高中数学必修4知识点总结:第三章 三角恒等变换
高中数学必修四 第三章三角恒等变换章末整合
=
2(2+2cos22������) 2sin22������
=
2(1+cos22������) 4sin2������cos2������
(sin2������ + cos2������)2 + (cos2������-sin2������)2
=
2si n2 ������cos2 ������
=
2(sin4������+cos4������) 2sin2������cos2������
求������, ������的值.
解:(1)当 a=1 时,f(x)=2cos2x+2sin xcos x+b
=cos 2x+1+sin 2x+b=
2sin
2������
+
π 4
+ 1 + ������,
则 f(x)的周期为 T=π.
令
2kπ−
π2≤2x+
π4≤2kπ+
π 2
(������
∈Z),
2tan������
tan2������ = 1-tan2������
应用——三角函数式的求值、化简和证明,讨论三角函数的性质
专题一 专题二 专题三 专题四
专题一 三角函数与向量的结合 三角函数与平面向量相结合是近几年来的高考亮点,它常常包括 向量与三角函数化简、求值及证明的结合,向量与三角函数的图象 与性质的结合等几个方面.此类题目主要考查三角函数的图象与性 质,以及三角函数的化简、求值.
高中数学必修四
第三章 三角恒等变换 本章整合
知识总结与综合应用
cos(������-������) = cos������cos������ + sin������sin������
人教版高中数学必修四《三角恒等变换-复习小结》
[借题发挥] 在三角函数式的化简求值问题中要注意角的变化 函数名的变化,合理选择公式进行变形,同时注意三角变换 技巧的运用.(给角求值,给值求值,给值求角)
1 tan B 3 , 1 tan B
(1 , 3 ) (cos A , sinA) 1 , 即 3 sinA cos A 1 , 2( 3 sin A 1 cos A) 1 , 2 2 sin(A ) 1 . 6 2 0 A , A 5 , 6 6 6 A , 即 A . 6 6 3
tan12 tan33 (5) 1 tan12 tan33
(
1 4
公式变,逆用)
2 2
质疑再探
例1:已知 ,为锐角, cos 1 13 , cos( ) 求 cos 的值 7 14
注:⑴ 常用角的变换:
① ( ) ② 2 ( ) ( )
设疑自探 5.三角变换的方针是什么? 遵循原则
寻求差异
注意常识
消除差异
解疑合探
计算:
(1) cos74 sin 14 sin 74 cos14
(2) sin 20 cos110 cos160 sin 70
3 2
1
(3)1 2 sin 22.5
2
(4) sin 15 cos15
设疑自探
4.三角变换常识有哪些?
(1)sinα,cosα→凑倍角公式. (2)1± cosα→升幂公式. π α α2 (3)1± sinα 化为 1± cos(2± α),再升幂或化为(sin2± cos2) . (4)asinα+bcosα→辅助角公式 asinα+bcosα= a2+b2· sin(α+ b φ),其中 tanφ=a或 asinα+bcosα= a2+b2· cos(α-φ),其中 tanφ a =b.
必修4-第三章三角恒等变换-知识点详解
必修4 第三章三角恒等变换知识点详解3.1 两角和与差的正弦、余弦和正切公式1. 两角和与差的正弦、余弦、正切公式:()sin sin cos cos sin sin 22sin cos 令αβαβαβαβααα=±=±−−−→=βαβαβαsin sin cos cos )cos(-=+βαβαβαsin sin cos cos )cos(+=-βαβαβαsin cos cos sin )sin(+=+βαβαβαsin cos cos sin )sin(-=-2. 倍角公式:()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 21cos2sin 22tan tan 21tan 令 = = αβαβαβαβααααααβααβααβααααα=±=−−−→=-↓=-=-±±=⇒-↓=-3. 正切变形公式tanα+tanβ=tan(α+β)(1-tanαtanβ)tanα-tanβ=tan(α-β)(1+tanαtanβ)3.2 简单的三角恒等变换三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。
即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。
基本的技巧有:(1)巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--,22αβαβ++=⋅,()()222αββααβ+=---等), (2)公式变形使用(tan tan αβ±()()tan 1tan tan αβαβ=±。
人教B版高中数学必修四《第三章 三角恒等变换 本章小结》_4
小结
巩固知识检查效果
培养归纳与概括能力
巩固知识完善思维结构
突出思维敏捷性和方法的灵活性
巩固知识检查效果
学生总结
教
学
过
程
例已知函数f(x)=
(1)求函数f(x)的最小正周期和其图像的对称中心
(2)求函数f(x)的单调递增区间
(教师启发诱导,详细分析讲解,学生体会如何变角变名,化异求同)
练习1求y= 的值域。
(教师提出问题、学生自主探究、展示交流)
2.
求函数f(x)的的单调递增区间
(教师提出问题、学生自主探究、展示交流)
•先利用二倍角、升降幂公式化简
•再用辅助角公式将函数转化为y=Asin(ωx+φ)+k或y=Acos(ωx+φ)+k等形式
•若无法转化为y=Asin(ωx+φ)+k或y=Acos(ωx+φ)+k等形式,则考虑转化为某一三角函数的二次函数形式,再用配方法求最值
板书设计:
三角恒等变换高考热点题型总结
例
练习1练习3
单位:朝阳市二高中
课题:三角恒等变换高考热点题型总结
教学内容
设计意图
教
案
分
析
三角恒等变换是高中数学的重要内容,是高考必考内容之一。
近几年高考对三角恒等变换的考察要求有所降低,主要考察的高考热点题型是利用三角的和差倍半公式研究函数y=Asin( )的图像和性质。
总结求解过程要遵循“三看”ቤተ መጻሕፍቲ ባይዱ则:
1.看角,通过角之间的差别和联系,对角进行合理的拆分,从而正确的使用公式;
3.
1)求f(x)的对称轴方程
2)当 ,求x的值
(学生讨论,这类题型的解法步骤如何)
学生总结步骤
必修4第三章--三角恒等变换复习(学生用)
A、 B、 C、 D、
9. 已知 ,则 的值为 ( )
A、 B、 C、 D、
二、填空题10. =____________
12.已知 ,则 的值为
`
三、解答题
14.(本题满分12分)已知 ,且 ,求 的值。
15.(本题满分14分)已知α为第二象限角,且sinα= 求 的值.
;;
。
3.半角公式(扩角降幂公式)
;
;
.
4.三角函数式的化简
、
常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③三角公式的逆用等。(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数。
5.辅助角公式
。
题型5:三角函数求值
例7.已知函数 .
(1)求 的最小正周期;(2)当 时,求 的最小值以及取得最小值时x的集合.
)
A层拓展提升:求 那么 的值
@
^
四、达标检测
一、选择题
1. 已知 ,则 的值为( )
A. B. C. D.
2.在 则这个三角形的形状是( )
%
A.锐角三角形B.钝角三角形 C.直角三角形D.等腰三角形
三角恒等变换
一.基本要求:
1.能从两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系;
2.能运用上述公式进行简单的恒等变换(包括引导导出积1.两角和与差的三角函数
;;
。
—
2.二倍角公式(缩角升幂公式)
16、(本题满分14分)已知函数 的最大值是2,试确定常数 的值.
三角函数三角恒等变换知识点总结
高中数学苏教版必修4 三角函数 三角恒等变换知识点总结一、角的概念和弧度制:(1)在直角坐标系内讨论角:角的顶点在原点,始边在x 轴的正半轴上,角的终边在第几象限,就说过角是第几象限的角。
若角的终边在坐标轴上,就说这个角不属于任何象限,它叫象限界角。
(2)①与α角终边相同的角的集合:},2|{},360|{0Z k k Z k k ∈+=∈+=απββαββ或 与α角终边在同一条直线上的角的集合: ; 与α角终边关于x 轴对称的角的集合: ; 与α角终边关于y 轴对称的角的集合: ; 与α角终边关于x y =轴对称的角的集合: ;②一些特殊角集合的表示:终边在坐标轴上角的集合: ;终边在一、三象限的平分线上角的集合: ; 终边在二、四象限的平分线上角的集合: ; 终边在四个象限的平分线上角的集合: ; (3)区间角的表示:①象限角:第一象限角: ;第三象限角: ;第一、三象限角: ;②写出图中所表示的区间角:(4)正确理解角:要正确理解“oo90~0间的角”= ;“第一象限的角”= ;“锐角”= ; “小于o90的角”= ;(5)由α的终边所在的象限,通过 来判断2α所在的象限。
来判断3α所在的象限(6)弧度制:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;任一已知角α的弧度数的绝对值rl=||α,其中l 为以角α作为圆心角时所对圆弧的长,r 为圆的半径。
注意钟表指针所转过的角是负角。
(7)弧长公式: ;半径公式: ;扇形面积公式: ;二、任意角的三角函数:(1)任意角的三角函数定义:以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则=αs in ;=αcos ;=αtan ;=αcot ;=αsec ;=αcsc ; 如:角α的终边上一点)3,(a a -,则=+ααsin 2cos 。
注意r>0 (2)在图中画出角α的正弦线、余弦线、正切线;比较)2,0(∈x ,x sin ,x tan ,x 的大小关系:。
高中数学 第三章 三角恒等变换章末归纳总结课件 新人教A版必修4
人教A版 ·必修4
路漫漫其修远兮 吾将上下而求索
三角恒等变换 第三章
章末归纳总结 第三章
1 知识结构 2 专题突破
知识结构
专题突破
Байду номын сангаас
专题一 三角函数式的化简 1.三角函数式化简的基本原则: (1)“切”化“弦”. (2)异名化同名 (3)异角化同角. (4)高次降幂. (5)分式通分. (6)无理化有理. (7)常数的处理(特别注意“1”的代换).
[解析]
化简:2cos21θ++3stainn2θθ-1-cos2θ3-+45stainn2θθ-4
原式=cos2θ-31s+in23θt+an2θsinθcosθ+3cos2θ+53s+in52θta+nθ8sinθcosθ
cosθ+3sinθ
3cosθ+5sinθ
=cosθ+3sincθosθcosθ-sinθ+3cosθ+5sicnoθsθcosθ+sinθ
已知 tanα=4 3,cos(α+β)=-1114,α、β 均为锐角, 求 cosβ 的值.
[探究] 利用 β=(α+β)-α 进行角的代换,则 cosβ=cos[(α+ β)-α],利用公式展开,结合已知条件求解.
[解析] ∵α、 β 均为锐角,∴0<α+β<π. 又 cos(α+β)=-1114, ∴sin(α+β)= 1--11142=5143.
又 tanα=4 3, ∴sin2α=sin2αsi+n2cαos2α=1+tanta2nα2α=4489.
∴sinα=473,从而 cosα= 1-sin2α=17, 故 cosβ=cos[(α+β)-α] =cos(α+β)cosα+sin(α+β)sinα =(-1114)×17+5143×4 7 3=12.
必修4 数学最全 知识点梳理(完整版)
高中数学必修4 知识点总结第一章:三角函数§1.1.1、任意角1、 正角、负角、零角、象限角的概念.2、 与角α终边相同的角的集合:{}Z k k ∈+=,2παββ.§1.1.2、弧度制1、 把长度等于半径长的弧所对的圆心角叫做1弧度的角.2、 rl =α. 3、弧长公式:R Rn l απ==180. 4、扇形面积公式:lR R n S 213602==π.§1.2.1、任意角的三角函数1、 设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么:xyx y ===αααtan ,cos ,sin 2、 设点(),A x y为角α终边上任意一点,那么:(设r =sin y r α=,cos x r α=,tan y xα= 3、 αsin ,αcos ,αtan 在四个象限的符号和三角函数线的画法.正弦线:MP; 余弦线:OM; 正切线:AT 4、 特殊角0°,30°,45°,60°,§1.2.2、同角三角函数的基本关系式 1、 平方关系:1cos sin 22=+αα. 2、 商数关系:αααcos sin tan =. §1.3、三角函数的诱导公式(概括为“奇变偶不变,符号看象限”Z k ∈)1、 诱导公式一: ()()().tan 2tan ,cos 2cos ,sin 2sin απααπααπα=+=+=+k k k (其中:Z k ∈) 2、 诱导公式二: ()()().tan tan ,cos cos ,sin sin ααπααπααπ=+-=+-=+3、诱导公式三: ()()().tan tan ,cos cos ,sin sin αααααα-=-=--=- 4、诱导公式四: ()()().tan tan ,cos cos ,sin sin ααπααπααπ-=--=-=-5、诱导公式五: .sin 2cos ,cos 2sin ααπααπ=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛- 6、诱导公式六: .sin 2cos ,cos 2sin ααπααπ-=⎪⎭⎫⎝⎛+=⎪⎭⎫⎝⎛+§1.4.1、正弦、余弦函数的图象和性质 1、记住正弦、余弦函数图象:2、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性. 3、会用五点法作图.sin y x =在[0,2]x π∈上的五个关键点为: 30010-12022ππππ(,)(,,)(,,)(,,)(,,).§1.4.3、正切函数的图象与性质12、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性.周期函数定义:对于函数()x f ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有()(),那么函数()x f 就叫做周期函数,非零常数T 叫做这个函数的周期.图表归纳:正弦、余弦、正切函数的图像及其性质§1.5、函数()ϕω+=x A y sin 的图象 1、对于函数:()()sin 0,0y A x B A ωφω=++>>有:振幅A ,周期2T πω=,初相ϕ,相位ϕω+x ,频率πω21==Tf .2、能够讲出函数x y sin =的图象与()sin y A x B ωϕ=++的图象之间的平移伸缩变换关系.① 先平移后伸缩:sin y x = 平移||ϕ个单位 ()sin y x ϕ=+(左加右减) 横坐标不变 ()sin y A x ϕ=+纵坐标变为原来的A 倍纵坐标不变 ()sin y A x ωϕ=+横坐标变为原来的1||ω倍平移||B 个单位 ()sin y A x B ωϕ=++(上加下减)② 先伸缩后平移:sin y x = 横坐标不变 sin y A x =纵坐标变为原来的A 倍 纵坐标不变 sin y A x ω=横坐标变为原来的1||ω倍()sin y A x ωϕ=+平移||B 个单位()sin y A x B ωϕ=++(上加下减)3、三角函数的周期,对称轴和对称中心函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0)的周期2||T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0)的周期||T πω=. 对于sin()y A x ωϕ=+和cos()y A x ωϕ=+来说,对称中心与零点相联系,对称轴与最值点联系. 求函数sin()y A x ωϕ=+图像的对称轴与对称中心,只需令()2x k k Z πωϕπ+=+∈与()x k k Z ωϕπ+=∈解出x 即可.余弦函数可与正弦函数类比可得.4、由图像确定三角函数的解析式 利用图像特征:max min 2A =,max min2y y B +=. ω要根据周期来求,ϕ要用图像的关键点来求.§1.6、三角函数模型的简单应用 1、 要求熟悉课本例题.第三章、三角恒等变换§3.1.1、两角差的余弦公式记住15°的三角函数值:§3.1.2、两角和与差的正弦、余弦、正切公式 1、()βαβαβαsin cos cos sin sin +=+ 2、()βαβαβαsin cos cos sin sin -=- 3、()βαβαβαsin sin cos cos cos -=+ 4、()βαβαβαsin sin cos cos cos +=-5、()tan tan 1tan tan tan αβαβαβ+-+=. 6、()tan tan 1tan tan tan αβαβαβ-+-=.§3.1.3、二倍角的正弦、余弦、正切公式 1、αααcos sin 22sin =, 变形: 12sin cos sin 2ααα=. 2、ααα22sin cos 2cos -=1cos 22-=α α2sin 21-=. 变形如下:升幂公式:221cos 22cos 1cos 22sin αααα⎧+=⎪⎨-=⎪⎩ 降幂公式:221cos (1cos 2)21sin (1cos 2)2αααα=+=-⎧⎪⎨⎪⎩ 3、ααα2tan 1tan 22tan -=.4、sin 21cos 2tan 1cos 2sin 2ααααα-==+ §3.2、简单的三角恒等变换1、 注意正切化弦、平方降次.2、辅助角公式)sin(cos sin 22ϕ++=+=x b a x b x a y(其中辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ).第二章:平面向量§2.1.1、向量的物理背景与概念1、 了解四种常见向量:力、位移、速度、加速度.2、 既有大小又有方向的量叫做向量. §2.1.2、向量的几何表示1、 带有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度.2、 向量的大小,也就是向量的长度(或称模),记作AB ;长度为零的向量叫做零向量;长度等于1个单位的向量叫做单位向量.3、 方向相同或相反的非零向量叫做平行向量(或共线向量).规定:零向量与任意向量平行. §2.1.3、相等向量与共线向量1、 长度相等且方向相同的向量叫做相等向量. §2.2.1、向量加法运算及其几何意义1、 三角形加法法则和平行四边形加法法则.2++.§2.2.2、向量减法运算及其几何意义1、 与a 长度相等方向相反的向量叫做a 的相反向量.2、 三角形减法法则和平行四边形减法法则.§2.2.3、向量数乘运算及其几何意义1、 规定:实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘.记作:a λ,它的长度和方向规定如下:⑴= ⑵当0>λ时, a λ的方向与a 的方向相同;当0<λ时, a λ的方向与a 的方向相反. 2、 平面向量共线定理:向量()≠与 共线,当且仅当有唯一一个实数λ,使λ=. §2.3.1、平面向量基本定理1、 平面向量基本定理:如果21,e e 是同一平面内的两个不共线向量,那么对于这一平面内任一向量,有且只有一对实数21,λλ,使2211e e a λλ+=. §2.3.2、平面向量的正交分解及坐标表示 1、 ()y x y x ,=+=. §2.3.3、平面向量的坐标运算1、 设()()2211,,,y x b y x a ==,则: ⑴()2121,y y x x b a ++=+,⑵()2121,y y x x --=-, ⑶()11,y x λλλ=, ⑷1221//y x y x =⇔. 2、 设()()2211,,,y x B y x A ,则: ()1212,y y x x AB --=. §2.3.4、平面向量共线的坐标表示 1、设()()()332211,,,,,y x C y x B y x A ,则⑴线段AB 中点坐标为()222121,y y x x ++, ⑵△ABC 的重心坐标为()33321321,y y y x x x ++++.§2.4.1、平面向量数量积的物理背景及其含义1、 θ=⋅.2、 在θcos .3、 2=.4、=.5、 0=⋅⇔⊥.§2.4.2、平面向量数量积的坐标表示、模、夹角 1、 设()()2211,,,y x y x ==,则:⑴2121y y x x b a +=⋅2121y x +=⑶121200a b a b x x y y ⊥⇔⋅=⇔+= ⑷1221//0a b a b x y x y λ⇔=⇔-= 2、 设()()2211,,,y x B y x A ,则:()()212212y y x x -+-=.3、 两向量的夹角公式 2cos a b a bx θ⋅==+4、点的平移公式平移前的点为(,)P x y (原坐标),平移后的对应点为(,)P x y '''(新坐标),平移向量为(,)PP h k '=,则.x x hy y k '=+⎧⎨'=+⎩函数()y f x =的图像按向量(,)a h k =平移后的图像的解析式为().y k f x h -=-§2.5.1、平面几何中的向量方法 §2.5.2、向量在物理中的应用举例知识链接:空间向量空间向量的许多知识可由平面向量的知识类比而得.下面对空间向量在立体几何中证明,求值的应用进行总结归纳.1、直线的方向向量和平面的法向量 ⑴.直线的方向向量:若A 、B 是直线l 上的任意两点,则AB 为直线l 的一个方向向量;与AB 平行的任意非零向量也是直线l 的方向向量. ⑵.平面的法向量:若向量n 所在直线垂直于平面α,则称这个向量垂直于平面α,记作n α⊥,如果n α⊥,那么向量n 叫做平面α的法向量.⑶.平面的法向量的求法(待定系数法): ①建立适当的坐标系.②设平面α的法向量为(,,)n x y z =.③求出平面内两个不共线向量的坐标123123(,,),(,,)a a a a b b b b ==. ④根据法向量定义建立方程组00n a n b ⎧⋅=⎪⎨⋅=⎪⎩.⑤解方程组,取其中一组解,即得平面α的法向量. (如图)2 用向量方法判定空间中的平行关系设直线12,l l 的方向向量分别是a b 、,则要证明1l ∥2l ,只需证明a ∥b ,即()a kb k R =∈. 即:两直线平行或重合两直线的方向向量共线.⑵线面平行①(法一)设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l ∥α,只需证明a u ⊥,即0a u ⋅=. 即:直线与平面平行直线的方向向量与该平面的法向量垂直且直线在平面外②(法二)要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量即可. ⑶面面平行若平面α的法向量为u ,平面β的法向量为v ,要证α∥β,只需证u ∥v ,即证u v λ=. 即:两平面平行或重合两平面的法向量共线. 3、用向量方法判定空间的垂直关系 ⑴线线垂直设直线12,l l 的方向向量分别是a b 、,则要证明12l l ⊥,只需证明a b ⊥,即0a b ⋅=. 即:两直线垂直两直线的方向向量垂直.⑵线面垂直①(法一)设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l α⊥,只需证明a ∥u ,即a u λ=.②(法二)设直线l 的方向向量是a ,平面α内的两个相交向量分别为m n 、,若0,.0a m l a n α⎧⋅=⎪⊥⎨⋅=⎪⎩则 即:直线与平面垂直直线的方向向量与平面的法向量共线直线的方向向量与平面内两条不共线直线的方向向量都垂直. ⑶面面垂直若平面α的法向量为u ,平面β的法向量为v ,要证αβ⊥,只需证u v ⊥,即证0u v ⋅=. 即:两平面垂直两平面的法向量垂直. 4、利用向量求空间角 ⑴求异面直线所成的角A ,C 与B ,D 分别是,a b 上的任意两点,,a b 所成的角为θ,则cos .AC BD AC BDθ⋅=⑵求直线和平面所成的角①定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角②求法:设直线l 的方向向量为a ,平面α的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为ϕ, 则θ为ϕ的余角或ϕ的补角 的余角.即有:cos s .ina ua uϕθ⋅==①定义:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射线l BO l AO ⊥⊥,,则AOB ∠为二面角βα--l 的平面角.如图:②求法:设二面角l αβ--的两个半平面的法向量分别为m n 、,再设m n 、的夹角为ϕ,二面角l αβ--的平面角为θ,则二面角θ为m n 、的夹角ϕ或其补角.πϕ- 根据具体图形确定θ是锐角或是钝角: ◆如果θ是锐角,则cos cos m n m nθϕ⋅==;◆ 如果θ是钝角,则cos cos m n m nθϕ⋅=-=-.5、利用法向量求空间距离⑴点Q 到直线l 距离若Q 为直线l 外的一点,P 在直线l 上,a 为直线l 的方向向量,b =PQ ,则点Q 到直线l 距离为1(||||h a b a =⑵点A 到平面α的距离若点P 为平面α外一点,点M 为平面α内任一点,平面α的法向量为n ,则P 到平面α的距离就等于MP 在法向量n 方向上的投影的绝对值.即cos ,d MP n MP =n MP MP n MP⋅=⋅n MP n⋅=⑶直线a 与平面α之间的距离当一条直线和一个平面平行时,直线上的各点到平面的距离相等.由此可知,直线到平面的距离可转化为求直线上任一点到平面的距离,即转化为点面距离.即.n MP d n⋅=⑷两平行平面,αβ之间的距离利用两平行平面间的距离处处相等,可将两平行平面间的距离转化为求点面距离.即.n MP d n⋅=⑸异面直线间的距离高中数学必修四 知识梳理 10设向量n 与两异面直线,a b 都垂直,,,M a P b ∈∈则两异面直线,a b 间的距离d 就是MP 在向量n 方向上投影的绝对值.即.n MP d n⋅=6、三垂线定理及其逆定理⑴三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直推理模式:,,PO O PA A a PA a a OA αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭概括为:垂直于射影就垂直于斜线.⑵三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直推理模式:,,PO O PA A a AO a a AP αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭概括为:垂直于斜线就垂直于射影.7、三余弦定理设AC 是平面α内的任一条直线,AD 是α的一条斜线AB 在α内的射影,且BD ⊥AD ,垂足为D.设AB 与α (AD)所成的角为1θ, AD 与AC 所成的角为2θ, AB 与AC 所成的角为θ.则12cos cos cos θθθ=.8、 面积射影定理已知平面β内一个多边形的面积为()S S 原,它在平面α内的射影图形的面积为()S S '射,平面α与平面β所成的二面角的大小为锐二面角θ,则'cos =.S S S S θ=射原9、一个结论长度为的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++= 222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例).。
数学必修四复习提纲——三角函数与三角恒等变换
yACB第一章 三角函数1、任意角:正角、零角、负角;与α终边相同的角表示为{}|2,k k Z ββαπ=+∈2、轴线角: 终边在x 轴上的角的集合:{}|,k k Z ββπ=∈; 终边在y 轴上的角的集合:|,2k k Z πββπ⎧⎫=+∈⎨⎬⎩⎭; 终边在坐标轴上的角的集合:|,2k k Z πββ⎧⎫=∈⎨⎬⎩⎭等;(见笔记)(提醒:终边相同的角不一定相等,相等的角终边一定相同) 3、象限角: 如第一象限角:|22,2k k k Z παπαπ⎧⎫<<+∈⎨⎬⎩⎭; 4、弧度制:弧长等于半径的圆弧所对的圆心角叫做1弧度的角; (提醒:一个式子中不能角度,弧度混用)换算:180°=π弧度; 1弧度= 0'18057.305718π⎛⎫≈≈ ⎪⎝⎭; 1°= 180π弧度 计算:角的大小α=l r ;弧长l = r α⋅,面积S = 12l r ⋅=212r α⋅=212l α。
5、任意角的三角函数:1)定义:角α终边上任意一点P(x ,y),则r )0r >,sin y rα=、cos x r α= 、tan y xα=。
提醒:如果点P 在单位圆上,即r=1,则sin ,cos ,tan yy x xααα===)特殊角的三角函数值(任意角均可由诱导公式化成特殊角)2)三角函数线: sin MP α= cos OM α= tan AT α=3)三角函数值符号:一全正、二正弦、三正切,四余弦sin αcos α tan α4)同角三角函数的基本关系: ①1cos sin 22=+αα ②sin tan +,cos 2k k Z απααπα⎛⎫=≠∈ ⎪⎝⎭5)三角函数的诱导公式:sin(2)sin cos(2)cos tan(2)tan k k k πααπααπαα+=+=+= x x x x xx t a n )t a n (c o s )c o s (s i n )s i n (-=--=-=-πππ x x x x xx t a n )t a n (c o s )c o s(s i n )s i n (-=-=--=- x x x x xx t a n )t a n (c o s )c o s (s i n )s i n (=+-=+-=+πππ提醒:求任意角的三角函数值一般步骤如下6、三角函数的图象和性质:cos()sin 2παα+=-sin()cos 2παα+=cos()sin 2παα-=sin()cos 2παα-=7、()sin y A x ωϕ=+的图像和性质:1)作图:①五点法:依次令x ωϕ+= 0 、2π、π、32π、2π ②变换作图法: (A>0,ω>0) (横向伸缩和左右平移变的都是系数为1的x )● 方法1:将y =sinx 的图像0,x ||0,x ||ϕϕϕϕ><−−−−−−−−→沿轴向左平移个单位沿轴向右平移个单位()sin y x ϕ=+ 1ω−−−−−−−−−→横坐标伸长或缩短为原来的倍()sin y x ωϕ=+ A −−−−−−−−−→纵坐标伸长或缩短为原来的倍()sin y A x ωϕ=+● 方法2:将y =sinx 的图像1ω−−−−−−−−−→横坐标伸长或缩短为原来的倍()sin y x ω=||0,x ||0,x ϕϕωϕϕω><−−−−−−−−−→沿轴向左平移个单位沿轴向右平移个单位()sin y x ωϕ=+A −−−−−−−−−→纵坐标伸长或缩短为原来的倍()sin y A x ωϕ=+2)振幅|A|;周期T = 2||πω ;频率f = 1T ;初相x ωϕ+;相位ϕ(A >0,ω>0)3)定义域 【练习19】函数的定义域是( )(答:B ) A 、B 、C 、D 、解析:由题意可得sinx ﹣≥0⇒sinx ≥,由单位圆可知, 又x∈(0,2π)∴函数的定义域是. 故选B .4)最值(先把ω化成正的) 【练习21】函数,当f (x )取得最小值时,x 的取值集合为( )(答:A ) A 、 B 、 C 、D 、解析:∵函数当 sin (﹣)=﹣1时函数取到最小值, ∴﹣=﹣+2k π,k∈Z 函数, ∴x=﹣+4k π,k∈Z,5)()sin y A x ωϕ=+的对称轴、对称中心①对称轴0x x =满足:0(Z)2x k k πωϕπ+=+∈;②对称轴中心0(,0)x 满足:0(Z)x k k ωϕπ+=∈6)单调区间(先把ω化成正的) 若A >0,增区间:令 22k ππ-+≤x ωϕ+≤22k ππ+ ,再解不等式减区间:令22k ππ+≤x ωϕ+≤322k ππ+,再解不等式 若A <0,反过来。
人教版高中数学高一-必修4第三章《三角恒等变换》专题归纳
►专题归纳对于三角函数求值主要有三种类型,即“给角求值”、“给值求值”、“给值求角”.三种形式的题目本质上都是“给值求值”,只不过往往求出的值是特殊角的值,在求出角之前还需结合函数的单调性确定角,必要时还要讨论角的范围.►例题分析例1 已知α∈⎝ ⎛⎭⎪⎫π4,3π4,β∈⎝ ⎛⎭⎪⎫0,π4,且cos ⎝ ⎛⎭⎪⎫π4-α=35,sin ⎝ ⎛⎭⎪⎫54π+β =-1213,求cos(α+β).分析:由已知条件要求cos(α+β),应注意到角之间的关系,α+β=⎝ ⎛⎭⎪⎪⎫π4+β-⎝ ⎛⎭⎪⎪⎫π4-α,可应用两角差的余弦公式求得. 解析:由已知α∈⎝ ⎛⎭⎪⎪⎫π4,3π4得-α∈⎝ ⎛⎭⎪⎪⎫-3π4,-π4, ∴π4-α∈⎝⎛⎭⎪⎪⎫-π2,0. 又cos ⎝ ⎛⎭⎪⎪⎫π4-α=35,∴sin ⎝⎛⎭⎪⎪⎫π4-α=-45. 由β∈⎝ ⎛⎭⎪⎪⎫0,π4得π4+β∈⎝ ⎛⎭⎪⎪⎫π4,π2, 又∵sin ⎝ ⎛⎭⎪⎫54π+β=sin ⎣⎢⎢⎡⎦⎥⎥⎤π+⎝ ⎛⎭⎪⎪⎫π4+β =-sin ⎝ ⎛⎭⎪⎪⎫π4+β=-1213,∴sin ⎝⎛⎭⎪⎪⎫π4+β=1213, ∴cos ⎝ ⎛⎭⎪⎪⎫π4+β=513.由⎝ ⎛⎭⎪⎪⎫π4+β-⎝⎛⎭⎪⎪⎫π4-α=α+β,得 cos ⎝⎛⎭⎫α+β=cos ⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎪⎫π4+β-⎝ ⎛⎭⎪⎪⎫π4-α =cos ⎝ ⎛⎭⎪⎪⎫π4+β·cos ⎝ ⎛⎭⎪⎪⎫π4-α+sin ⎝ ⎛⎭⎪⎪⎫π4+β·sin ⎝⎛⎭⎪⎪⎫π4-α=513×35+1213×⎝ ⎛⎭⎪⎫-45=-3365. 点评:三角变换是解决已知三角函数值求三角函数值这类题型的关键.所谓变换是指函数名称类型的变换及角的变换,两种变换相辅相成,互相利用.例2 已知0<α<π4,0<β<π4,且3sin β=sin(2α+β),4tan α2=1-tan2α2,求α+β的值.分析:本题主要考查三角函数式的恒等变形及已知三角函数值求角,因为2α+β=α+(α+β),β=(α+β)-α,可先将条件式3sin β=sin(2α+β)展开后求α+β的正切值.解析:∵3sin β=sin(2α+β),即3sin ⎝⎛⎭⎫α+β-α=sin(α+β+α),整理得2sin(α+β)cos α=4cos(α+β)sin α. 即tan(α+β)=2tan α.又∵4tan α2=1-tan 2α2,∴tan α=2tanα21-tan 2α2=12,tan(α+β)=2tan α=2×12=1.又∵α+β∈⎝⎛⎭⎪⎪⎫0,π2,∴α+β=π4.点评:对于给值求角的问题,角的范围分析很重要,是防止出现增解的重要手段.►跟踪训练1.已知cos ⎝ ⎛⎭⎪⎫α-π6+sin α=453,则sin ⎝ ⎛⎭⎪⎫α+7π6的值是(C ) A .-235 B.235C .-45 D.45解析:∵cos ⎝⎛⎭⎪⎪⎫α-π6+sin α=45 3.∴32cos α+32sin α=453, 3⎝ ⎛⎭⎪⎫12cos α+32sin α=453,3sin ⎝ ⎛⎭⎪⎪⎫π6+α=453,∴sin ⎝⎛⎭⎪⎪⎫π6+α=45, ∴sin ⎝ ⎛⎭⎪⎫α+76π=-sin ⎝ ⎛⎭⎪⎪⎫π6+α=-45.故选C.►专题归纳三角函数式的化简是对给定的三角函数式通过适当的三角变换,使之变为较简单的形式.化简三角函数式的常用方法有:①直接应用公式;②切割化弦;③异角化同角;④特殊值与特殊角的三角函数互化;⑤通分、约分;⑥配方去根号.三角函数式的化简是三角变换中非常重要的一种题型,是高考命题的热点,它常与三角函数的图象和性质联系出题,题型灵活多变,因而三角函数的化简也是需要掌握的基本知识和基本技能.►例题分析例3 化简:2cos 2α-12tan ⎝ ⎛⎭⎪⎫π4-αsin 2⎝ ⎛⎭⎪⎫π4+α. 分析:本题主要考查二倍角公式,同角三角函数的基本关系及角的变换,从角的特点及内在联系上探求.π4-α与π4+α互余,可先用诱导公式减少角的种类.或π4-α与π4+α均化为α的三角函数.解析:方法一 原式=2cos 2α-12·sin ⎝⎛⎭⎪⎪⎫π4-αcos ⎝ ⎛⎭⎪⎪⎫π4-α·sin 2⎝ ⎛⎭⎪⎪⎫π4+α=2cos 2α-12·sin ⎝⎛⎭⎪⎪⎫π4-αcos ⎝ ⎛⎭⎪⎪⎫π4-α·cos 2⎝ ⎛⎭⎪⎪⎫π4-α=2cos 2α-1sin ⎝ ⎛⎭⎪⎪⎫π2-2α=cos 2αcos 2α=1.方法二 原式=cos 2α2·1-tan α1+tan α⎝ ⎛⎭⎪⎫22sin α+22cos α2=cos 2αcos α-sin αcos α+sin α·⎝⎛⎭⎫sin α+cos α2 =cos 2α(cos α-sin α)(cos α+sin α) =cos 2αcos 2α-sin 2α=cos 2αcos 2α=1. 点评:(1)切弦共存时,两种方法均采用了切化弦这种技巧. (2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α,以上三个公式熟练地交替使用,可使问题得以顺利解决.(3)一公式结构的三角函数式化简一般需要分子、分母出现可约式,再进行约分.例4 化简(tan 10°-3)·cos 10°sin 50°.分析:本题中含有正切、正弦、余弦,一般先切化弦,还要注意到特殊值,联想到表示特殊角的三角函数.解析:原式=⎝ ⎛⎭⎪⎫sin 10°cos 10°-3·cos 10°sin 50°=sin 10°-3cos 10°sin 50°=2⎝ ⎛⎭⎪⎫12sin 10°-32cos 10°sin 50°=2sin (10°-60°)sin 50°=-2sin 50°sin 50°=-2.►跟踪训练2.2sin 2α1+cos 2α·cos 2αcos 2α=(B ) A .tan α B .tan 2α C .1 D.12解析:原式=2sin 2α2cos 2α·cos 2α cos 2α=sin 2αcos 2α=tan 2α.故选B.►专题归纳三角函数等式的证明,包括无条件三角函数等式的证明和有条件三角函数等式的证明.对于无条件三角函数等式的证明,要认真分析等式两边三角函数式的特点,找出差异,化异角为同角,化异次为同次,化异名为同名,寻找证明的突破口.对于有条件三角函数等式的证明,要认真观察条件式与欲证式的区别与联系,灵活使用条件等式,通过代入法,消元法等方法进行证明.►例题分析 例5 求证:sin 4x 1+cos 4x ·cos 2x 1+cos 2x ·cos x 1+cos x=tan x2.分析:本题主要考查二倍角公式及变形应用,因等式右端为tan x2,故可将在左边的角4x ,2x ,x 化为x2形式.证明:∵左边=2sin 2x cos 2x 2cos 22x ·cos 2x 2cos 2x ·cos x1+cos x=2sin 2x ·cos 22x ·cos x 2cos 22x ·2cos 2x ·2cos 2x 2=sin 2x2cos x ·2cos 2x2=2sin x 2cos x 22cos 2x 2=sinx2cosx 2=tan x 2=右边.∴等式成立.点评:要熟练掌握下列二倍角公式的变形. sin α=sin 2α2cos α,cos α=sin 2α2sin α,1+cos 2α=2cos 2α,1-cos 2α=2sin 2α, cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.例6 已知tan(α+β)=2tan β,求证:3sin α= sin(α+2β).分析:观察条件与结论间的差异可知:(1)函数名称的差异是正弦与正切,可考虑切化弦法化异为同. (2)角的差异是α+β,β;α,α+2β.通过观察可得已知角与未知角之间关系如下:(α+β)-β=α;(α+β)+β=α+2β,由此可化异为同.证明:由已知tan(α+β)=2tan β可得sin (α+β)cos (α+β)=2sin βcos β,∴sin(α+β)·cos β=2cos(α+β)·sin β. 而sin(α+2β)=sin[(α+β)+β] =sin(α+β)·cos β+cos(α+β)·sin β =2cos(α+β)·sin β+cos(α+β)·sin β =3cos(α+β)·sin β, 又sin α=sin[(α+β)-β]=sin(α+β)·cos β-cos(α+β)·sin β =2cos(α+β)·sin β-cos(α+β)·sin β =cos(α+β)·sin β,故sin(α+2β)=3sin α.点评:三角式的证明要注意观察函数的特点,角的特点,结构特点. ►跟踪训练3.求证:1-2sin x cos x cos 2x -sin 2x =1-tan x 1+tan x.证明:证法一 右边=1-sin x cos x 1+sin x cos x =cos x -sin xcos x +sin x=(cos x -sin x )2(cos x -sin x )(cos x +sin x ) =cos 2x +sin 2x -2sin x cos x cos 2x -sin 2x=1-2sin x cos x cos 2x -sin 2x =左边.∴原命题成立. 证法二 左边=sin 2x +cos 2x -2sin x cos xcos 2-sin 2x =(cos x -sin x )2cos 2x -sin 2x=cos x -sin x cos x +sin x =1-tan x 1+tan x =右边, ∴原命题成立.►例题分析例7 (1)①证明两角和的余弦公式C α+β:cos(α+β)=cos αcos β-sinαsin β;②由C (α+β)推导两角和的正弦公式S (α+β):sin(α+β)=sin αcos β+cosαsin β.(2)已知△ABC 的面积S =12,AB →·AC →=3,且cos B =35,求cos C .解析:(1)①如右图,在直角坐标系xOy 内作单位圆O ,并作出角α、β与-β,使角α的始边为Ox ,交⊙O 于点P 1,终边交⊙O 于点P 2;角β的始边为OP 2,终边交⊙O 于点P 3;角-β的始边为OP 1,终边交⊙O 于点P 4.则P 1(1,0),P 2(cos α,sin α),P 3(cos(α+β),sin(α+β)),P 4(cos(-β),sin(-β)),由P 1P 3=P 2P 4及两点间的距离公式,得[cos(α+β)-1]2+sin 2(α+β)=[cos(-β)-cos α]2+[sin(-β)-sin α]2,展示并整理得:2-2cos(α+β)=2-2(cos αcos β-sin αsin β),∴cos(α+β)=cos αcos β-sin αsin β.②由①易得cos ⎝ ⎛⎭⎪⎪⎫π2-α=sin α,sin ⎝ ⎛⎭⎪⎪⎫π2-α=cos α, sin(α+β)=cos ⎣⎢⎢⎡⎦⎥⎥⎤π2-(α+β) =cos ⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎪⎫π2-α+(-β)=cos ⎝ ⎛⎭⎪⎪⎫π2-αcos(-β)-sin ⎝ ⎛⎭⎪⎪⎫π2-αsin(-β) =sin αcos β+cos αsin β.(2)由题意,设△ABC 的角B 、C 的对边分别为b 、c ,则S =12bc sin A =12,AB →·AC →=bc cos A =3>0, ∴A ∈⎝⎛⎭⎪⎪⎫0,π2,cos A =3sin A . 又sin 2A +cos 2A =1,∴sin A =1010,cos A =31010. 由题意,cos B =35,得sin B =45. ∴cos(A +B )=cos A cos B -sin A sin B =1010. 故cos C =cos[π-(A +B )]=-cos(A +B )=-1010. 例8 已知a =(3sin ωx ,1),b =(cos ωx ,0),其中ω>0,又函数f (x )=b ·(a -b )+k 是以π2为最小正周期的周期函数,当x ∈⎣⎢⎡⎦⎥⎤0,π4时,函数f (x )的最小值为-2.(1)求f (x )的解析式;(2)写出函数f (x )的单调递增区间.分析:本题主要考查平面向量的坐标运算、二倍角公式及三角函数的性质,先化简f (x ),然后求解.解析:(1)a -b =(3sin ωx ,1)-(cos ωx ,0)=(3sin ωx -cos ωx ,1),∴f (x )=(cos ωx ,0)·(3sin ωx -cos ωx ,1)+k=sin ⎝⎛⎭⎪⎪⎫2ωx -π6-12+k . ∴T =2π2ω=π2,∴ω=2. ∵x ∈⎣⎢⎢⎡⎦⎥⎥⎤0,π4,则4x -π6∈⎣⎢⎢⎡⎦⎥⎥⎤-π6,5π6, ∴f (x )的最小值为f (0)=-12-12+k =k -1=-2. ∴k =-1,∴f (x )=sin ⎝⎛⎭⎪⎪⎫4x -π6-32. (2)当4x -π6∈⎣⎢⎢⎡⎦⎥⎥⎤2k π-π2,2k π+π2(k ∈Z), 即x ∈⎣⎢⎢⎡⎦⎥⎥⎤k π2-π12,k π2+π6(k ∈Z)时,函数f (x )为增函数. ∴函数f (x )的单调递增区间是⎣⎢⎢⎡⎦⎥⎥⎤k π2-π12,k π2+π6(k ∈Z). 点评:求函数y =A sin(ωx +φ)+k (A >0,ω>0)的最值时,若x ∉R ,要考虑ωx +φ所在的区间及单调性.►跟踪训练4.已知向量OA→=(cos α,sin α)(α∈[-π,0]),向量m =(2,1),n =(0,-5),且m ⊥(OA→-n ). (1)求向量OA→;(2)若cos(β-π)=210,0<β<π,求cos(2α-β). 解析:(1)∵OA→=(cos α,sin α), ∴OA→-n =(cos α,sin α+5). ∵m ⊥(OA →-n ),∴m ·(OA→-n )=0, 即2cos α+(sin α+5)=0.①又sin 2α+cos 2α=1,②由①②联立方程解得,cos α=-255,sin α=-55. ∴OA →=⎝⎛⎭⎪⎫-255,-55. (2)∵cos(β-π)=210,即cos β=-210,0<β<π, ∴sin β=7210,∴π2<β<π.又∵sin 2α=2sin αcos α=2×⎝⎛⎭⎪⎫-55×⎝ ⎛⎭⎪⎫-255=45, cos 2α=2cos 2α-1=2×45-1=35, ∴cos(2α-β)=cos 2αcos β+sin 2αsin β=35×⎝ ⎛⎭⎪⎫-210+45×7210=25250=22. 5.已知向量m =(sin A ,cos A ),n =(1,-2),且m ·n =0.(1)求tan A 的值;(2)求函数f (x )=cos 2x +tan A sin x (x ∈R)的值域.解析:(1)∵m ·n =0,∴sin A -2cos A =0,即sin A =2cos A .∴tan A =sin A cos A =2cos A cos A=2. (2)f (x )=cos 2x +2sin x=1-2sin 2x +2sin x=-2⎝ ⎛⎭⎪⎫sin x -122+32, ∵sin x ∈[-1,1],∴当sin x =12时,取得最大值32; 当sin x =-1时,取得最小值-3.∴f (x )的值域为⎣⎢⎡⎦⎥⎤-3,32.。
苏教版数学高一- 必修4第3章《三角恒等变换》知识整合
三角函数的求值主要有两类题型,给角求值与给值求值.给角求值一般是利用和、差、倍角公式进行变换,使其出现特殊角,若为非特殊角,则应变为可消去或约分的情况,从而求出其值.给值求值一般应先化简所求的式子,弄清实际所求,或变化已知的式子,寻找已知与所求的联系,再求值.已知α∈⎝ ⎛⎭⎪⎫π4,34π,β∈⎝ ⎛⎭⎪⎫0,π4,且cos ⎝ ⎛⎭⎪⎫π4-α=35,sin ⎝ ⎛⎭⎪⎫54π+β=-1213,求cos(α+β).分析:由已知条件要求cos(α+β),应注意到角之间的关系,α+β=⎝ ⎛⎭⎪⎫π4+β-⎝ ⎛⎭⎪⎫π4-α,可应用两角差的余弦公式求得.解析:由已知α∈⎝ ⎛⎭⎪⎫π4,34π得-α∈⎝ ⎛⎭⎪⎫-34π,-π4,∴π4-α∈⎝ ⎛⎭⎪⎫-π2,0. 又cos ⎝ ⎛⎭⎪⎫π4-α=35,∴sin ⎝ ⎛⎭⎪⎫π4-α=-45.由β∈⎝ ⎛⎭⎪⎫0,π4,得π4+β∈⎝ ⎛⎭⎪⎫π4,π2,又∵sin ⎝ ⎛⎭⎪⎫54π+β=sin ⎣⎢⎡⎦⎥⎤π+⎝ ⎛⎭⎪⎫π4+β=-sin ⎝ ⎛⎭⎪⎫π4+β=-1213,∴sin ⎝ ⎛⎭⎪⎫π4+β=1213,∴cos ⎝ ⎛⎭⎪⎫π4+β=513.由⎝ ⎛⎭⎪⎫π4+β-⎝ ⎛⎭⎪⎫π4-α=α+β,得 cos(α+β)=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+β-⎝ ⎛⎭⎪⎫π4-α=cos ⎝ ⎛⎭⎪⎫π4+βcos ⎝ ⎛⎭⎪⎫π4-α+sin ⎝ ⎛⎭⎪⎫π4+β·sin ⎝ ⎛⎭⎪⎫π4-α=513×35+1213×⎝ ⎛⎭⎪⎫-45=-3365. ◎规律总结:给值求值的关键是找出已知式与欲求式之间的差异,一般可以适当变换已知式,求得另外函数式的值,以备应用,同时也要变换欲求式,便于将已知式求得的函数值代入,从而达到解题的目的.变式训练1.已知cos(α+β)=13,cos(α-β)=15,求tan α·tan β 的值.解析:∵cos(α+β)=cos αcos β-sin αsin β=13,①cos(α-β)=cos αcos β+sin αsin β=15,②①+②得cos αcos β=415,②-①得sin αsin β=-115,∴tan αtan β=sin αsin βcos αcos β=-115415=-14.求sin 220°+cos 280°+3sin 20°cos 80°的值.解析:方法一 原式=12(1-cos 40°)+12(1+cos 160°)+32·(sin 100°-sin 60°) =1+12(cos 160°-cos 40°)+32sin 100°-34=14-sin 100°sin 60°+32sin 100° =14. 方法二 原式=sin 220°+cos 2(60°+20°)+3sin20°·cos(60°+20°)=sin 220°+⎝ ⎛⎭⎪⎫12cos 20°-32sin 20°2+3sin20°·⎝ ⎛ 12cos 20°⎭⎪⎫-32sin 20°=14sin 220°+14cos 220° =14. 方法三 令M =sin 220°+cos 280°+3sin 20°cos 80°,则其对偶式N =cos 220°+sin 280°+3cos 20°sin 80°.因为M +N =(sin 220°+cos 220°)+(cos 280°+sin 280°)+3·(sin 20°cos 80°+cos 20°sin 80°)=2+3sin 100°,①M -N =(sin 220°-cos 220°)+(cos 280°-sin 280°)+3(sin20°cos 80°-cos 20°sin 80°)=-cos 40°+cos 160°-3sin 60°=-2sin 100°sin 60°-32=-3sin 100°-32, ②所以①+②得2M =12,M =14,即sin 220°+cos 280°+3sin 20°cos 80°的值为14.◎规律总结:“给角求值”问题,一般所给出的角都是非特殊角,从表面上看是很难的,但仔细观察非特殊角与特殊角总有一定的关系,解题时,要认真观察,综合三角公式转化为特殊角并且清除非特殊角的三角函数而得解.变式训练2.求3tan 12°-3sin 12°·4cos 212°-2的值.解析:原式=3tan 12°-32sin 12°cos 24°=3tan 12°-3·2cos 12°2sin 12°·cos 12°·2cos 24°=23sin 12°-6cos 12°sin 48°=43sin 12°cos 60°-cos 12°sin 60°sin 48°=-43sin 48°sin 48°=-4 3.一元二次方程mx 2+(2m -3)x +(m -2)=0的两根为tan α,tan β.求tan(α+β)的最小值.解析:∵mx 2+(2m -3)x +m -2=0有两根tan α,tan β,∴⎩⎨⎧Δ=2m -32-4m m -2≥0,m ≠0.解得m ≤94且m ≠0.由一元二次方程的根与系数的关系得tan α+tan β=3-2m m ,tan α·tan β=m -2m.∴tan(α+β)=tan α+tan β1-tan αtan β=3-2mm1-m -2m=3-2m 2=32-m ≥32-94=-34.故tan(α+β)的最小值为-34.◎规律总结:数学问题解决的过程实质上是一个等价转化的过程,这一点务必引起高度重视.特别是综合题,条件的使用顺序和转化,以及知识之间的联系,在平时的训练中都要认真体会和总结.变式训练3.如下图,三个相同的正方形相接,试计算α+β的大小.解析:本题的实质是已知tan α=13,tan β=12,且α,β∈⎝ ⎛⎭⎪⎫0,π2,求α+β. 可通过求tan(α+β)及(α+β)的范围来求得α+β. 由图可知:tan α=13,tan β=12且α,β均为锐角.∴tan(α+β)=tan α+tan β1-tan α·tan β=13+121-13×12=1.而α+β∈(0,π),在(0,π)上正切值等于1的角只有π4,∴α+β=π4.规律总结:已知三角函数值求角,分三步进行:①先求角α+β的某一三角函数值;②确定角所在范围(或区间);③求角的值.三角函数式的化简是三角变换应用的一个重要方面,其基本思想方法是统一角,统一三角函数的名称.在具体实施过程中,应着重抓住“角”的统一.通过观察角、函数名、项的次数等,找到突破口,利用切化弦、升幂、降幂、逆用公式等手段将其化简.最后结果要求:(1)能求值尽量求值;(2)三角函数名称尽量少;(3)项数尽量少;(4)次数尽量低;(5)分母、根号下尽量不含三角函数.化简:tan 70°cos 10°·(3tan 20°-1).分析:先化切为弦,再利用特殊角的特殊值进行转换.解析:tan 70°cos 10°· (3tan 20°-1). =sin 70°cos 70°·cos 10°·⎝⎛⎭⎪⎫3·sin 20°cos 20°-1 =3cos 10°-cos 10°·sin 70°cos 70° =3cos 10°-cos 10°cos 20°2sin 10°cos 10°=3sin 20°-cos 20°2sin 10°=sin 20°cos 30°-cos 20°sin 30°sin 10°=sin 20°-30°sin 10°=-1.◎规律总结:在三角变换中,有时根据需要,可以将一特殊值还原成某一三角函数值,如:12=sin π6=cos π3;1=tan π4=sin π2=2cos π4=sin 2α+cos 2α等,如果我们在解题时巧妙地加以运用,往往会出奇制胜.三角恒等式的证明主要有两种类型:绝对恒等式与条件恒等式. 证明绝对恒等式要根据等式两边的特征,采取化繁为简,左右归一,变更命题等方法,通过三角恒等变换,使等式的两边化异为同.条件恒等式的证明则要认真观察、比较已知条件与求证等式之间的联系,选择适当途径,常用代入法、消去法、两头凑法等.证明:tan 32x -tan x 2=2sin xcos x +cos 2x.证明:左边=sin 32xcos 32x -sin x2cosx 2=sin 32x ·cos x 2-cos 32x ·sinx2cos 32x ·cosx 2=sin ⎝ ⎛⎭⎪⎫32x -x 212⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫32x +x 2+cos ⎝ ⎛⎭⎪⎫32x -x 2 =2sin x cos 2x +cos x=右边.即等式成立.方法技巧:证明三角恒等式,一般是从左证右,从右证左,或是两边分头化简得同一结果.同时要注意“切割化弦”、“化异为同”基本原则的应用.变式训练4.已知tan(α+β)=2tan β.求证:3sin α=sin(α+2β).证明:由已知tan(α+β)=2tan β可得sinα+βcosα+β=2sin βcos β.∴sin(α+β)cos β=2cos(α+β)sin β而sin(α+2β)=sin=sin (α+β)cos β+cos(α+β)sin β=2cos(α+β)sin β+cos(α+β)sin β=3cos(α+β)·sin β. 又sin α=sin=sin(α+β)cos β-cos(α+β)sin β=cos(α+β) sin β∴3sin α=sin(α+2β).设函数f(x)=a·b,其中向量a=(2cos x,1),b=(cos x,3sin 2x ),x ∈R ,(1)若f (x )=1-3且x ∈⎣⎢⎡⎦⎥⎤-π3,π3,求x .(2)若函数y =2sin 2x 的图象按向量c =(m ,n )⎝ ⎛⎭⎪⎫|m |<π2平移后得到函数y =f (x )的图象,求实数m ,n 的值.分析:本题主要考查平面向量的概念和计算、三角函数的恒等变换及其图象变换的基本技能,考查运算能力.解析:(1)依题设,f (x )=2cos 2x +3sin 2x=1+2sin ⎝ ⎛⎭⎪⎫2x +π6.由1+2sin ⎝⎛⎭⎪⎫2x +π6=1-3,得sin ⎝⎛⎭⎪⎫2x +π6=-32. ∵-π3≤x ≤π3,∴-π2≤2x +π6≤56π.∴2x +π6=-π3,即x =-π4.(2)函数y =2sin 2x 的图象按向量c =(m ,n )平移后得到函数y =2sin +n 的图象,即函数y =f (x )的图象.由(1)得f (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π12+1,∵|m |<π2,∴m =-π12,n =1.◎规律总结:涉及三角函数性质的问题时,常通过三角变换将函数式f (x )化为y =A sin(ωx +φ)的形式,进而研究相关问题,一定要加强这种训练.向量与三角函数知识的交汇是近几年高考命题的热点,要充分体会向量的工具性作用.变式训练 5.已知向量a =(3cos x,2cos x ),b =(2sin x ,cos x ),定义函数f (x )=a ·b .(1)求函数f (x )的最小正周期; (2)求函数f (x )的单调增区间.解析:(1)f (x )=a ·b =23sin x cos x +2cos 2x =3sin 2x +cos 2x +1=1+2sin ⎝ ⎛⎭⎪⎫2x +π6.∴T =2π2=π.(2)由2k π-π2≤2x +π6≤2k π+π2,k ∈Z 得:k π-π3≤x ≤k π+π6,k ∈Z ,∴f (x )的单调增区间为: ⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z)..已知锐角三角形ABC 中,sin(A +B )=35,sin(A -B )=15.(1)求证:tan A =2tan B ; (2)设AB =3,求AB 边上的高.分析:本题要求能灵活运用两角和与差的有关三角函数公式来求证、求解,且对解三角形也有一定考查.(1)证明:∵sin(A +B )=35,sin(A -B )=15,∴⎩⎪⎨⎪⎧sin A cos B +cos A sin B =35,sin A cos B -cos A sin B =15⇒⎩⎪⎨⎪⎧sin A cos B =25,cos A sin B =15⇒tan A tan B=2. ∴tan A =2tan B .(2)解析:∵π2<A +B <π,sin(A +B )=35,∴tan(A +B )=-34,即tan A +tan B 1-tan A tan B =-34.将tan A =2tan B 代入上式并整理得 2tan 2B -4tan B -1=0,解得tan B =2±62,舍去负值,得tan B =2+62.∴tan A =2tan B =2+ 6.设AB 边上的高为CD .则AB =AD +DB =CD tan A +CD tan B =3CD2+6.由AB =3,得CD =2+ 6.所以AB 边上的高等于2+6.◎规律总结:在三角函数的应用问题中,要根据问题的特点,恰当选择使用两角和(差)、倍角公式.同时,要注意数形结合、方程(组)、等价转化等数学思想的运用.变式训练6.已知角A ,B ,C 为△ABC 的三个内角,OM →=(sin B +cos B ,cos C ),ON →=(sin C ,sin B -cos B ),OM →·ON →=-15.(1)求tan 2A 的值;(2)求2cos 2A2-3sin A -12sin ⎝ ⎛⎭⎪⎫A +π4的值.解析:(1)∵OM→·ON →=(sin B +cos B )sin C +cos C (sin B -cos B )=sin(B +C )-cos(B +C )=-15,∴sin A +cos A =-15,①两边平方整理得:2sin A cos A =-2425.②∴A ∈⎝ ⎛⎭⎪⎫π2,π,由①,②解得:sin A =35,cos A =-45.∴tan A =-34,∴tan 2A =-247.(2)∵tan A =-34,∴2cos 2A2-3sin A -12sin ⎝ ⎛⎭⎪⎫A +π4=cos A -3sin Acos A +sin A=1-3tan A 1+tan A =1-3×⎝ ⎛⎭⎪⎫-341+⎝ ⎛⎭⎪⎫-34 =13.。
高中数学必修4(人教A版)第三章三角恒等变换3.1知识点总结含同步练习及答案
α 1 − cos α = 2 2 α 1 + cos α = cos2 2 2 α 1 − cos α = tan2 2 1 + cos α α sin α 1 − cos α tan = = 2 1 + cos α sin α sin 2 12 3 例题: 已知 ,α ∈ (π, π) ,求sin 2α ,cos 2α,tan 2α的值. cos α = − 13 2 12 3 解:因为cos α = − ,α ∈ (π, π) .所以 13 2 − − − − − − − − − − 5 12 2 − − − − − − − − . sin α = −√1 − cos2 α = −√1 − (− ) =− 13 13 5 12 120
)
C.
1 9
D.
√5 3
答案: B
因为 sin α =
2 1 ,所以 cos (π − 2α) = − cos 2α = − (1 − 2sin 2 α) = − . 3 9 )
B.−
3. 化简 A.
sin 2 35∘ − sin 20∘
1 2 = (
答案: B
1 2
1 2
C.−1
D.1
4. 如图,正方形 ABCD 的边长为 1 ,延长 BA 至 E,使 AE = 1 ,连接 EC , ED,则 sin ∠CED =
(1)已知 sin α =
= (− cos 83∘ )(− cos 23∘ ) + sin 83∘ sin 23∘ = cos(83∘ − 23∘ ) 1 = cos 60∘ = . 2
sin(
π π π + α) = sin cos α + cos sin α 3 3 3 4 1 3 √3 = × + × 2 5 2 5 4√3 + 3 = 10 π π π − α) = sin cos α − cos cos α 3 3 3 4 1 3 √3 = × − × 2 5 2 5 3 − 4√3 = 10
数学必修4本章概览 第3章三角恒等变换 含解析 精品
第3章三角恒等变换
本章概览
三维目标
1.了解用单位圆与向量的数量积推导出两角差的余弦公式的过程,进一步体会到向量方法在解决数学问题中的重要作用;发展我们的应用意识和能力.培养探究数学问题的兴趣和能力.
2.能借助两角差的余弦公式导出两角和与差的正弦、余弦、正切公式及二倍角的正弦、余弦、正切公式,了解它们之间的内在联系.熟记两角和与差的正弦、余弦、正切公式及二倍角的正弦、余弦、正切公式并会灵活地正用、逆用、变形用,体验量与量之间的联系,感受其中的变化规律, 培养我们的科学探究精神.
3.能运用上述公式进行简单的恒等变换、会推导出半角公式、积化和差与和差化积公式,进一步提高运用联系转化的观点处理问题的自觉性,体会一般与特殊、换元、方程的思想、数形结合的思想在解决三角函数问题中的作用;
4.灵活运用角的变换处理三角函数问题的求解、证明与化简;会用三角恒等变换解决一些简单的实际问题(如求山顶上电视塔的高,物理中有关力的最小值问题及日常生活中材料的节省问题等)认识到三角变换在求一些非特殊角的三角函数值的应用,培养学习三角函数的兴趣.
知识网络。
(word完整版)必修四三角函数和三角恒等变换知识点及题型分类总结,文档.docx
三角函数知识点总结1、任意角:正角:;负角:;零角:;2、角的顶点与重合,角的始边与重合,终边落在第几象限,则称为第几象限角.第一象限角的集合为第二象限角的集合为第三象限角的集合为第四象限角的集合为终边在 x 轴上的角的集合为终边在 y 轴上的角的集合为终边在坐标轴上的角的集合为3、与角终边相同的角的集合为4、已知是第几象限角,确定n* 所在象限的方法:先把各象限均分n 等份,n再从 x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则原来是第几象限对应的标号即为终边所落在的区域.5、n叫做 1弧度.6、半径为r的圆的圆心角所对弧的长为 l,则角的弧度数的绝对值是.7、弧度制与角度制的换算公式:8、若扇形的圆心角为为弧度制,半径为 r ,弧长为 l ,周长为 C ,面积为 S ,则l=.S=9、设是一个任意大小的角,的终边上任意一点的坐标是 x, y ,它与原点的距离是 r r x2y20 ,则sin y, cosx, tan y x0 .r r x10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.11、三角函数线:.12、同角三角函数的基本关系:(1);(2);(3)13、三角函数的诱导公式:1 sin 2k sin,cos 2k cos,tan 2k tan k.2 sin sin,cos cos,tan tan.4 sin sin,cos cos,tan tan.5 sin cos,cos sin.226 sin cos,cos sin.22口诀:奇变偶不变,符号看象限.重要公式⑴ cos cos cos sin sin;⑵ cos cos cos sin sin;⑶ sin sin cos cos sin;⑷ sin sin cos cos sin;⑸ tantan tan(tan tan tan1tan tan);1 tan tan⑹ tantan tan(tan tan tan1tan tan).1 tan tan二倍角的正弦、余弦和正切公式:⑴sin22sin cos.(2)cos2 cos2sin22cos2 1 1 2sin2( cos2cos21, sin 2 1 cos 2).⑶ tan22tan.221tan2公式的变形:tan tan tan() ? 1 tan tan,辅助角公式sin cos22 sin,其中 tan.14、函数y sin x 的图象平移变换变成函数y sin x的图象.15. 函数 y sin x0,0 的性质:① 振幅:;②周期:2;③频率: f1;④相位: x;⑤初相:.216 .图像正弦函数、余弦函数和正切函数的图象与性质:三角函数题型分类总结一.求值1、 sin330 ==sin 585 o=tan690 °2、( 1) (07 全国Ⅰ )是第四象限角, cos12,则 sin13( 2)( 09 北京文)若 sin4, tan 0 ,则 cos.512( 3)( 09 全国卷Ⅱ文)已知 △ABC 中, cot A.,则 cosA15(4)是第三象限角, sin()cos =cos(5) =,则223、 (1) (07 陕西 ) 已知 sin5, 则 sin 4cos 4 =.5(2) ( 04 全国文)设(0,3 ,则 2 cos() = .) ,若 sin254( 3)( 06 福建)已知( , ),sin 3, 则 tan() =2544( 07 重庆) 下列各式中,值为3的是 ( )2( A ) 2sin15 cos15 ( B ) cos 2 15 sin 2 15 ( C ) 2 sin 2 15 1( D ) sin 2 15 cos 2 155. (1)(07 福建 ) sin15 o cos75o cos15o sin105 o =(2)( 06 陕西) cos43o cos77 osin 43o cos167o =。
高中数学必修四第三章 三角恒等变换知识点总结
第三章 三角恒等变换一、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sinsin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ--=+ ⇒ ()()tan tan tan 1tan tan αβαβαβ-=-+⑹()tan tan tan 1tan tan αβαβαβ++=- ⇒ ()()tan tan tan 1tan tan αβαβαβ+=+-二、二倍角的正弦、余弦和正切公式:sin 22sin cos ααα=222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-⇒221cos 2cos1cos 2sin22αααα+=-=,⇒2cos 21cos 2αα+=,21cos 2sin 2αα-=.⑶22tan tan 21tan ααα=-.三、辅助角公式:()22sin cos sin α+=++a x b x a b x ,2222cos sin a b a ba bϕϕϕ==++其中由,决定四、三角变换方法:(1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如:①α2是α的二倍;α4是α2的二倍;α是2α的二倍;2α是4α的二倍;②2304560304515o ooooo=-=-=;③()ααββ=+-;④()424πππαα+=--; ⑤2()()()()44ππααβαβαα=++-=+--;等等 (2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。
高中数学必修4第三章3.2简单的三角恒等变换
一、复习:两角和的正弦、余弦、正切公式:
sin sin cos cos sin
cos cos cos sin sin
tan
tan tan 1 tan tan
二sin 2 2sin cos
=3(cosx 2)2 1 33
又 x 2 , 1 cosx 1 ,
3 当x= 2
3
32
时,(cosx) min
1 2
,
y2max=145
;
当x=
3
时,(cosx) max
1 2
, ymin=
1 4.
七、y (a sinx+cosx)+bsinxcosx型
例7 求函数y sinx+cosx+sinxcosx的最值. <分析>注意到(sinx+cosx)2=1 2sinxcosx.可把sinx+cosx
sin2 1 cos 2
2
降幂升角公式
二、讲授新课:
例1.试以cos表示sin2 ,cos2 ,tan2 .
2
2
2
半角公式
sin 1 cos ,
2
2
cos 1 cos ,
2
2
tan 1 cos .
符号由α所在象限决定. 2
1 cos
2
1.半角公式
sin 1 cos
分析:要求当角取何值时,矩形ABCD的面积 S最大, 可分二步进行. ①找出S与之间的函数关系; ②由得出的函数关系,求S的最大值.
解 在Rt△OBC中,OB=cos,BC=sin 在Rt△OAD中,
高二必修四数学三角恒等变换知识点
高二必修四数学三角恒等变换知识点 2019 年
在中国古代把数学叫算术,又称算学,最后才改为数学。
以下是查词典大学网为大家整理的高二必修四数学三角恒
等变换知识点,希望能够解决您所碰到的有关问题,加油,
查词典大学网向来陪同您。
知识构造:
1. 两角和与差的正弦、余弦和正切公式
要点:经过探究和议论沟通,导出两角差与和的三角函数的
十一个公式,并认识它们的内在联系。
难点:两角差的余弦公式的探究和证明。
2. 简单的三角恒等变换
要点:掌握三角变换的内容、思路和方法,领会三角变换的
特色.
难点:公式的灵巧应用 .
三角函数几点说明:
1. 对弧长公式只需求认识,会进行简单应用,不用在应用方
面加深 .
2. 用同角三角函数基本关系证明三角恒等式和求值计算,熟
练副角和 sin 和 cos 的计算 .
3. 已知三角函数值求角问题,达到课本要求即可,不用拓展 .
4. 娴熟掌握函数 y=Asin(wx+j) 图象、单一区间、对称轴、对
称点、特别点和最值 .
第 1 页
5. 积化和差、和差化积、半角公式只作为练习,不要求记忆 .
6. 两角和与差的正弦、余弦和正切公式
最后,希望小编整理的高二必修四数学三角恒等变换知识点
对您有所帮助,祝同学们学习进步。
第 2 页。
人教B版高中数学必修四《第三章 三角恒等变换 本章小结》_3
课题:三角恒等变换【学习目标】1、进一步掌握三角恒等变换的方法。
2、熟练运用三角公式对三角函数式进行化简、求值和证明,培养数学运算核心素养。
3、体会转化与化归思想的应用。
【重点、难点】重点:能运用三角公式进行简单的恒等变换。
难点:三角公式的变形及灵活运用。
【自主学习】1、两角和与差的正弦、余弦、正切公式()()()()()()cos ______________________;cos ______________________sin ______________________;sin ______________________tan ______________________;tan _____________________αβαβαβαβαβαβ+=-=+=-=+=-= 2、二倍角公式sin 2______________cos 2________________________tan 2______________ααα=====3、升幂公式1cos 2_________;1cos 2_________αα+=-=4、降幂公式22sin cos _________;cos _________;sin _________αααα===5、辅助角公式sin cos __________________y a wx b wx =+=【合作探究】探究活动一给值求值:角的灵活变换思想在三角恒等变换中的应用例1、设32,cos 25θπθπ<<=-,求2sin ,cos ,sin 4θθθ的值。
变式1:已知tan 123ππαβ⎛⎫⎛⎫+=-= ⎪ ⎪⎝⎭⎝⎭tan 4παβ⎛⎫+- ⎪⎝⎭的值。
【方法规律】:给值求值的重要思想是探求已知式与待求式之间的关系,常常在进行角的变换时,要注意各角之间的和、差、倍、半的关系,如:()2,2ααααββ⎛⎫==+- ⎪⎝⎭,探究活动二有关证明问题例2、求证:()sin tan tan cos cos αβαβαβ-=-变式2:(2016江门高一调研)已知21)s in(=+βα,31)sin(=-βα.求证:βαtan 5tan =【方法规律】证明三角恒等式的实质是消除等式两边的差异,有目的的化繁为简,左右归一或变更论证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修4知识点总结
第三章 三角恒等变换
24、两角和与差的正弦、余弦和正切公式:
⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;
⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;
⑸()tan tan tan 1tan tan αβαβαβ
--=+ ⇒ (()()tan tan tan 1tan tan αβαβαβ-=-+); ⑹()tan tan tan 1tan tan αβαβαβ++=
- ⇒ (()()tan tan tan 1tan tan αβαβαβ+=+-). 25、二倍角的正弦、余弦和正切公式:
⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒
⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-
⇒升幂公式2
sin 2cos 1,2cos 2cos 122α
ααα=-=+ ⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2
αα-=. ⑶22tan tan 21tan ααα=-. 26、
⇒(后两个不用判断符号,更加好用)
27、合一变形⇒把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(
ϕϖ形式。
()sin cos αααϕA +B =+,其中tan ϕB =A
. 28、三角变换是运算化简的过程中运用较多的变换,提高三角变换能力,要学会创设条件,灵活运用三角公式,掌握运算,化简的方法和技能.常用的数学思想方法技巧如下:
(1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角与角之间的和差,
倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如: ①α2是α的二倍;α4是α2的二倍;α是2α的二倍;2α是4
α的二倍; ②2304560304515o
o
o o o o =-=-=;问:=12sin π ;=12cos π ; ααααααα半角公式cos 1cos 12t an 2
cos 12sin ;2cos 12cos :+-±=-±=+±=2tan 12tan 1 cos ;2tan 12tan 2 sin :2
2
2αααααα万能公式+-=+=
③ββαα-+=)(;④)4(24απ
π
απ
--=+; ⑤)4()4()()(2απ
απ
βαβαα--+=-++=;等等
(2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。
如在三角函数中正余弦是基础,通常
化切为弦,变异名为同名。
(3)常数代换:在三角函数运算,求值,证明中,有时需要将常数转化为三角函数值,例如常数“1”的
代换变形有:
o o 45tan 90sin cot tan cos sin 122===+=αααα
(4)幂的变换:降幂是三角变换时常用方法,对次数较高的三角函数式,一般采用降幂处理的方法。
常用
降幂公式有: ; 。
降幂并非绝对,有时需要升幂,如对无理式αcos 1+常用升幂化为有理式,常用升幂公式有: ; ;
(5)公式变形:三角公式是变换的依据,应熟练掌握三角公式的顺用,逆用及变形应用。
如:_______________tan 1tan 1=-+αα; ______________tan 1tan 1=+-α
α; ____________tan tan =+βα;___________tan tan 1=-βα;
____________tan tan =-βα;___________tan tan 1=+βα;
=αtan 2 ;=-α2tan 1 ;
=++o o o o 40tan 20tan 340tan 20tan ;
=+ααcos sin = ;
=+ααcos sin b a = ;(其中
=ϕtan ;)
=+αcos 1 ;=-αcos 1 ;
(6)三角函数式的化简运算通常从:“角、名、形、幂”四方面入手;
基本规则是:见切化弦,异角化同角,复角化单角,异名化同名,高次化低次,无理化有理,特殊值
与特殊角的三角函数互化。
如:=+)10tan 31(50sin o o ; =-ααcot tan 。