八年级数学上册《整数指数幂》教案
人教版数学八年级上册15.2.3整数指数幂教案
理解负整数指数幂的意义,掌握运算性质。
教学难点
理解负整数指数幂的产生过程和意义。
课型
新授课
教学过程
教学
环节
教学内容
师生活动
设计意图
复习回顾
我们知道,当n是正整数时,
正整数指数幂有哪些运算性质?
(1)
(2)
(3)
(4)
(5)
其中第(5)个性质就是分式的乘方法则。
此外我们还学习过0指数幂,即当 时,
布置作业
1.复习巩固本节课所学知识及解题中注意事项
2.教材
课后完成并上交批改。
巩固本节课所学内容。从作业批改中发现学生的问题并予以强调和改正。
板书设计
1.正整数指数幂的运算性质例1
2. 例2
3. 例3,(例4PPT展示)
教学反思
通过本节课的学习,学生要掌握负整数指数幂。 是一种规定,而不是证明出来的。很多同学在最开始的时候不是很明白,容易将指数中的负号拿到最终结果中去。可以通过类比的方法让学生明白负整数指数幂的运算法则和正整数指数幂的运算法则是一样的,通过类比发方法归结出所有整数指数幂的运算法则。但学生在自己证明结果的过程中可能很多不会,不敢下手,需要多鼓励,多引导。涉及到整数指数幂的综合运算结果一定要注意形式,强调结果的指数要是(含)正整数指数幂的形式。
老师提出问题,强调负整数指数幂的性质与正整数指数幂表述上的差别,并教师引导下得出一个结论,剩下的结论让学生分组讨论并验证.
运用类比学习的方法,让学生快速掌握负整数指数幂的运算性质。让学生体验证明过程,提升学生的逻辑推理能力,和进行严谨的数学证明能力。
例题讲解
例1.计算
(1) (2)
(3) (4)
整数指数幂教案
湘教版八年级数学上册《整数指数幂》教案及教学反思
湘教版八年级数学上册《整数指数幂》教案及教学反思一、教学目标1.了解整数指数幂的概念和性质;2.掌握整数指数幂运算的基本方法;3.能够利用整数指数幂运算求解实际问题。
二、教学重、难点1.教学重点:整数指数幂概念及运算方法的讲解与练习;2.教学难点:整数指数幂的性质理解及应用。
三、教学过程1. 热身(5分钟)设计一道简单的题目让学生回忆一下之前所学的知识:“对于非负整数a,求出a的平方。
”2. 引入新知(10分钟)•通过讲解和举例,引入整数指数幂的概念。
–指数是什么?整数指数幂是什么?代表什么意义?–什么是底数?怎样用底数和指数表示一个数?–如何求整数指数幂?(举例说明)•让学生自己完成一些小题目,巩固整数指数幂的概念和运算方法。
“2 的三次方等于多少?”“3 的零次方等于多少?”3. 课堂练习(30分钟)•让学生在课堂上完成相应的习题。
1.24=?2.32−23=?3.42−32+22等于几?4. 练习讲解(15分钟)•通过讲解各道习题并引导学生,检查学生整数指数幂的概念和运算方法的理解情况。
–对于第1题,2 的 4 次方等于 16,答案为16。
–对于第2题,3 的 2 次方等于 9,2 的 3 次方等于 8,所以 3 的 2 次方减 2 的 3 次方等于 1。
–对于第3题,4 的 2 次方等于 16,3 的 2 次方等于 9,2 的 2 次方等于 4,所以 4 的 2 次方减 3 的 2 次方加 2 的 2 次方等于 11。
5. 拓展练习(10分钟)•让学生完成一些拓展问题的训练,如“求一个整数的 10 次方”等。
6. 反思(5分钟)对于整数指数幂的教学,要注意以下几点:•让学生准确理解整数指数幂的概念和运算方法。
•重点讲解整数指数幂的性质,并引导学生进行运用。
•设计有趣的练习题目,让学生参与训练。
四、教学反思在本节课的教学中,我采用了一些教学方法,包括讲解、举例、练习、训练、检查等,使得学生对于整数指数幂的概念和运算方法有了更加深刻的理解和掌握。
整数指数幂教案
整数指数幂教案一、教学目标1.了解指数的概念和性质;2.掌握整数指数幂的运算法则;3.能够应用整数指数幂的运算法则解决实际问题。
二、教学重点1.整数指数幂的运算法则;2.实际问题的解决方法。
三、教学难点1.整数指数幂的运算法则的理解和应用;2.实际问题的转化和解决方法。
四、教学内容及方法1. 整数指数幂的概念和性质整数指数幂的概念整数指数幂是指一个整数的某个正整数次幂,如23、(−3)4等。
整数指数幂的性质•a m×a n=a m+n;=a m−n;•a ma n•(a m)n=a mn;•a0=1;•a−n=1。
a n2. 整数指数幂的运算法则同底数幂的运算法则同底数幂的运算法则是指,当两个幂的底数相同时,它们的指数相加或相减,底数不变。
例如:23×24=23+4=273532=35−2=33不同底数幂的运算法则不同底数幂的运算法则是指,当两个幂的指数相同时,它们的底数相乘或相除,指数不变。
例如:23×33=(2×3)3=6325 45=(24)5=(12)53. 实际问题的解决方法实际问题的解决方法是指,将问题转化为数学表达式,然后应用整数指数幂的运算法则进行计算。
例如:例1某商品的价格为 100 元,现在打 8 折,求打折后的价格。
解:打 8 折相当于原价的810,所以打折后的价格为:100×810=80例2某地区的人口为 100 万,每年增长 5%,求 10 年后的人口数。
解:每年增长 5% 相当于每年增长5100,所以 10 年后的人口数为:100×(1+5100)10≈162.89五、教学反思整数指数幂是初中数学中的重要内容,掌握整数指数幂的运算法则对于学生的数学学习和实际生活都有很大的帮助。
在教学中,我采用了讲解和例题演练相结合的方式,让学生在理解整数指数幂的概念和性质的同时,能够应用整数指数幂的运算法则解决实际问题。
在教学过程中,我还注意了引导学生思考和讨论,让学生在交流中更好地理解和掌握整数指数幂的运算法则。
最新人教版八年级数学上册《整数指数幂》教学设计(精品教案)
课题:整数指数幂【学习目标】1.掌握整数指数幂的运算性质.2.进行简单的整数范围内的幂运算.【学习重点】掌握整数指数幂的运算性质,尤其是负整数指数幂的运算.【学习难点】认识负整数指数幂的产生过程及幂运算法则的扩展过程. 情景导入 生成问题旧知回顾:正整数指数幂的运算性质:(1)同底数幂的乘法:a m ·a n =a m +n (m 、n 是正整数).(2)幂的乘方:(a m )n =a mn (m 、n 是正整数).(3)积的乘方:(ab)n =a n b n (n 是正整数).(4)同底数幂的除法:a m ÷a n =a m -n (a≠0,m 、n 是正整数,m>n).(5)分式的乘方:⎝ ⎛⎭⎪⎪⎫a b n =a n b n (n 是正整数).(6)0是指数幂:a 0=1(a≠0).自学互研 生成能力知识模块一 探究负整数指数幂的运算法则(一)自主学习阅读教材P 142~P 143思考之前,完成下面的内容:思考:53÷55=________;a 3÷a 5=________.思路一:53÷55=5355=5353·52=152;a 3÷a 5=a 3a 5=a 3a 3·a 2=1a 2. 思路二:53÷55=53-5=5-2;a 3÷a 5=a 3-5=a -2.(二)合作探究由以上计算得出:152=5-2,1a 2=a -2. 归纳:一般地,当n 为正整数时,a -n =1a n (a≠0),即a -n 是a n 的倒数.引入负整数指数和0指数后,“回顾”中的(1)~(6)整数指数幂运算性质,指数的取值范围推广到m ,n 是任意整数的情形.填空:(x -1y 2)-3=x 3y 6,(12a 2b 3)-1=2a 2b3. 知识模块二 整数指数幂运算法则的综合运用(一)自主学习阅读教材P 143思考后~P 144,完成下列问题:计算:(1)3-2+⎝ ⎛⎭⎪⎪⎫32-1; 解:原式=79; (2)|-3|-(5-π)0+⎝ ⎛⎭⎪⎪⎫14-1+(-1)2015. 解:原式=5.(二)合作探究1.计算: (1)38-⎝ ⎛⎭⎪⎪⎫-12-2+(3+1)0;解:原式=2-4+1=-1;(2)⎝ ⎛⎭⎪⎪⎫-110-3+⎝ ⎛⎭⎪⎪⎫130-2×3.14-(-3)3×0.3-1+(-0.1)-2. 解:原式=-1 000+900×3.14+90+100=2 016.2.已知:⎝ ⎛⎭⎪⎪⎫13-m =2,13n =5,求92m -n 的值.解:∵⎝ ⎛⎭⎪⎪⎫13-m =2,3m =2,∴13n =5,∴3-n =5, ∴92m -n =(32)2m -n =34m -2n =(3m )4×(3-n )2=24×25=400. 练习:计算:(1)x 2y -3(x -1y)3;(2)(2ab 2c -3)-2÷(a -2b)3.解:(1)原式=x 2y 3·y 3x 3=1x; (2)原式=a 4c 64b 7. 交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主学习、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 探究负整数指数幂的运算法则知识模块二 整数指数幂运算法则的综合运用检测反馈 达成目标1.计算:(1)⎝ ⎛⎭⎪⎪⎫23-2×⎝ ⎛⎭⎪⎪⎫23-1; (2)(-4)-3×(-4)3;解:原式=94×32=278; 解:原式=-164×(-64)=1;(3)2a 3b -23a -1b ; (4)(3-1)0+⎝ ⎛⎭⎪⎪⎫13-1-(-5)2-|-1|. 解:原式=23a 4b -3=2a 43b 3; 解:原式=1+3-5-1=-2.2.若3n=127,求2n -2的值. 解:∵3n=133,∴3n =3-3.∴n =-3.∴2n -2=2-5=132. 课后反思 查漏补缺1.本节课学到了什么知识?还有什么困惑?2.改进方法。
八年级数学上册《整数指数幂法则应用》教案、教学设计
一、教学目标
(一)知识与技能
1.让学生掌握整数指数幂的定义,理解指数幂法则的内涵及其应用,能够准确地运用指数幂法则进行计算。
2.培养学生运用整数指数幂解决实际问题的能力,提高学生的数学运算技能。
3.让学生掌握负整数指数幂的运算规则,并能够灵活运用到实际计算中。
4.利用问题驱动法,激发学生的学习兴趣,引导学生主动参与课堂,提高课堂效果。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生的学习热情,使学生树立正确的学习态度。
2.通过整数指数幂的学习,让学生感受到数学的简洁美、逻辑美,提高学生的审美情趣。
3.培养学生勇于探索、严谨治学的精神,使学生养成良好的学习习惯。
5.课堂小结,反思提升:
-在课堂结束时,引导学生总结所学知识,形成知识体系。
-布置课后作业,要求学生在课后进行反思和巩固,提高学习效果。
6.关注个体差异,因材施教:
-针对学生的学习能力和兴趣,设计不同难度的练习,使每个学生都能得到有效提升。
-对于学习困难的学生,教师进行个别辅导,帮助他们克服困难,树立信心。
为了激发学生的兴趣和思考,我将通过一个简单的实例来导入新课:“一个细胞分裂成两个,两次分裂后有多少个细胞?五次分裂后呢?”通过这个例子,学生可以直观地感受到指数增长的快速性。然后,我会引导学生思考:“如果细胞不是分裂而是合并,合并两次后剩下多少个细胞?合并五次呢?”由此引出负指数幂的概念。
(二)讲授新知,500字
4.鼓励学生之间相互讨论、交流,提高他们的合作意识和自主学习能力。
(五)总结归纳,500字
在课堂的最后阶段,我会引导学生进行总结归纳:
1.与学生一起总结指数幂法则在实际计算中的技巧和方法。
湘教版数学八年级上册1.3.3《整数指数幂的运算法则》教学设计2
湘教版数学八年级上册1.3.3《整数指数幂的运算法则》教学设计2一. 教材分析湘教版数学八年级上册1.3.3《整数指数幂的运算法则》是学生在学习了有理数的乘方、实数的乘方的基础上进行学习的。
本节课主要让学生掌握整数指数幂的运算法则,包括同底数幂的乘法、除法、乘方以及幂的乘方与积的乘方。
这些知识是初中数学中的重要内容,对于学生后续学习代数、几何等知识有着重要的作用。
二. 学情分析学生在学习本节课之前,已经学习了有理数的乘方、实数的乘方,对于乘方的概念和运算法则有一定的了解。
但是,对于整数指数幂的运算法则,特别是幂的乘方与积的乘方,可能还存在一定的困惑。
因此,在教学过程中,需要引导学生通过观察、思考、归纳等方法,自主探索并掌握整数指数幂的运算法则。
三. 教学目标1.理解整数指数幂的运算法则,包括同底数幂的乘法、除法、乘方以及幂的乘方与积的乘方。
2.能够运用整数指数幂的运算法则进行计算和解决问题。
3.培养学生的观察能力、思考能力、归纳能力以及运用数学知识解决实际问题的能力。
四. 教学重难点1.教学重点:整数指数幂的运算法则的掌握和运用。
2.教学难点:幂的乘方与积的乘方的理解和运用。
五. 教学方法1.启发式教学:通过提问、引导学生观察、思考、归纳等方法,激发学生的学习兴趣,培养学生的自主学习能力。
2.小组合作学习:学生进行小组讨论、交流,培养学生的合作能力和团队精神。
3.案例教学:通过具体的例子,让学生理解和掌握整数指数幂的运算法则。
六. 教学准备1.准备相关的教学案例和练习题。
2.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)通过提问方式复习实数和有理数的乘方,引导学生思考整数指数幂的运算法则。
2.呈现(15分钟)呈现整数指数幂的运算法则,包括同底数幂的乘法、除法、乘方以及幂的乘方与积的乘方。
通过具体的例子,让学生观察和思考,引导学生自主探索并归纳出运算法则。
3.操练(15分钟)让学生进行相关的计算练习,巩固所学的整数指数幂的运算法则。
《整数指数幂的运算法则》教案
《整数指数幂的运算法则》教案教案:整数指数幂的运算法则教学目标:1.学生能够理解和掌握整数指数幂的定义和运算法则;2.学生能够运用整数指数幂的运算法则解决相关问题。
教学重点:整数指数幂的定义和运算法则。
教学难点:整数指数幂的运算法则的灵活应用。
教学准备:1.教师准备黑板、粉笔、教学PPT等教学工具;2.学生准备纸和笔。
教学过程:Step 1:引入新知识(5分钟)教师通过简单的问题引入整数指数幂的运算法则,例如:3的4次方是多少?学生可以自由思考,然后提供答案,并解释自己的思路。
Step 2:概念讲解(15分钟)教师通过PPT或黑板,对整数指数幂的定义进行详细讲解。
首先解释什么是整数指数幂,然后给出相关示例进行说明。
教师可以通过图形或实际生活中的问题进行解释,使学生更好地理解整数指数幂。
Step 3:运算法则的讲解(30分钟)教师通过PPT或黑板,给出整数指数幂的运算法则,包括幂的乘法法则和幂的幂法则。
对于幂的乘法法则,教师可以通过例题进行演示,并让学生完成相应的计算;对于幂的幂法则,教师也可以通过例题演示,并让学生进行计算。
Step 4:练习(25分钟)教师让学生进行练习,包括计算给定的整数指数幂和解决相关的实际问题。
教师可以根据学生的能力安排不同难度的练习。
教师可以在黑板上出题,让学生上台进行解答,或者让学生在纸上写作业。
教师要及时进行检查和指导,确保学生能够正确理解和运用整数指数幂的运算法则。
Step 5:总结与拓展(10分钟)教师对整数指数幂的运算法则进行总结,并与学生一起回顾和讨论学到的知识。
教师还可以给学生提供一些拓展的问题,让学生进行思考和讨论,以加深对整数指数幂的理解。
Step 6:作业布置(5分钟)教师布置相关的作业,包括计算和应用题,要求学生在课后完成,并及时批改和反馈。
教学反思:整数指数幂的运算法则是初中数学的重要内容,对学生的数学思维能力和问题解决能力有着重要的影响。
在教学过程中,教师要注重引导学生思考和讨论,激发学生的学习兴趣和主动性。
人教版初中数学八年级上册15.2.3整数指数幂(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与整数指数幂相关的实际问题,如计算几何图形的面积和体积。
-难点三:整数指数幂的运算法则,尤其是幂的乘方和同底数幂的乘除法。
-解决方法:通过逐步推导和大量练习,让学生掌握运算法则,如a^m × a^n = a^(m+n)和(a^m)^n = a^(m×n)。
-难点四:将整数指数幂应用于解决实际问题,如几何图形的相似比例计算等。
-解决方法:设计实际应用题,让学生小组讨论,共同探讨如何运用所学知识解决问题。
围绕以上教学内容,本节课将结合实际例题,引导学生通过观察、分析、总结,掌握整数指数幂的相关概念及运算方法,提高学生的数学思维能力。
二、核心素养目标
1.培养学生的逻辑推理能力,通过整数指数幂的学习,使学生能够运用数学语言进行严谨的逻辑推理,形成条理清晰的数学思维。
2.提高学生的数学建模能力,让学生在实际问题中运用指数幂知识构建数学模型,解决实际问题,增强数学应用意识。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解整数指数幂的基本概念。整数指数幂是指以非零实数为底数,整数作为指数的幂运算。它简洁地表示了多次连乘的结果,对于简化计算具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例。通过计算2^5,展示整数指数幂在实际中的应用,以及它如何帮助我们简化计算过程。
三、教学难点与重点
1.教学重点
-理解并掌握整数指数幂的定义及其表示规律,特别是正整数指数幂、负整数指数幂和零指数幂的概念。
2024年人教版八年级数学上册教案及教学反思全册第15章 分式(教案) 整数指数幂(第1课时)教案.
第十五章分式15.2分式的运算15.2.3整数指数幂第1课时一、教学目标【知识与技能】1.经历探索负整数指数幂和0指数幂的运算性质的过程,进一步体会幂的意义,发展代数推理能力和有条理的表达能力.2.理解负整数指数幂的意义,熟练运用整数指数幂运算性质进行运算.【过程与方法】1.知道负整数指数幂a-n=1a n(a≠0,n是正整数),了解幂运算的法则可以推广到整数指数幂,掌握整数指数幂的运算性质,会进行简单的整数范围内的幂运算.2.通过观察、推理、总结得出负整数指数幂的意义,体验利用负整数指数幂进行乘除法的转化.【情感、态度与价值观】1.通过独立思考、同伴交流、自主发现问题解决问题,提高学生的学习兴趣和学习主动性.2.在数学公式中渗透公式的简洁美、和谐美,随着学习的知识范围的扩展,产生对新知识的渴望与追求的积极情感,形成辩证统一的哲学观和世界观.二、课型新授课三、课时第1课时,共2课时。
四、教学重难点【教学重点】掌握整数指数幂的运算性质,尤其是负整数指数幂的概念.【教学难点】认识负整数指数幂的产生过程及幂运算法则的扩展过程.五、课前准备教师:课件、直尺、幂结构图等。
学生:直尺、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课正整数指数幂有以下运算性质:(1)(m,n是正整数)(2)(m,n是正整数)(3)(n是正整数)(4)(a≠0,m,n是正整数,m>n)(5)(n是正整数)此外,还学过0指数幂,即a0=1(a≠0)如果指数是负整数该如何计算呢?(出示课件2)(二)探索新知1.创设情境,探究整数指数幂教师问1:你会计算它们吗?53÷55=________;103÷107=________.师生共同解答如下:思路一:53÷55=5355=152,103÷107=103107=1104.思路二:53÷55=53-5=5-2,103÷107=103-7=10-4.教师问2:由以上计算,你能发现什么?学生回答:发现:5-2=152,10-4=1104.教师问3:将正整数指数幂的运算性质中指数的取值范围由“正整数”扩大到“整数”,正整数指数幂的那些运算性质还适用吗?(出示课件4)学生讨论后猜想:这些性质还适用.教师问4:a m中指数m可以是负整数吗?如果可以,那么负整数指数幂a m 表示什么?学生讨论后回答:m个a相乘的积.教师问5:那么我们看下面的问题:根据分式的约分,当a≠0时,如何计算a3÷a5=?(出示课件5)学生回答:a3÷a5=33∙2=12(1)教师问6:如果把正整数指数幂的运算性质(a≠0,m,n是正整数,m>n)中的条件m>n去掉,即假设这个性质对于像a3÷a5的情形也能使用,如何计算?学生回答:a3÷a5=a3-5=a-2(2)教师问7:有上边的问题的计算结果,我们可以得到什么?学生回答:a-2=12教师问8:在a-2=12中,有什么限制条件吗?为什么呢?学生讨论后回答:a≠0,因为分母不能为0.总结点拨:(出示课件6)由(1)(2)想到,若规定a-2=12(a≠0),就能使a m÷a n=a m-n这条性质也适用于像a3÷a5的情形,因此:数学中规定:当n是正整数时,这就是说,a-n(a≠0)是a n的倒数.教师问9:想一想:在引入负整数指数和0指数后,a m·a n=a m+n(m,n是正整数)这条性质能否扩大到m,n是整数的情形?(出示课件8)学生猜想回答:应该可以.教师问10:请完成下面的题目:填一填:(1)a3×a-5=a3·1()=1()=a()=a()+(),即a3×a-5=a()+();(2)a-3×a-5=1()·1()=1()=()=a()+(),即a-3×a-5=a()+();(3)a0×a-5=()·1()=1()=()=a()+(),即a0×a-5=a()+().学生回答:(1)a5;a2;-2;3+(-5);3+(-5)(2)a3;a5;a8;a-8;(-3)+(-5);(-3)+(-5)(3)1;a5;a5;a-5;0+(-5);0+(-5)完成填空后,思考下列问题:教师问11:从以上填空中你想到了什么?学生回答:a m·a n=a m+n这条性质对m,n是任意整数的情形都适用.教师问12:再换其他整数指数验证这个规律.类似地,你可以用负整数指数幂或0指数幂对于其他正整数指数幂的运算性质进行试验,看看这些性质在整数范围内是否还适用?(出示课件9)学生回答:a-3·a-7=a-3+(-7)=a-10,a-2÷a-5=a-2-(-5)=a3,a0÷a-4=a0-(-4)=a4.教师讲解:形成定论:a m·a n=a m+n这条性质对m,n是任意整数的情形都适用.总结点拨:(出示课件10)(1)(m,n是整数);(2)(m,n是整数);(3)(n是整数);(4)(m,n是整数);(5)(n是整数).教师问11:试说说当m分别是正整数、0、负整数时,a m各表示什么意义?(出示课件11)师生共同解答如下:当m是正整数时,a m表示m个a相乘.当m是0时,a0表示一个数的n次方除以这个数的n次方,所以特别规定,任何除0以外的实数的0次方都是1.当m是负整数时,a m表示|m|个相乘.例:计算:(出示课件12-13)师生共同解答如下:解:2.创设情境,探究整数指数幂的性质教师问19:继续举例探究:(a m)n=a mn,(ab)n=a n b n,nab⎛⎫⎪⎝⎭=a nb n在整数指数幂范围内是否适用?(出示课件15)师生共同解答如下:根据整数指数幂的运算性质,当m,n为整数时,,,因此,,即同底数幂的除法可以转化为同底数幂的乘法特别地,所以,即商的乘方可以转化为积的乘方总结点拨:(出示课件16)这样,整数指数幂的运算性质可以归结为:(1)(m,n是整数);(2)(m,n是整数);(3)(n是整数).例:下列等式是否正确?为什么?(出示课件17)(1)a m÷a n=a m·a-n;(2)师生共同解答如下:解:(1)∵a m÷a n=a m-n=a m+(-n)=a m·a-n,∴a m÷a n=a m·a-n.故等式正确.(2)故等式正确.(三)课堂练习(出示课件20-23)1.下列计算正确的是()A.30=0B.-|-3|=-3C.3-1=-3D.9=±32.下列计算不正确的是()A. B.C. D.3.若0<x<1,则x-1,x,x2的大小关系是()A.x-1<x<x2B.x<x2<x-1C.x2<x<x-1D.x2<x-1<x4.计算:5.若,试求的值.参考答案:1.B2.B3.C4.5.解:∵a+a-1=3(四)课堂小结今天我们学了哪些内容:1.幂的两个规定:a0=1(a≠0);数学中规定:当n是正整数时,这就是说,a-n(a≠0)是a n的倒数.2.幂的三类运算性质:这样,整数指数幂的运算性质可以归结为:(1)(m,n是整数);(2)(m,n是整数);(3)(n是整数).(五)课前预习预习下节课(15.2.3)145页的相关内容。
数学八年级上册《15.2.3整数指数幂整数指数幂》教案20
整数指数幂教课设计课题 整数指数幂 课型知识与技术1、理解负整数指数幂的意义。
目标2、娴熟使用整数指数幂运算性质推行运算。
过程与方法1、经过察看、推理、总结得出负整数指数幂的意义。
教课目的2、体验利用负整数指数幂推行乘除法的转变。
目标感情、态度与 启迪学生经过独立思虑、伙伴沟通、自主发现问题解决问题,进而提高学生的学 价值观目标 习兴趣和学习主动性。
教课要点 理解负整数指数幂的意义,掌握运算性质。
教课难点 理解负整数指数幂的产生过程和意义。
教学过环节教课内容正整数指数幂的运算性质:(1)ama n a mn(a 0m,n 为正整数)(2)(a m )n a mn(a 0m,n 为正整数)(3)(ab )n a n b n(a,b 0 m,n 为正整数)(4)a ma na mn(a0m,n 为正整数且mn)复习回首nn(5)aa(a,b0 m,n 为正整数)扎实b b n基础(6)a 01(a0,零指数幂的运算)依据上述性质,计算以下问题:1 315(1)(2) 3 2 2(3) 2a1010b63 2(4)322察看第四条性质,思虑能否一定要求m n当m n 或m n 时会怎样?思虑以下问题:提出(1)2527;(2)a 4a 7 (a0);问题引起 (3)a ma m2(a 0, m 是正整数)思虑察看结果,你能得出什么结论?257 2511(1)272-2 ;2 2 故222=25-7=2-2程师生活动设计企图教师展现PPT,学生复习旧知,稳固基础,为新独立达成。
知识做好准备;同时摸清学教师在巡视中发现生学习状况,适合调整教课学生广泛存有的问策略。
题,经过发问学生并解说的方式澄清问题,打扫学习阻碍。
教师提出问题,学生提出问题,让学生自己发现思虑,独立解决;教与前方所学知识的不一样,经师展现学生的不一样历负整数指数幂的产生过答案。
程,加深理解。
假如学生只给出分数的答案,则提出第二个问题。
启迪指引揭露意义(2)a4a7=a41故a31a7a33;a47a3aa m a m2a m1故a21(3)a m2a2;a2a2a m(m2)察看上边三个问题所得结果,你能得出什么结论?负整数指数幂的意义:a n1(a0,n是正整数)1a n x思虑:指数为负数的意思是什么?是取相反数吗?这就是说,an(a0)是a n的倒数。
人教版数学八年级上册教学设计15.2.3《整数指数幂》
人教版数学八年级上册教学设计15.2.3《整数指数幂》一. 教材分析《整数指数幂》是人教版数学八年级上册第15章“指数与指数幂”的一部分,本节内容是在学生已经掌握了有理数的乘方、分数指数幂的基础上进行学习的。
本节课主要让学生了解整数指数幂的概念,掌握整数指数幂的运算性质,并能运用整数指数幂解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了有理数的乘方和分数指数幂的知识,具备了一定的数学基础。
但整数指数幂的概念和运算性质较为抽象,学生可能难以理解和掌握。
因此,在教学过程中,需要教师通过生动的实例和生活中的实际问题,引导学生理解和掌握整数指数幂的概念和运算性质。
三. 教学目标1.了解整数指数幂的概念,掌握整数指数幂的运算性质。
2.能够运用整数指数幂解决实际问题。
3.培养学生的逻辑思维能力和数学素养。
四. 教学重难点1.整数指数幂的概念。
2.整数指数幂的运算性质。
3.运用整数指数幂解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生通过思考和讨论,自主探索整数指数幂的概念和运算性质。
2.用生活中的实际问题,激发学生的学习兴趣,提高学生运用数学知识解决实际问题的能力。
3.利用多媒体课件,生动形象地展示整数指数幂的概念和运算性质,帮助学生理解和记忆。
六. 教学准备1.多媒体课件。
2.教学素材(生活中的实际问题)。
3.练习题。
七. 教学过程1.导入(5分钟)利用多媒体课件,展示一些生活中的实际问题,如:“电线塔的高度”、“楼层的高度”等,引导学生思考如何用数学知识来解决这些问题。
2.呈现(10分钟)介绍整数指数幂的概念,通过实例和讲解,让学生理解整数指数幂的意义。
3.操练(10分钟)让学生进行一些整数指数幂的运算,巩固学生对整数指数幂的理解。
4.巩固(10分钟)通过一些练习题,让学生进一步理解和掌握整数指数幂的运算性质。
5.拓展(10分钟)引导学生思考如何运用整数指数幂解决实际问题,让学生运用所学知识解决实际问题。
整数指数幂-人教版八年级数学上册教案
整数指数幂-人教版八年级数学上册教案教学目标1.理解指数幂的概念,并用自己的话表达出来。
2.掌握整数指数幂的运算规律和性质。
3.能够根据指数幂的性质解决实际问题。
4.发扬探究精神,积极探讨指数幂的应用。
教学重点1.整数指数幂的定义。
2.整数指数幂的运算规律和性质。
教学难点1.运用指数幂的性质解决实际问题。
2.学生掌握的指数幂知识的自主运用能力。
教学过程一、引入1.通过背景介绍引入本节课的内容,即整数指数幂的概念与性质。
2.让学生思考实际问题,并引导学生思考与指数幂相关的数学问题,激发学生学习的兴趣。
二、教学内容1.整数指数幂的定义:•定义:对于任意正整数 a,n,n>1,则a n表示 a 的 n 次方,称为 a 的 n 次幂。
2.运算规律和性质:•a m∗a n=a m+n;•(a m)n=a m∗n;•a m/a n=a m−n;•a0=1。
3.示例演示:通过具体的例子解释以上知识。
三、练习与巩固1.完成课本上的相关练习,包括填空、选择题和计算题。
2.根据给出的实际问题,让学生用指数幂的知识解决问题。
四、总结与提高1.总结本节课的重点内容,并与学生一起回顾整个学习过程。
2.提高:通过拓展练习加深学生对指数幂的理解与运用,让他们在未来的学习中可以更好地应用这些知识。
教学效果评估1.观察学生在课堂练习和解决实际问题的表现。
2.分发测验,了解学生掌握的指数幂知识程度和运用能力。
教学反思与改进1.教学过程中要注意理解学生的思维模式和思考方法,让他们在学习中更容易理解和运用相关的数学知识。
2.强化实际应用,让学生学会将学到的知识与实际问题相结合,提高他们的解决问题的能力。
整数指数幂说课稿
整数指数幂说课稿(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如报告总结、合同协议、申报材料、规章制度、计划方案、条据书信、应急预案、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample texts for everyone, such as report summaries, contract agreements, application materials, rules and regulations, planning schemes, doctrine letters, emergency plans, experiences, teaching materials, other sample texts, etc. If you want to learn about different sample formats and writing methods, please pay attention!整数指数幂说课稿整数指数幂说课稿(通用10篇)作为一名为他人授业解惑的教育工作者,常常需要准备说课稿,借助说课稿可以让教学工作更科学化。
人教版八年级数学上册15.2.3.1《整数指数幂》教学设计
人教版八年级数学上册15.2.3.1《整数指数幂》教学设计一. 教材分析人教版八年级数学上册15.2.3.1《整数指数幂》是指数幂的基础内容,主要让学生理解整数指数幂的概念,掌握有理数指数幂的运算性质。
本节课内容在学生的知识体系中起到了承上启下的作用,为后续学习分数指数幂和实数指数幂打下基础。
二. 学情分析八年级的学生已经学习了有理数的乘方,对乘方的概念和运算规则有一定的了解。
但在理解和运用方面还存在一定的困难,特别是对负整数指数幂和零指数幂的理解。
因此,在教学过程中,需要引导学生深入理解整数指数幂的概念,并通过大量的练习让学生熟练掌握有理数指数幂的运算性质。
三. 教学目标1.了解整数指数幂的概念,掌握有理数指数幂的运算性质。
2.培养学生运用数学知识解决实际问题的能力。
3.培养学生合作学习、积极探究的精神。
四. 教学重难点1.整数指数幂的概念。
2.有理数指数幂的运算性质。
3.运用整数指数幂解决实际问题。
五. 教学方法采用问题驱动法、案例分析法、合作学习法等多种教学方法,引导学生主动探究,提高学生运用数学知识解决实际问题的能力。
六. 教学准备1.教学课件:制作课件,展示整数指数幂的概念和有理数指数幂的运算性质。
2.练习题:准备适量的练习题,巩固所学知识。
3.教学素材:收集一些实际问题,作为课堂拓展的内容。
七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的实际问题,如温度计、海拔等,引导学生思考这些实际问题与整数指数幂之间的关系。
2.呈现(10分钟)讲解整数指数幂的概念,通过PPT展示相关例题,让学生理解并掌握整数指数幂的定义。
3.操练(10分钟)让学生独立完成PPT上的练习题,巩固对整数指数幂的理解。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)讲解有理数指数幂的运算性质,通过PPT展示相关例题,让学生理解并掌握有理数指数幂的运算规则。
5.拓展(10分钟)让学生运用所学知识解决PPT上的实际问题,培养学生的实际应用能力。
整数指数幂教案
整数指数幂教案【篇一:《整数指数幂》公开课教案】《整数指数幂》教案授课教师授课时间:授课班级:教材:广东省中等职业技术学校文化基础课课程改革实验教材《数学》(广东高等教育出版社出版)教材分析一教学内容《整数指数幂》是教材第五章第一节指数与指数函数的第一课时,主要内容是整数指数幂的推导过程及应用。
二地位与作用考虑到现阶段中等职业学校学生的实际情况,在教学中注意与初中有关知识紧密衔接.本节课的教学注重复习整数指数幂的推导, 使学生回忆起或重新学习整数指数幂的有关知识,为下阶段学习把整数指数幂推广到有理指数幂打下基础。
学情分析一知识基础高一学生已在初中阶段学习了整数指数幂的运算法则,但在零指数幂和负整数指数幂性质的探索环节中,课本的设计是通过引导学生猜想完成的,说理要求并不高。
大多数学生的数学基础较差, 学生对零指数幂与负指数幂规定的合理性认识不深。
〈二〉认知水平与能力:任教学生推导运算法则的能力较差,不能灵活运用幂的运算法则。
〈三〉任教班级特点和教学要求:该班学生的数学入学成绩只有三十多分,课前调查70%的学生对幂的意义认识不深,只能死记住整数指数幂的运算法则,对运算法则的来龙去脉搞不清,不少学生在初中没怎么学习数学,甚至放弃数学科的学习。
因此这章的第一节只一、温故知新[设计说明:下列活动,体现了从特殊到一般的认识过程,再现知识的发现过程,全体学生能参与到知识的探究中,让学生重新探索幂的意义及幂的运算法则,而不是急于给出结论,增强学生的学习信心,提高学生的学习兴趣.]探究活动〈一〉1、探索:23=(展开运算),有个2相乘,an有个a相乘,an叫做a的n次幂,其中a叫,n叫。
2、归纳 am?an=(m,n都是正整数)法则一:同底数幂相乘,底数不变,指数a5am25-3a?a=,则3=a=a,归纳n=(m,n都是正整数) aa23法则二:同底数幂相乘,底数不变,指数3、应用两个法则,体验成功4、深化提高题① -22?(-2)3=;②(-a)3?a4= ;探究活动〈二〉1、提出问题:(102)3 计错为105 ,如何纠正?(102)3的意义是2、探索:(102)3=(根据幂的意义展开运算)即:(102)3,3、归纳(am)n=m,n都是正整数)法则三:幂的乘方,底数不变,指数4、应用法则,体验成功①(34)2= ;②(a3)5= .5、混合运用①(x3)4?(-x2)5;②a5?a4=;③(-a)4?(-a)3=.[教学说明:探究活动〈二〉,让学生区别于同底数幂的乘法的指数运算,提示学生注意幂的乘方运算中底数只有一个,而同底数幂的乘法运算底数不只一个.]探究活动〈三〉3、归纳:积的乘方法则:(ab)m (m为正整数)bmbm同理:()=maa①(m为正整数),法则:分式的乘方等于乘方的分式 4、应用法则,体验成功 5 ②(a2y)5(-2b)2(()2=③(-2x2y3)4=④a5、巩固提高:反向运用法则: (ab)m①a6y3=()3[教学说明:探究活动〈三〉提示学生注意区分积的乘方运算与幂的乘方运算:幂的乘方运算中底数只有一个因式,而积的乘方底数不只一个因式.]<一>1、考察m=n的情况:如果按照同底数幂的除法公式来计算,让学生计算提出问题:这里出现了零指数,怎样认识它们的意义?试用除法的意义想一想52同理规定:100=,规定:a0=a≠0)即:任何不等于零的数(式)的零次幂都等于1.2、发现:上述①②③有三个共同点:(1)底数不等于,(2)指数为(3)结果为<二>1、考察mn的情况:如果按照同底数幂的除法公式来计算,让学生计算提出问题:这里出现了负指数,怎样认识它们的意义?试用除法的意义想一想同理规定:10-3=11-2a= ,规定:(a≠0) 103a21(a≠0,n是正整数) a-n与an互为关系。
人教版数学八年级上册15.2.3整数指数幂(第2课时)教学设计
为了巩固学生对整数指数幂的理解和应用,以及提升他们的数学素养,特布置以下作业:
1.基础巩固题:
-完成课本第15.2.3节后的练习题1、2、3,重点在于理解和运用整数指数幂的定义和基本运算规则。
-设计一些生活情境题目,让学生运用整数指数幂解决实际问题,如计算一个电脑病毒在几小时内可以感染多少台电脑。
(五)总结归纳
1.学生总结:让学生回顾本节课所学的内容,分享自己对本节知识的理解和感悟。
2.教师点评:对学生的总结进行点评,强调整数指数幂的定义、性质和运算规则,以及其在实际生活中的应用。
3.归纳总结:通过本节课的学习,学生掌握了整数指数幂的基本概念,能够运用指数法则进行基本运算,并能够将整数指数幂应用于解决实际问题。同时,培养了学生的观察能力、抽象思维能力和团队合作能力。
2.培养学生通过具体实例抽象出数学规律的能力,让学生能够解决实际问题时运用整数指数幂。
Hale Waihona Puke -学生可以通过实际问题,如面积、体积计算,引入并运用整数指数幂的概念。
-学生能够将整数指数幂应用于解决科学计数法表示较大或较小数值的问题。
3.使学生能够理解并应用负整数指数幂的概念,并掌握其与正整数指数幂的关系。
-学生能够理解a^0=1(a为非零整数)的定义,并掌握a^(-n) = 1/(a^n)的性质。
(二)过程与方法
1.引导学生通过数学探究活动,观察、发现并总结指数幂的规律,培养他们的观察力和归纳能力。
-通过小组合作,让学生经历探索指数幂规律的过程,通过实际操作促进对概念的理解。
-安排学生通过数形结合的方式,如使用数轴或图形的面积和体积变化,直观感受指数增长和减少的规律。
2.使用问题驱动的教学方法,激励学生提出问题,思考问题,解决问题,培养他们的逻辑思维和问题解决能力。
八年级上册数学教案《整数指数幂》
八年级上册数学教案《整数指数幂》学情分析本节课是初中数学的较为重要的知识点之一,这是在学习了正整数指数幂和0指数幂的基础上,对整数的指数幂的进一步深入和拓展;另一方面,又为学习整数的负指数幂等知识起到了一定的巩固作用,为高中学习分数指数幂打下坚实的基础。
教学目的1、了解负整数指数幂的意义。
2、掌握整数指数幂的性质,并运用它进行计算。
3、会利用10的负整数次幂,用科学记数法表示绝对值小于1的数。
教学重点掌握整数指数幂的性质,并运用它进行计算。
教学难点会利用10的负整数次幂,用科学记数法表示绝对值小于1的数。
教学方法讲授法、讨论法、练习法教学过程一、复习导入正整数指数幂的概念及运算性质当n是正整数时,a n = a·a· … ·an个a正整数指数幂有以下运算性质:(1)a m · a n = a m+n(m,n是正整数);(2)(a m)n = a mn(m,n是正整数);(3)(ab)n = a n b n(4)a m ÷ a n = a m-n(a≠0,m,n是正整数,m>n)(5)(a/b)n = a n / b n(n是正整数)分式的乘方法则此外,我们还学习过0指数幂,即当a≠0时,a0 = 1。
二、学习新知1、思考a m 中指数m可以是负整数吗?如果可以,那么负整数指数幂a m表示什么?当a≠0时,计算a3÷a5 = a3 / a3·a2 = 1/a2a3÷a5 = a3-5 = a-2同一种计算的两种结果a-2 =1/a2数学规定,当n是正整数时,a-n =1/a n(a≠0)引入负整数指数幂后,指数的取值范围就推广到全体整数。
2、填空(1)2-1 = 1/2 3-1 = 1/3 x-1 = 1/x(2)2-2 = 1/4 3-2 = 1/6(3)(-4)-2 = 1/16 (-4-2) = -1/163、思考以上是同底数幂相除的情形,在引入负整指数和0指数后,同底数幂相乘的性质能否推广到指数是任意整数?计算(1)其中一个是负指数:a3 · a-5 = a-2 = a3+(-5)(2)两个都是负指数:a-3 · a-5 = a-8 = a(-3)+(-5)(3)一个0指数一个负指数:a0 · a-5 = a-5 = a0+(-5)总结,a m· a n = a m+n这条性质对于m,n是任意整数的情形仍然适用。
人教版八年级数学上册 15.2.6(教案) 整数指数幂
整数指数幂教学目标1.知道负整数指数幂=(a≠0,n是正整数).2.掌握整数指数幂的运算性质.3.会用科学计数法表示小于1的数.重点、难点重点:掌握整数指数幂的运算性质. 难点:会用科学计数法表示小于1的数.情感态度与价值观通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践。
能利用事物之间的类比性解决问题。
教学过程教学设计与师生互动备注第一步:课堂引入1.回忆正整数指数幂的运算性质:(1)同底数的幂的乘法: (m,n是正整数);(2)幂的乘方: (m,n是正整数);(3)积的乘方: (n是正整数);(4)同底数的幂的除法: ( a≠0,m,n是正整数,m>n);(5)商的乘方: (n是正整数);2.回忆0指数幂的规定,即当a≠0时,.3.你还记得1纳米=10-9米,即1纳米=米吗?4.计算当a≠0时, ===,再假设正整数指数幂的运算性质 (a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么==.于是得到=(a≠0)总结:负整数指数幂的运算性质:当n是正整数时, =(a≠0).(注意:适用于m、n可以是全体整数.)第二步:例题讲解(P24)例9.计算[分析] 是应用推广后的整数指数幂的运算性质进行计算,与用正整数指数幂的运算性质进行计算一样,但计算结果有负指数幂时,要写成分式形式.(P25)例10. 判断下列等式是否正确?[分析] 类比负数的引入后使减法转化为加法,而得到负指数幂的引入可以使除法转化为乘法这个结论,从而使分式的运算与整式的运算统一起来,然后再判断下列等式是否正确.(P26)例11.[分析] 是一个介绍纳米的应用题,是应用科学计数法表示小于1的数.第三步:随堂练习1.填空(1)-22= (2)(-2)2= (3)(-2) 0= (4)20= (5)2 -3= (6)(-2) -3=2.计算(1) (x3y-2)2(2)x2y-2·(x-2y)3 (3)(3x2y-2)2÷(x-2y)3答案:1.(1)-4 (2)4 (3)1 (4)1(5)(6)2.(1)(2)(3)第四步:课后练习1. 用科学计数法表示下列各数:0.000 04, -0. 034, 0.000 000 45, 0. 003 0092.计算(1) (3×10-8)×(4×103) (2) (2×10-3)2÷(10-3)3答案:1.(1) 4×10-5 (2) 3.4×10-2(3)4.5×10-7(4)3.009×10-32.(1) 1.2×10-5(2)4×103课后小结:课后反思:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册《整数指数幂》教案同底数幂的除法教学过程1 通过探索归纳同底数幂的除法法则。
2 熟练进行同底数幂的除法运算。
3 通过计算机单位的换算,使学生感受数学应用的价值,提高学习学生的热情。
重点、难点: 重 点:同底数幂的除法法则以及利用该法则进行计算。
难 点:同底数幂的除法法则的应用教学过程一 创设情境,导入新课1 复习: 约分:① 23412a b a bc , ②1n n a a +, ③ 22444x x x --+ 复习约分的方法 2 引入(1)先介绍计算机硬盘容量单位: 计算机硬盘的容量最小单位为字节,1字节记作1B ,计算机上常用的容量单位有KB ,MB ,GB, 其中:1KB=102B=1024B ≈1000B,1010102012222MB KB B B ==⨯=, 1010203012222GB MB B B ==⨯=(2)提出问题: 小明的爸爸最近买了一台计算机,硬盘容量为40GB ,而10年前买的一台计算机,硬盘的总容量为40MB ,你能算出现在买的这台计算机的硬盘总容量是原来买的那台计算机总容量的多少倍吗?302040402,40402GB B MB B =⨯=⨯ 3030201010202020402222240222⨯⨯===⨯ 提醒这里的结果10302022-=,所以,30302010202222-== 如果把数字改为字母:一般地,设a ≠0,m,n 是正整数,且m>n,则?mn a a=这是什么运算呢?(同底数的除法) 这节课我们学习-----同底数的除法 二 合作交流,探究新知1 同底数幂的除法法则 m n m nm n n na a a a a a--⋅== 你能用语言表达同底数幂的除法法则吗? 同底数幂相除,底数不变,指数相减. 2同底数幂的除法法则初步运用例1 计算:(1)()()()()()()()958214251,2,3,4n n x x y x y x y x x y ++-⋅-⋅(n 是正整数), 例2 计算:(1)()53x x -,(2)()43x x --,例3 计算:(1)()()346xx -÷-,(2)2213nn n b b a a +⎛⎫⎛⎫÷ ⎪ ⎪⎝⎭⎝⎭练一练 P 16 练习题 1,2 三 应用迁移,巩固提高 例4 已知 4316218n n A m m ⎛⎫⋅=⎪⎝⎭,则A=( ) 216492551212,,,n n nn A B C D m m m m ⎛⎫⎪ ⎪⎝⎭例5 计算机硬盘的容量单位KB ,MB,GB 的换算关系,近视地表示成: 1KB ≈1000B ,1MB ≈1000KB,1GB ≈1000MB(1) 硬盘总容量为40GB 的计算机,大约能容纳多少字节? (2) 1个汉字占2个字节,一本10万字的书占多少字节? (3) 硬盘总容量为40GB 的计算机,能容纳多少本10完字的书?一本10万字的书约高1cm,如果把(3)小题中的书一本一本往上放,能堆多高? 练一练 (与珠穆朗玛峰的高度进行比较。
)1 已知2,3,xya a ==求32x y a -的值。
2 计算:()()()()343][x y y x y x x y -⋅-÷-÷-四 反思小结,巩固提高 这节课你有什么收获?五 作业; 1 填空: (1)()()4232xy xy --=____, (2)()()221m m x x ++--=_______2 计算(1)()85()xy xy -, (2)10224, (3)()643x x x ÷÷, (4)1234a a a ÷⋅, (5)()12345x x x x ÷⋅÷ (6)()5610.254⎛⎫÷ ⎪⎝⎭零次幂和负整数指数幂教学目标1 通过探索掌握零次幂和负整数指数幂的意义。
2 会熟练进行零次幂和负整数指数幂的运算。
3 会用科学计数法表示绝对值较少的数。
4 让学生感受从特殊到一般是数学研究的一个重要方法。
教学重点、难点重点:零次幂和负整数指数幂的公式推导和应用,科学计数法表示绝对值绝对值较少的数。
难点:零次幂和负整数指数幂的理解 教学过程一 创设情境,导入新课1 同底数的幂相除的法则是什么?用式子怎样表示?用语言怎样叙述?()0,m n m n a a a a m n -÷=≠、是正整数,且m>n2 这这个公式中,要求m>n,如果m=n,m<n,就会出现零次幂和负指数幂,如:333300)a a a a a -÷==≠(,232310)a a a a a --÷==≠(,010)a a a -≠、(有没有意义?这节课我们来学习这个问题。
二 合作交流,探究新知 1零指数幂的意义222___2333_-____3444__-___43___,33=33,35__,5555,510__,10101010,10-=÷==÷===÷==(1)从特殊出发:填空:思考:22223333÷、这两个式子的意义是否一样,结果应有什么关系?因此:222023=3333÷=,同样:444041010101010=÷=由此你发现了什么规律? 一个非零的数的零次幂等于1. (2)推广到一般:一方面:0(0)m m m m a a a a a -÷==≠,另一方面:11111mmm ma a a a ⋅===⋅启发我们规定:01(0)a a =≠试试看:填空:2=3⎛⎫⎽ ⎪⎝⎭, 02=_, 010_,= 0=__(x 0)x ≠, ()3_,π-= ()021_x +=。
2 负整数指数幂的意义。
(1)从特殊出发:填空: 335_-____55_,55555=÷== 223___33=_,33=333-÷=, 447__-___710__,1010101010=÷== (2)思考:22333333÷与的意义相同吗?因此他们的结果应该有什么关系呢?(-113=3)同样:,-2-323115=10=510, (3)推广到一般: ?na -=()00110,n n n n n a a a a a a n a--==÷=÷=≠是正整数(4)再回到特殊:当n=1是,-1a =? ()-1a =1 试试看:2 若128x=,则x=____,若1110x -=,则x=___, 若100.0001x=,则x=___. 3 科学计数法(1)用小数表示下列各数:-1-2-3-410101010,,,。
你发现了什么?( 10-n= )(2)用小数表示下列各数:-2-3-410810 2.410 3.610⨯⨯⨯.,, 思考:-2-3-410810 2.410 3.610⨯⨯⨯.,,这些数的表示形式有什么特点?(10(na a ⨯是只有一位整数,n 是整数))叫什么计数法?(科学计数法)当一个数的绝对值很少的时候,如:0.00036怎样用科学计数法表示呢?你能从上面问题中找到规律吗? 试试看:用科学计数法表示:(1)0.00018,(2)0.00000405三 应用迁移,巩固提高例1 若01313x ⎛⎫-= ⎪⎝⎭,则x 的取值范围是_____,若()2122y y -=-,则y 的取值范围是____.例2 计算:3232122,10,,23----⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭例4 把下列各式写成分式形式:23,2x xy --例5 氢原子中电子和原子核之间的距离为:0.00 000 000 529厘米,用科学计数法把它写成为________.四 课堂练习,巩固提高 P 18 练习 1,2,3,4();13.13的取值范围求有意义若代数式x ,x -+补充:三个数()()1021,2006,23-⎛⎫-- ⎪⎝⎭按由小到大的数序排列,正确的的结果是( )A ()()121200623-⎛⎫-<<- ⎪⎝⎭,B ()()1021200623-⎛⎫<-<- ⎪⎝⎭C ()()121220063-⎛⎫-<-< ⎪⎝⎭, D ()()1021200623-⎛⎫-<-< ⎪⎝⎭五 反思小结,拓展提高 这节课你有什么收获? (1)01(0)aa =≠,(2)1(0,)n na a n a-=≠是正整数,(3)科学计数法 前两个至少点要注意条件,第三个知识要点要注意规律。
六、作业:P 21习题 A 组2,3,4,5, 教学后记:整数指数幂的运算法则教学目标1 通过探索把正整数指数幂的运算法则推广到整数指数幂的运算法则;2 会用整数指数幂的运算法则熟练进行计算。
重点、难点重点:用整数指数幂的运算法则进行计算。
难点:指数指数幂的运算法则的理解。
教学过程一 创设情境,导入新课1 正整数指数幂有哪些运算法则? (1)mn m n aa a +⋅=(m 、n 都是正整数);(2)()m n mna a =(m 、n 都是正整数)(3)()nn n a b a b ⋅=, (4)mm n n aa a-=(m 、n 都是正整数,a ≠0)(5) ()nn na ab b=(m 、n 都是正整数,b ≠0)这些公式中的m 、n 都要求是正整数,能否是所有的整数呢?这5个公式中有没有内在联系呢?这节课我们来探究这些问题. 板书课题:整数指数幂的运算法则 二 合作交流,探究新知 1 公式的内在联系做一做 (1) 用不同的方法计算:342(1)2, ()3223⎛⎫⎪⎝⎭解:3341421(1)2323--===;3343(4)1421(1)222323-+--=⋅===()33322823327⎛⎫== ⎪⎝⎭,()331332182323832727--⎛⎫=⋅=⋅=⨯= ⎪⎝⎭通过上面计算你发现了什么?幂的除法运算可以利用幂的乘法进行计算,分式的乘方运算可以利用积的乘方进行运算。
()m m n m n m n na a a a a a-+--=⋅==,()11nn n na a ab a b a b b b --⎛⎫=⋅=⋅=⋅= ⎪⎝⎭ 因此上面5个幂 的运算法则只需要3个就够了: 1)mn m n aa a +⋅=(m 、n 都是正整数);(2)()m n mna a =(m 、n 都是正整数)(3)()nn n a b a b ⋅=,2 正整数指数幂是否可以推广到整数指数幂 做一做 计算:()()()3332122,23--⋅,解:(1)3333330333(3)033122222212222122---+-⨯=⨯====⨯===,(2)()3322611333-⎛⎫== ⎪⎝⎭,()32(2)36613323--⨯-===()()()333311113232382721623-⨯====⨯⨯⨯()3333311111232323827216---⨯=⨯=⨯=⨯= 通过上面计算,你发现了什么?幂的运算公式中的指数m 、n 也可以是负数。