最新中考数学复习课件(人教版)第27讲-解直角三角形

合集下载

人教版数学九年级下册28.2解直角三角形的应用——坡度问题课件

人教版数学九年级下册28.2解直角三角形的应用——坡度问题课件

利用解直角三角形的知识解决实际问题的一般过 程是:
(1)将实际问题抽象为数学问题(画出平 面图形,转化为解直角三角形的问题);
(2)根据条件的特点,适当选用锐角三角形 函数等去解直角三角形;
(3)得到数学问题的答案;
(4)得到实际问题的答案.
作业
1.书P92-93第5、8题
2.练习册67、68页
5、(1)若h=2cm,l=5cm,则i= 1:2.5 (2)若i=1:1.5,h=2m,则 l = 3m
例1. 如图,拦水坝的横断面为梯 形ABCD(图中i=1:3是指坡面的 铅直高度DE与水平宽度CE的比), 根据图中数据求:(1)坡角a和β;
(2)坝底宽BC和斜坡CD的长 (精确到0.1m)
为 30 。
练习
1.我军某部在一次野外训练中,有一辆坦克准备通 过一座小山,已知山脚和山顶的水平距离为1000 米,山高为565米,如果这辆坦克能够爬300 的斜坡, 试问:它能不能通过这座小山?
B
565米
A
1000米
C
练习
2.如图,在山坡上种树,要求株距(相邻两树间的 水平距离)是5.5米,测得斜坡的倾斜角是24度,求 斜坡上相邻两树间的坡面距离是多少米?(精 确到0.1米)
BE CF 6 i 1: 3
DF 6 3
∵梯形ABCD是等腰梯A形
B
4
C
i 1: 3
6
α
EF
D
BC EF 4, AE DF 6 3
AD AE EF DF 6 3 4 6 3 12 3 4
• (2) tan i 1 : 3
30
答:路基下底宽AD为 12 3 4 米,坡角
B
24°

人教版数学九年级下册《 解直角三角形》PPT课件

人教版数学九年级下册《  解直角三角形》PPT课件

∴ AB的长为
巩固练习
在Rt△ABC中,∠C=90°,sinA = 0.8 ,BC=8,则
AC的值为( B )
A.4
B.6
C.8
D.10
如图,在菱形ABCD中,AE⊥BC于点E,EC=4,
sin B 4 ,则菱形的周长是 ( C )
5
A.10
B.20
C.40
D.28
链接中考
如图,在△ABC中,BC=12,tan A 3 ,B=30°;求
已知一边及一锐角解直角三角形
例2 如图,在 Rt△ABC 中,∠C = 90°,∠B = 35°, b = 20,解这个直角三角形 (结果保留小数点后一位).
解:∠A 90 ∠B=90 35 =55 .
tan B b ,
a
c
a b 20 28.6.
tan B tan 35
B
35° a
sin B b,c b 20 34.9.
探究新知
A
在Rt△ABC中,
一角
(1)根据∠A= 60°,你能求出这个三角形
的其他元素吗?
不能
两角
C
B (2)根据∠A=60°,∠B=30°, 你能求出这个
你发现了
三角形的其他元素吗?
不能
一角
什么? (3)根据∠A= 60°,斜边AB=4,你能求出这个三角形的其 一边
他元素吗?
∠B
AC BC
两边
(4)根据 BC 2 3,AC= 2 , 你能求出这个三角形的
AC和AB的长.
4
解:如图作CH⊥AB于H.
在Rt△BCH中,∵BC=12,∠B=30°,
H
∴CH 1 BC 6 ,BH BC2 CH 2 6 3 ,

中考数学复习《解直角三角形》 知识讲解

中考数学复习《解直角三角形》  知识讲解

《解直角三角形》全章复习与巩固(提高) 知识讲解【学习目标】1.了解锐角三角函数的概念,能够正确应用sinA 、cosA 、tanA 、cotA 表示直角三角形中两边的比;记忆30°、45°、60°的正弦、余弦、正切和余切的三角函数值,并能由一个特殊角的三角函数值说出这个角的度数.2.能够正确地使用计算器,由已知锐角求出它的三角函数值,由已知三角函数值求出相应的锐角;3.理解直角三角形中边与边的关系,角与角的关系和边与角的关系,会运用勾股定理、直角三角形的两个锐角互余、直角三角形斜边上中线等于斜边的一半,以及锐角三角函数解直角三角形,并会用解直角三角形的有关知识解决简单的实际问题.4.通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想;5.通过解直角三角形的学习,体会数学在解决实际问题中的作用.【知识网络】【要点梳理】要点一、直角三角形的性质(1) 直角三角形的两个锐角互余.(2) 直角三角形两直角边的平方和等于斜边的平方.(勾股定理)如果直角三角形的两直角边长分别为,斜边长为,那么.(3) 直角三角形斜边上的中线等于斜边的一半. 要点二、锐角三角函数1.正弦、余弦、正切、余切的定义如右图,在Rt △ABC 中,∠C=900,如果锐角A 确定:(1)∠A 的对边与斜边的比值是∠A 的正弦,记作sinA= ∠A 的对边斜边(2)∠A 的邻边与斜边的比值是∠A 的余弦,记作cosA = ∠A 的邻边斜边(3)∠A 的对边与邻边的比值是∠A 的正切,记作tanA = ∠A 的对边∠A 的邻边a b ,c 222a b c +=(4)∠A 的邻边与对边的比值是∠A 的余切,记作cotA = ∠A 的邻边∠A 的对边要点诠释:(1)正弦、余弦、正切、余切是在一个直角三角形中定义的,其本质是两条线段的比值,它只是一个数值,其大小只与锐角的大小有关,而与所在直角三角形的大小无关.(2)sinA 、cosA 、tanA 、cotA 是一个整体符号,即表示∠A 四个三角函数值,书写时习惯上省略符号“∠”,但不能写成sin ·A ,对于用三个大写字母表示一个角时,其三角函数中符号“∠”不能省略,应写成sin ∠BAC ,而不能写出sinBAC.(3)sin 2A 表示(sinA)2,而不能写成sinA 2. (4)三角函数有时还可以表示成等.2.锐角三角函数的定义锐角∠A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数. 要点诠释:1. 函数值的取值范围对于锐角A 的每一个确定的值,sinA 有唯一确定的值与它对应,所以sinA 是∠A 的函数.同样,cosA 、tanA 、cotA 也是∠A 的函数,其中∠A 是自变量,sinA 、cosA 、tanA 、cotA 分别是对应的函数.其中自变量∠A 的取值范围是0°<∠A <90°,函数值的取值范围是0<sinA <1,0<cosA <1,tanA >0,cotA >0.2.锐角三角函数之间的关系:余角三角函数关系:“正余互化公式” 如∠A+∠B=90°,那么:sinA=cosB ; cosA=sinB ; tanA=cotB, cotA=tanB. 同角三角函数关系:sin 2A +cos 2A=1;3.30°、45°、60°角的三角函数值∠A 30°45°60°sinAcosAtanA1cotA1在直角三角形中,如果一个角等于30°,那么它所对的直角边等于斜边的一半.sin cos 1tanA=,cot ,tan .cos sin cot A A A A A A A==30°、45°、60°角的三角函数值和解含30°、60°角的直角三角形、含45°角的直角三角形为本章的重中之重,是几何计算题的基本工具. 要点三、解直角三角形在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形. 解直角三角形的依据是直角三角形中各元素之间的一些相等关系,如图:角角关系:两锐角互余,即∠A+∠B=90°; 边边关系:勾股定理,即;边角关系:锐角三角函数,即要点诠释:解直角三角形,可能出现的情况归纳起来只有下列两种情形: (1)已知两条边(一直角边和一斜边;两直角边);(2)已知一条边和一个锐角(一直角边和一锐角;斜边和一锐角).这两种情形的共同之处:有一条边.因此,直角三角形可解的条件是:至少已知一条边.Rt △ABC由求∠A ,∠B=90°-∠A ,由求∠A ,∠B=90°-∠A ,sin ,cos ,tan ,cot a b a b A A A A c c b a====sin ,cos ,tan ,cot b a b a B B B B c c a b====,∠B=90°-∠A,,∠B=90°-∠A,,要点四、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.1.解这类问题的一般过程(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.2.常见的应用问题类型(1) 仰角与俯角:(2)坡度:;坡角:.(3)方向角:要点诠释:1.用解直角三角形的知识解决实际问题的基本方法是:把实际问题抽象成数学问题(解直角三角形),就是要舍去实际事物的具体内容,把事物及它们的联系转化为图形(点、线、角等)以及图形之间的大小或位置关系.借助生活常识以及课本中一些概念(如俯角、仰角、倾斜角、坡度、坡角等)的意义,也有助于把实际问题抽象为数学问题.当需要求解的三角形不是直角三角形时,应恰当地作高,化斜三角形为直角三角形再求解.2.锐角三角函数的应用用相似三角形边的比的计算具有一般性,适用于所有形状的三角形,而三角函数的计算是在直角三角形中解决问题,所以在直角三角形中先考虑三角函数,可以使过程简洁。

人教版九年级下册数学作业课件 第28章解直角三角形 (2)

人教版九年级下册数学作业课件 第28章解直角三角形 (2)

(2)∠A=22°,AB=10.(sin22°≈0.37,cos22°≈0.93, tan22°≈0.40,其中结果精确到 0.1) 解:在 Rt△ABC 中,∠B=90°-∠A=90°-22°=68°. ∵∠A=22°,AB=10, ∴AC=cosA·AB=cos22°·10≈0.93×10=9.3, BC=AB·sinA=10·sin22°≈0.37×10=3.7.
又∵∠CDE=90°,CD=4,sinE=CD,∠E=30°, CE
∴CE=sCinDE=sin430°=41=8. 2
∴BC=BE-CE=6 3-8.
(2)若 sinA=45,求 AD 的长. 解:∵∠ABE=90°,AB=6,sinA=45=BAEE, ∴设 BE=4x,AE=5x,则 AB=3x. ∴3x=6,得 x=2. ∴BE=8,AE=10.
10.如图,在四边形 ABCD 中,AB=2,BC=CD= 2 3 , ∠B = 90°, ∠C = 120°, 则 线 段 AD 的 长 为 7. 解析:如图,连接 AC. 在 Rt△ABC 中, ∵∠B=90°,AB=2,BC=2 3, ∴tan∠ACB=BACB=223= 33.
∴∠ACB=30°. ∴AC=2AB=4. ∵∠BCD=120°. ∴∠ACD=∠BCD-∠ACB=120°-30°=90°. 在 Rt△ADC 中, ∵∠ACD=90°,AC=4,CD=2 3, ∴AD= AC2+CD2= 42+(2 3)2=2 7.
解:在
Rt△ABC
中,∠C=90°,tanA=
3, 3
∴∠A=30°,∠ABC=60°.
∵BD 是∠ABC 的平分线,
∴∠CBD=∠ABD=30°.
又∵CD= 3, ∴BC=taCn3D0°=3. 在 Rt△ABC 中,∠C=90°,∠A=30°, ∴AB=siBn3C0°=6.

2024年中考第一轮复习直角三角形 课件

2024年中考第一轮复习直角三角形 课件

[解析] 设AB=x,则AC=x-2.由勾股定理,
.
得x2-(x-2)2=82.解得x=17.
■ 知识梳理
勾股定理
直角三角形两条直角边的平方和等于⑥ 斜边的平方
勾股定理
如果三角形中两边的平方和等于第三边的⑦ 平方 ,那么这个三角形
的逆定理 是直角三角形
勾股数
能够成为直角三角形三条边长的三个正整数,称为勾股数
∴AD=BC,∠A=∠B=∠CFE=90°,AB∥CD,∴∠AED=∠CDF,∠A=∠CFD=90°,
AD=CF,∴△ADE≌△FCD,∴ED=CD=x,∴FD=x-1,
在Rt△CFD中,FD2+CF2=CD2,∴(x-1)2+32=x2,解得x=5,∴CD=5.故选B.
考向三
勾股定理与拼图
例 3 [2020·孝感]如图 19-11①,四个全等的直角三角形围成一个大正方形,中间是个
图19-6
∴∠BEC=90°,∠BFC=90°,
1
2
∵G 是 BC 的中点,∴EG=FG= BC=5,
∵D 是
1
EF 的中点,∴ED= EF=3,GD⊥EF,
2
∴∠EDG=90°.在 Rt△ EDG 中,
由勾股定理得,DG= 2 - 2 =4,故答案为 4.
考向二
利用勾股定理进行计算
例2 [2020·宜宾]如图19-7,在Rt△ABC中,∠ACB=90°,D是AB的中点,BE平分
∠ABC交AC于点E,连结CD交BE于点O.若AC=8,BC=6,则OE的长是
.
图19-7
【方法点析】勾股定理是求线段长的重要工具,主要应用:(1)已知直角三角形的
两边长求第三边长;(2)已知直角三角形的一边长求另两边的关系;(3)用于证明平

人教版九年级数学下册§28.2解直角三角形PPT

人教版九年级数学下册§28.2解直角三角形PPT

2019/3/10
5.解:在Rt△ADE中,DE=3 2 , ∠DAE=45°, DE ∴sin∠DAE= AD ,
∴AD=6. 又∵AD=AB, BC 在Rt△ABC中,sin∠BAC= AB ,
∴BC=AB· sin∠BAC=6· sin65°≈5.4. 答:点B到地面的垂直距离BC约为5.4米.
2019/3/10
4.(2006,盐城)如图,花丛中有一路灯杆 AB.在灯光下,小明在D• 点处的影长DE=3米, 沿BD方向行走到达G点,DG=5米,这时小明的 影长GH=5米.• 如果小明的身高为1.7米,求路灯 杆AB的高度(精确到0.1米).
2019/3/10
4.解:设AB=x米,BD=y米. 由△CDE∽△ABE得
设BC=x,则EC=BC=x. 在Rt△ACE中,AC= 3 x,
∵AB=AC-BC, 即20= 3 x-x. 解得x=10 3 +10.
∴BD=BC+CD=BC+EF =10 3+10+35≈45+10×1.732≈62.3(m). 所以小山BD的高为62.3m.
2019/3/10
题型4 应用举例
2019/3/10
3.解:如图设BC=x, 在Rt△ADF中,AD=180,∠DAF=30°, ∴DF=90,AF=90 3 . ∵∠BAC=∠ABC=45°, ∴AC=BC=x. ∴BE=BC-EC=x-90. 在Rt△BDE中,∠BDE=60°, 3 3 ∴DE= BE= ( 3 3 x-90). FC=AC-AF=x-90 3 . ∵DE=FC, 3 ∴ ( x-90)=x-90 .
径,弦AC、BD相交于E,则
A.tan∠AED C.sin∠AED

中考数学复习专题课件 锐角三角函数与解直角三角形的实际应用

中考数学复习专题课件 锐角三角函数与解直角三角形的实际应用
(D ) A.1.59 m B.2.07 m C.3.55 m D.3.66 m
6.(2021·遵义)小明用一块含有 60°(∠DAE=60°)的直角三角尺测量 校园内某棵树的高度,示意图如图所示,若小明的眼睛与地面之间的垂 直高度 AB 为 1.62 m,小明与树之间的水平距离 BC 为 4 m,则这棵树的 高度约为 88..55 m.(结果精确到 0.1 m,参考数据: 3≈1.73)
(1)证明:∵AB=AC=AD, ∴点 B,C,D 在以点 A 为圆心,BD 为直径的圆上. ∴∠BCD=90°,即 DC⊥BC.
(2)解:过点 E 作 EF⊥BC,垂足为 F.
在 Rt△BCD 中,
BC cos B=BD,BC=1.8.
BC
1.8
∴BD=cos B=cos 55°≈3.16.
∴BE=BD+DE≈3.16+2=5.16.
13.(2022·安顺)随着我国科学技术的不断发展,5G 移动通信技术日趋完善,某市政府为了实现 5G 网络 全覆盖,2021~2025 年拟建设 5G 基站 3 000 个,如 图,在斜坡 CB 上有一建成的 5G 基站塔 AB,小明在 坡脚 C 处测得塔顶 A 的仰角为 45°,然后他沿坡面 CB 行走了 50 m 到达 D 处,D 处离地平面的距离为 30 m 且在 D 处测得塔顶 A 的仰角 53°.(点 A,B,C,D,E 均在同一平面内, CE 为地平线,参考数据:sin 53°≈45,cos 53°≈35,tan 53°≈43) (1)求坡面 CB 的坡度; (2)求基站塔 AB 的高.
4 10+4a ∴3= 4a ,解得 a=7.5, ∴AB=AF-BF=10+a=17.5 m.
答:基站塔 AB 的高为 17.5 m.

人教版九年级数学下册解直角三角形ppt课件

人教版九年级数学下册解直角三角形ppt课件
AD 4 2 2
∴∠ADC=45°, ∴∠ADB=180°-45°=135°.
5.(2018黑龙江大庆龙凤月考)在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边 分别为a,b,c.根据下列条件解直角三角形. (1)已知a=5,∠B=60°; (2)已知a=5 2 ,b=5 6 .
解析 (1)∵∠C=90°,∠B=60°, ∴∠A=30°, ∵cos B=cos 60°= a = 1 ,a=5,∴c=10,
5
(1)求AB的长; (2)求cos∠BAD的值.
图28-2-1-6
解析 (1)在Rt△ADC中,∵∠C=90°,sin∠ADC= AC = 4,AD=5,∴AC=4.
AD 5
由勾股定理得CD= AD2 -AC2 =3, ∴BC=CD+DB=3+5=8, 在Rt△ABC中,∠C=90°, 由勾股定理得AB= AC2 BC2 = 42 82 =4 5 . (2)∵AD=BD, ∴∠BAD=∠ABD.
知识点一 解直角三角形 1.解直角三角形的定义与边角关系
2.解直角三角形的类型
在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c.
已知条件
解法
两直角边 斜边、一直角边(如c,a) 一锐角与邻边(如∠A,b) 一锐角与对边(如∠A,a) 斜边与一锐角(如c,∠A)
由tan A= a,求∠A;∠B=90°-∠A;c= a2 b2
点O,AB⊥AC.若AB=8,tan∠ACB= 2,则BD的长是
.
3
图28-2-1-3
答案 20
解析 ∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵AB
⊥AC,AB=8,tan∠ACB= 2= AB ,∴AC= 3AB=12,∴OA=6,∴BO= OA2 AB2=

中考数学考前考点梳理精讲第七章图形与变换第27课时解直角三角形课件

中考数学考前考点梳理精讲第七章图形与变换第27课时解直角三角形课件
(3)边角之间的关系:sin A=������������,cos A=������������,tan A=������������,sin B=������������,cos B=������������,tan B=������������.
考点梳理 自主测试
考点一 考点二 考点三 考点四
∴cos B=������������������������ = 153.
答案 5
13
考点梳理 自主测试 1 2 3 4
4.在△ABC 中,∠C=90°,AB=8,cos A=34,则 BC 的长为
.
解析∵cos A=������������������������,
∴AC=AB·cos A=8×34=6.
第27课时 解直角三角形
考点梳理 自主测试
考点一 考点二 考点三 考点四
考点一 锐角三角函数定义
在 Rt△ABC 中,∠C=90°,∠A,∠B,∠C 的对边分别为 a,b,c.
sin A=∠������斜的边对边 = ������������; cos A=∠������斜的边邻边 = ������������; tan A=∠∠������������的 的对 邻边 边 = ������������.
考点梳理 自主测试 1 2 3 4
1.如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是 ()
A.sin
A=
3 2
C.cos
B=
3 2
答案D
B.tan A=12 D.tan B= 3
考点梳理 自主测试 1 2 3 4
2.在正方形网格中,△ABC 的位置如图,则 cos B 的值为 ( )
求:(1)DE,CD 的长;(2)tan∠DBC 的值.

人教版九年级下册数学作业课件 第28章第2课时 利用仰俯角解直角三角形

人教版九年级下册数学作业课件 第28章第2课时 利用仰俯角解直角三角形

8.如图,点 O 是摩天轮的圆心,最高点 A 到地面的
距离是 160 m,AB 是其垂直于地面的直径,小贤在地
面点 C 处利用测角仪测得摩天轮的最高点 A 的仰角为
45°,测得圆心 O 的仰角为 30°,则
摩(结天果轮保的留半根径号为).160
160 3
3
m
9.某兴趣小组测量电视塔 AE 的高度 h1(单位:m), 如图所示,垂直放置的标杆 BC 的高度 h2=4 m,仰角 ∠ABE=α,∠ADE=β.该小组已经测得一组α,β的值, tanα≈1.24,tanβ≈1.20,据此算出 h1 的值是 124 m.
∴CD≈80 米.∴CE=(80-x)米. ∵∠ACE=56°,tan∠ACE=CAEE=x8+0-20x, ∴x≈40,即 AF≈40 米. ∴AE=AF+EF≈40+20=60(米), 即此时无人机离地面的高度约是 60 米.
2.如图,飞机在空中 A 处探测到它的正下方地面 上目标 C,此时飞行高度 AC=1200 米,从飞机上 看地面指挥台 B 的俯角α的正切值为34,则飞机与指 挥台之间的距离 AB 为( D ) A.1200 米 B.1600 米 C.1800 米 D.2000 米
3.如图,某校无人机兴趣小组借助无人机测量教学 楼的高度 AB,无人机在离教学楼底部 B 处 16 米的 C 处垂直上升 31 米至 D 处,测得教学楼顶 A 处的 俯角为 39°,则教学楼的高度 AB 为 18.0 米(结果 精确到 0.1 米,参考数据:sin39°≈0.63,cos39°≈0.78, tan39°≈0.81).
6.如图,已知点 C 处有一个高空探测气球,从点
C 处测得水平地面上 A,B ቤተ መጻሕፍቲ ባይዱ点的俯角分别为 30°
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档