最新北师大七年级数学第二章知识总结及习题(练习)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章平行线与相交线
一、余角与补角
1、如果两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一
个角是另一个角的余角。
2、如果两个角的和是平角,那么称这两个角互为补角,简称为互补,称其中一
个角是另一个角的补角。
3、余角和补角的性质:同角或等角的余角相等,同角或等角的补角相等。
二、对顶角
1、两条直线相交成四个角,其中不相邻的两个角是对顶角。
2、一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。
3、对顶角的性质:对顶角相等。
三、同位角、内错角、同旁内角
1、两条直线被第三条直线所截,形成了8个角。
2、同位角:两个角都在两条直线的同侧,并且在第三条直线(截线)的同旁,
这样的一对角叫做同位角。
3、内错角:两个角都在两条直线之间,并且在第三条直线(截线)的两旁,这
样的一对角叫做内错角。
4、同旁内角:两个角都在两条直线之间,并且在第三条直线(截线)的同旁,
这样的一对角叫同旁内角。
例如图,和相交,和是______角,和是____角,
和是______角,和是______角.
四、平行线的判定方法
1、同位角相等,两直线平行。
2、内错角相等,两直线平行。
3、同旁内角互补,两直线平行。
4、在同一平面内,如果两条直线都平行于第三条直线,那么这两条直线平行。
(简称为:平行于同一直线的两直线平行)
5、在同一平面内,如果两条直线都垂直于第三条直线,那么这两条直线平行
(简称为:垂直于同一直线的两直线平行)
例如图,由已知条件推出的结论,正确的是().
A.由,可推出B.由,可推出
C.由,可推出D.由,可推出
平行线的性质1、两直线平行,同位角相等。2、两直线平行,内错角相等。
3、两直线平行,同旁内角互补。
例如图:已知:,则
例如图,,则
.
例如图,AB∥EF,∠B =1350,∠C=670,则求∠1的度数.
例DE∥BC,CD是∠ACB的平分线,∠B =80,∠ACB=500,求∠EDC,∠CDB
尺规作线段和角
1、在几何里,只用没有刻度的直尺和圆规作图称为尺规作图。
2、尺规作图是最基本、最常见的作图方法,通常叫基本作图。
做法:
例作一条线段等于已知线段
例作一个角等于已知角E
B A
D
C