2010年4月概率论与数理统计答案

合集下载

概率论与数理统计课后习题答案(非常全很详细)

概率论与数理统计课后习题答案(非常全很详细)

0.8 0.1
4 0.3077
0.8 0.1 0.2 0.9 13
即考试不及格的学生中努力学习的学生占 30.77%.
26. 将两信息分别编码为 A 和 B 传递出来,接收站收到时,A 被误收作 B 的概率为 0.02,而
B 被误收作 A 的概率为 0.01.信息 A 与 B 传递的频繁程度为 2∶1.若接收站收到的信息是
P( A1
B)
P( A1B) P(B)
P(B
A 1
)
P(
A1
)
2
P(B Ai )P( Ai )
i0
2 / 31/ 3
1
1/ 31/ 3 2 / 31/ 3 11/ 3 3
28. 某工厂生产的产品中 96%是合格品,检查产品时,一个合格品被误认为是次品的概率
为 0.02,一个次品被误认为是合格品的概率为 0.05,求在被检查后认为是合格品产品确
≤M)正品(记为 A)的概率.如果: (1) n 件是同时取出的; (2) n 件是无放回逐件取出的; (3) n 件是有放回逐件取出的.
【解】(1)
P(A)=
C
m M
Cnm N M
/ CnN
(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有 PNn 种,n 次抽取中有 m
次为正品的组合数为
C
m n
种.对于固定的一种正品与次品的抽取次序,从
M
件正
品中取
m
件的排列数有 PMm
种,从
NM
件次品中取
nm
件的排列数为
Pnm N M
种,

P(A)=
Cmn PMm
Pnm N M
PNn

概率论与数理统计疑难解答

概率论与数理统计疑难解答

第一章 概率论基本概念1.什么是统计规律性?什么是随机现象?答 在一定条件下发生,其结果是多样的,因而在现象发生前不能预知确切结果的不确定现象,其结果在大量重复试验中呈现出一种规律性. 由于这种规律是根据统计数据分析出来的,因而称为统计规律性。

在一次试验或观察中结果不能预先确定,而在大量重复试验中结果具有统计规律性的现象称为随机现象. 随机现象是概率论与数理统计的主要研究对象.2.如何理解互逆事件与互斥事件? 答 如果两个事件A 与B 必有一个发生,且至多有一个发生,则、A B 为互逆事件. B A =.如果两个事件A 与B 不能同时发生,则、A B 为互斥事件.如考试及格与不及格是互逆也是互斥的,但考试70分和80分互斥却不互逆.区别互逆与互斥的关键是,当样本空间只有两个事件时,两事件才可能互逆. 而互斥适用于多个事件的情形. 互斥事件的特征是,在一次试验中两者可以都不发生,而互逆事件必发生一个且至多发生一个. 3.如何用已知事件来表达与其有关的其它事件?答 首先要了解所讨论试验中事件的构成,所需表达事件与已知事件的关系,然后运用这些关系与运算法则将事件表达出来.例如,设S 为事件05x ≤≤,A 为事件12x ≤≤,B 为事件02x ≤≤,则02x ≤≤为事件B 或A B , 12x ≤≤为事件A 或BA , 25x <≤为事件S B -或B ,01x ≤<为B A -.4.样本空间与必然事件之间有什么关系?答 样本空间是随机试验E 的所有可能结果的集合,而必然事件是指随机试验中一定会出现的结果. 虽然在一次试验中只有样本空间的一个元素发生,但在把样本空间视作一个整体时,我们说它在每次试验中都发生了. 因此,可以说样本空间是必然事件.5.在什么情况下,随机事件A 的频率可以作为它的概率的近似值?答 随机事件A 的频率()n f A 反映事件A 在多次重复试验中发生的频繁程度. 当n 增大时,频率在概率()P A 附近摆动. 因此,每一个从独立重复试验中测得的频率,都可以作为概率()P A 的近似值. 而且,一般n 越大,近似程度越好.事实上,当n 增大时,频率大量集中于包含()P A 的一个小区间. 任选区间中一值作为概率的近似值,称为统计概率. 在解题时,当n 较大时,可取统计概率为()/A P A n n ≈. 6.概率是否可以看做频率的极限?答 这样理解是不恰当的. 因为如上题所述,当n →∞时,()n f A 在()P A 附近摆动,与高等数学中极限的N ε-概念是不同的. 由于概率是随机现象的可能性的赋值,对于任给的0ε>,存在偶然的因素,可能找不到()N ε,从而得不到|()()|n f A P A ε-<.7.怎样理解古典概型的等可能假设?答 等可能性是古典概型的两大假设之一,有了这两个假设,给直接计算概率带来了很大的方便. 但在事实上,所讨论问题是否符合等可能假设,一般不是通过实际验证,而往往是根据人们长期形成的“对称性经验”作出的. 例如,骰子是正六面形,当质量均匀分布时,投掷一次,每面朝上的可能性都相等;装在袋中的小球,颜色可以不同,只要大小和形状相同,摸出其中任一个的可能性都相等. 因此,等可能假设不是人为的,而是人们根据对事物的认识——对称性特征而确认的. 8.概率为0的事件是否为不可能事件?概率为1的事件是否为必然事件? 答 有关概念:不可能事件φ的概率为0,即()0P φ=,但其逆不真;同样,必然事件Ω的概率()1P Ω=,但其逆也不真。

《概率论与数理统计》课后习题答案2

《概率论与数理统计》课后习题答案2

1. 试分别给出随机变量的可能取值为可列、有限的实例.解 用X 表示一个电话交换台每小时收到呼唤的次数,X 的全部可能取值为可列的 0,1,2,3,…,;用Y 表示某人掷一枚骰子出现的点数,Y 的全部可能取值为有限个 1,2,3,4,5,6 ;2. 试给出随机变量的可能取值至少充满一个实数区间的实例.解 用X 表示某灯泡厂生产的灯泡寿命(以小时记),X 的全部可能取值为区间 (0,+∞)3. 设随机变量X 的分布函数()F x 为()F x = 2 1, >20, 2A x xx ⎧-⎪⎨⎪≤⎩ 确定常数A 的值,计算(04)P X ≤≤.解 由(20)(2),F F +=可得10, =44AA -= (04)(04)(4)(0)0.75P X P X F F ≤≤=<≤=-=.4.试讨论:A 、B 取何值时函数()arctan3xF x A B =+ 是分布函数. 解 由分布函数的性质,有()()0,1F F -∞=+∞=,可得0,211,,21,2A B A B A B πππ⎧⎛⎫+-= ⎪⎪⎪⎝⎭⇒==⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩于是()11arctan ,.23xF x x π=+-∞<<+∞1.设10个零件中有3个不合格. 现任取一个使用,若取到不合格品,则丢弃重新抽取一个,试求取到合格品之前取出的不合格品数X 的概率分布.解 由题意知,X 的取值可以是0,1,2,3.而X 取各个值的概率为{}{}70,103771,10930P X P X ====⨯= {}{}32772,1098120321713.10987120P X P X ==⨯⨯===⨯⨯⨯= 因此X 的概率分布为012 377711030120120X ⎡⎤⎢⎥⎢⎥⎣⎦2.从分别标有号码1 ,2 ,… ,7的七张卡片中任意取两张, 求余下的卡片中最大号码的概率分布.解 设X 为余下的卡片的最大号码 ,则X 的可能取值为5、6、7,且1{5}21P X ==5{6}21P X ==15{7}21P X ==即所求分布为567 1515212121X ⎡⎤⎢⎥⎢⎥⎣⎦ 3.某人有n 把外形相似的钥匙,其中只有1把能打开房门,但他不知道是哪一把,只好逐把试开.求此人直至将门打开所需的试开次数的概率分布.解 设此人将门打开所需的试开次数为X ,则X 的取值为1,2,3,...,k n =,事件{}{}1X k k k ==-前次未打开,第次才打开,且{}11P X n ==, {}11121n P X n n n-==⋅=-,… …,{}()121112111,2,....,n n n k P X k n n n k n k k n n ---+==⋅⋅⋅⋅--+-+== 故所需试开次数的分布为12~111X n nn ⎡⎤⎢⎥⎢⎥⎣⎦ ... n .... 4.随机变量X 只取1 、2 、3共三个值,并且取各个值的概率不相等且组成等差数列,求X 的概率分布.解 设{}{}{}1,2,3P X a P X b P X c ======,则由题意有1a b c c b b a ++=⎧⎨-=-⎩解之得2313a c b ⎧+=⎪⎪⎨⎪=⎪⎩设三个概率的公差为d ,则11,33a d c d =-=+,即X 的概率分布为 12 3111333X d d⎡⎤⎢⎥⎢⎥-+⎢⎥⎣⎦,103d << 5.设随机变量X 的全部可能取值为1 ,2 ,… ,n ,且()P X k = 与k 成正比,求X 的概率分布.解 由题意,得{}() 1,2,,k P X k p ck k n ====其中c 是大于0的待定系数.由11nkk p==∑,有12....1nk k cp c c n c ==+++=∑ 即()112n n c +=,解之得 ()21c n n =+.把()21c n n =+代入k p ,可得到X 的概率分布为{}()2,1,2,...,.1kP X k k n n n ===+6.一汽车沿街道行驶时须通过三个均设有红绿灯的路口.设各信号灯相互独立且红绿两种信号显示的时间相同,求汽车未遇红灯通过的路口数的概率分布.解 设汽车未遇红灯通过的路口数为X ,则X 的可能值为0,1,2,3.以()1,2,3i A i =表示事件“汽车在第i 个路口首次遇到红灯”,则123,,A A A 相互独立,且()()1,1,2,32i i P A P A i ===.对0,1,2,3k =,有{}()1102P X P A ==={}()()()1212211142P X P A A P A P A ===== {}()123311282P X P A A A ==== {}()123311382P X P A A A ==== 所以汽车未遇红灯通过的路口数的概率分布为012 311112488X ⎡⎤⎢⎥⎢⎥⎣⎦7.将一颗骰子连掷若干次,直至掷出的点数之和超过3为止.求掷骰子次数的概率分布.解 设掷骰子次数为X ,则X 可能取值为1,2,3,4,且31{1}62P X === 141515{2}6666612P X ==⨯+⨯+=;115111117{3}6666666216P X ==⨯⨯+⨯+⨯=; 1111{4}666216P X ==⨯⨯=所以掷骰子次数X 的概率分布为123 415171212216216X ⎡⎤⎢⎥⎢⎥⎣⎦ 8.设X 的概率分布为试求(1)X 的分布函数并作出其图形;(2) 计算{11}P X -≤≤ ,{0 1.5}P X ≤≤ ,{2}P X ≤ . 解(1)由公式 (){}()k kx xF X P X x p x ≤=≤=-∞<<+∞∑,得()0,00.2,010.5,120.6,231,3x x F X x x x <⎧⎪≤<⎪⎪=≤<⎨⎪≤<⎪≥⎪⎩(2) {}11(1)(10)0.500.5P X F F -≤≤=---=-= {}0 1.5(1.5)(00)0.500.5P X F F ≤≤=--=-={}2(2)0.6P X F ≤==9.设随机变量X 的分布函数为010.210()0.70212x x F x x x <-⎧⎪-≤<⎪=⎨≤<⎪⎪≥⎩,,,,试求(1) 求X 的概率分布;(2) 计算1322P X ⎧⎫-<≤⎨⎬⎩⎭,{1}P X ≤- ,{03}P X ≤< ,{1|0}P X X ≤≥解 (1)对于离散型随机变量,有{}()()0P X k F k F k ==--,因此,随机变量X 的概率分布为10 2 0.20.50.3X -⎡⎤⎢⎥⎣⎦ (2) 由分布函数计算概率,得13310.52222P X F F ⎧⎫⎛⎫⎛⎫-<≤=--=⎨⎬ ⎪ ⎪⎩⎭⎝⎭⎝⎭;{}()110.2P X F ≤-=-=;{}()0330(00)10.20.8P X F F ≤<=---=-=; {}{}{}{}{}1,0100010.50.625.00.8P X X P X X P X P X P X ≤≥≤≥=≥≤≤===≥10.已知随机变量X 服从0—1分布,并且{0}P X ≤=0.2,求X 的概率分布 . 解 X 只取0与1两个值,{0}P X =={0}P X ≤-{0}P X <=0.2,{1}1{0}0.8P X P X ==-==11.已知{}P X n == nP ,n =1,2,3,⋯,求P 的值 .解 因为1{}1,n P X n ∞===∑ 有 11=,1n n pp p∞==-∑解此方程,得0.5p =. 12.商店里有5名售货员独立地售货.已知每名售货员每小时中累计有15分钟要用台秤.(1) 求在同一时刻需用台秤的人数的概率分布;(2) 若商店里只有两台台秤,求因台秤太少而令顾客等候的概率.解 (1) 由题意知,每名售货员在某一时刻使用台秤的概率为150.2560p ==, 设在同一时刻需用台秤的人数为X , 则()~5,0.25X B , 所以{}550.250.75(0,1,2,3,4,5)kk k P X k C k -===(2) 因台秤太少而令顾客等候的概率为{}{}55553320.250.75k k k k k P X P X k C -==>===∑∑332445550.250.750.250.750.250.1035C C =++≈13.保险行业在全国举行羽毛球对抗赛,该行业形成一个羽毛球总队,该队是由各地区的部分队员形成.根据以往的比赛知,总队羽毛球队实力较甲地区羽毛球队强,但同一队中队员之间实力相同,当一个总队运功员与一个甲地区运动员比赛时,总队运动员获胜的概率为0.6,现在总队、甲队双方商量对抗赛的方式,提出三种方案:(1)双方各出3人; (2)双方各出5人; (3)双方各出7人.3种方案中得胜人数多的一方为胜利.问:对甲队来说,哪种方案有利?解 设以上三种方案中第i 种方案甲队得胜人数为(1,2,3),i X i =则上述3种方案中,甲队胜利的概率为(1){}331322(0.4)(0.6)0.352k k k k P X C -=≥=≈∑(2){}552533(0.4)(0.6)0.317k k k k P X C -=≥=≈∑(3){}773744(0.4)(0.6)0.290kk k k P X C -=≥=≈∑因此第一种方案对甲队最为有利.这和我们的直觉是一致的。

自考04183《概率论与数理统计(经管类)》历年真题

自考04183《概率论与数理统计(经管类)》历年真题

全国2007年4月高等教育自学考试一、单项选择题(本大题共10小题,每小题2分,共20分)1.设A 与B 互为对立事件,且P (A )>0,P (B )>0,则下列各式中错误..的是( ) A.P (A )=1-P (B ) B.P (AB )=P (A )P (B ) C.P 1)(=ABD.P (A ∪B )=12.设A ,B 为两个随机事件,且P (A )>0,则P (A ∪B |A )=( ) A.P (AB ) B.P (A ) C.P (B )D.13.下列各函数可作为随机变量分布函数的是( ) A.⎩⎨⎧≤≤=.,x ,x )x (F 其他01021;B.⎪⎩⎪⎨⎧≥<≤<=.x x ,,x ;x ,)x (F 1101002;C.⎪⎩⎪⎨⎧≥<≤--<-=.x x ,x ;x ,)x (F 1111113;D.⎪⎩⎪⎨⎧≥<≤<=.x x ,x ;x ,)x (F 11022004;4.设随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=,,;x ,x )x (f 其他0224则P {-1<X <1}=( )A.41B.21C.43D.1 5.,则P {X +Y =0}=( ) A.0.2 B.0.3 C.0.5 D.0.7 6.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧<<-<<-=,,;y ,x ,c )y ,x (f 其他01111 则常数c=( ) A.41 B.21C.2D.4 7.设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是( ) A.E (X )=0.5,D (X )=0.5 B.E (X )=0.5,D (X )=0.25 C.E (X )=2,D (X )=4D.E (X )=2,D (X )=28.设随机变量X 与Y 相互独立,且X ~N (1,4),Y ~N (0,1),令Z=X -Y ,则D (Z )=( )A.1B.3C.5D.69.已知D (X )=4,D (Y )=25,Cov (X ,Y )=4,则ρXY =()A.0.004B.0.04C.0.4D.410.设总体X 服从正态分布N (μ,1),x 1,x 2,…,x n 为来自该总体的样本,x 为样本均值,s 为样本标准差,欲检验假设H 0∶μ=μ0,H 1∶μ≠μ0,则检验用的统计量是( ) A.n/s x 0μ- B.)(0μ-x n C.10-μ-n /s x D.)(10μ--x n二、填空题(本大题共15小题,每空2分,共30分)请在每小题的空格中填上正确答案。

《概率论与数理统计》习题及答案第四章

《概率论与数理统计》习题及答案第四章

·34·《概率论与数理统计》习题及答案第四章1.一个袋子中装有四个球,它们上面分别标有数字1,2,2,3,今从袋中任取一球后不放回,再从袋中任取一球,以,X Y 分别表示第一次,第二次取出的球上的标号,求(,)X Y 的分布列.解(,)X Y的分布列为12311106121112666113126其中(1,1)(1)(1|1)P X Y P X P Y X (1,2)(1)(2|P XYP X P Y X 121436余者类推。

2.将一枚硬币连掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值,试写出(,)X Y 的分布列及边缘分布列。

解一枚硬币连掷三次相当于三重贝努里试验,故1~(3,).2X B 331()(),0,1,2,32kP Xk C k,于是(,)X Y 的分布列和边缘分布为XY·35·012333610088811230088813318888jip p 其中(0,1)(0)(1|0)P X Y P X P Y X ,13313(1,1)(1)(1|1)()128P XYP XP YXC ,余者类推。

3.设(,)X Y 的概率密度为1(6),02,24,(,)8,.x y x y f x y 其它又(1){(,)|1,3}D x y x y;(2){(,)|3}Dx y xy。

求{(,)}P X Y D 解(1)1321{(,)}(6)8P x y D xy d xd x y1194368228;(2)1321{(,)}(6)8xP X Y D x y d x d y112113(1)[(3)4]82x x d xx d x524.4.设(,)X Y 的概率密度为22222(),,(,),.C Rxy xyR f x y 其他求(1)系数C ;(2)(,)X Y 落在圆222()xyr rR 内的概率.解(1)22222232001()RxyRCRxy d xd y C R Cr d rdYX xx+y=3422y·36·333233R R C RC,33CR.(2)设222{(,)|}Dx y x yr ,所求概率为2222233{(,)}()xyrP X Y D R xy d x d yR322323232133r r r R rRRR.5.已知随机变量X 和Y 的联合概率密度为4,1,01(,)0,.x y xyf x y 其它求X 和Y 的联合分布函数.解1设(,)X Y 的分布函数为(,)F x y ,则(,)(,)xyF x y f u v d u d v01001000,00,4,1,01,4,01,1,4,1,01,1,1, 1.xyxyxy uv du d v xyu yd u d y x y xvd xd v x y xy 或22220,00,,01,01,,01,1,,1,01,1,1,1.x yx y x y x xy yx y xy或解2由联合密度可见,,X Y 独立,边缘密度分别为2,1,()0,;X x xf x 其他2,01,()0,.Y y yf y 其它边缘分布函数分别为(),()X Y F x F y ,则·37·20,0,()(),01,1, 1.xX X x F x f u d u x x x 20,0,()(),01,1,1.yY Xy F y fv d v y y y设(,)X Y 的分布函数为(,)F x y ,则22220,00,,01,01(,)()(),01,1,,1,01,1,1,1.X Y x y x y x y F x y F x F y x xy y x y x y或6.设二维随机变量(,)X Y 在区域:01D x,||y x 内服从均匀分布,求边缘概率密度。

概率论与数理统计 习题答案全解

概率论与数理统计  习题答案全解

1.一打靶场备有5支某种型号的枪,其中3支已经校正,2支未经校正.某人使用已校正的枪击中目标的概率为1p ,使用未经校正的枪击中目标的概率为2p .他随机地取一支枪进行射击,已知他射击了5次,都未击中,求他使用的是已校正的枪的概率(设各次射击的结果相互独立).解以M 表示事件“射击了5次均未击中”,以C 表示事件“取得的枪是已经校正的”,则,5/3)(=C P ,5/2)(=C P 又,按题设,)1()|(51p C M P -=52)1()|(p C M P -=,由贝叶斯公式)()()|(M P MC P M C P =)()|()()|()()|(C P C M P C P C M P C P C M P +=52)1(53)1(53)1(525151⨯-+⨯-⨯-=p p p .)1(2)1(3)1(3525151p p p -+--=2.某人共买了11只水果,其中有3只是二级品,8只是一级品.随机地将水果分给C B A 、、三人,各人分别得到4只、6只、1只.(1)求C 未拿到二级品的概率.(2)已知C 未拿到二级品,求B A ,均拿到二级品的概率.(3)求B A ,均拿到二级品而C 未拿到二级品的概率.解以,,,C B A 分别表示事件C B A ,,取到二级品,则C B A,,表示事件C B A ,,未取到二级品.(1).11/8)(=C P (2)就是需要求).|(C AB P 已知C 未取到二级品,这时B A ,将7只一级品和3只二级品全部分掉.而B A 、均取到二级品,只需A 取到1只至2只二级品,其它的为一级品.于是.5441027234103713|(=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=C AB P (3).55/32)()|()(==C P C AB P C AB P 3.一系统L 由两个只能传输字符0和1的独立工作的子系统1L 和2L 串联而成(如图15.3),每个子系统输入为0输出为0的概率为)10(<<p p ;而输入为1输出为1的概率也是p .今在图中a 端输入字符1,求系统L 的b 端输出字符0的概率.1L 2L b题15.3图解“系统L 的输入为1输出为0”这一事件(记)01(→L )是两个不相容事件之和,即),00()01()01()11()01(2121→→→→=→L L L L L 这里的记号“)11(1→L ”表示事件“子系统1L 的输入为1输出为1,其余3个记号的含义类似.于是由子系统工作的独立性得)}00()01({)}01()11({)}01({2121→→+→→=→L L P L L P L P )}00({)}01({)}01({)}11({2121→→+→→=L P L P L P L P ).1(2)1()1(p p p p p p -=-+-=4.甲乙二人轮流掷一骰子,每轮掷一次,谁先掷得6点谁得胜,从甲开始掷,问甲、乙得胜的概率各为多少?解以i A 表示事件“第i 次投掷时投掷者才得6点”.事件i A 发生,表示在前1-i 次甲或乙均未得6点,而在第i 次投掷甲或乙得6点.因各次投掷相互独立,故有.6165)(1-⎪⎭⎫⎝⎛=i i A P 因甲为首掷,故甲掷奇数轮次,从而甲胜的概率为}{}{531 A A A P P =甲胜 +++=)()()(531A P A P A P ),(21两两不相容因 A A ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+= 426565161.116)6/5(11612=-=同样,乙胜的概率为}{}{642 A A A P P =乙胜+++=)()()(642A P A P A P.1156565656153=⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+= 5.将一颗骰子掷两次,考虑事件=A “第一次掷得点数2或5”,=B “两次点数之和至少为7”,求),(),(B P A P 并问事件B A ,是否相互独立.解将骰子掷一次共有6种等可能结果,故.3/16/2)(==A P 设以i X 表示第i 次掷出骰子的点数,则}).6({1})7({)(2121≤+-=≥+=X X P X X P B P 因将骰子掷两次共有36个样本点,其中621≤+X X 有6,5,4,3,221=+X X 共5种情况,这5种情况分别含有1,2,3,4,5个样本点,故.12/712/5136/)54321(1)(=-=++++-=B P 以),(21X X 记两次投掷的结果,则AB 共有(2,5),(2,6),(5,2),(5,3)(5,4),(5,5),(5,6)这7个样本点.故.36/7)(=AB P 今有).(36/7)12/7)(3/1()()(AB P B P A P ===按定义B A ,相互独立.6.B A ,两人轮流射击,每次各人射击一枪,射击的次序为 A B A B A ,,,,,射击直至击中两枪为止.设各人击中的概率均为p ,且各次击中与否相互独立.求击中的两枪是由同一人射击的概率.解A 总是在奇数轮射击,B 在偶数轮射击.先考虑A 击中两枪的情况.以12+n A 表示事件“A 在第12+n 轮),2,1( =n 射击时又一次击中,射击在此时结束”.12+n A 发生表示“前n 2轮中A 共射击n 枪而其中击中一枪,且A 在第12+n 轮时击中第二枪”(这一事件记为C ),同时“B 在前n 2轮中共射击n 枪但一枪未中”(这一事件记为D ),因此)()()()(12D P C P CD P A P n ==+nn p p p p n )1()1(11-⎥⎦⎤⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛=-.)1(122--=n p np 注意到 ,,,753A A A 两两互不相容,故由A 击中了两枪而结束射击(这一事件仍记为A )的概率为∑∑∞=-∞=++∞=-===1122112121)1()()()(n n n n n n p np A P A P A P1122])1[()1(-∞=∑--=n n p n p p .)2(1])1(1[1)1(2222p pP p p --=---=(此处级数求和用到公式.1,)1(1112<=-∑∞=-x nx x n n 这一公式可自等比级数1,110<=-∑∞=x x x n n 两边求导而得到.)若两枪均由B 击中,以)1(2+n B 表示事件“B 在第)1(2+n 轮),2,1( =n 射击时又一次击中,射击在此时结束”.)1(2+n B 发生表示在前12+n 轮中B 射击n 枪其中击中一枪,且B 在第)1(2+n 轮时击中第2枪,同时A 在前12+n 轮中共射击1+n 枪,但一枪未中.注意到 ,,,864A A A 两两互不相容,故B 击中了两枪而结束射击(这一事件仍记为B )的概率为∑∞=+-+∞=--⎪⎪⎭⎫ ⎝⎛==111)1(21)1()1(1)()(n n n n n p p p p n B P B P 12112222])1[()1()1(-∞=∞=--=-=∑∑n n n np n p p p np .)2()1(])1(1[1)1(222222p p p p p --=---=因此,由一人击中两枪的概率为222)2()1()2(1)()()(p p p p B P A P B A P --+--=+= .21pp --=7.有3个独立工作的元件1,元件2,元件3,它们的可靠性分别为.,,321p p p 设由它们组成一个“3个元件取2个元件的表决系统”,记为2/3].[G 这一系统的运行方式是当且仅当3个元件中至少有2个正常工作时这一系统正常工作.求这一2/3][G 系统的可靠性.解以i A 表示事件“第i 个元件正常工作”,以G 表示事件“2/3][G 系统正常工作”,则G 可表示为下述两两互不相容的事件之和:321321321321A A A A A A A A A A A A G =因321,,A A A 相互独立,故有)()()()()(321321321321A A A P A A A P A A A P A A A P G P +++=AB12题 15.8 图)()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P +++=.)1()1()1(321321321321p p p p p p p p p p p p +-+-+-=8.在如图15.8图所示的桥式结构电路中,第i 个继电器触点闭合的概率为i p ,.54321,,,,i =各继电器工作相互独立.求:(1)以继电器触点1是否闭合为条件,求A 到B 之间为通路的概率.(2)已知A 到B 为通路的条件下,继电器触点3是闭合的概率.解以F 表示事件“A 到B 为通路”,以i C 表示事件“继电器触点i 闭合”,.54321,,,,i =各继电器工作相互独立.(1)得.()|(()|()(1111))C P C F P C P C F P F P +=而)()|(545321C C C C C P C F P =)()()()()(54253254532C C C P C C C P C C P C C P C P --++=)()(5432543C C C C P C C C P +-543254354253254532p p p p p p p p p p p p p p p p p p +---++=)()|(432541C C C C C P C F P =543243254p p p p p p p p p -+=故),1)(|()|()(1111p C F P p C F P F P -+=其中)|(1C F P 543254354253254532p p p p p p p p p p p p p p p p p p +---++=,)|(1C F P 543243254p p p p p p p p p -+=.(2)令,1i i p q -=则)()()]([1)()()|()|(35241333F P C P C C C C P F P C P C F P F C P -==.)()1(354215241F P p q q q q q q q q +--=)(F P 的表达式由(1)确定.9.进行非学历考试,规定考甲、乙两门课程,每门课考第一次未通过都允许考第二次.考生仅在课程甲通过后才能考课程乙,如两门课程都通过可获得一张资格证书.设某考生通过课程甲的各次考试的概率为1p ,通过课程乙的各次考试的概率为2p ,设各次考试的结果相互独立.又设考生参加考试直至获得资格证书或者不准予再考为止.以X 表示考生总共需考试的次数.求X 的分布律以及数学期望)(X E .解按题意知考试总共至少需考2次而最多只考4次.以i A 表示事件“课程甲在考第i 次时通过”,以i B 表示事件“课程乙在考第i 次时通过”,2,1=i .事件}2{=X 表示考试总共考2次,这一事件只在下列两种互不相容的情况下发生,一种是课程甲、乙都在第一次考试时通过.亦即11B A 发生(此时他得到证书);另一种是课程甲在第一次、第二次考试均未通过,亦即21A A 发生(此时他不准再考).故2111}2{A A B A X ==,同样211121211}3{B B A B A A B B A X ==,21212121}4{B B A A B B A A X ==.得X 的分布律为)(}2{2111A A B A P X P ==)()(2111A A P B A P +=)()()()(2111A P A P B P A P ++=)1)(1(2121p p p p --+=;)(}3{211121211B B A B A A B B A P X P ==)(12111B A A B A P =21121)1()1(p p p p p -+-=;)(}3{211121211B B A B A A B B A P X P ==)(12111B A A B A P =21121)1()1(p p p p p -+-=;)(}4{21212121B B A A B B A A P X P ==)(121B A A P =)1()1(211p p p --=.)1()1(4])1()1([3])1([2)(211211212121p p p p p p p p p p p X E --+-+-+-+=)]2(1)[2(211p p p -+-=.例如,若431=p ,212=p ,则有66.2)(=X E (次).10.(1)5只电池,其中有2只是次品,每次取一只测试,直到将2只次品都找到.设第2只次品在第)5,4,3,2(=X X 次找到,求X 的分布规律(注:在实际上第5次检测可无需进行).(2)5只电池,其中2只是次品,每次取一只,直到找出2只次品或3只正品为止.写出需要测试的次数的分布律.解(1)X 可能取的值为2,3,4,5.P X P ==}2{{第1次、第2次都取到一只次品}.1014152=⨯=P X P ==}3{{(前两次取到一只次品) (第3次取到一只次品)}=P {第3次取到一只次品|前两次取到一只次品}P ⨯{前两次取到一只次品}.102)42534352(31=⨯+⨯⨯=P X P ==}4{{(前3次取到一只次品) (第4次取到一只次品)}=P {第4次取到一只次品|前3次取到一只次品}P ⨯{前3次取到一只次品}.103)324253324253324352(21=⨯⨯+⨯⨯+⨯⨯⨯=}4{}3{}2{1}5{=-=-=-==X P X P X P X P .10/4=得分布律为(2)以Y 表示所需测试的次数,则Y 的可能取值为2,3,4..10/1}2{}2{====X P Y P }3{=Y 表示“前3次取到都是正品”或“第二只次品在第3次取到”,故}3{}3{}3{=+==X P P Y P 次取到的都是正品前.103102314253=+⨯⨯1031011}3{}2{1}4{--==-=-==X P X P X P .Y 的分布律为11.向某一目标发射炮弹设炮弹弹着点目标的距离为R (单位:10m ),R 服从瑞利分布,其概率密度为⎪⎩⎪⎨⎧≤>=-.0,0,0,252)(25/2r r er r f r R 若弹着点离目标不超过5m 时,目标被摧毁.(1)求发射一枚炮弹能摧毁目标的概率.(2)为使至少有一枚炮弹能摧毁目标的概率不小于0.94,问最少需要独立发射多少枚炮弹.解(1)所求概率为⎰⎰-∞-==≤525/52252)(}5{dre r dr rf R P r R .632.01|1525/2=-==--e e r(2)设发射n 枚炮弹,则这n 枚炮弹都不能摧毁目标的概率为n)632.01(-,故至少有一枚炮弹能摧毁目标的概率为n )632.01(1--.按题意需求最小的n ,使得.94.0)632.01(1≥--n 即.81.2)368.0/(ln )06.0(ln ,06.0368.0=≥≤n n 故最少需要独立发射3枚炮弹.12.设一枚深水炸弹击沉一潜水艇的概率为31,击伤的概率为21,击不中的概率为61.并设击伤两次也会导致潜水艇下沉.求释放4枚深水炸弹能击沉潜水艇的概率.(提示:先求击不沉的概率.)解“击沉”的逆事件为事件“击不沉”,击不沉潜水艇仅出现于下述两种不相容的情况:(1)4枚深水炸弹全击不中潜水艇(这一事件记为A ),(2)一枚击伤潜水艇而另三枚击不中潜水艇(这一事件记为B ).各枚炸弹袭击效果被认为是相互独立的.故有,61)(4⎪⎭⎫⎝⎛=A P ,612114)(3⎪⎭⎫ ⎝⎛⨯⎪⎪⎭⎫ ⎝⎛=B P (因击伤潜水艇的炸弹可以是4枚中的任一枚),又A ,B 是互不相容的,于是,击不沉潜艇的概率为.613)()()(4=+=B P A p B A P 因此,击沉潜艇的概率为.97989.06131)(14=-=-=B A P p 13.一盒中装有4只白球,8只黑球,从中取3只球,每次一只,作不放回抽样.(1)求第1次和第3次都取到白球的概率.(提示:考虑第2次的抽取.)(2)求在第1次取到白球的条件下,前3次都取到白球的概率.解以,1A ,2A 3A 分别表示1,2,3次取到白球.(1))()()]([)(321321223131A A A P A A A P A A A A p A A P +== )()|()|()()|()|(112213112213A P A A P A A A P A P A A P A A A P +=.111124118103124113101=⨯⨯+⨯⨯=(2)124102113124)()()|(13211321⨯⨯==A P A A A P A A A A P .5531106==14.设元件的寿命T (以小时计)服从指数分布,分布函数为⎩⎨⎧≤>-=-.0,0,0,1)(03.0t t e t F t (1)已知元件至少工作了30小时,求它能再至少工作20小时的概率.(2)由3个独立工作的此种元件组成一个2/3][G 系统(参见第7题),求这一系统的寿命20>X 的概率.解(1)由指数分布的无记忆性(参见教材)1(第56页)知所求概率为}20{}30|50{>=>>=T P T T P p .5488.0)20(16.0==-=-e F (2)由第7题知2/3][G 系统的寿命20>X 的概率为.5730.0)23()1(3}20{232=-=+-=>p p p p p X P 15.(1)已知随机变量X 的概率密度为,,21)(+∞<<-∞=-x e x f xX 求X 的分布函数.(2)已知随机变量X 的分布函数为),(x F X 另外有随机变量⎩⎨⎧≤->=,0,1,0,1X X Y 试求Y 的分布律和分布函数.解(1)由于⎪⎪⎩⎪⎪⎨⎧+∞<≤<<∞-=-.0,21,0,21)(x e x e x f x xX 当0<x 时,分布函数,212121)()(|x x x xx x X X e e dx e dx x f x F ====∞-∞-∞-⎰⎰当0≥x 时,分布函数.2112121212121)()(00x x xx x x X X e e dx e dx e dx x f x F ---∞-∞--=-+=+==⎰⎰⎰故所求分布函数为⎪⎪⎩⎪⎪⎨⎧≥-<=-.0,211,021)(x e x e x F x xX (2),21)0(}0{}1{==≤=-=X F X P Y P .21211}1{1}1{=-=-=-==Y P Y P 分布律为分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤--<=.1,1,11,21,10)(y y y y F Y 16.(1)X 服从泊松分布,其分布律为,,2,1,0,!}{ ===-k k e k X P k λλ问当k 取何值时}{k X P =为最大.(2)X 服从二项分布,其分布律为.,2,1,0,)1(}{n k p p k n k X P kn k =-⎪⎪⎭⎫ ⎝⎛==-问当k 取何值时}{k X P =为最大.解(1)由λλλλ----⨯=-==ek k e k X P k X P k k 1)!1(!}1{}{⎪⎩⎪⎨⎧><===<>=,,1,,2,1,,1,,1λλλλk k k k k 当当当 知道,当λ<k 时,}{k X P =随k 增大而递增;当λ>k 时,}{k X P =随k 增大而递减.从而,若λ为正整数,则当λ=k 时,}1{}{-===λλX P X P 为概率的最大值,即当1-==λλk k 或时概率都取到最大值.若λ不是正整数,令的整数部分),是即λλ00]([k k =则,100+<<k k λ此时有},1{}{},{}1{0000+=>==<-=k X P k X P k X P k X P 因此不难推得]}[{}{0λ===X P k X P 为概率的最大值.(2)由⎪⎩⎪⎨⎧+><=+==+<>--++=---=-==,)1(,1,,2,1,)1(,1,)1(,1)1()1(1)1()1(}1{}{p n k nk p n k p n k p k k p n p k p k n k X P k X P 当当当 知道,当p n k )1(+<时,}{0k X P =随k 增大而递增;,当p n k )1(+>时,}{0k X P =随k 增大而递减.从而,若p n )1(+为正整数,则当p n k )1(+=时,}1)1({})1({-+==+=p n X P p n X P 为概率的最大值,即当1)1()1(-+=+=p n k p n k 或时概率都取到最大值.若p n )1(+不是正整数,令])1[(0p n k +=,则1)1(00+<+<k p n k ,此时有},{}1{00k X P k X P =<-=},1{}{00+=>=k X P k X P 不难推得]})1[({}{0p n X P k X P +===为概率的最大值.17..称X 服从取值为n ,,2,1 的离散型均匀分布.对于任意非负实数x ,记][x 为不超过x 的最大整数.记),1,0(~U U 证明1][+=nU X 服从取值为n ,,2,1 的离散型均匀分布.证对于,,,2,1n i =}1]{[}1]{[)(-===+==i nU P i nU P i X P .1}1{}1{nn i U n i P i nU i P =<≤-=<≤-=证毕.18.设),2,1(~-U X 求X Y =的概率密度.解X 的概率密度为⎩⎨⎧<<-=.,0,21,3/1)(其他x x f X 记X 的分布函数为).(x F X 先来求Y 的分布函数).(y F Y当0≤y 时,,0}{)(=≤=y Y P y F Y 当0>y 时,}{}{)(y X y P y X P y F Y ≤≤-=≤=).()(y F y F X X --=将)(y F Y 关于y 求导可得Y 的概率密度)(y f Y 如下:⎩⎨⎧>-+=.,0,0),()()(其他y y f y f y f X X Y 当10<<y 时,01<-<-y .因而,3/1)(,3/1)(=-=y f y f X X 此时.3/13/1)(+=y f Y 当21<<y 时,12-<-<-y .因而,0)(,3/1)(=-=y f y f X X 此时.3/1)(=y f Y 当2>y 时,,0)(,0)(=-=y f y f X X 因而.0)(=y f Y 故⎪⎩⎪⎨⎧<≤<<=.,0,21,3/1,10,3/2)(其他y y y f Y 19.设X 的概率密度⎪⎪⎪⎩⎪⎪⎪⎨⎧∞<≤<≤<=.1,21,10,21,0,0)(2x xx x x f X 求XY 1=的概率密度.解因函数x x g y 1)(==严格单调减少,它的反函数.1)(yy h =当∞<<x 0时,∞<<y 0.由第二章)2(公式(2.1)得Y 的概率密度为⎩⎨⎧≤∞<<'⋅=.0,0,0,)()]([y y y h y h f f X Y⎪⎩⎪⎨⎧≤∞<<⎪⎪⎭⎫ ⎝⎛=.0,0,0,112y y yy f X 因而⎪⎪⎪⎩⎪⎪⎪⎨⎧∞<≤<<≤=.1,1)/1(121,110,121,0,0)(222y y y y y y y f Y 即⎪⎪⎪⎩⎪⎪⎪⎨⎧∞<≤≤<≤=.1,21,10,21,0,0)(2y y y y y f Y 本题X 和X1的概率密度相同.20.设随机变量X 服从以均值为λ1的指数分布.验证随机变量][X Y =服从以参数为λ--e1的几何分布.这一事实表明连续型随机变量的函数可以是离散型随机变量.解X 的概率密度为⎩⎨⎧>=-.,0,0,)(其他x e x f x X λλ,X 的值域为)(∞,0,故][X Y =的值域为},2,1,0{ ,Y 是离散型随机变量.对于任意非负整数y ,有}1{}]{[}{+<≤====y X y P y X P y Y P )1(1d +--+--==⎰y y y yx e e x e λλλλ 2,1,0,))(1(==--y e e y λλ-.2,1,0,))1(1)(1( =--=--y e e y λλ-这就是说Y 服从以λ--e1为参数的几何分布.这表示一个连续型随机变量经过变换变成了离散型随机变量.21.投掷一硬币直至正面出现为止,引入随机变量=X 投掷总次数.⎩⎨⎧=.,0,1若首次投掷得到反面若首次投掷得到正面,Y(1)求X 和Y 的联合分布律及边缘分布律.(2)求条件概率}.1|2{},1|1{====X Y P Y X P 解(1)Y 的可能值是0,1,X 的可能值是.,3,2,1 }1{}1|1{}1,1{======X P X Y P Y X P .2/12/11=⨯=(因1=X 必定首次得正面,故).1}1|1{===X Y P 若1>k ,}{}|1{}1,{k X P k X Y P Y k X P ======.0)2/1(0=⨯=k (因,1>=k X 首次得正面是不可能的,故).,3,2,0}|1{ ====k k X Y P }1{}1|0{}0,1{======X P X Y P Y X P 0)2/1(0=⨯=(因1=X 必须首次得正面,故).0}1|0{===X Y P 当1>k }{}|0{}0,{k X P k X Y P Y k X P ======,3,2),2/1(1=⨯=k k (因,1>=k X 必定首次得反面,故).1}|0{===k X Y P 综上,得),(Y X 的分布律及边缘分布律如下:(2).12/12/1}1{}1,1{}1|1{========Y P Y X P Y X P.0}1{}2,1{}1|2{=======X P Y X P X Y P 22.设随机变量),(~λπX 随机变量).2,max(X Y =试求X 和Y 的联合分布律及边缘分布律.解X 的分布律为.,2,1,0,!}{ ===-k k e k X P k λλX 的可能值是 ,2,1,0;Y 的可能值为.,4,3,2 }0{}0|2{}2,0{======X P X Y P Y X P .}0{1λ-==⋅=e X P }1{}1|2{}2,1{======X P X Y P Y X P .}1{1λλ-==⋅=e X P 2≥i 时}{}|{},{i X P i X j Y P j Y i X P ======,4,3,2,,0,,!},{0},{1=⎪⎩⎪⎨⎧≠==⎩⎨⎧≠=⋅==⋅=-j i j i j i e i j i X P i j i X P i λλ即得Y X ,的联合分布律及边缘分布律为23.设X ,Y 是相互独立的泊松随机变量,参数分别为,,21λλ求给定n Y X =+的条件下X 的条件分布.解}|{n Y X k X P =+=}{},{n Y X P n Y X k X P =+=+==}{},{n Y X P k n Y k X P =+-===独立性}{}{}{n Y X P k n Y P k X P =+-==1)(2121!)()!(!2121-+----⎦⎤⎢⎣⎡+-⋅=n e k n e k e n kn k λλλλλλλλn k n k k k n n )(!)!(!2121λλλλ+-=-.)(2122112121kn kn kn k k n k n --⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=+⎪⎪⎭⎫ ⎝⎛=λλλλλλλλλλ这就是说给定n Y X =+的条件下X 的条件分布为以)/(,211λλλ+n 为参数的二项分布.24.一教授将两篇论文分别交给两个打字员打印.以X ,Y 分别表示第一篇第二篇论文的印刷错误.设),(~λπX ),(~μπY X ,Y 相互独立.(1)求X ,Y 的联合分布律;(2)求两篇论文总共至多1个错误的概率.解(1)X ,Y 的联合分布律为,!!!!},{)(y x e y e x e y Y x X P y x y x μλμλμλμλ+---=⋅===.,2,1,0, =y x (2)两篇论文总共至多1个错误的概率为})1{}0({}1{=+=+=≤+Y X Y X P Y X P }1,0{}0,1{}0,0{==+==+===Y X P Y X P Y X P ).1()()()()(μλμλμλμλμλμλ++=++=+-+-+-+-e e e e 25.一等边三角形ROT (如图15.25)的边长为1,在三角形内随机地取点),(Y X Q (意指随机点),(Y X 在三角形ROT 内均匀分布).(1)写出随机变量),(Y X 的概率密度.(2)求点Q 的底边OT 的距离的分布密度.解(1)因三角形ROT 的面积为4/3,故),(Y X 的概率密度为⎩⎨⎧--≤≤≤≤=.,0),130,303/4),(其他x y x y y x f (2)点),(Y X Q 到底边OT 的距离就是Y ,因而求Q 到OT 的距离的分布函数,就是求),(Y X 关于Y 的边缘分布函数,现在yo题15.25图,230,32134),()(3.13/<<⎪⎪⎭⎫ ⎝⎛-==⎰-y y dx y x f y f y y Y 从而⎪⎩⎪⎨⎧<<⎪⎪⎭⎫ ⎝⎛-=.,0,230,32134)(其他y y y f Y Y 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤-<=.23,1,230,3434,0,0)(2y y y y y y F Y 26.设随机变量),(Y X 具有概率密度⎩⎨⎧>>=+-.,0,0,0,),()1(其他y x xe y x f y x (1)求边缘概率密度).(),(y f x f Y X (2)求条件概率密度).|(),|(||x y f y x f X Y Y X 解(1)当0>x 时,,)()(0)1(x y y xy x y x X e e e dy xe x f -∞==--∞+-===⎰当0>y 时,dx xe y y xe dx xey f y x x x y x y x Y ⎰⎰∞+-∞==+-∞+-+++-==0)1(0)1(0)1(111)(.)1(1)1(22)1(+=+-=∞==+-y y xe x x y x 故边缘概率密度分别是⎩⎨⎧>=-.,0,0,)(其他x e x f x X ⎪⎩⎪⎨⎧>+=.,0,0,)1(1)(2其他y y y f Y (2)条件概率密度:当0>x 时,⎪⎩⎪⎨⎧>=-+-.,0,0,)|()1(|取其他值y y e xe x y f xy x X Y ⎩⎨⎧>=-.,0,0,取其他值y y xe xy 当0>y 时,⎪⎩⎪⎨⎧>+=+-.,0,0,)1/(1)|(2)1(|取其他值x x y xe y x f y x Y X ⎩⎨⎧>+=+-.,0,0,)1()1(2取其他值x x e y x y x 27.设有随机变量U 和V ,它们都仅取1,1-两个值.已知,2/1}1{==U P }.1|1{3/1}1|1{-=-=====U V P U V P (1)求U 和V 的联合分布密度.(2)求x 的方程02=++V Ux x 至少有一个实根的概率.(3)求x 的方程0)(2=+++++V U x V U x 至少有一个实根的概率.解(1).6/1)2/1)(3/1(}1{}1|1{}1,1{========U P U V P V U P }1{}1|1{}1,1{-=-=-==-=-=U P U V P V U P .6/1)2/1)(3/1(}]1{1[)3/1(===-⨯=U P }1{}1|1{}1,1{==-==-==U P U V P V U P .3/1)2/1)(3/2(}1{}]1|1{1[=====-=U P U V P }1{}1|1{}1,1{-=⋅-====-=U P U V P V U P .3/1)2/1()3/2(}1{}]1|1{1[=⨯=-=-=-=-=U P U V P V U ,的联合分布密度为UV-11-11/62/612/61/6xy题 15.30图(2)方程02=++V Ux x 当且仅当在042≥-=∆V U 时至少有一实根,因而所求的概率为.2/1}1{}04{}0{2=-==≥-=≥∆V P V U P P (3)方程0)(2=+++++V U x V U x 当且仅当在0)(4)(2≥+-+=∆V U V U 时至少有一实根,因而所求的概率为.6/5}1,1{}1,1{}1,1{}0{=-==+=-=+-=-==≥∆V U P V U P V U P P 28.某图书馆一天的读者人数)(~λπX ,任一读者借书的概率为p ,各读者借书与否相互独立.记一天读者借书的人数为Y ,求X 与Y 的联合分布律.解读者借书人数的可能值为}{}|{},{,,,2,1,0k X P k X i Y P i Y k X P X Y Y ======≤= =.,,2,1,2,1,!)1(k i k k e p p i k k i k i ==-⎪⎪⎭⎫ ⎝⎛--λλ29.设随机变量X 和Y 相互独立,且都服从U (0,1),求两变量之一至少为另一变量之值两倍的概率.解按题意知,(X,Y )在区域:}10,10|),{(<<<<=y x y x G 服从均匀分布,其概率密度为其它10,10,0,1),(<<<<⎩⎨⎧=y x y x f 所求概率为}2{}2{Y X P X Y P p >+>==⎰⎰⎰⎰+12),(),(G G dxdyy x f dxdy y x f =G 1的面积+G 2的面积=1/2,G 1,G 2见图15.29.30.一家公司有一份保单招标,两家保险公司竞标.规定标书的保险费必须在20万元至22万元之间.若两份标书保险费相差2千或2千以上,招标公司将选择报价低者,否则就重新招标.设两家保险公司的报价是相互独立的,且都在20万至22万之间均匀分布.试求招标公司需重新招标的概率.解设以X ,Y 分别表示两家保险公司提出的保费.由假设X 和Y 的概率密度均为⎪⎩⎪⎨⎧<<=.,0,2220 ,21)(其他μμf 因X ,Y 相互独立,故),(Y X 的概率密度为⎪⎩⎪⎨⎧<<<<==.,0,2220 ,2220 ,41)()(),(其他y x y f x f y x f Y Xoy题15.29图按题意需求概率为}.2.0{≤-Y X P 画出区域:},2.0|),{(≤-Y X y x 以及矩形},2220 ,2220|),{(<<<<y x y x 如图15.30,它们公共部分的面积G 为G =正方形面积-2×三角形面积=4-1.8×1.8=0.76.所求概率=.19.02276.0=⨯31.设),0(~),,0(~2221σσN Y N X 且Y X ,相互独立,求概率}20{2112σσσσ<-<Y X P .解因Y X ,独立,其线性组合Y X 12σσ-仍为正态变量,而)()()(1212=-=-Y E X E Y X E σσσσ22212122122)()()(σσσσσσ=+=-Y D X D Y X D 故).2,0(~222112σσσσN Y X -因而}20{2112σσσσ<-<Y X P =}202200{222121222112σσσσσσσσ-≤--<Y X P =5.0)2()0()22(222121-=-ΦΦσσσσΦ=4207.05.09207.0=-32.NBA 篮球赛中有这样的规律,两支实力相当的球队比赛时,每节主队得分与客队得分之差为正态随机变量,均值为1.5,方差为6,并且假设四节的比分差是相互独立的.问(1)主队胜的概率有多大?(2)在前半场主队落后5分的情况下,主队得胜的概率有多大?(3)在第1节主队赢5分得情况下,主队得胜的概率有多大?解以)4,3,2,1(=i X i 记主队在第i 节的得分与客队在第i 节的得分之差,则有),6,5.1(~N X i ).64,5.14(~41⨯⨯∑=N Xi i记Z 为标准正态随机变量.(1)⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⨯->⨯⨯=>∑∑==646645.14}0{4141-i i i i X P X P.7889.0}7224.1{=->=Z P (2)由独立性}5{}5|0{432141>+=-=>∑∑==X X P X X P i i i i }33{123562343>=⎭⎬⎫⎩⎨⎧->⨯-+=Z P X X P .8281.0}5577.0{=>=Z P (3)}05{}5|0{432141>+++==>∑=X X X P X XP i i}5{432->++=X X X P ⎭⎬⎫⎩⎨⎧-->⨯-++=185.45635.4432X X X P .4987.0}239.2{}185.9{=->=->=Z P Z P 33.产品的某种性能指标的测量值X 是随机变量,设X 的概率密度为⎪⎩⎪⎨⎧>=-其他.,0,0,)(221x xe x f x X 测量误差Y~U (εε,-),X ,Y 相互独立,求Z=X+Y 的概率密度)(z f Z ,并验证due Z P u⎰-=>εεε202/221}{解(1)Y 的概率密度为其他.,εεε<<-⎪⎩⎪⎨⎧=y y f Y ,0,21)(故Z =X+Y 的概率密度为⎰+∞∞--=dxx z f x f z f Y X Z )()()(仅当⎩⎨⎧<-<->εεx z x 0即⎩⎨⎧+<<->εεz x z x 0时,上述积分的被积函数不等于零,参考图15.33,即得⎪⎪⎩⎪⎪⎨⎧≥<<-=⎰⎰+--+-其他,,,,0,21,21)(2212210εεεεεεεεz dx xe z dx xez f z z x z x Z题15.33图题 15.34 图=⎪⎪⎪⎩⎪⎪⎪⎨⎧≥-<<--+---+-其他,,,,0],[21],1[21221221221))()(εεεεεεεεz e e z ez z z (2)⎰∞=>εεdzz f Z P Z )(}{=][21221221)()(⎰⎰∞+-∞---εεεεεdz e dz e z z ε21记成[Ⅰ+Ⅱ]其中Ⅰ=⎰⎰∞-∞--=-0),221221du euz eu dz z εεε令Ⅱ=⎰⎰∞-∞+--=+-εεεε2)(221221dueuz dzez 令于是εε21}{=>Z P [Ⅰ+Ⅱ]=⎰-εε2022121dueu 34.在一化学过程中,产品中有份额X 为杂质,而在杂质中有份额Y 是有害的,而其余部分不影响产品的质量.设)5.0,0(~),1.0,0(~U Y U X ,且X 和Y 相互独立,求产品中有害杂质份额Z 的概率密度.解因,XY Z =)5.0,0(~),1.0,0(~U Y U X 且X 和Y 相互独立,于是Z 的概率密度为,d )()(1)(21-x xz f x f x z f Z ⎰+∞∞=)1(*其中,⎩⎨⎧<<=. 0,0.1,0 ,10)(1其他x x f ,⎩⎨⎧<<=.0,0.5,0 ,2)(2其他x x f 易知仅当⎩⎨⎧<<<<0.5,00.1,0z/x x 即⎩⎨⎧<<<<,200.1,0x z x 时,)1(*中的被积函数不等于零,参考题15.34图,即得⎪⎩⎪⎨⎧<<⋅⋅=⎰.0, 0.05,0 ,d 1210)(1.02其他z x xz f z ⎪⎩⎪⎨⎧<<=.0, 0.05,0 ,ln 201.02其他z x zy题 15.35 图1⎩⎨⎧<<-=.0, 0.05,0 ),20ln(20其他z z 35.设随机变量),(Y X 的概率密度为⎩⎨⎧<<=-.0,,0,),(其他y x e y x f y (1)求),(Y X 的边缘概率密度.(2)问Y X ,是否相互独立.(3)求Y X +的概率密度).(z f Y X +(4)求条件概率密度).|(|y x f Y X (5)求条件概率}.5|3{<>Y X P (6)求条件概率}.5|3{=>Y X P 解(1)⎪⎩⎪⎨⎧>==⎰∞.0, 0,,d )(其他x e y e x f -x x -y X ⎪⎩⎪⎨⎧>==⎰.0, 0,,d )(0其他y ye x e y f -y y-y Y (2)Y X ,不是相互独立的.(3)⎰+∞∞-+-=.d ),()(y y y z f z f Y X 仅当,0y y z <-<即⎪⎩⎪⎨⎧<>>z y y zy 02时被积函数不为零.如图15.35图1,得⎪⎩⎪⎨⎧>-==⎰+.0, 0, ,d )(2/2/其他z e ey e z f -z -z zz -y Y X (4)对于,0>y ⎪⎩⎪⎨⎧<<==--. 0, ,0 ,1)|(|其他y x yye e y x f yyY X 即对于固定的)0(>y y X 的条件分布是区间),0(y 上的均匀分布.y 题 15.35 图2(5)如图15.35图2,条件概率为}5{}5,3{}5|3{<<>=<>Y P Y X P Y X P ,)d (d d 50⎰⎰⎰-=yy f xy e Y D y分子=⎰⎰⎰=5355x 53d )(-e d d exx y x-y -y,e e 3)d e (-e 35535--+-=+⎰x -x -=分母=⎰⎰=5Y5d e (y)d y y y f -y x,1e 6d e e 5550+-=+-=⎰--y -yy y 故.82030.0}5|3{=<>Y X P (6)⎪⎩⎪⎨⎧<<=. 0, ,50 ,51)5|(|其他x x f Y X .52d 51}5|3{53===>⎰x Y X P 36.设图书馆的读者借阅甲种图书的概率为p ,借阅乙种图书的概率为α,设每人借阅甲、乙图书的行动相互独立,读者之间的行动也相互独立.(1)某天恰有n 个读者,求甲、乙两种图书中至少借阅一种的人数的数学期望.解(1)以X 表示某天读者中借阅甲种图书的人数,因各人借阅甲种图书的概率均为p ,且由题设各人是否借阅相互独立,故np X E p n b X =)(),,(~因此.(2)以A 表示事件“读者借阅甲种图书”,以B 表示事件“读者借阅乙种图书”,则就读者而言,有).()()()(AB P B P A P B A P -+= 借阅两种图书的行动相互独立,故ααp p B P A P B P A P B A P -+=-+=⋃)()()()()(.以Y 表示至少借阅一种图书的人数,由题设各人是否借阅相互独立,知),(~ααp p n b Y -+,故).()(ααp p n Y E -+=也可这样做.引入随机变量:⎩⎨⎧=.,0,,1种图书的任一种位读者不借阅甲、乙两若第两种图书的一种位读者至少借阅甲、乙若第i i Z i ni ,,2,1 =)()(][)(,111ααp p n Z E Z E Y E Z Y ni i n i i n i i -+====∑∑∑===.这里不需假设读者之间的行动相互独立.37.某种鸟在某时间区间],0(0t 下蛋数为1~5只,下r 只蛋的概率与r 成正比.一个收集鸟蛋的人在0t 时去收集鸟蛋,但他仅当鸟窝多于3只蛋时他从中取走一只蛋.在某处有这种鸟的鸟窝6个(每个鸟窝保存完好,各鸟窝中蛋的个数相互独立).(1)写出一个鸟窝中鸟蛋只数X 的分布率.(2)对于指定的一只鸟窝,求拾蛋人在该鸟窝中拾到一只蛋的概率.(3)求拾蛋人在6只鸟窝中拾到蛋的总数Y 的分布律及数学期望.(4)求}4{},4{><Y P Y P (5)当一个拾蛋人在这6只鸟窝中拾过蛋后,紧接着又有一个拾蛋人到这些鸟窝中拾蛋,也仅当鸟窝中多于3只蛋时,拾取一只蛋,求第二个拾蛋人拾得蛋数Z 的数学期望.解(1)设该中鸟在],0(0t 内下蛋数为X 按题意,5,4,3,2,1,}{===r Cr r X P 其中C 为待定常数.因∑===51,1}{r r X P 即有,11551==∑=C Cr r 所以15/1=C ,因此X 的分布律为.5,4,3,2,1,151}{===r r r X P (2)因当且仅当窝中蛋数多于3时,某人从中取走一只蛋,故拾蛋人在该窝中拾取一只蛋的概率为53155154}5{}4{}3{=+==+==>X P X P X P (3)记拾蛋人在6只鸟窝中拾到蛋的总数为Y ,则)53,6(~b Y ,故518)53(6)(=⨯=Y E (4)}6{}5{}4{1}4{=-=-=-=<Y P Y P Y P Y P =6524535253565253461⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=0.456,(6)第2个拾蛋人仅当鸟窝中最初有5只蛋时,他才能从该窝中拾到一只蛋,故他在一个鸟窝中拾到一只蛋的为,31}5{===X P p 以Z 记第2个拾蛋人拾到蛋的总数,则),31,6(~b Z 故有2)31(6)(=⨯=Z E .38.设袋中有r 只白球,r N -只黑球.在袋中取球)(r n n ≤次,每次任取一只做不放回抽样,以Y 表示取到白球的个数,求)(Y E .解引入随机变量i X :⎩⎨⎧=,,0,,1次取球得到不是白球若第次取到白球若第i i X i ,,,2,1n i =则n 次取球得到的白球数.21n X X X Y +++= 而的分布律为次取球得到白球第i i X Nri P X P ,}{}1{===.,,2,1n i =即知i X 的数学期望为NrX E i =)(.于是得Y 得数学期望为NnrN r n X E X E Y E ni i ni i =⨯===∑∑==11)()()(.本题也可按以下方式写出Y 的表达式,从而求得)(Y E ,将球编号,引入随机变量:i X ⎩⎨⎧=号白球未被取到若第号白球被取到若第i i X i ,0,,1ri ,,2,1 =则r X X X Y +++= 21.事件}1{=i X 发生,表示在袋中取球n 次,若每次任取一只不放回抽样时,第i 号白球被取到.因为事件}1{=i X 可以在第一次、第二次、…、第n 次取球,这n 种两两互不相容的情况发生,且每次取到第i 号白球的概率都是N1.因此r i NnN N N X P i ,,2,1,111}1{ ==+++==,这样N n X E i =)(,从而N nrX E Y E ri i ==∑=1)()(.39.抛一颗骰子直到所有点数全部出现为止,求所需投掷次数Y 的数学期望.解引入随机变量.6,5,4,3,2,1,=i X i 如下:,11=X ,,2待次数等待第二不同点所需等是第一点得到后X 3X 是第一、第二两点得到后,等待第三个不同点所需等待次数,654,,X X X 的意义类似.则所需投掷的总次数为621X X X Y +++= .因第一点得到后,掷一次得第二个不同的点的概率为65,因此2X 的分布律为,,2,1,)61(65}{12 ===-k k X P k 即2X 服从参数65=p 的几何分布,又因得到两个不同的点后,掷一次得第三个不相同点的概率为64,故3X 服从参数64=p 的几何分布,其分布律为,2,1,)62(64}{13===-k k X P k 同样,654,,X X X 的分布律分别为.,2,1,63(63}{14 ===-k k X P k .,2,1,64(62}{15 ===-k k X P k .,2,1,65(61}{16 ===-k k X P k 因几何分布 ,2,1,)1(}{1=-==-k p p k X P k 的数学期望为(参见第四章)2(习题选解19题)pX E 1)(=.所以∑∑==+==62161)()()()(i ii i X E X E X E Y E =7.141626364656[1=+++++.40.设随机变量Y X ,相互独立.且Y X ,分别服从以βα1,1为均值得指数分布.求).(2X Ye X E -+解)()()()(22X X e E Y E X E Ye X E --+=+dtee Y E X E X D ttαα-∞-⎰⋅⋅++=02)()]([)(⎰∞+-++=0)1(22111dte t ααβαα.)1(22++=αβαα41.一酒吧间柜台前有6张凳子,服务员预测,若两个陌生人进来就坐的话,他们之间至少相隔两张凳子.(1)若真有2个陌生人入内,他们随机地就坐,问服务员预言为真的概率是多少?(2)设2个顾客是随机坐的,求顾客之间凳子数的数学期望.解(1)将凳子按自左至右编号,设服务员预言为真.)(A 若第一顾客就坐于1号,则另一顾客可坐4或5或6号共三种坐法,)(B 若第一顾客就坐于2号,则另一顾客可坐在5或6号共两种坐法,)(C 若第一顾客就坐于6号,只有一种坐法.综合)(),(),(C B A 三种情况共计6种坐法.同样,若第一顾客分别就坐于6号,5号,4号,则另一顾客也有6种坐法,因此两人共有1226=⨯种坐法,若两人随机就坐共有3026=A 种坐法,故服务员预言为真的概率是523012==p .(2)若两顾客是随机坐的,以Y 记两顾客间的凳子数,则Y 可能取的值为0,1,2,3,4.可知Y 的分布律为于是3415141523153215411550)(=⨯+⨯+⨯+⨯+⨯=Y E .42.设随机变量10021,,,X X X 相互独立,且都服从),1,0(U 又设,10021X X X Y ⋅⋅⋅= 求概率}10{40-<Y P 的近似值.解所求概率为}.1.92ln {}10ln 40{ln }10ln 40{ln }10{1001100140-<=-<=-<=<=∑∏==-i i i i X P X P Y P Y P p 因n X X X ,,,21 相互独立且都服从),1,0(U 知n X X X ln ,,ln ,ln 21 也相互独立,且服从同一分布,又),1,0(~U X i 其概率密度为⎩⎨⎧<<=其他,,010,1)(x x f 故有.112)(,2d ln )(ln ,1d ln )(ln 1221=-===-==⎰⎰i i i X D x x X E x x X E 由中心极限定理得}1.92ln {1001-<=∑=i i X P p ⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧+-<-⨯-=∑=11001001.921100)1(100ln 1001i i X P .7852.0)97.0()1001001.92(=Φ=+-Φ≈43.来自某个城市的长途电话呼叫的持续时间X (以分计)是一个随机变量,它的分布函数是⎪⎩⎪⎨⎧<≥--=--.0,0,0,e 21e 211)(]3[3x x x F x x(其中3[x是不大于3x的最大整数).(1)画出)(x F 的图形.(2)说明X 是什么类型的随机变量.(3)求}6{},4{},3{},4{>>==X P X P X P X P (提示)0()(}{--==a F a F a X P ).解(1)(2))(x F 的所有不连续点为),,2,1(3 =k k X 取这些值的概率的总和为∑∑∞=∞=--==11)]03()3([}3{k k k F k F k X P ∑∞=-----⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛--=1)133(33]33[33e 21e 211e 21e 211i k k k k ∑∑∞=∞=---=-=-=111.21e )1e (21)e e (21i k k kk 注意到,在)(x F 的任一连续点a 处有;0}{==a X P 又由于∑∞===121}3{k k X P ,因此,不可能取到可列多个值,,,21 x x 使得∑∞===1,1}{k kx X P 故X 不是离散型随机变量.又由于)(x F 不是连续函数,故X也不是连续型随机变量.(3).0}4{==X P )03()3(}3{--==F F X P ⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛--=-----)11(111e 21e 211e 21e 211.316.0)e 1(211=-=-.684.00e 21e 211}4{)4(}4{134=---==-=<--X P F X P.0.0.0.0.1题15.43图.135.0e 21e 2111)6(1}4{222==⎪⎭⎫⎝⎛---=-=>---e F X P 44.一汽车保险公司分析一组(250人)签约的客户中的赔付情况.据历史数据分析,在未来一周中一组客户中至少提出一项索赔的客户数X 占10%.写出X 的分布,并求12.0250⨯>X (即30>X )的概率.设各客户是否提出索赔相互独立.解按题意知)10.0,250(~b X .现在需要求∑=-⎪⎪⎭⎫ ⎝⎛=>2503125090.010.0250}30{x x x x X P 即需求∑=-⎪⎪⎭⎫ ⎝⎛-=>30025090.010.02501}30{x xx x X P 由拉普拉斯定理得⎪⎪⎭⎫⎝⎛⨯⨯⨯-Φ-≈>90.010.025010.0250301}30{X P .1469.08531.01)054.1(1=-=Φ-=45.在区间)1,0(随机地取一点X .定义}.75.0,min{X Y =(1)求随机变量Y 的值域.(2)求Y 的分布函数,并画出它的图形.(3)说明Y 不是连续型随机变量,Y 也不是离散型随机变量.解(1)因},75.0,min{X Y =故X Y ≤且.75.0≤Y 又由于X 的值域是)1,0(,知Y 的值域为]75.0,0(.(2)由(1)知当0<y 时,0}{)(=≤=y Y P y F Y 当75.0≥y 时,.1}{)(=≤=y Y P y F Y 当75.00<≤y 时,事件}{y Y ≤表示X 是在],0(y 随机取的一点.故有⎪⎩⎪⎨⎧≥<≤<=75.0,175.00,0,0)(y y y y y F Y )(y F Y 的图形如题15.45图所示.(3)从题15.45图看出,)(y F Y 在点75.0=y 处不连续,故它不是连续型随机变量.)(y F Y 只有一个不连续点75.0=y .注意到在)(y F Y 的任一连续点a 处,有,0}{==a Y P 而在不连续点75.0=y 处,.01题15.45图。

概率论与数理统计自考题型

概率论与数理统计自考题型

概率论与数理统计自考题型一、选择题(每题3分,共30分)1. 设随机变量X服从正态分布N(μ,σ²),则P(X ≤ μ)等于()A. 0B. 0.5C. 1D. 取决于μ和σ的值。

答案:B。

解析:正态分布的图像关于x = μ对称,所以P(X ≤ μ) = 0.5。

2. 若事件A与B相互独立,P(A) = 0.4,P(B) = 0.5,则P(A∪B)等于()A. 0.7B. 0.8C. 0.6D. 0.9。

答案:A。

解析:因为A与B相互独立,所以P(A∪B)=P(A)+P(B)-P(A)P(B)=0.4 + 0.5 - 0.4×0.5 = 0.7。

3. 设离散型随机变量X的分布律为P(X = k)=ck,k = 1,2,3,则c的值为()A. 1/6B. 1/3C. 1/2D. 2/3。

答案:A。

解析:根据离散型随机变量分布律的性质,所有概率之和为1,即c+2c+3c = 1,解得c = 1/6。

4. 对于二维随机变量(X,Y),如果X与Y相互独立,则()A. Cov(X,Y) = 0B. D(X + Y)=D(X)+D(Y)C. 以上两者都对D. 以上两者都不对。

答案:C。

解析:当X与Y相互独立时,Cov(X,Y) = 0,且D(X + Y)=D(X)+D(Y)。

5. 设总体X服从参数为λ的泊松分布,X₁,X₂,…,Xₙ是来自总体X的样本,则λ的矩估计量为()A. XB. 1/XC. X²D. 1/X²。

答案:A。

解析:根据泊松分布的期望为λ,由矩估计法,用样本均值X估计总体的期望λ。

6. 样本方差S²是总体方差σ²的()A. 无偏估计B. 有偏估计C. 极大似然估计D. 矩估计。

答案:A。

解析:样本方差S²是总体方差σ²的无偏估计。

7. 设总体X~N(μ,σ²),其中μ未知,σ²已知,X₁,X₂,…,Xₙ是来自总体X的样本,则μ的置信区间为()A. (X - zα/2(σ/√n),X + zα/2(σ/√n))B. (X - tα/2(s/√n),X + tα/2(s/√n))C. (X - zα/2(s/√n),X + zα/2(s/√n))D. (X - tα/2(σ/√n),X + tα/2(σ/√n))。

历年自考概率论与数理统计(经管类)真题及参考答案(全套)

历年自考概率论与数理统计(经管类)真题及参考答案(全套)

历年自考概率论与数理统计(经管类)真题及参考答案(全套)xx年4月份全国自考概率论与数理统计真题参考答案一、单项选择题在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.A. AB. BC. CD. D 答案:B解析:A,B互为对立事件,且P(A)>0,P(B)>0,则P(AB)=0 P(A∪B)=1,P(A)=1-P(B),P(AB)=1-P(AB)=1.2. 设A,B为两个随机事件,且P>0,则P= A. P B. PC. PD. 1 答案:D解析:A,B为两个随机事件,且P(A)>0,P(A∪B|A)表示在A发生的条件下,A或B发生的概率,因为A发生,则必有A∪B发生,故P(A∪B|A)=1.3. 下列各函数可作为随机变量分布函数的是 A. A B. BC. CD. D 答案:B解析:分布函数须满足如下性质:F(+∞)=1,F(-∞)=0,(2)F(x)右连续,(3)F(x)是不减函数,(4)0≤F(x)≤1.而题中F1(+∞)=0;F3(-∞)=-1;F4(+∞)=2.因此选第 1 页项A、C、D中F(x)都不是随机变量的分布函数,排除法知B正确,事实上B满足随机变量分布函数的所有性质.第 2 页4. 设随机变量X的概率密度为A. AB. BC. CD. D答案:A5. 设二维随机变量的分布律为(如下图)则P{X+Y=0}=第 3 页A. B. C. D.答案:C解析:因为X可取0,1,Y可取-1,0,1,故P{X+Y=0}=P{X=0,Y=0}+P{X=1,Y=-1}=+=6. 设二维随机变量的概率密度为A. AB. BC. CD. D 答案:A7. 设随机变量X服从参数为2的泊松分布,则下列结论中正确的是 A. E=,D= B. E=,D= C. E=2,D=4 D. E=2,D=2 答案:D解析:X~P(2),故E=2,D=2.8. 设随机变量X与Y相互独立,且X~N,Y~N,令Z=X-Y,则D= A. 1 B. 3 C. 5 D. 6第 4 页答案:C解析:X~N(1,4),Y~N(0,1),X与Y相互独立,故D(Z)=D(X-Y)=D(X)+D(Y)=4+1=5.第 5 页9.A. B. C. D. 4二、填空题请在每小题的空格中填上正确答案。

概率论与数理统计》课后习题答案第四章

概率论与数理统计》课后习题答案第四章

习题4.11.设10个零件中有3个不合格. 现任取一个使用,若取到不合格品,则丢弃重新抽取一个,试求取到合格品之前取出的不合格品数X 的数学期望.解 可得X 的概率分布为0123~77711030120120X ⎡⎤⎢⎥⎢⎥⎣⎦于是X 的数学期望为7771()012310301201204531208E X =⨯+⨯+⨯+⨯==2..某人有n 把外形相似的钥匙,其中只有1把能打开房门,但他不知道是哪一把,只好逐把试开.求此人直至将门打开所需的试开次数X 的数学期望.解 可得X 的概率分布为12~111n X nn n ⎡⎤⎢⎥⎢⎥⎣⎦于是X 的数学期望为111()121(1)122E X n n n nn n n n =⨯+⨯++⨯++==3.设5次重复独立试验中每次试验的成功率为0.9,若记失败次数为X ,求X 的数学期望。

解 由题意~(5,0.1)X B ,则X 的数学期望为()50.10.5E X =⨯=4.设某地每年因交通事故死亡的人数服从泊松分布.据统计,在一年中因交通事故死亡一人的概率是死亡两人的概率的21,求该地每年因交通事故死亡的平均人数。

解 设该地每年因交通事故死亡的人数为X ,由题意X 服从泊松分布() (0)P λλ>.因1{1}{2}2P X P X === 即121 41!22!ee λλλλλ--=⇒= 于是X 的数学期望为()4E X λ==所以地每年因交通事故死亡的平均人数为4人。

5.设随机变量X 在区间(1,7)上服从均匀分布,求2{()}P X E X <. 解 因X 在区间(1,7)上服从均匀分布,故X 的数学期望为17()42E X +== 于是22{()}{4}1 {22}6P X E X P X P X <=<=<-<<=6.设连续型随机变量X 的概率密度为01() (,0)0 b ax x p x a b ⎧<<=>⎨⎩其它又知()0.75E X =,求,a b 的值解 由密度函数的性质可得()1p x dx +∞-∞=⎰即1111b aax dx b =⇒=+⎰又由()0.75E X =,可得1()0.75b xp x dx x ax dx +∞-∞=⋅=⎰⎰即0.752ab =+ 求解110.752a b a b ⎧=⎪⎪+⎨⎪=⎪+⎩ 可得 3,2a b ==.7.设随机变量X 的概率密度为0<1()2 120 x x p x x x <⎧⎪=-≤<⎨⎪⎩其它求数学期望()E X解12013312201()() (2) ()133E X xp x dxx xdx x x dx x x x +∞-∞==⋅+⋅-=+-=⎰⎰⎰8.设随机变量X 的概率分布为 X -2 -1 0 1 P 0.2 0.3 0.1 0.4 求(1)(21)E X -;(2)2()E X .解 (1) (21)2()1E X E X -=- 其中()20.210.3010.40.3E X =-⨯-⨯++⨯=-则(21)2()12(0.3)1 1.6E X E X -=-=⨯--=-(2)22222()0.2(2)0.3(1)0.100.41 1.5E X =⨯-+⨯-+⨯+⨯=9.假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作。

概率论与数理统计第四章习题参考答案

概率论与数理统计第四章习题参考答案

=
⎡ E⎢
1
⎢⎣ n −1
n i =1
(Xi

⎤ X )2 ⎥
⎥⎦
=
1 n −1
⎡ E⎢
⎢⎣
n i =1
X
2 i

nX
2⎤ ⎥ ⎥⎦
=
1 n −1
⎡n ⎢ ⎢⎣ i=1
E
(
X
2 i
)

nE( X
2⎤ )⎥ ⎥⎦
∑[ ] [ ] =
1 n −1
⎧ ⎨ ⎩
n i =1
D(X i ) + E 2 (X i )
X −µ 3/2
<
⎫ 1.96⎬
=
0.95

故,正态总体均值 µ 的 95%的置信区间为 (X − 2.94, X + 2.94)
代入样本值得正态总体均值 µ 的 95%的置信区间为(-2.565,3.315)。
(2)当σ 未知时,由 T = X − µ ~ t(n − 1) 即T = X − µ ~ t(3) ,所以
n
−a n
=0 =0
无解。由此不能求得
a,
b
的极大似然估计量。
⎩ ∂b
b−a
解:X
的概率密度为
f
(x)
=
⎪⎧ ⎨b
1 −
a
,
a

x

b

⎪⎩ 0, 其它
似然函数为 L(a, b) = 1 , θ1 ≤ xi ≤ θ 2 ,i = 1,2,L, n , (b − a)n
对于给定的样本值 (x1 , x2 ,L, xn )

n
D(

2010年4月概率论与数理统计试题和参考答案解析

2010年4月概率论与数理统计试题和参考答案解析

概率论与数理统计(经管类)真题试卷及答案全国2010年4月高等教育自学考试、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未 选均无分。

1. 设A 与B 是任意两个互不相容事件,则下列结论中正确的是( D )A . P(A)=1-P(B)B . P(A-B)=P(B) C. P(AB)=P(A)P(B)D . P(A-B)=P(A)2. 设A, B 为两个随机事件,且 B A,P(B) .0,则P(A|B)= ( A )A . 1C . P(B)3 . 下列函数中可作为随机变量分布函数的是(^1 0兰x 兰1;A . F1(X)= * 0,1其他.10,x c0; C . F 3(X )x, 0 Wx £1;1,x ^1.4 .设离散型随机变量 X 的分布律为XB . P(A) D . P(AB)C )"-1,xc0;B . F 2(x)詔 x, 0 兰 xc1;1,xZ1. 0, 0:::0;D . F 4 (x) = x, 0 込 x :::1;2,x _1.,贝U P{-1<X w 1}=-10 12A . 0.3 D . 0.75.设二维随机变量(X , Y )的分布律为 且X 与Y 相互独立,则下列结论正确的是(B . 0.4C . 0.6B . a=-0.1 , b=0.9 D . a=0.6, b=0.2A. a=0.2, b=0.6 C . a=0.4, b=0.4'16.设二维随机变量(X, Y)的概率密度为f(x, y)=」4‘I 0,则 P{0<X<1 , 1 '4 3 4A . 5B . 7C . 11D . 139 . 设(X, Y)为二维随机变量,且 D (X)>0 , D (Y)>0 ,则下列等式成立的是(B)A . E(XY)二E(X) E(Y)B . Cov(X,Y) = 'XY D(X) , D(Y)C . D(X Y) =D(X) D(Y)D . Cov(2X,2Y) =2Cov(X,Y)10•设总体X 服从正态分布 N(〜二2),其中二2未知.X 1, X 2,…,X n 为来自该总体的样本, 本标准差,欲检验假设 H °:」=」0, H 1:0,则检验统计量为.n x 」0C.•. n -1(x - ‘0)、填空题(本大题共15小题,每小题2分,共30分) 请在每小题的空格中填上正确答案。

概率论与数理统计考试试卷(附答案)

概率论与数理统计考试试卷(附答案)

概率论与数理统计考试试卷(附答案)一、选择题(共6小题,每小题5分,满分30分) 1. 事件表达式B A -的意思是 ( ) (A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 (C) 事件B 发生但事件A 不发生(D) 事件A 与事件B 至少有一件发生2. 假设事件A 与事件B 互为对立,则事件A B ( ) (A) 是不可能事件 (B) 是可能事件 (C) 发生的概率为1(D) 是必然事件3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布(D) 自由度为2的F 分布4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( )(A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3)5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计(C) 22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计6. 随机变量X 服从在区间(2,5)上的均匀分布,则X 的方差D (X )的值为( ) (A) 0.25(B) 3.5(C) 0.75(D) 0.5二、填空题(共6小题,每小题5分,满分30分。

把答案填在题中横线上) 1. 已知P (A )=0.6, P (B |A )=0.3, 则P (AB )= __________2. 三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为__________3. 一个袋内有5个红球,3个白球,2个黑球,任取3个球恰为一红、一白、一黑的概率为_____4. 已知连续型随机变量,01,~()2,12,0,.x x X f x x x ≤≤⎧⎪=-<≤⎨⎪⎩其它 则P {X ≤1.5}=_______.5. 假设X ~B (5, 0.5)(二项分布), Y ~N (2, 36), 则E (2X +Y )=__________6. 一种动物的体重X 是一随机变量,设E (X )=33, D (X )=4,10个这种动物的平均体重记作Y ,则D (Y )=_____________________ _______三、有两个口袋,甲袋中盛有两个白球,一个黑球,乙袋中盛有一个白球,两个黑球。

概率论与数理统计第二章课后习题答案

概率论与数理统计第二章课后习题答案

概率论与数理统计课后习题答案第二章1.一袋中有5 只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只球中的最 大号码,写出随机变量X 的分布律. 【解】2.设在15只同 类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出 的次品个数,求: 〔1〕 X 的分 布律;〔2〕 X 的分 布函数并作图; (3)133{},{1},{1},{12}222P X P X P X P X ≤<≤≤≤<<.【解】〔2〕 当x <0时, F 〔x 〕=P 〔X ≤x 〕=0当0≤x <1时 ,F 〔x 〕=P 〔X ≤x 〕=P (X =0)=2235当1≤x <2时 ,F 〔x 〕=P 〔X ≤x 〕=P (X =0)+P (X =1)=3435当x ≥2时, F 〔x 〕=P 〔X ≤x 〕=1 故X 的分布函 数 (3)3.射手向目标独立 地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函 数,并求3次射击中至少击中2次的概率. 【解】设XX =0,1,2,3.故X 的 分布律为分布函数4.〔1〕 设随机变量X 的分布律为P {X =k }=!k a kλ,其中k =0,1,2,…,λ>0为常数,试确定常数a . 〔2〕 设随机变量X 的分布律为P {X =k }=a/N , k =1,2,…,N ,试确定常数a . 【解】〔1〕 由分布律的性质知故 e a λ-= (2) 由分布律的性质知即 1a =. 5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: 〔1〕 两人投中次数相等的概率; 〔2〕 甲比乙投中次数多的概率.【解】分别令X 、Y 表示甲、乙投中次数,则X~b 〔3,0.6〕,Y~b (3,0.7)(1)33121233(0.4)(0.3)C 0.6(0.4)C 0.7(0.3)=++(2)=0.2436.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需马上降 落而没有空闲跑道的概率小于0.01(每条跑道只能同意一架飞机降落)?【 解】设X 为某一时刻需马上降落的飞机数,则X ~b (200,0.02),设机场需配备N 条跑道,则有即2002002001C (0.02)(0.98)0.01k k kk N -=+<∑利用泊松近似查表得N ≥9.故机场至少应配备9条跑道.7.有 一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.000 1,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少〔利用泊 松定理〕? 【解】设X 表示出事故的次数,则X ~b 〔1000,0.0 001〕 X 满足P {X = 1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则故所以 4451210(4)C ()33243P X ===. A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号, 〔1〕 进行了5次独立试验,试求指示灯发出信号的概率; 〔2〕 进行了7次独立试验,试求指示灯发出信号的概率. 【解】〔1〕 设X 表示5次独立试验中A 发生的次数,则X ~6〔5,0.3〕(2) 令Y 表示7次独立试验中A 发生的次数,则Y~b 〕 t 的时间间隔内收到的紧急呼救的次数X 服从参数为〔1/2〕t 的泊松分布,而与时间间隔起点无关〔时间以小时计〕.〔1〕 求某一天中午12时至下午3时没收到呼救的概率; 〔 2〕 求某一天中午12时至下午5时至少收到1次呼救的概率.【解】〔1 〕32(0)e P X -== (2) 52(1)1(0)1eP X P X -≥=-==-P { X =k }=kkkp p --22)1(C , k =0,1,2P {Y =m }=mm m p p --44)1(C , m =0,1,2,3,4 分别为随机变量X ,Y 的概率分布,如果P {X ≥1}=59,试求P {Y ≥1}. 【解】因为5(1)9P X ≥=,故4(1)9P X <=. 而 2(1)(0)(1)P X P X p <===-故得 24(1),9p -= 即 1.3p =从而 465(1)1(0)1(1)0.8024781P Y P Y p ≥=-==--=≈ 12.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试求在这2000册书中恰有5册错误的概率.【解】令X 为2000册书中错误的册数,则X~b (2000,0.001).利用泊松近似计算,得 25e 2(5)0.00185!P X -=≈= 13.进行某种试验,成功的概率为34,失败的概率为14.以X 表示试验首次成功所需试验的次数,试写出X 的分布律,并计算X 取偶数的概率. 【解】1,2,,,X k =14.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求: 〔1〕 保险公司亏本的概率;〔2〕 保险公司获利分别不少于10000元、20000元的概率. 【解】以“年〞为单位来考虑.〔1〕 在1月1日,保险公司总收入为2500×12=30000元. 设1年中死亡人数为X ,则X~b (2500,0.002),则所求概率为 由于n 很大,p 很小,λ=np =5,故用泊松近似,有 (2) P (保险公司获利不少于10000)即保险公司获利不少于10000元的概率在98%以上P 〔保险公司获利不少于20000〕(30000200020000)(5)P X P X =-≥=≤ 即保险公司获利不少于20000元的概率约为62%X 的密度函数为f (x )=A e -|x |, -∞<x <+∞,求:〔1〕A 值;〔2〕P {0<X <1}; (3) F (x ). 【解】〔1〕 由()d 1f x x ∞-∞=⎰得故 12A =. (2) 11011(01)e d (1e )22x p X x --<<==-⎰(3) 当x <0时,11()e d e 22x x x F x x -∞==⎰当x ≥0时,0||0111()e d e d e d 222x x x x x F x x x x ---∞-∞==+⎰⎰⎰故 1e ,02()11e 02xx x F x x -⎧<⎪⎪=⎨⎪-≥⎪⎩16.设某种仪器内装有三只同样的电子管,电子管使用寿命X 的密度函数为f (x )=⎪⎩⎪⎨⎧<≥.100,0,100,1002x x x求:〔1〕 在开始150小时内没有电子管损坏的概率; 〔2〕 在这段时间内有一只电子管损坏的概率; 〔3〕 F 〔x 〕. 【解】〔1〕 15021001001(150)d .3P X x x ≤==⎰ (2) 1223124C ()339p == (3) 当x <100时F 〔x 〕=0当x ≥100时()()d xF x f t t -∞=⎰故 1001,100()0,0x F x xx ⎧-≥⎪=⎨⎪<⎩ 17.在区间[0,a ]上任意投掷一个质点,以X 表示这质点的坐标,设这质点落在[0,a ]中任意小区间内的概率与这小区间长度成正比例,试求X 的分布函数. 【解】 由题意知X ~∪[0,a ],密度函数为故当x <0时F 〔x 〕=0当0≤x ≤a 时01()()d ()d d xx xx F x f t t f t t t a a-∞====⎰⎰⎰当x >a 时,F 〔x 〕=1即分布函数XX 进行三次独立观测,求至少有两次的观测值大于3的概率. 【解】X ~U [2,5],即故所求概率为X 〔以分钟计〕服从指数分布1()5E .某顾客在窗口等待效劳,假设超过10分钟他就离开.他一个月要到银行5次,以Y 表示一个月内他未等到效劳而离开窗口的次数,试写出Y 的分布律,并求P {Y ≥1}.【解】依题意知1~()5X E ,即其密度函数为该顾客未等到效劳而离开的概率为2~(5,e )Y b -,即其分布律为20.某人乘汽车去火车站乘火车,有两条路可走.第一条路程较短但交通拥挤,所需时间X 服从N 〔40,102〕;第二条路程较长,但堵塞少,所需时间X 服从N 〔50,42〕. 〔1〕 假设动身时离火车开车只有1小时,问应走哪条路能乘上火车的把握大些? 〔2〕 又假设离火车开车时间只有45分钟,问应走哪条路赶上火车把握大些? 【解】〔1〕 假设走第一条路,X~N 〔40,102〕,则假设走第二条路,X~N 〔50,42〕,则506050(60)(2.5)0.993844X P X P Φ--⎛⎫<=<== ⎪⎝⎭++故走第二条路乘上火车的把握大些.〔2〕 假设X~N 〔40,102〕,则 假设X~N 〔50,42〕,则故走第一条路乘上火车的把握大些. X ~N 〔3,22〕,〔1〕 求P {2<X ≤5},P {-4<X ≤10},P {|X |>2},P {X >3}; 〔2〕 确定c 使P {X >c }=P {X ≤c }. 【解】〔1〕 23353(25)222X P X P ---⎛⎫<≤=<≤⎪⎝⎭(2) c=322.由某机器生产的螺栓长度〔cm 〕X ~N 2±0.12内为合格品,求一螺栓为不合格品的概率. 【解】10.050.12(|10.05|0.12)0.060.06X P X P ⎛-⎫->=>⎪⎝⎭ X 〔小时〕服从正态分布N 〔160,σ2〕,假设要求P {120<X ≤200}≥0.8,同意σ最大不超过多少? 【解】120160160200160(120200)X P X P σσσ---⎛⎫<≤=<≤⎪⎝⎭故 4031.251.29σ≤=X 分布函数为F 〔x 〕=e ,0,(0),00.xt A B x ,x λ-⎧+≥>⎨<⎩ 〔1〕 求常数A ,B ;〔2〕 求P {X ≤2},P {X >3}; 〔3〕 求分布密度f 〔x 〕.【解】〔1〕由00lim ()1lim ()lim ()x x x F x F x F x →+∞→+→-=⎧⎪⎨=⎪⎩得11A B =⎧⎨=-⎩〔2〕 2(2)(2)1eP X F λ-≤==-(3) e ,0()()0,0x x f x F x x λλ-⎧≥'==⎨<⎩X 的概率密度为f 〔x 〕=⎪⎩⎪⎨⎧<≤-<≤.,0,21,2,10,其他x x x x 求X 的分布函数F 〔x 〕,并画出f 〔x 〕及F 〔x 〕.【解】当x <0时F 〔x 〕=0当0≤x <1时0()()d ()d ()d xxF x f t t f t t f t t -∞-∞==+⎰⎰⎰当1≤x<2时()()d xF x f t t -∞=⎰当x ≥2时()()d 1xF x f t t -∞==⎰故 220,0,012()21,1221,2x x x F x x x x x <⎧⎪⎪≤<⎪=⎨⎪-+-≤<⎪⎪≥⎩X 的密度函数为〔1〕 f (x )=a e -|x |,λ>0;(2) f (x )=⎪⎩⎪⎨⎧<≤<<.,0,21,1,10,2其他x x x bx 试确定常数a ,b ,并求其分布函数F 〔x 〕. 【解】〔1〕 由()d 1f x x ∞-∞=⎰知||021e d 2e d x x aa x a x λλλ∞∞---∞===⎰⎰故 2a λ=即密度函数为 e ,02()e 02xx x f x x λλλλ-⎧>⎪⎪=⎨⎪≤⎪⎩当x ≤0时1()()d e d e 22xxx x F x f x x x λλλ-∞-∞===⎰⎰当x >0时0()()d e d e d 22xxx x F x f x x x x λλλλ--∞-∞==+⎰⎰⎰故其分布函数 (2) 由12201111()d d d 22b f x x bx x x x ∞-∞==+=+⎰⎰⎰得 b =1即X 的密度函数为 当x ≤0时F 〔x 〕=0 当0<x <1时00()()d ()d ()d xxF x f x x f x x f x x -∞-∞==+⎰⎰⎰当1≤x <2时01211()()d 0d d d xxF x f x x x x x x x -∞-∞==++⎰⎰⎰⎰当x ≥2时F 〔x 〕=1 故其分布函数为 α分位点,〔1〕α=0.01,求z α;〔2〕α=0.003,求z α,/2z α. 【解】〔1〕 ()0.01P X z α>=即 1()0.01z αΦ-= 即 ()0.09z αΦ= 故 2.33z α= 〔2〕 由()0.003P X z α>=得 即 ()0.997z αΦ= 查表得 2.75z α= 由/2()0.0015P X z α>=得即 /2()0.9985z αΦ= 查表得 /2 2.96z α=求Y =X 的分布律.【解】Y 可取的值为0,1,4,9P {X =k }=(2)k, k =1,2,…,令 求随机变量X 的函数Y 的分布律. 【解】(1)(2)(4)(2)P Y P X P X P X k ===+=++=+X ~N 〔0,1〕.〔1〕 求Y =e X 的概率密度; 〔2〕 求Y =2X 2+1的概率密度; 〔3〕 求Y =|X |的概率密度.【解】〔1〕 当y ≤0时,()()0Y F y P Y y =≤=当y >0时,()()(e )(ln )xY F y P Y y P y P X y =≤=≤=≤故 2/2ln d ()1()(ln ),0d y Y Y x F y f y f y y y y -===> (2)2(211)1P Y X =+≥=当y ≤1时()()0Y F y P Y y =≤=当y >1时2()()(21)Y F y P Y y P X y =≤=+≤故 d ()()d Y Y XX f y F y f f y ⎤⎛==+⎥ ⎥⎝⎦(3) (0)1P Y ≥=当y ≤0时()()0Y F y P Y y =≤=当y >0时()(||)()Y F y P X y P y X y =≤=-≤≤故d()()()()d Y Y X X f y F y f y f y y==+- X ~U 〔0,1〕,试求:〔1〕 Y =e X 的分布函数及密度函数; 〔2〕 Z =-2ln X 的分布函数及密度函数. 【解】〔1〕 (01)1P X <<=故 (1e e)1XP Y <=<= 当1y ≤时()()0Y F y P Y y =≤=当1<y <e 时()(e )(ln )XY F y P y P X y =≤=≤当y ≥e 时()(e )1XY F y P y =≤=即分布函数故Y 的密度函数为〔2〕 由P 〔0<X <1〕=1知当z ≤0时,()()0Z F z P Z z =≤=当z >0时,()()(2ln )Z F z P Z z P X z =≤=-≤即分布函数故Z 的密度函数为X 的密度函数为f (x )=22,0π,π0,.xx ⎧<<⎪⎨⎪⎩其他试求Y =sin X 的密度函数. 【解】(01)1P Y <<=当y ≤0时,()()0Y F y P Y y =≤=当0<y <1时,()()(sin )Y F y P Y y P X y =≤=≤ 当y ≥1时,()1Y F y = 故Y 的密度函数为X 的分布函数如下:试填上(1),(2),(3)项. 【解】由lim ()1x F x →∞=知②填1。

概率论与数理统计课后答案第4章

概率论与数理统计课后答案第4章

概率论与数理统计课后答案第第4章大数定律与中心极限定理4.1设D(x)为退化分布:讨论下列分布函数列的极限是否仍是分布函数?1 1 卄亠(1){D(x n)}; (2){D(x )};(3){D(x 0},其中n =1,2;n n解:(1) (2)不是;(3)是。

4.2设分布函数F n(x)如下定义:‘0x 兰-nl /、x + nF n (x)=」---- 一n c x 兰n2n1 x > n问F(x) =lim F n(x)是分布函数吗?n_)pC解:不是。

4.3设分布函数列{ F n(x)}弱收敛于分布函数F(x),且F(x)为连续函数,则{F n(x)}在(」:,::)上一致收敛于F(x)。

证:对任意的;.0,取M充分大,使有1 —F(x) ::;, —x _ M; F(x) ::;,—x^ -M对上述取定的M,因为F(x)在[-M,M]上一致连续,故可取它的k分点:捲- -M :: X2 :…X k4 ::X k = M ,使有F(X j .J - F(xJ ::;,1 一i ::k ,再令x° - - ::, X k 1 =::,则有F(X i J —FW) :::;,0 G ::k 1(1)这时存在N,使得当n • N时有| F n(X i) —F(X i)|::;,0 叮牛 1(2)成立,对任意的X •(-::,::),必存在某个i(0 _i 一k),使得x・(X i,X i 1),由(2) 知当n •N时有F n (X)— F n (X i i ) ::: F(X j .J ;F n (X)_ F n (X i ) . F(X i )-;(4) 由( 1), (3), (4)可得F n (x) -F(x)::: F(X i 1)-F(x) , F(X i i )-F(X i ); :::2;,F n (x) - F (x) F (X i ) - F (x) - ; _ F (X i ) - F (X i .1)- ; -2 ;,即有F n (x )-F (x ) 名成立,结论得证4.5设随机变量序列「鳥同时依概率收敛于随机变量 •与,证明这时必有P (二)二1。

《概率论与数理统计》课后习题答案

《概率论与数理统计》课后习题答案

《概率论与数理统计》课后习题答案习题1.1解答1. 将⼀枚均匀的硬币抛两次,事件C B A ,,分别表⽰“第⼀次出现正⾯”,“两次出现同⼀⾯”,“⾄少有⼀次出现正⾯”。

试写出样本空间及事件C B A ,,中的样本点。

解:{=Ω(正,正),(正,反),(反,正),(反,反)}{=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)}2. 在掷两颗骰⼦的试验中,事件D C B A ,,,分别表⽰“点数之和为偶数”,“点数之和⼩于5”,“点数相等”,“⾄少有⼀颗骰⼦的点数为3”。

试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。

解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω;{})1,3(),2,2(),3,1(),1,1(=AB ;{})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ;Φ=C A ;{})2,2(),1,1(=BC ;{})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A3. 以C B A ,,分别表⽰某城市居民订阅⽇报、晚报和体育报。

试⽤C B A ,,表⽰以下事件:(1)只订阅⽇报;(2)只订⽇报和晚报;(3)只订⼀种报;(4)正好订两种报;(5)⾄少订阅⼀种报;(6)不订阅任何报;(7)⾄多订阅⼀种报;(8)三种报纸都订阅;(9)三种报纸不全订阅。

解:(1)C B A ;(2)C AB ;(3)C B A C B A C B A ++;(4)BC A C B A C AB ++; (5)C B A ++;(6)C B A ;(7)C B A C B A C B A C B A +++或C B C A B A ++(8)ABC ;(9)C B A ++4. 甲、⼄、丙三⼈各射击⼀次,事件321,,A A A 分别表⽰甲、⼄、丙射中。

(完整版)概率论与数理统计课后习题答案

(完整版)概率论与数理统计课后习题答案

·1·习 题 一1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’;(4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’;(5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。

解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i =,135{,,}A e e e =。

(2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。

(3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S =(2,3,5),(2,4,5),(1,3,5)}{(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A =(4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =---------(,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒;{(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。

概率论与数理统计(B)试题及答案

概率论与数理统计(B)试题及答案

概率论与数理统计(B)试题及答案陕西科技⼤学2010级试题纸课程概率论与数理统计(B )班级学号姓名1、A B C 表⽰随机事件,,A B C ⾄少有⼀个不发⽣. ()2、若()1P A =,则A 是必然事件. ()3、若2~(2,1),~(2,0.5)X N Y N -,则(0)0.5P X Y >=+. ()4、X 为随机变量,当12x x <时,则有12()()P X x P X x >≤>.. ( )5、设(,)X Y 是⼆维正态随机变量,则随机变量X 与Y 独⽴的充要条件是cov(,)0X Y =. ..( )⼆、填空题(每⼩题3分,共15分) 1、设,A B 为随机事件,()0.6P A =,()0.4P B =,()0.8P A B = ,则()P B A = .2、在区间(0,1)上随机取两个数,x y ,则关于t 的⼀元⼆次⽅程220t xt y -+=有实根的概率为 .3、设随机变量~()X P λ,且3(0)P X e -==,21Y X =-,则()D Y = .4、设随机变量~(0,1),~(2,1)X N Y N ,且X ,Y 相互独⽴,设随机变量21Z X Y =-+,则Z ~ _ .5、设随机变量X~U[1,2],由切⽐雪夫不等式可得32P X ?-≥≤??.三、选择题(每⼩题3分,共15分)1、对事件,A B ,下列命题中正确的是()A 、若,AB 互斥,则,A B 也互斥. B 、若,A B 互斥,且()0,()0P A P B >>,则,A B 独⽴.C 、若,A B 不互斥,则,A B 也不互斥D 、若,A B 相互独⽴,则,A B 也相互独⽴. 2、设随机变量X 服从正态分布2(2,)N σ,则随σ的增⼤,概率(22)P X σ-<是() A 、单调增加 B 、单调减⼩ C 、保持不变 D 、⽆法判断 3、设(,)F x y 为(,)X Y 的分布函数,则以下结论不成⽴的是()A 、0(,)1F x y ≤≤B 、 (,)1F -∞+∞=C 、(,)0F -∞+∞=D 、 (,)0F -∞-∞=4、把10本书任意地放在书架上,则其中指定的3本书放在⼀起的概率为() A 、115B 、112C 、110D 、185、若121000,...X X X 是相互独⽴的随机变量,且(1,)(1,2,,1000)i X B p i = 则下列说法中不正确的是()A 、1000111000i i X p =≈∑ B 、10001()()()i i P a X b b a =<<≈Φ-Φ∑ C 、10001~(1000,)i i X B p =∑ D、10001()i i P a X b =<<≈Φ-Φ∑四、(12分)设(,)X Y 的联合概率分布如下,求:①()()E X E Y 、②()E XY 、(,)COV X Y③Z X Y =+的概率分布.五、(10分)甲、⼄、丙三⼈同时独⽴地向某⽬标射击,命中率分别为0.3、0.2、0.5,⽬标被命中⼀发⽽被击毁的概率为0.2,⽬标被命中两发⽽被击毁的概率为0.6,⽬标被被命中三发则⼀定被击毁,求三⼈在⼀次射击中击毁⽬标的概率.六、(16分)设随机变量X 的概率密度为()2,100,10Ax f x x x ?>?=??≤?,求:①A ; ②(15)P x <; ③求X 的分布函数()F x ; ④设2Y X =,求Y 的概率密度.七、(16分)设⼆维随机变量()Y X ,的概率密度为()22,01,0,0,y e x y f x y -?≤≤>=??其它求:① (2)P Y X ≥; ②关于X 与Y 的边缘概率密度; ③X 与Y 是否独⽴?为什么?④(24)E X Y +.⼋、(6分)设X 与Y 相互独⽴,其分布函数分别为()X F x 、()Y F x .证明:随机变量X 与Y 的最⼤值max(,)U X Y =分布函数为()()X Y F u F u ?.2010级概率论与数理统计(B )试题答案⼀、√; ×; ×; ×; √ ⼆、1/3; 1/3; 12;N(-1,5); 1/6 三、D ; C ; B ; A ;B 四·(,)()()()5/144COV X Y E XY E X E Y =-=-…………………………2分五、解:设A :甲击中;B :⼄击中;C :丙击中 i D :击中i 发,(1,2,3)i =;E :击毁⽬标1()()0.47P D P ABC ABC ABC =++= 2()()0.22P D P ABC ABC ABC =+++=3()()0.03P D P ABC ==………………………………………………5分31()()()0.470.20.220.60.0310.256i i i P E P D P E D ===?+?+?=∑…………………………5分5/12EX =…………………………2分1/12EY =…………………………2分②()0E XY =…………………………2分③……………………………4分六、①2101Adx x +∞=?,则A =10 ……………………………………………4分②1521010(15)1/3P x dx x <==?……………………………………………4分③ 10,()0x F x <=210101010,()()1xxx F x f x dx dx x x -∞≥===-?…………………………4分④20,()0Y y F y <=22101020,()()()2yY y y F y P Y y P X dxx ≥=≤=≤=?20,20()[()]20/,20Y Y y f y F y y y ≤?'==?>? ………………………………… 4分七、①412021(2)24yxe P Y x dx edy -+∞--≥==………………………………… 4分②1,01()(,)0,X x f x f x y dy +∞-∞≤≤?==?其它22,0()(,)0,0y Y e y f y f x y dx y -+∞-∞>==≤??…………………………… 4分③ X 与Y 独⽴. 因为(,)()()X Y f x y f x f y = …………………………… 4分④ 11(24)2424322E X Y EX EY +=+=?+?= ……………………… 4分⼋、证明:()()(max(,))(,)U F u P U u P X Y u P X u Y u =≤=≤=≤≤………… 3分()()()()X Y P X U P Y U F u F u =≤≤= ……………………… 3 分陕西科技⼤学2011级试题纸课程概率论与数理统计(B )班级学号姓名1.设()1P AB =,则事件A 必然发⽣且事件B 必然不发⽣。

概率论与数理统计第五章课后习题及参考答案

概率论与数理统计第五章课后习题及参考答案

概率论与数理统计第五章课后习题及参考答案概率论与数理统计第五章课后习题及参考答案1.用切比雪夫不等式估计下列各题的概率.(1)废品率为03.0,1000个产品中废品多于20个且少于40个的概率;(2)200个新生儿中,男孩多于80个而少于120个的概率(假设男孩和女孩的概率均为5.0).解:(1)设X 为1000个产品中废品的个数,则X ~)1000,03.0(B ,有30)(=X E ,1.29)(=X D ,由切比雪夫不等式,得)3040303020()4020(-<-<-=<<-="X" )103010(<-<-="X" 709.010<="" bdsfid="71" p="" x="">1.2912=-≥.(2)设X 为200个新生儿中男孩的个数,则X ~)200,5.0(B ,有100)(=X E ,50)(=X D ,由切比雪夫不等式,得)10012010010080()12080(-<-<-=<<-="X" )2010020(<-<-="X" 8<="" bdsfid="77" p="" x="">7205012=-≥.2.一颗骰子连续掷4次,点数总和记为X ,估计)1810(<<="">解:设i X 为该骰子掷第i 次出现的点数,则61)(==k X P i ,6,,2,1 =i ,6,,2,1 =k .27)654321(61)(=+++++=i X E ,691)654321(61)(2222222=+++++=i X E ,35)]([)()(22=-=i i i X E X E X D ,4,3,2,1=i .因为4321X X X X X +++=,且1X ,2X ,3X ,4X 相互独立,故有14)(=X E ,335)(=X D .由切比雪夫不等式,得)1418141410()1810(-<-<-=<<-<-="X" )<="" bdsfid="88" p="" x="">414(<-=X P 271.0433512=-≥.3.袋装茶叶用及其装袋,每袋的净重为随机变量,其期望值为100g ,标准差为10g ,一大盒内装200袋,求一盒茶叶净重大于5.20kg 的概率.解:设i X 为一袋袋装茶叶的净重,X 为一盒茶叶的净重,由题可知∑==2001i i X X ,100)(=i X E ,100)(=i X D ,200,,2,1 =i .因为1X ,2X ,…,200X 相互独立,则20000)()(2001==∑=i i X E X E ,20000)()(2001==∑=i i X D X D .)()(20500)()(()20500(2001X D X E X D X E X P X P i i ->-=>∑=)1020020000205001020020000(?->?-=X P )2251020020000(>?-=X P 由独立同分布的中心极限定理,1020020000?-X 近似地服从)1,0(N ,于是0002.0)5.3(1)2251020020000(=Φ-≈>?-X P .4.有一批建筑用木桩,其80%的长度不小于3m .现从这批木桩中随机取出100根,试问其中至少有30根短于3m 的概率是多少?解:设X 为100根木桩中短于3m 的根数,则由题可知X ~)2.0,100(B ,有20)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)30(1)30(<-=≥X P X P )42030(1)()((1-Φ-=-Φ-=X D X E X 0062.0)5.2(1=Φ-=.5.某种电器元件的寿命服从均值为100h 的指数分布.现随机选取16只,设它们的寿命是相互独立的.求这16只元件寿命总和大于1920h 的概率.解:设i X 为第i 只电器元件的寿命,由题可知i X ~)01.0(E ,16,,2,1 =i ,且1X ,2X ,…,16X 相互独立,则100)(=i X E ,10000)(=i X D .记∑==161i i X X ,则1600)()(161==∑=i i X E X E ,160000)()(161==∑=i i X D X D .))()(1920)()(()1920(X D X E X D X E X P X P ->-=>)400160019204001600(->-=X P )8.04001600(>-=X P ,由独立同分布的中心极限定理,1600-X 近似地服从)1,0(N ,于是2119.0)8.0(1)8.04001600(=Φ-=>-X P .6.在数值计算中中,每个数值都取小数点后四位,第五位四舍五入(即可以认为计算误差在区间]105,105[55--??-上服从均匀分布),现有1200个数相加,求产生的误差综合的绝对值小于03.0的概率.解:设i X 为每个数值的误差,则i X ~)105,105(55--??-U ,有0)(=i X E ,1210)(8-=i X D ,1200,,2,1 =i .从而0)()(12001==∑=i i X E X E ,61200110)()(-===∑i i X D X D .由独立同分布的中心极限定理,X 近似地服从)10,0(6-N ,于是)03.0(<="" bdsfid="123" p="">()(03.0)()((X D X E X D X E X P -≤-=12101200003.0121012000(44--?-≤?-=X P 9974.01)3(2=-Φ=.7.某药厂断言,该厂生产的某药品对医治一种疑难的血液病治愈率为8.0.医院检验员任取100个服用此药的病人,如果其中多于75个治愈,就接受这一断言,否则就拒绝这一断言.(1)若实际上此药对这种病的治愈率是8.0,问接受这一断言的概率是多少?(2)若实际上此药对这种病的治愈率是7.0,问接受这一断言的概率是多少?解:设X 为100个服用此药的病人中治愈的个数,(1)由题可知X ~)8.0,100(B ,则80)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 48075(1))()((1-Φ-=-Φ-=X D X E X 8944.0)25.1(=Φ=.(2)由题可知X ~)7.0,100(B ,则70)(=X E ,21)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 217075(1)()((1-Φ-=-Φ-=X D X E X 1379.0)09.1(1=Φ-=.8.一射手在一次射击中,所得环数的分布律如下表:X678910P 05.005.01.03.05.0求:(1)在100次射击中环数介于900环与930环之间的概率是多少?(2)超过950环的概率是多少?解:设X 为100次射击中所得的环数,i X 为第i 次射击的环数,则∑==1001i i X X ,15.9)(=i X E ,95.84)(2=i X E ,2275.1)]([)()(22=-=i i i X E X E X D ,100,,2,1 =i .由1X ,2X ,…,100X 相互独立,得915)()(1001==∑=i i X E X E ,75.122)()(1001==∑=i i X D X D .由独立同分布的中心极限定理,75.122915-X 近似地服从)1,0(N ,于是(1))930900(≤≤X P ))()(930)()()()(900(X D X E X D X E X X D X E P -≤-≤-=75.12291593075.12291575.122915900(-≤-≤-=XP )75.1221575.122915(≤-=X P 823.01)35.1(2=-Φ≈.(2))950(>X P ))()(950)()((X D X E X D X E X P ->-=75.122915950)()((->-=X D X E X P 001.0)1.3(1=Φ-≈.9.设有30个电子元件1A ,2A ,…,30A ,其寿命分别为1X ,2X ,…,30X ,且且都服从参数为1.0=λ的指数分布,它们的使用情况是当i A 损坏后,立即使用1+i A (29,,2,1 =i ).求元件使用总时间T 不小于350h 的概率.解:由题可知i X ~)1.0(E ,30,,2,1 =i ,则10)(=i X E ,100)(=i X D .记∑==301i i X T ,由1X ,2X ,…,30X 相互独立,得300)()(301==∑=i i X E T E ,3000)()(301==∑=i i X D T D .))()(350)()(()350(T D T E T D T E T P T P ->-=>30103003503010300(?->?-=T P )91.03010300(>?-≈T P ,由独立同分布的中心极限定理,3010300?-T 近似地服从)1,0(N ,于是1814.0)91.0(1)91.03010300(=Φ-=>?-T P .10.大学英语四级考试,设有85道选择题,每题4个选择答案,只有一个正确.若需要通过考试,必须答对51道以上.试问某学生靠运气能通过四级考试的概率有多大?解:设X 为该学生答对的题数,由题可知X ~41,85(B ,则25.21)(=X E ,9375.15)(=i X D ,85,,2,1 =i .由棣莫弗—拉普拉斯中心极限定理,近似地有9375.1525.21-X ~)1,0(N ,得)8551(≤≤X P ))()(85)()()()(51(X D X E X D X E X X D X E P -≤-≤-=)9375.1525.21859375.1525.219375.1525.2151(-≤-≤-=X P 0)45.7()97.15(=Φ-Φ=.即学生靠运气能通过四级考试的概率为0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档