人教版初三数学上册认识二次函数

合集下载

人教版九年级数学上册第22章二次函数知识点总结

人教版九年级数学上册第22章二次函数知识点总结

人教版九年级数学二次函数在中考中知识点总结一、相关概念及定义1 二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2 二次函数2y ax bx c =++的结构特征:(1)等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.(2)a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数各种形式之间的变换1二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.2 二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2. 三、二次函数解析式的表示方法1 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).4 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 四、二次函数2y ax bx c =++图象的画法1 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).2 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、二次函数2ax y =的性质六、二次函数2y ax c =+的性质七、二次函数y a x h =-的性质:八、二次函数y a x h k =-+的性质九、抛物线y ax bx c =++的三要素:开口方向、对称轴、顶点.1 a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.2对称轴:平行于y 轴(或重合)的直线记作2bx a=-.特别地,y 轴记作直线0=x . 3顶点坐标:),(ab ac a b 4422--4顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 十、抛物线c bx ax y ++=2中,c b a ,,与函数图像的关系 1 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba ->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.总结: 3常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 十一、求抛物线的顶点、对称轴的方法1公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=.2配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.3运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 十二、用待定系数法求二次函数的解析式1一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式.2顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.3交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=.十三、直线与抛物线的交点1y 轴与抛物线c bx ax y ++=2得交点为(0, c ).2与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2).3抛物线与x 轴的交点:二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定: ①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. 4平行于x 轴的直线与抛物线的交点可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.5 一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G的交点,由方程组 2y k xn y a x b x c =+⎧⎨=++⎩的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.6抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故a cx x a b x x =⋅-=+2121,()()a a ac b a c a b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=--=-=-=444222122122121十四、二次函数图象的对称:二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1关于x 轴对称2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---; 2关于y 轴对称 2y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3关于原点对称 2y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-;()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4关于顶点对称2y a x b x c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5关于点()m n ,对称()2y a x h k=-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-总结:根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式. 十五、二次函数图象的平移 1.平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2平移规律在原有函数的基础上 “h 值正右移,负左移;k 值正上移,负下移”.概括成八个字 “左加右减,上加下减”.十六、根据条件确定二次函数表达式的几种基本思路。

人教版九年级数学上册课件:二次函数的定义优秀ppt课件

人教版九年级数学上册课件:二次函数的定义优秀ppt课件
解:(1)a 0 (2)a 0,b 0
(3)a 0,b 0,c 0
人教版九年级数学上册课件:2二2.次1.函1 数二的次定函 义数优的秀定p义pt(共 课2件1 张PPT)
人教版九年级数学上册课件:2二2.次1.函1 数二的次定函 义数优的秀定p义pt(共 课2件1 张PPT)
展示才智
注意:(1)等号左边是变量y,右边是关于自变量
x的 整式。
(2)a,b,c为常数,且 a≠0.
(3 )等式的右边最高次数为 2 ,可以没有
一次项和常数项,但不能没有二次项。 (4)x的取值范围是任意实数。
人教版九年级数学上册课件:2二2.次1.函1 数二的次定函 义数优的秀定p义pt(共 课2件1 张PPT)
一般地,形如y=kx(k是常数,k≠0)的函数, 叫做正比例函数,其中k叫做比例系数。
一般地,形如y=kx+b(k,b为常数, k≠0)的函数,叫做一次函数.
合作学习,探索新知 :
请用适当的函数解析式表示下列问题情 境中的两个变量 y 与 x 之间的关系:
(1)正方体的棱长为a ,表面积为S。S与a 之间有什么关系呢?S =6a2
2、下列函数中,哪些是二次函数?
(1) y 3x2 2 (2) y x2 1
x (3) y (x 2)(x 3)
(是 ) ( 否) ( 是)
(4)y x2 2x 3
( 否)
Байду номын сангаас
(5) y (x 2)( x 2) (x 1)2 ( 否 )
人教版九年级数学上册课件:2二2.次1.函1 数二的次定函 义数优的秀定p义pt(共 课2件1 张PPT)
九年级数学
第22章
第一节
二次函数

数学人教版九年级上册22.1.1二次函数概念

数学人教版九年级上册22.1.1二次函数概念

一农民用40m长的篱笆围成一个一边靠墙的长方形 菜园,和墙垂直的一边长为Xm,菜园的面积为Ym2, 求y与x之间的函数关系式,并说出自变量的取值范围。 当x=12m时,计算菜园的面积。 解:由题意得: Y=x(40-2x)
即:Y=-2x2+40x (0<x<20) 当x=12m时,菜园的面积为:(40-2x )m Y=-2x2+40x=-2×122+40×12 =192(m2)
1 m n ( n 1) 2
n个球队参加比赛,每两队之间进行一场 比赛.比赛的场数m与球队n有什么关系?
即:
1 2 1 m n n 2 2
此式表示了比赛场数m与 球队个数n之间的关系, 对于n的每一个值,m都有一个对应值,即m是n的函数.
问题3:
某工厂一种产品现在的年产量是20件,计划 今后两年增加产量.如果每年都比上一年的产量增加x 倍,那么两年后这种产品的产量y将随计划所定的x的 值而确定, y与x之间的关系怎样表示?
m 2 2
小结:二次函数 2 a 0) 定义:二次函数 y ax bx c(a, b, c是常数,
(1)等号左边是变量y,右边是关于自变量x的整式。
(2)a,b,c为常数,a≠0
(3)等式右边最高次数为2,可以没有 一次项和常数项,但不能没有二次项
(4)x的取值范围是任意实数
例1、下列函数中,哪些是二次函数?若是, 分别指出二次项系数,一次项系数,常数项。
(1) y=3(x-1)² +1
(3) s=3-2t² 1 __ (5)y= -x x²
(2) y=(x+3)² -x²
(6) v=8π r²
解: (1) y =3(x2-2x+1)+1 (4) y=(x+3)² -x² =x2+6x+9-x2 =3x2-6x+3+1

人教版九年级数学上册第22章《 二次函数》

人教版九年级数学上册第22章《 二次函数》
总结
当二次项系数是待定字母时,求出字母的 值必须满足二次项系数不为0这一条件.
第二十二章 二次函数
1.若函数y=(m-1)x2+4x-5(m是常数)是二次函数,则 ( B) A.m≠-1 B.m≠1 C.m≠2 D.m≠-2
2.若y=(m-2)xm2-2是二次函数,则m的值是( B )
A.2
B.-2 C.2或-2 D.4
第二十二章 二次函数
1.根据实际问题列二次函数的解析式,一般要经历以下几 个步骤: (1)确定自变量与函数代表的实际意义; (2)找到自变量与因变量之间的等量关系,根据等量关 系列出方程或等式. (3)将方程或等式整理成二次函数的一般形式.
2.易错警示:一般情况下,二次函数中自变量的取值范 围是全体实数,但对实际问题的自变量的取值范围必 须使实际问题有意义.
两年后的产量 y=20(1+x)2,
即y=20x2+40x+20.
第二十二章 二次函数
二次函数的定义 一般地,形如y=ax2+bx+c(a,b,c是常 数,a≠0)的函数,叫做二次函数 (quadratic function).其中,x是自变量,a, b,c分别是函数解析式的二次项系数、一次 项系数和常数项.
数的二次项系数、一次项系数和常数项.
(1)y=7x-1;
(2)y=-5x2;
(3)y=3a3+2a2;
(4)y=x-2+x;
(5)y=3(x-2)(x-5);(6)y=x2+
1 x2
.
分析:判断一个函数是否是二次函数,要紧扣定义并将其 化简再判断.(1)是一次函数;(2)是二次函数,二 次项系数为-5,一次项系数和常数项为0;(3)中 自变量的最高次数是3,所以不是二次函数;(4)中 x-2不是整式,所以不是二次函数;把(5)整理得到 y=3x2-21x+30,是二次函数,二次项系数为3, 一次项系数为-21,常数项为30;(6)中,因为是 个分式,所以不是二次函数.

初三上册数学二次函数知识点(5篇)

初三上册数学二次函数知识点(5篇)

初三上册数学二次函数知识点(5篇)1.初三上册数学二次函数的定义篇一一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做x的二次函数.如y=3x2,y=3x2-2,y=2x2+x-1等都是二次函数。

注意:(1)二次函数是关于自变量的二次式,二次项系数a必须是非零实数,即a≠0,而b,c是任意实数,二次函数的表达式是一个整式;(2)二次函数y=ax2+bx+c(a,b,c是常数,a≠0),自变量x的取值范围是全体实数;(3)当b=c=0时,二次函数y=ax2是最简单的二次函数;(4)一个函数是否是二次函数,要化简整理后,对照定义才能下结论,例如y=x2-x(x-1)化简后变为y=x,故它不是二次函数。

2.初三上册数学二次函数y=ax2+c的图象与性质篇二(1)抛物线y=ax2+c的形状由a决定,位置由c决定。

(2)二次函数y=ax2+c的图象是一条抛物线,顶点坐标是(0,c),对称轴是y 轴。

当a>0时,图象的开口向上,有最低点(即顶点),当x=0时,y最小值=c.在y轴左侧,y随x的增大而减小;在y轴右侧,y随x增大而增大。

当a<0时,图象的开口向下,有最高点(即顶点),当x=0时,y最大值=c.在y轴左侧,y随x的增大而增大;在y轴右侧,y随x增大而减小。

(3)抛物线y=ax2+c与y=ax2的关系。

抛物线y=ax2+c与y=ax2形状相同,只有位置不同.抛物线y=ax2+c可由抛物线y=ax2沿y轴向上或向下平行移动|c|个单位得到.当c>0时,向上平行移动,当c<0时,向下平行移动。

3.初三上册数学二次函数的平移规律口诀篇三上加下减,左加右减y=a(x+b)2+c,是将y=ax2的二次函数图像按以下规律平移(1)c>0时,图像向上平移c个单位(上加上)。

(2)c<0时,图像向下平移c个单位(下减)。

(3)b>0时,图像向左平移b个单位(左加)。

九年级数学上册第二十二章二次函数知识点总结(新版)新人教版

九年级数学上册第二十二章二次函数知识点总结(新版)新人教版

九年级数学上册:第22章 二次函数知识点归纳及相关典型题第一部分 基础知识1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2ax y =的性质(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系.①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a . 3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线. 4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.5. 二次函数由特殊到一般,可分为以下几种形式: ①2axy =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.6.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 越大,抛物线的开口越小;a 越小,抛物线的开口越大。

②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=, ∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=.(2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称点的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a b x 2-=,故:①0=b 时,对称轴为y 轴;②0>ab(即a 、b 同号)时,对称轴在y 轴左侧;③0<a b(即a 、b 异号)时,对称轴在y 轴右侧,“左同右异”.(3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴.10.几种特殊的二次函数的图像特征如下:11.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ).(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah++2).(3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故ac x x a b x x =⋅-=+2121,()()a a acb ac a b x x x x x x x x AB ∆=-=-⎪⎭⎫⎝⎛-=--=-=-=444222122122121中考回顾1.(2017天津中考)已知抛物线y=x 2-4x+3与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M.平移该抛物线,使点M 平移后的对应点M'落在x 轴上,点B 平移后的对应点B'落在y 轴上,则平移后的抛物线解析式为( A )A.y=x 2+2x+1B.y=x 2+2x-1C.y=x 2-2x+1D.y=x 2-2x-12.(2017四川成都中考)在平面直角坐标系xOy 中,二次函数y=ax 2+bx+c 的图象如图所示,下列说法正确的是( B )A. abc<0, b 2-4ac>0B. abc>0, b 2-4ac>0C. abc<0, b 2-4ac<0D. abc>0, b 2-4ac<03.(2017内蒙古赤峰中考)如果关于x 的方程x 2-4x+2m=0有两个不相等的实数根,那么m 的取值范围是 m<2 .4.(2017内蒙古赤峰中考)如图,二次函数y=ax 2+bx+c (a ≠0)的图象交x 轴于A ,B 两点,交y 轴于点D ,点B 的坐标为(3,0),顶点C 的坐标为(1,4).备用图(1)求二次函数的解析式和直线BD 的解析式;(2)点P 是直线BD 上的一个动点,过点P 作x 轴的垂线,交抛物线于点M ,当点P 在第一象限时,求线段PM 长度的最大值;(3)在抛物线上是否存在异于B ,D 的点Q ,使△BDQ 中BD 边上的高为2,若存在求出点Q 的坐标;若不存在请说明理由.解:(1)设二次函数的解析式为y=a (x-1)2+4.∵点B (3,0)在该二次函数的图象上, ∴0=a (3-1)2+4,解得:a=-1.∴二次函数的解析式为y=-x 2+2x+3.∵点D 在y 轴上,所以可令x=0,解得:y=3. ∴点D 的坐标为(0,3).设直线BD 的解析式为y=kx+3,把(3,0)代入得3k+3=0,解得:k=-1. ∴直线BD 的解析式为y=-x+3.(2)设点P 的横坐标为m (m>0), 则P (m ,-m+3), M (m ,-m 2+2m+3),PM=-m2+2m+3-(-m+3)=-m2+3m=-, PM最大值为(3)如图,过点Q作QG∥y轴交BD于点G,作QH⊥BD于点H,则QH=2设Q(x,-x2+2x+3),则G(x,-x+3),QG=|-x2+2x+3-(-x+3)|=|-x2+3x|.∵△DOB是等腰直角三角形,∴∠3=45°,∴∠2=∠1=45°.∴sin∠1=,∴QG=4.得|-x2+3x|=4,当-x2+3x=4时,Δ=9-16<0,方程无实数根.当-x2+3x=-4时,解得:x1=-1,x2=4,Q1(4,-5),Q2(-1,0).模拟预测1.已知二次函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是(D)A.k<3B.k<3,且k≠0C.k≤3D.k≤3,且k≠02.若点M(-2,y1),N(-1,y2),P(8,y3)在抛物线y=-x2+2x上,则下列结论正确的是(C)A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2解:x=-2时,y1=-x2+2x=-(-2)2+2×(-2)=-2-4=-6,x=-1时,y2=-x2+2x=-(-1)2+2×(-1)=--2=-2,x=8时,y3=-x2+2x=-82+2×8=-32+16=-16.∵-16<-6<-2,∴y3<y1<y2.故选C.3.已知一元二次方程ax2+bx+c=0(a>0)的两个实数根x1,x2满足x1+x2=4和x1·x2=3,则二次函数y=ax2+bx+c(a>0)的图象有可能是()解析:∵x1+x2=4,∴-=4.∴二次函数的对称轴为x=-=2.∵x1·x2=3,=3.当a>0时,c>0,∴二次函数图象交于y轴的正半轴.4.小明在用“描点法”画二次函数y=ax2+bx+c的图象时,列了如下表格:x…-2 -1 0 1 2 …y…-6-4 -2-2 -2…根据表格中的信息回答问题:该二次函数y=ax2+bx+c在x=3时,y=-4.5.若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为k=0或k=-1.6.抛物线y=-x2+bx+c的图象如图,若将其向左平移2个单位长度,再向下平移3个单位长度,则平移后的解析式为.解析:由题中图象可知,对称轴x=1, 所以- =1,即b=2.把点(3,0)代入y=-x2+2x+c,得c=3.故原图象的解析式为y=-x2+2x+3,即y=-(x-1)2+4,然后向左平移2个单位,再向下平移3个单位,得y=-(x-1+2)2+4-3,即y=-x2-2x. 答案:y=-x2-2x7.如图①,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上(点A与点B不重合),我们把这样的两抛物线L1,L2互称为“友好”抛物线,可见一条抛物线的“友好”抛物线可以有很多条.(1)如图②,已知抛物线L3:y=2x2-8x+4与y轴交于点C,试求出点C关于该抛物线对称轴对称的对称点D的坐标;(2)请求出以点D为顶点的L3的“友好”抛物线L4的解析式,并指出L3与L4中y同时随x增大而增大的自变量的取值范围;(3)若抛物线y=a1(x-m)2+n的任意一条“友好”抛物线的解析式为y=a2(x-h)2+k,请写出a1与a2的关系式,并说明理由.解:(1)∵抛物线L3:y=2x2-8x+4,∴y=2(x-2)2-4.∴顶点为(2,-4),对称轴为x=2,设x=0,则y=4,∴C(0,4).∴点C关于该抛物线对称轴对称的对称点D的坐标为(4,4).(2)∵以点D(4,4)为顶点的L3的友好抛物线L4还过点(2,-4),∴L4的解析式为y=-2(x-4)2+4.∴L3与L4中y同时随x增大而增大的自变量的取值范围是2≤x≤4.(3)a1=-a2,理由如下:∵抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上,∴可以列出两个方程由①+②,得(a1+a2)(m-h)2=0,∴a1=-a2.。

九年级上册数学二次函数知识点

九年级上册数学二次函数知识点

九年级上册数学二次函数知识点
九年级上册数学主要学习了以下二次函数的知识点:
1. 二次函数的定义:二次函数是一种具有形式为f(x) = ax^2 + bx + c的函数,其中
a、b和c是实数且a≠0。

2. 二次函数的图像:二次函数的图像通常是一个抛物线,可以是开口向上或开口向下的。

开口向上的抛物线对应的二次函数的二次系数大于0,开口向下的抛物线对应的二次函数的二次系数小于0。

3. 抛物线的顶点:对于二次函数f(x) = ax^2 + bx + c,其中a≠0,顶点的横坐标是x = -b/2a,纵坐标是f(-b/2a)。

4. 抛物线的对称轴:对于二次函数f(x) = ax^2 + bx + c,其中a≠0,对称轴的方程是x = -b/2a。

5. 抛物线的焦点:对于二次函数f(x) = ax^2 + bx + c,其中a≠0,焦点的横坐标是x = -b/2a,纵坐标是f(-b/2a) + 1/(4a)。

6. 抛物线的平移和缩放:通过改变二次函数的系数a、b和c,可以平移、缩放和翻转抛物线的图像。

以上就是九年级上册数学中二次函数的主要知识点。

除此之外,你还可以学习二次函数的性质、二次函数与一次函数、指数函数等函数的关系,以及解二次方程等相关的内容。

22.1.3 二次函数的y=a(x-h)2+k的图像和性质2024-2025学年人教版数学九年级上册

22.1.3 二次函数的y=a(x-h)2+k的图像和性质2024-2025学年人教版数学九年级上册
− 3
的解析式为 = −. − ,则=____
(3) 若抛物线 = + 的最小值为 4,且经过点(1,5),
则该抛物线的解析式是_________,将此抛物线向下平移
3
= +
= +
个单位,得到的新的抛物线的解析式是__________.
课堂小结
第二十二章 二次函数
22.1 二次函数的图象和性质
第3课时 二次函数的

= ( − ) +的图像和性质
第1节 二次函数 = + 的图像和性质
第2节 二次函数 = ( − ) 的图象和性质
第3节 二次函数 = ( − ) +的图象和性质
九年级上册•人教版
学习目标
中的三条抛物线分别表示桥上的三条钢梁,轴表示桥面,轴经过中
间抛物线的最高点,左右两条抛物线关于轴对称.经过测算,中间抛
物线的函数解析式为 =



+ .
你能计算出中间抛物线的最高点离轴的高度吗?
O
猎豹图书
x
获取新知
例1
在同一直角坐标系中,通过画出二次函数 = + ,
1 x2
y

;把抛物线
2 向右 平移 1 个单位就
得到抛物线y - 12(x-1)
2
(
− )
平移
的图象还可以由抛物线
2
个单位得到.
y
O
-4
-2
2
y - 1(x-1)
2
2
4 x
-2
2
y - 1(x+1)
2
-4
-6
-8

人教版初中数学九年级上册二次函数重点知识归纳

人教版初中数学九年级上册二次函数重点知识归纳

人教版初中数学九年级上册二次函数重点知识归纳知识点1 二次函数的概念和一般形式1.概念:一般地,形如y=ax2+bx+c(a ,b ,c 是常数,a≠0)的函数,叫做二次函数。

其中, x 是自变量,a,b,c 分别是函数解析式的二次项系数、一次项系数和常数项。

【注意】(1)自变量x的最高次数是2,a≠0,b,c可以为0;(2)含自变量x 的代数式是整式而不是分式或根式。

2.一般式:y=ax2+bx+c(a ,b ,c 是常数,a≠0)知识点2 二次函数的图像和性质1.二次函数的图像:是一条平滑的曲线叫做抛物线。

2.二次函数图像的画法:①列表;②描点;③连线。

3.二次函数的解析式(4种形式)(1)y = ax 2(a≠0)(2)y = ax 2+k(a,k是常数,a≠0)(3)y = a(x-h)2(a,h是常数,a≠0)(4)y = a(x-h)2+k(a,k,h是常数,a≠04.二次函数的图像和性质:分别从五种图像(4种特殊+1个一般式)和7个性质(顶点特点、开口方向、顶点坐标、对称轴、最值、增减性、形状和大小等7个方面研究)。

如下图:二次函数的图像与性质a <05.图像平移后的解析式:y = a(x-h)2+k(a,k,h是常数,a≠0)平移规则:左加右减,上加下减。

知识点3 用待定系数法求二次函数的解析式:一般式、顶点式、交点式。

(1)已知抛物线上普通的3点的坐标,一般选用一般式;(2)顶点在原点,可设y = ax 2(3)顶点在x轴上,若抛物线与x轴有一个交点,可设y = a(x-h)2;若抛物线与x轴有两个交点,可设y=a(x-x1)(x-x2);(4)顶点在y轴上(或对称轴在y轴上),可设y = ax 2+k;(5)已知顶点(h,k),可设顶点式y = a(x-h)2+k知识点4 二次函数与一元二次方程的关系1. 二次函数与一元二次方程的关系二次函数y=ax2+bx+c(a≠0)的图像与x轴(直线y=0)交点的横坐标就是一元二次方程ax2+bx+c=0的解。

九年级上册数学二次函数知识点汇总

九年级上册数学二次函数知识点汇总

新人教版九年级上二次函数知识点总结知识点一:二次函数的定义 1.二次函数的定义:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数. 其中a 是二次项系数,b 是一次项系数,c 是常数项.知识点二:二次函数的图象与性质⇒⇒抛物线的三要素:开口、对称轴、顶点2. 二次函数()2y a x h k =-+的图象与性质(1)二次函数基本形式2y ax =的图象与性质:a 的绝对值越大,抛物线的开口越小(2)2y ax c =+的图象与性质:上加下减(3)()2y a x h=-的图象与性质:左加右减(4)二次函数()2y a x h k =-+的图象与性质3. 二次函数c bx ax y ++=2的图像与性质(1)当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2bx a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a=-时,y 有最小值244ac b a-.(2)当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a=-时,y 有最大值244ac b a-.4. 二次函数常见方法指导(1)二次函数2y ax bx c =++图象的画法 ①画精确图 五点绘图法(列表-描点-连线)利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.②画草图 抓住以下几点:开口方向,对称轴,与y 轴的交点,顶点. (2)二次函数图象的平移 平移步骤:① 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ② 可以由抛物线2ax 经过适当的平移得到具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位平移规律:概括成八个字“左加右减,上加下减”. (3)用待定系数法求二次函数的解析式 ①一般式:.已知图象上三点或三对、的值,通常选择一般式. ②顶点式:.已知图象的顶点或对称轴,通常选择顶点式.③交点式:.已知图象与轴的交点坐标、,通常选择交点式.(4)求抛物线的顶点、对称轴的方法①公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=. ②配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.③运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点. (5)抛物线c bx ax y ++=2中,c b a ,,的作用①a 决定开口方向及开口大小,这与2ax y =中的a 完全一样. ②b 和a 共同决定抛物线对称轴的位置 由于抛物线c bx ax y ++=2的对称轴是直线abx 2-=,故 如果0=b 时,对称轴为y 轴;如果0>ab (即a 、b 同号)时,对称轴在y 轴左侧; 如果0<a b(即a 、b 异号)时,对称轴在y 轴右侧. ③c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置当0=x 时,c y =,所以抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ),故 如果0=c ,抛物线经过原点; 如果0>c ,与y 轴交于正半轴; 如果0<c ,与y 轴交于负半轴.知识点三:二次函数与一元二次方程的关系5.函数c bx ax y ++=2,当0y =时,得到一元二次方程20ax bx c ++=,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的解6.拓展:关于直线与抛物线的交点知识 (1)y 轴与抛物线c bx ax y ++=2得交点为(0,)c .(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2). (3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定: ①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G的交点,由方程组2y kx ny ax bx c=+⎧⎨=++⎩的解的数目来确定: ①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点; ③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故 acx x a b x x =⋅-=+2121,()()a a acb ac a b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=-+=-=-=444222122122121知识点四:利用二次函数解决实际问题7.利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.利用二次函数解决实际问题的一般步骤是: (1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来; (3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题.。

九年级上册数学二次函数知识点汇总

九年级上册数学二次函数知识点汇总

九年级上册数学二次函数知识点汇总新人教版九年级上二次函数知识点总结知识点一:二次函数的定义一般地,形如y=ax^2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数。

其中a是二次项系数,b是一次项系数,c是常数项。

知识点二:二次函数的图象与性质抛物线的三要素:开口、对称轴、顶点。

二次函数y=a(x-h)^2+k的图象与性质如下:1)二次函数基本形式y=ax^2的图象与性质:a的绝对值越大,抛物线的开口越小。

2)y=ax^2+c的图象与性质:上加下减。

3)y=a(x-h)的图象与性质:左加右减。

4)二次函数y=a(x-h)^2+k的图象与性质:顶点坐标为(h,k),开口方向由a的正负决定。

知识点三:二次函数的顶点式与标准式的相互转化二次函数y=a(x-h)^2+k和y=ax^2+bx+c可以通过配方法相互转化。

知识点四:二次函数的平移二次函数图象的平移可以通过改变顶点坐标实现。

具体平移方法如下:向上(k>0)或向下(k<0)平移|k|个单位。

向右(h>0)或向左(h<0)平移|k|个单位。

知识点五:二次函数的解析式求解可以通过配方法、公式法、图像法等方式求解二次函数的解析式。

知识点六:二次函数的应用二次函数在物理、经济、生物等领域中有广泛的应用,如自由落体运动、抛体运动、成本函数、收益函数、生长模型等。

4)根据问题所求,利用函数的性质或图象求解;5)对结果进行检验和解释,看是否符合实际情况。

例如,某物体从高度为h的地方自由落下,经过t秒后落地,求物体的落地速度v。

建立平面直角坐标系,以落下的方向为正方向,设物体在t秒时下落的距离为s,则有s=1/2gt^2(g为重力加速度),又因为物体从高度为h落下,所以s=h-1/2gt^2.将s与t的关系式代入二次函数y=h-1/2gt^2中,得到二次函数y=h-1/2gt^2,利用函数的性质求出y=0时的t即为物体落地时的时间,再利用s=1/2gt^2求出物体落地时的下落距离,最后利用物理公式v=gt求出物体落地时的速度v。

人教版数学九年级上册 第二十二章《二次函数》章节知识点归纳总结

人教版数学九年级上册 第二十二章《二次函数》章节知识点归纳总结

《二次函数》章节知识点归纳总结一、二次函数概念:1.二次函数的概念:(1)一般地,形如2y ax bx c =++(a b c ,,是常数,a ≠0)的函数,叫做二次函数。

(2)这里需要强调:和一元二次方程类似,二次项系数a ≠0,而b c ,可以为零.二次函数的定义域(x)是全体实数.2. 二次函数 2y ax bx c =++ 的结构特征:(1)等号左边是函数,右边是关于自变量x的二次式,x 的最高次数是2.(2)a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.3. 二次函数解析式的几种形式(1)一般式:y=ax 2+bx+c (a ,b ,c 为常数,a ≠0) (2)顶点式:y=a(x-h)2+k [抛物线的顶点P ( h ,k )](3)交点式:y=a(x-x 1)(x-x 2)[仅限于与x 轴有交点A (x 1,0)和 B (x 2,0)的抛物线]其中x 1,x 2是抛物线与x 轴的交点的横坐标,即一元二次方程ax 2+bx+c =0的两个根,a ≠0. x 1,x 2 = (-b ±ac 4b 2-)/2a 在三种形式的互相转化中,有如下关系:h= -b / 2a ; k=(4ac-b 2) / 4a ; x 1,x 2 = (-b ±ac 4b 2-) / 2a说明:(1)任何一个二次函数通过配方都可以化为顶点式y =a(x-h)2+k ,抛物线的顶点坐标是(h,k);(2) 当h =0时,抛物线y =ax 2+k 的顶点在y 轴上;当k =0时,抛物线a(x-h)2的顶点在x 轴上;当h =0且k =0时,抛物线y =ax 2的顶点在原点;(3) 如果图像经过原点,并且对称轴是y 轴,则设y=ax 2;如果对称轴是y 轴,但不过原点,则设y=ax 2+k4、抛物线的性质: (1).抛物线是轴对称图形。

对称轴为直线 x = -b/2a 。

人教版九年级数学书上册

人教版九年级数学书上册

人教版九年级数学书上册一、二次函数。

1. 定义。

- 一般地,形如y = ax^2+bx + c(a,b,c是常数,a≠0)的函数,叫做二次函数。

其中x是自变量,a、b、c分别是二次函数的二次项系数、一次项系数和常数项。

例如y = 2x^2+3x - 1,这里a = 2,b=3,c=-1。

- 二次函数的表达式还有顶点式y=a(x - h)^2+k(a≠0),其中(h,k)为顶点坐标。

当已知二次函数的顶点坐标时,使用顶点式较为方便。

2. 图象和性质。

- 图象:二次函数y = ax^2+bx + c(a≠0)的图象是一条抛物线。

当a>0时,抛物线开口向上;当a < 0时,抛物线开口向下。

- 对称轴:对称轴公式为x =-(b)/(2a)。

例如对于二次函数y = 3x^2-6x + 1,b=-6,a = 3,对称轴为x =-(-6)/(2×3)=1。

- 顶点坐标:把x =-(b)/(2a)代入二次函数y = ax^2+bx + c可求得顶点的纵坐标y=frac{4ac - b^2}{4a},所以顶点坐标为(-(b)/(2a),frac{4ac - b^2}{4a})。

- 最值:当a>0时,抛物线开口向上,函数有最小值,最小值为y=frac{4ac - b^2}{4a};当a < 0时,抛物线开口向下,函数有最大值,最大值为y=frac{4ac -b^2}{4a}。

二、一元二次方程。

1. 定义。

- 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程。

一般形式为ax^2+bx + c = 0(a≠0),其中ax^2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。

例如x^2-3x + 2 = 0,这里a = 1,b=-3,c = 2。

2. 解法。

- 直接开平方法:对于方程x^2=p(p≥slant0),解得x=±√(p)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《二次函数》教学设计
教学目标:
1•知识目标:探索并归纳二次函数的定义;能够表示简单变量之间的二次函数关系.
2•能力目标:感悟新旧知识间的关系,让学生更深地体会数学中的类比思想方法;经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述
变量之间的数量关系.
3•情感态度:把数学问题和实际问题相联系,从学生感兴趣的问题入手,能使学生积极参与数学学习活动,对数学有好奇心和求知欲;使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用;
通过学生之间互相交流合作,让学生学会与人合作,并能与他人交
流思维的过程,培养大家的合作意识.
教学重点、难点:
教学重点:经历探索和表示二次函数关系的过程,获得二次函数的定义。

能够表示简单变量
之间的二次函数关系.
教学难点:经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验.
教具:课件
教学过程:
(一)温故知新,弓I出课题
在大屏幕上出示四个函数图像,期中三个是已经学过的一个是二次函数图像,让学生判
断它们的函数类型并说出它们的一般表达式。

由第四个学生不会的二次函数图像导入新课。

教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,教师要进行适当引导。

设计意图:由复习回顾旧知识入手,通过回顾已经学过的函数的相关知识,和二次函数的图像产生认知冲突,能让学生触景生思”对要探究的新的函数有个明确的方向,让学生
由旧知识中寻找新知识的生长点,符合认识新事物的规律,由浅入深,由表及里,逐渐深化。

(二)创设情境探究新知
1、圆的半径x和圆的面积y之间具有什么关系呢?写出y与x的表达式___ (保留n )
2、如图小亮家去年建了一个周长为80m的矩形养鱼池.
⑴如果设矩形的一边长为x m,那么另一边长 ___________ m.
⑵如果设矩形的面积为y m2那么用x表示y的表达式为 __________________ ,化简后为______________
3、某手机业务收费标准:月租费3元,主叫0.18元/分,被叫免费•这种业务每月所需费用y (元)与主叫时间x (分)之间的函数关系式为_________________________ .
4、一辆汽车每小时行驶60千米,x小时行驶了y千米,则y (千米)与x (小时)之间的函数关系式为_________________________.
5、矩形的面积为20,则它的长y与宽x之间的函数关系式为_________________ .
6、某商店一月份的利润是2万元,二、三月份利润逐月增长,这两个月利润的月平均增长
率为x,三月份的利润为y万元.那么用x表示y的表达式为y= ___________________ ,化简后y= __________ .
先让学生对上面得到的六个表达式进行分类,学生若把1、2、4归为一类,就告诉学生它们
是二次函数的表达式。

观察上面的三个函数,从解析式看有什么共同点?
1、每个表达式的右边是整式吗?分别是什么?
2、每个表达式的右边是关于x的几次式?
3、每个表达式最高次项的系数分别是什么?
教师重点强调二次函数的本质特征:
(1 )等号右边是关于自变量的整式;
(2) a,b,c 为常数,且0;
(3 )等式的右边最咼次数为 2.
4、请你类比一次函数的一般表达式,试着写出二次函数的一般表达式.(其中二次项系数用a表示,一次项系数用b表示,常数项用c表示).
让学生结合问题串独立思考后再小组讨论完成,教师做适当的引导,点拨,得出问题结论。

定义:一般地,形如y=ax2+bx+c(a,b,c是常数,a^ 0)的函数叫做x的二次函数。

思考:⑴如果a=0,b^ 0,c丰0此时变成了什么函数?
(2)如果a=0,b^ 0, c=0,又是什么函数?
设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,通过问题的解决,
为得出二次函数的定义做好铺垫,并让学生感受到身边的数学,激发学生学习数学的好奇心
和求知欲。

学生通过分析、交流,探求二次函数的概念,加深对概念的理解,为解决问题打下基础。

(三)例题学习内化新知
问题1,1.下列函数中,哪些是二次函数?是二次函数的指出它的二次项系数,一次项系数,常数项。

1 2 3 2 2 2
⑴ y (2)h=4.9t (3) y=3x +2x (4)p=2m -2m+1 (5)y=ax +2x
x
(6) s=3-2t2 (7) y=x(1-x) (8) y=(x+3)2 -x2
问题2、(1)函数y=(a-2)x +3x-1
①当a取什么值时,此函数是二次函数?
②当a取什么值时,此函数是一次函数?
m2-7
(2)函数y =(m • 3)x, m取什么值时,此函数是二次函数?
教师出示例1,同学们稍加考虑即可获得问题的结论,进而引出例2,待学生充分交流
后,教师再组织各小组展示自己的讨论结果,共同得到正确是结论,并获得解题的经验。

教师重点关注:(1)探究中各小组是否积极展开活动;(2)学生对二次函数概念是否理
解透彻,应用是否得当;(3)教师在小组中巡视,尽可能多给学生一点思考的时间和空间,对学习有困难的
学生适当引导。

设计意图:通过例1的设计,有利于学生对二次函数的概念的理解,边学边练,为下一
个讨论做铺垫;例2中问题的设计,在获得解决新问题的经验中,进一步内化新知、突破难
点。

整个探究过程都是让学生自己去探索,在探索中发现新知,在交流中归纳新知,把学习 的主动权交给学生,增强学生创造的信心,体验到成功的快乐。

(四)练习反馈巩固新知 问题、某种商品的进价为
90元/件,最初的售价为 100元/件,后来提价销售,经统计售价
和月销售量,得到下面的数据表: x 元时,每售出一
件这样的商品可获得利润为 元.
1元时,月销售量将减少 ____件,实际销量为 件. x 元时,月销售量将减少 件,实际销量为 __ 件.
x 元/件,如果此时每月的获得的总利润为
y (元),用x 表示y 的表达式为
y= ____________________ ,化简为y= __________________________________
教师提出问题,学生独立思考后写出答案,师生共同评价;教师强调正确解题思路。

教师重点关注:学生能否准确用二次函数表示变量之间关系;
学生解题时候暴露的共性问题 作针
对性的点评,注重培养学生正确的思路和方法,积累解题经验。

设计意图:让学生体会生活中的二次函数。

(五)回顾反思,提炼升华
请同学们谈谈本节课的体会和收获,
各抒己见,不拘泥于形式,教师对学生的回答给予
帮助,让语言表达更准确。

设计意图:学生归纳本节课学习的主要内容, 让学生自觉对所学知识进行梳理, 形成体
系,养成良好的学习习惯。

(六)布置作业,拓展延伸
四、作业:必做题:1、若函数y=(mf-1)址⑷七为二次函数,求 m 的值
2
2、正方形的边为 xcm,面积为ycm ,请写出用x 表示y 的函数表达式, y 是x 的二
次函数吗?
选做题:根据所学函数知识写一篇数学日记
(3) 当售价提高 当售价提高
当售价提高
当售价提高
(1) (2)。

相关文档
最新文档