大版七年级数学下册第四章第一节课,主题为《认识三角形》。教学内容主要包括以下方面:
1.三角形的定义:由三条线段首尾顺次连接所围成的封闭图形。
2.三角形的分类:按边长关系分为不等边三角形、等腰三角形和等边三角形;按角的大小分为锐角三角形、直角三角形和钝角三角形。
2.提升学生的逻辑推理能力:在学习三角形分类、性质和定理的过程中,引导学生运用逻辑思维,学会推理和证明,增强解决问题的能力。
3.培养学生的数据分析观念:让学生在解决三角形相关问题时,学会收集、整理和分析数据,提高数据处理能力,增强数学应用意识。
4.培养学生的数学运算能力:掌握三角形周长和面积的求解方法,使学生能够熟练地进行数学运算,提高解题效率。
北师大版数学七年级下册4.1《认识三角形》教案
在今天的课堂中,我们探讨了《认识三角形》这一章节的内容。整体来看,学生们对三角形的定义和分类掌握得还不错,但在内角和定理的理解和运用上,部分学生还存在一定的困难。我想针对这一节课的教学过程,做一些反思。
首先,关于教学导入,我通过提问学生们在日常生活中遇到的三角形物体,成功引起了他们对这节课的兴趣。在今后的教学中,我需要继续寻找更多贴近学生生活的例子,让他们感受到数学知识与现实生活的紧密联系。
本节课旨在帮助学生掌握三角形的基本概念、分类、性质及计算方法,为后续学习几何知识打下基础。
二、核心素养目标
1.培养学生的几何直观能力,通过观察生活中的三角形物体,引导学生发现三角形的特征,提高学生对几何图形的认ห้องสมุดไป่ตู้和感知。
2.培养学生的逻辑推理能力,通过探究三角形的性质和定理,让学生学会运用逻辑思维进行推理和证明。
3.培养学生的数学建模能力,使学生掌握三角形周长和面积的计算方法,并能应用于解决实际问题。
4.培养学生的空间想象能力,通过绘制和观察三角形,让学生在脑海中形成清晰的三角形形象,提高空间想象力。
5.培养学生的数学交流能力,鼓励学生在课堂讨论和小组合作中,用准确的语言表达自己的观点和思考,倾听他人意见,进行有效沟通。
-在分类方面,可以通过具体的图形示例,让学生观察并总结不同类型三角形的性质。
-在讲解内角和时,可以通过实际测量和几何画板演示,让学生直观验证内角和定理。
-在周长和面积计算方面,可以设计实际应用题目,让学生动手计算,加深理解。
2.教学难点
-三角形内角和定理的证明:理解并掌握三角形内角和为180度的证明过程,对于初学者来说是一个难点。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
北师大版七年级下册数学教案-第4章 三角形-1 认识三角形
1认识三角形第1课时三角形的内角和教学目标一、基本目标1.通过具体实例,认识三角形的概念及其基本要素,会将三角形按角分类.2.掌握“三角形三个内角的和等于180°”,能应用三角形内角和解决一些简单的求三角形内角的度数问题,能发现“直角三角形的两个锐角互余”并会利用.3.通过观察、操作、想象、推理“三角形三个内角的和等于180°”的活动过程,发展空间观念、推理能力和有条理的表达能力.二、重难点目标【教学重点】三角形三个内角的和等于180°;直角三角形的两个锐角互余.【教学难点】探究、发现和验证“三角形三个内角的和等于180°”.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P81~P84的内容,完成下面练习.【3 min反馈】(一)三角形1.由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.“三角形”可以用符号“△”表示,如图中顶点是A、B、C的三角形,记作△ABC.△ABC的三边,有时也用a、b、c来表示,如图中,顶点A所对的边BC用a表示,边AC、AB分别用b、c来表示.(二)三角形的内角和1.利用三角板的三个角之和为多少度来探索三角形三个内角的和.图1图2图1:30°+60°+90°=180°;图2:45°+45°+90°=180°.2.探索任意三角形三个内角的和都等于180°.(1)如图,剪一张三角形的纸片,它的三个内角分别为∠1、∠2和∠3;(2)将∠1、∠2撕下,按图所示将这两个角拼在第三个角的顶点处,用量角器量出∠BCD 的度数,可得到∠A+∠B+∠ACB=180°;(3)将∠2、∠3撕下,按下图拼在一起,用量角器量一量∠MAN的度数,可得到∠BAC +∠B+∠C=180°;(4)三角形内角和定理:三角形三个内角的和等于180°.(三)三角形的分类1.三角形按内角大小可以分为三类:锐角三角形、直角三角形、钝角三角形.2.(1)通常,我们用符号“Rt△ABC”表示“直角三角形ABC”.把直角所对的边称为直角三角形的斜边,夹直角的两条边称为直角边,如图;(2)直角三角形的两个锐角互余,即上图中∠A+∠B=90°.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图,DF⊥AB,∠A=40°,∠D=43°,则∠ACD的度数是________.【互动探索】(引发学生思考)DF⊥AB,∠A=40°→∠AEF=50°(直角三角形两锐角互余)→∠CED=50°(对顶角相等),由∠D=43°→∠ACD=87°(三角形内角和定理).【答案】87°【互动总结】(学生总结,老师点评)“直角三角形的两个锐角互余”常常和三角形内角和定理综合起来求角的度数.【例2】如图是A、B、C三岛的平面图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西40°方向.从B岛看A、C两岛的视角∠ABC是多少度?从C岛看A、B两岛的视角∠ACB是多少度?【互动探索】(引发学生思考)(方法一)A、B、C三岛的连线构成△ABC,所求的∠ACB 是△ABC的一个内角,如果能求出∠CAB、∠ABC,就能求出∠ACB;(方法二)过点C作AD 的垂线,求∠ACB的度数可转化为利用平角为180°来求解.【解答】(方法一)根据题意,得∠CAB=∠BAD-∠CAD=80°-50°=30°.因为AD∥BE,所以∠BAD+∠ABE=180°,所以∠ABE=180°-∠BAD=180°-80°=100°,所以∠ABC=∠ABE-∠EBC=100°-40°=60°,所以∠ACB=180°-∠ABC-∠CAB=180°-60°-30°=90°.即从B岛看A、C两岛的视角∠ABC是60°,从C岛看A、B两岛的视角∠ACB是90°.(方法二)∠ABC的求法同“方法一”中的求法.如图,过点C作CF⊥AD于点F,延长FC交BE于点H,则CH⊥BE.因为∠ACF=180°-∠F AC-∠AFC=180°-50°-90°=40°,∠BCH=180°-∠CBH-∠CHB=180°-40°-90°=50°,所以∠ACB=180°-∠ACF-∠BCH=180°-40°-50°=90°.即从B岛看A、C两岛的视角∠ABC是60°,从C岛看A、B两岛的视角∠ACB是90°.【互动总结】(学生总结,老师点评)由平行线的性质把已知角与三角形的内角相联系,进而利用三角形内角和定理可求出有关角的度数.活动2巩固练习(学生独学)1.已知一个三角形中一个角是锐角,那么这个三角形是(D)A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能2.在△ABC中,BC边的对应角是(A)A.∠A B.∠BC.∠C D.∠D3.在△ABC中,已知∠A=80°,∠B=∠C,则∠C=50°.4.已知三角形三个内角的度数之比为1∶3∶5,则这三个内角的度数分别为20°,60°,100°.5.如图,在Rt△ABC中,∠ACB=90°,∠1=∠B,∠2=∠3,则图中共有5个直角三角形.6.如图,D是△ABC中BC边延长线上一点,DF⊥AB交AB于点F,交AC于点E.若∠A=46°,∠D=50°,求∠ACB的度数.解:因为DF⊥AB,所以∠DFB=90°.又在△DFB中,∠D=50°,所以∠B=180°-∠DFB-∠D=40°.又在△ABC中,∠A=46°,所以∠ACB=180°-∠A-∠B=94°.活动3拓展延伸(学生对学)【例3】探究与发现:如图1,有一块直角三角板DEF放置在△ABC上,三角板DEF 的两条直角边DE、DF恰好分别经过点B、C.请写出∠BDC与∠A+∠ABD+∠ACD之间的数量关系,并说明理由.应用:某零件如图2所示,图纸要求∠A=90°,∠B=32°,∠C=21°,当检验员量得∠BDC=145°,就断定这个零件不合格,你能说出其中的道理吗?图1图2【互动探索】根据三角形内角和定理探究∠BDC 与∠A +∠ABD +∠ACD 之间的数量关系,然后利用得到的关系求解应用的问题.【解答】探究与发现:∠BDC =∠A +∠ABD +∠ACD .理由如下:因为∠BDC +∠DBC +∠DCB =180°,∠A +∠ABC +∠ACB =∠A +∠ABD +∠ACD +∠DBC +∠DCB =180°,所以∠BDC =∠A +∠ABD +∠ACD . 应用:能,连结BC .因为∠A =90°,∠ABD =32°,∠ACD =21°,所以由上述结论,得∠BDC =∠A +∠ABD +∠ACD =143°. 因为检验员量得∠BDC =145°≠143°, 所以这个零件不合格.【互动总结】(学生总结,老师点评)本题考查了三角形的内角和定理,能灵活运用定理进行推理是解此题的关键.环节3 课堂小结,当堂达标 (学生总结,老师点评) 1.三角形的定义由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 2.三角形内角和定理 三角形三个内角的和等于180°. 3.三角形按角分类 三角形⎩⎪⎨⎪⎧锐角三角形钝角三角形直角三角形4.直角三角形的性质 直角三角形的两个锐角互余.练习设计请完成本课时对应练习!第2课时 三角形的三边关系教学目标一、基本目标1.结合具体实例,认识等腰三角形和等边三角形的概念及基本要素.2.在度量三角形边长的实践活动中理解三角形三边的不等关系.3.掌握三角形的三边的不等关系,并能解决相关问题.4.经历观察、操作、推理、交流等活动,进一步发展推理能力和有条理的表达能力.二、重难点目标【教学重点】三角形的三边关系.【教学难点】探究三角形的三边关系及灵活应用三边关系解决生活中的实际问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P85~P86的内容,完成下面练习.【3 min反馈】1.有两边相等的三角形叫做等腰三角形;三边都相等的三角形叫做等边三角形.2.三角形的三边关系:三角形任意两边之和大于第三边;三角形任意两边之差小于第三边.3.下列长度的三条线段能否组成三角形?(1)3,4,8;(不能)(2)2,5,6;(能)(3)5,6,10;(能)(4)5,6,11.(不能)环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】以下列各组线段为边,能组成三角形的是()A.2,3,5B.4,7,10C.1,1,3D.3,4,9【互动探索】(引发学生思考)根据“三角形任意两边之和大于第三边”逐项判断即可.A中,2+3=5,不能组成三角形;B中,4+7>10,能组成三角形;C中,1+1<3,不能组成三角形;D中,3+4<9,不能组成三角形.【答案】B【互动总结】(学生总结,老师点评)判定三条线段能否组成三角形,只要判定两条较短线段长度之和大于第三条线段的长度即可.【例2】用一根长为18厘米的细铁丝围成一个等腰三角形.(1)如果腰长是底边的2倍,那么各边的长是多少?(2)能围成有一边的长为4厘米的等腰三角形吗?【互动探索】(引发学生思考)(1)理解题意,得出等腰三角形的周长是18厘米→列方程求解;(2)等腰三角形的周长为18厘米→已知边是腰还是底边→分类讨论→得三角形另外两边长→利用三角形三边关系进行判断→得出结论.【解答】(1)设底边长为x厘米,则腰长为2x厘米.根据题意,得x+2x+2x=18,解得x=3.6.所以三边长分别为3.6厘米、7.2厘米、7.2厘米.(2)分情况讨论:①当4厘米长为底边时,设腰长为x厘米,则4+2x=18,解得x=7.所以等腰三角形的三边长为7厘米、7厘米、4厘米.②当4厘米长为腰长时,设底边长为x厘米,则4×2+x=18,解得x=10.此时三边长为4厘米、4厘米、10厘米.而4+4<10,所以此时不能构成三角形.故能围成底边长为4厘米,腰长为7厘米的等腰三角形.【互动总结】(学生总结,老师点评)当已知等腰三角形的周长和一边长时,需要分类讨论已知的一边长是腰还是底边,再解决问题.活动2巩固练习(学生独学)1.下列说法:①等边三角形是等腰三角形;②三角形任意两边的和大于第三边;③三角形按边分类可分为等腰三角形、等边三角形和不等边三角形;④三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.其中正确的有(C)A.1个B.2个C.3个D.4个2.已知a、b、c为三角形的三边,则|a+b-c|-|b-c-a|的化简结果是(D)A.2a B.-2bC .2a +2bD .2b -2c3.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( C ) A .1 B .2 C .8D .114.已知等腰三角形的两边长分别为4 cm 和6 cm ,且它的周长大于14 cm ,则第三边长为6 cm.5.已知三角形的三边长是三个连续的自然数,且三角形的周长小于20,求三边的长. 解:设三角形三边的长分别为x -1,x ,x +1.根据三角形的三边关系,得x -1+x >x +1,解得x >2. 因为三角形的周长小于20,所以x -1+x +x +1<20,解得x <203.所以2<x <203且x 为整数,所以x 为3,4,5,6.当x =3时,三角形三边长分别为2,3,4; 当x =4时,三角形三边长分别为3,4,5; 当x =5时,三角形三边长分别为4,5,6; 当x =6时,三角形三边长分别为5,6,7. 环节3 课堂小结,当堂达标 (学生总结,老师点评)1.等腰三角形:有两边相等的三角形. 2.等边三角形:三边都相等的三角形.3.三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.练习设计请完成本课时对应练习!第3课时 三角形的中线、角平分线教学目标一、基本目标1.理解并掌握三角形的中线、角平分线的定义,认识三角形的重心. 2.能准确画出三角形的中线、角平分线. 3.理解并掌握三角形中线、角平分线的性质. 二、重难点目标【教学重点】三角形的中线、角平分线的定义及其性质. 【教学难点】三角形的中线、角平分线的画法及应用.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P87~P88的内容,完成下面练习. 【3 min 反馈】 (一)三角形的中线1.在三角形中,连结一个顶点与它对边中点的线段,叫做这个三角形的中线.三角形的三条中线交于一点,这点称为三角形的重心.2.如图,点D 、E 、F 分别是边BC 、AC 、AB 上的中点.(1)AB 边上的中线是CF ,BC 边上的中线是AD ,AC 边上的中线是BE ; (2)因为BE 是△ABC 中AC 边上的中线, 所以AE =CE =12AC .因为CF 是△ABC 中AB 边上的中线, 所以AB =2AF =2BF . (二)三角形的角平分线1.在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.三角形的角平分线交于一点.2.(1)因为BE 是△ABC 的角平分线, 所以∠ABE =∠CBE =12∠ABC ;(2)因为CF 是△ABC 的角平分线, 所以∠ACB =2∠ACF =2∠BCF .环节2 合作探究,解决问题活动1小组讨论(师生互学)(一)画三角形的中线如图,线段AD是△ABC中BC边上的中线.讨论1:分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的中线,观察中线与三角形的位置关系.作图:结论:由作图可得:(1)三角形的三条中线相交于一点;(2)锐角三角形、直角三角形、钝角三角形的三条中线都相交于三角形的内部.(二)画三角形的角平分线如图,线段AD是△ABC的一条角平分线,图中∠BAD=∠CAD.讨论2:分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的角平分线,观察角平分线与三角形的位置关系.作图:结论:由作图可得:(1)三角形的三条角平分线相交于一点;(2)锐角三角形、直角三角形、钝角三角形的三条角平分线都相交于三角形的内部.活动2巩固练习(学生独学)1.如图,在△ABC中有四条线段DE、BE、EG、FG,其中有一条线段是△ABC的中线,则该线段是(B)A.线段DE B.线段BEC.线段EG D.线段FG2.如图,DE∥BC,CD是∠ACB的平分线,∠ACB=60°,那么∠EDC=30度.3.如图,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3 cm,BC =8 cm,求边AC的长.解:因为CD为△ABC的AB边上的中线,所以AD=BD.因为△BCD的周长比△ACD的周长大3 cm,所以(BC+BD+CD)-(AC+AD+CD)=3 cm,所以BC-AC=3 cm.因为BC=8 cm,所以AC=5 cm.环节3课堂小结,当堂达标(学生总结,老师点评)三角形的中线:(1)定义;(2)画法;(3)三角形重心的定义.三角形的角平分线:(1)定义;(2)画法;(3)三角形的三条角平分线交于一点.练习设计请完成本课时对应练习!第4课时三角形的高教学目标一、基本目标1.认识三角形的高线,会画任意三角形的高线,了解三角形的三条高所在的直线交于一点.2.通过折纸、画图等活动,培养学生的动手能力,提高学生的识图技能,使学生的思维变得更灵活.二、重难点目标【教学重点】三角形高线的定义,会画任意三角形的高.【教学难点】画钝角三角形夹钝角的两边上的高和三角形高的应用.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P89~P90的内容,完成下面练习.【3 min反馈】1.从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.2.三角形的三条高所在的直线交于一点.3.分别指出下图中△ABC的三条高.图1图2(1)图1中,直角边BC上的高是AB,直角边AB上的高是BC,斜边AC上的高是BD;(2)图2中,AB边上的高是CE,BC边上的高是AD,AC边上的高是BF.环节2合作探究,解决问题活动1小组讨论(师生互学)用工具准确画出三角形的高如图,线段AD是△ABC中BC边上的高.注意:标明垂直的记号和垂足的字母.教师点拨:回忆并演示“过一点画已知直线的垂线”的画法.讨论:分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的高,观察高与三角形的位置关系.作图:结论:由作图可得:(1)三角形的三条高线所在的直线相交于一点;(2)锐角三角形的三条高线相交于三角形的内部;(3)直角三角形的三条高线相交于三角形的直角顶点;(4)钝角三角形的三条高线所在的直线相交于三角形的外部.活动2 巩固练习(学生独学)1.如图,在△ABC 中,EF ∥AC ,BD ⊥AC 于点D ,交EF 于点G ,则下列说法错误的是( C )A .BD 是△ABC 的高B .CD 是△BCD 的高C .EG 是△ABD 的高D .BG 是△BEF 的高2.如图,CD 、CE 、CF 分别是△ABC 的高、角平分线、中线,则下列各式中错误的是( C )A .AB =2BF B .∠ACE =12∠ACBC .AE =BED .CD ⊥BE3.如图,在△ABC 中,AB 边上的高是CE ,BC 边上的高是AD ;在△BCF 中,CF 边上的高是BC .4.若一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是直角三角形.5.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=130°,∠C=30°,则∠DAE的度数是5°.环节3课堂小结,当堂达标(学生总结,老师点评)1.三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段.2.三角形的三条高所在的直线交于一点.三角形的三条高的特性:锐角三角形直角三角形钝角三角形三角形内部高的数量31 1三条高是否相交是是否三条高所在直线的交点位置三角形内部直角顶点三角形外部练习设计请完成本课时对应练习!。
()七年级数学下册第四章三角形1认识三角形三角形认识讲义(无答案)(新版)北师大版
三角形的认识段【根底知识】从三角形的一个顶知识点1三角形的定义点向它的对边所在1.由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
三角形的高线的直线作垂线,顶点表示:三角形可用符号“△〞表示,如右图和垂足之间的线段三角形记作:△ABC b CAc a三角形中,连结一个B 顶点和它对边中点2.一个三角形有三条边,三个角、三个顶点三角形的中线的线段如图三角形中三边可表示为AB,BC,AC,顶点A所对的边BC也可表示为a,顶点B所对的边AC表示为b,顶点C所对的边AB表示为c 三角形一个内角的知识点2三角形的性质平分线与它的对边1.三角形三边关系:三角形任意两边之和大于第三边;三角形任意两边之差小于三角形的角平分相交,这个角顶点与第三边。
线交点之间的线段3.4.三角形的内角关系:三角形内角和为1805.三角形的分类:三角形按内角的大小可以分为锐角三角形、直角三角形、钝角结论总结:三角形。
其中直角三角形的两个锐角互余知识点3三角形的中线、角平分线和高线三角形的重要线概念图形表示法AE是△ABC的AB上的高线.CE⊥AB∠AEC=∠BEC=90°.AD是△ABC的BC上的中线.BD=CD=?BC.AE是△ABC的∠ABC的平分线1∴∠1=∠2=2ABC-1-/12【典例剖析】例1.有两根长度分别为5cm和8cm的木棒,再取一根长度为2cm的木棒,它们能摆成三角形吗?为什么?如果取一根长度为13cm的木棒呢?聪明的你能取一根木棒,与原来的两根木棒摆成三角形吗?(4)要选取的第三根木棒的长度x要满足什么条件呢?例2.假设△ABC的三边长a,b,c都是正整数,且满足a.bc,如果b=4,问这样的三角形有几个?例3.一个三角形有两边相等,并且周长为56cm,两不等边之比为3︰2,求这个三角形各边的长。
锐角三角形直角三角形钝角三角形角平分线〔有几中线条,是否相交,交高线点在那〕例4.判断满足以下条件的VABC是锐角三角形、直角三角形还是钝角三角形;〔1〕A80o,B25o〔2〕A B30o,BC36oA11CB6〔3〕2例5.三角形ABC的一个内角度数为40o,且A B,求C的外角的度数。
北师大版七年级下册数学教案-第4章 三角形-3 探索三角形全等的条件
3探索三角形全等的条件第1课时“边边边(SSS)”和三角形的稳定性教学目标一、基本目标1.掌握三角形全等的“边边边”条件,了解三角形的稳定性.2.经历探索三角形全等条件的过程,体会利用画图、操作、归纳获得数学结论的过程,初步形成解决问题的基本策略.二、重难点目标【教学重点】利用三角形全等的“边边边”条件证明两个三角形全等;三角形的稳定性.【教学难点】利用“SSS”说明三角形全等的思考和推理过程.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P97~P99的内容,完成下面练习.【3 min反馈】1.(教材P97“做一做”)只给一个条件(一条边或一个角)画三角形时,画出的三角形一定全等吗?略2.(教材P97“做一做”)给出两个条件画三角形时,有几种可能的情况?每种情况下作出的三角形一定全等吗?分别按照下面的条件做一做.(1)三角形的一个内角为30°,一条边为3 cm;(2)三角形的两个内角分别为30°和50°;(3)三角形的两条边分别为4 cm,6 cm.略3.(教材P97“议一议”)如果给出三个条件画三角形,你能说出有哪几种可能的情况?解:三条边;三个角;两条边和一个角;两个角和一条边.4.(教材P98“做一做”)(1)已知一个三角形的三个内角分别为40°,60°和80°,你能画出这个三角形吗?把你画的三角形与同伴画出的进行比较,它们一定全等吗?(2)已知一个三角形的三条边分别为4 cm,5 cm和7 cm,你能画出这个三角形吗?把你画的三角形与同伴画出的进行比较,它们一定全等吗?解:(1)三个内角对应相等的两个三角形不一定全等.(2)三边分别相等的两个三角形全等,简称为“边边边”或“SSS”.通常写成下面的格式: 在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AC =DF ,AB =DE ,BC =EF ,所以△ABC ≌△DEF (SSS).5.2017年11月5日19时45分,我国在西昌卫星发射中心用长征三号乙运载火箭,以“一箭双星”的方式成功发射第二十四、二十五颗北斗导航卫星.这两颗卫星属于中国地球轨道卫星,是我国北斗三号第一、二颗组网卫星,开启了北斗卫星导航系统全球组网的新时代.如图所示,在发射运载火箭时,运载火箭的发射架被焊接成了许多的三角形,这样做的原因是:三角形具有稳定性.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】如图,已知AB =DE ,AC =DF ,点E 、C 在直线BF 上,且BE =CF .求证:△ABC ≌△DEF .【互动探索】(引发学生思考)已知两个三角形有两组对边相等,同一直线上的一组边相等,可考虑用“SSS ”证明△ABC ≌△DEF .【证明】因为BE =CF ,所以BE +EC =CF +EC ,即BC =EF . 在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DE ,BC =EF ,AC =DF ,所以△ABC ≌△DEF (SSS).【互动总结】(学生总结,老师点评)判定两个三角形全等,先根据已知条件或易证的结论确定判定三角形全等的方法,然后再根据判定方法,看缺什么条件,再去证什么条件.【例2】如图,已知AB =AD ,DC =BC ,∠B 与∠D 相等吗?为什么?【互动探索】(引发学生思考)要判断角相等,可考虑用三角形全等证明,需添加辅助线AC 构造三角形进行证明.【解答】∠B =∠D .理由如下:连结AC . 在△ADC 和△ABC 中,因为⎩⎪⎨⎪⎧AD =AB ,AC =AC ,DC =BC ,所以△ADC ≌△ABC (SSS), 所以∠B =∠D .【互动总结】(学生总结,老师点评)要证∠B 与∠D 相等,可证这两个角所在的三角形全等,而现有的条件并不满足,可以考虑添加辅助线证明.【例3】要使下列木架稳定,可以在任意两个点之间钉上木棍,各图至少需要钉上多少根木棍?【互动探索】(引发学生思考)三角形具有稳定性,怎样添加木棍才能使多边形具有稳定性呢?【解答】如图1,四边形木架至少需要钉上1根木棍; 如图2,五边形木架至少需要钉上2根木棍; 如图3,六边形木架至少需要钉上3根木棍.图1 图2 图3【互动总结】(学生总结,老师点评)n 边形沿一个顶点的对角线添加(n -3)条木棍后就具有稳定性.活动2 巩固练习(学生独学)1.下列实际情景运用了三角形稳定性的是( C ) A .人能直立在地面上 B .校门口的自动伸缩栅栏门 C .古建筑中的三角形屋架D .三轮车能在地面上运动而不会倒2.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB 是一个任意角,在边OA 、OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M 、N 重合,过角尺顶点C 作射线OC .由做法得△MOC ≌△NOC 的依据是SSS.3.如图,AC 与BD 交于点O ,AD =CB ,E 、F 是BD 上两点,且AE =CF ,DE =BF . 求证:(1)∠D =∠B ; (2)AE ∥CF .证明:(1)在△ADE 和△CBF 中,⎩⎪⎨⎪⎧AE =CF ,AD =BC ,DE =BF ,所以△ADE ≌△CBF (SSS), 所以∠D =∠B . (2)因为△ADE ≌△CBF , 所以∠AED =∠CFB .因为∠AED +∠AEO =180°,∠CFB +∠CFO =180°, 所以∠AEO =∠CFO , 所以AE ∥CF .环节3 课堂小结,当堂达标 (学生总结,老师点评)1.“边边边(SSS)”:三边分别相等的两个三角形全等. 2.三角形具有稳定性,四边形具有不稳定性.练习设计请完成本课时对应练习!第2课时 “角边角(ASA)”和“角角边(AAS)”教学目标一、基本目标1.掌握三角形全等的“ASA”“AAS”条件,并会进行简单的应用.2.经历探索三角形全等“两角一边”的过程,体会通过操作、归纳获得数学结论的趣味. 二、重难点目标 【教学重点】应用三角形全等的“ASA”“AAS”条件. 【教学难点】探索三角形全等条件“两角一边”.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P100~P101的内容,完成下面练习. 【3 min 反馈】1.两角及其夹边分别相等的两个三角形全等,简写成“角边角”或“ASA ”.通常写成下面的格式:在△ABC 与△DEF 中,⎩⎪⎨⎪⎧∠B =∠E ,BC =EF ,∠C =∠F ,所以△ABC ≌△DEF .2.两角分别相等且其中一组等角的对边相等的两个三角形全等,简写成“角角边”或“AAS ”.通常写成下面的格式:在△ABC 与△DEF 中,⎩⎪⎨⎪⎧∠A =∠D ,∠B =∠E ,BC =EF ,所以△ABC ≌△DEF .3.能确定△ABC ≌△DEF 的条件是( D ) A .AB =DE ,BC =EF ,∠A =∠E B .AB =DE ,BC =EF ,∠C =∠E C .∠A =∠E ,AB =EF ,∠B =∠D D .∠A =∠D ,AB =DE ,∠B =∠E4.如图,已知点F 、E 分别在AB 、AC 上,且AE =AF ,请你补充一个条件:∠B =∠C ,使得△ABE ≌△ACF .(只需填写一种情况即可)教师点拨:此题答案不唯一,还可以填AB =AC 或∠AEB =∠AFC . 环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】如图,已知AD ∥BC ,BE ∥DF ,AE =CF ,求证:△ADF ≌△CBE .【互动探索】(引发学生思考)回忆我们学过的判定三角形全等的条件,结合已知中的平行线段,可考虑利用“ASA ”证明△ADF ≌△CBE .【证明】因为AD ∥BC ,BE ∥DF , 所以∠A =∠C ,∠DF A =∠BEC . 因为AE =CF ,所以AE +EF =CF +EF ,即AF =CE . 在△ADF 和△CBE 中,⎩⎪⎨⎪⎧∠A =∠C ,AF =CE ,∠DF A =∠BEC ,所以△ADF ≌△CBE (ASA).【互动总结】(学生总结,老师点评)在“ASA ”中,包含“边”和“角”两种元素,是两角夹一边而不是两角及一角的对边对应相等,应用时要注意区分.在“ASA ”中,“边”必须是“两角的夹边”.【例2】如图,在△ABC 中,AD ⊥BC 于点D ,BE ⊥AC 于点E ,AD 与BE 交于点F .若BF =AC ,求证:△ADC ≌△BDF .【互动探索】(引发学生思考)观察图形,要证△ADC ≌△BDF ,只需∠DAC =∠DBF 即可.由在Rt △ADC 与Rt △BDF 中,利用等角的余角相等即可得∠DAC =∠DBF .【证明】因为AD ⊥BC ,BE ⊥AC , 所以∠ADC =∠BDF =∠BEA =∠BEC =90°. 又因为∠AFE =∠BFD , 所以∠DAC =∠DBF .在△ADC 和△BDF 中,⎩⎪⎨⎪⎧∠DAC =∠DBF ,∠ADC =∠BDF ,AC =BF ,所以△ADC ≌△BDF (AAS).【互动总结】(学生总结,老师点评)在解决三角形全等的问题时,要注意挖掘题中的隐含条件,如:对顶角、公共边、公共角等.活动2 巩固练习(学生独学)1.完成教材P102“习题4.7”第1~3题. 略2.如图,点B 在线段AD 上,BC ∥DE ,AB =ED ,∠A =∠E .求证:BC =DB .证明:因为BC ∥DE , 所以∠ABC =∠EDB .在△ABC 和△EDB 中,⎩⎨⎧∠A =∠E ,AB =ED ,∠ABC =∠EDB ,所以△ABC ≌△EDB (ASA), 所以BC =BD .环节3 课堂小结,当堂达标 (学生总结,老师点评)1.“角边角(ASA)”:两角及其夹边分别相等的两个三角形全等.2.“角角边(AAS)”:两角分别相等且其中一组等角的对边相等的两个三角形全等.练习设计请完成本课时对应练习!第3课时“边角边(SAS)”教学目标一、基本目标1.经历画图比较,得出判定三角形全等的“SAS”条件.2.能够利用“SAS”判定两个三角形全等并会用数学语言说明理由.3.在探索三角形全等及其应用的过程中,能够进行有条理地思考并进行简单推理.二、重难点目标【教学重点】通过画图比较,得出“SAS”结论的过程及应用.【教学难点】探索“边边角”能否用于判定全等.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P102~P104的内容,完成下面练习.【3 min反馈】1.(1)两边及夹角,三角形两边分别为2.5 cm,3.5 cm,它们所夹的角为40°,你能画出这个三角形吗?你画的三角形与同桌画的一定全等吗?(2)以2.5 cm,3.5 cm为三角形的两边,长度为2.5 cm的边所对的角为40°,情况又怎样?动手画一画,你发现了什么?解:(1)与同桌画的是全等的(如图1).(2)与同桌画的不一定全等(如图2).图1图2总结:(1)两边及其一边所对的角对应相等,两个三角形不一定全等;(2)三角形全等的判定方法4:两边及其夹角分别相等的两个三角形全等,简写成“边角边”或“SAS”.通常写成下面的格式:在△ABC 与△DEF 中,⎩⎪⎨⎪⎧AB =DE ,∠B =∠E ,BC =EF ,所以△ABC ≌△DEF .2.如图,已知BD =CD ,要根据“SAS”判定△ABD ≌△ACD ,则还需添加的条件是∠ADB =∠ADC .环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】如图,A 、D 、F 、B 在同一直线上,AD =BF ,AE =BC ,且AE ∥BC .求证:△AEF ≌△BCD .【互动探索】(引发学生思考)由题意可知,如果∠A =∠B 就可证△AEF ≌△BCD .由AE ∥BC 可得∠A =∠B .【证明】因为AE ∥BC ,所以∠A =∠B .因为AD =BF ,所以AD +DF =DF +FB ,即AF =BD . 在△AEF 和△BCD 中,⎩⎪⎨⎪⎧AE =BC ,∠A =∠B ,AF =BD ,所以△AEF ≌△BCD (SAS).【互动总结】(学生总结,老师点评)判定两个三角形全等时,若有两边一角对应相等时,角必须是两边的夹角.【例2】如图,BC ∥EF ,BC =BE ,AB =FB ,∠1=∠2,若∠1=60°,求∠C 的度数.【互动探索】(引发学生思考)已知两组边对应相等,可考虑证明△ABC ≌△FBE ,从而得出∠C =∠BEF .又由BC ∥EF 可得∠BEF =∠1,进而解决问题.【解答】因为∠1=∠2,所以∠1+∠ABE =∠2+∠ABE ,即∠ABC =∠FBE . 在△ABC 和△FBE 中,⎩⎪⎨⎪⎧BC =BE ,∠ABC =∠FBE ,AB =FB ,所以△ABC ≌△FBE (SAS), 所以∠C =∠BEF . 又因为BC ∥EF ,所以∠C =∠BEF =∠1=60°.【互动总结】(学生总结,老师点评)(1)全等三角形是证明线段和角相等的重要工具;(2)学会挖掘题中的已知条件,如“公共边”“公共角”等.活动2 巩固练习(学生独学)1.如图,AB =AC ,AD =AE ,欲证△ABD ≌△ACE ,可补充条件( A )A .∠1=∠2B .∠B =∠C C .∠D =∠ED .∠BAE =∠CAD2.下列条件中,不能证明△ABC ≌△DEF 的是( C )A .AB =DE ,∠B =∠E ,BC =EF B .AB =DE ,∠A =∠D ,AC =DF C .BC =EF ,∠B =∠E ,AC =DF D .BC =EF ,∠C =∠F ,AC =DF3.如图,已知AB =AD ,若AC 平分∠BAD ,问AC 是否平分∠BCD ?为什么?解:AC 平分∠BCD .理由如下:因为AC 平分∠BAD ,所以∠BAC =∠DAC .在△ABC 和△ADC 中,⎩⎪⎨⎪⎧ AB =AD ,∠BAC =∠DAC ,AC =AC ,所以△ABC ≌ADC (SAS),所以∠ACB =∠ACD ,所以AC 平分∠BCD .活动3 拓展延伸(学生对学)【例3】如图,四边形ABCD 、DEFG 都是正方形,连结AE 、CG .求证:(1)AE =CG ;(2)AE ⊥CG .【互动探索】(1)观察图形,证明△ADE ≌△CDG ,即可得出AE =CG ;(2)结合全等三角形的性质和正方形的性质即可得AE ⊥CG .【证明】(1)因为四边形ABCD 、DEFG 都是正方形,所以AD =CD ,GD =ED ,∠CDA =∠GDE =90°.因为∠CDG =90°+∠ADG ,∠ADE =90°+∠ADG ,所以∠CDG =∠ADE .在△ADE 和△CDG 中,⎩⎪⎨⎪⎧ AD =CD ,∠ADE =∠CDG ,DE =GD ,所以△ADE ≌△CDG (SAS),所以AE =CG .(2)设AE 与DG 相交于点M ,与CG 相交于点N .由(1)得△ADE ≌△CDG ,所以∠CGD =∠AED .因为∠GMN =∠DME ,∠DEM +∠DME =90°,所以∠CGD +∠GMN =90°,所以∠GNM =90°,所以AE ⊥CG .【互动总结】(学生总结,老师点评)正方形的四条边相等,四个角都等于90°,利用正方形的性质结合全等三角形的判定与性质即可解决问题.环节3课堂小结,当堂达标(学生总结,老师点评)1.“边角边(SAS)”:两边及其夹角分别相等的两个三角形全等.2.利用全等三角形的判定和性质可以证明角或线段相等.练习设计请完成本课时对应练习!。
北师大版初北师大版七年级(下)数学第四章三角形教案:全等三角形的判定讲义(含有答案)
三角形全等的断定〔1〕__________________________________________________________________________________ __________________________________________________________________________________1、理解全等三角形的断定方法SSS 、SAS 、ASA 、AAS ;2、能运用断定方法断定两个三角形全等;3、经理探究断定方法断定两个三角形全等的过程,体会数学知识来源生活,又应用于生活.1.SSS____________的两个三角形全等〔简称SSS 〕.这个定理说明,只要三角形的三边长度确定了,这个三角形的形状和大小就完全确定了,这也是三角形具有__________的原理.判断两个三角形全等的推理过程,叫做证明三角形全等.如以下图,:△ABC 与△DEF 的三条边对应相等,求证:△ABC ≌△DEF .证明:在△ABC 与△DEF 中,∴△ABC ≌△DEF 〔SSS 〕.角用直尺和圆规作一个角等于角的示意图如下图,说明'''A O B =AOB ∠∠的根据是_________.4.边角边定理三角形全等断定方法2:______和它们的______分别相等的两个三角形全等.〔简称SAS 〕 符号语言:在△ABC 与△DEF 中,∴△ABC ≌△DEF 〔SAS 〕.图示:5.探究边边角两边及其一边所对的角分别相等,两个三角形________等.6.ASA_______________分别相等的两个三角形全等,简称角边角或ASA .▲如以下图,∠D=∠E ,AD =AE ,∠1=∠2.求证:△ABD ≌△ACE .证明:∵∠1=∠2〔〕∴∠1+∠CAD =∠2+∠CAD 〔相等的角加同一个角仍相等〕即∠BAD =∠CAE在△ABD 和△ACE 中, ∠D=∠E 〔〕AD=AE 〔〕∠BAD =∠CAE 〔等量相加〕∴△ABD≌△ACE〔ASA〕.7.AAS______________________分别相等的两个三角形全等,简称角角边或AAS.▲如图:D在AB上,E在AC上,DC=EB,∠C=∠B.求证:△ACD≌△ABE.证明:在△ACD和△ABE中.∠C=∠B〔〕∠A=∠A〔公共角〕DC=EB〔〕∴△ACD≌△ABE〔AAS〕.参考答案:1.三边分别相等稳定性3.全等三角形的对应角相等4.两边夹角5.不一定全6.两角和它们的夹边7.两个角和其中一个角的对边1.先证明对应边相等,再证全等〔利用中点、等量相加等〕【例1】如下图,在△ABC和△FED中,AD=FC,AB=FE,BC=ED,求证:△ABC≌△FED.【解析】∵AD=FC,∴AD+DC=FC+DC,即AC=FD.在△ABC和△FED中,∴△ABC≌△FED〔SSS〕.总结:利用“SSS〞证明两个三角形全等,有如下几种常见类型:〔1〕有公共边的两个三角形.〔2〕有公共线段的两个三角形,我们可以用等量相加或相减,推出两边相等.〔3〕含有中点的两个三角形,如图:AB=AC,D是BC的中点,由中点的定义可得:BD=CD.继而可证△ABD≌△ACD.练1.如图,AC=BD,0是AB、CD的中点,求证△AOC≌△BOD.【解析】要证△AOC≌△BOD,只需看这两个三角形的三条边是否分别相等.证明:∵O是是AB、CD的中点,∴AO=BO,CO=DO.在△AOC和△BOD中,∴△AOC≌△BOD.2.先利用SSS证明三角形全等,继而证明边〔角〕相等,或求边〔角〕【例2】如下图,AB=DC,AC=DB,求证:∠1=∠2.【解析】在△ABC与△DCB中,∴△ABC≌△DCB〔SSS〕.∴∠ABC=∠DCB,∠ACB=∠DBC.∴∠ABC-∠DBC=∠DCB-∠ACB.即∠1=∠2.总结:1.要求证在两个不同三角形内的角相等,往往利用全等三角形的性质.2.当两个角所在的三角形不易证全等时,可以利用等量的和〔差〕相等,将问题转化.3.求证不在同一个三角形内的两边相等,同样可以利用全等三角形的性质.练2.如图是“人〞字形屋梁,AB=AC.如今要在程度横梁BC上立一根垂直的支柱支撑屋梁,工人师傅取BC的中点D,然后在A,D之间竖支柱AD.那么这根AD符合“垂直〞的要求吗?为什么?【解析】AD⊥BC符合要求,理由如下:∵点D是BC的中点,∴BD=CD.在△ABD和△ACD中,∴△ABD≌△ACD〔SSS〕.∴∠ADB=∠ADC.又∵∠ADB+∠ADC=180°,∴∠ADB=∠ADC=90°.∴AD⊥BC.练3.如下图,:A,C,F,D四点在同一直线上,AB=DE,BC=EF,AF=DC,求证:AB∥DE.【解析】先根据SSS证明两三角形全等,由三角形全等的性质得出:∠A=∠D,即可证明AB ∥DE.证明:∵AF=DC,∴AF-CF=DC-CF.∴AC=DF.在△ABC与△DEF中,∴△ABC≌△DEF〔SSS〕.∴∠A=∠D.∴AB∥DE.练4.:如下图,在四边形ABCD中,AB=CB,AD=CD,求证:∠C=∠A.【解析】连接BD,在△ABD和△CBD中,∴△ABD≌△CBD〔SSS〕.∴∠C=∠A.练5.如图,在四边形ABCD中,AB=CD,AD=CB,求证:∠A+∠D=180°.【解析】证明:连接AC,在△ADC与△CBA中,∴△ADC≌△CBA〔SSS〕,∴∠ACD=∠CAB,∴AB∥CD,∴∠A+∠D=180°.3.利用SAS直接证明三角形全等【例3】如下图,△ABC,△DEF均为锐角三角形,AB=DE,AC=DF,∠A=∠D.求证:△ABC ≌△DEF.【解析】直接根据SAS可证明△ABC≌△DEF.证明:在△ABC和△DEF中,∴△ABC≌△DEF〔SAS〕.总结:运用“边角边〞断定两个三角形全等时,〔1〕同一三角形的边、角要放在等号的同一边,按照“边角边〞的顺序书写;〔2〕注意条件里的三个元素必须齐全,且对应相等;〔3〕条件里的三个元素必须对应,一个三角形中的元素依次是“边—角—边〞,另一个三角形的元素也必须依次是“边—角—边〞,假如是其他“边—边—角〞或“角—边—边〞,那么两个三角形不一定全等;〔4〕在条件中,相等的角必须是所给两边的夹角,假如把夹角改为其中一条边的对角,那么不一定全等.练6.〔2021秋•天元区期末〕如图,在△ABC和△DEF中,AB=DE,BC=EF,根据〔SAS〕断定△ABC ≌△DEF,还需的条件是〔〕A.∠A=∠D B.∠B=∠E C.∠C=∠F D.以上三个均可以【解析】根据三角形全等的断定中的SAS,即两边夹角.做题时根据条件,结合全等的断定方法逐一验证,要由位置选择方法.解:要使两三角形全等,且SASAB=DE,BC=EF,还差夹角,即∠B=∠E;A、C都不满足要求,D也就不能选取.应选B.练7.如以下图所示,∠1=∠2,AO=BO,求证:△AOC≌△BOC.【解析】两个三角形包含一个公共边,结合条件,根据SAS可证明△AOC≌△BOC.证明:在△AOC和△BOC中,∴△AOC≌△BOC〔SAS〕.4.先证明对应边或对应角相等,再证明三角形全等【例4】〔2021春•启东市校级月考〕如图,AE=CF,AD∥BC,AD=CB.求证:△ADF≌△CBE.【解析】根据平行线的性质及全等三角形的断定定理“SAS〞证得结论.证明:∵AE=CF,∴AE﹣EF=CF﹣EF,即AF=CE.又∵AD∥BC,∴∠A=∠C.∵在△ADF与△CBE中,∴△ADF≌△CBE〔SAS〕.总结:没有直接给出能证明三角形全等的条件时,〔1〕先根据条件或求证的结论确定三角形,然后再根据三角形全等的断定方法,看缺什么条件,再去证什么条件;假如两边,那么要找第三边或夹角;假如一角和该角的一边,那么需要找夹角的另一条边;〔2〕在证明三角形全等时,有些题目的条件含而不露,通常要挖掘出隐含条件,比方公共边、对顶角等,从而为解题所用;〔3〕有些条件需要用到线段与角的和差关系才能得到.练8.〔2021•房山区二模〕如图,AB=AD,AC=AE,∠1=∠2,求证:△ABC≌△ADE.【解析】∠1=∠2,∠BAE是公共角,从而可推出∠DAE=∠BAC,AB=AD,AC=AE,从而可以利用SAS来断定△ABC≌△ADE.证明:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,即∠DAE=∠BAC.在△ABC和△ADE中,∴△ABC≌△ADE〔SAS〕.练9.〔2021•永春县质检〕:如图,点C是线段AB的中点,CE=CD,∠ACD=∠BCE.求证:△AEC≌△BDC.【解析】根据∠ACD=∠BCE,可得出∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠BCD.根据边角边公理可得出△AEC≌△BDC.证明:在△AEC和△BDC中,∵点C是线段AB的中点,∴AC=BC,∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠BCD,在△AEC和△BDC中,∴△AEC≌△BDC〔SAS〕.点评:此题考察了全等三角形的断定SAS.5.先用SAS证明三角形全等,再证对应边、对应角相等【例5】〔1〕〔2021•十堰〕如图,点D在AB上,点E在AC上,AB=AC,AD=AE.求证:∠B=∠C.【解析】首先根据条件AB=AC,AD=AE,再加上公共角∠A=∠A可利用“SAS〞定理证明△ABE≌△ACD,进而得到∠B=∠C.证明:在△ABE和△ACD中,∴△ABE≌△ACD〔SAS〕.∴∠B=∠C.〔2〕〔2021春•鼓楼区校级月考〕如图,点E,F在AC上,AB∥CD,AB=CD,AE=CF.求证:BF=DE.【解析】先由平行线的性质得出内错角相等,再证出AF=CE,根据SAS证明△ABF≌△CDE,由全等三角形的对应边相等即可得出结论.证明:∵AB∥CD,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△ABF和△CDE中,∴△ABF≌△CDE〔SAS〕,∴BF=DE.总结:综合利用三角形全等的断定与性质解题步骤如下:〔1〕由问题中的条件,根据三角形全等的断定方法证明两个三角形全等;〔2〕由三角形全等的性质证得对应角相等、对应边相等.练10.〔2021秋•涞水县期末〕如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,那么∠D的度数为〔〕A.50° B.30°C.80°D.100°【解析】利用SAS可证明△AOD≌△COB,那么∠D=∠B=30°.解:∵OA=OC,OD=OB,∠AOD=∠COB,∴△AOD≌△COB〔SAS〕,∴∠D=∠B=30°.应选B.练11.〔2021春•锦州校级期中〕如图,点B,E,C,F在同一直线上,在△ABC与△DEF中,AB=DE,AC=DF,假设∠_____=∠______,那么△ABC≌△DEF,所以BC=_____,因此BE=________.【解析】根据三角形全等的断定方法SAS,假设∠A=∠D时,两个三角形全等,得出对应边相等,得出结果.解:假设∠A=∠D时,△ABC≌△DEF;∵在△ABC和△DEF中,∴△ABC≌△DEF〔SAS〕,∴BC=EF,∴BE=CF;故答案为:∠A=∠D,EF,CF.6.先用ASA证全等,再证边角相等【例6】如下图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4.求证:BO=DO.【解析】先用“ASA 〞证明△ABC ≌△ADC ,得出AB=AD ,再用“SAS 〞证明△ABO ≌△ADO ,可得出结论.证明:在△ABC 和△ADC 中,∴△ABC ≌△ADC 〔ASA 〕.∴AB =AD.在△ABO 与△ADO 中,△ACO ≌△ADO 〔SAS 〕.∴BO =DO .总结:全等三角形的对应边相等,对应角相等,所以证明分别属于两个三角形的线段相等或角相等的问题,常常通过证明这两个三角形全等来解决.练12.如下图,在△ABC 中,点O 为AB 的中点,AD ∥BC ,过点O 的直线分别交AD ,BC 于点D ,E ,求证:OD =OE.【解析】∵点O 为AB 的中点,∴AO =BO .∵AD ∥BC ,∴∠ADO =∠BEO ,∠DAO =∠EBO.在△AOD 与△BOE 中,∴△AOD ≌△BOE 〔AAS 〕.∴OD =OE .7.先用AAS 证全等,再证边角相等【例7】如下图,∠1=∠2,∠C =∠D ,求证:AC =AD .D C BA O12 3 4【解析】先利用AAS 证明两三角形全等,再根据全等三角形的性质得出AC =AD .证明:在△ACB 与△ADB 中,∴△ACB ≌△ADB 〔AAS 〕.∴AC =AD .总结:1. 由“ASA 〞与“AAS 〞可知,两个三角形假如有两个角及任意一边对应相等,那么这两个三角形相等.2. 注意不用混淆“ASA 〞和“AAS 〞,“ASA 〞是两角及夹边对应相等,“AAS 〞是两角及一对边对应相等.练13.如下图,C ,F 在BE 上,∠A =∠D ,AC ∥DF ,BF =EC .求证:AB =DE .【解析】先利用平行证明角相等,再用等量相减的思想证明BC =EF ,应用AAS 可得△ABC ≌△DEF ,进而得出结论.证明:∵AC ∥DF ,∴∠ACE =∠DFB.又∵∠ACE +∠ACB =180°,∠DFB +∠DFE =180°,∴∠ACB =∠DFE.又BF =EC ,∴BF -CF =EC -CF ,即BC =EF.在△ABC 与△DEF 中,∴△ABC ≌△DEF 〔AAS 〕.∴AB =DE .8.灵敏选用证明方法证〔判断〕全等AB C FED【例8】如下图,∠B=∠DEF,BC=EF,要证△ABC≌△DEF,假设要以“ASA〞为根据,还缺条件_________;以“SAS〞为根据,还缺条件_________;以“AAS〞为根据,还缺条件_________.【解析】一组角和一组边相等,要根据“ASA〞证全等就要求夹边的另一组角相等,故填∠ACB=∠DFE;要根据“SAS〞证全等就要求夹角的另一组边相等,故填AB=DE;要根据“AAS〞证全等就要求另一组角相等,故填∠A=∠D.答案:∠ACB=∠DFE;AB=DE;∠A=∠D.总结:1.到目前为止,我们学习了4种证明三角形全等的方法,分别是“边边边〞“边角边〞“角边角〞“角角边〞.注意:三角形全等的断定方法中不存在“角边边〞“角角角〞.2.“边边边〞“角边角〞“角角边〞“边角边〞这四种判断方法中,都要求有一组边对应相等.3.在寻求全等条件时,要注意结合图形挖掘图中隐含的公共边、公共角、对顶角、中点、角平分线.4.以及平行线中包含的角的关系,垂直中包含的角的关系,以便顺利求解.练14.如下图,点D在AB上,点E在AC上,且∠B=∠C,那么补充以下一个条件后,仍无法断定△ABE≌△ACD的是〔〕.=AE B.∠AEB=∠ADC==AC【解析】选择A中的AD=AE,加上条件,可根据AAS证明△ABE≌△ACD;选项B中给出∠AEB=∠ADC,加上条件,可得三对角相等,但三对角相等的三角形不一定全等;选项C中的BE=CD,加上条件,可根据AAS证明△ABE≌△ACD;选项D中的AB=AC,加上条件,可根据ASA证明△ABE≌△ACD;应选:B.练15.如下图,BF ⊥AC ,DE ⊥AC ,垂足分别为点F ,E ,BF =DE ,∠B =∠D ,求证:AE =CF.【解析】∵BF ⊥AC ,DE ⊥AC ,∴∠DEC =∠BFA =90°.在△BFA 与△DEC 中,∴△BFA ≌△DEC 〔ASA 〕.∴AF =CE.∴AF +EF =CE +EF.∴AE =CF.练16.如图,将△BOD 绕点O 旋转180°后得到△AOC ,再过点O 任意画一条与AC ,BD 都相交的直线MN ,交点分别为M 和N .试问:线段OM =ON 成立吗?假设成立,请进展证明;假设不成立,请说明理由.【解析】OM =ON 成立.理由是:∵△BOD 绕点O 旋转180°后得到△AOC ,∴△BOD ≌△AOC .∴∠A =∠B ,AO =BO .又∵∠AOM =∠BON ,∴△AOM ≌△BON (ASA).∴OM =ON .练17.如下图,直角三角形ABC 的直角顶点C 置于直线l 上,AC =BC ,现过A ,B 两点分别作直线l 的垂线,垂足分别为点D ,E.DC E FA B BA C DE【解析】〔1〕△ACD ≌△CBE ,证明:∵∠ACB =90°,∴∠ACD +∠BCE =90°.又∵AD ⊥l ,∴∠CAD +∠ACD =90°.∴∠BCE =∠CAD.∵BE ⊥l ,∴∠ADC =∠CEB =90°.在△ACD 与△CBE 中,∠CAD =∠BCE ,∠ADC =∠CEB ,AC =CB ,∴△ACD ≌△CBE 〔AAS 〕.〔2〕由〔1〕可知△ACD ≌△CBE ,∴AD =CE ,CD =BE ,∴AD =CE =CD +DE =BE +DE =3+5=8.1.如下图,AB ∥CD ,OB =OD ,那么由“ASA 〞可以直接断定△______≌△___________.2.如下图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为点D ,E ,AD ,CE 交于点H ,EH =EB =3,AE =4,那么CH 的长是___________.3.如下图,点E ,C 在线段BF 上,BE =CF ,AB ∥DE ,∠ACB =∠F .求证:△ABC ≌△DEF .AC D F EB l4.如下图,∠B =∠E ,∠BAD =∠EAC ,AC =AD ,求证:AB =AE.5.〔2021•厦门校级一模〕如图,A 、B 、C 、D 四点在同一条直线上,AB=CD ,EC=DF ,EC ∥DF .求证:△ACE ≌BDF ._________________________________________________________________________________ _________________________________________________________________________________1.:如图,AB=CD ,BE=DF ,AF=EC 。
湘乡市第五中学七年级数学下册第四章三角形1认识三角形第2课时三角形的三边关系教案新版北师大版
第2课时三角形的三边关系【知识与技能】掌握三角形三条边的关系,并能运用三边关系解决生活中的实际问题.【过程与方法】通过观察、操作、想象、推理、交流等活动,开展空间观念、推理能力和有条理表达的能力.【情感态度】学生通过观察、操作、交流和反思,获得必需的数学知识,激发学生的学习兴趣. 【教学重点】掌握三角形三条边的关系。
【教学难点】三角形三条边关系的应用.一、情景导入,初步认知警察抓劫匪〔一名罪犯实施抢劫后,经AB-—BC的路线往山上逃窜。
警察为了能尽快抓到逃犯,经路线AC追赶,终于在山顶将罪犯捉拿归案.〕警察为什么能在这么短的时间内抓到罪犯呢?〔学生各抒已见)2。
引入:警察的追击路线和罪犯的逃跑路线正好围成了一个三角形,那警察能在这么短的时间内抓到罪犯,是不是与三角形的三条边有关系呢?是不是任意的三条线段都能围成一个三角形呢?今天我们就通过实际操作,分组讨论来研究三角形三条边之间的关系.【教学说明】创设情境,激发学生探究知识的欲望。
二、思考探究,获取新知分别量出下面三个三角形的三边长度,并填空。
计算每个三角形的任意两边之差,并与第三边比拟,你能得到什么结论?【归纳结论】三角形任意两边之和大于第三边;三角形任意两边之差小于第三边.【教学说明】通过小组的合作交流,得出“三角形任意两边之差小于第三边〞的性质,同时培养学生合作学习的能力及语言表达能力。
三、运用新知,深化理解1。
见教材P86例题2。
三条线段的长度分别为:〔1)3cm、4cm、5cm;〔2〕8cm、7cm、15cm;〔3〕13cm、12cm、20cm;〔4〕5cm、5cm、11cm.能组成三角形的有〔 B 〕组。
A。
1 B。
2 C.3 D.43.现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是〔 B 〕。
A.1 B。
2 C。
3 D.44。
已知三条线段的比是:①1∶3∶4;②1∶2∶3;③1∶4∶6;④3∶3∶6;⑤6∶6∶10;⑥3∶4∶5.其中可构成三角形的有( B 〕A。
监利县第七中学七年级数学下册第四章三角形1认识三角形第3课时三角形的中线与角平分线教案新版北师大版
第3课时三角形的中线与角平分线【知识与技能】1。
通过观察、画、折等实践操作、想像、推理、交流等过程,认识三角形的角平分线、中线;2.会画出任意三角形的角平分线、中线,通过画图、折纸了解三角形的三条三条角平分线、三条中线会交于一点。
【过程与方法】通过画、折等实践操作活动过程,开展学生的空间观念,推理能力及创新精神.学会用数学知识解决实际问题,开展应用和自主探究意识,并培养学生的动手实践能力。
【情感态度】通过对问题的解决,使学生有成就感,培养学生的合作精神,树立学好数学的信心。
【教学重点】认识三角形的中线、角平分线.【教学难点】三角形的中线、角平分线的应用。
一、情景导入,初步认知用铅笔可以支起一张均匀的三角形卡片,你知道怎样确定这个点的位置吗?【教学说明】数学来源于生活、通过问题情境,激发学生好奇心和强烈的求知欲,让学生在生动具体的情境中学习数学。
二、思考探究,获取新知探究1:三角形的中线如图,△ABC中,有一条红色线段,一端点在顶点A处,另一端点从点B沿着BC边移动到点C,观察移动过程中形成的无数条线段〔AD、AE、AF、AG……〕中,有没有特殊位置的线段?你认为有哪些特殊位置?[生甲]我观察到,有一条线段的端点是BC 的中点。
[生乙]在这些线段中,有一条线段平分∠BAC,即是∠BAC 的平分线。
[生丙]还有一条线段垂直边BC 。
[师]很好,同学们通过观察,找到了具有特殊位置的线段,这三条线段是三角形的重要线段,它们分别是三角形的中线、角平分线和高线.我们先来认识三角形的中线。
1。
在三角形中,连接一个顶点与它对边的中点的线段,叫做这个三角形的中线。
如图,点E 是BC 的中点,线段AE 是△ABC 的中线2。
由定义可知:如果AE 是△ABC 的中线,那么有:BE=EC=21BC 。
3。
在一个三角形中,有几条中线呢?它们的位置关系又如何呢?同学们来画一画,议一议。
〔1〕在纸上画一个锐角三角形,并画出它的所有中线,它们有怎样的位置关系? 〔2〕钝角三角形和直角三角形的中线有几条,它们也有同样的位置关系吗?折一折,画一画,并与同伴交流.【归纳结论】一个三角形的中线共有三条,它们存在于三角形的内部,并且三条中线相交于一点.我们把这一点叫做重心。
北师大版七年级数学下册第四章三角形用尺规作三角形教案
4 用尺规作三角形〖教学目的〗〖知识与技能目标〗1.在分别给出的两角夹边、两边夹角和三边的条件下,能够利用尺规作三角形。
2.能结合三角形全等的条件与同伴交流作图过程和结果的合理性。
〖过程与方法〗培养作图能力。
〖情感态度与价值观〗巩固作图技巧,有独立克服困难和运用知识解决问题的成功体验。
〖教学重点、难点〗重点:根据题目的条件作三角形。
难点:探索作图过程。
〖教学过程〗Ⅰ.创设现实情景,引入新课(1)计算已知线段a,求作线段AB,使得AB=a。
(2)已知:∠α.求作:∠AOB,使∠AOB=∠α.(3) 已知:M为∠AOB边上的一点,如图所示,过M作直线CD,使得CD//OA。
Ⅱ.根据现实情景,讲授新课一.方法一:(根据简单图形书写作法)如图,使用直尺作图,看图填空.① ② ③ ④α1.过点____和_______作直线AB;连结线段___________;3.以点_______为端点,过点_______作射线___________;4.延长线段__________到_________,使得BC=2AB.如图,使用圆规作图,看图填空:在射线AM上__________线段________=___________.以点______为圆心,以线段______为半径作弧交_________于点___________.以点______为圆心,以任意长为半径作弧,分别交∠AOB两边,交_________于点___________, 交________于点__________.二.方法二 (作一个三角形与已知三角形全等)1.已知三角形的两边及其夹角,求作这个三角形.已知:线段a,c,∠α。
求作:ΔABC,使得BC= a,AB=c,∠ABC=∠α。
作法与过程:(1)作一条线段BC=a,(2)以B为顶点,BC为一边,作角∠DBC=∠a;(3)在射线BD上截取线段BA=c;(4)连接AC,ΔABC就是所求作的三角形。
2.已知三角形的两角及其夹边,求作这个三角形.已知:线段∠α,∠β,线段c 。
北师大版七年级下册第四章第一课认识三角形
北师大版七年级数学下册4.1认识三角形(第一课时)教学设计三维目标:1.认识三角形的有关概念;2.探索三角形内角和并解决一些简单的求三角形内角问题;3.理解直角三角形两锐角互余的性质;4.会按角的大小关系对三角形分类;能从所给出的已知角中,判断出三角形的形状5.数学思考目标:通过测量、操作、想象、推理、交流活动发展几何直观和空间观念。
6.问题解决目标:尝试用第二章所学知识来确定三角形内角和等于180度。
7.情感态度目标:体验克服困难的过程,认识数学具有抽象、严谨的特点,体会数学的价值。
教学重点:三角形的概念及其表达,三角形的分类(按角)和内角和定理。
教学难点:运用平行线的性质和判定来推理三角形内角和定理。
教学过程:〖第一环节〗创设情景,观察探究观察下面的屋顶框架图:自学三角形的概念自学课本81页,要求:(1)弄清三角形的定义(2)认识三角形的符号表示(3)认识三角形的基本要素(1)请你从图4-1 中找出4 个不同的三角形。
(2)请大家讨论这些三角形有什么共同特点。
讨论1:观察三角形的形成过程,说一说什么叫三角形?讨论2:三角形中有几条线段?有几个角?小结:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.三角形有三条边、三个内角和三个顶点.“三角形”可以用符号“△”表示,如图中顶点是 A,B,C 的三角形,记作。
边:线段AB,BC,CA是三角形的边,可用小写字母分别表示为 .角:∠A,∠B,∠C叫作三角形的内角,简称三角形的角.要点小结:三角形应满足以下两个条件:①位置关系:不在同一直线上;②联接方式:首尾顺次相接.〖第二环节〗探索三角形的内角和自学课本81页“做一做”,思考(2)(3)题中的问题1、做一做我们知道,将一个三角形的三个角撕下来,拼在一起,可以得到三角形的内角和为180°.有什么办法可以验证呢?(1)如图所示,剪一个三角形纸片,它的三个内角分别为∠1,∠2 和∠3. (2)观察拼接结果:小明只撕下三角形的一个角,也得到了上面的结论,他是这样做的:(1)如图4-4所示,剪一个三角形纸片,它的三个内角分别为∠1,∠2和∠3。
北师大版初北师大版七年级(下)数学第四章三角形教案:全等三角形的判定讲义(含答案)
三角形全等的判定1、掌握直角三角形全等的判定方法:“斜边、直角边”;2、判断能证明三角形全等的条件;3、判断三角形全等能推出的结论;4、探索全等三角形判定的综合问题.1.斜边、直角边定理(HL )文字描述:_______和一条______分别相等的两个直角三角形全等. 符号语言:在Rt △ABC 与Rt △DEF 中, ∠ABC=∠DEF=90°,AB DE BC EFAC DF==⎧⎨=⎩或 ∴Rt △ABC ≌Rt △DEF (HL ). 图示:2.探究三角形全等的思路 (1)已知两边→⎧⎪→⎨⎪→⎩找夹角找直角找另一边(2)已知一边一角→→⎧⎪→⎧⎪⎨⎪→→⎨⎪⎪⎪→⎩⎩一边为角的对边找另一角找夹角的另一边一边为角的一边找夹角的另一角找边的对角(3)已知两角→⎧⎨→⎩找夹边找其中一边的对边3.什么是开放题所谓开放题,即为答案不唯一的问题,其主要特征是答案的多样性和多层次性.由于这类题综合性强、解题方法灵活多变,结果往往具有开放性,因而需观察、实验、猜测、分析和推理,同时运用树形结合、分类讨论等数学思想. 4. 开放题问题类型及解题策略 (1)条件开放与探索型问题.从结论出发,执果索因,逆向推理,逐步探求结论成立的条件或把可能产生结论的条件一一列出,逐个分析.(2)结论开放与探索型问题.从剖析题意入手,充分捕捉题设信息,通过由因导果,顺向推理或联想类比、猜测等,从而获得所求的结论.(3)条件、结论开放与探索型问题.此类问题没有明确的条件和结论,并且符合条件的结论具有多样性,需将已知的信息集中进行分析,探索问题成立所必须具备的条件或特定的条件应该有什么结论,通过这一思维活动得出事物内在联系,从而把握事物的整体性和一般性. 参考答案:1、斜边 直角边 2、(1)SAS HL SSS (2)AAS SAS ASA AAS (3)ASA AAS1.利用HL 证全等【例1】如图,已知∠A=∠D=90°,E 、F 在线段BC 上,DE 与AF 交于点O ,且AB=CD ,BE=CF .求证:Rt △ABF ≌Rt △DCE .【解析】由于△ABF 与△DCE 是直角三角形,根据直角三角形全等的判定的方法即可证明.证明:∵BE=CF ,∴BE+EF=CF+EF ,即BF=CE. ∵∠A=∠D=90°,∴△ABF 与△DCE 都为直角三角形, 在Rt △ABF 和Rt △DCE 中,BF CE AB CD ⎧⎨⎩==, ∴Rt △ABF ≌Rt △DCE (HL ).点评:此题考查了直角三角形全等的判定,解题关键是由BE=CF 通过等量代换得到BF=CE . 总结:1.判定直角三角形全等共有五种方法:“SSS ”“ASA ”“AAS ”和“HL ”;一般先考虑利用“HL ”定理,再考虑利用一般三角形全等的判定方法;2.“HL ”定理是直角三角形所特有的判定方法,对于一般的三角形不成立;3.判定两个直角三角形全等时,这两个直角三角形已有“两个直角相等”的条件,只需再找两个条件,但所找条件中必须有一组边对应相等.练1.如图,要用“HL”判定Rt △ABC 和Rt △A′B′C′全等的条件是( )A .AC=A′C′,BC=B′C′B .∠A=∠A′,AB=A′B′C .AC=A′C′,AB=A′B′D .∠B=∠B′,BC=B′C′ 【解析】根据直角三角形全等的判定方法(HL )即可直接得出答案.∵在Rt △ABC 和Rt △A′B′C′中,如果AC=A′C′,AB=A′B′,那么BC 一定等于B′C′, Rt △ABC 和Rt △A′B′C′一定全等, 故选C .点评:此题主要考查学生对直角三角形全等的判定的理解和掌握,难度不大,是一道基础题. 练2.如图,已知AB ⊥CD ,垂足为B ,BC=BE ,若直接应用“HL”判定△ABC ≌△DBE ,则需要添加的一个条件是_______________.【解析】先求出∠ABC=∠DBE=90°,再根据直角三角形全等的判定定理推出即可.AC=DE ,理由是:∵AB ⊥DC , ∴∠ABC=∠DBE=90°, 在Rt △ABC 和Rt △DBE 中,AC DEBE BC=⎧⎨=⎩, ∴Rt △ABC ≌Rt △DBE (HL ). 故答案为:AC=DE .点评:本题考查了全等三角形的判定定理,主要考查学生的推理能力,注意:判定两直角三角形全等的方法有SAS ,ASA ,AAS ,SSS ,HL . 2.利用HL 证全等,再证边角相等【例2】如图,AB ⊥BC ,AD ⊥DC ,AB=AD .求证:CB=CD .【解析】根据已知条件,利用“HL ”判定Rt △ABC ≌Rt △ADC ,根据全等三角形的对应边相等即可得到CB=CD .证明:∵AB ⊥BC ,AD ⊥DC ,∴∠B=∠D=90°.在Rt △ABC 和Rt △ADC 中,AB ADAC AC=⎧⎨=⎩ ∴Rt △ABC ≌Rt △ADC . ∴CB=CD .点评:此题主要考查学生对全等三角形的判定方法“HL ”的理解及运用,常用的判定方法有“SAS ”“ASA ”“AAS ”“SSS ”.总结:证明角或线段相等可以从证明角或线段所在的三角形全等入手. 在寻求全等条件时,要注意结合图形,挖掘图中存在的对顶角、公共角、公共边、平行线的同位角、内错角等相等关系. 练3.如图,MN ∥PQ ,AB ⊥PQ ,点A 、D 、B 、C 分别在直线MN 与PQ 上,点E 在AB 上,AD+BC=7,AD=EB ,DE=EC ,则AB=_____________.【解析】可判定△ADE ≌△BCE ,从而得出AE=BC ,则AB=AD+BC .∵MN ∥PQ ,AB ⊥PQ , ∴AB ⊥MN ,∴∠DAE=∠EBC=90°, 在Rt △ADE 和Rt △BCE 中,DE ECAD BE=⎧⎨=⎩, ∴△ADE ≌△BEC (HL ), ∴AE=BC , ∵AD+BC=7,∴AB=AE+BE=AD+BC=7. 故答案为7.点评:本题考查了直角三角形全等的判定和性质以及平行线的性质是基础知识比较简单. 练4.已知如图,∠A=90°,∠D=90°,且AE=DE ,求证:∠ACB=∠DBC .【解析】由图片和已知,可得△ABE ≌△DCE ,则BE=CE ,然后再证明Rt △ABE ≌Rt △DCE ,即可得证.证明:∵∠A=∠D=90°,AE=DE (已知),∠AEB=∠DEC (对顶角相等), ∴△ABE ≌△DCE (ASA ), ∴AB=DC ,在Rt △ABE 和Rt △DCE 中,AB DCBC CB=⎧⎨=⎩, ∴Rt △ABE ≌Rt △DCE , ∴∠ACB=∠DBC .点评:本题主要考查全等三角形全等的判定,注意需证明两次全等. 3.利用HL 解决实际问题【例3】如图,A 、B 、C 、D 是四个村庄,B 、D 、C 三村在一条东西走向公路的沿线上,且D 村到B 村、C 村的距离相等;村庄A 与C ,A 与D 间也有公路相连,且公路 AD 是南北走向;只有村庄A 、B 之间由于间隔了一个小湖,所以无直接相连的公路.现决定在湖面上造一座斜拉桥,测得AC=3千米,AE=1.2千米,BF=0.7千米.试求建造的斜拉桥至少有多少千米.【解析】根据BD=CD ,∠BDA=∠CDA=90°,AD=AD ,得出Rt △ADB ≌Rt △ADC ,进而得出AB=AC=3,即可得出斜拉桥长度.由题意,知BD=CD ,∠BDA=∠CDA=90°,AD=AD , 则Rt △ADB ≌Rt △ADC (SAS ), 所以AB=AC=3千米,故斜拉桥至少有3-1.2-0.7=1.1(千米).点评:此题主要考查了直角三角形全等的判定以及性质,根据已知得出Rt △ADB ≌Rt △ADC 是解决问题的关键.总结:对于实际问题,要善于转化为数学问题,充分运用题目条件、图形条件,寻找三角形全等的条件,从而证明三角形全等,然后利用全等三角形的性质求对应边长或对应角的大小.练5.如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,则两个木桩离旗杆底部的距离BD 与CD 的距离间的关系是( )A .BD >CDB .BD <CDC .BD=CD D .不能确定【解析】根据“两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上”可以判断AB=AC ,又AD=AD ,AD ⊥BC ,所以Rt △ABD ≌Rt △ACD ,所以BD=CD .∵AD ⊥BC ,∴∠ADB=∠ADC=90°, 由AB=AC ,AD=AD , ∴Rt △ABD ≌Rt △ACD (HL ), ∴BD=CD . 故选C .点评:本题考查了全等三角形的判定及性质的应用;充分运用题目条件,图形条件,寻找三角形全等的条件.本题关键是证明Rt △ABD ≌Rt △ACD . 4.全等三角形——补充条件型问题【例1】如图,点C ,F 在线段BE 上,BF=EC ,∠1=∠2,请你添加一个条件,使△ABC ≌△DEF ,并加以证明.(不再添加辅助线和字母)【解析】由已知先推出BC=EF ,添加条件AC=DF ,根据“SAS”可推出两三角形全等.解:AC=DF . 证明:∵BF=EC ,∴BF ﹣CF=EC ﹣CF , 即BC=EF.在△ABC 和△DEF 中12AC DFBC EF =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF (SAS ).总结:因为全等三角形的判定定理有“SAS”“ASA”“AAS”“SSS”,所以此类问题答案是不唯一的. 对于条件添加型的题目,要根据已知条件并结合图形及判定方法来添加一个条件.练6.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.BD=CD B.AB=AC C.∠B=∠C D.∠BAD=∠CAD【解析】利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.A、∵∠1=∠2,AD为公共边,若BD=CD,则△ABD≌△ACD(SAS);B、∵∠1=∠2,AD为公共边,若AB=AC,不符合全等三角形判定定理,不能判定△ABD≌△ACD;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);D、∵∠1=∠2,AD为公共边,若∠BAD=∠CAD,则△ABD≌△ACD(ASA);故选:B.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.练7.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD与CE交于点F,请你添加一个适当的条件,使△ADB≌△CEB.【解析】要使△ADB≌△CEB,已知∠B为公共角,∠BEC=∠BDA,具备了两组角对应相等,故添加AB=BC或BE=BD或EC=AD后可分别根据AAS、ASA、AAS能判定△ADB≌△CEB.解:AB=BC,AD⊥BC,CE⊥AB,B=∠B∴△ADB≌△CEB(AAS).答案:AB=BC.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.点评:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.添加条件时,要首选明显的、简单的,由易到难.5.全等三角形——结论探索型问题【例5】如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.【解析】(1)根据题目所给条件可分析出△ABE ≌△CDF ,△AFD ≌△CEB ;(2)根据AB ∥CD 可得∠1=∠2,根据AF=CE 可得AE=FC ,然后再证明△ABE ≌△CDF即可.解:(1)△ABE ≌△CDF ,△AFD ≌△CEB ; (2)∵AB ∥CD ,∴∠1=∠2, ∵AF=CE , ∴AF+EF=CE+EF , 即AE=FC.在△ABE 和△CDF 中,12AEB CDF AE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△CDF (AAS ).总结:判定两个三角形全等的一般方法有:“SSS”“SAS”“ASA”“AAS”和“HL”.注意:“AAA”“SSA”不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.练8.如图,△ABC 中,AD ⊥BC ,AB=AC ,AE=AF ,则图中全等三角形的对数有( )A .5对B .6对C .7对D .8对【解析】三角形全等条件中必须是三个元素,并且一定有一组对应边相等.做题时要从已知条件开始,结合判定方法对选项逐一验证.解:∵△ABC 中,AD ⊥BC ,AB=AC ,∴BD=CD , ∴△ABD ≌△ACD , ∴∠BAD=∠CAD , 又AE=AF ,AO=AO ,∴△AOE ≌△AOF , EO=FO ,进一步证明可得△BOD ≌△COD ,△BOE ≌△COF ,△AOB ≌△AOC ,△ABF ≌△ACE ,△BCE ≌△CBF ,共7对.故选:C .点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理. 6.全等三角形——条件和结论全开放型问题【例6】有下列四个判断:①AD=BF ;②AE=BC ;③∠EFA=∠CDB ;④AE ∥BC .请你以其中三个作为题设,余下一个作为结论,写出一个真命题并加以证明.已知: 求证: 证明:【解析】由已知AD=BF ,证出AF=BD ,再由平行线AE ∥BC 得出∠A=∠B ,证明△AEF ≌△BCD ,即可得出∠EFA=∠CDB .解:已知:AD=BF ,AE=BC ,AE ∥BC ; 求证:∠EFA=∠CDB ; 证明:∵AD=BF ,∴AD+DF=BF+DF , 即AF=BD. ∵AE ∥BC , ∴∠A=∠B , 在△AEF 和△BCD 中,AE BC A B AF BD =⎧⎪∠=∠⎨⎪=⎩∴△AEF ≌△BCD (SAS ), ∴∠EFA=∠CDB .点评:本题考查了全等三角形的判定与性质以及命题与定理;熟练掌握全等三角形的判定方法是解题的关键.总结:条件和结论全开放的三角形全等问题,进一步加强了对SSS 、SAS 、ASA 、AAS 、HL 的考查.要熟练掌握全等三角形的证明思路:练9.如图,AC 交BD 于点O ,有如下三个关系式:①OA=OC ,②OB=OD ,③AB ∥DC .(1)请用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的命题.(用序号写出命题书写形式,如:如果⊗、⊗,那么⊗)(2)选择(1)中你写出的—个命题,说明它正确的理由.【解析】(1)如果①、②,那么③,或如果①、③,那么②,如果②、③,那么①;(2)下面选择“如果①、②,那么③”加以证明. 证明:在△AOB 和△COD 中,,,,OA OC AOB COD OB OD =⎧⎪∠=∠⎨⎪=⎩∴△AOB ≌△COD , ∴∠A=∠C , ∴AB ∥DC .练10.在△ABC 和△DEF 中,AB=DE ,∠A=∠D ,若证△ABC ≌△DEF ,还需补充一个条件,错误的补充方法是( )A .∠B=∠EB .∠C=∠FC .BC=EFD .AC=DF【解析】根据已知及全等三角形的判定方法对各个选项进行分析,从而得到答案.解:A 、正确,符合判定ASA ;B 、正确,符合判定AAS ;C 、不正确,满足SSA 没有与之对应的判定方法,不能判定全等;D 、正确,符合判定SAS . 故选:C .点评:此题主要考查学生对全等三角形的判定方法的理解及运用,常用的判定方法有AAS ,SAS ,SSS ,HL 等.练11.如图,已知等边△ABC ,AB=2,点D 在AB 上,点F 在AC 的延长线上,BD=CF ,DE ⊥BC 于E ,FG ⊥BC 于G ,DF 交BC 于点P ,则下列结论:①BE=CG ;②△EDP ≌△GFP ;③∠EDP=60°;④EP=1中,一定正确的是( )A .①③B .②④C .①②③D .①②④【解析】由等边三角形的性质可以得出△DEB ≌△FGC ,就可以得出BE=CG ,DE=FG ,就可以得出△DEP ≌△FGP ,得出∠EDP=∠GFP ,EP=PG ,得出PC+BE=PE ,就可以得出PE=1,从而得出结论.解:∵△ABC 是等边三角形,∴AB=BC=AC ,∠A=∠B=∠ACB=60°.∵∠ACB=∠GCF ,∵DE ⊥BC ,FG ⊥BC ,∴∠DEB=∠FGC=∠DEP=90°.在△DEB 和△FGC 中,DEB FGC GCF A BD CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEB ≌△FGC (AAS ),∴BE=CG ,DE=FG ,故①正确;在△DEP 和△FGP 中,DEP FGP DPE FPG DE FG ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEP ≌△FGP (AAS ),故②正确;∴PE=PG ∠EDP=∠GFP≠60°,故③错误;∵PG=PC+CG ,∴PE=PC+BE .∵PE+PC+BE=2,∴PE=1.故④正确.正确的有①②④,故选:D .点评:本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.练12.如图,EA⊥AB,BC⊥AB EA=AB=2BC,D为AB中点,有以下结论:(1)DE=AC(2)DE⊥AC(3)∠CAB=30°(4)∠EAF=∠ADE,其中结论正确的是()A.(1),(3)B.(2),(3)C.(3),(4)D.(1),(2),(4)【解析】本题条件较为充分,EA⊥AB,BC⊥AB,EA=AB=2BC,D为AB中点可得两直角三角形全等,然后利用三角形的性质问题可解决.做题时,要结合已知条件与全等的判定方法对选项逐一验证.解:∵EA⊥AB,BC⊥AB,∴∠EAB=∠ABC=90°Rt△EAD与Rt△ABC∵D为AB中点,∴AB=2AD又EA=AB=2BC∴AD=BC∴Rt△EAD≌Rt△ABC∴DE=AC,∠C=∠ADE,∠E=∠FAD又∠EAF+∠DAF=90°∴∠EAF+∠E=90°∴∠EFA=180°﹣90°=90°,即DE⊥AC,∠EAF+∠DAF=90°,∠C+∠DAF=90°∴∠C=∠EAF,∠C=∠ADE∴∠EAF=∠ADE故选:D.点评:本题考查了全等三角形的判定与性质;全等三角形问题要认真观察已知与图形,仔细寻找全等条件证出全等,再利用全等的性质解决问题.1.下列条件不可以判定两个直角三角形全等的是()A.两条直角边对应相等B.两个锐角对应相等C.一条直角边和它所对的锐角对应相等D.一个锐角和锐角所对的直角边对应相等2.如图,O是∠BAC内一点,且点O到AB,AC的距离OE=OF,则△AEO≌△AFO的依据是()A.HL B.AAS C.SSS D.ASA3.已知:如图所示,△ABC与△ABD中,∠C=∠D=90°,要使△ABC≌△ABD(HL)成立,还需要加的条件是()A.∠BAC=∠BAD B.BC=BD或AC=ADC.∠ABC=∠ABD D.AB为公共边4.如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40°B.50°C.60°D.75°5.如图1,已知△ABC的六个元素,则图2甲、乙、丙三个三角形中和图1△ABC全等的图形是()A.甲乙B.丙C.乙丙D.乙6.如图,在△ABC中,AB=AC,AE=AF,AD⊥BC于点D,且点E、F在BC上,则图中全等的直角三角形共有()A.1对B.2对C.3对D.4对7.已知:如图,△ABC中,AB=AC,点D为BC的中点,连接AD.(1)请你写出两个正确结论:①__________;②__________;(2)当∠B=60°时,还可以得出哪些正确结论?(只需写出一个)(3)请在图中过点D作于DM⊥AB于M,DN⊥AC于N.求证:△DBM≌△DCN.1.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需加条件_____________.2.如图,∠B=∠D=90°,BC=DC,∠1=40°,则∠2=_____________度.3.如图所示,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,滑梯BC与地面夹角∠ABC=35°,则滑梯EF与地面夹角∠DFE的度数是_______________.4.如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)求证:AE=CD;(2)若AC=12cm,求BD的长.5.如图,这是建筑物上的人字架,已知:AB=AC,AD⊥BC,则BD与CD相等吗?为什么?6.请从以下三个等式中,选出一个等式天在横线上,并加以证明.等式:AB=CD,∠A=∠C,∠AEB=∠CFD,已知:AB∥CD,BE=DF,_______求证:△ABE≌△CDF.证明:参考答案:当堂检测1.【解析】A 、两条直角边对应相等,可利用全等三角形的判定定理SAS 来判定两直角三角形全等,故本选项正确;B 、两个锐角对应相等,再由两个直角三角形的两个直角相等,AAA 没有边的参与,所以不能判定两个直角三角形全等;故本选项错误;C 、一条直角边和它所对的锐角对应相等,可利用全等三角形的判定定理ASA 来判定两个直角三角形全等;故本选项正确;D 、一个锐角和锐角所对的直角边对应相等,可以利用全等三角形的判定定理ASA 或AAS 来判定两个直角三角形全等;故本选项正确;故选B .2.【解析】∵OE ⊥AB ,OF ⊥AC ,∴∠AEO=∠AFO=90°,又∵OE=OF ,AO 为公共边,∴△AEO ≌△AFO .故选A .3.【解析】需要添加的条件为BC=BD 或AC=AD ,理由为:若添加的条件为BC=BD ,在Rt △ABC 与Rt △ABD 中,∵BC BD AB AB =⎧⎨=⎩, ∴Rt △ABC ≌Rt △ABD (HL );若添加的条件为AC=AD ,在Rt △ABC 与Rt △ABD 中,∵AC AD AB AB =⎧⎨=⎩, ∴Rt △ABC ≌Rt △ABD (HL ).故选B .4.【解析】∵∠B=∠D=90°,在Rt △ABC 和Rt △ADC 中,BC CD AC AC =⎧⎨=⎩, ∴Rt △ABC ≌Rt △ADC (HL ),∴∠2=∠ACB=90°﹣∠1=50°.故选B .5.【解析】根据全等三角形的判定定理(SAS ,ASA ,AAS ,SSS )逐个判断即可.解:已知图1的△ABC 中,∠B=50°,BC=a ,AB=c ,AC=b ,∠C=58°,∠A=72°,图2中,甲:只有一个角和∠B 相等,没有其它条件,不符合三角形全等的判定定理,即和△ABC 不全等;乙:符合SAS 定理,能推出两三角形全等;丙:符合AAS 定理,能推出两三角形全等;故选:C .点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .6.【解析】如图,运用等腰三角形的性质证明BD=CD ,DE=DF ;证明△ABD ≌△ACD ,△AED ≌△AFD ,即可解决问题.解:如图,∵AB=AC ,AE=AF ,AD ⊥BC ,∴BD=CD ,DE=DF ;在△ABD 与△ACD 中,AD AD ADB ADC BD CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACD (SAS ),同理可证△AED ≌△AFD ;故选:B .点评:该题主要考查了全等三角形的判定问题、等腰三角形的性质及其应用问题;灵活运用全等三角形的判定问题、等腰三角形的性质是解题的关键.7.【解析】(1)根据中点的性质及全等三角形的判定,写出两个结论即可;(2)根据等边三角形的判定定理可得△ABC 是等边三角形;(3)先证明△ABD ≌△ACD ,再证明△DBM ≌△DCN .解:(1)①BD=CD ;②△ABD ≌△ACD ;(2)∵AB=AC ,∠B=60°,∴△ABC 是等边三角形.(3)在Rt △ABD 和Rt △ACD 中,AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩,∴△ABD ≌△ACD ,∴∠ABD=∠ACD ,在Rt △DBM 和Rt △DCN 中,MBD NCD B CBD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DBM ≌△DCN .点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .家庭作业1.【解析】还需添加条件AB=AC ,∵AD ⊥BC 于D ,∴∠ADB=∠ADC=90°,在Rt △ABD 和Rt △ACD 中,AD AD AB AC=⎧⎨=⎩, ∴Rt △ABD ≌Rt △ACD (HL ),故答案为:AB=AC .2.【解析】在直角△ABC 与直角△ADC 中,BC=DC ,AC=AC ,∴△ABC ≌△ADC ,∴∠2=∠ACB ,在△ABC 中,∠ACB=180°﹣∠B ﹣∠1=50°,∴∠2=50°.故填50°3.【解析】在Rt △ABC 和Rt △DEF 中,BC EF AC DF=⎧⎨=⎩, ∴Rt △ABC ≌Rt △DEF (HL ),∴∠DEF=∠ABC=35°,∴∠DFE=90°﹣35°=55°.故答案为:55°.4.【解析】(1)证明:∵DB ⊥BC ,CF ⊥AE ,∴∠DCB+∠D=∠DCB+∠AEC=90°.∴∠D=∠AEC .又∵∠DBC=∠ECA=90°,且BC=CA ,在△DBC 和△ECA 中,∵90D AEC DBC ECA BC AC ∠=∠⎧⎪∠==⎨⎪=⎩,∴△DBC ≌△ECA (AAS ).∴AE=CD .(2)解:由(1)得AE=CD ,AC=BC ,在Rt △CDB 和Rt △AEC 中,AE CD AC BC =⎧⎨=⎩, ∴Rt △CDB ≌Rt △AEC (HL ),∴BD=CE ,∵AE 是BC 边上的中线,∴BD=EC= BC= AC ,且AC=12cm .∴BD=6cm .5.【解析】BD=CD ,理由:∵AD ⊥BC ,∴∠ADB=∠ADC=90°(垂直定义),在Rt △ABD 与Rt △ACD 中, AB AC AD AD =⎧⎨=⎩, ∴Rt △ABD ≌Rt △ACD (HL ),∴BD=CD (全等三角形的对应边相等).6.【解析】先加上条件,再证明,根据所加的条件,利用证明:∵AB ∥CD ,∴∠B=∠D ,在△ABE 和△CDF 中,AB CD B D BE DF =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CDF .点评:本题是一道开放性的题目,考查了全等三角形的判定,是基础知识比较简单.。
七年级数学下册 第四章 三角形 1 认识三角形第2课时 三角形的三边关系教学课件 北师大版
You made my day!
我们,还在路上……
பைடு நூலகம்
课程讲授
2 三角形的三边关系
问题1:任意画出一个△ABC,从其中一个顶点B出发,
沿三角形的边到点C,有几条线路可以选择,各条线路
的长有什么关系?
A
两点之间线段最短.
由此可以得到: AC BC AB
B
C
AB BC AC AC AB BC
提示:两点之间,线段最短.
课程讲授
2 三角形的三边关系
问题1:观察下图中的三角形,试着比较它们之间的不 同之处.
提示:可根据三角形三边的长度关系进行比较.
顶角
腰 底角
不等边三角形 (三条边长度均不相等)
等腰三角形 底边
(两条边长度相等)
等边三角形 (三条边长相等)
课程讲授
1 等腰三角形和等边三角形
以“是否有边相等”,可以将三角形分为两类: _三__边__都__不__相__等__的__三__角__形_和__等__腰__三__角__形_. 三条边各不相等的三角形叫做__不__等__边__三__角__形____. 有两条边相等的三角形叫做__等__腰__三__角__形_. 三条边都相等的三角形叫做_等__边__三__角__形_.
等腰三角形与等边三角形的关系: 等边三角形是特__殊__的等边三角形,即_底__边__和__腰__相__等__ 的等腰三角形.
课程讲授
1 等腰三角形和等边三角形
三边都不 相等的三 角形
等腰三角形
等边三 角形
三角形
课程讲授
1 等腰三角形和等边三角形
练一练:根据三角形的分类,判断下列说法是否正确。
(1)一个钝角三角形可能是等腰三角形.( √ ) (2)等边三角形是特殊的等腰三角形.( √ ) (3)等腰三角形的腰和底一定不相等.( × ) (4)等边三角形是锐角三角形.( √ ) (5)直角三角形一定不是等腰三角形.( × )
七年级数学下册4三角形教案北师大版
第四章三角形1。
理解三角形及有关概念,会画任意三角形的高、中线、角平分线.2。
了解三角形的稳定性,理解三角形两边的和大于第三边,会根据三条线段的长度判断它们能否构成三角形.3.会证明三角形内角和等于180°,了解三角形外角的性质。
4.了解图形的全等,理解全等三角形的概念和性质,经历探索三角形全等条件的过程,掌握两个三角形全等的条件,能应用三角形的全等解决一些实际问题.5。
在分别给出两角一夹边、两边一夹角和三边的条件下,能够利用尺规作出三角形。
1。
在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯。
2。
在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步发展初步的演绎推理能力和有条理表达的能力.1.体会数学与现实生活的联系,增强克服困难的勇气和信心.2。
感受数学来源于生活又服务于生活,激发学习数学的兴趣.3.使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点.三角形是最简单、最基本的几何图形,在生产实践、科学研究和社会生活中随处可见。
它不仅是研究其他图形的基础,在解决实际问题中也有着广泛的应用.因此,探索和掌握它的基本性质对于更好地认识现实世界、发展空间观念和推理能力都是非常重要的.学生在前面学习“相交线和平行线"的过程中,积累了一些初步的数学活动经验,空间观念、几何直观与推理能力得到了初步的培养,这都为三角形的学习提供了有力的条件.本章的设计在总体上来看需要学生掌握以下内容:在生动的问题情境、丰富的数学活动中,理解三角形的有关概念;在动手动脑的数学活动中,探索三角形全等的条件,感悟数学的分类思想;以直观认识为基础进行简单的说理,将几何直观与简单说理相结合,逐步而又恰当地提高学生数学推理能力,借助三角形和全等三角形的有关结论解决一些简单的实际问题.为此,教材本章安排了5节内容:第1节“认识三角形”,介绍三角形的有关概念、符号表示、三角形的重要线段,以及三角形三边之间的关系、内角和等基本性质.第2节“图形的全等”、第3节“探索三角形全等的条件”,在认识全等图形的基础上,理解全等三角形的概念和性质,接着通过所设计的一系列的实践活动,探索三角形全等的条件.第4节“用尺规作三角形”、第5节“利用三角形全等测距离”,教材以用尺规作三角形和利用三角形全等测距离,体现全等三角形的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形
3.2图形的全等
【教学目标】
知识与技能
1.理解图形全等的概念和特征。
2.、知道全等三角形的概念及全等三角形的对应元素。
3.知道全等三角形的性质,能用符号正确地表示两个三角形全等。
4.能熟练找出两个全等三角形的对应角、对应边。
过程与方法
通过平移、旋转、翻折等图形基本变换对全等图形进行研究。
情感、态度与价值观
【教学重难点】
重点:能完全重合图形相关性质
难点:利用全等三角形的性质进行简单的推理和计算
【导学过程】
【知识回顾】
此板块分课型,有些课型可以没有,根据实际情况进行
【情景导入】
【新知探究】
探究一、
1.这些图形中有些是完全一样的,如果把它们叠在一起,它们就能重合。
你能分别从图中找出这样的图形吗?
2.能够完全重合的两个图形成为图形。
例:观察下面两组图形,它们是不是全等图形?为什么?
探究二、
能够完全重合的两个三角形叫做表示方法:△ABC≌△DEF 例:你能找到图中的对应边和对应角吗?对应边和对应角有什么特征?解:对应边:和、和、和
对应角:和、和、和
发现对应边,对应角
全等三角形对应边上的高,对应边上的中线也。
练习:
如图, 已知⊿ABC≌⊿ADE.
(1)写出它们的对应边和对应角.
(2)证明: ∠EAC=∠BAD.
解:(1)对应边:和、和、和
对应角:和、和、和
(2)证明:∵⊿ABC≌⊿ADE()
∴∠EAD=∠CAB (全等三角形相等)
∴∠EAD-∠CAD= -∠CAD ()
∴∠EAC=
【知识梳理】
1.能够完全重合的两个图形成为图形。
2.如果两个图形全等,它们的和一定都相同
3.全等三角形的性质:全等三角形的相等,相等。
【随堂练习】
1.下列说法正确的是()
A、同一底片的两张相片一定全等;
B、周长相等的两个图形一定全等;
C、全等的两个图形面积一定;
D、以上说法都不对
2.下列图中的两个三角形是全等三角形,请依次说出它们的对应边、对应角。
(1)⊿_______≌⊿________;
对应边:______________________
对应角:______________________
3.如图,⊿ABD≌⊿ACE,你能说明BE=DC吗?。