马科维茨投资组合理论
最优投资组合--马科维茨投资组合理论
最优投资组合--马科维茨投资组合理论<代码已经过期,其中爬⾍链接已经失效>⼀:马科维茨投资组合理论投资组合(Portfolio)是由投资⼈或⾦融机构所持有的股票、、产品等组成的集合。
投资组合的⽬的在于分散风险,按粗略的分类有三种不同的模式可供运⽤,即积极的、中庸的和保守的。
投资组合理论[1]:若⼲种组成的,其收益是这些证券收益的加权平均数,但是其不是这些证券风险的加权平均风险,投资组合能降低。
⼈们进⾏投资,本质上是在不确定性的收益和风险中进⾏选择。
投资组合理论⽤均值-⽅差来刻画这两个关键因素。
其中均值是指投资组合的期望收益率,它是单只证券的期望收益率的加权平均,权重为相应的投资⽐例。
⽅差是指投资组合的收益率的⽅差。
我们把收益率的标准差称为波动率,它刻画了投资组合的风险。
那么在证券投资决策中应该怎样选择收益和风险的组合呢?投资组合理论主要通过研究"理性投资者"优化投资组合。
所谓理性投资者:是指在给定期望风险⽔平下对期望收益进⾏最⼤化,或者在给定期望收益⽔平下对期望风险进⾏最⼩化。
⼆:求解最优投资组合过程本⽂最优投资组合思想是:在给定期望收益⽔平下对期望风险进⾏最⼩化的投资。
利⽤的是马克维茨的均值-⽅差模型:本⽂实现最优投资组合的主要步骤:1:得到夏普⽐率最⼤时的期望收益2:得到标准差最⼩时的期望收益3:根据1,2所得的期望收益,获取预估期望收益范围,在预估期望收益范围内取不同值,获取其最⼩⽅差,得到预估期望收益与最⼩⽅差的关系即获得最⼩⽅差边界。
4:最⼩⽅差边界位于最⼩⽅差资产组合上⽅为有效边界5;获取最⼩⽅差边界上最⼤夏普⽐率,绘出CML6:得到最⼩⽅差边界上最⼤夏普⽐率处各股票权重三:实证数据⽤例:1:获取10股股票历史收盘价记录(2014.07.01—2017.07.01)(附件:stocks.xlsx)stocks=['601166', #兴业银⾏'600004', #⽩云机场'300099', #精准信息'601328', #交通银⾏'601318', #中国平安'601398', #中设股份'000333', #美的集团'600036', #招商银⾏'600016', #民⽣银⾏'601818'] #光⼤银⾏1.1:股票历史收盘价趋势折线图如下:2:计算预期收益率:连续复利收益率即对数收益率(附件:stock_revs.xlsx)revs=np.log(data/data.shift(1))3:⽤蒙特卡洛模拟产⽣⼤量随机组合,得到随机权重投资组合散点图如下:4:最优投资组合步骤:4.1:得到夏普⽐率最⼤时的期望收益def max_sharpe(weights):return -getPortfolioInformation(weights)[2]opts=sco.minimize(max_sharpe,numb * [1. / numb,], method='SLSQP',bounds=bnds, constraints=cons)getPortfolioInformation(opts['x']).round(4) #opts['x'] :得到夏普⽐率最⼤时的权重,收益率,标准差,夏普⽐率#此时权重:[ 3.21290938e-01 5.00704152e-02 8.67642540e-02 0.00000000e+00 5.41874393e-01 0.00000000e+00 0.00000000e+00 0.00000000e+000.00000000e+00 5.15579333e-16]# [收益率= 0.478 标准差=0.251 夏普⽐率=1.904]4.2: minimize:优化,最⼩化风险:⽅差最⼩化def min_variance(weights):return getPortfolioInformation(weights)[1] ** 2optv=sco.minimize(min_variance, numb * [1. / numb,],method='SLSQP', bounds=bnds,constraints=cons)#此时权重:[ 1.18917047e-01 1.00755105e-01 1.04406546e-01 4.08438380e-02 4.53999968e-02 0.00000000e+00 0.00000000e+00 9.16150836e-18 5.89677468e-01 1.52059355e-17]# [收益率= 0.309 标准差= 0.22 夏普⽐率=1.405]4.3:获取有效边界4.3.1:获取最⼩⽅差边界曲线图,最⼩⽅差资产组合,随机组合散点图:指定收益率范围 [0.1545, 0.5736 ],求最⼩⽅差:def min_sd(weights):return getPortfolioInformation(weights)[1]tvols = []infor_min_sd=[]#获取在指定期望收益下的最⼩标准差:for tret in trets:cons = ({'type': 'eq', 'fun': lambda x: getPortfolioInformation(x)[0] - tret},{'type': 'eq', 'fun': lambda x: np.sum(x)-1})res = sco.minimize(min_sd, numb * [1. / numb,], method='SLSQP',bounds=bnds, constraints=cons)infor_min_sd.append(res) # tret 唯⼀的tvols.append(res['fun']) #获取函数返回值,即最⼩标准差tvols = np.array(tvols)ind_min_sd = np.argmin(tvols) #最⼩⽅差组合处进⾏划分,分两段evols = tvols[:ind_min_sd]erets = trets[:ind_min_sd]tck = sci.splrep(erets,evols ) #B-Spline样条曲线函数 #前⼀个必须是唯⼀y2 = np.linspace(np.min(erets), np.max(erets), 100)x2 = sci.splev(y2, tck)evols = tvols[ind_min_sd:]erets = trets[ind_min_sd:]tck = sci.splrep(evols, erets)x3 = np.linspace(np.min(evols), np.max(evols), 100)y3 = sci.splev(x3, tck)plt.figure(figsize=(10, 8))plt.scatter(pvols, prets, c=prets/pvols,s=5, marker='.')plt.plot(x2, y2,'g',label=u"最⼩⽅差边界")plt.plot(x3, y3,'g',label=u"最⼩⽅差边界")plt.axhline(y=rev_min_variance,color='b',label=u"最⼩⽅差资产组合") #最⼩⽅差资产组合plt.plot(getPortfolioInformation(opts['x'])[1], getPortfolioInformation(opts['x'])[0],'r*', markersize=5.0)#最⼤夏普⽐率plt.plot(getPortfolioInformation(optv['x'])[1], getPortfolioInformation(optv['x'])[0],'y*', markersize=5.0)#最⼩⽅差plt.grid(True)plt.xlabel('Expect Volatility')plt.ylabel('Expect Return')plt.show()结果显⽰如下4.3.2:获取有效边界曲线图:plt.figure(figsize=(10, 8))plt.scatter(pvols, prets, c=prets/pvols,s=5, marker='.')plt.plot(x3, y3,'g',label=u"有效边界")plt.plot(getPortfolioInformation(opts['x'])[1], getPortfolioInformation(opts['x'])[0],'r*', markersize=8.0)#最⼤夏普⽐率plt.plot(getPortfolioInformation(optv['x'])[1], getPortfolioInformation(optv['x'])[0],'y*', markersize=8.0)#最⼩⽅差plt.grid(True)plt.xlabel('Expect Volatility')plt.ylabel('Expect Return')plt.show()5:获取最⼩⽅差边界上最⼤夏普⽐率,绘出CML5.1: B-Spline样条曲线的参数tck = sci.splrep(evols, erets)5.2: B-Spline样条曲线函数def f(x):return sci.splev(x, tck, der=0)5.3: B-Spline样条曲线函数⼀阶导数def df(x):return sci.splev(x, tck, der=1)5.4:构造⾮线性函数,使函数fun(x)⽆限逼近0向量, risk_free_return:⽆风险收益,默认为0.00def fun(x, risk_free_return=0.00):e1 = risk_free_return - x[0]e2 = risk_free_return + x[1] * x[2] - f(x[2])e3 = x[1] - df(x[2])return e1, e2, e35.5 利⽤最⼩⼆乘法⽆限逼近0,⽆风险收益率:0,斜率:0.5,初始⾃变量:zoneX = sco.fsolve(fun, [0.00, 0.50, zone])plt.figure(figsize=(12, 6))#圆点为随机资产组合plt.scatter(pvols, prets,c=prets/ pvols,s=5, marker='.')#随机组合散点集plt.plot(x3, y3,'g',label=u"有效边界")plt.plot(getPortfolioInformation(opts['x'])[1], getPortfolioInformation(opts['x'])[0],'g*', markersize=5.0)#最⼤夏普⽐率plt.plot(getPortfolioInformation(optv['x'])[1], getPortfolioInformation(optv['x'])[0],'y*', markersize=5.0)#最⼩⽅差#设定资本市场线CML的x范围从0到1.5最⼤夏普利率时标准差值x = np.linspace(0.0, 1.5*zone)#带⼊公式a+b*x求得y,作图plt.plot(x, X[0] + X[1] * x, lw=1.5)#标出资本市场线与有效边界的切点,绿星处plt.plot(X[2], f(X[2]), 'r*', markersize=5.0)plt.grid(True)plt.axhline(0, color='k', ls='--', lw=2.0)plt.axvline(0, color='k', ls='--', lw=2.0)plt.xlabel('expected volatility')plt.ylabel('expected return')plt.colorbar(label='Sharpe ratio')plt.show()#最⼤夏普⽐率点: (0.251241778282 ,0.478266895458) #切点: (0.251147161667, 0.4781282509275755)结果图如下:6: 得到最⼩⽅差边界上最⼤夏普⽐率处各股票权重:根据收益率差绝对值最⼩选取权重进⾏投资:rev_result=f(X[2])flag=0temp=abs(trets[0]-rev_result)length=len(trets)for i in range(1,length):if abs(trets[i]-rev_result)<temp:temp=trets[i]-rev_resultflag=iweight_result=infor_min_sd[flag]['x']all=0 #最终为 1.0for i in range(10):all=all+weight_result[i]print('{:.5f}'.format(weight_result[i]))# weight_result=[ 0.00000 0.04802 #⽩云机场0.00000 0.85880 #交通银⾏ 0.00000 0.00000 0.00000 0.00000 0.09318 #民⽣银⾏ 0.00000 ]故最终投资股票是:0.04802 #⽩云机场0.85880 #交通银⾏0.09318 #民⽣银⾏。
投资组合理论与资本资产定价模型CAPM
投资组合理论与资本资产定价模型CAPM投资组合理论与资本资产定价模型(CAPM)是金融学中两个基本的理论框架,用于解释资本市场的行为和为投资者提供投资决策的依据。
投资组合理论是由美国经济学家哈里·马科维茨(Harry Markowitz)于1952年提出的,也是他获得1990年诺贝尔经济学奖的主要理论基础。
该理论认为,投资者可以通过合理配置资金,选择不同风险和收益水平的资产组合,从而实现在给定风险下最大化收益或在给定收益下最小化风险的目标。
通过将不同资产之间的相关性考虑在内,投资者可以通过分散投资来降低投资组合的整体风险。
资本资产定价模型(CAPM)是由美国经济学家威廉·夏普(William Sharpe)、芝加哥大学教授约翰·林特纳(John Lintner)和莱芜丝·特雷南伯格(Jan Mossin)于1964年同时独立提出的。
CAPM认为,资产的预期回报率与其系统风险(与整个市场波动相关的风险)成正比,与无风险利率成反比。
该模型通过将投资者面临的风险分解为系统风险和非系统风险(特异风险)两部分,提供了确定资产预期回报率的方法。
CAPM认为,投资者应该通过以无风险资产利率为基准,根据投资组合整体风险水平确定预期回报率。
投资组合理论和CAPM在投资决策中起着重要的作用。
投资组合理论强调通过选择不同相关性的资产来实现分散投资,降低整体风险。
投资者可以通过投资不同资产类别(如股票、债券、房地产等)来达到分散投资的目的。
而CAPM通过考虑整个市场风险来确定资产预期回报率,为投资者提供了估计资产预期回报率的方法,从而辅助投资者做出投资决策。
然而,投资组合理论和CAPM也存在一些局限性。
首先,投资组合理论和CAPM都是基于一系列假设和简化条件建立的,如理性投资者、完全市场、无摩擦成本等,因此在实际应用中存在局限性。
其次,CAPM是基于市场均衡的理论,没有考虑其他因素对资产价格的影响,如宏观经济因素、公司基本面等,因此在预测和解释市场波动方面具有一定的局限性。
最优投资组合公式
最优投资组合公式在投资领域中,最优投资组合是指在给定的投资标的和风险偏好条件下,能够最大化投资者预期收益或最小化风险的投资组合。
最优投资组合公式是一种数学模型,它通过计算各种资产的权重来确定最佳的投资组合。
最常用的最优投资组合模型是马科维茨组合理论,由于这个理论的重要性,它被广泛应用于投资管理和资产配置领域。
马科维茨组合理论是由美国经济学家哈里·马科维茨在20世纪50年代提出的,该理论认为,投资组合的风险与各种资产之间的相关性有关,而不仅仅是单个资产的风险。
其基本公式如下:E(Rp) = ∑(i=1)^(N) wi * E(Ri)其中,E(Rp)表示投资组合的预期收益,N表示投资标的的数量,wi表示第i个资产在投资组合中的权重,E(Ri)表示第i个资产的预期收益。
此外,马科维茨组合理论还引入了投资组合的方差来衡量风险,方差公式如下:Var(Rp) = ∑(i=1)^(N) ∑(j=1)^(N) wi * wj * σij其中,Var(Rp)表示投资组合的方差,σij表示第i个资产和第j个资产之间的协方差。
为了达到最优投资组合,投资者需要在预期收益和风险之间做出权衡。
马科维茨通过引入风险厌恶系数(λ)来控制风险和收益的权衡关系,从而得到最优投资组合。
最优投资组合可以通过求解以下公式得到:min λ * Var(Rp) - E(Rp)约束条件如下:∑(i=1)^(N) wi = 1wi ≥ 0该优化问题需要使用数学优化算法进行求解,例如线性规划、二次规划或有效前沿算法等。
在实际应用中,投资者可以通过历史数据或专业机构提供的数据来估计资产的预期收益和风险。
通过不断调整投资组合的权重,投资者可以根据自身的风险偏好和投资目标来选择最优投资组合。
需要注意的是,最优投资组合公式仅是一个数学模型,其结果可能受到多种因素影响,包括资产预期收益和风险的准确性、相关性的变化、投资者的风险偏好以及投资时段等。
投资组合理论
投资组合理论投资组合理论(Portfolio Theory)投资组合理论简介投资组合理论有狭义和广义之分。
狭义的投资组合理论指的是马柯维茨投资组合理论;而广义的投资组合理论除了经典的投资组合理论以及该理论的各种替代投资组合理论外,还包括由资本资产定价模型和证券市场有效理论构成的资本市场理论。
同时,由于传统的EMH不能解释市场异常现象,在投资组合理论又受到行为金融理论的挑战。
[编辑]投资组合理论的提出[1]美国经济学家马考维茨(Markowitz)1952年首次提出投资组合理论(Portfolio Theory),并进行了系统、深入和卓有成效的研究,他因此获得了诺贝尔经济学奖。
该理论包含两个重要内容:均值-方差分析方法和投资组合有效边界模型。
在发达的证券市场中,马科维茨投资组合理论早已在实践中被证明是行之有效的,并且被广泛应用于组合选择和资产配置。
但是,我国的证券理论界和实务界对于该理论是否适合于我国股票市场一直存有较大争议。
从狭义的角度来说,投资组合是规定了投资比例的一揽子有价证券,当然,单只证券也可以当作特殊的投资组合。
人们进行投资,本质上是在不确定性的收益和风险中进行选择。
投资组合理论用均值—方差来刻画这两个关键因素。
所谓均值,是指投资组合的期望收益率,它是单只证券的期望收益率的加权平均,权重为相应的投资比例。
当然,股票的收益包括分红派息和资本增值两部分。
所谓方差,是指投资组合的收益率的方差。
我们把收益率的标准差称为波动率,它刻画了投资组合的风险。
人们在证券投资决策中应该怎样选择收益和风险的组合呢?这正是投资组合理论研究的中心问题。
投资组合理论研究“理性投资者”如何选择优化投资组合。
所谓理性投资者,是指这样的投资者:他们在给定期望风险水平下对期望收益进行最大化,或者在给定期望收益水平下对期望风险进行最小化。
因此把上述优化投资组合在以波动率为横坐标,收益率为纵坐标的二维平面中描绘出来,形成一条曲线。
马科维茨投资组合理论模型
马科维茨投资组合理论模型
1 马科维茨投资组合理论
马克·科维茨(Markowitz)投资组合理论是一种采用数学工具来评估投资组合最优化的价值投资方法。
它的目的在于帮助投资者实现取得最大的投资回报,同时将风险保持在一个更合理的水平。
科维茨说,有一种投资组合可以达到最大的投资回报,其风险跟另一种投资组合相同。
也可以用资本资产定价模型(CAPM)来实现这一点。
2 科维茨假设
马克·科维茨(Markowitz)投资组合理论假设只有两个因素可以影响投资组合的收益:风险和期望收益。
科维茨假设个体投资者都有一个趋向于尽可能获得最大回报的目标,他认为这是投资目标的核心原则。
为了实现最高的投资回报,投资者应根据他们的投资目标和风险容忍度,以及预期投资行业的收益率,制定一个体面的投资组合,使之尽可能获得最大的投资回报。
3 评估投资组合
马克·科维茨(Markowitz)投资理论定义了两个投资组合评估指标:1)期望收益,2)投资组合的系统性风险。
期望收益作为投资组合的衡量指标,是投资组合在一定时间内的有效收益的预期值。
投资组合的系统风险是投资组合的整体风险,可以由波动率和夏普比率来衡量。
4 总结
马克·科维茨(Markowitz)投资组合理论引入了投资领域众多新的概念,其中包括期望收益,系统性风险,夏普比率等指标,为投资者制定投资组合,获得最大回报提供了可靠可行的途径,并成为当今价值投资的重要理论基础。
马科维茨投资组合理论
马科维茨投资组合理论马科维茨(Harry M.Markowitz,)1990年因其在1952年提出的投资组合选择(Portfolio Selection)理论获得诺贝尔经济学奖。
主要贡献:发展了一个在不确定条件下严格陈述的可操作的选择资产组合理论:均值方差方法 Mean-Variance methodology.主要思想:Markowitz 把投资组合的价格变化视为随机变量,以它的均值来衡量收益,以它的方差来衡量风险(因此Markowitz 理论又称为均值-方差分析);把投资组合中各种证券之间的比例作为变量,那么求收益一定的风险最小的投资组合问题就被归结为一个线性约束下的二次规划问题。
再根据投资者的偏好,由此就可以进行投资决策。
基本假设:H1. 所有投资都是完全可分的。
每一个人可以根据自己的意愿(和支出能力)选择尽可能多的或尽可能少的投资。
H2. 一个投资者愿意仅在收益率的期望值和方差(标准差)这两个测度指标的基础上选择投资组合。
p E =对一个投资组合的预期收益率p σ=对一个投资组合的收益的标准差(不确定性)H3. 投资者事先知道投资收益率的概率分布,并且收益率满足正态分布的条件。
H4. 一个投资者如何在不同的投资组合中选择遵循以下规则:一,如果两个投资组合有相同的收益的标准差和不同的预期收益,高的预期收益的投资组合会更为可取; 二,如果两个投资组合有相同的收益的预期收益和不同的标准差,小的标准差的组合更为可取;三,如果一个组合比另外一个有更小的收益标准差和更高的预期收益,它更为可取。
基本概念1.单一证券的收益和风险:对于单一证券而言,特定期限内的投资收益等于收到的红利加上相应的价格变化,因此特定期限内的投资收益为:11P P P t t t r --==价格变化+现金流(如果有)持有期开始时的价格-+CF 假定投资者在期初时已经假定或预测了该投资期限内的投资收益的概率分布;将投资收益看成是随机变量。
马科维茨投资组合理论
第四章 马科维茨投资组合理论马科维茨(Harry M.Markowitz,) 1927年生于美国,1952年获芝加哥大学博士学位。
他曾任职于兰德公司,后为纽约市立大学巴鲁齐学院教授。
1990年因其在1952年提出的投资组合选择(Portfolio Selection)理论获得诺贝尔经济学奖。
Markowitz 诺贝尔奖演说结语oeconomics of action under “Finally, I would like to add a comment concerning portfolio theory as a part of the micruncertainty. It has not always been considered so. For example, when I defended my dissertation as a student in the Economics Department of the University of Chicago, Professor Milton Friedman argued that portfolio theory was not Economics, and that they could not award me a Ph.D. degree in Economics for a dissertation which was not in Economic I assume that he was only half serious, since they did award me the degree without long debate. As to the merits of arguments, at this point I am quite willing to concede: at the time I defended my dissertation, portfolio theory was of Economics. But now it is.”“当我作为芝加哥大学经济系的学生为我的博士论文答辩时,米尔顿·弗里德曼教授认为证券组合理论不是经济学,因而他们不能为一篇不是经济学的论文授予经济学的博士学位。
马科维茨投资组合理论模型
马科维茨投资组合理论模型
马科维茨投资组合理论模型是由美国经济学家马科维茨提出的一种投资组合理论,该理论模型通过对投资组合和投资组合收益率的分析,提出了一种最优投资组合的概念,这种投资组合可以满足投资者的期望收益和风险最小化的要求。
马科维茨投资组合理论模型的基本概念是,当给定一定的投资资金,可以通过不同的投资组合,即不同投资产品的组合,使投资者的收益最大化。
该模型也引入了风险因素,通过对投资组合和投资组合收益率的分析,提出了最优投资组合的概念。
马科维茨投资组合理论模型的应用非常广泛,它可以帮助投资者进行投资决策。
该理论模型可以帮助投资者选择最佳的投资组合,以满足投资者的期望收益和风险最小化的要求,从而更好地实现投资目标。
此外,它还可以帮助投资者估算投资组合的收益率和风险,从而更好地进行投资。
马科维茨投资组合理论模型也可以帮助投资者灵活地进行投资,根据投资者的风险承受能力,可以调整投资组合,以满足投资者的投资目标。
此外,该理论模型还可以帮助投资者更好地识别投资机会,以获得更高的投资收益。
总的来说,马科维茨投资组合理论模型是一种有效的投资组合理论,
它可以帮助投资者更好地实现投资目标,更好地进行投资决策,并获得更高的投资收益。
马科维茨投资组合理论
第一节 马科维兹投资组合理论 的假设条件和主要内容
一、主要内容 二、假设条件
2020/6/18
投资学第二章
4
一、主要内容
马科维茨(H. Markowitz, 1927~) 《证券组合选择理论》
有着棕黄色头发,高大 身材,总是以温和眼神 凝视他人,说话细声细 语并露出浅笑。
这个理论演变成进一步研究金融经济学的基础. 这 一理论通常被认为是现代金融学的发端.
这一理论的问世,使金融学开始摆脱了纯粹的描述 性研究和单凭经验操作的状态, 标志着数量化方法 进入金融领域。 马科维茨的工作所开始的数量化 分析和MM理论中的无套利均衡思想相结合,酝酿了 一系列金融学理论的重大突破。
➢ 对于证券组合而言,它的回报率可以用同样的方法 计算:
r P ( W 1 W 0 )/W 0 ,即 W ( 01 + r P ) = W 1
化
2020/6/18
投资学第二章
16
什么是投资组合
狭义的定义:是指如何构筑各种有价证 券的头寸(包括多头和空头)来最好地 符合投资者的收益和风险的权衡。
广义的定义:包括对所有资产和负债的 构成做出决策,甚至包括人力资本(如 教育和培训)的投资在内。
▪ 我们的讨论限于狭义的含义。
2020/6/18
2020/6/18
投资学第二章
7
Markowitz 的基本思想
冲”。因此,投资不要“把鸡蛋放在一个篮 子里”,而要“分散化”。 在某种“最优投资”的意义下,收益大意味 着要承担的风险也更大。
2020/6/18
投资学第二章
8
2020/6/18
投资学第二章
5
❖ 瑞典皇家科学院决定将1990年诺贝尔奖授 予纽约大学哈利.马科维茨(Harry Markowitz)教授,为了表彰他在金融经济学 理论中的先驱工作—资产组合选择理论。
马科维茨投资组合理论
马科维茨投资组合理论马科维茨(Harry M.Markowitz,)1990年因其在1952年提出的投资组合选择(Portfolio Selection)理论获得诺贝尔经济学奖。
主要贡献:发展了一个在不确定条件下严格陈述的可操作的选择资产组合理论:均值方差方法 Mean-Variance methodology.主要思想:Markowitz 把投资组合的价格变化视为随机变量,以它的均值来衡量收益,以它的方差来衡量风险(因此Markowitz 理论又称为均值-方差分析);把投资组合中各种证券之间的比例作为变量,那么求收益一定的风险最小的投资组合问题就被归结为一个线性约束下的二次规划问题。
再根据投资者的偏好,由此就可以进行投资决策。
基本假设:H1. 所有投资都是完全可分的。
每一个人可以根据自己的意愿(和支出能力)选择尽可能多的或尽可能少的投资。
H2. 一个投资者愿意仅在收益率的期望值和方差(标准差)这两个测度指标的基础上选择投资组合。
p E =对一个投资组合的预期收益率p σ=对一个投资组合的收益的标准差(不确定性)H3. 投资者事先知道投资收益率的概率分布,并且收益率满足正态分布的条件。
H4. 一个投资者如何在不同的投资组合中选择遵循以下规则:一,如果两个投资组合有相同的收益的标准差和不同的预期收益,高的预期收益的投资组合会更为可取; 二,如果两个投资组合有相同的收益的预期收益和不同的标准差,小的标准差的组合更为可取;三,如果一个组合比另外一个有更小的收益标准差和更高的预期收益,它更为可取。
基本概念1.单一证券的收益和风险:对于单一证券而言,特定期限内的投资收益等于收到的红利加上相应的价格变化,因此特定期限内的投资收益为:11P P P t t t r --==价格变化+现金流(如果有)持有期开始时的价格-+CF 假定投资者在期初时已经假定或预测了该投资期限内的投资收益的概率分布;将投资收益看成是随机变量。
马科维茨投资组合理论
马科维茨投资组合理论简介马科维茨投资组合理论是由美国经济学家哈里·马科维茨在1952年提出的。
这个理论提供了一种方法来帮助投资者优化他们的投资组合,以达到预期收益最大化和风险最小化的目标。
马科维茨投资组合理论奠定了现代金融学的基础,同时也成为了投资组合管理中的重要理论工具。
基本原理马科维茨投资组合理论基于一个重要的概念,即投资组合的风险和收益是由各个资产之间的相关性决定的。
根据这个理论,投资者可以通过正确地选择不同风险和收益水平的资产,从而实现不同的投资组合。
马科维茨认为,通过适当地组合多个资产,可以降低整体投资组合的风险,同时提高预期收益。
为了构建一个有效的投资组合,马科维茨提出了一种数学模型,称为方差-协方差模型。
这个模型可以帮助投资者确定不同资产在投资组合中的权重,从而使得投资组合在给定风险水平下具有最大的预期收益。
方差-协方差模型假设资产的收益率服从正态分布,并且通过计算资产之间的协方差矩阵来衡量不同资产之间的相关性。
投资组合优化根据马科维茨投资组合理论,投资者可以通过以下步骤来优化他们的投资组合:1.收集数据:投资者需要收集相关的资产数据,包括历史收益率和协方差矩阵。
这些数据可以来自金融数据提供商或者自行计算。
2.设定目标:投资者需要明确自己的投资目标,包括收益预期和风险承受能力。
这些目标将指导投资者在优化投资组合时的决策。
3.构建投资组合:根据目标和收集的资产数据,投资者可以使用数学模型(如方差-协方差模型)来计算不同资产的权重,从而构建投资组合。
这个过程通常需要使用优化算法来搜索最优解。
4.评估投资组合:投资者需要定期评估投资组合的表现,包括预期收益、风险和投资者的目标是否相符。
如果需要,投资者可以调整投资组合的权重以适应市场变化。
优势与局限马科维茨投资组合理论的优势在于它提供了一种科学的方法来优化投资组合,同时考虑了不同资产之间的相关性。
通过根据投资者的目标和风险承受能力来构建投资组合,可以有效地平衡风险和收益。
马科维茨投资组合理论
马科维茨投资组合理论马科维茨(Harry M.Markowitz,)1990年因其在1952年提出的投资组合选择(Portfolio Selection)理论获得诺贝尔经济学奖。
主要贡献:发展了一个在不确定条件下严格陈述的可操作的选择资产组合理论:均值方差方法 Mean-Variance methodology.主要思想:Markowitz 把投资组合的价格变化视为随机变量,以它的均值来衡量收益,以它的方差来衡量风险(因此Markowitz 理论又称为均值-方差分析);把投资组合中各种证券之间的比例作为变量,那么求收益一定的风险最小的投资组合问题就被归结为一个线性约束下的二次规划问题。
再根据投资者的偏好,由此就可以进行投资决策。
基本假设:H1. 所有投资都是完全可分的。
每一个人可以根据自己的意愿(和支出能力)选择尽可能多的或尽可能少的投资。
H2. 一个投资者愿意仅在收益率的期望值和方差(标准差)这两个测度指标的基础上选择投资组合。
p E =对一个投资组合的预期收益率p σ=对一个投资组合的收益的标准差(不确定性)H3. 投资者事先知道投资收益率的概率分布,并且收益率满足正态分布的条件。
H4. 一个投资者如何在不同的投资组合中选择遵循以下规则:一,如果两个投资组合有相同的收益的标准差和不同的预期收益,高的预期收益的投资组合会更为可取; 二,如果两个投资组合有相同的收益的预期收益和不同的标准差,小的标准差的组合更为可取;三,如果一个组合比另外一个有更小的收益标准差和更高的预期收益,它更为可取。
基本概念1.单一证券的收益和风险:对于单一证券而言,特定期限内的投资收益等于收到的红利加上相应的价格变化,因此特定期限内的投资收益为:11P P P t t t r --==价格变化+现金流(如果有)持有期开始时的价格-+CF 假定投资者在期初时已经假定或预测了该投资期限内的投资收益的概率分布;将投资收益看成是随机变量。
投资组合理论.
一、投资组合理论1952年3月,马科维茨在《财务杂志》上发表了一篇题为“组合选择”的长篇论文,提出了投资组合理论(portfolio theory)的基本原则。
文章中主要运用了统计分析方法,其中“不要把鸡蛋放在一个篮子里”的思想深刻地揭示了合理投资组合设计的核心。
为表彰马科维茨为发展和推动投资组合理论所作出的杰出贡献,瑞典皇家科学院授予他和其他两位财务经济学家(夏普、米勒)1990 年度的诺贝尔经济学奖。
(一)、投资组合理论的假设前提首先以理性投资者投资行为的某些特定假设条件为前提。
这些假设条件包括:1.每一个投资机会都可以投资期间预期投资收益率的概率分布来表示;2.投资者所具有的效用曲线都遵循边际效用递减规律;3.每个人都根据预期收益的变化来估量风险;4.投资者仅仅依据预期投资收益和风险作出投资决策;5.在给定的收益水平下,投资者会优先选择风险低的投资方案。
(二)、理论1、投资组合理论的基本目标马科维茨通过“预期报酬方差分析”方法得出在各种证券组合情况下的一般规则,在给定的预期报酬下期望组合风险最小;在给定的组合风险下,期望投资收益最大。
上述要求体现了投资组合理论的基本目标。
2、马科维茨还提出,证券组合的风险不仅依赖其所含的个别证券的特征,而且还依赖于它们之间的关系。
在投资组合中,须考虑每一种证券的期望收益与证券组合的期望收益的相互关系;每一种证券的标准差,以及各种证券的相互关系与投资组合标准差之间的关系。
3.相关指标期望收益、方差、标准差、协方差cov(r1,r2)、相关系数ρA B=cov(r1,r2)/sdr1*sdr2投资组合的期望收益=R p = X A× R A+ X B× R B投资组合的方差=X2A×σ2A+ 2 X A X BσA B+ X2B ×σ2 BρA B<1,投资组合的标准差小于组合中各种证券标准差的加权平均数。
贝塔系数βi =Cov( Ri , RM )/ σ2(R M)二、资本资产定价模型资本资产定价模型就是在投资组合理论和资本市场理论基础上形成发展起来的证券投资理论,主要研究证券市场中资产的预期收益率与风险资产之间的关系,以及均衡价格是如何形成的。
马科维茨投资组合理论讲解
2020/10/1
投资学第二章
12
二、假设
投资者将一笔资金在给定时期(持有期)里进 行投资,在期初,他购买一些证券,然后在期 末全部卖出,那么在期初他将决定购买哪些 证券,资金在这些证券上如何分配?
及其中蕴涵的多元化投资、风险、收益 间关系。重点内容
。
2020/10/1
投资学第二章
2
第一节 马科维兹投资组合理论的假设和主要内 容
第二节 证券收益与风险的度量——均值、方差 及协方差与投资组合的风险分散效应
第三节 证券投资组合的可行集、有效集与最优 投资组合
2020/10/1
投资学第二章
3
第一节 马科维兹投资组合理论 的假设条件和主要内容
2.投资者事先知道投资收益率的概率分布,并 且收益率满足正态分布的条件。
2020/10/1
投资学第二章
14
3.资者的效用函数是二次的,即u(W)=a+bW+CW2。
(注意:假设2和3成立可保证期望效用仅仅是财富期 望和方差的函数)
4.投资者以期望收益率(亦称收益率均值)来衡量未 来实际收益率的总体水平,以收益率的方差(或标 准差)来衡量收益率的不确定性(风险),因而投 资者在决策中只关心投资的期望收益率和方差。
2020/10/1
投资学第二章
6
主要贡献
发展了一个在不确定条件下严格陈述的可操作的选
择资产组合理论:均值方差方法 Mean-Variance methodology.
投资学中的投资组合理论马科维茨模型的进阶应用
投资学中的投资组合理论马科维茨模型的进阶应用投资组合理论是投资学中的重要分支,马科维茨模型是其中最具代表性的模型之一。
这一模型提供了一种优化投资组合配置的方法,以帮助投资者在风险和回报之间实现最佳平衡。
然而,随着金融市场的不断发展和投资环境的变化,马科维茨模型也需要不断进行进一步的应用和完善。
一、马科维茨模型的基本原理马科维茨模型是由美国经济学家哈里·马科维茨于20世纪50年代提出的。
它的基本原理是将不同资产之间的关联性考虑进去,通过数学模型计算出每种资产在投资组合中的权重,从而实现在给定风险水平下最大化预期回报,或者在给定预期回报水平下最小化风险。
二、马科维茨模型的进阶应用:风险权重资产分配在传统的马科维茨模型中,所有资产的风险程度被视为相同,但实际上不同资产之间的风险水平是不同的。
因此,在进一步应用马科维茨模型时,可以将不同资产的风险权重考虑在内。
风险权重资产分配是一种基于资产风险权重的投资组合优化方法。
通过为每个资产分配相应的权重,将每种资产的风险水平纳入考虑,从而实现更为精确的投资组合配置。
三、马科维茨模型的进阶应用:条件风险模型传统的马科维茨模型假设投资市场服从正态分布,但实际上市场的波动往往是非对称的,存在尖峰厚尾的特征。
因此,在进一步应用马科维茨模型时,可以考虑条件风险模型。
条件风险模型是一种考虑市场波动的非对称性的投资组合优化方法。
通过引入条件风险指标,如风险价值(Value at Risk)等,可以更准确地控制投资组合的风险,并降低投资者在不稳定市场环境下的损失。
四、马科维茨模型的进阶应用:动态投资组合调整传统的马科维茨模型假设投资者的投资组合不会发生变化,但实际上投资者的风险偏好和资金流入情况是不断变化的。
因此,在进一步应用马科维茨模型时,可以考虑动态调整投资组合。
动态投资组合调整是一种基于投资者风险偏好和资金流入情况的投资组合优化方法。
通过定期调整投资组合的权重,根据投资者的需求和市场情况进行灵活的资产配置,以实现更好的风险控制和回报增长。
马科维茨投资组合理论-课件
Corr(RA,
RB)
-1.0 +1.0
完全正相关: +1.0
完全负相关: -1.0
完全负相关会使风险消失
完全正相关不会减少风险
在 -1.0 和 +1.0 之间的相关性可减少风险但不是 全部
2021/6/18
投资学第二章
31
六、方差——多个证券组合的方差协方差矩 阵(第八个概念)
nn
投资学第二章
25
沿用上面的表示方法,一个证券在该时期的方 差是未来收益可能值对期望收益率的偏离(通
常称为离差)的平方的加权平均,权数是相应 的可能值的概率。记方差为2,即有
2 Prs()[r(s)E(r)]2
s
方差越大
2021/6/18
风险 越大
投资者选 择方差较 小的证券
投资学第二章
26
三、方差——两个证券组合预期收益的方差 (第四个概念)
σ
2 i
2021/6/18
投资学第二章
34
一个资产组合预期收益和风险的案例
A公司的股票价值对糖的价格很敏感。多年 以来,当加勒比海糖的产量下降时,糖的价 格便猛涨,而A公司便会遭受巨大的损失, 见下表
2021/6/18
投资学第二章
35
B公司的股票情况分析
2021/6/18
投资学第二章
36
假定某投资者考虑下列几种可供选择的资产 ,一种是持有A公司的股票,一种是购买无 风险资产,还有一种是持有B公司的股票。 现已知投资者50%持有的A公司的股票,另 外50%该进行如何选择。无风险资产的收益 率为5%。
2021/6/18
投资学第二章
29
五、相关系数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/9/25
投资学第二章
4
一、主要内容
马科维茨(H. Markowitz, 1927~) 《证券组合选择理论》
有着棕黄色头发,高大 身材,总是以温和眼神 凝视他人,说话细声细 语并露出浅笑。
2020/9/25
投资学第二章
5
❖ 瑞典皇家科学院决定将1990年诺贝尔奖授 予纽约大学哈利.马科维茨(Harry Markowitz)教授,为了表彰他在金融经济学 理论中的先驱工作—资产组合选择理论。
2020/马科维兹投资组合理论的假设为:
1.单期投资
单期投资是指投资者在期初投资,在期末获 得回报。单期模型是对现实的一种近似描述 ,如对零息债券、欧式期权等的投资。虽然 许多问题不是单期模型,但作为一种简化, 对单期模型的分析成为我们对多时期模型分 析的基础。
2.投资者事先知道投资收益率的概率分布,并 且收益率满足正态分布的条件。
5.投资者都是不知足的和厌恶风险的,遵循占优原则 ,即:在同一风险水平下,选择收益率较高的证券 ;在同一收益率水平下,选择风险较低的证券。
2020/9/25
投资学第二章
15
第二节 证券收益与风险的度量及证券 组合的风险分散化效应
一、价格与回报率
二、期望收益率
三、方差
四、协方差
五、相关系数
六、证券组合的方差 、协方差和风险的分散
2020/9/25
投资学第二章
6
主要贡献
发展了一个在不确定条件下严格陈述的可操作的选
择资产组合理论:均值方差方法 Mean-Variance methodology.
这个理论演变成进一步研究金融经济学的基础. 这 一理论通常被认为是现代金融学的发端.
这一理论的问世,使金融学开始摆脱了纯粹的描述 性研究和单凭经验操作的状态, 标志着数量化方法 进入金融领域。 马科维茨的工作所开始的数量化 分析和MM理论中的无套利均衡思想相结合,酝酿了 一系列金融学理论的重大突破。
,及其中蕴涵的多元化投资、风险、收 益间关系。重点内容
。
2020/9/25
投资学第二章
2
第一节 马科维兹投资组合理论的假设和主要内 容
第二节 证券收益与风险的度量——均值、方差 及协方差与投资组合的风险分散效应
第三节 证券投资组合的可行集、有效集与最优 投资组合
2020/9/25
投资学第二章
3
第一节 马科维兹投资组合理论 的假设条件和主要内容
2020/9/25
投资学第二章
11
再次,通过对某种证券的期望回报率、回报 率的方差和某一证券与其它证券之间回报率 的相互关系(用协方差度量)这三类信息的 适当分析,辨识出有效投资组合在理论上是 可行的。
最后,通过求解二次规划,可以算出有效投 资组合的集合,计算结果指明各种证券在投 资者的资金中占多大份额,以便实现投资组 合的效性——即对给定的风险使期望回报率 最大化,或对于给定的期望回报使风险最小 化。
2020/9/25
投资学第二章
12
二、假设
投资者将一笔资金在给定时期(持有期)里进 行投资,在期初,他购买一些证券,然后在期 末全部卖出,那么在期初他将决定购买哪些 证券,资金在这些证券上如何分配?
投资者的选择应该实现两个相互制约的目标 ——预期收益率最大化和收益率不确定性( 风险)的最小化之间的某种平衡。
马科维兹模型概要
马科维兹于1952年提出的“均值-方差组合模型”是在 禁止融券和没有无风险借贷的假设下,以资产组合中
个别股票收益率的均值和方差找出投资组合的有效边 界(Efficient Frontier),即一定收益率水平下方差最 小的投资组合,并导出投资者只在有效边界上选择投
资组合。根据马科维兹资产组合的概念,欲使投资组
2020/9/25
投资学第二章
14
3.资者的效用函数是二次的,即u(W)=a+bW+CW2。
(注意:假设2和3成立可保证期望效用仅仅是财富期 望和方差的函数)
4.投资者以期望收益率(亦称收益率均值)来衡量未 来实际收益率的总体水平,以收益率的方差(或标 准差)来衡量收益率的不确定性(风险),因而投 资者在决策中只关心投资的期望收益率和方差。
化
2020/9/25
投资学第二章
16
什么是投资组合
狭义的定义:是指如何构筑各种有价证 券的头寸(包括多头和空头)来最好地 符合投资者的收益和风险的权衡。
广义的定义:包括对所有资产和负债的 构成做出决策,甚至包括人力资本(如 教育和培训)的投资在内。
▪ 我们的讨论限于狭义的含义。
2020/9/25
投资学第二章
7
Markowitz 的基本思想
风险在某种意义下是可以度量的。 各种风险有可能互相抑制,或者说可能“对
冲”。因此,投资不要“把鸡蛋放在一个篮 子里”,而要“分散化”。 在某种“最优投资”的意义下,收益大意味 着要承担的风险也更大。
2020/9/25
投资学第二章
8
合风险最小,除了多样化投资于不同的股票之外,还 应挑选相关系数较低的股票。因此,马科维兹的“均值 -方差组合模型”不只隐含将资金分散投资于不同种类 的股票,还隐含应将资金投资于不同产业的股票。同
时马科维兹均值-方差模型也是提供确定有效边界的
技术路径的一个规范性数理模型。
2020/9/25
投资学第二章
9
❖ 实现方法:
收益——证券组合的期望报酬 风险——证券组合的方差 风险和收益的权衡——求解二次规划
2020/9/25
投资学第二章
10
首先,投资组合的两个相关特征是:(1)它的 期望回报率(2)可能的回报率围绕其期望偏离 程度的某种度量,其中方差作为一种度量在分析 上是最易于处理的。
其次,理性的投资者将选择并持有有效率投资组 合,即那些在给定的风险水平下的期望回报最大 化的投资组合,或者那些在给定期望回报率水平 上的使风险最小化的投资组合。
第二章 马科维茨投资组合理 论(均方模型)
2020/9/25
投资学第二章
1
❖教学目的及要求
1、掌握多元化投资分散风险的原理
2、掌握均值-方差模型描述的构建有效 投资组合的技术路径
3、掌握证券投资组合的系统性风险和非 系统性风险的内涵及与市场收益的关系
本章重点掌握马科维兹投资组合理论的 假设条件的合理性及有效投资组合选择