8.3 列二元一次方程组解应用题-275890f34693daef5ef73df7
完整版二元一次方程组应用题经典题及答案

完整版二元一次方程组应用题经典题及答案二元一次方程组是数学中的一个重要概念,它广泛应用于解决各种实际问题。
本文将通过一道经典题及其解答,来展示如何完整地解决一道二元一次方程组的应用题。
问题:某公司有一项工程需要进行,考虑到成本问题,公司决定将工程分成两部分,分别承包给两个不同的工程队。
假设甲工程队每小时的工作效率为a,乙工程队每小时的工作效率为b,且a、b均为正整数。
若甲工程队单独完成工程需要24小时,乙工程队单独完成工程需要32小时。
问:甲、乙两工程队合作完成这项工程需要多少小时?解题思路:为了解决这个问题,我们需要先列出方程组,然后解方程组得到答案。
根据题意,我们可以列出以下方程组:24a = 1 (甲工程队单独完成工程所需时间)32b = 1 (乙工程队单独完成工程所需时间)ab + ba = 1 (甲、乙两工程队合作完成工程所需时间)接下来,我们解这个方程组。
首先,将第一个方程式两边同乘以b,得到:24ab = b (1)将第二个方程式两边同乘以a,得到:32ab = a (2)将(1)式和(2)式两边分别相加,得到:24ab + 32ab = a + b整理得到:ab = 1/56 (3)将(3)式代入(1)式或(2)式,得到:a = 6 或b = 6因此,甲、乙两工程队合作完成这项工程需要的时间为:x = 1/(1/24 + 1/32) = 19.2 小时综上所述,我们通过解二元一次方程组得到了问题的答案。
这个问题是二元一次方程组应用的一个经典案例,通过解决这个问题,我们可以更深入地理解二元一次方程组的概念和应用。
二元一次方程组应用题经典题有答案二元一次方程组的应用题是数学中的经典题型之一,掌握这类问题的解法对于解决实际问题非常有帮助。
下面我们来看一道经典的二元一次方程组应用题,并给出相应的答案。
问题:某班共有40名学生,其中男生人数是女生人数的1.5倍。
已知每个男生每学期花费的学杂费为300元,而每个女生每学期花费的学杂费为400元。
完整版)二元一次方程组应用题经典题及答案

完整版)二元一次方程组应用题经典题及答案实际问题与二元一次方程组题型归纳(练题答案)类型一:列二元一次方程组解决——行程问题变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲、乙速度分别为x、y千米/时,依题意得:2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。
变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时。
类型二:列二元一次方程组解决——工程问题变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元。
若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。
解:设甲、乙公司每周的工钱分别为x、y万元,依题意得:6(x+y)=5.24x+9y=4.8解得:x=0.8,y=0.4若只选一个公司单独完成,小明家应选择乙公司,因为乙公司每周工钱更少,从节约开支的角度考虑更优。
类型三:列二元一次方程组解决——商品销售利润问题变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩。
二元一次方程应用题应用精题(附答案)

二元一次方程组的应用板块一:二元一次方程组解的讨论☞二元一次方程组解的三种情况二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩ ⑴若1122a b a b ≠,则该方程组有唯一解 ⑵若111222a b c a b c =≠,则该方程组无解 ⑶若111222a b c a b c ==,则该方程组有无数组解 1.如果方程组有唯一的一组解,那么a ,b ,c 的值应当满足( )A .a=1,c=1B .a ≠bC .a=b=1,c ≠1D .a=1,c ≠1【解答】解:根据题意得:,∴1﹣x=,∴(a ﹣b )x=c ﹣b ,∴x=, 要使方程有唯一解,则a ≠b ,故选B .2.已知关于x ,y 的方程组,分别求出k ,b 为何值时,方程组:(1)有唯一解;(2)有无数多个解;(3)无解.【解答】解:把y=kx+b 代入y=(3k ﹣1)x+2中,可得:(2k ﹣1)x=b ﹣2,(1)当(2k ﹣1)≠0,即k ≠0.5,方程有唯一解x=,将此x 的值代入y=kx+b 中,得:y=,因而原方程组有唯一一组解; (2)当(2k ﹣1)=0且b ﹣2=0时,即k=0.5,b=2时,方程有无穷多个解,因此原方程组有无穷多组解;(3)当(2k ﹣1)=0且(b ﹣2)≠0时,即k=0.5,b ≠2时,方程无解,因此原方程组无解.板块二、二元一次方程的简单应用☞倍分问题1.(2015•广元)一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()A.B.C.D.【解答】解:根据平角和直角定义,得方程x+y=90;根据∠α比∠β的度数大50°,得方程x=y+50.可列方程组为.故选:D.2.(2015•泰安)小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x 千克,乙种水果y千克,则可列方程组为()A.B.C.D.【解答】解:设小亮妈妈买了甲种水果x千克,乙种水果y千克,由题意得.故选A.3.(2015•盘锦)有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨.设一辆大货车一次可以运货x吨,一辆小货车一次可以运货y吨,根据题意所列方程组正确的是()A.B.C.D.【解答】解:设一辆大货车一次可以运货x吨,一辆小货车一次可以运货y吨,由题意得,.故选A.4.(2015•台湾)如图为甲、乙、丙三根笔直的木棍平行摆放在地面上的情形.已知乙有一部分只与甲重迭,其余部分只与丙重迭,甲没有与乙重迭的部分的长度为1公尺,丙没有与乙重迭的部分的长度为2公尺.若乙的长度最长且甲、乙的长度相差x公尺,乙、丙的长度相差y公尺,则乙的长度为多少公尺?()A .x+y+3B .x+y+1C .x+y ﹣1D .x+y ﹣3【解答】解:设乙的长度为a 公尺,∵乙的长度最长且甲、乙的长度相差x 公尺,乙、丙的长度相差y 公尺, ∴甲的长度为:(a ﹣x )公尺;丙的长度为:(a ﹣y )公尺, ∴甲与乙重叠的部分长度为:(a ﹣x ﹣1)公尺;乙与丙重叠的部分长度为:(a ﹣y ﹣2)公尺,由图可知:甲与乙重叠的部分长度+乙与丙重叠的部分长度=乙的长度,∴(a ﹣x ﹣1)+(a ﹣y ﹣2)=a ,a ﹣x ﹣1+a ﹣y ﹣2=a ,a+a ﹣a=x+y+1+2,a=x+y+3,∴乙的长度为:(x+y+3)公尺,故选:A .5. 古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干嘛?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮得一样多!”那么驴子原来所驮货物的袋数是多少?【解答】解:设驴子原来所驮货物的袋数是x ,骡子原来所驮货物的袋数是y . 由题意得,解得.答:驴子原来所驮货物的袋数是5.☞年龄问题1.小明问王老师的年龄时,王老师说:“我像你这么大时,你才3岁;等你到了我这么大时,我就45岁了.”设王老师今年x 岁,小明今年y 岁,根据题意,列方程组正确的是( )A .B .C .D .【解答】解:王老师今年x 岁,刘俊今年y 岁,可得:, 故选D☞数字问题1. 一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x ,十位数字为y ,所列方程组正确的是( )A 、错误!未找到引用源。
二元一次方程组应用题大全-二元一次方程题应用题

二元一次方程组应用题大全-二元一次方程题应用题二元一次方程组解决实际问题的基本步骤如下:1.审题,确定已知量和待求量,并分析它们之间的数量关系(即寻找等量关系)。
2.根据等量关系设定未知数,列出方程组。
3.解方程组,得到答案。
4.检查和反思解题过程,检验答案的正确性以及是否符合题意。
例如,有一个鸡兔同笼的问题:已知鸡和兔的头数加起来是35,腿的总数是94,问鸡和兔各有多少只。
分析可得到两个等量关系:鸡头加兔头等于总头数,鸡腿加兔腿等于总腿数。
设鸡有x只,兔有y只,则可列出方程组:x + y = 352x + 4y = 94解方程组可以得到鸡有23只,兔有12只。
类似的问题还有:野鸡和兔子共有39只,它们的腿共有100条,求野鸡和兔子各有多少只;已知板凳和木马共有33个,腿共有101条,求板凳和木马各有多少个;某文艺团体为“希望工程”募捐组织了一场义演,成人票每张8元,学生票每张5元,共售出1000张票,共筹得票款6950元,问成人票与学生票各售出多少张;某校买了甲、乙两种型号的彩电共7台,花去人民币元,已知这两种型号的彩电的价格分别是3000元和1300元,问该校两种彩电各买了多少台。
还有一些其他类型的问题,例如分配问题和排列组合问题。
解决这些问题的方法也是设定未知数,列出方程组,然后解方程组求解答案。
1.有3种不同的水果,A、B、C,现在要将它们分别装入3个篮子中,每个篮子只能放一种水果,且每种水果至少要放1个篮子。
已知A篮子比B篮子多1个水果,C篮子比A篮子少2个水果。
问每个篮子分别放了多少个水果?2.有3个人A、B、C,他们的年龄分别是30、40、50岁,他们的年龄之和是120岁。
现在他们每个人都增加了10岁,再求他们的年龄之和。
3.有一批货物,重量为120千克,要分别装入3个箱子中,每个箱子的重量必须相等。
已知第1个箱子比第2个箱子轻10千克,第3个箱子比第1个箱子重20千克。
问每个箱子的重量是多少千克?4.有一批书,要分别装入3个箱子中,每个箱子的书数必须相等。
二元一次方程组解决实际问题典型例题

类型六:列二元一次方程组解决——增长率问题 6. 某工厂去年的利润(总产值—总支出)为 200万元,今年总产值比去年增加了20%,总支出比 去年减少了10%,今年的利润为780万元,去年的总 产值、总支出各是多少万元? 【变式】某城市现有人口42万,估计一年后城镇 人口增加0.8%,农村人口增加1.1%,这样全市人 口增加1%,求这个城市的城镇人口与农村人口。
类型二:列二元一次方程组解决——工程问题
2.一家商店要进行装修,若请甲、乙两个装修 组同时施工,8天可以完成,需付两组费用共3520元; 若先请甲组单独做6天,再请乙组单独做12天可完成, 需付两组费用共3480元,问: (1)甲、乙两组工作一天,商店应各付多少元? (2)已知甲组单独做需12天完成,乙组单独做需24天 完成,单独请哪组,商店所付费用最少?
类型五:列二元一次方程组解决——生产中的配套问题
5.某服装厂生产一批某种款式的秋装,已知每2 米的某种布料可做上衣的衣身3个或衣袖5只. 现计划 用132米这种布料生产这批秋装(不考虑布料的损耗), 应分别用多少布料才能使做的衣身和衣袖恰好配套? 【变式1】现有190张铁皮做盒子,每张铁皮做8个盒 身或 22个盒底,一个盒身与两个盒底配成一个完整 【变式 【变式 23 】某工厂有工人 】一张方桌由1个桌面、 60人,生产某种由一个 4条桌腿组成, 盒子,问用多少张铁皮制盒身,多少张铁皮制盒底, 螺栓套两个螺母的配套产品,每人每天生产螺栓 如果1立方米木料可以做桌面50个,或做桌腿300 14 条。 可以正好制成一批完整的盒子? 个或螺母 现有5立方米的木料,那么用多少立方米木料做桌面, 20个,应分配多少人生产螺栓,多少人生 产螺母,才能使生产出的螺栓和螺母刚好配套。 用多少立方米木料做桌腿,做出的桌面和桌腿,恰 好配成方桌?能配多少张方桌?
二元一次方程组解法及应用___知识要点+典型例题+配套练习

七下数学--第八章 二元一次方程组要点一:二元一次方程组的解法 【知识要点】1.二元一次方程:含有两个未知数,且未知项的次数为1,这样的方程叫二元一次方程。
①二元一次方程左右两边的代数式必须是整式;(不是整式的化成整式) ②二元一次方程必须含有两个未知数;③二元一次方程中的“一次”是指含有未知数的项的次数,而不是某个未知数的次数。
2.二元一次方程的解:能使二元一次方程左右两边的值相等的一对未知数的值叫做二元一次方程的解任何一个二元一次方程都有无数解。
3.二元一次方程组:①由两个或两个以上的整式方程组成,常用“ ”把这些方程联合在一起; ②整个方程组中含有两个不同的未知数,且方程组中同一未知数代表同一数量; ③方程组中每个方程经过整理后都是一次方程, 4.二元一次方程组的解:注意:方程组的解满足方程组中的每个方程,而每个方程的解不一定是方程组的解。
5.会检验一对数值是不是一个二元一次方程组的解6.二元一次方程组的解法:(1) 代入消元法 (2)加减消元法 三、理解解二元一次方程组的思想转化消元一元一次方程二元一次方程组四、解二元一次方程组的一般步骤(一)、代入法一般步骤:变形——代入——求解——回代——写解 (二)、加减法一般步骤:变形——加减——求解——代入——写解 【典型例题】 一、选择题1、(2009·福州中考)二元一次方程组2,0x y x y +=⎧⎨-=⎩的解是 ( C )A .0,2.x y =⎧⎨=⎩B .2,0.x y =⎧⎨=⎩C .1,1.x y =⎧⎨=⎩D .1,1.x y =-⎧⎨=-⎩2、(2009·百色中考)已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解, 则a b -的值为( B ).A .1B .-1C . 2D .33、(2009·内江中考)若关于x ,y 的方程组⎩⎨⎧=+=-n my x m y x 2的解是⎩⎨⎧==12y x ,则n m -为( D )A .1B .3C .5D .24、(2009·日照中考)若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x k y x 9,5的解也是二元一次方程632=+y x 的解,则k 的值为 (B. )(A )43- (B )43 (C )34 (D )34-5、(2009·绵阳中考)小明在解关于x 、y 的二元一次方程组⎩⎨⎧=⊗-=⊗+133,y x y x 时得到了正确结果⎩⎨⎧=⊕=.1,y x 后来发现“⊗”“ ⊕”处被墨水污损了,请你帮他找出⊗、⊕ 处的值分别是( B ) A .⊗ = 1,⊕ = 1 B .⊗ = 2,⊕ = 1 C .⊗ = 1,⊕ = 2 D .⊗ = 2,⊕ = 26、(2009·青海中考)已知代数式133m x y --与52n m n x y +是同类项,那么m n 、的值分别是(C )A .21m n =⎧⎨=-⎩B .21m n =-⎧⎨=-⎩C .21m n =⎧⎨=⎩D .21m n =-⎧⎨=⎩7、(2007·丽水中考)方程组5210x y x y +=⎧⎨+=⎩ ,由②-①,得正确的方程是( B )(A )310x = (B ) 5x = (C )35x =- (D )5x =- 8、若5x -6y =0,且xy ≠0,则yx yx 3545--的值等于( )(A )32(B )23(C )1 (D )-1二、填空题9、(2009·定西中考)方程组25211x y x y -=-⎧⎨+=⎩,的解是 .34x y =⎧⎨=⎩,10、(2008·临沂中考)已知x 、y 满足方程组⎩⎨⎧=+=+,42,52y x y x 则x -y 的值为___1_____.11、(2009·呼和浩特中考)如果|21||25|0x y x y -++--=,则x y +的值为 6 三、解答题12、 (2009·湘西中考)解方程:2725x y x y -=⎧⎨+=⎩①②【解析】①+② 得 4x =12,即 x =3 代入① 有6-y =7,即 y =-1所以原方程的解是:⎩⎨⎧-==13y x13、(2007·青岛中考)解方程组:2536x y x y +=-=⎧⎨⎩,.【解析】25,3 6.x y x y +=-=⎧⎨⎩①×3,得 6x +3y =15. ③ ②+③,得 7x =21,x =3. 把x =3代入①,得2×3+y =5,y =-1.14、如果(a -2)x+(b+1)y=13是关于x ,y 的二元一次方程,则a ,b 满足什么条件?15、二元一次方程组437(1)3x y kx k y +=⎧⎨+-=⎩的解x ,y 的值相等,求k .16、方程组2528x y x y +=⎧⎨-=⎩的解是否满足2x -y=8?满足2x -y=8的一对x ,y 的值是否是方程组2528x y x y +=⎧⎨-=⎩的解? ① ②【配套练习】1.判断下列方程是不是二元一次方程4).1(22=+y x 222).2(x y x x =-+ 6).3(=-y xyy x =).4( 6).5(2=++z y x 811).6(=+yx2.在下列每个二元一次方程组的后面给出了x 与y 的一对值,判断这对值是不是前面方程组的解?(1)⎩⎨⎧=+=-)2(7032)1(53y x y x ⎩⎨⎧==12y x (2)⎩⎨⎧=+=-)2(1147)1(123y x y x ⎩⎨⎧==11y x3.判断(1)由两个二元一次方程组成方程组一定是二元一次方程组( )(2)方程组⎩⎨⎧=+=-3513y x y x 的解是方程x +5y =3的解,反过来方程x +5y =3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( ) 4.在方程4x -3y =7里,如果用x 的代数式表示y ,则437yx +=( ) 5.任何一个二元一次方程都有( ) (A )一个解;(B )两个解; (C )三个解;(D )无数多个解;6. 关于x 、y 的方程组⎩⎨⎧=-=+m y x my x 932的解是方程3x +2y =34的一组解,那么m 的值是( )(A )2;(B )-1;(C )1;(D )-2;7. 与已知二元一次方程5x -y =2组成的方程组有无数多个解的方程是( ) (A )15x -3y =6 (B )4x -y =7(C )10x +2y =4(D )20x -4y =38. 下列方程组中,是二元一次方程组的是( )(A )⎪⎩⎪⎨⎧=+=+9114y x y x(B )⎩⎨⎧=+=+75z y y x (C )⎩⎨⎧=-=6231y x x(D )⎩⎨⎧=-=-1y x xyy x9. 已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于( )(A )a =-3,b =-14 (B )a =3,b =-7 (C )a =-1,b =9 (D )a =-3,b =1410. 若x 、y 均为非负数,则方程6x =-7y 的解的情况是( ) (A )无解(B )有唯一一个解 (C )有无数多个解(D )不能确定11. 若|3x +y +5|+|2x -2y -2|=0,则2x 2-3xy 的值是( ) (A )14 (B )-4 (C )-12 (D )1212. .已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y =kx +b 的解,则k 与b 的值为( )(A )21=k ,b =-4 (B )21-=k ,b =4 (C )21=k ,b =4(D )21-=k ,b =-413. 如果0.4x -0.5y =1.2,那么用含有y 的代数式表示的代数式是_____________;14已知方程组⎩⎨⎧-=+=+m y x ay x 26432有无数多解,则a =______,m =______;15. 若4x +3y +5=0,则3(8y -x )-5(x +6y -2)的值等于_________;16.若x +y =a ,x -y =1同时成立,且x 、y 都是正整数,则a 的值为________;17.从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x :z =_______;y :z =________;18.解方程组(1)⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m n m (2))(6441125为已知数a a y x a y x ⎩⎨⎧=-=+(3)⎪⎪⎩⎪⎪⎨⎧=++=+125432y x yx y x (4)⎩⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x(5)⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x (6)⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x19. m 取什么整数值时,方程组⎩⎨⎧=-=+0242y x my x 的解:(1)是正数;(2)是正整数?并求它的所有正整数解。
二元一次方程组解决实际问题

二元一次方程组解决实际问题二元一次方程组是我们在数学学习中经常遇到的问题之一。
它是由两个一次方程组成的方程组,其中每个方程都包含两个未知数。
通过解决这个方程组,我们可以找到未知数的值,从而解决一些实际问题。
想象一下,你正在计划参加一次旅行。
你计划租一辆汽车,但是汽车租赁公司将一天收取固定的基本费用和每公里的费用。
你希望计算出最终租车的总费用。
这个问题就可以通过二元一次方程组来解决。
设基本费用为x元,每公里费用为y元。
你知道如果你不开车,你也需要支付基本费用作为租车费用,所以你可以得到方程1:x = 基本费用。
此外,你知道如果你开车d公里,则你还需要支付d乘以每公里费用,所以你可以得到方程2:y = 每公里费用。
现在我们有了一个二元一次方程组:方程1:x = 基本费用方程2:y = 每公里费用解这个方程组,我们可以计算出基本费用和每公里费用的具体值。
这将帮助你确定你最终租车的总费用。
另一个例子是关于购买水果。
假设你去市场买了几个苹果和几个橙子,你知道每个苹果的价格和每个橙子的价格。
你想计算你购买所有水果的总费用。
同样,这个问题可以通过二元一次方程组来解决。
设苹果的个数为x,橙子的个数为y。
每个苹果的价格为a元,每个橙子的价格为b元。
你可以得到方程1:x = 苹果的个数。
同样,你可以得到方程2:y = 橙子的个数。
现在我们有了一个二元一次方程组:方程1:x = 苹果的个数方程2:y = 橙子的个数通过解决这个方程组,你可以计算出苹果的个数和橙子的个数,并进一步计算出购买所有水果的总费用。
这只是二元一次方程组应用的两个简单例子。
在现实生活中,我们可以遇到更复杂的问题,例如计算两个不同列车的速度,或者计算不同产品的成本和利润。
通过学习解决二元一次方程组的方法,我们可以在实际问题中找到准确的答案。
不仅可以提高我们的数学能力,还可以帮助我们在日常生活中做出更好的决策。
总结起来,二元一次方程组是数学中常见的一个概念,通过解决这个方程组,我们可以解决一些实际问题。
人教版七年级数学下册第八章 二元一次方程组解应用题常见题型专项练习

二元一次方程组解应用题常见题型专项练习列方程解应用题的基本关系量水流速度—静水速度=逆水速度水流速度—静水速度=顺水速度路程=行程问题:速度×时间)1(工作量=工程问题:工作效率×工作时间)2(溶质=浓度问题:溶液×浓度)3(本金×利率×时间=银行利率问题:免税利息)4(二元一次方程组解决实际问题的基本步骤、1审题,寻找等量关系)(. 审题,搞清已知量和待求量,分析数量关系(设未知数,列方程组)考虑如何根据等量关系设元,列出方程组.、2(解方程组)、列出方程组并求解,得到答案.3答),(检验、检查和反思解题过程,检验答案的正确性以及是否符合题意.4列方程组解应用题的常见题型倍数×倍量=多余量,总量+较小量=和差倍总分问题:较大量)1(产品配套问题:加工总量成比例)2(路程=速度问题:速度×时间)3((航速问题:此类问题分为水中航速和风中航速两类)4水(风)速+静水(无风)中的速度=顺流(风):航速.1水(风)速--静水(无风)中的速度=逆流(风):航速.2工程问题:工作量)5(工作效率×工作时间=一般分为两种,一种是一般的工程问题;另一种是工作总量是单位一的工程问题减少后的量=+减少率)1增长后的量,原量×(=+增长率)1增长率问题:原量×()6(=浓度问题:溶液×浓度)7(溶质本金×利率×时间×税率—本金×利率×时间=本金×利率×时间,税后利息=银行利率问题:免税利息)8((售价=进价,利润率—售价=利润问题:利润)9(100%进价)÷进价×—、亏(不足)两个角度把握事物的总量盈亏问题:关键从盈(过剩))10(数字问题:首先要正确掌握自然数、奇数偶数等有关的概念、特征及其表示)11(几何问题:必须掌握几何图形的性质、周长、面积等计算公式)12(年龄问题:抓住人与人的岁数是同时增长的)13((分配调运问题)人到乙厂,则两厂的人数相同;如果9某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽倍,到两个工厂的人数各是多少?2人到甲厂,则甲厂的人数是乙厂的5从乙厂抽人y人,到乙工厂的人数为x解:设到甲工厂的人数为到乙工厂的人数=人后到甲工厂的人数9、抽1题中的两个相等关系: x-9= 可列方程为: =人后到甲工厂的人数5、抽2 可列方程为:(金融分配问题)分的邮票各买了多小?20分与10角,问5元220枚,花了16分的邮票共分与10小华买了分邮票20枚y分邮票,10枚x解;设共买题中的两个相等关系:总枚数=分邮票的枚数+20分邮票的枚数10、1 可列方程为:全部邮票的总价+ =分邮票的总价10、210X+ = 可列方程为:(做工分配问题)个小汽车6个小狗、5分,做42小时3个小汽车用去7个小狗、4小兰在玩具工厂劳动,做个小汽车各用多少时间?1个小狗、1分,平均做37小时3用去题中的两个相等关系: 4、做 1分42时+ =3个小狗的时间可列方程为:分37时=3个小汽车的时间6做+、 2 可列方程为:(行程问题)甲、乙二人相距小时相遇。