高考数学(人教a版,理科)题库:直线与圆、圆与圆的位置关系(含答案)

合集下载

高考数学专题复习:直线与圆、圆与圆的位置关系

高考数学专题复习:直线与圆、圆与圆的位置关系

高考数学专题复习:直线与圆、圆与圆的位置关系一、单选题1.已知圆22:2440A x y x y +---=,圆22:2220B x y x y +++-=,则两圆的公切线的条数是( ) A .1条B .2条C .3条D .4条2.已知点(,)P x y 是直线l :40kx y -+=(0k >)上的动点,过点P 作圆C :2220x y y =++的切线PA ,A 为切点,若||PA 最小为2时,圆M :220x y my +-=与圆C 外切,且与直线l 相切,则m 的值为( )A .2-B .2C .4D 23.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是( ) A .23-B .13C .43D .24.已知直线10x my m -+-=被圆O :224x y +=所截得的弦长为m =( )A .1-B .1C .2D .5.已知直线():10l mx y m R +-=∈是圆22:4210C x y x y +-++=的对称轴,过点()2,A m -作圆C 的一条切线,切点为B ,则AB 等于( )A .4B .C .D .36.设a ,b 为正数,若圆224210x y x y ++-+=关于直线10ax by -+=对称,则2a bab+的最小值为( ) A .9B .8C .6D .107.已知圆221:4240C x y x y ++--=,2223311:222C x y ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭,则这两圆的公共弦长为( )A .2B .C .2D .18.设0r >,圆()()22213x y r -++=与圆2216x y +=的位置关系不可能是( ) A .相切B .相交C .内切或内含D .外切或相离9.已知圆C :()()22cos sin 3x y θθ-+-=交直线1y =-于A ,B 两点,则对于θ∈R ,线段AB 长度的最小值为( )A .1B C D .210.在同一平面直角坐标系下,直线ax by ab +=和圆222()()x a y b r -+-=(0ab ≠,0r >)的图象可能是( ).A .B .C .D .11.圆1C :221x y +=与圆2C :()224310x y k x y +++-=(k ∈R ,0k ≠)的位置关系为( )A .相交B .相离C .相切D .无法确定12.若直线:1l y kx =-与圆()()22:212C x y -+-=相切,则直线l 与圆()22:23D x y -+=的位置关系是( ) A .相交 B .相切 C .相离 D .不确定二、填空题13.圆22230x y y ++-=被直线0x y k +-=分成两段圆弧,且较短弧长与较长弧长之比为1:3,则k =________.14.过原点且倾斜角为60︒的直线与圆2240x y y +-=相交,则直线被圆截得的弦长为_____.15.过点()2,0与圆22 A: 230x y x +--+=相切的直线方程为__________.16.若直线mx +2ny -4=0(m ,n ∈R )始终平分圆22420x y x y +--=的周长,则mn 的取值范围是________. 三、解答题17.已知以点()1,1A 为圆心的圆与直线1:220l x y ++=相切,过点()2,0B 的动直线l 与圆A 相交于M 、N 两点. (1)求圆A 的方程;(2)当4MN =时,求直线l 的方程.18.已知圆C :222430x y x y ++-+=.(1)若直线l 过点(2,0)-且被圆C 截得的弦长为2,求直线l 的方程;(2)从圆C 外一点P 向圆C 引一条切线,切点为M ,O 为坐标原点,且PM PO =,求PM 的最小值.19.直线l :y x =与圆C :()()221316x y -+-=相交于A 、B 两点.(1)求平行于l 且与圆C 相切的直线方程; (2)求ABC 面积.20.已知圆C 过点()2,0R 、()4,2S -,且圆心C 在直线280x y --=上. (1)求圆C 的方程;(2)若点P 在圆C 上,O 为原点,()(),00A t t >,求tan POA ∠的最大值.21.已知圆C 的方程为226440x y x y ++-+=.(1)若直线:10l x y -+=与圆C 相交于M 、N 两点,求||MN 的长; (2)已知点()1,5P ,点Q 为圆C 上的动点,求||PQ 的最大值和最小值.22.已知直线:20l mx y m -+-=,C 的方程为22240x y x y +--=. (1)求证:l 与C 相交;(2)若l 与C 的交点为A 、B 两点,求OAB 的面积最大值.(O 为坐标原点)参考答案1.B 【分析】分别求得两圆的圆心坐标和半径,结合两圆的位置关系的判定方法,求得两圆的位置关系,即可求解. 【详解】由圆22:2440A x y x y +---=可化为22(1)(2)9x y -+-=, 可得圆心坐标为(1,2)A ,半径为3R =,由圆22:2220B x y x y +++-=可化为22(1)(1)4x y +++=, 可得圆心坐标为(1,1)B --,半径为2r,则圆心距为d AB == 又由5,1R r R r +=-=,所以R r AB R r -<<+, 可得圆A 与圆B 相交,所以两圆公共切线的条数为2条. 故选:B. 2.B 【分析】根据题意当CP 与l 垂直时,||PA 的值最小,进而可得2k =,再根据圆M 与圆C 外切可得0m >,根据圆M 与直线l 相切,利用圆心到直线的距离等于圆的半径,即可求出. m 的值.【详解】圆C 的圆心为(0,1)C -,半径为1,当CP 与l 垂直时,||PA 的值最小,此时点C 到直线l 的距离为d =,由勾股定理得22212+=,又0k >,解得2k =, 圆M 的圆心为(0,)2mM ,半径为||2m , ∵圆M 与圆C 外切,∴||1|(1)|22m m+=--,∴0m >,∵圆M 与直线l 相切,∴|4|2m m -+=2m =, 故选:B 3.C 【分析】根据直线与圆的位置关系和点到直线的距离公式建立不等式,解之可得选项. 【详解】圆C 的标准方程为22(4)1x y -+=,半径1r =,当圆心(4,0)到直线2y kx =-的距离1d r ≤+时,满足题意,圆心在直线上的射影点即满足题意,故有2d =≤,解得403k ≤≤,即k 的最大值为43, 故选:C. 4.A 【分析】由于直线过定点(1,1)--P,而||OP =OP 垂直,从而由斜率的关系列方程可求出m 【详解】∵直线10x my m -+-=过定点(1,1)--P ,连接OP,则||OP ∴直线10x my m -+-=与OP 垂直,11m=-, ∴1m =-, 故选:A. 5.A 【分析】根据直线():10l mx y m R +-=∈是圆22:4210C x y x y +-++=的对称轴,则圆心在直线l 上,求得m ,由过点()2,A m -作圆C 的一条切线,切点为B ,利用勾股定理即可求得AB . 【详解】由方程224210x y x y +-++=得()()22214x y -++=,圆心为()2,1C -,因为直线l 是圆C 的对称轴,所以圆心在直线l 上,所以1m =,所以A 点坐标为()2,1-,则AC =4AB =.故选:A . 6.A 【分析】求出圆的圆心坐标,得到,a b 的关系,然后利用基本不等式求解不等式的最值即可. 【详解】解:圆224210x y x y ++-+=,即()()22214x y ++-=,所以圆心为(2,1)-, 所以210a b --+=,即21a b +=,因为0a >、0b >,则2222(2)(2)2252229a b a b a b a b ab a ab ab abab+++++⋅===,当且仅当13b a ==时,取等号. 故选:A . 7.C 【分析】先求出两圆的公共弦所在直线的方程,用垂径定理求弦长. 【详解】由题意知221:4240C x y x y ++--=,222:3310C x y x y ++--=,将两圆的方程相减,得30x y +-=,所以两圆的公共弦所在直线的方程为30x y +-=.又因为圆1C 的圆心为(2,1)-,半径3r =,所以圆1C 的圆心到直线30x y +-=的距离d ==所以这两圆的公共弦的弦长为222223222d .故选:C. 8.D 【分析】计算出两圆圆心距d ,并与两圆半径和作大小比较,由此可得出结论. 【详解】两圆的圆心距d 4r +,4r +,所以两圆不可能外切或相离.9.C 【分析】由题意圆C 的圆心C 在单位圆上,求出点C到直线1y =-的距离的最大值,根据圆的弦长AB =. 【详解】解:由圆C :()()22cos sin 3x y θθ-+-=,知该圆的半径r =()cos ,sin C θθ在单位圆221x y +=上,∵原点O到直线1y =-12=,则点C 到直线1y =-的距离d 的最大值为13122+=,由AB =d 取最大值32时,线段AB故选:C .10.D 【分析】根据直线的位置及圆心所在的象限判断参数a 、b 的符号,进而确定正确选项. 【详解】直线ax by ab +=在x ,y 轴上的截距分别为b 和a ,圆心横坐标为a ,纵坐标为b . A :由直线位置可得0b <,而由圆的位置可得0b >,不正确. B :由直线位置可得0a >,而由圆的位置可得0a <,不正确. C :由直线位置可得0a >,而由圆的位置可得0a <,不正确.D :由直线位置可得0a >,0b <,而由圆的位置可得0a >,0b <,正确.11.A 【分析】求出两圆的圆心和半径,再求出两圆的圆心距,与两圆的半径和差比较可得结论 【详解】解:圆1C :221x y +=的圆心1(0,0)C ,半径为11r =,由()224310x y k x y +++-=,得222325(2)()124x k y k k +++=+,所以圆2C 的圆心为23(2,)2C k k --,半径2r所以12121C C r r +=1>0k ≠)1,所以1221C C r r >-所以两圆相交. 故选:A 12.A 【分析】由直线l 与圆C 相切可构造方程求得k;分别在2k =2k =过比较圆心到直线距离与圆的半径之间大小关系可得位置关系. 【详解】由圆C 方程知其圆心()2,1C直线l 与圆C相切,=2k =由圆D 方程知其圆心()2,0D,半径r =∴圆心D 到直线l距离d =当2k =(()222233021d r+-=-=<+,即d r <,此时圆D 与直线l 相交;当2k =(()222233021d r --=-=<+,即d r <,此时圆D 与直线l 相交; 综上所述:圆D 与直线l 相交. 故选:A. 13.1或3- 【分析】由题意可知较短弧所对圆心角是90︒,此时圆心到直线0x y k +-==,再由点到直线的距离公式求解即可 【详解】由题意知,圆的标准方程为()2214x y ++=,较短弧所对圆心角是90︒,所以圆心()0,1-到直线0x y k +-==1k =或3k =-.故答案为:1或3- 14.【分析】由已知求出直线方程,将圆方程化为标准方程求出圆心和半径,然后求出圆心到直线的距离,再利用弦长、弦心距和半径的关系求出弦长 【详解】解:由题意得直线方程为tan60y x =︒0y -=, 由2240x y y +-=,得22(2)4x y +-=,则圆心为(0,2),半径为2, 所以圆心(0,2)0y -=的距离为1d ==,所以所求弦长为=故答案为:15.x =2或)2y x =-. 【分析】 分斜率不存在和斜率存在两种情况讨论:斜率不存在时,直线l :x =2与圆相切;斜率存在时,设其为k ,则直线l :()2y k x =-,利用圆心到直线的距离等于半径,列方程求出k ,即可求出直线方程.【详解】圆22 A: 230x y x +--+=化为标准方程:()(22 11x y -+=,所以当过点()2,0的直线斜率不存在时,直线l :x =2与圆相切;过点()2,0的直线斜率存在时,设其为k ,则直线l :()2y k x =-,因为l 与圆A 相切,所以圆心到直线的距离等于半径,1=,解得:k =,此时l:)2y x =-. 故答案为:x =2或)2y x =-. 16.(,1]-∞【分析】 由题意得直线过圆心,进而得到2240m n +-=,所以mn 可转化为()2n n -,结合二次函数的值域即可求解.【详解】因为直线mx +2ny -4=0(m ,n ∈R )始终平分圆22420x y x y +--=的周长,所以直线经过圆心,又因为圆心为()2,1,则2240m n +-=,即2m n +=,因此2m n =-,所以()()2222111mn n n n n n =-=-+=--+≤,所以mn 的取值范围是(,1]-∞,故答案为:(,1]-∞.17.(1)()()22115x y -+-=;(2)2x =或0y =.【分析】(1)利用圆心到直线的距离求半径,即可得圆的方程;(2)首先考查直线斜率不存在的直线,判断是否满足4MN =,当直线的斜率存在时,设直线20kx y k --=,利用弦长公式求得斜率k ,即可得直线方程.【详解】解:(1)由题意可知,点A 到直线1l 的距离d =因为圆A 与直线1l 相切,则圆A 的半径r d ==所以,圆A 的标准方程为()()22115x y -+-=(2)①当直线l 的斜率不存在时因为直线l 的方程为2x =.所以圆心A 到直线l 的距离11d =.由(1)知圆的半径为r 4MN ==. 故2x =是符合题意的一条直线.②当直线l 的斜率存在时设直线l 的斜率为k ,则直线20kx y k --=圆心A 到直线l 的距离1d =因为22212MN d r ⎛⎫+= ⎪⎝⎭所以245+=,即()2211k k +=+,解得0k = 因此,直线l 的方程为0y =综上所述,直线l 的方程为2x =或0y =.18.(1)2x =-或3460x y -+=;(2. 【分析】(1)根据题意,由圆的方程分析圆的圆心与半径,分直线的斜率存在与不存在两种情况讨论,求出直线的方程,综合即可得答案;(2)根据题意,连接MC ,PC ,分析可得PMC △为直角三角形,即222||||||PM PC MC =-,设(,)P x y ,分析可得||MC ||||PM PO =,分析可得2222(1)(2)2x y x y ++--=+,变形可得P 的轨迹方程,据此结合直线与圆的方程分析可得答案.【详解】解:(1)222430x y x y ++-+=可化为22(1)(2)2x y ++-=.当直线l 的斜率不存在时,其方程为2x =-,易求得直线l 与圆C 的交点为(2,1)A -,()23B -,,2AB =,符合题意;当直线l 的斜率存在时,设其方程为(2)y k x =+,即20kx y k -+=,则圆心C 到直线l 的距离1d ,解得34k =. 所以直线l 的方程为3460x y -+=,综上,直线l 的方程为2x =-或3460x y -+=.(2)如图,PM 为圆C 的切线,连接MC ,PC ,则CM PM ⊥.所以PMC △为直角三角形.所以222PM PC MC =-.设点P 为(,)x y ,由(1)知点C 为(1,2)-,MC =PM PO =,P 的轨迹方程为2430x y -+=. 求PM 的最小值,即求PO 的最小值,也即求原点O 到直线2430x y -+=的距离,代入点到直线的距离公式可求得PM 的最小值d =19.(1)20x y -++或20x y -+-=;(2)【分析】(1)设切线方程为y x b =+,由切线定义求得b ,进而求得结果;(2)作CD AB ⊥,由点到直线距离公式求得CD ,再由弦长公式求得AB ,进而求得面积.【详解】(1)设切线方程为y x b =+,则圆心(1,3)C 到切线的距离4d r ==,解得2b =±所以切线方程为20x y -++或20x y -+-=;(2)作CD AB ⊥,垂足为D ,CD ==,∴AB ==∴1122ABC S AB CD =⋅=⨯△20.(1)()2244x y -+=;(2 【分析】 (1)根据垂径定理的逆定理可得弦RS 的垂直平分线过原点,又圆心C 在直线280x y --=上,联立直线方程即可得解;(2)根据题意知当OP 与圆相切时,tan POA ∠值最大,计算即可得解.【详解】(1)由20142RS k --==--,线段RS 中点坐标为(3,1)-, 所以线段RS 的垂直平分线为4y x =-,即40x y --=,由28040x y x y --=⎧⎨--=⎩可得圆C 的圆心为(4,0),易得半径2r ,所以圆C 的方程为22(4)4x y -+=;(2)由圆心在x 轴正半轴上,由()(),00A t t >,所以OA 在正半轴上,由090POA <∠<,故当OP 和圆相切时,即P 为切点时POA ∠最大,此时tan POA ∠最大,tanPOA ∠=. 21.(1)2;(2)最大值为8,最小值为3.【分析】(1)先将圆的方程化为标准方程,得出圆心坐标和半径,求出圆心到直线l 的距离,由勾股定理可得答案.(2)先求出PC 的长度,由圆的性质可得PC r PQ PC r -≤≤+,从而得到答案.【详解】解:(1)圆C 的一般式方程为()()22329x y ++-=,即圆心()C 3,2-,半径3r =,所以圆心C 到直线l :10x y -+=的距离d ==所以弦长 2MN ==;(2)5PC ,又3r =,所以max 8PQ PC r =+=,min 2PQ PC r =-=,即PQ 的最大值为8,最小值为3.22.(1)证明见解析;(2)5【分析】 (1)由题知直线l 过定点1,2,且为C 的圆心,故l 与C 相交;(2)由题知2AB r ==l 与直线OC 垂直时,O 到直线l 的距离最大,最大值为OC =.【详解】解:(1)由题知直线():21l y m x -=-,C 的标准方程为()()22125x y -+-=, 所以直线l 过定点1,2,为圆的圆心,所以直线过C 的圆心,故l 与C 相交;(2)由(1)知直线:20l mx y m -+-=过圆C 的圆心,C 的半径为r =所以2AB r ==所以当O 到直线l 的距离最大时,OAB 的面积取最大值,故当直线l 与直线OC 垂直时,O 到直线l 的距离最大,最大值为OC =所以OAB 的面积最大值为11522AB OC =。

人教A版(2019)选择性必修第一册《直线与圆、圆与圆的位置关系》提升训练(含解析)

人教A版(2019)选择性必修第一册《直线与圆、圆与圆的位置关系》提升训练(含解析)

人教A版(2019)选择性必修第一册《2.5 直线与圆、圆与圆的位置关系》提升训练一、单选题(本大题共8小题,共40分)1.(5分)若a2+b2=43c2,则直线ax+by+c=0被圆x2+y2=1所截得的弦长为()A. 2B. 1C. 34D. 122.(5分)方程(a−1)x−y+2a+1=0(a∈R)所表示的直线与圆(x+1)2+y2=25的位置关系是()A. 相离B. 相切C. 相交D. 不能确定3.(5分)两内切圆的半径长是方程x2+px+q=0的两根,已知两圆的圆心距为1,其中一圆的半径为3,则p+q=()A. 2或4B. 4C. 1或5D. 54.(5分)若圆P的半径为1,且经过坐标原点,过圆心P作圆(x−4)2+(y−3)2=4的切线,切点为Q,则|PQ|的最小值为()A. √3B. 2√3C. 2D. 45.(5分)直线4x−3y=0被圆(x−1)2+(y−3)2=10所截得的弦长为()A. 3B. 3√2C. 6D. 6√26.(5分)以直线ax−y−3−a=0(a∈R)经过的定点为圆心,2为半径的圆的方程是()A. x2+y2−2x+6y+6=0B. x2+y2+2x−6y+6=0C. x2+y2+6x−2y+6=0D. x2+y2−6x+2y+6=07.(5分)圆x2+y2−2x−8y+13=0截直线ax+y−1=0所得的弦长为2√3,则a=()A. −43B. −34C. √3D. 28.(5分)已知A(−4,0),B(0,4),点C是圆x2+y2=2上任意一点,则ΔABC面积的最大值为()A. 8B. 4√2C. 12D. 6√2二、多选题(本大题共5小题,共25分)9.(5分)已知圆C1:(x+1)2+y2=1和圆C2:(x−4)2+y2=4,过圆C2上任意一点P作圆C1的两条切线,设两切点分别为A,B,则()A. 线段AB的长度大于√2B. 线段AB的长度小于√3C. 当直线AP与圆C2相切时,原点O到直线AP的距离为65D. 当直线AP平分圆C2的周长时,原点O到直线AB的距离为4510.(5分)已知圆O与直线l1:y=2x−4和l2:y=2x+6共有两个公共点,则圆O的方程可以是()A. (x−1)2+(y−3)2=5B. (x−1)2+(y−2)2=5C. (x−1)2+(y+3)2=25D. (x−1)2+(y−10)2=2511.(5分)已知圆C:x2+y2−4x=0和一点M(3,0)()A. 点M在圆C外面B. 过点M的圆C的最短弦所在直线方程是x=3C. 过点M作倾斜角为150∘的直线l被圆C所截得的弦长为√15D. 过点N(−2,0)作斜率为k的直线与圆C有公共点,则k∈[−√33,√3 3]12.(5分)在平面直角坐标系xOy中,已知圆C的方程为x2+(y−1)2=4,过点P(x0,y0)存在直线l被圆C截得的弦长为2√3,则下列点P的坐标满足条件的是()A. (0,0)B. (0,1)C. (12,1) D. (2,0)13.(5分)已知圆C:(x−2)2+(y−2)2=25,直线l:3x−4y+m=0.圆C上恰有3个点到直线l的距离为3.则m的值为()A. −13B. −8C. 12D. 17三、填空题(本大题共5小题,共25分)14.(5分)(1)已知圆O:x2+y2=1,圆M:(x−a)2+(y−a+4)2=1.若圆M上存在点P,过点P作圆O的两条切线,切点为A,B,使得∠APB=60°.则实数a的取值范围为________.(2)在平面直角坐标系xOy中,圆C的方程为x2+y2−8x+15=0,若直线y=kx−2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是________15.(5分)已知M(3,0)是圆x2+y2−8x−2y+10=0内一点,则过点M最长的弦所在的直线方程是______.16.(5分)过点(1,0)且与直线x-√2y+3=0平行的直线l被圆(x-6)2+(y-√2)2=12所截得的弦长为________.17.(5分)若直线l:ax+by−5=0(ab>0)恒过圆C:(x−3)2+(y−2)2=25的圆心,则3a +2b的最小值为__________.18.(5分)在面直角坐系Oy中,圆C程为(x−22+(−3)2=9,若过点M03)的线与交于PQ点(其中点P第二象)且∠PM=2∠PQO,则点Q的横坐标为 ______ .四、解答题(本大题共5小题,共60分)19.(12分)已知直线l1:x−y−2=0与圆C:x2+y2−2x+6y=0交于A,B两点,直线l2过点(1,−3)且l2//l1,l2与圆C交于M,N两点.求由点A,B,M,N构成四边形的面积.20.(12分)在平面直角坐标系xOy中,已知圆O1:x2+y2−mx−14y+60=0,三个点A(2,4)、B、C均在圆O1上,(1)求该圆的圆心O1的坐标;(2)若OA →=BC →,求直线BC 的方程;(3)设点T(0,t)满足四边形TABC 是平行四边形,求实数t 的取值范围. 21.(12分)已知圆C :x 2+8x +y 2=0,直线l :mx +y +2m =0.(1)当直线l 与圆C 相交于A ,B 两点,且|AB |=2√14,求直线l 的方程. (2)已知点P 是圆C 上任意一点,在x 轴上是否存在两个定点M ,N ,使得|PM ||PN |=12若存在,求出点M ,N 的坐标;若不存在,说明理由.22.(12分)已知圆C :x 2+y 2−4x +ay +1=0(a ∈R ),过定点P(0,1)作斜率为−1的直线交圆C 于A 、B 两点,P 为AB 的中点. (1)求实数a 的值;(2)从圆外一点M 向圆C 引一条切线,切点为N ,且有MN =√2MP ,求MN 的最小值. 23.(12分)在位于城市A 南偏西60°相距100海里的B 处,一股台风沿着正东方向袭来,风速为120海里/小时,台风影响的半径为r(r >50)海里: (1)若r =70,求台风影响城市A 持续的时间(精确到1分钟)? (2)若台风影响城市A 持续的时间不超过1小时,求r 的取值范围.答案和解析1.【答案】B;【解析】解:因为a 2+b 2=43c 2,圆x 2+y 2=1, 所以圆心O(0,0)到直线ax +by +c =0的距离d =√a 2+b2=√32, 所以直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为l =2√r 2−d 2=2×12=1. 故选:B.利用圆的性质及弦长公式即求.此题主要考查直线与圆的位置关系,考查学生的运算能力,属于中档题.2.【答案】C; 【解析】该题考查直线过定点问题,考查直线与圆位置关系的判定,是基础题. 求出直线所过定点,再由定点在圆内得答案.解:由(a −1)x −y +2a +1=0,得a(x +2)−x −y +1=0, 联立{x +2=0−x −y +1=0,解得{x =−2y =3.∴直线(a −1)x −y +2a +1=0过定点(−2,3), ∵(−2+1)2+32=10<25,∴点(−2,3)在圆(x +1)2+y 2=25的内部,则直线(a −1)x −y +2a +1=0与圆(x +1)2+y 2=25的位置关系是相交. 故选:C .3.【答案】C;【解析】解:根据题意,设两个圆的半径为R ,r ,且R =3, 则有|R −r|=1,解可得r =2或4,又由R 、r 是方程x 2+px +q =0的两根,则{R +r =−p Rr =q ,当r =2时,p =−5,q =6,此时p +q =1, 当r =4时,p =−7,q =12,此时p +q =5, 故p +q =1或5, 故选:C .根据题意,设两个圆的半径为R ,r ,且R =3,由圆心距求出r 的值,结合一元二次方程根与系数的关系分析可得答案.此题主要考查圆与圆的位置关系,涉及一元二次方程根与系数的关系,属于基础题.4.【答案】B;【解析】解:由圆P的半径为1,且经过坐标原点,可得圆心P的轨迹为x2+y2=1,又圆C:(x−4)2+(y−3)2=4,其圆心C(4,3),半径r=2,过点P作圆C:(x−4)2+(y−3)2=4的切线,切点为Q,则|PQ|=√|PC|2−4,当|PC|最小时,|PQ|最小,又由点P在单位圆上,则|PC|的最小值为|OC|−1=√9+16−1=4,则|PQ|的最小值为√16−4=2√3.故选:B.由已知可得P的轨迹,画出图形,求得|PC|的最小值,则答案可求.该题考查直线与圆位置关系的应用,考查数学转化思想方法与数形结合的解题思想方法,是中档题.5.【答案】C;【解析】此题主要考查直线与圆相交的弦长.先根据圆的方程求得圆的圆心坐标和半径,进而利用点到直线的距离求得圆心到直线的距离,进而利用勾股定理求得被截的弦的一半,则弦长可求.=1,解:因为圆心到直线的距离为d=|4×1−3×3|5所以l=2√r2−d2=2√10−1=6,故选C.6.【答案】A;【解析】解:由题可知,直线过定点(1,−3),所以圆方程为(x−1)2+(y+3)2=4,即x2+y2−2x+6y+6=0.故选:A.求出圆的圆心,然后写出圆的方程即可.此题主要考查直线系方程的应用,圆的方程的求法,是基础题.7.【答案】A;【解析】由圆的方程,得到圆心与半径,再求得圆心到直线的距离,利用勾股定理解.此题主要考查直线和圆的位置关系,点到直线的距离公式的应用,正确运用勾股定理是解答该题的关键.解:圆的方程可化为(x−1)2+(y−4)2=4,则由垂径定理可得点到直线距离为√22−(√3)2=1,圆心坐标为(1,4),由点到直线的距离公式得:d=√a2+1=1,化简可得(a+3)2=a2+1,解得a=−43.故选A.8.【答案】C;【解析】解:根据题意,A(−4,0),B(0,4),则直线AB的方程为x−y−4=0,且|AB|=√16+16=4√2,圆x2+y2=2的圆心为O,其坐标为(0,0),半径r=√2,则O到直线AB的距离d=√1+1=2√2,要求ΔABC面积的最大值,则点C到直线AB的距离最大,又由点C是圆x2+y2=2上任意一点,则C到直线AB距离的最大值为d+r=2√2+√2=3√2,故ΔABC面积的最大值为12×3√2×4√2=12;故选:C.根据题意,由A、B的坐标求出直线AB的方程以及|AB|的值,由圆的方程分析圆心的坐标以及圆的半径,分析可得要求ΔABC面积的最大值,则点C到直线AB的距离最大,由点与圆的位置关系分析可得C到直线AB距离的最大值,计算即可得答案.该题考查点到直线的距离公式的应用,涉及三角形面积的计算,属于基础题.9.【答案】AD;【解析】解:如图示:C 1(−1,0),C 2(4,0),根据直角三角形的等面积方法可得,|AB|=2⋅|PA|⋅|AC 1||PC 1|=2⋅√|PC 1|2−1|PC 1|=2√1−1|PC 12,由于|PC 1|∈[3,7], 故2√1−1|PC 1|2∈[4√23,8√37], 由于4√23>√2,8√37>√3,故A 正确,B 错误;当直线AP 与圆C 2相切时,由题意可知AP 斜率存在, 故设AP 方程为y =kx +m , 则有|−k+m|√1+k 2=1,|4k+m|√1+k 2=2,即|4k +m|=2|k −m|,即2k =−3m 或6k =m ,设原点O 到直线AP 的距离为d ,则d =|m|√1+k2=|m||k−m|, 当2k =−3m 时,d =25;当6k =m 时,d =65,故C 错误; 当直线AP 平分圆C 2的周长时,即直线AP 过点C 2(4,0),AP 斜率存在,设直线AP 方程为y =t(x −4),即tx −y −4t =0, 则|−t−4t|√1+t 2=1,即|5t|√1+t 2=1,|t|√1+t 2=15,故原点O 到直线AP 的距离为d ′,则d ′=|4t|√1+t2=45,故D 正确; 故选:AD.根据圆的切线的几何性质可求得|AB|=2√1−1|PC 1|2,确定|PC 1|∈[3,7],可求得√1−1|PC1|2∈[4√23,8√37],即可判断A ,B ;当直线AP 与圆C 2相切时,设直线AP 的方程,利用和圆相切可得|4k +m|=2|k −m|,继而求得原点O 到直线AP 的距离,判断C ;当直线AP 平分圆C 2的周长时,直线AP 过点C 2(4,0),设直线AP 方程,可得|t|√1+t2=15,由此求得原点O 到直线AP 的距离,判断D.此题主要考查直线与圆的位置关系,考查学生的运算能力,属于中档题.10.【答案】ABD; 【解析】此题主要考查的是直线与圆的位置关系,关键是找出圆心到直线的距离与圆的半径的大小关系,属于中档题.根据各个选项给出的圆的方程,分别计算出圆心到直线的距离,再与圆的半径进行比较,即可找出符合条件的圆的方程.解:直线l1:y=2x−4和l2:y=2x+6化为一般式为:l1:2x−y−4=0和l2:2x−y+6=0,两直线平行,A:(x−1)2+(y−3)2=5,圆心为(1,3),半径为√5,圆心到直线l1:2x−y−4=0的距离为√5=√5,直线l1:2x−y−4=0与圆相切,圆心到直线l2:2x−y+6=0的距离为√5=√5,直线l2:2x−y+6=0与圆相切,共有两个公共点,故A正确;B:(x−1)2+(y−2)2=5,圆心为(1,2),半径为√5,圆心到直线l1:2x−y−4=0的距离为√5=4√55<√5,直线l1:2x−y−4=0与圆相交,有两个交点,圆心到直线l2:2x−y+6=0的距离为√5=6√55>√5,直线l2:2x−y+6=0与圆相离,无公共点,故B正确;C:(x−1)2+(y+3)2=25,圆心为(1,−3),半径为5,圆心到直线l1:2x−y−4=0的距离为√5=√55<5,直线l1:2x−y−4=0与圆相交,有两个交点,圆心到直线l2:2x−y+6=0的距离为√5=11√55<5,直线l2:2x−y+6=0与圆相交,有两个交点,故C错误;D:(x−1)2+(y−10)2=25,圆心为(1,10),半径为5,圆心到直线l1:2x−y−4=0的距离为√5=12√55>5,直线l1:2x−y−4=0与圆相离,无交点,圆心到直线l2:2x−y+6=0的距离为√5=2√55<5,直线l2:2x−y+6=0与圆相交,有两个交点,故D正确.故选ABD.11.【答案】BCD;【解析】此题主要考查点与圆、直线与圆的位置关系,属于一般题.将点M坐标代入圆的方程即可判断A;利用过点M的圆C的最短弦与CM垂直即可判断B;利用弦长公式即可判断C;利用圆心到直线的距离小于等于半径即可判断D.解:对于A、因为32+02−4×3<0,所以点M在圆C内部,故A错误;对于B 、因为圆C 方程可化为(x −2)2+y 2=4,圆心为C(2,0),半径为r =2, 由于过点M 的圆C 的最短弦与CM 垂直,又k CM =0,则该弦所在直线的斜率不存在, 故对应的方程为x =3,故B 正确; 对于C 、l 的方程为y =−√33x +√3,即√3x +3y −3√3=0, 圆心C 到l 的距离为d =√3−3√3|√(√3)2+32=12,故弦长为2√r 2−d 2=2√22−(12)2=√15,故C 正确;对于D 、因为过点N(−2,0)作斜率为k 的直线方程为y =kx +2k ,即kx −y +2k =0, 因为直线与圆C 有公共点,则√k 2+(−1)2⩽2,解得k ∈[−√33,√33],故D 正确, 故选BCD .12.【答案】AD; 【解析】此题主要考查直线与圆相交,属基础题目, 利用弦心距、半弦长、半径满足勾股关系得解.解:圆C 的方程为x 2+(y −1)2 = 4, ∴圆心C(0,1),半径为2,由题意过点P 存在直线l 被圆C 截得的弦长为2√3, 设圆心C 到直线l 的距离为d , 则d 2=r 2−(2√32)2,d 2=4−3=1,则点P 到点C 的距离不小于1,∴满足条件的点P 的坐标 (0,0)或 (2,0), 故选AD .13.【答案】BC;【解析】解:圆C :(x −2)2+(y −2)2=25的圆心为C(2,2),半径r =5, 因为圆C 上恰有3个点到直线l 的距离为3. 所以圆心C 到直线l 的距离为r −3=2, 所以√32+42=2,整理得|m −2|=10,解得m =12或m =−8. 故选:BC.根据圆的性质,得到圆心到直线l 的距离等于2,由点到直线的距离公式求解即可. 此题主要考查直线与圆的位置关系,考查点到直线的距离公式的应用,考查方程思想与运算求解能力,属于基础题.14.【答案】(1)[2−√22,2+√22] (2)43; 【解析】(1)此题主要考查了轨迹思想以及圆与圆的位置关系的应用.其中条件“∠APB =60°”就是用来确定点P 的轨迹的,一方面,根据点满足∠APB =60°,从而得到点P 在动圆x 2+y 2=4上,,另一方面,P 也在圆M 上,从而将所求解的问题转化为研究圆与圆的位置关系的问题,通过它们的位置关系,就可以求出变量a 的取值范围.解:(1)因为圆M 上存在点P ,使经过点P 作圆O 的两条切线, 切点为A ,B ,使∠APB =60°,则∠APO =30°, 所以OP =2,即点P 在圆x 2+y 2=4上,又点P 在圆M 上,圆M 圆心为(a,a −4),半径为1, 于是2−1⩽√a 2+(a −4)2⩽2+1, 即1⩽√a 2+(a −4)2⩽3, 解得实数a ∈[2−√22,2+√22]. 故答案为[2−√22,2+√22]. (2)此题主要考查根据圆和圆的位置关系求解参数的取值范围的问题.本题关键在于利用圆和圆有公共点建立关于k 的不等式,再利用直线上至少存在一点,从而将问题转化为不等式有解的问题.解:由题意知圆C 的方程可化为(x −4)2+y 2=1,则圆心C(4,0). 设直线上一点的坐标为(x,kx −2), 则由题意得√(x −4)2+(kx −2)2⩽2, 整理得(k 2+1)x 2−(8+4k )x +16⩽0,此不等式有解的条件是Δ=(8+4k )2−64(k 2+1)⩾0, 解得0⩽k ⩽43,故最大值为43. 故答案为43.15.【答案】x-y-3=0;【解析】解:把圆的方程x 2+y 2−8x −2y +10=0化为标准方程得: (x −4)2+(y −1)2=7, 所以圆心坐标为(4,1),又M(3,0),根据题意可知:过点M 最长的弦为圆的直径, 则所求直线为过圆心和M 的直线,设为y =kx +b , 把两点坐标代入得:{4k +b =13k +b =0,解得:{k =1b =−3,则过点M 最长的弦所在的直线方程是y =x −3,即x −y −3=0. 故答案为:x −y −3=0由M 为已知圆内一点,可知过M 最长的弦为过M 点的直径,故过点M 最长的弦所在的直线方程为点M 和圆心确定的直线方程,所以把圆的方程化为标准,找出圆心坐标,设出所求直线的方程,把M 和求出的圆心坐标代入即可确定出直线的方程.该题考查了直线与圆的位置关系,要求学生会将圆的方程化为标准方程,会利用待定系数法求一次函数的解析式,根据题意得出所求直线为过圆心和M 的直线是本题的突破点.16.【答案】6; 【解析】此题主要考查直线的点斜式方程,直线与圆的位置关系,点到直线的距离公式. 【解析】解:设与直线x −√2y +3=0平行的直线方程为x −√2y +c =0, 将点(1,0)代入直线x −√2y +c =0得c =−1, 所以该直线方程为x −√2y −1=0,圆(x −6)2+(y −√2)2=12的圆心C 为(6,√2),半径r =2√3, 所以点C 到直线x −√2y −1=0的距离为d =√2×√2−1√1+2=√3=√3,所以被截得的弦长为2√r 2−d 2=2×√12−3=6, 故答案为6.17.【答案】5 ; 【解析】此题主要考查直线和圆的位置关系,注意运用直线过圆心,考查乘1法和均值不等式的运用,考查运算能力,属于中档题.求得圆的圆心,代入直线方程,可得3a +2b =5(a 、b >0),即有3a +2b =15(3a +2b)(3a +2b ),计算、运用基本不等式,即可得到最小值.解:圆C :(x −3)2+(y −2)2=25的圆心为(3,2),由题意可得3a+2b=5(a、b>0),则3a +2b=15(3a+2b)(3a+2b)=15(13+6ab+6ba)⩾15(13+2√6ab)=15(13+12)=5.当且仅当a=b=1时,取得最小值5.故答案为5.18.【答案】1;【解析】解:图所示,以MO=MQ=,解x=1,与圆的方(x−2)2+(y3)29联立,以点Q的横标为1.则点M(3)为圆,r=3为半径的圆方程为消y得:−4x+=0,x2+(−3)2=,据题意画出形,结图得出点Q在以点为心,3为半上,写出圆的方程,与圆C的方联立去y求得x的值即可.本题查了直线与圆的程应用问题,也考了化法与数形结合的应问题,是基题目.19.【答案】解:由题知,设直线l2:x−y+m=0,代入点(1,−3)得m=−4,即直线l2:x−y−4=0,∵圆C:x2+y2−2x+6y=0,化为(x−1)2+(y+3)2=10,∴圆心坐标为(1,−3),半径为√10,则直线l2过圆心(1,−3),所以|MN|=2√10,又圆心C(1,−3)到直线l1:x−y−2=0的距离为d=√2,∴|AB|=2√(√10)2−(√2)2=4√2,∵l 2//l 1 ∴l 1到l 2的距离√12+(−1)2=√2,∴由A,B,M,N 构成四边形为梯形,且面积S =12×(4√2+2√10)×√2=4+2√5.;【解析】此题主要考查两条直线平行的判定,点到直线的距离公式,两平行直线间的距离,直线与圆的位置关系及判定,属于中档题.先由直线l 2过点(1,−3)且l 2//l 1,求出l 2的方程,再分别求出弦长|AB |,|MN |,及两平行线间的距离,即可求由A,B,M,N 构成梯形的面积.20.【答案】解:(1)将A(2,4)代入圆O 1:x 2+y 2−mx −14y +60=0得4+16−2m −56+60=0,解得m =12, ∴O 1(6,7),半径r =5.(2)∵OA →=BC →,∴k BC =k OA =2,且|BC |=|OA |=2√5, 设直线BC :y =2x +b ,即2x −y +b =0, 圆心O 1到直线2x −y +b =0的距离d =√22+1=√5,由勾股定理得2√5=2√25−d 2,∴d 2=20,∴(5+b)25=20,∴5+b =±10,∴b =5或b =−15,所以直线BC 的方程为y =2x +5或y =2x −15. (3)设B(x 1,y 1),C(x 2,y 2), 所以{x 2=x 1−2y 2=y 1+t −4…①,因为点C 在圆O 1上,所以(x 2−6)2+(y 2−7)2=25…② 将①代入②,得(x 1−8)2+(y 1+t −11)2=25,于是点B 既在圆O 1上,又在圆(x −8)2+(y +t −11)2=25上,从而圆(x −6)2+(y −7)2=25与圆(x −8)2+(y +t −11)2=25有公共点, 所以5−5⩽√(8−6)2+(11−t −7)2⩽5+5, 解得4−4√6⩽t ⩽4+4√6.因此,实数t 的取值范围是[4−4√6,4+4√6].;【解析】该题考查了直线与圆的关系,涉及了向量知识,弦心距公式,点到直线的距离公式等内容,属于中档题.(1)将A 点代入圆的方程可得m 的值,继而求出半径和圆心;(2)可设直线BC 方程为:y =2x +b ,可得圆心O 1(6,7)到直线BC 的距离,结合弦心距定理可得b 的值,求出直线方程;(3)设B(x 1,y 1),C(x 2,y 2),得{x 2=x 1−2y 2=y 1+t −4,(x 1−8)2+(y 1+t −11)2=25,于是点B 既在圆O 1上,又在圆(x −8)2+(y +t −11)2=25上,从而圆(x −6)2+(y −7)2=25与圆(x −8)2+(y +t −11)2=25上有公共点,即可求解.21.【答案】解:(1)由x 2+8x +y 2=0得(x +4)2+y 2=16, 因此圆C 的圆心C(−4,0),半径r =4. 因为圆心C 到直线l 的距离d =√m 2+1=√m 2+1,而直线l 与圆C 相交于A ,B 两点, 所以|AB |=2√r 2−d 2=2√16−4m 2m 2+1.又因为|AB |=2√14,所以2√16−4m 2m 2+1=2√14,即4m 2m 2+1=2,解得m =±1,因此直线l 的方程为y =x +2或y =−x −2. (2)设P(x,y),M(x 1,0),N(x 2,0).因为点P 是圆C 上任意一点,而点P 的轨迹方程为x 2+y 2=−8x , 所以x ∈[−8,0].若在x 轴上存在两个定点M ,N ,使得|PM ||PN |=12成立, 即√(x−x 1)2+y 2√(x−x 2)2+y 2=12对x ∈[−8,0]恒成立, 即x 2+y 2+x 12−2x 1x x 2+y 2+x 22−2x 2x =14对x ∈[−8,0]恒成立,化简得−8x +x 12−2x 1x −8x +x 22−2x 2x =14对x ∈[−8,0]恒成立,即2(4x 1−x 2+12)x +(x 22−4x 12)=0对x ∈[−8,0]恒成立,因此&#x007B4x 1−x 2+12=0x 22−4x 12=0,解得&#x007B x 1=−6x 2=−12或&#x007B x 1=−2x 2=4, 所以满足题意的定点M ,N 存在,其坐标为M(−6,0),N(−12,0)或M(−2,0),N(4,0).; 【解析】此题主要考查了两点间的距离公式,点到直线的距离公式,圆的标准方程,直线与圆的位置关系及判定和圆方程的综合应用,属于较难题.(1)利用圆的标准方程得圆C 的圆心和半径,再利用点到直线的距离得直线l 与圆C 的相交弦长,再结合题目条件,计算得结论;(2)设P(x,y),M(x 1,0),N(x 2,0),由点P 是圆C 上任意一点得x ∈[−8,0],再利用若在x 轴上存在两个定点M ,N ,使得|PM ||PN |=12成立,结合两点间的距离公式得2(4x 1−x 2+12)x +(x 22−4x 12)=0对x ∈[−8,0]恒成立,从而得&#x007B4x 1−x 2+12=0x 22−4x 12=0,从方程&#x007B 4x 1−x 2+12=0x 22−4x 12=0有解得满足题意的定点M ,N 存在,再求出点M ,N 的坐标.22.【答案】解:(1)由x2+y2−4x+ay+1=0(a∈R)得C(2,−a2)因为P为AB的中点,所以P在圆内且CP⊥AB.所以&#x007B 12+a×1+1<0−a2−12=1,解得a=−6.(2)由(1)得圆C:x2+y2−4x−6y+1=0,即(x−2)2+(y−3)2=12,所以圆心C(2,3),半径r=2√3.设M点坐标为(x,y),因为MN为圆C的切线,所以MN⊥CN,所以MN2= MC2−r2=MC2−12,又MN=√2MP,所以2M P2=MC2−12,则2x2+2(y−1)2=(x−2)2+(y−3)2−12,整理,得(x+2)2+(y+1)2=4.由于MN=√2MP,故MN取最小值,即MP取最小值,点P(0,1)到圆(x+2)2+(y+1)2=4的圆心距离d=√(0+2)2+(1+1)2=2√2,所以,MP的最小值为2√2−2,所以,MN的最小值为4−2√2.;【解析】此题主要考查了直线与圆相切,圆中的最值问题,属于中档题.(1)由圆的方程可得C(2,−a2),由题意得P在圆内且CP⊥AB,即可求得实数a的值;(2)由(1)得圆C (x−2)2+(y−3)2=12,设M点坐标为(x,y),结合题意得MN2=MC2−r2=MC2−12,从而有2M P2=MC2−12,可得MN取最小值,即MP取最小值,计算可得结果.23.【答案】解:(1)由题意,AB=70,AC=50,则BC=√4900−2500=20√6,∵风速为120海里/小时,∴台风影响城市A持续的时间为2×20√6120×60≈49分钟;(2)由题意,|BC|≤60,∴√r2−2500≤60,∵r>5,∴5<r≤10√61;【解析】(1)由题意,AB=70,AC=50,则BC=√4900−2500=20√6,根据风速为120海里/小时,即可得出结论;(2)若台风影响城市A持续的时间不超过1小时,|BC|⩽60,求r的取值范围.此题主要考查直线与圆的位置关系,考查学生的计算能力,考查学生分析解决问题的能力,属于中档题.。

2024届高考一轮复习数学课件(新教材人教A版):直线与圆、圆与圆的位置关系

2024届高考一轮复习数学课件(新教材人教A版):直线与圆、圆与圆的位置关系

3-4sin25θ+1,
所以 1≤4sin25θ+1<3,
所以 2 r2-d2=2 3-4sin25θ+1∈(0,2 2]. 所以当 4sin2θ+1=5,即 sin2θ=1 时,弦长有最大值 2 2.
题型二 圆与圆的位置关系
例5 (1)(2023·扬州联考)已知圆C:(x-1)2+(y+2 2)2=16和两点A(0,-m), B(0,m),若圆C上存在点P,使得AP⊥BP,则m的最大值为
则直线l与圆C相离,故B正确; 若点A(a,b)在圆C外,则a2+b2>r2,
所以 d= a2r+2 b2<|r|,则直线 l 与圆 C 相交,故 C 错误;
若点A(a,b)在直线l上,则a2+b2-r2=0, 即a2+b2=r2, 所以 d= a2r+2 b2=|r|,则直线 l 与圆 C 相切,故 D 正确.
第八章 直线和圆、圆锥曲线
§8.4 直线与圆、圆与 圆的位置关系
考试要求
1.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系. 2.能用直线和圆的方程解决一些简单的数学问题与实际问题.
内容索引
第一部分
落实主干知识
第二部分
探究核心题型
第三部分
课时精练

一 部 分
落实主干知识
知识梳理
1.直线与圆的位置关系(圆心到直线的距离为d,圆的半径为r)
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)若两圆没有公共点,则两圆一定外离.( × ) (2)若两圆的圆心距小于两圆的半径之和,则两圆相交.( × )
(3)若直线的方程与圆的方程组成的方程组有且只有一组实数解,则直线
与圆相切.( √ ) (4)在圆中最长的弦是直径.( √ )

高考数学复习知识点专题强化训练47 直线与圆、圆与圆的位置关系

高考数学复习知识点专题强化训练47 直线与圆、圆与圆的位置关系

高考数学复习知识点专题强化训练专题(四十七) 直线与圆、圆与圆的位置关系A级——夯基保分练1.圆x2+y2-2x+4y=0与直线2tx-y-2-2t=0(t∈R)的位置关系为( )A.相离B.相切C.相交D.以上都有可能解析:选C 直线2tx-y-2-2t=0恒过点(1,-2),∵12+(-2)2-2×1+4×(-2)=-5<0,∴点(1,-2)在圆x2+y2-2x+4y=0内部,直线2tx-y-2-2t=0与圆x2+y2-2x+4y=0相交.2.过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,则该切线的方程为( ) A.2x+y-5=0 B.2x+y-7=0C.x-2y-5=0 D.x-2y-7=0解析:选B 由题意,过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,则点(3,1)在圆上,代入可得r2=5,圆的方程为(x-1)2+y2=5,则过点(3,1)的切线方程为(x-1)·(3-1)+y(1-0)=5,即2x+y-7=0.3.已知圆C:(x-3)2+(y-1)2=1和两点A(-t,0),B(t,0)(t>0),若圆C上存在点P,使得∠APB=90°,则实数t的最小值为( )A.4 B.3C.2 D.1解析:选D 由∠APB=90°得,点P在圆x2+y2=t2上,因此由两圆有交点得|t-1|≤|OC|≤t+1⇒|t-1|≤2≤t+1⇒1≤t≤3,即t的最小值为1.4.若圆O1:x2+y2=5与圆O2:(x+m)2+y2=20相交于A,B两点,且两圆在点A 处的切线互相垂直,则线段AB的长度是( )A.3 B.4C.2 3 D.8解析:选B 连接O1A,O2A,由于⊙O1与⊙O2在点A处的切线互相垂直,因此O1A⊥O2A,所以|O1O2|2=|O1A|2+|O2A|2,即m2=5+20=25,设AB交x轴于点C.在Rt△O1AO2中,sin∠AO2O1=55,∴在Rt△ACO2中,|AC|=|AO2|·sin∠AO2O1=25×55=2,∴|AB|=2|AC|=4.故选B.5.(多选)已知直线x-2y+a=0与圆O:x2+y2=2相交于A,B两点(O为坐标原点),且△AOB为等腰直角三角形,则实数a的值为( )A. 6B.5C.- 6 D.-5解析:选BD 因为直线x-2y+a=0与圆O:x2+y2=2相交于A,B两点(O为坐标原点),且△AOB 为等腰直角三角形,所以O 到直线AB 的距离为1,由点到直线的距离公式可得|a |12+-22=1,所以a =±5,故选B 、D.6.(多选)已知圆C :(x -3)2+(y -3)2=72,若直线x +y -m =0垂直于圆C 的一条直径,且经过这条直径的一个三等分点,则m =( )A .2B .4C .6D .10解析:选AD 圆C :(x -3)2+(y -3)2=72的圆心C 的坐标为(3,3),半径r =62, 因为直线x +y -m =0垂直于圆C 的一条直径,且经过这条直径的一个三等分点,所以圆心到直线的距离为22, 则有d =|6-m |1+1=22,解得m =2或10,故选A 、D.7.(2020·湖南长沙月考)设直线l :(m -1)x +(2m +1)y +3m =0(m ∈R )与圆(x -1)2+y 2=8相交于A ,B 两点,C 为圆心,且△ABC 的面积等于4,则实数m =________.解析:设CA ,CB 的夹角为θ,圆的半径为r .所以S △ABC =12r 2sin θ=4sin θ=4,得θ=π2.易知圆心C 到直线l 的距离为2,所以|4m -1|m -12+2m +12=2,解得m=-12或-72.答案:-12或-728.若直线l :y =kx +1被圆C :x 2+y 2-2x -3=0截得的弦最短,则直线l 的方程是__________________.解析:依题意,直线l :y =kx +1过定点P (0,1).圆C :x 2+y 2-2x -3=0化为标准方程为(x -1)2+y 2=4.故圆心为C (1,0),半径为r =2.则易知定点P (0,1)在圆内.由圆的性质可知当PC ⊥l 时,直线l :y =kx +1被圆C :x 2+y 2-2x -3=0截得的弦最短.因为k PC =1-00-1=-1,所以直线l 的斜率k =1,即直线l 的方程是x -y +1=0.答案:x -y +1=09.已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线l :y =x -1被圆C 所截得的弦长为22,则过圆心且与直线l 垂直的直线的方程为________________.解析:由题意,设所求的直线方程为x +y +m =0,圆心坐标为(a,0)(a >0), 则由题意知⎝⎛⎭⎪⎫|a -1|22+2=(a -1)2, 解得a =3或-1(舍去), 故圆心坐标为(3,0),因为圆心(3,0)在所求的直线上, 所以3+0+m =0, 解得m =-3,故所求的直线方程为x +y -3=0. 答案:x +y -3=010.(一题两空)已知圆C :x 2+y 2+2x -4y +1=0,O 为坐标原点,动点P 在圆C 外,过P 作圆C 的切线,设切点为M .(1)若点P 运动到(1,3)处,则此时切线l 的方程为____________; (2)满足条件|PM |=|PO |的点P 的轨迹方程为____________. 解析:把圆C 的方程化为标准方程为(x +1)2+(y -2)2=4, ∴圆心为C (-1,2),半径r =2.(1)当l 的斜率不存在时,此时l 的方程为x =1,C 到l 的距离d =2=r ,满足条件. 当l 的斜率存在时,设斜率为k , 当l 的方程为y -3=k (x -1), 即kx -y +3-k =0,则|-k -2+3-k |1+k 2=2,解得k =-34. ∴l 的方程为y -3=-34(x -1),即3x +4y -15=0.综上,满足条件的切线l 的方程为x =1或3x +4y -15=0.(2)设P (x ,y ),则|PM |2=|PC |2-|MC |2 =(x +1)2+(y -2)2-4, |PO |2=x 2+y 2,∵|PM |=|PO |, ∴(x +1)2+(y -2)2-4=x 2+y 2, 整理,得2x -4y +1=0,∴点P 的轨迹方程为2x -4y +1=0. 答案:(1)x =1或3x +4y -15=0 (2)2x -4y +1=011.已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点.(1)求k 的取值范围;(2)若OM ―→·ON ―→=12,其中O 为坐标原点,求|MN |. 解:(1)由题设可知直线l 的方程为y =kx +1. 因为直线l 与圆C 交于两点, 所以|2k -3+1|1+k 2<1.解得4-73<k <4+73.所以k 的取值范围为⎝ ⎛⎭⎪⎫4-73,4+73. (2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1, 整理得(1+k 2)x 2-4(1+k )x +7=0.所以x 1+x 2=41+k1+k 2,x 1x 2=71+k 2. OM ―→·ON ―→=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k 1+k 1+k 2+8.由题设可得4k 1+k 1+k 2+8=12,解得k =1,所以直线l 的方程为y =x +1. 故圆心C 在直线l 上,所以|MN |=2.12.已知以点C ⎝⎛⎭⎪⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O ,A ,与y 轴交于点O ,B ,其中O 为坐标原点.(1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若|OM |=|ON |,求圆C 的方程. 解:(1)证明:由题意知圆C 过原点O ,∴半径r =|OC |.∵|OC |2=t 2+4t2,∴设圆C 的方程为(x -t )2+⎝⎛⎭⎪⎫y -2t 2=t 2+4t 2.令y =0,得x 1=0,x 2=2t ,则A (2t,0). 令x =0,得y 1=0,y 2=4t ,则B ⎝ ⎛⎭⎪⎫0,4t .∴S △OAB =12|OA |·|OB |=12×⎪⎪⎪⎪⎪⎪4t ×|2t |=4,即△OAB 的面积为定值.(2)∵|OM |=|ON |,|CM |=|CN |, ∴OC 垂直平分线段MN .∵k MN =-2,∴k OC =12,∴直线OC 的方程为y =12x .∴2t =12t ,解得t =2或t =-2. 当t =2时,圆心C 的坐标为(2,1),r =|OC |=5,此时圆心C 到直线y =-2x +4的距离d =15<5, 圆C 与直线y =-2x +4相交于两点.当t =-2时,圆心C 的坐标为(-2,-1),r =|OC |=5,此时圆心C 到直线y =-2x +4的距离d =95>5,圆C 与直线y =-2x +4不相交. ∴圆C 的方程为(x -2)2+(y -1)2=5.B 级——提能综合练13.(多选)在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-4x =0.若直线y =k (x +1)上存在一点P ,使过P 所作的圆的两条切线相互垂直,则实数k 的取值可以是( )A .1B .2C .3D .4解析:选AB 圆C 的方程为x 2+y 2-4x =0,则圆心为C (2,0),半径R =2.设两个切点分别为A ,B ,则由题意可得四边形PACB 为正方形,故有PC =2R =22,∴圆心到直线y =k (x +1)的距离小于或等于PC =22, 即|2k -0+k |k 2+1≤22,解得k 2≤8,可得-22≤k ≤22, ∴实数k 的取值可以是1,2.故选A 、B.14.(2020·河南洛阳二模)已知直线x +y -2=0与圆O :x 2+y 2=r 2(r >0)相交于A ,B 两点,C 为圆周上一点,线段OC 的中点D 在线段AB 上,且3AD ―→=5DB ―→,则r =________.解析:如图,过O 作OE ⊥AB 于E ,连接OA ,则|OE |=|0+0-2|12+12=2,易知|AE |=|EB |, 不妨令|AD |=5m (m >0), 由3AD ―→=5DB ―→可得 |BD |=3 m ,|AB |=8m , 则|DE |=4m -3m =m ,在Rt △ODE 中,有⎝ ⎛⎭⎪⎫12r 2=(2)2+m 2,①在Rt △OAE 中,有r 2=(2)2+(4m )2,②联立①②,解得r =10.答案:1015.已知圆C 经过点A ⎝ ⎛⎭⎪⎫74,174,B ⎝⎛⎭⎪⎫-318,338,直线x =0平分圆C ,直线l 与圆C 相切,与圆C 1:x 2+y 2=1相交于P ,Q 两点,且满足OP ⊥OQ .(1)求圆C 的方程; (2)求直线l 的方程.解:(1)依题意知圆心C 在y 轴上,可设圆心C 的坐标为(0,b ),圆C 的方程为x 2+(y -b )2=r 2(r >0).因为圆C 经过A ,B 两点,所以⎝ ⎛⎭⎪⎫742+⎝ ⎛⎭⎪⎫174-b 2=⎝ ⎛⎭⎪⎫-3182+⎝ ⎛⎭⎪⎫338-b 2, 即716+28916-172b +b 2=3164+1 08964-334b +b 2,解得b =4. 则r 2=⎝ ⎛⎭⎪⎫742+⎝ ⎛⎭⎪⎫174-42=12,所以圆C 的方程为x 2+(y -4)2=12.(2)当直线l 的斜率不存在时,由l 与C 相切得l 的方程为x =±22,此时直线l 与C 1交于P ,Q 两点,不妨设P 点在Q 点的上方,则P ⎝ ⎛⎭⎪⎫22,22,Q ⎝ ⎛⎭⎪⎫22,-22或P ⎝ ⎛⎭⎪⎫-22,22,Q ⎝ ⎛⎭⎪⎫-22,-22,则OP ―→·OQ ―→=0,所以OP ⊥OQ ,满足题意.当直线l 的斜率存在时,易知其斜率不为0,设直线l 的方程为y =kx +m (k ≠0,m ≠0),P (x 1,y 1),Q (x 2,y 2),将直线l 的方程与圆C 1的方程联立,得⎩⎨⎧y =kx +m ,x 2+y 2=1,消去y ,整理得(1+k 2)x 2+2kmx +m 2-1=0, 则Δ=4k 2m 2-4(1+k 2)(m 2-1)=4(k 2-m 2+1)>0, 即1+k 2>m 2,则x 1+x 2=-2km 1+k 2,x 1x 2=m 2-11+k 2,所以y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=k 2m 2-11+k 2-2k 2m 21+k2+m 2=m 2-k 21+k 2, 又OP ⊥OQ ,所以OP ―→·OQ ―→=0,即x 1x 2+y 1y 2=m 2-11+k 2+m 2-k 21+k 2=0,故2m 2=1+k 2,满足Δ>0,符合题意.因为直线l :y =kx +m 与圆C :x 2+(y -4)2=12相切,所以圆心C (0,4)到直线l 的距离d =|m -4|1+k 2=22,即m 2-8m +16=1+k22,故m 2-8m +16=m 2,得m =2,故1+k 2=8,得k =±7.故直线l 的方程为y =±7x +2.综上,直线l 的方程为x =±22或y =±7x +2. C 级——拔高创新练16.已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方.(1)求圆C 的方程;(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由.解:(1)设圆心C (a,0)⎝⎛⎭⎪⎫a >-52.则|4a +10|5=2,解得a =0或a =-5(舍).所以圆C 的方程为x 2+y 2=4.(2)当直线AB ⊥x 轴时,x 轴平分∠ANB .当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),N (t,0),A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧x 2+y 2=4,y =k x -1得(k 2+1)x 2-2k 2x +k 2-4=0,所以x 1+x 2=2k 2k 2+1,x 1x 2=k 2-4k 2+1.若x 轴平分∠ANB ,则k AN =-k BN ,即y 1x 1-t +y 2x 2-t=0,则k x 1-1x 1-t +k x 2-1x 2-t=0,即2x 1x 2-(t +1)(x 1+x 2)+2t =0,亦即2k 2-4k 2+1-2k 2t +1k 2+1+2t =0,解得t =4,所以当点N 坐标为(4,0)时,能使得∠ANM =∠BNM 总成立.。

2020-2021学年高中数学新人教A版选择性必修第一册 第2章 2

2020-2021学年高中数学新人教A版选择性必修第一册 第2章 2

作 业

返 首 页
·
22
·




导 学
(1)当|C1C2|=r1+r2=5,即 a=5 时,两圆外切;
小 结
·



当|C1C2|=r1-r2=3,即 a=3 时,两圆内切.




(2)当 3<|C1C2|<5,即 3<a<5 时,两圆相交.



(3)当|C1C2|>5,即 a>5 时,两圆外离.


合 作
3 [C1(1,2),r1=2;C2(-2,-2),r2=3,|C1C2|=5,r1+r2=5, 课



因此两圆外切.所以公切线有 3 条.]
分 层





返 首 页
·
14
·


景 导
4.已知两圆 x2+y2=10 和(x-1)2+(y-3)2=10 相交于 A,B 两
堂 小


·
探 点,则直线 AB 的方程是________.









返 首 页
·
8
·
情 位置关系
景 导 学
探 新
图示

外离
外切
相交
内切
内含 课 堂 小 结
提 素 养
·

作 探 究

d 与 r1,r2 的关系
_d_>__r_1+__r_2_
_d_=__r1_+__r_2 _
_|r_1-__r_2_|<__ _d_<_r_1_+__r2_

新教材高考数学第二章直线和圆的方程章末复习练习含解析新人教A版选择性必修第一册

新教材高考数学第二章直线和圆的方程章末复习练习含解析新人教A版选择性必修第一册

章末复习一、两直线的平行与垂直 1.判断两直线平行、垂直的方法(1)若不重合的直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1=k 2⇔l 1∥l 2. (2) 若直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1·k 2=-1⇔l 1⊥l 2. (讨论两直线平行、垂直不要遗漏直线斜率不存在的情况)2.讨论两直线的平行、垂直关系,可以提升学生的逻辑推理素养. 例1 (1)已知A ⎝⎛⎭⎪⎫1,-a +13,B ⎝ ⎛⎭⎪⎫0,-13,C (2-2a ,1),D (-a ,0)四点,若直线AB 与直线CD 平行,则a =________.答案 3解析 k AB =-13+a +130-1=-a3,当2-2a =-a ,即a =2时,k AB =-23,CD 的斜率不存在.∴AB 和CD 不平行;当a ≠2时,k CD =0-1-a -2+2a =12-a.由k AB =k CD ,得-a 3=12-a,即a 2-2a -3=0.∴a =3或a =-1.当a =3时,k AB =-1,k BD =0+13-3=-19≠k AB ,∴AB 与CD 平行.当a =-1时,k AB =13,k BC =1+134=13,k CD =1-04-1=13,∴AB 与CD 重合.∴当a =3时,直线AB 和直线CD 平行.(2)若点A (4,-1)在直线l 1:ax -y +1=0上,则l 1与l 2:2x -y -3=0的位置关系是________. 答案 垂直解析 将点A (4,-1)的坐标代入ax -y +1=0, 得a =-12,则12·l l k k =-12×2=-1,∴l 1⊥l 2. 反思感悟 一般式方程下两直线的平行与垂直:已知两直线的方程为l 1:A 1x +B 1y +C 1=0(A 1,B 1不同时为0),l 2:A 2x +B 2y +C 2=0(A 2,B 2不同时为0),则l 1∥l 2⇔A 1B 2-A 2B 1=0且C 1B 2-C 2B 1≠0,l 1⊥l 2⇔A 1A 2+B 1B 2=0.跟踪训练1 (1)已知直线l 1:ax -3y +1=0,l 2:2x +(a +1)y +1=0.若l 1⊥l 2,则实数a 的值为________. 答案 -3(2)已知两直线l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,若l 1∥l 2,则m =________. 答案 -1解析 因为直线x +my +6=0与(m -2)x +3y +2m =0平行,所以⎩⎪⎨⎪⎧1×3-m m -2=0,2m ≠6m -2,解得m =-1.二、两直线的交点与距离问题1.两条直线的位置关系的研究以两直线的交点为基础,通过交点与距离涵盖直线的所有问题. 2.两直线的交点与距离问题,培养学生的数学运算的核心素养.例2 (1)若点(1,a )到直线y =x +1的距离是322,则实数a 的值为( )A .-1B .5C .-1或5D .-3或3答案 C解析 ∵点(1,a )到直线y =x +1的距离是322,∴|1-a +1|2=322,即|a -2|=3,解得a =-1或a =5,∴实数a 的值为-1或5.(2)过点P (0,1)作直线l 使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,求直线l 的方程.解 设l 1与l 的交点为A (a ,8-2a ),则由题意知,点A 关于点P 的对称点B (-a ,2a -6)在l 2上, 代入l 2的方程得-a -3(2a -6)+10=0, 解得a =4,即点A (4,0)在直线l 上, 所以直线l 的方程为x +4y -4=0. 反思感悟跟踪训练2 (1)设两条直线的方程分别为x +y +a =0,x +y +b =0,已知a ,b 是关于x 的方程x 2+x -2=0的两个实数根,则这两条直线之间的距离为( ) A .2 3 B. 2 C .2 2 D.322答案 D解析 根据a ,b 是关于x 的方程x 2+x -2=0的两个实数根,可得a +b =-1,ab =-2, ∴a =1,b =-2或a =-2,b =1,∴|a -b |=3, 故两条直线之间的距离d =|a -b |2=32=322.(2)已知直线l 过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且点P (0,4)到直线l 的距离为2,则这样的直线l 的条数为( ) A .0 B .1 C .2 D .3 答案 C解析 方法一 由⎩⎪⎨⎪⎧x -2y +3=0,2x +3y -8=0,得⎩⎪⎨⎪⎧x =1,y =2,即直线l 过点(1,2).设点Q (1,2),因为|PQ |=1-02+2-42=5>2,所以满足条件的直线l 有2条.故选C.方法二 依题意,设经过直线l 1与l 2交点的直线l 的方程为2x +3y -8+λ(x -2y +3)=0(λ∈R ),即(2+λ)x +(3-2λ)y +3λ-8=0.由题意得|12-8λ+3λ-8|2+λ2+3-2λ2=2,化简得5λ2-8λ-36=0,解得λ=-2或185,代入得直线l 的方程为y =2或4x -3y +2=0,故选C.三、直线与圆的位置关系 1.直线与圆位置关系的判断方法(1)几何法:设圆心到直线的距离为d ,圆的半径长为r .若d <r ,则直线和圆相交;若d =r ,则直线和圆相切;若d >r ,则直线和圆相离.(2)代数法:联立直线方程与圆的方程组成方程组,消元后得到一个一元二次方程,其判别式为Δ.Δ=0⇔直线与圆相切;Δ>0⇔直线与圆相交;Δ<0⇔直线与圆相离. 2.研究直线与圆的位置关系,集中体现了直观想象和数学运算的核心素养. 例3 已知直线l :2mx -y -8m -3=0和圆C :x 2+y 2-6x +12y +20=0. (1)m ∈R 时,证明l 与C 总相交;(2)m 取何值时,l 被C 截得的弦长最短?求此弦长. (1)证明 直线的方程可化为y +3=2m (x -4), 由点斜式可知,直线恒过点P (4,-3).由于42+(-3)2-6×4+12×(-3)+20=-15<0, 所以点P 在圆内,故直线l 与圆C 总相交. (2)解 圆的方程可化为(x -3)2+(y +6)2=25.如图,当圆心C (3,-6)到直线l 的距离最大时,线段AB 的长度最短.此时PC ⊥l ,又k PC =-3--64-3=3,所以直线l 的斜率为-13,则2m =-13,所以m =-16.在Rt△APC 中,|PC |=10,|AC |=r =5. 所以|AB |=2|AC |2-|PC |2=215.故当m =-16时,l 被C 截得的弦长最短,最短弦长为215.反思感悟 直线与圆问题的类型(1)求切线方程:可以利用待定系数法结合图形或代数法求得.(2)弦长问题:常用几何法(垂径定理),也可用代数法结合弦长公式求解. 跟踪训练3 已知圆C 关于直线x +y +2=0对称,且过点P (-2, 2)和原点O . (1)求圆C 的方程;(2)相互垂直的两条直线l 1,l 2都过点A (-1, 0),若l 1,l 2被圆C 所截得的弦长相等,求此时直线l 1的方程.解 (1)由题意知,直线x +y +2=0过圆C 的圆心,设圆心C (a ,-a -2). 由题意,得(a +2)2+(-a -2-2)2=a 2+(-a -2)2, 解得a =-2.因为圆心C (-2,0),半径r =2, 所以圆C 的方程为(x +2)2+y 2=4.(2)由题意知,直线l 1,l 2的斜率存在且不为0, 设l 1的斜率为k ,则l 2的斜率为-1k,所以l 1:y =k (x +1),即kx -y +k =0,l 2:y =-1k(x +1),即x +ky +1=0.由题意,得圆心C 到直线l 1,l 2的距离相等, 所以|-2k +k |k 2+1=|-2+1|k 2+1,解得k =±1, 所以直线l 1的方程为x -y +1=0或x +y +1=0. 四、圆与圆的位置关系1.圆与圆的位置关系:一般利用圆心间距离与两半径和与差的大小关系判断两圆的位置关系. 2.圆与圆的位置关系的转化,体现直观想象、逻辑推理的数学核心素养. 例4 已知圆C 1:x 2+y 2+4x -4y -5=0与圆C 2:x 2+y 2-8x +4y +7=0. (1)证明圆C 1与圆C 2相切,并求过切点的两圆公切线的方程; (2)求过点(2, 3)且与两圆相切于(1)中切点的圆的方程.解 (1)把圆C 1与圆C 2都化为标准方程形式,得(x +2)2+(y -2)2=13,(x -4)2+(y +2)2=13.圆心与半径长分别为C 1(-2,2),r 1=13;C 2(4,-2),r 2=13.因为|C 1C 2|=-2-42+2+22=213=r 1+r 2,所以圆C 1与圆C 2相切.由⎩⎪⎨⎪⎧x 2+y 2+4x -4y -5=0,x 2+y 2-8x +4y +7=0,得12x -8y -12=0,即3x -2y -3=0,就是过切点的两圆公切线的方程. (2)由圆系方程,可设所求圆的方程为x 2+y 2+4x -4y -5+λ(3x -2y -3)=0.点(2, 3)在此圆上,将点坐标代入方程解得λ=43.所以所求圆的方程为x 2+y 2+4x -4y -5+43(3x -2y -3)=0,即x 2+y 2+8x -203y -9=0.反思感悟 两圆的公共弦问题(1)若圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0相交,则两圆公共弦所在直线的方程为(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0. (2)公共弦长的求法①代数法:将两圆的方程联立,解出交点坐标,利用两点间的距离公式求出弦长. ②几何法:求出公共弦所在直线的方程,利用圆的半径、半弦长、弦心距构成的直角三角形,根据勾股定理求解.跟踪训练4 (1)已知圆C 1:x 2+y 2-6x -7=0与圆C 2:x 2+y 2-6y -27=0相交于A , B 两点,则线段AB 的中垂线方程为________. 答案 x +y -3=0解析 AB 的中垂线即为圆C 1、圆C 2的连心线C 1C 2. 又C 1(3,0),C 2(0,3), 所以C 1C 2所在直线的方程为x +y -3=0.(2)已知圆C 1:x 2+y 2-4x +2y =0与圆C 2:x 2+y 2-2y -4=0. ①求证:两圆相交;②求两圆公共弦所在直线的方程.①证明 圆C 1的方程可化为(x -2)2+(y +1)2=5,圆C 2的方程可化为x 2+(y -1)2=5, ∴C 1(2,-1),C 2(0,1),两圆的半径均为5, ∵|C 1C 2|=2-02+-1-12=22∈(0,25),∴两圆相交.②解 将两圆的方程相减即可得到两圆公共弦所在直线的方程, (x 2+y 2-4x +2y )-(x 2+y 2-2y -4)=0,即x -y -1=0.1.(2019·天津改编)设a ∈R ,直线ax -y +2=0和圆x 2+y 2-4x -2y +1=0相切,则a 的值为________. 答案 34解析 由已知条件可得圆的标准方程为(x -2)2+(y -1)2=4,其圆心为(2,1),半径为2,由直线和圆相切可得|2a -1+2|a 2+1=2,解得a =34. 2.(2017·北京改编)在平面直角坐标系中,点A 在圆C :x 2+y 2-2x -4y +4=0上,点P 的坐标为(1,0),则||AP 的最小值为________. 答案 1解析 x 2+y 2-2x -4y +4=0, 即(x -1)2+(y -2)2=1, 圆心坐标为C (1,2),半径长为1. ∵点P 的坐标为(1,0),∴点P 在圆C 外. 又∵点A 在圆C 上,∴|AP |min =|PC |-1=2-1=1.3.(2017·天津改编)已知点C 在直线l :x =-1上,点F (1,0),以C 为圆心的圆与y 轴的正半轴相切于点A . 若∠FAC =120°,则圆的方程为________________. 答案 (x +1)2+(y -3)2=1解析 由圆心C 在l 上,且圆C 与y 轴正半轴相切,可得点C 的横坐标为-1,圆的半径为1,∠CAO =90°.又因为∠FAC =120°, 所以∠OAF =30°,所以|OA |=3, 所以点C 的纵坐标为 3.所以圆的方程为(x +1)2+(y -3)2=1.4.(2019·江苏改编)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P ,Q ,并修建两段直线型道路PB ,QA .规划要求:线段PB ,QA 上的所有点到点O 的距离均不小于圆O 的半径.已知点A ,B 到直线l 的距离分别为AC 和BD (C ,D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由. 解 (1)如图,过O 作OH ⊥l ,垂足为H .以O 为坐标原点,直线OH 为y 轴,建立如图所示的平面直角坐标系. 因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,-3. 因为AB 为圆O 的直径,AB =10, 所以圆O 的方程为x 2+y 2=25.从而A (4,3),B (-4,-3),直线AB 的斜率为34.因为PB ⊥AB ,所以直线PB 的斜率为-43,直线PB 的方程为y =-43x -253.所以P (-13,9),|PB |=-13+42+9+32=15.所以道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (-4,0),则EO =4<5, 所以P 选在D 处不满足规划要求.②若Q 在D 处,连接AD ,由(1)知D (-4,9),又A (4,3), 所以线段AD :y =-34x +6(-4≤x ≤4).在线段AD 上取点M ⎝⎛⎭⎪⎫3,154,因为|OM |=32+⎝ ⎛⎭⎪⎫1542<32+42=5,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处.。

2021人教A版高考数学总复习《直线与圆、圆与圆的位置关系》

2021人教A版高考数学总复习《直线与圆、圆与圆的位置关系》

故圆心 C(0,0)到直线 l:ax+by+c=0 的距离 d= a2|c+| b2=1=r,故圆 C:x2 +y2=1 与直线 l:ax+by+c=0 相切,故选 A. 答案 A
规律方法 判断直线与圆的位置关系的常见方法 (1)几何法:利用d与r的关系. (2)代数法:联立方程之后利用Δ判断. (3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.
答案 B
6.(多填题)(2019·浙江卷)已知圆C的圆心坐标是(0,m),半径长是r.若直线2x-y+3=0 与圆C相切于点A(-2,-1),则m=________,r=________. 解析 根据题意画出图形,可知 A(-2,-1),C(0,m),B(0,3),
则|AB|= (-2-0)2+(-1-3)2=2 5,
位置关系 外离
外切
相交
内切
内含
图形
量的关系 __d_>__R_+__r_ _d_=__R_+__r_ _R_-__r_<__d_<__R_+__r_ _d_=__R_-__r_ _d_<__R__-__r_
公切线条数
4
3
2
1
0
[常用结论与微点提醒] 1.圆的切线方程常用结论
(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2. (2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+ (y0-b)(y-b)=r2. (3)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程 为x0x+y0y=r2.
考点一 直线与圆的位置关系

高考数学复习:直线与圆、圆与圆的位置关系

高考数学复习:直线与圆、圆与圆的位置关系

当直线y=x+b过点(0,3)时,b=3;
当直线y=x+b与y=3- 4x x2相切时,由点到直线的距离 公式,得2= 2 3 b , 所以|b-1|=2 2 .结合图形知
2
b=1-2 2 . 所以1-2 2 ≤b≤3.
【状元笔记】 求直线被圆截得的弦长的常用方法 (1)几何法:用圆的几何性质求解,运用弦心距、半径及 弦的一半表示的线段构成的直角三角形, 计算弦长|AB|=2 r2 d2 .
2.已知点P(2,2),点Q是曲线C:(x2+y2-1)(x2+y2-2)=0上 一动点,则|PQ|的最小值是________.
【解析】曲线C由两部分组成,圆M:x2+y2=1与圆 N:x2+y2=2,如图,
要使|PQ|最小,需点Q在圆N上且在直线OP上, 此时,|PQ|=|OP|- 2 = 2 , 所以|PQ|的最小值是 2 . 答案: 2
【解析】(1)选A.直线l:mx-y+1-m=0过定点(1,1),因为 点(1,1)在圆x2+(y-1)2=5的内部,所以直线l与圆相交.
【一题多解微课】 本例题(1)还可以采用以下方法求解: (几何法)选A.由题意知,圆心(0,1)到直线l的距离 d= m 1 5, 故直线l与圆相交.
m2 1
A.[1-2 2 ,1+2 2 ] C.[-1,1+2 2 ]
B.[1- 2 ,3] D.[1-2 2 ,3]
【解析】选D.因为y=3- 4x x2 ,所以1≤y≤3, 所以(x-2)2+(y-3)2=4(1≤y≤3),即曲线y=3- 4x x2 表示以(2,3)为圆心,2为半径的下半圆.直线y=x+b与 曲线y=3- 4x x2 有公共点,表示两曲线至少有一个公共 点.符合条件的直线应是夹在过点(0,3)和与下半圆相切 的两直线之间.

高中数学第二章直线和圆的方程2.5直线与圆圆与圆的位置关系2.5.2圆与圆的位置关系课件新人教A版选

高中数学第二章直线和圆的方程2.5直线与圆圆与圆的位置关系2.5.2圆与圆的位置关系课件新人教A版选
=r.
2
解由①②③组成的方程组得 a=4,b=0,r=2 或 a=0,b=-4√3,r=6.
故所求圆的方程为(x-4)2+y2=4 或 x2+(y+4√3)2=36.

变式探究1
将本例变为“求与圆x2+y2-2x=0外切,圆心在x轴上,且过点(3,- √3 )的圆的方
程”,如何求?
解 因为圆心在x轴上,
所以可设圆心坐标为(a,0),设半径为r,
则所求圆的方程为(x-a)2+y2=r2,
又因为与圆 x2+y2-2x=0 外切,且过点(3,-√3),
= 4,
(-1)2 + 02 = + 1,
所以
解得

=
2,
2
2
(3-) + (-√3) = 2 ,
所以圆的方程为(x-4)2+y2=4.
变式探究2
所以所求圆的方程为(x-3)2+(y+1)2=16.
规律方法 (1)当经过两圆的交点时,圆的方程可设为
(x2+y2+D1x+E1y+F1)+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1),然后用待定系数法求
出λ即可.
(2)对于此类问题首先要理解运算对象,然后选择好运算方法,设计好运算
程序,最后求得运算结果.
义不清晰.
学以致用•随堂检测全达标
1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是(
)
A.内切 B.相交
C.外切 D.外离
答案 B
解析 圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.

新教材高考数学第二章直线和圆的方程5-2圆与圆的位置关系练习含解析新人教A版选择性必修第一册

新教材高考数学第二章直线和圆的方程5-2圆与圆的位置关系练习含解析新人教A版选择性必修第一册

圆与圆的位置关系学习目标 1.了解圆与圆的位置关系.2.掌握圆与圆的位置关系的判断方法.3.能用圆与圆的位置关系解决一些简单问题.知识点 两圆的位置关系及其判定(1)几何法:若两圆的半径分别为r 1,r 2,两圆连心线的长为d ,则两圆的位置关系如下:位置关系 外离外切相交内切内含图示d 与r 1,r 2的关系d >r 1+r 2d =r 1+r 2|r 1-r 2|< d <r 1+r 2d =|r 1-r 2|d <|r 1-r 2|(2)代数法:设两圆的一般方程为C 1:x 2+y 2+D 1x +E 1y +F 1=0(D 21+E 21-4F 1>0), C 2:x 2+y 2+D 2x +E 2y +F 2=0(D 22+E 22-4F 2>0),联立方程得⎩⎪⎨⎪⎧x 2+y 2+D 1x +E 1y +F 1=0,x 2+y 2+D 2x +E 2y +F 2=0,则方程组解的个数与两圆的位置关系如下:方程组解的个数 2组 1组 0组 两圆的公共点个数 2个 1个 0个 两圆的位置关系相交外切或内切外离或内含思考 根据代数法确定两个圆的位置关系时,若已知两圆只有一个交点,能否准确得出两圆的位置关系?答案 不能. 已知两圆只有一个交点只能得出两圆内切或外切.1.如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( × ) 2.如果两圆的圆心距小于两圆的半径之和,则两圆相交.( × )3.从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( × )4.若两圆有公共点,则|r 1-r 2|≤d ≤r 1+r 2.( √ )一、两圆位置关系的判断例1 当实数k为何值时,两圆C1:x2+y2+4x-6y+12=0,C2:x2+y2-2x-14x+k=0相交、相切、相离?解将两圆的一般方程化为标准方程,C1:(x+2)2+(y-3)2=1,C2:(x-1)2+(y-7)2=50-k,圆C1的圆心为C1(-2,3),半径r1=1;圆C2的圆心为C2(1,7),半径r2=50-k(k<50).从而|C1C2|=-2-12+3-72=5.当1+50-k=5,k=34时,两圆外切.当|50-k-1|=5,50-k=6,k=14时,两圆内切.当|r2-r1|<|C1C2|<r2+r1,即14<k<34时,两圆相交.当1+50-k<5或|50-k-1|>5,即34<k<50或k<14时,两圆相离.反思感悟判断两圆的位置关系的两种方法(1)几何法:将两圆的圆心距d与两圆的半径之差的绝对值,半径之和进行比较,进而判断出两圆的位置关系,这是在解析几何中主要使用的方法.(2)代数法:将两圆的方程组成方程组,通过解方程组,根据方程组解的个数进而判断两圆位置关系.跟踪训练1 (1)圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为( )A.内切B.相交C.外切D.相离答案 B解析两圆的圆心分别为(-2,0),(2,1),半径分别为r=2,R=3,两圆的圆心距为-2-22+0-12=17,则R-r<17<R+r,所以两圆相交,选B.(2)到点A(-1,2),B(3,-1)的距离分别为3和1的直线有________条.答案 4解析到点A(-1,2)的距离为3的直线是以A为圆心,3为半径的圆的切线;同理,到B的距离为1的直线是以B为圆心,半径为1的圆的切线,所以满足题设条件的直线是这两圆的公切线,而这两圆的圆心距|AB|=3+12+-1-22=5.半径之和为3+1=4,因为5>4,所以圆A 和圆B 外离,因此它们的公切线有4条. 二、两圆的公共弦问题例2 已知两圆x 2+y 2-2x +10y -24=0和x 2+y 2+2x +2y -8=0. (1)判断两圆的位置关系; (2)求公共弦所在的直线方程; (3)求公共弦的长度.解 (1)将两圆方程配方化为标准方程,则C 1:(x -1)2+(y +5)2=50, C 2:(x +1)2+(y +1)2=10,∴圆C 1的圆心坐标为(1,-5),半径为r 1=52, 圆C 2的圆心坐标为(-1,-1),半径为r 2=10. ∴|C 1C 2|=25,r 1+r 2=52+10, |r 1-r 2|=|52-10|, ∴|r 1-r 2|<|C 1C 2|<r 1+r 2, ∴两圆相交. (2)将两圆方程相减,得公共弦所在的直线方程为x -2y +4=0.(3)方法一 由(2)知圆C 1的圆心(1,-5)到直线x -2y +4=0的距离为d =|1-2×-5+4|1+-22=35, ∴公共弦长为l =2r 21-d 2=250-45=2 5.方法二 设两圆相交于点A ,B ,则A ,B 两点满足方程组⎩⎪⎨⎪⎧ x -2y +4=0,x 2+y 2+2x +2y -8=0,解得⎩⎪⎨⎪⎧x =-4,y =0或⎩⎪⎨⎪⎧x =0,y =2,∴|AB |=-4-02+0-22=2 5.即公共弦长为2 5.反思感悟 两圆的公共弦问题(1)若圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0相交,则两圆公共弦所在的直线方程为(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0. (2)公共弦长的求法①代数法:将两圆的方程联立,解出交点坐标,利用两点间的距离公式求出弦长. ②几何法:求出公共弦所在直线的方程,利用圆的半径、半弦长、弦心距构成的直角三角形,根据勾股定理求解.跟踪训练2 (1)两圆x 2+y 2-10x -10y =0,x 2+y 2+6x +2y -40=0的公共弦的长为( ) A .5 B .5 2 C .10 2 D .10 答案 D(2)圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-2x -2y +1=0的公共弦所在的直线被圆C 3:(x -1)2+(y -1)2=254所截得的弦长为________.答案23解析 由题意将两圆的方程相减,可得圆C 1和圆C 2公共弦所在的直线l 的方程为x +y -1=0.又圆C 3的圆心坐标为(1,1),其到直线l 的距离为d =|1+1-1|12+12=22, 设圆C 3的半径为r ,由条件知,r 2-d 2=254-12=234,所以弦长为2×232=23.圆系方程的应用典例 (1)求圆心在直线x -y -4=0上,且过两圆x 2+y 2-4x -6=0和x 2+y 2-4y -6=0的交点的圆的方程.解 方法一 设经过两圆交点的圆系方程为x 2+y 2-4x -6+λ(x 2+y 2-4y -6)=0(λ≠-1),即x 2+y 2-41+λx -4λ1+λy -6=0, 所以圆心坐标为⎝⎛⎭⎪⎫21+λ,2λ1+λ.又圆心在直线x -y -4=0上,所以21+λ-2λ1+λ-4=0,即λ=-13.所以所求圆的方程为x 2+y 2-6x +2y -6=0.方法二 由⎩⎪⎨⎪⎧x 2+y 2-4x -6=0,x 2+y 2-4y -6=0,得两圆公共弦所在直线的方程为y =x .由⎩⎪⎨⎪⎧y =x ,x 2+y 2-4y -6=0,解得⎩⎪⎨⎪⎧x 1=-1,y 1=-1,⎩⎪⎨⎪⎧x 2=3,y 2=3.所以两圆x 2+y 2-4x -6=0和x 2+y 2-4y -6=0的交点坐标分别为A (-1,-1),B (3,3), 线段AB 的垂直平分线所在的直线方程为y -1=-(x -1). 由⎩⎪⎨⎪⎧y -1=-x -1,x -y -4=0,得⎩⎪⎨⎪⎧x =3,y =-1,即所求圆的圆心坐标为(3,-1), 半径为3-32+[3--1]2=4.所以所求圆的方程为(x -3)2+(y +1)2=16.(2)求过直线x +y +4=0与圆x 2+y 2+4x -2y -4=0的交点且与直线y =x 相切的圆的方程. 解 设所求圆的方程为x 2+y 2+4x -2y -4+λ(x +y +4)=0.联立⎩⎪⎨⎪⎧y =x ,x 2+y 2+4x -2y -4+λx +y +4=0,得x 2+(1+λ)x +2(λ-1)=0.因为所求圆与直线y =x 相切,所以Δ=0,即(1+λ)2-8(λ-1)=0,解得λ=3, 故所求圆的方程为x 2+y 2+7x +y +8=0.[素养提升] (1)当经过两圆的交点时,圆的方程可设为(x 2+y 2+D 1x +E 1y +F 1)+λ(x 2+y 2+D 2x +E 2y +F 2)=0,然后用待定系数法求出λ即可.(2)理解运算对象,选择运算方法,设计运算程序,求得运算结果,体现了数学运算的数学核心素养.1.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是( ) A .相离 B .相交 C .外切 D .内切答案 B解析 化为标准方程:圆O 1:(x -1)2+y 2=1,圆O 2:x 2+(y -2)2=4,则O 1(1,0),O 2(0,2),|O 1O 2|=1-02+0-22=5<r 1+r 2,又r 2-r 1<5,所以两圆相交.2.圆C 1:(x +2)2+(y -m )2=9与圆C 2:(x -m )2+(y +1)2=4外切,则m 的值为( ) A .2B .-5C .2或-5D .不确定答案 C解析 圆C 1:(x +2)2+(y -m )2=9的圆心为(-2,m ),半径长为3, 圆C 2:(x -m )2+(y +1)2=4的圆心为(m ,-1),半径长为2. 依题意有-2-m2+m +12=3+2,即m 2+3m -10=0, 解得m =2或m =-5.3.圆x 2+y 2-4x +6y =0和圆x 2+y 2-6x =0交于A ,B 两点,则AB 的垂直平分线的方程是( )A .x +y +3=0B .2x -y -5=0C .3x -y -9=0D .4x -3y +7=0答案 C解析 AB 的垂直平分线过两圆的圆心,把圆心(2,-3)代入,即可排除A ,B ,D.4.已知以C (4,-3)为圆心的圆与圆O :x 2+y 2=1相切,则圆C 的方程是__________________. 答案 (x -4)2+(y +3)2=16或(x -4)2+(y +3)2=36 解析 设圆C 的半径为r , 圆心距为d =4-02+-3-02=5,当圆C 与圆O 外切时,r +1=5,r =4, 当圆C 与圆O 内切时,r -1=5,r =6, ∴圆的方程为(x -4)2+(y +3)2=16 或(x -4)2+(y +3)2=36.5.若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦长为23,则a =________. 答案 1解析 将两圆的方程相减,得相交弦所在的直线方程为y =1a,圆心(0,0)到直线的距离为d =1a=22-32=1,所以a =1.1.知识清单: (1)两圆的位置关系. (2)两圆的公共弦.2.方法归纳:几何法、代数法. 3.常见误区:将两圆内切和外切相混.1.圆C 1:x 2+y 2+4x +8y -5=0与圆C 2:x 2+y 2+4x +4y -1=0的位置关系为( ) A .相交 B .外切 C .内切 D .外离答案 C解析 由已知,得C 1(-2,-4),r 1=5,C 2(-2,-2),r 2=3,则d =|C 1C 2|=2, 所以d =|r 1-r 2|,所以两圆内切.2.圆x 2+y 2=1与圆x 2+y 2+2x +2y +1=0的交点坐标为( ) A .(1,0)和(0,1) B .(1,0)和(0,-1) C .(-1,0)和(0,-1) D .(-1,0)和(0,1)答案 C解析 由⎩⎪⎨⎪⎧x 2+y 2=1,x 2+y 2+2x +2y +1=0,解得⎩⎪⎨⎪⎧x =-1,y =0或⎩⎪⎨⎪⎧x =0,y =-1.所以两圆的交点坐标为(-1,0)和(0,-1).3.已知圆C 1:x 2+y 2-m =0,圆C 2:x 2+y 2+6x -8y -11=0,若圆C 1与圆C 2有公共点,则实数m 的取值范围是( ) A .m <1 B .m >121 C .1≤m ≤121 D .1<m <121答案 C解析 圆C 1的方程可化为x 2+y 2=m (m >0),则圆心为C 1(0,0),半径r 1=m ; 圆C 2的方程可化为(x +3)2+(y -4)2=36,则圆心为C 2(-3,4),半径r 2=6. ∵圆C 1与圆C 2有公共点,∴|r 1-r 2|≤|C 1C 2|≤r 1+r 2, 即|m -6|≤-3-02+4-02≤m +6,∴⎩⎨⎧|m -6|≤5,m +6≥5,解得1≤m ≤121.4.(多选)设r >0,圆(x -1)2+(y +3)2=r 2与圆x 2+y 2=16的位置关系不可能是( ) A .内切 B .相交 C .外离 D .外切答案 CD解析 两圆的圆心距为d =1-02+-3-02=10,两圆的半径之和为r +4, 因为10<r +4,所以两圆不可能外切或外离,故选CD.5.圆O 1:x 2+y 2-6x +16y -48=0与圆O 2:x 2+y 2+4x -8y -44=0的公切线条数为( ) A .4条 B .3条 C .2条 D .1条答案 C解析 圆O 1为(x -3)2+(y +8)2=121,O 1(3,-8),r =11,圆O 2为(x +2)2+(y -4)2=64,O 2(-2,4),R =8, ∴|O 1O 2|=3+22+-8-42=13,∴r -R <|O 1O 2|<R +r , ∴两圆相交.∴公切线有2条.6.若圆x 2+y 2-2ax +a 2=2和x 2+y 2-2by +b 2=1外离,则a ,b 满足的条件是_____________. 答案 a 2+b 2>3+2 2解析 由题意可得两圆的圆心坐标和半径长分别为(a ,0),2和(0,b ),1. 因为两圆外离,所以a 2+b 2>2+1, 即a 2+b 2>3+2 2.7.已知两圆x 2+y 2=10和(x -1)2+(y -3)2=20相交于A ,B 两点,则直线AB 的方程是_______. 答案 x +3y =0解析 圆的方程(x -1)2+(y -3)2=20可化为x 2+y 2-2x -6y =10. 又x 2+y 2=10,两式相减得2x +6y =0,即x +3y =0.8.经过直线x +y +1=0与圆x 2+y 2=2的交点,且过点(1,2)的圆的方程为________________.答案 x 2+y 2-34x -34y -114=0解析 由已知可设所求圆的方程为x 2+y 2-2+λ(x +y +1)=0,将(1,2)代入,可得λ=-34, 故所求圆的方程为x 2+y 2-34x -34y -114=0.9.已知圆O 1:x 2+(y +1)2=4,圆O 2的圆心O 2(2,1).若圆O 2与圆O 1交于A ,B 两点,且|AB |=22,求圆O 2的方程.解 设圆O 2的方程为(x -2)2+(y -1)2=r 22, 因为圆O 1的方程为x 2+(y +1)2=4,将两圆的方程相减,即得两圆公共弦AB 所在的直线方程为4x +4y +r 22-8=0, 作O 1H ⊥AB ,H 为垂足,则AH =12AB =2,所以O 1H =r 21-AH 2=4-2= 2.由圆心O 1(0,-1)到直线4x +4y +r 22-8=0的距离为 |r 22-12|42=2,得r 22=4或r 22=20, 故圆O 2的方程为(x -2)2+(y -1)2=4或(x -2)2+(y -1)2=20.10.已知两圆x 2+y 2-2x -6y -1=0和x 2+y 2-10x -12y +m =0. (1)m 取何值时两圆外切? (2)m 取何值时两圆内切?(3)求m =45时两圆的公共弦所在直线的方程和公共弦的长. 解 两圆的标准方程分别为(x -1)2+(y -3)2=11, (x -5)2+(y -6)2=61-m , 圆心分别为M (1,3),N (5,6), 半径分别为11和61-m . (1)当两圆外切时,5-12+6-32=11+61-m ,解得m =25+1011.(2)当两圆内切时61-m -11=5, 解得m =25-1011.(3)两圆的公共弦所在直线方程为(x 2+y 2-2x -6y -1)-(x 2+y 2-10x -12y +45)=0, 即4x +3y -23=0, ∴公共弦长为2112-⎝⎛⎭⎪⎫|4×1+3×3-23|42+322=27.11.已知半径为1的动圆与圆(x -5)2+(y +7)2=16相切,则动圆圆心的轨迹方程是( ) A .(x -5)2+(y -7)2=25B .(x -5)2+(y -7)2=17或(x -5)2+(y +7)2=15C.(x-5)2+(y-7)2=9D.(x-5)2+(y+7)2=25或(x-5)2+(y+7)2=9答案 D解析设动圆圆心为(x,y),若动圆与已知圆外切,则x-52+y+72=4+1,∴(x-5)2+(y+7)2=25;若动圆与已知圆内切,则x-52+y+72=4-1,∴(x-5)2+(y+7)2=9.12.设两圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|等于( ) A.4 B.4 2 C.8 D.8 2答案 C解析∵两圆与两坐标轴都相切,且都经过点(4,1),∴两圆圆心均在第一象限且每个圆心的横、纵坐标相等.设两圆的圆心坐标分别为(a,a),(b,b),则有(4-a)2+(1-a)2=a2,(4-b)2+(1-b)2=b2,即a,b为方程(4-x)2+(1-x)2=x2的两个根,整理得x2-10x+17=0,∴a+b=10,ab=17.∴(a-b)2=(a+b)2-4ab=100-4×17=32,∴|C1C2|=a-b2+a-b2=32×2=8.13.如果圆(x-a)2+(y-1)2=1上总存在两个点到原点的距离为2,则实数a的取值范围是( )A.(-22,0)∪(0,22) B.(-22,22)C.(-1,0)∪(0,1) D.(-1,1)答案 A解析∵圆(x-a)2+(y-1)2=1上总存在两个点到原点的距离为2,∴圆O:x2+y2=4与圆C:(x-a)2+(y-1)2=1相交.|OC|=a2+1,由2-1<|OC|<2+1,得1<a2+1<3,∴0<|a|<22,∴-22<a<0或0<a<2 2.14.若圆O:x2+y2=5与圆O1:(x-m)2+y2=20(m∈R)相交于A,B两点,且两圆在点A处的切线互相垂直,则线段AB的长为________.答案 4解析 连接OO 1,记AB 与OO 1的交点为C ,如图所示,在Rt△OO 1A 中,|OA |=5,|O 1A |=25,∴|OO 1|=5,∴|AC |=5×255=2, ∴|AB |=4.15.过两圆x 2+y 2-2y -4=0与x 2+y 2-4x +2y =0的交点,且圆心在直线l :2x +4y -1=0上的圆的方程是____________________.答案 x 2+y 2-3x +y -1=0解析 设圆的方程为x 2+y 2-4x +2y +λ(x 2+y 2-2y -4)=0,则(1+λ)x 2-4x +(1+λ)y 2+(2-2λ)y -4λ=0,把圆心⎝ ⎛⎭⎪⎫21+λ,λ-11+λ代入l :2x +4y -1=0的方程,可得λ=13, 所以所求圆的方程为x 2+y 2-3x +y -1=0.16.已知动点P 与两个定点O (0,0),A (3,0)的距离的比为12. (1)求动点P 的轨迹C 的方程;(2)已知圆Q 的圆心为Q (t ,t )(t >0),且圆Q 与x 轴相切,若圆Q 与曲线C 有公共点,求实数t 的取值范围.解 (1)设P (x ,y ),则||AP =2||OP ,即||AP |2=4OP |2, 所以(x -3)2+y 2=4(x 2+y 2),整理得(x +1)2+y 2=4.所以动点P 的轨迹C 的方程为(x +1)2+y 2=4.(2)因为点Q 的坐标为(t ,t )(t >0),且圆Q 与x 轴相切,所以圆Q 的半径为t , 所以,圆Q 的方程为(x -t )2+(y -t )2=t 2.因为圆Q 与圆C 有公共点,又圆Q 与圆C 的两圆心距为 ||CQ =()t +12+()t -02=2t 2+2t +1, 所以||2-t ≤||CQ ≤2+t ,即(2-t )2≤2t 2+2t +1≤(2+t )2,解得-3+23≤t≤3.所以,实数t的取值范围是[]-3+23,3.。

直线与圆及圆与圆的位置关系

直线与圆及圆与圆的位置关系

直线与圆及圆与圆的位置关系【本讲教育信息】⼀. 教学内容:直线与圆及圆与圆的位置关系⼆. 学习⽬标:1、能根据给出的直线和圆的⽅程,判断直线与圆、圆与圆的位置关系;2、在学习过程中,进⼀步体会⽤代数⽅法处理⼏何问题的思想;3、进⼀步体会转化、数形结合等数学思想和⽅法。

三. 知识要点:1、直线和圆的位置关系设△是联⽴直线⽅程与圆的⽅程后得到的判别式,dO-L是圆⼼O到直线L的距离,则有:直线与圆相交:有两个公共点——△>0——dO-L∈[0,R];直线与圆相切:有⼀个公共点——△=0——dO-L=R;直线与圆相离:⽆公共点——△<0——dO-L>R.2、圆与圆的位置关系两圆相交:有两个公共点——△>0——dO-O’∈[|R-r|,R+r];两圆外切:有⼀个公共点——△=0——dO-O’=R+r;两圆内切:有⼀个公共点——△=0——dO-O’=|R-r|;④两圆相离:⽆公共点——△<0——dO-O’>R+r;⑤两圆内含:⽆公共点——△<0——dO-O’<|R-r|.【典型例题】考点⼀ 研究直线与圆的位置关系例1 已知直线L过点(-2,0),当直线L与圆x2+y2=2x有两个不同交点时,求斜率k的取值范围。

法⼀:设直线L的⽅程为:y=k(x+2),与圆的⽅程联⽴,代⼊圆的⽅程令△>0可得:。

法⼀:法⼆:设直线L的⽅程为:y=k(x+2),利⽤圆⼼到直线的距离dO-L∈[0,R]可解得:。

法⼆:考点⼆ 研究圆的切线例2 直线y=x+b与曲线有且仅有⼀个公共点,求b的取值范围。

分析:作出图形后进⾏观察,以找到解决问题的思路。

分析:解:曲线即x2+y2=1(x≥0),当直线y=x+b解:与之相切时,满⾜:由观察图形可知:当或时,它们有且仅有⼀个公共点。

例3 过点P(1,2)作圆x2+y2=5的切线L,求切线L的⽅程。

解:因P点在圆上,故可求切线L的⽅程为x+2y=5。

圆与方程(含直线与圆、圆与圆的位置关系),高考历年真题版

圆与方程(含直线与圆、圆与圆的位置关系),高考历年真题版

温馨提示:高考题库为Word 版,请按住Ctrl ,滑动鼠标滚轴,调节适宜的观看比例,点击右上角的关闭按钮可返回目录。

【考点27】圆与程〔含直线与圆、圆与圆的位置关系〕2021年考题1.〔2021高考〕圆C 与直线x -y=0 及x -y -4=0都相切,圆心在直线x+y=0上, 那么圆C 的程为〔 〕〔A 〕22(1)(1)2x y ++-= (B) 22(1)(1)2x y -++= (C) 22(1)(1)2x y -+-= (D) 22(1)(1)2x y +++=【解析】选B.圆心在x +y =0上,排除C 、D,再结合图象,或者验证A 、B 中圆心到两直线的距离等于半径2即可.2.〔2021高考〕三角形的三边长分别为3,4,5,那么它的边与半径为1的圆的公共点个数最多为〔 〕A .3B .4C .5D .6 【解析】选B.由于3,4,5构成直角三角形S ,故其切圆半径为r=34512+-=,当该圆运动时,最多与直角三角形S 的两边也有4个交点。

3.〔2021高考〕.过圆22(1)(1)1C x y -+-=:的圆心,作直线分别交x 、y 正半轴于 点A 、B ,AOB ∆被圆分成四局部〔如图〕,假设这四局部图形面积满足|||,S S S S I ∏+=+ 那么直线AB 有〔 〕〔A 〕 0条 〔B 〕 1条 〔C 〕 2条 〔D 〕 3条【解析】选B.由,得:,IV II III I S S S S -=-,第II ,IV 局部的面积是定值,所以,IV IIS S -为定值,即,III I S S -为定值,当直线AB 绕着圆心C 移动时,只可能有一个位置符合题意,即直线AB 只有一条,应选B 。

4.〔2021高考〕圆1C :2(1)x ++2(1)y -=1,圆2C 与圆1C 关于直线10x y --=对称,那么圆2C 的程为〔 〕〔A 〕2(2)x ++2(2)y -=1 〔B 〕2(2)x -+2(2)y +=1〔C 〕2(2)x ++2(2)y +=1 〔D 〕2(2)x -+2(2)y -=1【解析】选B.设圆2C 的圆心为〔a ,b 〕,那么依题意,有111022111a b b a -+⎧--=⎪⎪⎨-⎪=-⎪+⎩,解得:22a b =⎧⎨=-⎩,对称圆的半径不变,为1,应选B.5.〔2021高考〕过原点且倾斜角为60︒的直线被圆2240x y y +-=所截得的弦长为〔A 〕3 〔B 〕2 〔C 〕6 〔D 〕23 【解析】选D.过原点且倾斜角为60°的直线程为222230,243021,R 2412331x y x y d d -=+-=⨯-==--=+圆()的圆心(0,2)到直线的距离为因此弦长为26.〔2021高考〕直线1y x =+与圆221x y +=的位置关系为〔 〕 A .相切B .相交但直线不过圆心C .直线过圆心D .相离【解析】选B.圆心(0,0)为、到直线1y x =+,即10x y -+=的距离222d ==,而201<<,选B 。

高考数学一轮复习 第九章 平面解析几何 9.4 直线与圆、圆与圆的位置关系教学案 理 新人教A版-新

高考数学一轮复习 第九章 平面解析几何 9.4 直线与圆、圆与圆的位置关系教学案 理 新人教A版-新

§9.4 直线与圆、圆与圆的位置关系最新考纲考情考向分析1.能判断直线与圆的位置关系.2.能根据给定两个圆的方程判断两圆的位置关系.3.能用直线和圆的方程解决一些简单的问题. 考查直线与圆的位置关系、圆与圆的位置关系的判断;根据位置关系求参数的X 围、最值、几何量的大小等.题型主要以选择、填空题为主,难度中等,但有时也会在解答题中出现.1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆的半径r 的大小关系.(最重要)d <r ⇔相交;d =r ⇔相切;d >r ⇔相离.(2)代数法:――――→判别式Δ=b 2-4ac ⎩⎪⎨⎪⎧>0⇔相交=0⇔相切<0⇔相离2.圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0),O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0)方法位置关系几何法:圆心距d 与r 1,r 2的关系代数法:联立两圆方程组成方程组的解的情况外离 d >r 1+r 2 无解 外切 d =r 1+r 2一组实数解 相交 |r 1-r 2|<d <r 1+r 2两组不同的实数解 内切 d =|r 1-r 2|(r 1≠r 2)一组实数解 内含0≤d <|r 1-r 2|(r 1≠r 2)无解概念方法微思考1.在求过一定点的圆的切线方程时,应注意什么?提示 应首先判断这点与圆的位置关系,若点在圆上则该点为切点,切线只有一条;若点在圆外,切线应有两条;若点在圆内,切线为零条.2.用两圆的方程组成的方程组有一解或无解时能否准确判定两圆的位置关系?提示 不能,当两圆方程组成的方程组有一解时,两圆有外切和内切两种可能情况,当方程组无解时,两圆有外离和内含两种可能情况.题组一 思考辨析1.判断下列结论是否正确(请在括号内打“√”或“×”) (1)若直线平分圆的周长,则直线一定过圆心.( √ ) (2)若两圆相切,则有且只有一条公切线.( × )(3)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( × )(4)过圆O :x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程是x 0x +y 0y =r 2.( √ ) 题组二 教材改编2.若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值X 围是( ) A.[-3,-1] B.[-1,3]C.[-3,1]D.(-∞,-3]∪[1,+∞) 答案 C解析 由题意可得,圆的圆心为(a ,0),半径为2, ∴|a -0+1|12+-12≤2,即|a +1|≤2,解得-3≤a ≤1.3.圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( ) A.内切B.相交C.外切D.外离 答案 B解析 两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42+1=17. ∵3-2<d <3+2,∴两圆相交.4.圆x 2+y 2-4=0与圆x 2+y 2-4x +4y -12=0的公共弦长为________. 答案 2 2解析 由⎩⎪⎨⎪⎧x 2+y 2-4=0,x 2+y 2-4x +4y -12=0,得两圆公共弦所在直线为x -y +2=0.又圆x 2+y 2=4的圆心到直线x -y +2=0的距离为22= 2.由勾股定理得弦长的一半为4-2=2,所以所求弦长为2 2.题组三 易错自纠5.若直线l :x -y +m =0与圆C :x 2+y 2-4x -2y +1=0恒有公共点,则m 的取值X 围是( ) A.[-2,2]B.[-22,22]C.[-2-1,2-1]D.[-22-1,22-1] 答案 D解析 圆C 的标准方程为(x -2)2+(y -1)2=4,圆心为(2,1),半径为2,圆心到直线的距离d =|2-1+m |2,若直线与圆恒有公共点,则|2-1+m |2≤2,解得-22-1≤m ≤22-1,故选D.6.过点A (3,5)作圆O :x 2+y 2-2x -4y +1=0的切线,则切线的方程为__________. 答案 5x -12y +45=0或x -3=0解析 化圆x 2+y 2-2x -4y +1=0为标准方程得(x -1)2+(y -2)2=4,其圆心为(1,2),半径为2, ∵|OA |=3-12+5-22=13>2,∴点A (3,5)在圆外.显然,当切线斜率不存在时,直线与圆相切,即切线方程为x -3=0,当切线斜率存在时,可设所求切线方程为y -5=k (x -3),即kx -y +5-3k =0.又圆心为(1,2),半径r =2,而圆心到切线的距离d =|3-2k |k 2+1=2,即|3-2k |=2k 2+1, ∴k =512,故所求切线方程为5x -12y +45=0或x -3=0.直线与圆的位置关系命题点1 位置关系的判断例1 已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( ) A.相切B.相交C.相离D.不确定 答案 B解析 因为M (a ,b )在圆O :x 2+y 2=1外,所以a 2+b 2>1,而圆心O 到直线ax +by =1的距离d =|a ·0+b ·0-1|a 2+b 2=1a 2+b 2<1.所以直线与圆相交.命题点2 弦长问题例2 若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( ) A.12B.1C.22D. 2 答案 D解析 因为圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b2=|c |2|c |=22,由勾股定理得,弦长的一半就等于12-⎝⎛⎭⎪⎫222=22,所以弦长为 2. 命题点3 切线问题例3 (2020·某某部分重点中学联考)点P 为射线x =2(y ≥0)上一点,过P 作圆x 2+y 2=3的两条切线,若两条切线的夹角为90°,则点P 的坐标为( ) A.(2,1) B.(2,2) C.(2,2) D.(2,0) 答案 C 解析 如图所示.设切点为A ,B ,则OA ⊥AP ,OB ⊥BP ,OA =OB ,AP =BP ,AP ⊥BP , 故四边形OAPB 为正方形, 则|OP |=6,又x P =2,则P (2,2).命题点4 直线与圆位置关系中的最值问题例4 过点(3,1)作圆(x -2)2+(y -2)2=4的弦,则最短弦所在的直线方程为________. 答案 x -y -2=0解析 设P (3,1),圆心C (2,2), 则|PC |=2,半径r =2,由题意知最短弦过P (3,1)且与PC 垂直,k PC =-1,所以所求直线方程为y -1=x -3,即x -y -2=0. 思维升华 (1)判断直线与圆的位置关系常用几何法.(2)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形. (3)圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题. 跟踪训练1 (1)(2020·某某江淮十校联考)已知直线l :x cos α+y sin α=1(α∈R )与圆C :x 2+y 2=r 2(r >0)相交,则r 的取值X 围是 ( )A.0<r ≤1B.0<r <1C.r ≥1D.r >1 答案 D解析 圆心到直线的距离d =1cos 2α+sin 2α=1,故r >1. (2)已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( )A.-2B.-4C.-6D.-8 答案 B解析 由圆的方程x 2+y 2+2x -2y +a =0可得,圆心为(-1,1),半径r =2-a .圆心到直线x +y +2=0的距离为d =|-1+1+2|2=2,由r 2=d 2+⎝ ⎛⎭⎪⎫422,得2-a =2+4,所以a =-4.(3)(2019·某某)已知圆C 的圆心坐标是(0,m ),半径长是r ,若直线2x -y +3=0与圆C 相切于点A (-2,-1),则m =________,r =________. 答案 -25解析 根据题意画出图形,可知A (-2,-1),C (0,m ),B (0,3),∵k AB =2,∴k AC =-12,∴直线AC 的方程为y +1=-12(x +2),令x =0,得y =-2, ∴圆心C (0,-2),∴m =-2. ∴r =|AC |=4+-2+12= 5.(4)从直线l :x +y =1上一点P 向圆C :x 2+y 2+4x +4y +7=0引切线,则切线长的最小值为________. 答案462解析 方法一 圆C 的方程可化为(x +2)2+(y +2)2=1, 圆心为C (-2,-2),半径r =1. 设直线l 上任意一点P (x ,y ), 则由x +y =1,得y =1-x . 则|PC |=x +22+y +22=x +22+1-x +22=2x 2-2x +13.设过点P 的切线与圆相切于点Q ,则CQ ⊥PQ .故|PQ |2=|PC |2-r 2=(2x 2-2x +13)-1=2x 2-2x +12=2⎝ ⎛⎭⎪⎫x -122+232,所以当x =12时,|PQ |2取得最小值,最小值为232,此时切线长为|PQ |=232=462. 方法二 圆C 的方程可化为(x +2)2+(y +2)2=1, 圆心为C (-2,-2),半径r =1.设过点P 的切线与圆相切于点Q ,则CQ ⊥PQ . 故|PQ |=|PC |2-r 2=|PC |2-1. 故当|PC |取得最小值时,切线长最小.显然,|PC |的最小值为圆心C 到直线l 的距离d =|-2-2-1|12+12=522, 所以切线长的最小值为⎝ ⎛⎭⎪⎫5222-1=462. 圆与圆的位置关系例5 已知两圆x 2+y 2-2x -6y -1=0和x 2+y 2-10x -12y +m =0.求: (1)m 取何值时两圆外切?(2)m 取何值时两圆内切,此时公切线方程是什么? (3)求m =45时两圆的公共弦所在直线的方程和公共弦的长.解 两圆的标准方程分别为(x -1)2+(y -3)2=11,(x -5)2+(y -6)2=61-m , 圆心分别为M (1,3),N (5,6), 半径分别为11和61-m . (1)当两圆外切时,5-12+6-32=11+61-m .解得m =25+1011.(2)当两圆内切时,两圆圆心间距离等于两圆半径之差的绝对值.故有61-m -11=5,解得m =25-1011. 因为k MN =6-35-1=34,所以两圆公切线的斜率是-43.设切线方程为y =-43x +b ,则有⎪⎪⎪⎪⎪⎪43×1+3-b ⎝ ⎛⎭⎪⎫432+1=11.解得b =133±5311.容易验证,当b =133+5311时,直线与圆x 2+y 2-10x -12y +m =0相交,舍去.故所求公切线方程为y =-43x +133-5311,即4x +3y +511-13=0.(3)两圆的公共弦所在直线的方程为(x 2+y 2-2x -6y -1)-(x 2+y 2-10x -12y +45)=0, 即4x +3y -23=0.由圆的半径、弦长、弦心距间的关系,不难求得公共弦的长为2×112-⎝⎛⎭⎪⎫|4+3×3-23|42+322=27. 思维升华 (1)判断两圆位置关系的方法常用几何法,即用两圆圆心距与两圆半径和及差的绝对值的大小关系判断,一般不用代数法.重视两圆内切的情况,作图观察.(2)两圆相交时,公共弦所在直线方程的求法两圆的公共弦所在直线的方程可由两圆的方程作差消去x 2,y 2项得到. (3)两圆公共弦长的求法求两圆公共弦长,常选其中一圆,由弦心距d ,半弦长l2,半径r 构成直角三角形,利用勾股定理求解.跟踪训练2 (1)(2020·某某模拟)圆C 1:(x +2)2+(y -2)2=4和圆C 2:(x -2)2+(y -5)2=16的位置关系是( ) A.外离B.相交 C.内切D.外切 答案 B解析 易得圆C 1的圆心为C 1(-2,2),半径r 1=2,圆C 2的圆心为C 2(2,5),半径r 2=4,圆心距|C 1C 2|=[2--2]2+5-22=5<2+4=r 1+r 2且5>r 2-r 1,所以两圆相交.(2)若圆x 2+y 2=a 2与圆x 2+y 2+ay -6=0的公共弦长为23,则a =________. 答案 ±2解析 两圆作差得公共弦所在直线方程为a 2+ay -6=0.原点到a 2+ay -6=0的距离为d =⎪⎪⎪⎪⎪⎪6a-a .∵公共弦长为23,∴a 2=(3)2+⎪⎪⎪⎪⎪⎪6a-a 2,∴a 2=4,a =±2.1.已知a ,b ∈R ,a 2+b 2≠0,则直线l :ax +by =0与圆C :x 2+y 2+ax +by =0的位置关系是( )A.相交B.相切C.相离D.不能确定 答案 B解析 圆C 的方程可化为⎝ ⎛⎭⎪⎫x +a 22+⎝ ⎛⎭⎪⎫y +b 22=a 2+b 24,圆心C ⎝ ⎛⎭⎪⎫-a 2,-b 2,半径r =a 2+b 22,圆心到直线ax +by =0的距离为d =⎪⎪⎪⎪⎪⎪-a 2×a +⎝ ⎛⎭⎪⎫-b 2×b a 2+b 2=a 2+b 22=r ,所以直线与圆相切.2.直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A.相交B.相切C.相离D.不确定 答案 A解析 方法一 由题意知,圆心(0,1)到直线l 的距离d =|m |m 2+1<1<5,故直线l 与圆相交.方法二 直线l :mx -y +1-m =0过定点(1,1), 因为点(1,1)在圆x 2+(y -1)2=5的内部, 所以直线l 与圆相交.3.若两圆x 2+y 2=m 和x 2+y 2+6x -8y -11=0有公共点,则实数m 的取值X 围是( ) A.(-∞,1) B.(121,+∞) C.[1,121] D.(1,121) 答案 C解析 x 2+y 2+6x -8y -11=0化成标准方程为(x +3)2+(y -4)2=36. 圆心距为d =0+32+0-42=5,若两圆有公共点,则|6-m |≤5≤6+m , 所以1≤m ≤121.故选C.4.(2019·某某八市重点高中联考)已知圆x 2+y 2-2x +2y +a =0截直线x +y -4=0所得弦的长度小于6,则实数a 的取值X 围为( ) A.(2-17,2+17) B.(2-17,2) C.(-15,+∞) D.(-15,2) 答案 D解析 圆心(1,-1),半径r =2-a ,2-a >0,∴a <2, 圆心到直线x +y -4=0的距离d =|1-1-4|2=2 2.则弦长为22-a2-222=2-a -6<6.解得a >-15,故-15<a <2.5.已知点P (a ,b )(ab ≠0)是圆x 2+y 2=r 2内的一点,直线m 是以P 为中点的弦所在的直线,直线l 的方程为ax +by =r 2,那么( ) A.m ∥l ,且l 与圆相交 B.m ⊥l ,且l 与圆相切 C.m ∥l ,且l 与圆相离 D.m ⊥l ,且l 与圆相离 答案 C解析 ∵点P (a ,b )(ab ≠0)在圆内,∴a 2+b 2<r 2. ∵圆x 2+y 2=r 2的圆心为O (0,0),故由题意得OP ⊥m , 又k OP =b a ,∴k m =-a b,∵直线l 的斜率为k l =-a b =k m ,圆心O 到直线l 的距离d =r 2a 2+b 2>r 2r=r ,∴m ∥l ,l 与圆相离.故选C.6.(2020·某某华附、省实、广雅、深中四校联考)过点A (a ,0)(a >0),且倾斜角为30°的直线与圆O :x 2+y 2=r 2(r >0)相切于点B ,且|AB |=3,则△OAB 的面积是( ) A.12B.32C.1D.2答案 B解析 由切线的性质可得△ABO 是以点B 为直角顶点的直角三角形,在Rt△ABO 中,∠OAB =30°,AB =3,则OB =1,OA =2,△OAB 的面积是12×1×3=32.7.已知直线x -2y +a =0与圆O :x 2+y 2=2相交于A ,B 两点(O 为坐标原点),且△AOB 为等腰直角三角形,则实数a 的值为( ) A.6或-6B.5或-5C.6D. 5 答案 B解析 因为直线x -2y +a =0与圆O :x 2+y 2=2相交于A ,B 两点(O 为坐标原点),且△AOB 为等腰直角三角形,所以O 到直线AB 的距离为1,由点到直线的距离公式可得|a |12+-22=1,所以a =± 5.8.(2020·西南地区名师联盟调研)以点(2,-1)为圆心且与直线3x -4y +5=0相切的圆的标准方程为________. 答案 (x -2)2+(y +1)2=9 解析 圆心到直线的距离为|3×2-4×-1+5|5=3,则所求圆的标准方程为(x -2)2+(y +1)2=9.9.(2020·某某“荆、荆、襄、宜”四地七校联考)已知圆C 经过直线x +y +2=0与圆x 2+y 2=4的交点,且圆C 的圆心在直线2x -y -3=0上,则圆C 的方程为________.答案 (x -3)2+(y -3)2=34解析 方法一 联立方程⎩⎪⎨⎪⎧x +y +2=0,x 2+y 2=4,解得交点坐标为A (-2,0),B (0,-2).弦AB 的垂直平分线方程为y +1=x +1即x -y =0.由⎩⎪⎨⎪⎧x -y =0,2x -y -3=0,解得⎩⎪⎨⎪⎧x =3,y =3.弦AB 的垂直平分线过圆心,所以圆心坐标为(3,3), 半径r =[3--2]2+32=34, 故所求圆C 的方程为(x -3)2+(y -3)2=34.方法二 设所求圆的方程为(x 2+y 2-4)+a (x +y +2)=0, 即x 2+y 2+ax +ay -4+2a =0,∴圆心为⎝ ⎛⎭⎪⎫-a 2,-a2,∵圆心在直线2x -y -3=0上,∴-a +a2-3=0,∴a =-6.∴圆的方程为x 2+y 2-6x -6y -16=0, 即(x -3)2+(y -3)2=34.10.若过点P (1,3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则PA →·PB →=______. 答案 32解析 由题意,得圆心为O (0,0),半径为1.如图所示,∵P (1,3),∴PB ⊥x 轴,|PA |=|PB |= 3. ∵△POA 为直角三角形,其中|OA |=1,|AP |=3, 则|OP |=2,∴∠OPA =30°,∴∠APB =60°.∴PA →·PB →=|PA →||PB →|·cos∠APB =3×3×cos60°=32.11.(2019·某某青山区模拟)已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A ,B 两点,且|AB |=22时,求直线l 的方程.解 (1)根据题意,圆C :x 2+y 2-8y +12=0,则圆C 的标准方程为x 2+(y -4)2=4,其圆心为(0,4),半径r =2,若直线l 与圆C 相切,则有|4+2a |1+a 2=2,解得a =-34. (2)设圆心C 到直线l 的距离为d ,则⎝⎛⎭⎪⎫|AB |22+d 2=r 2,即2+d 2=4,解得d =2,则有d =|4+2a |1+a 2=2,解得a =-1或-7,则直线l 的方程为x -y +2=0或7x -y +14=0.12.已知一个圆与y 轴相切,圆心在直线x -3y =0上,且在直线y =x 上截得的弦长为27,求该圆的方程.解 方法一 ∵所求圆的圆心在直线x -3y =0上, ∴设所求圆的圆心为(3a ,a ),又所求圆与y 轴相切,∴半径r =3|a |,又所求圆在直线y =x 上截得的弦长为27, 圆心(3a ,a )到直线y =x 的距离d =|2a |2,∴d 2+(7)2=r 2,即2a 2+7=9a 2,∴a =±1.故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9, 即x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0. 方法二 设所求圆的方程为(x -a )2+(y -b )2=r 2, 则圆心(a ,b )到直线y =x 的距离为|a -b |2,∴r 2=a -b22+7,即2r 2=(a -b )2+14.①由于所求圆与y 轴相切,∴r 2=a 2,②又∵所求圆的圆心在直线x -3y =0上,∴a -3b =0,③联立①②③,解得⎩⎪⎨⎪⎧a =3,b =1,r 2=9或⎩⎪⎨⎪⎧a =-3,b =-1,r 2=9.故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9, 即x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0. 方法三 设所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心坐标为⎝ ⎛⎭⎪⎫-D 2,-E2,半径r =12D 2+E 2-4F .在圆的方程中,令x =0,得y 2+Ey +F =0. 由于所求圆与y 轴相切,∴Δ=0,则E 2=4F .①圆心⎝ ⎛⎭⎪⎫-D 2,-E2到直线y =x 的距离为d =⎪⎪⎪⎪⎪⎪-D 2+E 22,由已知得d 2+(7)2=r 2, 即(D -E )2+56=2(D 2+E 2-4F ).② 又圆心⎝ ⎛⎭⎪⎫-D 2,-E 2在直线x -3y =0上, ∴D -3E =0.③联立①②③,解得⎩⎪⎨⎪⎧ D =-6,E =-2,F =1或⎩⎪⎨⎪⎧D =6,E =2,F =1.故所求圆的方程为x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0.13.(2019·某某师大附中月考)已知圆x 2+(y -1)2=2上任一点P (x ,y ),其坐标均使得不等式x +y +m ≥0恒成立,则实数m 的取值X 围是( ) A.[1,+∞) B .(-∞,1] C.[-3,+∞) D .(-∞,-3] 答案 A解析 如图,圆应在直线x +y +m =0的右上方,圆心C (0,1)到直线l 的距离为|1+m |2,切线l 0应满足|1+m |2=2,∴|1+m |=2,m =1或m =-3(舍去),从而-m ≤-1,∴m ≥1.14.由直线y =x +1上的一点向圆(x -3)2+y 2=1引切线,则切线长的最小值为_______. 答案7解析 设直线上一点P ,切点为Q ,圆心为M ,M 的坐标为(3,0),则|PQ |即为切线长,|MQ |为圆M 的半径,长度为1,|PQ |=|PM |2-|MQ |2=|PM |2-1,要使|PQ |最小,即求|PM |最小值,此题转化为求直线y =x +1上的点到圆心M 的最小距离, 设圆心到直线y =x +1的距离为d , 则d =|3-0+1|12+-12=22,∴|PM |的最小值为22, |PQ |=|PM |2-1=222-1=7.15.已知圆O :x 2+y 2=9,点P 为直线x +2y -9=0上一动点,过点P 向圆O 引两条切线PA ,PB ,A ,B 为切点,则直线AB 过定点( )A.⎝ ⎛⎭⎪⎫49,89B.⎝ ⎛⎭⎪⎫29,49C.(1,2) D.(9,0) 答案 C解析 因为P 是直线x +2y -9=0上的任一点,所以设P (9-2m ,m ),因为PA ,PB 为圆x 2+y 2=9的两条切线,切点分别为A ,B ,所以OA ⊥PA ,OB ⊥PB ,则点A ,B 在以OP 为直径的圆(记为圆C )上,即AB 是圆O 和圆C 的公共弦,易知圆C 的方程是⎝ ⎛⎭⎪⎫x -9-2m 22+⎝ ⎛⎭⎪⎫y -m 22=9-2m2+m24,①又x 2+y 2=9,②②-①得,(2m -9)x -my +9=0,即公共弦AB 所在直线的方程是(2m -9)x -my +9=0, 即m (2x -y )+(-9x +9)=0,由⎩⎪⎨⎪⎧2x -y =0,-9x +9=0得x =1,y =2.所以直线AB 恒过定点(1,2),故选C.16.已知圆C 经过(2,4),(1,3)两点,圆心C 在直线x -y +1=0上,过点A (0,1)且斜率为k 的直线l 与圆C 相交于M ,N 两点. (1)求圆C 的方程;(2)①请问AM →·AN →是否为定值,若是,求出该定值,若不是,请说明理由; ②若OM →·ON →=12(O 为坐标原点),求直线l 的方程. 解 (1)设圆C 的方程为(x -a )2+(y -b )2=r 2, 依题意,得⎩⎪⎨⎪⎧2-a 2+4-b 2=r 2,1-a 2+3-b2=r 2,a -b +1=0,解得⎩⎪⎨⎪⎧a =2,b =3,r =1,∴圆C 的方程为(x -2)2+(y -3)2=1. (2)①AM →·AN →为定值.过点A (0,1)作直线AT 与圆C 相切,切点为T , 易得|AT |2=7,∴AM →·AN →=|AM →|·|AN →|cos0°=|AT |2=7, ∴AM →·AN →为定值,且定值为7.②依题意可知,直线l 的方程为y =kx +1,设M (x 1,y 1),N (x 2,y 2),将y =kx +1代入(x -2)2+(y -3)2=1,并整理,得(1+k 2)x 2-4(1+k )x +7=0,∴x 1+x 2=41+k 1+k 2,x 1x 2=71+k2,∴OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k 1+k1+k2+8=12, 即4k1+k1+k2=4,解得k =1, 又当k =1时Δ>0,∴k =1,∴直线l 的方程为y =x +1.。

人教A版高中同步学案数学选择性必修第一册精品习题课件第二章直线和圆的方程 直线与圆、圆与圆的位置关系

人教A版高中同步学案数学选择性必修第一册精品习题课件第二章直线和圆的方程 直线与圆、圆与圆的位置关系
2 (1,7).
圆心距为 (−2 − 1)2 + (3 − 7)2 = 5,圆2 与圆1 外切,
所求圆2 的半径为4,所以圆2 的方程为( − 1)2 + ( − 7)2 = 16.
(2)若圆2 与圆1 交于,两点,且|| =
解圆2 与圆1 交于,两点,且|| =

|+|
+
= ,解得 = 或 = −,
∴实数取值的集合为{−,}.
故选B.
,
5.(多选题)圆1 :( + 2)2 + ( − )2 = 9与圆2 :( − )2 + ( + 1D.5
[解析]圆 :( + ) + ( − ) = 的圆心为(−, ),半径为3,圆
51
10
圆2 的半径为 ( )2 +(
1
10
3 11 2
) =
10
=
51
时,
10
3 3.
圆2 的方程为( − 1)2 + ( − 7)2 = 27.
综上,圆2 的方程为( − 1)2 + ( − 7)2 = 25或( − 1)2 + ( − 7)2 = 27.
或 − + 2 = 0.
11.圆1 的方程为( + 2)2 + ( − 3)2 = 1,圆2 的圆心为2 (1,7).
(1)若圆2 与圆1 外切,求圆2 的方程;
解圆1 的方程为( + 2)2 + ( − 3)2 = 1,圆心坐标为(−2,3),半径为1,圆2 的圆心为
2 − − 4 = 0
共弦所在直线的方程为______________,公共弦长||为____.

高中数学-人教A版-必修第一册-第二章(直线和圆的方程)2.5直线与圆、圆与圆的关系

高中数学-人教A版-必修第一册-第二章(直线和圆的方程)2.5直线与圆、圆与圆的关系

将直线方程代入圆的方程,消元后利用根与系数的关系得弦长
l= 1+k2|x1-x2|= 1+k2[x1+x22-4x1x2].
36
[跟进训练]
3.
直线 m:x+y-1=0 被圆 M:x2+y2-2x-4y=0 截得的弦长为(
A.4
B.2 3
1
C.
2
1
D.
3
)
37
解析:∵x2+y2-2x-4y=0,∴(x-1)2+(y-2)2=5,
3
即直线与圆没有公共点.
19
规律方法
直线与圆位置关系判断的三种方法
(1)几何法:由圆心到直线的距离 d 与圆的半径 r 的大小关系判断.
(2)代数法:根据直线与圆的方程组成的方程组解的个数来判断.
(3)直线系法:若直线恒过定点,可通过判断点与圆的位置关系判断,
但有一定的局限性,必须是过定点的直线系.
际问题.(难点)
4
“大漠孤烟直,长河落日圆”,这是唐代诗人王维的诗句.它描述了
黄昏日落时分塞外特有的景象.如果我们把太阳看成一个圆,地平
线看成一条直线,观察下面三幅太阳落山的图片.
5
图片中,地平线与太阳的位置关系怎样?结合初中知识总结,
直线与圆有几种位置关系?
6
新知初探
1.直线与圆的三种位置关系
更多地结合了图形的几何性质;“代数法”则侧重于“数”,它倾向
于“坐标”与“方程”.
9
3.用坐标法解决平面几何问题的“三步曲”
第一步:建立适当的平面直角坐标系,用____
坐标和____
方程 表示问题中的
代数 问题;
几何要素,如点、直线、圆,把平面几何问题转化为____

高考数学考点归纳之 直线与圆、圆与圆的位置关系

高考数学考点归纳之  直线与圆、圆与圆的位置关系

高考数学考点归纳之 直线与圆、圆与圆的位置关系一、基础知识1.直线与圆的位置关系(半径为r ,圆心到直线的距离为d )Δ<0 Δ=0 Δ>0 2.圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|)|r -r |<d <二、常用结论(1)圆的切线方程常用结论①过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.③过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2.(2)直线被圆截得的弦长弦心距d 、弦长l 的一半12l 及圆的半径r 构成一直角三角形,且有r 2=d 2+⎝⎛⎭⎫12l 2. 考点一 直线与圆的位置关系考法(一) 直线与圆的位置关系的判断[典例] 直线l :mx -y +1-m =0与圆C :x 2+(y -1)2=5的位置关系是( ) A .相交B .相切C .相离D .不确定[解析] 法一:由⎩⎪⎨⎪⎧mx -y +1-m =0,x 2+(y -1)2=5, 消去y ,整理得(1+m 2)x 2-2m 2x +m 2-5=0, 因为Δ=16m 2+20>0, 所以直线l 与圆相交.法二:由题意知,圆心(0,1)到直线l 的距离d =|m |m 2+1<1<5,故直线l 与圆相交. 法三:直线l :mx -y +1-m =0过定点(1,1),因为点(1,1)在圆x 2+(y -1)2=5的内部,所以直线l 与圆相交.[答案] A[解题技法] 判断直线与圆的位置关系的常见方法 (1)几何法:利用d 与r 的关系.(2)代数法:联立方程组,消元得一元二次方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. [提醒] 上述方法中最常用的是几何法. 考法(二) 直线与圆相切的问题[典例] (1)过点P (2,4)作圆(x -1)2+(y -1)2=1的切线,则切线方程为( ) A .3x +4y -4=0 B .4x -3y +4=0 C .x =2或4x -3y +4=0 D .y =4或3x +4y -4=0(2)(2019·成都摸底)已知圆C :x 2+y 2-2x -4y +1=0上存在两点关于直线l :x +my +1=0对称,经过点M (m ,m )作圆C 的切线,切点为P ,则|MP |=________.[解析] (1)当斜率不存在时,x =2与圆相切;当斜率存在时,设切线方程为y -4=k (x -2),即kx -y +4-2k =0,则|k -1+4-2k |k 2+1=1,解得k =43,则切线方程为4x -3y +4=0,故切线方程为x =2或4x -3y +4=0.(2)圆C :x 2+y 2-2x -4y +1=0的圆心为C (1,2),半径为2.因为圆上存在两点关于直线l :x +my +1=0对称,所以直线l :x +my +1=0过点(1,2),所以1+2m +1=0,解得m =-1,所以|MC |2=13,|MP |=13-4=3.[答案] (1)C (2)3 考法(三) 弦长问题[典例] (1)若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( )A.12 B .1 C.22D.2(2)(2019·海口一中模拟)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为( )A .4πB .2πC .9πD .22π[解析] (1)因为圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b 2=|c |2|c |=22,因此根据直角三角形的关系,弦长的一半就等于1-⎝⎛⎭⎫222=22,所以弦长为 2. (2)易知圆C :x 2+y 2-2ay -2=0的圆心为(0,a ),半径为a 2+2.圆心(0,a )到直线y =x +2a 的距离d =|a |2,由直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,|AB |=23,可得a 22+3=a 2+2,解得a 2=2,故圆C 的半径为2,所以圆C 的面积为4π,故选A.[答案] (1)D (2)A[题组训练]1.已知圆的方程是x 2+y 2=1,则经过圆上一点M ⎝⎛⎭⎫22,22的切线方程是________. 解析:因为M ⎝⎛⎭⎫22,22是圆x 2+y 2=1上的点,所以圆的切线的斜率为-1,则设切线方程为x +y +a =0,所以22+22+a =0,得a =-2,故切线方程为x +y -2=0. 答案:x +y -2=02.若直线kx -y +2=0与圆x 2+y 2-2x -3=0没有公共点,则实数k 的取值范围是________.解析:由题知,圆x 2+y 2-2x -3=0可写成(x -1)2+y 2=4,圆心(1,0)到直线kx -y +2=0的距离d >2,即|k +2|k 2+1>2,解得0<k <43.答案:⎝⎛⎭⎫0,43 3.设直线y =kx +1与圆x 2+y 2+2x -my =0相交于A ,B 两点,若点A ,B 关于直线l :x +y =0对称,则|AB |=________.解析:因为点A ,B 关于直线l :x +y =0对称,所以直线y =kx +1的斜率k =1,即y =x +1.又圆心⎝⎛⎭⎫-1,m2在直线l :x +y =0上,所以m =2,则圆心的坐标为(-1,1),半径r =2,所以圆心到直线y =x +1的距离d =22,所以|AB |=2r 2-d 2= 6. 答案:6考点二 圆与圆的位置关系[典例] (2016·山东高考)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A .内切B .相交C .外切D .相离[解析] 法一:由⎩⎪⎨⎪⎧x 2+y 2-2ay =0,x +y =0,得两交点为(0,0),(-a ,a ). ∵圆M 截直线所得线段长度为22, ∴a 2+(-a )2=2 2.又a >0,∴a =2.∴圆M 的方程为x 2+y 2-4y =0, 即x 2+(y -2)2=4,圆心M (0,2),半径r 1=2.又圆N :(x -1)2+(y -1)2=1,圆心N (1,1),半径r 2=1, ∴|MN |=(0-1)2+(2-1)2= 2. ∵r 1-r 2=1,r 1+r 2=3,1<|MN |<3, ∴两圆相交.法二:由题知圆M :x 2+(y -a )2=a 2(a >0),圆心(0,a )到直线x +y =0的距离d =a2,所以2a 2-a 22=22,解得a =2.圆M ,圆N 的圆心距|MN |=2,两圆半径之差为1,两圆半径之和为3,故两圆相交.[答案] B [变透练清]1.(2019·太原模拟)若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( )A .21B .19C .9D .-11解析:选C 圆C 1的圆心为C 1(0,0),半径r 1=1,因为圆C 2的方程可化为(x -3)2+(y -4)2=25-m ,所以圆C 2的圆心为C 2(3,4),半径r 2=25-m (m <25).从而|C 1C 2|=32+42=5.由两圆外切得|C 1C 2|=r 1+r 2,即1+25-m =5,解得m =9,故选C.2.(变结论)若本例两圆的方程不变,则两圆的公共弦长为________.解析:联立两圆方程⎩⎪⎨⎪⎧x 2+y 2-4y =0,(x -1)2+(y -1)2=1,两式相减得,2x -2y -1=0,因为N (1,1),r =1,则点N 到直线2x -2y -1=0的距离d =|-1|22=24,故公共弦长为21-⎝⎛⎭⎫242=142.答案:142[解题技法]几何法判断圆与圆的位置关系的3步骤(1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|; (3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.[课时跟踪检测]A 级1.若直线2x +y +a =0与圆x 2+y 2+2x -4y =0相切,则a 的值为( ) A .±5 B .±5 C .3D .±3解析:选B 圆的方程可化为(x +1)2+(y -2)2=5,因为直线与圆相切,所以有|a |5=5,即a =±5.故选B.2.与圆C 1:x 2+y 2-6x +4y +12=0,C 2:x 2+y 2-14x -2y +14=0都相切的直线有( )A .1条B .2条C .3条D .4条解析:选A 两圆分别化为标准形式为C 1:(x -3)2+(y +2)2=1,C 2:(x -7)2+(y -1)2=36,则两圆圆心距|C 1C 2|=(7-3)2+[1-(-2)]2=5,等于两圆半径差,故两圆内切.所以它们只有一条公切线.故选A.3.(2019·南宁、梧州联考)直线y =kx +3被圆(x -2)2+(y -3)2=4截得的弦长为23,则直线的倾斜角为( )A.π6或5π6 B .-π3或π3C .-π6或π6D.π6解析:选A 由题知,圆心(2,3),半径为2,所以圆心到直线的距离为d =22-(3)2=1.即d =|2k |1+k 2=1,所以k =±33,由k =tan α,得α=π6或5π6.故选A.4.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( ) A .2x +y -5=0 B .2x +y -7=0 C .x -2y -5=0D .x -2y -7=0解析:选B 由题意知点(3,1)在圆上,代入圆的方程可得r 2=5,圆的方程为(x -1)2+y 2=5,则过点(3,1)的切线方程为(x -1)·(3-1)+y (1-0)=5,即2x +y -7=0.故选B.5.(2019·重庆一中模拟)若圆x 2+y 2+2x -6y +6=0上有且仅有三个点到直线x +ay +1=0的距离为1,则实数a 的值为( )A .±1B .±24 C .± 2D .±32解析:选B 由题知圆的圆心坐标为(-1,3),半径为2,由于圆上有且仅有三个点到直线的距离为1,故圆心(-1,3)到直线x +ay +1=0的距离为1,即|-1+3a +1|1+a 2=1,解得a =±24. 6.(2018·嘉定二模)过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为( )A .y =-34B .y =-12C .y =-32D .y =-14解析:选B 圆(x -1)2+y 2=1的圆心为C (1,0),半径为1,以|PC |=(1-1)2+(-2-0)2=2为直径的圆的方程为(x -1)2+(y +1)2=1,将两圆的方程相减得AB 所在直线的方程为2y +1=0,即y =-12.故选B.7.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________.解析:易知圆心(2,-1),半径r =2,故圆心到直线的距离d =|2+2×(-1)-3|12+22=355,弦长为2r 2-d 2=2555. 答案:25558.若P (2,1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程为________. 解析:因为圆(x -1)2+y 2=25的圆心为(1,0),所以直线AB 的斜率等于-11-02-1=-1,由点斜式得直线AB 的方程为y -1=-(x -2),即x +y -3=0.答案:x +y -3=09.过点P (-3,1),Q (a,0)的光线经x 轴反射后与圆x 2+y 2=1相切,则a 的值为________. 解析:因为P (-3,1)关于x 轴的对称点的坐标为P ′(-3,-1), 所以直线P ′Q 的方程为y =-1-3-a (x -a ),即x -(3+a )y -a =0, 圆心(0,0)到直线的距离d =|-a |1+(3+a )2=1,所以a =-53.答案:-5310.点P 在圆C 1:x 2+y 2-8x -4y +11=0上,点Q 在圆C 2:x 2+y 2+4x +2y +1=0上,则|P Q |的最小值是________.解析:把圆C 1、圆C 2的方程都化成标准形式,得(x -4)2+(y -2)2=9,(x +2)2+(y +1)2=4.圆C 1的圆心坐标是(4,2),半径长是3; 圆C 2的圆心坐标是(-2,-1),半径是2.圆心距d =(4+2)2+(2+1)2=35>5.故圆C 1与圆C 2相离, 所以|P Q |的最小值是35-5.答案:35-511.已知圆C 1:x 2+y 2-2x -6y -1=0和圆C 2:x 2+y 2-10x -12y +45=0. (1)求证:圆C 1和圆C 2相交;(2)求圆C 1和圆C 2的公共弦所在直线的方程和公共弦长. 解:(1)证明:圆C 1的圆心C 1(1,3),半径r 1=11, 圆C 2的圆心C 2(5,6),半径r 2=4,两圆圆心距d =|C 1C 2|=5,r 1+r 2=11+4, |r 1-r 2|=4-11,∴|r 1-r 2|<d <r 1+r 2,∴圆C 1和圆C 2相交. (2)圆C 1和圆C 2的方程相减,得4x +3y -23=0, ∴两圆的公共弦所在直线的方程为4x +3y -23=0.圆心C 2(5,6)到直线4x +3y -23=0的距离d =|20+18-23|16+9=3,故公共弦长为216-9=27.12.已知圆C 经过点A (2,-1),和直线x +y =1相切,且圆心在直线y =-2x 上. (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程. 解:(1)设圆心的坐标为C (a ,-2a ), 则(a -2)2+(-2a +1)2=|a -2a -1|2.化简,得a 2-2a +1=0,解得a =1.∴C (1,-2),半径r =|AC |=(1-2)2+(-2+1)2= 2. ∴圆C 的方程为(x -1)2+(y +2)2=2.(2)①当直线l 的斜率不存在时,直线l 的方程为x =0,此时直线l 被圆C 截得的弦长为2,满足条件.②当直线l 的斜率存在时,设直线l 的方程为y =kx , 由题意得|k +2|1+k 2=1,解得k =-34,∴直线l 的方程为y =-34x ,即3x +4y =0.综上所述,直线l 的方程为x =0或3x +4y =0.B 级1.过圆x 2+y 2=1上一点作圆的切线,与x 轴、y 轴的正半轴相交于A ,B 两点,则|AB |的最小值为( )A. 2B.3 C .2D .3解析:选C 设圆上的点为(x 0,y 0),其中x 0>0,y 0>0,则有x 20+y 20=1,且切线方程为x 0x +y 0y =1.分别令y =0,x =0得A ⎝⎛⎭⎫1x 0,0,B ⎝⎛⎭⎫0,1y 0,则|AB |=⎝⎛⎭⎫1x 02+⎝⎛⎭⎫1y 02=1x 0y 0≥1x 20+y 202=2,当且仅当x 0=y 0时,等号成立.2.(2018·江苏高考)在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB ―→·CD ―→=0,则点A 的横坐标为________.解析:因为AB ―→·CD ―→=0,所以AB ⊥CD ,又点C 为AB 的中点,所以∠BAD =π4,设直线l 的倾斜角为θ,直线AB 的斜率为k ,则tan θ=2,k =tan ⎝⎛⎭⎫θ+π4=-3.又B (5,0),所以 直线AB 的方程为y =-3(x -5),又A 为直线l :y =2x 上在第一象限内的点,联立直线AB 与直线l 的方程,得⎩⎪⎨⎪⎧ y =-3(x -5),y =2x ,解得⎩⎪⎨⎪⎧x =3,y =6,所以点A 的横坐标为3. 答案:33.(2018·安顺摸底)已知圆C :x 2+(y -a )2=4,点A (1,0). (1)当过点A 的圆C 的切线存在时,求实数a 的取值范围; (2)设AM ,AN 为圆C 的两条切线,M ,N 为切点,当|MN |=455时,求MN 所在直线的方程.解:(1)过点A 的切线存在,即点A 在圆外或圆上, ∴1+a 2≥4,∴a ≥3或a ≤- 3.(2)设MN 与AC 交于点D ,O 为坐标原点. ∵|MN |=455,∴|DM |=255.又|MC |=2,∴|CD |=4-2025=45, ∴cos ∠MCA =452=25,|AC |=|MC |cos ∠MCA =225=5,∴|OC|=2,|AM|=1,∴MN是以点A为圆心,1为半径的圆A与圆C的公共弦,圆A的方程为(x-1)2+y2=1,圆C的方程为x2+(y-2)2=4或x2+(y+2)2=4,∴MN所在直线的方程为(x-1)2+y2-1-x2-(y-2)2+4=0,即x-2y=0或(x-1)2+y2-1-x2-(y+2)2+4=0,即x+2y=0,因此MN所在直线的方程为x-2y=0或x+2y=0.。

高中数学 考点31 圆的方程、直线与圆、圆与圆的位置关系(含高考试题)新人教A版

高中数学 考点31 圆的方程、直线与圆、圆与圆的位置关系(含高考试题)新人教A版

考点31 圆的方程、直线与圆、圆与圆的位置关系一、选择题1.(2016·全国卷Ⅱ文科·T6)同(2016·全国卷Ⅱ理科·T4)圆x 2+y 2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a= ( )A. 43-B. 34- D.2 【解题指南】化圆的一般方程为标准方程,求出圆的圆心坐标,利用圆心到直线的距离等于1,建立a 的方程.【解析】选A.圆x 2+y 2-2x-8y+13=0化为标准方程为:(x-1)2+(y-4)2=4,故圆心为(1,4),d==1,解得a=43-. 2.(2016·山东高考文科·T7)已知圆M:x 2+y 2-2ay=0(a>0)截直线x+y=0所得线段的长度是,则圆M 与圆N:(x-1)2+(y-1)2=1的位置关系是 ( )A.内切B.相交C.外切D.相离【解题指南】根据弦长求出圆M 的圆心与半径,再根据圆心距与半径的和差关系判断两圆位置关系.3.(2016·北京高考文科·T5)圆(x+1)2+y 2=2的圆心到直线y=x+3的距离为 ( )A.1B.2【解题指南】找到圆心坐标,把直线化成一般方程,再代入点到直线的距离公式求解. 【解析】选C.圆心(-1,0),直线x-y+3=0..二、填空题4.(2016·全国卷Ⅰ高考文科·T15)设直线y=x+2a 与圆C:x 2+y 2-2ay-2=0相交于A,B两点,若|AB|=2则圆C 的面积为 .【解析】由圆C:x 2+y 2-2ay-2=0可得x 2+(y-a)2=a 2+2,所以圆心C(0,a),由题意可知解得a 2=2,所以圆C 的面积为π(a 2+2)=4π.答案:4π5.16.(2016·全国卷Ⅲ·理科·T16)已知直线l:mx+y+3m-与圆x 2+y 2=12交于A,B两点,过A,B 分别作l 的垂线与x 轴交于C,D 两点,若,则|CD|= . 【解题指南】通过点到直线的距离求出弦AB 的一半,之后在△CDF 中求CD 的长.【解析】取AB的中点E,连接OE,过点C作BD的垂线,垂足为F,圆心到直线的距离d=所以在Rt△OBE中,BE2=OB2-d2=3,所以d=得,又在△CDF中,∠FCD=30°,所以CD=CFcos30︒=4.答案:46.(2016·全国卷Ⅲ·文科·T15)已知直线l:x-y+6=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,则|CD|= .【解析】取AB的中点E,连接OE,过点C作BD的垂线,垂足为F,圆心到直线的距离d=所以在Rt△OBE中,BE2=OB2-d2=3,所以AB=2又在△CDF中∠FCD=30°,所以CD=CFcos30︒=4.答案:47.(2016·浙江高考文科·T10)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是,半径是.【解题指南】若方程表示圆,则x2的系数与y2的系数相等.【解析】由题意知a2=a+2,解得a=-1或2.当a=-1时方程为x2+y2+4x+8y-5=0,即(x+2)2+(y+4)2=25,圆心为(-2,-4),半径为5,当a=2时,方程为4x2+4y2+4x+8y+10=0,即21x2⎛⎫+⎪⎝⎭+(y+1)2=-54不表示圆.答案:(-2,-4) 5【解析】选B.圆M:x2+y2-2ay=0(a>0)可化为:x2+()2y a-=a2,由题意,d=,所以有,a2=2a2+2,解得a=2.所以圆M:x2+()2y2-=22,圆心距=,半径和=3,半径差=1,所以二者相交.8.(2016·天津高考文科·T12)已知圆C的圆心在x轴的正半轴上,点M(0,在圆C上,且圆心到直线2x-y=0的距离为,则圆C的方程为.【解题指南】设出圆心的坐标,利用点到直线的距离公式得出方程求解.【解析】设C(a,0)(a>0),由题意知=解得a=2,所以r==3,故圆C的方程为(x-2)2+y2=9. 答案:(x-2)2+y2=9 三、解答题9.(2016·江苏高考T18)(本小题满分16分)如图,在平面直角坐标系xOy 中,已知以M为圆心的圆M:x 2+y 2-12x-14y+60=0及其上一点A(2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x=6上,求圆N 的标准方程. (2)设平行于OA 的直线l 与圆M 相交于B,C 两点,且BC=OA,求直线l 的方程. (3)设点T(t,0)满足:存在圆M 上的两点P 和Q,使得+TA T Q =P T ,求实数t 的取值范围.【解题指南】(1)根据两个圆外切建立等量关系,求出圆N 的圆心坐标.(2)先求出OA 及直线OA 的斜率,再由OA ∥直线l,设出直线的方程,根据直线与圆相交,由几何法得出BC,根据BC=OA 求出直线方程.(3)根据题意得=TA PQ ,所以PQ ∥TA,由|PQ |≤2r 解得t 的取值范围.【解析】(1)设点N(6,n),因为与x 轴相切,则圆N 为(x-6)2+(y-n)2=n 2,n>0,又圆N 与圆M 外切,圆M:(x-6)2+(y-7)2=25,则|7-n|=|n|+5,解得n=1,即圆N 的标准方程为(x-6)2+(y-1)2=1.(2)由题意得OA=2,k OA =2,设l:y=2x+b,则圆心M 到直线l 的距离=则BC=2即b=5或b=-15,即l:y=2x+5或y=2x-15.(3)因为+TA T Q =P T ,所以=-TA TQ TP PQ =,=TA PQ ⇒=TA PQ ,(TA t =-根据|PQ |≤10,即10⇒t ∈[2-2所以t 的取值范围为对于任意t ∈[2-2欲使=TA PQ ,此时|TA |≤10,只需要作直线TA 的平行线,使圆心到直线的距离为2TA ,必然与圆交于P,Q 两点,此时=TA PQ ,即=TA PQ ,因此对于任意t ∈[2-2均满足题意,综上t∈[2-2。

高二数学选一人教第二章直线和圆的方程2.5直线与圆、圆与圆的位置关系2.5.2+答案解析(附后)

高二数学选一人教第二章直线和圆的方程2.5直线与圆、圆与圆的位置关系2.5.2+答案解析(附后)

3ngk2nmn高二数学选一人教A版第二章直线和圆的方程2.5直线与圆、圆与圆的位置关系2.5.2圆与圆的位置关系一、单选题(本大题共2小题,共10分。

在每小题列出的选项中,选出符合题目的一项)1.圆和圆的位置关系是( )A. 相离B. 外切C. 内切D. 相交2.两圆与的公共弦所在直线的方程为( )A. B. C. D.二、多选题(本大题共1小题,共5分。

在每小题有多项符合题目要求)3.已知圆和圆相交于A,B两点,则( )A. B. 直线AB的方程是C. D.三、填空题(本大题共1小题,共5分)4.若圆与圆的公共弦长为,则__________.四、解答题(本大题共6小题,共72分。

解答应写出文字说明,证明过程或演算步骤)5.本小题12分已知两圆,试判断两圆的位置关系.6.本小题12分已知两圆,取何值时,两圆外切取何值时,两圆内切7.本小题12分已知圆与圆相交于A、B两点.求圆和圆的公共弦所在直线的方程;求公共弦AB的长.8.本小题12分求过两圆和的交点,且圆心在直线上的圆的方程.9.本小题12分求过圆与圆的交点,且圆心在直线上的圆的方程.10.本小题12分求圆心为,且与已知圆的公共弦所在直线经过点的圆的方程.答案和解析1.【答案】D【解析】【分析】本题考查了圆与圆的位置关系,属于基础题.把两圆的方程化为标准方程,分别找出圆心坐标和半径,利用两点间的距离公式,求出两圆心的距离d,然后求出和的值,判断d与及的大小关系即可得到两圆的位置关系.【解答】解:把圆和圆分别化为标准方程得:,,故圆心坐标分别为和,半径分别为和,圆心之间的距离,,,,则两圆的位置关系是相交.故选:2.【答案】C【解析】【分析】本题考查了两圆公共弦方程求法,属于基础题.联立两圆方程,两式相减即可得公共弦方程.【解答】解:联立两圆方程,两式相减可得,即两圆公共弦方程为故选:3.【答案】ABD【解析】【分析】本题考查圆的方程的应用,两个圆的位置关系的应用,考查转化思想以及计算能力,属于中档题.求出圆的圆心与半径,然后求解圆心距,判断A;求出相交弦所在的直线方程判断B;利用距离公式判断C;利用半径、半弦长和弦心距的关系判断【解答】解:圆的圆心是,半径,圆的圆心是,,,故A正确;两圆相减就是直线AB的方程,两圆相减得,故B正确,,,,所以不垂直于,故C不正确;圆心到直线的距离,,故D正确.故选:4.【答案】1【解析】【分析】本题考查实数值的求法,公共弦长,属于中档题.求出两圆公共弦所在直线方程,圆的圆心,半径,圆心到直线的距离,再由圆与圆的公共弦长为,利用勾股定理能求出【解答】解:两圆与相减,得两圆公共弦所在直线方程为:,即,圆的圆心,半径,圆心到直线的距离,圆与圆的公共弦长为,由勾股定理得,即,解得故答案为:5.【答案】解:解法一:将两个圆的方程联立得两式相减得,代入得,因为,所以有两个不相等的实数根,即方程组有两组解,所以两圆相交.解法二:由题意知圆的圆心为,半径为2,圆的圆心为,半径为3,所以两圆的圆心距,因为,所心两圆相交.【解析】本题主要考查两圆的位置关系的判定,属于基础题.方法一:联立两个圆的方程,利用,可以判断两个圆相交.方法二:求出圆心距,利用圆心距与半径和与差之间的关系即可判断.6.【答案】解:易知两圆的标准方程分别为,,所以圆心分别为,,半径分别为,,圆心距当两圆外切时,,即,解得当两圆内切时,因为圆的半径小于圆心距,所以该圆为小圆,即,解得【解析】本题主要考查两个圆的位置关系的判断方法,属于中档题.先把两个圆的方程化为标准形式,求出圆心和半径.根据两圆的圆心距等于两圆的半径之和,求得m的值;根据题意得到,求得m的值.7.【答案】解:联立两个圆的方程得两式相减得,所以公共弦AB所在直线的方程为易知圆心的坐标为,半径,所以到直线AB的距离,故【解析】本题考查了圆与圆位置关系,涉及公共弦方程,公共弦长,属于基础.联立两个圆方程,两式相减得,即为公共弦AB所在直线的方程;求出圆心到直线AB的距离,即可求.8.【答案】解:解法一:联立得解得或点和都在所求圆上,所求圆的圆心在x轴上.又圆心在直线上,所求圆的圆心为,半径,所求圆的方程为解法二:设所求圆的方程为,整理得,圆心为圆心在直线上,,解得,所求圆的方程为【解析】本题考查了圆的方程求法,属于中档题.解法一:联立两圆方程,求出交点坐标分别为点和,依据对称性可以判断所求圆的圆心在x轴上,又圆心在直线上,可得圆心为,半径,即可求圆的方程;解法二:可设所求圆的方程为,整理得圆心为,代入直线,解得,即可求圆的方程.9.【答案】解:设所求圆的方程为,即,所以圆心为,因为圆心在直线上,所以,解得,故所求圆的方程为【解析】本题考查了圆的方程求法,属于中档题.可设所求圆的方程为,整理得圆心为,代入直线,解得,即可求圆的方程.10.【答案】解:设所求圆的方程为,即,①已知圆的方程为,②由②-①得,故两圆的公共弦所在直线的方程为,又该直线经过点,,,故所求圆的方程为【解析】本题考查了圆的方程求法,属于中档题.依据条件可设所求圆的方程为,与已知圆联立,求出公共弦方程为,将点代入可得,即可求圆的方程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3讲 直线与圆、圆与圆的位置关系一、选择题1.已知集合A ={(x ,y )|x ,y 为实数,且x 2+y 2=1},B ={(x ,y )|x ,y 为实数,且x +y =1},则A ∩B 的元素个数为( ).A .4B .3C .2D .1 解析 法一 (直接法)集合A 表示圆,集合B 表示一条直线,又圆心(0,0)到直线x +y =1的距离 d =12=22<1=r ,所以直线与圆相交,故选C.法二 (数形结合法)画图可得,故选C. 答案 C2.若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( ).A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)解析 由题意可得,圆的圆心为(a,0),半径为2, ∴|a -0+1|12+(-1)2≤2,即|a +1|≤2,解得-3≤a ≤1.答案 C3.若圆(x -a )2+(y -b )2=b 2+1始终平分圆(x +1)2+(y +1)2=4的周长,则a ,b 满足的关系是( ) A .a 2+2a +2b -3=0 B .a 2+b 2+2a +2b +5=0 C .a 2+2a +2b +5=0 D .a 2-2a -2b +5=0解析 即两圆的公共弦必过(x +1)2+(y +1)2=4的圆心, 两圆相减得相交弦的方程为-2(a +1)x -2(b +1)y +a 2+1=0, 将圆心坐标(-1,-1)代入可得a 2+2a +2b +5=0.答案 C4.若圆C 1:x 2+y 2+2ax +a 2-4=0(a ∈R )与圆C 2:x 2+y 2-2by -1+b 2=0(b ∈R )恰有三条切线,则a +b 的最大值为( ).A .-3 2B .-3C .3D .3 2解析 易知圆C 1的圆心为C 1(-a,0),半径为r 1=2; 圆C 2的圆心为C 2(0,b ),半径为r 2=1. ∵两圆恰有三条切线,∴两圆外切,∴|C 1C 2|=r 1+r 2,即a 2+b 2=9.∵⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22,∴a +b ≤32(当且仅当a =b =32时取“=”), ∴a +b 的最大值为3 2. 答案 D5.若曲线C 1:x 2+y 2-2x =0与曲线C 2:y (y -mx -m )=0有四个不同的交点,则实数m 的取值范围是( ).A.⎝ ⎛⎭⎪⎫-33,33B.⎝ ⎛⎭⎪⎫-33,0∪⎝ ⎛⎭⎪⎫0,33C.⎣⎢⎡⎦⎥⎤-33,33D.⎝ ⎛⎭⎪⎫-∞,-33∪⎝ ⎛⎭⎪⎫33,+∞解析 C 1:(x -1)2+y 2=1,C 2:y =0或y =mx +m =m (x +1).当m =0时,C 2:y =0,此时C 1与C 2显然只有两个交点;当m ≠0时,要满足题意,需圆(x -1)2+y 2=1与直线y =m (x +1)有两交点,当圆与直线相切时,m =±33,即直线处于两切线之间时满足题意, 则-33<m <0或0<m <33.综上知-33<m<0或0<m<33.答案 B6.如右图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是().解析如图,建立直角坐标系,由题意可知,小圆O1总与大圆O相内切,且小圆O1总经过大圆的圆心O.设某时刻两圆相切于点A,此时动点M所处位置为点M′,则大圆圆弧的长与小圆圆弧的长之差为0或2π.切点A在三、四象限的差为0,在一、二象限的差为2π.以切点A在第三象限为例,记直线OM与此时小圆O1的交点为M1,记∠AOM=θ,则∠OM1O1=∠M1OO1=θ,故∠M1O1A=∠M1OO1+∠OM1O1=2θ.大圆圆弧的长为l1=θ×2=2θ,小圆圆弧的长为l2=2θ×1=2θ,则l1=l2,即小圆的两段圆弧与的长相等,故点M1与点M′重合.即动点M在线段MO上运动,同理可知,此时点N在线段OB上运动.点A在其他象限类似可得,故M,N的轨迹为相互垂直的线段.观察各选项知,只有选项A符合.故选A.答案 A二、填空题7.直线y =x 被圆x 2+(y -2)2=4截得的弦长为________.解析 由题意得,圆x 2+(y -2)2=4的圆心为(0,2),半径为2,圆心到直线x -y =0的距离d =22= 2. 设截得的弦长为l ,则由⎝ ⎛⎭⎪⎫l 22+(2)2=22,得l =2 2.答案 2 28.设集合A =(x ,y )⎪⎪⎪m2≤(x -2)2+y 2≤m 2,x ,y ∈R ,B ={(x ,y )|2m ≤x +y ≤2m+1,x ,y ∈R },若A ∩B =∅,则实数m 的取值范围是________. 解析 ∵A ∩B ≠∅,∴A ≠∅, ∴m 2≥m 2.∴m ≥12或m ≤0.显然B ≠∅.要使A ∩B ≠∅,只需圆(x -2)2+y 2=m 2(m ≠0)与x +y =2m 或x +y =2m +1有交点,即|2-2m |2≤|m |或|1-2m |2≤|m |,∴2-22≤m ≤2+ 2.又∵m ≥12或m ≤0,∴12≤m ≤2+ 2. 当m =0时,(2,0)不在0≤x +y ≤1内.综上所述,满足条件的m 的取值范围为⎣⎢⎡⎦⎥⎤12,2+2.答案 ⎣⎢⎡⎦⎥⎤12,2+29.从原点向圆x 2+y 2-12y +27=0作两条切线,则该圆夹在两条切线间的劣弧长为________.解析 (数形结合法)如图,圆x 2+y 2-12y +27=0 可化为x 2+(y -6)2=9,圆心坐标为(0,6),半径为3. 在Rt △OBC 中可得:∠OCB =π3,∴∠ACB =2π3, ∴所求劣弧长为2π.答案 2 π10.在平面直角坐标系xOy 中,已知圆x 2+y 2=4上有且只有四个点到直线12x -5y +c =0的距离为1,则实数c 的取值范围是________.解析 画图可知,圆上有且只有四个点到直线12x -5y +c =0的距离为1,该圆半径为2即圆心O (0,0)到直线12x -5y +c =0的距离d <1,即0<|c |13<1,∴-13<c <13. 答案 (-13,13) 三、解答题11.已知:圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A ,B 两点,且|AB |=22时,求直线l 的方程. 解 将圆C 的方程x 2+y 2-8y +12=0化成标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2,解得a =-34.(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,得⎩⎪⎨⎪⎧|CD |=|4+2a |a 2+1,|CD |2+|DA |2=|AC |2=22,|DA |=12|AB |= 2.解得a =-7或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.12.已知与圆C :x 2+y 2-2x -2y +1=0相切的直线l 交x 轴,y 轴于A ,B 两点,|OA |=a ,|OB |=b (a >2,b >2). (1)求证:(a -2)(b -2)=2; (2)求线段AB 中点的轨迹方程; (3)求△AOB 面积的最小值.解 (1)证明:圆的标准方程是(x -1)2+(y -1)2=1,设直线方程为x a +y b=1,即bx +ay -ab =0,圆心到该直线的距离d =|a +b -ab |a 2+b2=1, 即a 2+b 2+a 2b 2+2ab -2a 2b -2ab 2=a 2+b 2,即a 2b 2+2ab -2a 2b -2ab 2=0, 即ab +2-2a -2b =0,即(a -2)(b -2)=2.(2)设AB 中点M (x ,y ),则a =2x ,b =2y ,代入(a -2)(b -2)=2, 得(x -1)(y -1)=12(x >1,y >1).(3)由(a -2)(b -2)=2得ab +2=2(a +b )≥4ab , 解得ab ≥2+2(舍去ab ≤2-2), 当且仅当a =b 时,ab 取最小值6+42, 所以△AOB 面积的最小值是3+2 2.13.设直线l 的方程为y =kx +b (其中k 的值与b 无关),圆M 的方程为x 2+y 2-2x -4=0.(1)如果不论k 取何值,直线l 与圆M 总有两个不同的交点,求b 的取值范围; (2)b =1时,l 与圆交于A ,B 两点,求|AB |的最大值和最小值. 解 圆M 的标准方程为(x -1)2+y 2=5, ∴圆心M 的坐标为(1,0),半径为r = 5. (1)∵不论k 取何值,直线l 总过点P (0,b ),∴欲使l 与圆M 总有两个不同的交点,必须且只需点P 在圆M 的内部,即|MP |<5,即1+b 2<5,∴-2<b <2,即b 的取值范围是(-2,2).(2)当l 过圆心M 时,|AB |的值最大,最大值为圆的直径长2 5.当l ⊥MP 时,此时|MP |最大,|AB |的值最小,|MP |2=⎝ ⎛⎭⎪⎫k +1k 2+12=k 2+2k +1k 2+1=1+2k +1k≤1+22k ·1k=2,当且仅当k =1时取等号.最小值为2r 2-|MP |2=25-2=2 3.14.已知圆M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切圆M 于A ,B 两点.(1)若Q (1,0),求切线QA ,QB 的方程;(2)求四边形QAMB 面积的最小值; (3)若|AB |=423,求直线MQ 的方程.解 (1)设过点Q 的圆M 的切线方程为x =my +1, 则圆心M 到切线的距离为1, ∴|2m +1|m 2+1=1,∴m =-43或0, ∴QA ,QB 的方程分别为3x +4y -3=0和x =1. (2)∵MA ⊥AQ ,∴S 四边形MAQB =|MA |·|QA |=|QA |=|MQ |2-|MA |2=|MQ |2-1≥|MO |2-1= 3.∴四边形QAMB 面积的最小值为 3.(3)设AB 与MQ 交于P ,则MP ⊥AB ,MB ⊥BQ , ∴|MP |=1-⎝⎛⎭⎪⎫2232=13. 在Rt △MBQ 中,|MB |2=|MP ||MQ |, 即1=13|MQ |,∴|MQ |=3,∴x 2+(y -2)2=9. 设Q (x,0),则x 2+22=9,∴x =±5,∴Q (±5,0), ∴MQ 的方程为2x +5y -25=0或2x -5y +25=0.中档大题规范练——数列1.已知公差大于零的等差数列{a n }的前n 项和S n ,且满足:a 2a 4=64,a 1+a 5=18. (1)若1<i <21,a 1,a i ,a 21是某等比数列的连续三项,求i 的值.(2)设b n =n(2n +1)S n ,是否存在一个最小的常数m 使得b 1+b 2+…+b n <m 对于任意的正整数n 均成立,若存在,求出常数m ;若不存在,请说明理由. 解 (1)数列{a n }为等差数列,因为a 1+a 5=a 2+a 4=18, 又a 2a 4=65,所以a 2,a 4是方程x 2-18x +65=0的两个根, 又公差d >0,所以a 2<a 4,所以a 2=5,a 4=13.所以⎩⎪⎨⎪⎧a 1+d =5,a 1+3d =13,①所以a 1=1,d =4.所以a n =4n -3.由1<i <21,a 1,a i ,a 21是某等比数列的连续三项, 所以a 1a 21=a 2i ,即1×81=(4i -3)2,解得i =3.(2)由(1)知,S n =n ×1+n (n -1)2×4=2n 2-n ,所以b n =1(2n -1)(2n +1)=12(12n -1-12n +1),②所以b 1+b 2+…+b n=12(1-13+13-15+…+12n -1-12n +1)=n 2n +1, 因为n 2n +1=12-12(2n +1)<12,③所以存在m =12使b 1+b 2+…+b n <m 对于任意的正整数n 均成立.2.设S n 为数列{a n }的前n 项和,已知a 1≠0,2a n -a 1=S 1·S n ,n ∈N *. (1)求a 1,a 2,并求数列{a n }的通项公式;(2)求数列{na n }的前n 项和.解 (1)令n =1,得2a 1-a 1=a 21,即a 1=a 21.因为a 1≠0,所以a 1=1.令n =2,得2a 2-1=S 2=1+a 2,解得a 2=2. 当n ≥2时,由2a n -1=S n,2a n -1-1=S n -1, 两式相减得2a n -2a n -1=a n ,即a n =2a n -1. 于是数列{a n }是首项为1,公比为2的等比数列. 因此,a n =2n -1.所以数列{a n }的通项公式为a n =2n -1. (2)由(1)知,na n =n ·2n -1.记数列{n ·2n -1}的前n 项和为B n ,于是 B n =1+2×2+3×22+…+n ×2n -1.① 2B n =1×2+2×22+3×23+…+n ×2n .② ①-②,得-B n =1+2+22+…+2n -1-n ·2n =2n -1-n ·2n . 从而B n =1+(n -1)·2n .即数列{na n }的前n 项和为1+(n -1)·2n .3.设数列{a n }的前n 项和为S n ,满足2S n =a n +1-2n +1+1,n ∈N *,且a 1=1,设数列{b n }满足b n =a n +2n .(1)求证数列{b n }为等比数列,并求出数列{a n }的通项公式; (2)若数列c n =6n -3b n,T n 是数列{c n }的前n 项和,证明:T n <3.(1)解 当n ≥2时,由⎩⎪⎨⎪⎧2S n =a n +1-2n +1+1,2S n -1=a n -2n+1⇒2a n =a n +1-a n -2n ⇒a n +1=3a n +2n ,从而b n +1=a n +1+2n +1=3(a n +2n )=3b n ,故{b n }是以3为首项,3为公比的等比数列, b n =a n +2n =3×3n -1=3n , a n =3n -2n (n ≥2),因为a 1=1也满足,于是a n =3n -2n . (2)证明 c n =6n -3b n=2n -13n -1,则T n =130+331+532+…+2n -33n -2+2n -13n -1,①13T n =131+332+533+…+2n -33n -1+2n -13n ,② ①-②,得23T n =130+231+232+…+23n -1-2n -13n=1+23·1-13n -11-13-2n -13n=2-13n -1-2n -13n=2-2(n +1)3n ,故T n =3-n +13n -1<3.4.已知单调递增数列{a n }的前n 项和为S n ,满足S n =12(a 2n +n ).(1)求数列{a n }的通项公式;(2)设c n =⎩⎪⎨⎪⎧1a 2n +1-1,n 为奇数,3×2a n -1+1,n 为偶数,求数列{c n }的前n 项和T n .解 (1)n =1时,a 1=12(a 21+1),得a 1=1,由S n =12(a 2n +n ),①则当n ≥2时,S n -1=12(a 2n -1+n -1),② ①-②得a n =S n -S n -1=12(a 2n -a 2n -1+1), 化简得(a n -1)2-a 2n -1=0,a n -a n -1=1或a n +a n -1=1(n ≥2),又{a n }是单调递增数列,故a n -a n -1=1,所以{a n }是首项为1,公差为1的等差数列,故a n =n .(2)c n =⎩⎨⎧ 1a 2n +1-1,n 为奇数,3×2a n -1+1,n 为偶数,当n 为偶数时,T n =(c 1+c 3+…+c n -1)+(c 2+c 4+…+c n )=(122-1+142-1+…+1n 2-1)+3×(21+23+…+2n -1)+n 2 =11×3+13×5+…+1(n -1)×(n +1)+3×2(1-4n 2)1-4+n 2 =12×(11-13+13-15+…+1n -1-1n +1)+2×(4n 2-1)+n 2 =2n +1+n 2-2n -42(n +1). 当n 为奇数时,T n =(c 1+c 3+…+c n )+(c 2+c 4+…+c n -1)=[122-1+142-1+…+1(n +1)2-1]+3×(21+23+…+2n -2)+n -12=12×(11-13+13-15+…+1n -1n +2)+2×(4n -12-1)+n -12=2n +n 2-2n -92(n +2).所以T n =⎩⎪⎨⎪⎧ 2n +n 2-2n -92(n +2)(n 为奇数),2n +1+n 2-2n -42(n +1)(n 为偶数).5.已知函数f (x )=2x +33x ,数列{a n }满足a 1=1,a n +1=f (1a n),n ∈N *. (1)求数列{a n }的通项公式;(2)令b n =1a n -1a n(n ≥2),b 1=3,S n =b 1+b 2+…+b n ,若S n <m -2 0142对一切n ∈N *恒成立,求最小正整数m .解 (1)∵a n +1=f (1a n )=2a n +33a n=2+3a n 3=a n +23, ∴{a n }是以1为首项,23为公差的等差数列. ∴a n =1+(n -1)×23=23n +13. (2)当n ≥2时,b n =1a n -1a n =1(23n -13)(23n +13) =1(2n -1)(2n +1)9=92(12n -1-12n +1), 又b 1=3=92(1-13), ∴S n =b 1+b 2+…+b n =92(1-13+13-15+…+12n -1-12n +1)=92(1-12n +1)=9n 2n +1, ∵S n <m -2 0142对一切n ∈N *恒成立, 即9n2n +1<m -2 0142对一切n ∈N *恒成立, 又9n 2n +1<92,∴m -2 0142≥92, 即m ≥2 023.∴最小正整数m 为2 023.6.某工厂为扩大生产规模,今年年初新购置了一条高性能的生产线,该生产线在使用过程中的维护费用会逐年增加,第一年的维护费用是4万元,从第二年到第七年,每年的维护费用均比上年增加2万元,从第八年开始,每年的维护费用比上年增加25%.(1)设第n 年该生产线的维护费用为a n ,求a n 的表达式;(2)若该生产线前n 年每年的平均维护费用大于12万元时,需要更新生产线.求该生产线前n 年每年的平均维护费用,并判断第几年年初需要更新该生产线?解 (1)由题意知,当n ≤7时,数列{a n }是首项为4,公差为2的等差数列,所以a n =4+(n -1)×2=2n +2.当n ≥8时,数列{a n }从a 7开始构成首项为a 7=2×7+2=16,公比为1+25%=54的等比数列, 则此时a n =16×⎝⎛⎭⎫54n -7,所以a n =⎩⎪⎨⎪⎧ 2n +2,n ≤7,16×⎝⎛⎭⎫54n -7,n ≥8.(2)设S n 为数列{a n }的前n 项和,当1≤n ≤7时,S n =4n +n (n -1)2×2=n 2+3n , 当n ≥8时,由S 7=72+3×7=70,则S n =70+16×54×1-⎝⎛⎭⎫54n -71-54=80×⎝⎛⎫54n -7-10, ∴该生产线前n 年每年的平均维护费用为S n n =⎩⎪⎨⎪⎧ n +3,1≤n ≤7,80×⎝⎛⎭⎫54n -7-10n ,n ≥8.当1≤n ≤7时,⎩⎨⎧⎭⎬⎫S n n 为递增数列, 当n ≥8时,∵S n +1n +1-S n n =80×⎝⎛⎭⎫54n -6-10n +1-80×⎝⎛⎭⎫54n -7-10n =80×⎝⎛⎭⎫54n -7·⎝⎛⎭⎫n 4-1+10n (n +1)>0, ∴S n +1n +1>S n n. ∴⎩⎨⎧⎭⎬⎫S n n 也为递增数列. 又∵S 77=10<12,S 88=80×54-108=11.25<12, S 99=80×⎝⎛⎭⎫542-109≈12.78>12, 则第9年年初需更新生产线.。

相关文档
最新文档