泡沫混凝土的收缩性能--翻译
混凝土的收缩性能及其控制原理
混凝土的收缩性能及其控制原理一、引言混凝土是一种常用的建筑材料,其收缩性能对混凝土结构的性能、耐久性和使用寿命具有重要的影响。
混凝土的收缩性能是指在干燥过程中由于水分的蒸发而导致的体积缩小现象。
这种缩小现象是由于混凝土中的水分分子从表面和孔隙中逸出而引起的。
混凝土的收缩性能可以通过控制混凝土的材料成分、配合比和养护方式来进行控制。
本文将详细介绍混凝土的收缩性能及其控制原理。
二、混凝土的收缩性能1. 混凝土的收缩分类混凝土的收缩可分为干缩、水泥基材料收缩和温度收缩三种。
其中干缩是指混凝土在干燥过程中由于水分的蒸发而导致的体积缩小现象。
水泥基材料收缩是指混凝土中的水泥基材料在硬化过程中由于自身物理化学反应引起的体积缩小现象。
温度收缩是指混凝土在温度变化过程中由于热胀冷缩而引起的体积变化现象。
2. 混凝土的干缩混凝土的干缩是指混凝土在干燥过程中由于水分的蒸发而引起的体积缩小现象。
干缩是混凝土收缩中最为常见的一种,也是最为重要的一种。
混凝土的干缩因混凝土的材料成分、配合比和养护方式不同,其干缩程度也会有所不同。
混凝土的干缩主要影响混凝土结构的性能和耐久性,如裂缝、变形、变形速度等。
3. 混凝土的水泥基材料收缩混凝土中的水泥基材料收缩是指混凝土中的水泥基材料在硬化过程中由于自身物理化学反应引起的体积缩小现象。
由于水泥基材料收缩是混凝土硬化过程中的一部分,因此其对混凝土的性能和耐久性产生的影响也是非常重要的。
4. 混凝土的温度收缩混凝土的温度收缩是指混凝土在温度变化过程中由于热胀冷缩而引起的体积变化现象。
混凝土的温度收缩主要影响混凝土结构的变形和裂缝等问题。
三、混凝土收缩的控制原理1. 材料成分的控制混凝土的干缩主要受到混凝土中的水泥、细集料、粗集料、掺合料等材料成分的影响。
因此,在混凝土设计时应根据混凝土的使用条件和要求,合理地选择材料成分,以控制混凝土的干缩。
2. 配合比的控制混凝土的配合比是指混凝土中各种材料的用量比例。
工程类专业英文术语,大学生必看
专业英文术语A【返回检索】Abram's rule阿勃拉姆规则Abrasion磨耗Accelerated strength testing快速强度试验Acid resistance耐酸性Adiabatic temperature rise绝热升温Admixture外加剂Aggregate集料(混凝土)Air entrainment引气(加气)Autoclave高压釜Accelerated curing快速养护Absorbed water吸附水Added water附加水Aggregate bulk density集料松散容重Auti-corrosion Admixture防锈剂Anisotropic materials各向异性材料Air-entrained concrete引气混凝土Air Entrain Admixture引气剂Aggregate porosity集料孔隙率Artificial marble人造大理石Alite阿利特Alkali-aggregate reaction碱-集料反应Alkalies in Portland cement波特兰水泥中的碱Alkali-silica reaction碱-二氧化硅反应Anhydrite无水石膏(硬石膏)Autoclave expansion test高压釜膨胀试验Air-entrained concrete加气混凝土Adhesion agent粘着剂Accelerating agent速凝剂All mesh ferrocement无筋钢丝网水泥Allyl-Butadiene-Styrene丙烯氰-丁二烯-苯乙烯共聚树脂(ABS)Air pockets鼓泡Axial tensive property轴心受拉性能Axial compressive property轴心受压性能Air impermeability气密性Abnormal Polypropylene无规聚丙烯(APP)Asbestos fibres石棉纤维Asbestos insulation石棉绝热制品Autoclave expansion test压蒸法Artificial人造石Air entraining and water-reducing admixture 引气减水剂Active addition活性混合材Addition of cement水泥混合材Aluminoferic cement clinker铁铝酸盐水泥熟料Age龄期,时期Aluminum silicate wool硅酸铝棉Aluminum foil铝箔Air space insulation封闭空气间层Areal thermal resistance(specific thermal resistance)比热阻(热导率的倒数)Absorptivity吸收率Air permeability(Air penetration coefficient)空气渗透率BBrick 绝热砖Bond strength 粘结强度Bleeding 泌水Bitumen-determination of penetration 沥青针入度测定法Battery-mold process 成组立模工艺Bar spacing 加筋间距Binder bonding agent 粘合剂Barytes 重晶石Batchhing 称量(配料)Belite 贝利特Biaxial behavior 双轴向性质Blaine fineness 勃来恩,细度Blast-furnace slag 高炉矿渣Blast-furnace slag cements 高炉矿渣水泥Blended portland cements 掺混合料的波兰水泥Bogue equations 鲍格方程式Bond 粘结Brucite 氢氧镁石(水镁石)Bulking of sand 砂的湿胀Bull-float 刮尺Board(block)insulation 绝热板Bitumastic paint 沥青涂料Bituminous road materials 沥青筑路材料Blowing agent 发泡剂Bar between mesh 加筋Ball impact test (冲击强度)落球试验法Basic constituent 碱性组分基本成分Basicity 碱度,碱性Batch mixture 配合料Bend stress 弯曲应力Bituminous paint 沥青涂料Bituminous concrete 沥青混凝土Block brick 大型砌块Blunger 搅拌器,打浆机Brick setting 砖砌体(brickwork)Brittle point of asphalt 沥青冷脆点Broken stone 碎石Bubbing potential 发泡能力Building brick 建筑红砖Building system 建筑体系,建筑系统Brittle material 脆性材料C【返回检索】Calcium aluminate cement 铝酸钙水泥Calcium aluminates 铝酸钙Calcium chloride 氯化钙Calcium ferroaluminates 铁铅酸钙Calcium hydroxide 氢氧化钙Calcium oxide 氧化钙Calcium silicate hydrate 水化硅酸钙Calcium silicate 硅酸钙Calcium sulfates 硫酸钙Calcium sulfoaluminate 硫铅酸钙Calcium sulfoaluminate hydrates 水化硫铝酸钙Capillary voids(pores)in cement 水泥中的毛细管Capillary water 毛细管水Carbon dioxide 二氧化碳Cavitation 混凝土中的大孔洞,空蚀作用Cement fineness 水泥细度Cement paste 水泥浆Cement soundness 水泥安定性Cement specifications 水泥规范Cement strength 水泥强度Cement types 水泥品种Cold rolled steel 冷轧钢Cellular concrete 多孔混凝土Complex accelerator based on triethanolamine 三乙醇胺复合早强剂Component 组分,成分,构件Compliance 柔度Composite 复合,合成,复合材料Composite insulation 复合绝热层Composite portland cement 复合硅酸盐水泥Concrete 混凝土Condensed silica fume 浓缩(凝聚)的二氧化硅烟雾(硅粉)Consistency 绸度Core tests 钻芯试验Corrosion of steel in concrete 混凝土中钢筋的腐蚀Cost of concrete 混凝土成本Cracking 开裂Creep 徐变Critical aggregate size 临界集料尺寸C-S-H 水化硅酸钙Ceramsite 陶粒Chalcedony 玉髓Chemically combined water 化学结合水Chert 燧石(黑硅石)Chloride 氯化物Chloroprene Rubber 氯丁橡胶(CR)Chord modulus 弦弹性模量Clinker 熟料Coarse aggregate 粗集料Cold-weather concreting 冷天浇筑混凝土Compacting factor test 捣实系数试验Compaction(consolidation)捣实(捣固)Compressive strength 抗压强度Computer control system 计算机控制系统Concrete batching plant 混凝土搅拌站Concrete composition 混凝土配合比Concrete products 混凝土制品Concrete pump 混凝土输送泵Coefficient of permeability of concrete 混凝土渗透系数Carbonated lime sand brick 碳化灰砂砖Carbonating 碳化处理Cement resistance to chemical 水泥抗化学侵蚀性Coefficient of thermal expansion 热膨胀系数Conductivity 导热性Coefficient of shrinkage 收缩系数Coefficient of permeability of concrete 混凝土收缩系数Cement mortar 水泥胶砂Crescent ribbed bars 月牙肋钢筋Concrete block 混凝土砌块Cold-drawn reinforcement bar 冷拉钢筋Cold rolled steel 冷轧钢Condensation polymerization 缩聚反应Critical degree of saturation 临界饱和度Critical stress 临界压力Cryogenic behavior 低温性质Crystallization pressure of salts 盐的结晶压力Crystal structure and reactivity 结晶结构和活性Curing 养护Civil Engineering 土木工程Cement 水泥Crack 裂缝Calcium silicate insulation 硅酸钙绝热制Cube size 立方体试件尺寸Characteristic strength 特征强度Coarse aggregate ratio to fine 粗集料玉细集料之比Carbonated shrinkage 碳化收缩Calcium silicate insulation 硅酸钙绝热制品Cellular(foamed)glass 泡沫玻璃(多孔玻璃)Composite insulation 复合绝热层品Cement mortar 水泥砂浆Cork 软木Cork insulation 软木绝热制品Cellular(foamed)plastics 泡沫塑料(多孔塑料)Cellular(foamed)polystyrene 聚苯乙烯泡沫塑料Cellular(foamed)polyurethane 聚氨脂泡沫塑料Calcium-resin insulating board 钙塑绝热板Cellular(foamed)rubber 泡沫橡胶D【返回检索】Darby 刮尺D-cracking D行裂缝Deicing salts action 除冰盐作用Diatomaceous earth 硅藻土质泥土Dicalcium silicate(C2S)硅酸二钙Dynamic modulus of elasticity 动弹性模量Dolomite 白云石Drying shrinkage 干燥收缩(干缩)Ductility 延性Durability 耐久性Durability factor 耐久性因素Decoration glass 装饰玻璃Decoration mortar 装饰砂浆Deformed bar 变形钢筋,螺纹钢Defoamer 消泡剂Dense concrete 密实混凝土Diatomaceous silicate 硅藻土(Kieselguhr,diatomite)Diatomite insulation 硅藻土绝热制品Density 密度Deformation 变形钢筋Degree of hardness 硬度Degree of humidity 湿度E【返回检索】Early-age behavior早期性质Ecological benefit生态效应Effective absorption有效吸收Efflorescence白霜Elastic modulus弹性模量Electron micrographs电子显微图Energy requirement能量需要Entrained air引入的空气Extensibility可伸长性Emerging wire露丝Emerging mesh露网Expanded perlite膨胀珍珠岩Epoxy Resin环氧树脂Erosion 冲刷风化、剥蚀Ettringite 钙矾石Expanded clay and shale 膨胀粘土和页岩Expanded slag aggregate 膨胀矿渣集料Expansive cement concrete 膨胀水泥混凝土Expansive cement 膨胀水泥Expansive phenomena in concrete 混凝土中的膨胀现象Expanded vermiculite 膨胀蛭石Expanded rermiculite insulation 膨胀蛭石制品Expanded plastics 多孔塑料Engineering plastics 工程塑料F【返回检索】Fabriform 土工模袋False set假凝Feldspar长石Fiber-reinforced concrete纤维增强混凝土Final set终凝Fine aggregate细集料Fineness modulus细度模量Flowing concrete流动混凝土Fly ash粉煤灰Foamed slag泡沫矿渣Formwork removal拆模Ferromanganese锰钢Flow of cement mortar水泥胶砂流动度Fiber reinforced plastics纤维增强塑料Fiber-glass reinforced plastics玻璃纤维增强塑料Facebrick饰面砖,面砖Facing tile外墙面砖Faience mosaic嵌花地砖,釉陶锦砖Fiber cement纤维水泥Figured glass压花玻璃Fine sand细砂Fineness of cement水泥细度Finishing抹面(修整)Flash set闪凝(瞬间凝结)Flexural strength弯曲强度Flint燧石Floating刮平Fracture toughness断裂韧性Free calcium oxide游离氧化钙Freeze-thaw resistance抗冻融性Fresh concrete新拌混凝土Facing面层Fiber insulation纤维绝热材料Flexible insulation柔性绝热制品Frost action on aggregate骨料受到冰冻作用Frost action on cement paste水泥浆受到冰冻作用Future of concrete混凝土的前景Fire resistance耐火性Ferrocement钢丝网水泥Ferrocement with skeletal bar加筋钢丝网水泥Flexural property受弯性能Fatigue resistance耐疲劳性Forst resistance抗冻性Fineness modulus细度模数(M)Flexural rigidity抗弯刚度(B)Foamed concrete泡沫混凝土Fiber board纤维板Frost action on concrete混凝土受到冰冻作用G【返回检索】Gamma raysγ-射线Gel pores凝胶孔Gel/space ratio凝胶/空隙比(对强度的影响)(Effect on strength)Geonet 土工网Geotextile 土工格栅Geotextile 木织物Glass geogrid 土工复合排水材Geomat 土工垫Gradation级配Gypsum石膏Granulated wood粒状棉Giving an acid reaction发生酸性反应Grading颗粒级配Grain-size refinement级配曲线Gravel砾石、卵石Graywacke杂砂岩Grout薄浆(灌浆)Granite花岗岩Graph图表、图解Green concrete新拌混凝土Gritly粗砂状的Ground slag矿渣粉Gypsum wall board石膏墙板Glass geogrid 玻纤网Glassfiber Reinforced Plastics玻璃纤维增强塑料Glass wool玻璃棉Granular(powder)insulation颗粒绝热材料Gap-graded aggregate间断级配材料Gas concrete加气混凝土Glass玻璃体Giving a basic reaction发生碱性反应Gypsum concrete石膏混凝土H【返回检索】Hardening 硬化Hcp 水化水泥浆的简写Heat of hydration 水化热Heavyweight aggregate 重集料Heavyweight concrete 重混凝土Hemihydrate 半水化物High-alumina cement 高铝水泥High-early strength cement 高早强水泥High-strength concrete 高强混凝土High-workability concrete 高工作性混凝土Hot-weather concreting 热天浇筑混凝土Hydrophilic and hydrophobic 亲水与憎水Hydrated(portland)cement paste 已水化的水泥浆Hydration of portland cement 波特兰水泥的水化Hydration reaction of aluminates 铝酸盐的水化Hydration reaction of silicates 硅酸盐的水化反应Hydraulic cement 水硬性水泥Hydraulic pressure 水压力Honeycomb 蜂窝Heat transfer rate 热流量Homogeneous materials 均质材料High-tensile reinforcing steel 高强度钢筋High-tensile wire 高强钢丝High carbon steel 高碳钢High strength concrete 高强混凝土High performance concrete 高性能混凝土I 【返回检索】Igneous rocks for aggregate 作为集料的岩浆岩Impact strength 冲击强度Impregnation with polymers 用聚合物浸渍Initial set 初凝Initial tangent modulus 初始正切模量Interlayer space in C-S-H C-S-H中的层间空间Interlayer water in C-S-H C-S-H中的层间水Impact strength 抗冲击强度Impermeability 抗渗性,不渗透性Impermeability to water 抗渗水性,不透水性Impregnate 浸渍,渗透Index of quality 品质指标,质量控制标准Inhomogeneous 不均匀的,多相的Iron blast-furnace slag 化铁高炉渣Iron ores aggregate(heavyweight)铁矿石(重集料)Isotropic materials 各向同性材料Iron wire 低碳钢丝Impact ductility 冲击韧性Initial shrinkage 早期收缩Initial strength 早期强度Insulating layer 隔热层Intarsia 玻璃锦砖Impact resistance 抗冲击性J 【返回检索】Jet set cement 喷射水泥Jolting table 振动台Job mix 现场配合Jaw crusher 颚式破碎机"Jian-1" water reducer "建-1"型减水剂K 【返回检索】Killed steel 镇静钢Kiln dust 窑灰,飞灰Kiln building 窑房Kiln plant 窑设备Kilogram calorie 千卡,大卡Knot 木节Kominuter 球磨L【返回检索】Low PH value cement 低碱水泥Laitance 浆皮Leaching of cement paste 水泥浆渗漏Lime cement 石灰水泥Limestone 石灰石Lightweight aggregates 轻集料Lightweight concrete 轻混凝土Lignosulfonate 木质磺酸盐Low heat Portland cement 低热波特兰水泥Laboratory 实验室Lean concrete 贫混凝土Loss of slump of concrete 混凝土的坍落度损失Le chatelier soundness test 雷氏夹法Loss on ignition 烧失量Light weight ferrocement 轻质钢丝网水泥Longitudinal bar 纵筋Longitudinal bar spacing 纵筋间距Loose fill insulation 松散填充绝热层Low alloy steel 低合金钢Low caron colddrawn steel 冷拔低碳钢丝Longitudinal rib 纵肋Lumber grading 木材等级M 【返回检索】Macrostructure 宏观结构Magnesium oxide 氧化镁Magnesiun salts solution effect on concrete 镁盐溶液对混凝土的影响Map cracking 地图形裂纹Marcasite 白铁矿Mass concrete 大体积混凝土Maturity concept 成熟度概念Maturity meters 成熟度测定仪Microcracking 微裂缝Microsilica 微细二氧化硅(硅粉)Minimum crack spacing 最小裂缝间距Microcrack 微裂Modulus of deformation 变形模量(EB)Mineral wool insulation 矿棉绝热制品Mineral fibres 矿棉纤维Masonry cement 砌筑水泥Mild steel 低碳钢Medium carbon steel 中碳钢Moisture content of wood 木材含水量Moisture 湿度水分Moisture condition 含水状态Mumicipal-waste aggregate 城市废物集料Moisture absorption 吸湿率(water vapour absorption)Moisture content of aggregate 骨料含水量Matrix 基材Mesh-bar placement and tying 铺网扎筋Manual plastering 手工抹浆Maximum size of sand 砂的最大粒径Mortar consistency 砂浆绸度Mortar strength 砂浆强度Maximum crack width 最大裂缝宽度Mix proportion by absolute volume 绝对体积配合比(设计)Mix proportion by loose volume 现场松散体积配合比(设计)Mixed-in-place 现场拌和Mix proportion by weight 重量配合比Mixed process 混合过程Mixing time 拌和时间Mixing water 拌和水Modility 流动性Membreane curing 薄膜养护Mocromolecule high polymer 高分子Microstructure 微观结构Mixing of concrete 矿物外加剂Mixing water 拌合用水Mix proportioning(designing)配合比(设计)Mix proportions 配合比Modified portland cement 改性的波特兰水泥Modulus of elasticity 弹性模量Modulus of rupture 挠折模量(破裂模量)Monosulfate hydrate 单硫酸盐水化物Mortar 砂浆Multiaxial strength 多轴向强度Map cracking 龟裂Mastic 玛脂Modulus of elasticity concrete 混凝土弹性模量Modulus of water-glass 水玻璃模数Masonry mortar 砌筑砂浆Maximum aggregate size 最大集料粒径Marber 大理岩Moderate heat portland cement 中热硅酸盐水泥Moderate heat of hydration 中热Moderate sulfate resistance 中抗硫酸盐Magnitude of self-stress 自应力N 【返回检索】NDT 非破损试验的缩写Neutron radiation 中子辐射Neoprene 氯丁橡胶NNO water reducer NNO型减水剂Non-hydranlic cement 气硬性水泥Non-destructive tests 非破损试验Nuclear shielding concrete 核屏蔽混凝土Normal distribution 正太分布Non-evaporable water 非蒸发水Nominal diameter 公称直径Normal consistency of cement paste 水泥净浆标准绸度Neat cement paste 水泥净浆Needle crystal 针状晶体Needle penetrometer 维卡仪O 【返回检索】Oscillating screen 振动筛Oscillation generator 振动器Oscillator 振动器Oil-well platform concrete 油井平台混凝土Opal 蛋白石Overlays of concrete 混凝土覆盖层Oriented water 定向的水Osmotic pressure 渗透压力Oven-dry aggregate 炉干骨料Overall thermal conductance 总导热系数Organosilicon 有机硅Organosilicon resin 有机硅树脂Oscillate 振动,振荡Ordinary low-alloy steel 普通低合金钢Ordinary oil well cement 普通油井水泥Ordinary portland cement 普通硅酸盐水泥P 【返回检索】Particle size 颗粒尺寸Penetration resistance 抗贯入性Periclase 方镁石Perlite 珍珠岩Permeability 渗透性Phosphate 磷酸盐Phenolic Formaldehyde 酚醛树脂(PF)Placing of concrete 混凝土的浇筑Plaster of paris 建筑石膏Polypropylene 聚丙烯(PP)Polystyrene 聚苯乙烯(PS)Polystyrene-plywood laminate 聚苯乙烯胶合木板Polyester plastics 聚酯塑料Plastic veneer 塑料贴面板Plastic-steel window 塑钢窗Polyester 聚酯Polyester Resin 聚酯树脂(PR)Plastic shrinkage 塑性收缩Poisson's ratio 泊松比Polymer concrete 聚合物混凝土(PC)Polymer-impregnated concrete 聚合物浸渍混凝土(PIC)Polymer-cement concrete 聚合物水泥混凝土(PCC)Polymethylmethacrylate 聚甲基丙烯酸甲酯Prestressed steel 预应力钢筋Pumped concrete 泵送混凝土Pumice concrete concrete block 浮石混凝土砌块Plastics 塑料Polythene 聚乙烯(PE)Polyvinyl Alcohol 聚乙烯醇(PV A)Polyvinyl Acetate 聚醋酸乙烯(PV AC)Polyvinyl Chloride 聚氯乙烯(PVC)Polyvinyl Formal 聚乙烯醇缩甲醛(PVFO)Porosity 孔隙率Portland cement 波特兰水泥Portland blast-furnace slag cement 高炉矿渣波特兰水泥Portlandite 氢氧钙石Portland pozzolan cement 火山灰质波特兰水泥Potential compound composition 潜在化合物成分Pyrite pyrrhotite 硫化铁,黄铁矿Particle size distribution 粒度分布Pat test 试饼法PH-value PH值Pozzolan 火山灰Pozzolanic reaction 火山灰质反应Preplaced aggregate concrete 预填集料混(PMMA)Pore-size distrbution 孔径分布Pore-size refinement 孔径尺寸修整Prestressded ferrocement 预应力钢丝网水泥Plain round bar 光圆钢筋凝土Proportioning 配合Pulverized fuel ash 磨细粉煤灰Pull-out test 拔出试验Pumice 浮石Q 【返回检索】Quality assurance 质量保证Quick set 快凝Quality 质量Quality control 质量控制Quartz glass 石英玻璃Quartz glass fiber 石英玻璃纤维Quartz sand 石英砂Quick lime 生石灰[CaO] Quartz 石英Quatzite 石英岩Quick-taking cement 快凝水泥Quick hardening 水硬性水泥Quench 水淬,骤冷R 【返回检索】Radiation shielding concrete辐射屏蔽混凝土Rapid setting and hardening cement快凝与快硬水泥Revibration重新振捣Rice husk ash谷糠灰Ready-mixed concrete预拌混凝土Recycled-concrete aggregate再生混凝土集料Regulated-set cement调凝水泥Retarding admixtures缓凝外加剂Retempering重新调拌Roller-compacted concrete滚筒-压实混凝土Reinforced plastics加筋塑料Reinforcement mat钢筋网Resistance to chemical attack of mortar砂浆耐蚀性Rock wool岩石棉Rigid insulation刚性绝热制品Rib height肋高Rib spacing肋间距Ribbed bars带肋钢筋Rich concrete富混凝土Residue on sieve筋余Raw limestone石灰石Raw gypsum二水石膏S 【返回检索】Salt crystallization pressure 盐的结晶压力Sand 砂Sandstone 砂岩Saturated surface dry condition 饱和面干条件Scaling 起皮,鳞片状剥落Schmidt rebound hammer 希密特回弹仪Screeding 抹平Seawater 海水Secant elastic modulus 正割弹性模量Sedimentary rocks for aggregate 作为集料的沉积岩Segregation 离析Self-stressing cement 自应力水泥Setting of cement paste 水泥浆的凝结Special hydraulic cement 特种水硬性水泥Specifications 规范Specific heat 比热Specific surface area 比表面积Sphericity 圆度Splitting tension strength 劈裂抗拉强度Standard specifications 标准规范Standard test method 标准试验方法Stiffening of cement paste 水泥浆的变硬Strain 应变Self-stressing cement mortar 自应力水泥砂浆Shear steel 剪切钢筋Saturation capacity 饱和含水量Saturation point 饱和点Stearic acid 硬脂酸Surface-active agents 表面活性剂Synthetic resin binder 树脂粘结剂Synthetic lightweight aggregate 人造轻集料Shotereting process 喷浆工艺Scaling 麻面Surface dusting 表面起砂Sandwich 夹层Shrinkage crack 收缩裂缝Stressed crack 受力裂缝Special steel 特种钢Sawdust concrete 锯屑混凝土Softening point test 软化点试验Solidification 凝固作用Stress 应力Stress intensity factor 应力强度因素Stress-strain curve 应力-应变曲线Surface moisture 表面水Splitting strength 劈裂强度Splitting failure 劈裂破坏Strength 强度Setting of concrete 混凝土的凝结Shear-bond failure 剪切粘结破坏Shear strength 剪切强度Shotcreting 喷射混凝土浇筑Shrinkage 收缩Shrinkage-compensating concrete 收缩补偿混凝土Sieve analysis of aggregate 集料的筛分析Silica fume 硅粉Slag 矿渣Slip-formed concrete 滑模混凝土Slump cone test 坍落度锥体试验Slump loss in concrete 混凝土中坍落度损失Solid/space ratio 固体∕空隙比Solid-state hydration 固态水化Soundness 安定性Spacing-factors of entrained air 引入空气的间距因素Structural lightweight concrete 结构轻混凝土Structure(microstructure)of concrete 混凝土的(微观)结构Structures(concrete)in photographs 混凝土结构照片Standard error 标准误差Stand sieve 标准筛Static modulus 静弹性模量Steam curing 蒸汽养护Strength grading 强度级别Strength of cube 立方体强度Strength at 28 days 28天强度Stress concentration 应力集中Styrene Butadiene Rubber 丁苯橡胶(SBR)Styrene-Butadiene-Styrene 苯-丁-苯乙烯Sulphoaluminate cement clinker 硫铝酸盐熟料Surface energy 表面能Surface hardness 表面强度Surface tension 表面张力Sand-lime brick 灰砂砖Saturated aggregate 饱和水集料Superplasticized admixture 超塑化外加剂Surface area 表面积Strength of aggregate 集料强度Strength of cylinders 圆柱体强度Supersulphated cement 石膏矿渣水泥Setting time of concrete 混凝土的凝结时间Standard of concrete 混凝土强度Standard deviation 标准差Sulfate attack 硫酸盐侵蚀Sulfate resisting cement 抗硫酸盐水泥Sulfates in portland cement 波特兰水泥中的硫酸盐Sulfides and sulfate aggregate 硫化物与硫酸盐集料Standard sand 标准砂Strength of cement mortar 水泥胶砂强度Strength grade of cement 水泥强度等级Spiral reinforcement 螺纹钢筋Stirrup 箍筋Struture lightweight concrete 结构用轻混凝土Specimen 试件Self-stressing concrete 自应力混凝土Sand grading 砂的级配Sand grading curve 砂的级配曲线Sand grading standard region 砂的级配标准区Self-stressing ferrocement 自应力钢丝网水泥Structure high density concrete 结构高表观密度混凝土Steel-fibre concrete 钢纤维混凝土Set retarder admixture 缓凝剂Set retarding and water-reducing admixture 缓凝减水剂Superplasticizer admixture 高效减水剂Superplasticized concrete 超塑性混凝土Setting time 凝结时间Sulphonated formaldehyde melamine 磺化甲醛三聚氰胺Saturated and surface-dry aggregate 饱和面干集料T 【返回检索】Tangent modulus of elasticity 正切弹性模量Temperature effects 温度效应Tensile strain 拉伸应变Tensile strain capacity 拉伸应变能力Tensile strength 拉伸强度(抗拉强度)Test methods 试验方法Thermal conductivity 导热性Thermal expansion coefficient 热膨胀系数Thermal shrinkage 热收缩Truckmixing 卡车搅拌Total water/cement ratio 总水灰比Trial mixes 试拌合物The particle grading 颗粒级配Tough aggregate 韧性集料Timber 木材Thermal insulation material 保温材料Test sieve 试验筛Through-solution hydration 通过溶液的水化Time of set 凝结时间Tobermorite gel 莫来石凝胶Topochemical hydration 局部水化Testing of material 材料试验Testing sieve shaker 试验用振动筛分机Test load 试验负荷Test method 试验仪表Test report 试验报告Test result 试验结果Tetracalcium aluminate hydrate 水化铝酸四钙Texture of wood 木材纹理Theories of cement setting and hardening 水泥凝结硬化理论Thermal contraction 热收缩Thermal diffusivity 热扩散性Thermosetting plastics 热固性塑料Technical manual 技术规范Test method of ferrocement panels in flexure 钢丝网水泥板受弯试验方法Transverse barspacing 横筋间距Thermo plastics 热塑性塑料Transverse rib 横肋Transverse bar 横筋Toughness 韧性Transition zone 过渡区Transporting concrete 混凝土输送Tricalcium aluminate 铝酸三钙Tricalcium silicate 硅酸三钙Triethanolamine 三乙醇胺Temperature shrinkage 温度收缩Thermal insulation material 绝热材料Thermal insulation properties 保温性能Thermal insulating concrete 绝热混凝土Thermal insulating plaster(Thermal insulating mortar)绝热砂浆U 【返回检索】Ultrasonic pulse velocity 超声脉冲速度Unixial compression behavior 单轴向受压状况Ultimate creep 极限徐变Ultimate strain 极限应变Unlimited swelling gel 无限膨胀凝胶Units of measurement 计量单位Unit weight 单位重量Ultimate gation 极限伸长值Ultimate principles 基本原理Ultrasonic inspection 超声波样份Uncombined CaO 游离CaOV 【返回检索】Vander Wale force 范德华力Vebe test 维勃试验Vermiculite 蛭石Very high early strength cement 超高早强水泥Vibration 振动,振捣Vicat apparatus 维卡仪V oid in hydrated cement paste 水化水泥浆中的孔隙V olcanic glass 火山玻璃Vinsol resin 松香皂树脂Viscometer 粘度仪Viscosity 粘度粘滞性Viscosity of asphalt 沥青粘滞性Voids ratio 孔隙率Vibro-moulding process 振动成型工艺Vibrating stamping process 震动模压工艺Vibrating vacuum-dewater process 振动-真空脱水工艺Vacuum insulation 真空绝热Vapour barrier,water vapour retarder 隔汽Vapor pressure 蒸汽压力Variegated glass 大理石纹Veneer 墙面砖、饰面砖Vesicular structure 多孔结构Vicat needle 维卡仪层Vibrating table 振动台Voids detection 空隙的测定V-B test(vebe test)维勃证W 【返回检索】Water 水Water/cement ratio 水灰比Water-reducing admixture 减水剂Water tightness 水密性、不透水性Water content 用水量Water requirement 需水量Water-lightness 透水性Water-reducing retaders 缓凝减水剂White cement 白水泥Windsor probe 温莎探针Winter concreting 混凝土冬季浇筑Workability 工作性(工作度)Wetting agents 温润剂Water solubility 水溶性Water retentivity 保水性Water storage 在水中养护Water repellent 疏水的、不吸水的、憎水的Workability loss of with time 和易性随时间损失Workability of ready-mixed concrete 预拌混凝土和易性Workability of light-weight concrete 轻混凝土和易性Water-reducing admixture 普通减水剂Water-proofing 防水的Water-proofing admixture 防水剂Wire rope 钢绞线Workability measurement 和易性测量Wire mesh 钢丝网Welded mesh 焊接网Wood wool slab 木丝板Water content(moisture content)含水率(湿度)Water absorption 吸水率Water resistance 抗水性Water vapor 水蒸汽Wearability 耐磨性Weather resistance 耐候性Workability 可加工性Wood-preserving process 木材防腐处理Work done by impact 冲击功Weighting error 称量误差Wet screening 湿法筛分,湿筛析Wetting and drying 潮湿与干燥Workability control 和易性控制Workability definition 和易性定义Water pepellent admixture 防水剂Water requirement for normal consistency of cement paste 水泥净浆标准绸度用水量Water proofing compound 防水化合物X 【返回检索】X-ray diffiraction analysis X射线衍射分析X-ray phase analysis X射线相分析X-rayogram X射线图式X-ray spectrometer X射线光谱仪Y 【返回检索】Yield limit 屈服极限Yield point 屈服点Yield strength 屈服强度Yield stress 屈服应力Yield of steel 钢材的屈服Z 【返回检索】Zeolite 沸石Zones for sand grading 砂级配区Zeta-potential ζ-电位Zone of heating 预热带。
EPS混凝土性能研究
EPS混凝土性能研究EPS轻质混凝土性能研究EPS轻质混凝土性能研究摘要:采用类似“裹砂”工艺的预拌方法拌制发泡聚苯乙烯(EPS)轻质混凝土并测试其力学性能.结果表明:用EPS颗粒部分取代粗集料和细集料,可以制得表观密度为800~1800kg/m3、抗压强度达11~20MPa的EPS轻质混凝土;微硅粉能显著改善EPS颗粒与水泥浆体的粘结性能,提高EPS轻质混凝土抗压强度,而掺入钢纤维则能显著改善其干缩性能.关键词:泡沫聚苯乙烯(EPS);强度;轻质Study on the Properties of Lightweight Expanded Polystyrene Concrete Abstract:A premix method similar to ‘sand—wrapping’technique was utilized to make expanded polystyrene(EPS)concrete.Its mechanical properties were investigated aswel1.The research resuits show that the EPS concrete with the density of 800~1800kg /m3 and compressive strength of 10~25 MPa can be made by partially replacing coarse and fine aggregate by EPS beads.Fine silica fume greatly improves the bond between the EPS beads and cement paste and increases the compressive strength of EPS concrete. In addition,adding steel fiber significantly improves the drying shrinkage.Key words:expanded polystyrene(EPS);strength;light weight发泡聚苯乙烯(EPS)是一种轻质泡沫材料,将其掺入砂浆或混凝土中能制备出不同表观密度的轻质混凝土[1].早在 1973年,Cook[2]就对 EPS作为混凝土的集料进行了研究.经过多年的研究与尝试,EPS轻质混凝土可以用于诸多建筑结构方面,如EPS保温涂层、EPS砂浆、EPS密封腻子、EPS轻质灰浆、EPS混凝土内外墙板等.此外,EPS轻集料混凝土还在路面回填与找平、防冻路基、保温屋面、楼面隔音以及海洋漂浮结构等领域应用[3-7],特别是其具有较强的吸能功能,因而还可用于结构抗冲击保护层[8].然而,EPS颗粒具有两大弱点:其一,EPS的表观密度只有l2~20 kg/m3,在混凝土搅拌过程中易产生离析;其二,EPS与水泥浆体界面粘结力弱.这两大弱点严重制约了EPS混凝土技术的应用和推广.因此,需要对其表面进行化学处理.在以前的研究报道中,大多建议采用一些界面添加剂,如环氧树脂或水溶性乙烯丙酸脂[3-6],但这大大提高了EPS混凝土的价格.另外,目前报道的EPS混凝土主要集中在强度较低的应用范围内,主要探讨的是其力学性能.本文主要探讨了一种结构 EPS轻集料纤维混凝土(简称 EPS混凝土),其最高强度达到20MPa.在试验中采用微硅粉提高 EPS在水泥浆体中的分散效果和界面粘结强度.同时,也探讨了不同体积分数的EPS对混凝土强度和收缩性能的影响.1 试验1.1 原材料与配比水泥:上海水泥厂生产的32.5普通硅酸盐水泥,其28d抗压强度为37.8 MPa.骨料:细集料采用河砂,其细度模数为2.85;粗集料采用碎石,其粒径分布范围为5.0~21.5mm.EPS颗粒:采用2种不同粒径的球形EPS颗粒,A类粒径为3.0 mm,表观密度为20.0kg/m3;B类粒径为8.0mm,表观密度为8.5kg/m3.微硅粉:Elken公司提供,颗粒粒径0.01~0.1μm.钢纤维:长度为25mm,长径比为60.减水剂:上海花王化学有限公司提供的Mighty--150减水剂.混凝土拌和物配比见表 11.2 试件制作采用30L型搅拌机进行拌和.首先将EPS颗粒与30%(质量分数)水预湿搅拌1min,随后依次加入微硅粉、水泥、砂、石、钢纤维并搅拌1min,最后加入剩余的水和减水剂并搅拌,直到均匀流动的EPS混凝土拌和物出现.为避免EPS颗粒上浮,将均匀的EPS混凝土拌和物装入试模后插捣成型.人工插捣时,捣棒应按一定速率均匀插捣.1.3 试件养护与测试选用150mm×150mm×150mm立方体试件测试其抗压强度,选用100mm×100mm×10mm立方体试件测试其劈裂抗拉强度,选用100mm×100mm×515mm棱柱体试件测试其收缩性能,测试龄期均为3,7,14,28,60d.试件成型24h后脱模,然后将其臵于标准养护室养护至规定龄期.对于测试收缩性能的棱柱体试件,成型后将其臵于标准养护室静放(23.5±0.5)h,然后脱模并立即测试其初始值(环境温度(20±3)℃,RH>60%),测试完后,将其送回养护室养护至规定龄期取出,用布将其表面的水擦干,然后测试收缩性能并记录数据,按JTJ270—98《水运工程混凝土测试规程》计算其收缩变形量.用2000 kN压力机测试150mm3。
发泡混凝土
发泡混凝土发泡混凝土英文名称:cellular concrete发泡混凝土,又名泡沫混凝土或轻质混凝土,发泡混凝土是通过发泡机的发泡系统将发泡剂用机械方式充分发泡,并将泡沫与水泥浆均匀混合,然后经过发泡机的泵送系统进行现浇施工或模具成型,经自然养护所形成的一种含有大量封闭气孔的新型轻质保温材料;发泡混凝土是以发泡剂、水泥、粉煤灰、石粉等搅拌成有机胶结料的双套连续结构的聚合物、内含均匀气孔;发泡混凝土是用于屋面保温找坡、地面保温垫层、上翻梁基坑填充,墙体浇注等节能材料。
它属于气泡状绝热材料,突出特点是在混凝土内部形成封闭的泡沫孔,使混凝土轻质化和保温隔热化。
一、发泡混凝土的特性发泡混凝土通常是用机械方法将泡沫剂水溶液制备成泡沫,再将泡沫加入到含硅质材料、钙质材料、水及各种外加剂等组成的料浆中,经混合搅拌、浇注成型、养护而成的一种多孔材料。
由于发泡混凝土中含有大量封闭的孔隙,使其具有下列良好的物理力学性能。
1、轻质发泡混凝土的密度小,密度等级一般为300-1800kg/m3,常用发泡混凝土的密度等级为300-1200 kg/m3,近年来,密度为160 kg/m3的超轻泡沫混凝土也在建筑工程中获得了应发泡混凝土用。
由于泡沫混凝土的密度小,在建筑物的内外墙体、层面、楼面、立柱等建筑结构中采用该种材料,一般可使建筑物自重降低25%左右,有些可达结构物总重的30%-40%。
而且,对结构构件而言,如采用发泡混凝土代替普通混凝土,可提高构件的承截能力。
因此,在建筑工程中采用发泡混凝土具有显著的经济效益。
特别是最近的“十一五”《节能中长期专向规划》对国内建筑行业实现节能提出具体目标,节能标准系数提高为65%。
使得建筑节能市场潜力巨大。
2、保温隔热性能好由于发泡混凝土中含有大量封闭的细小孔隙,因此具有良好的热工性能,即良好的保温隔热性能,这是普通混凝土所不具备的。
通常密度等级在300-1200 kg/m3范围的发泡混凝土,导热系数在0.08-0.3w/(m·K)之间,热阻约为普通混凝土的10-20倍。
泡沫混凝土的收缩性能--外文文献
Shrinkage Behavior of Foam ConcreteE.K.Kunhanandan Nambiar1and K.Ramamurthy,M.ASCE2Abstract:In the absence of coarse aggregate,the relative influence of factors affecting the shrinkage of foam concrete are likely to be different as compared to normal concrete.This paper presents the shrinkage behavior of preformed foam concrete for the influences of basic parameters,viz,density,moisture content,composition likefiller-cement ratio,levels of replacement of sand withfly ash,and foam volume.Shrinkage of foam concrete is lower than the corresponding base mix.For a foam concrete with50%foam volume,the shrinkage was observed to be about36%lower than that of a base mix.The shrinkage of foam concrete is a function of foam volume and thus indirectly related to the amount and properties of shrinkable paste.Shrinkage increases greatly in the range of low moisture content.Even though removal of water from comparatively bigger artificial air pores will not contribute to shrinkage,artificial air voids may have,to some extent,an effect on volume stability indirectly by allowing some shrinkage;this effect was more at a higher foam volume.DOI:10.1061/͑ASCE͒0899-1561͑2009͒21:11͑631͒CE Database subject headings:Shrinkage;Dewatering;Foam;Fly ash;Cement;Concrete.IntroductionThe volume change resulting from removal of moisture͑drying shrinkage͒of a cement based material is primarily due to the change in volume of unrestrained hydrated cement paste by the removal of adsorbed water from the surface of gel pores͑Neville 1995͒.As far as normal concrete is considered,the major param-eters identified are the paste shrinkage and aggregate content ͑Hansen and Almudaiheem1987͒.Cellular concrete,like aerated concrete and foam concrete possessing high drying shrinkage due to the absence of aggregates,were up to10times greater than those observed on a normal weight concrete͑Valore1954;Jones et al.2003͒.Significant reduction in shrinkage of aerated concrete obtained by autoclaving suggests that drying shrinkage is pre-dominantly a function of the physical structure of the hydration product͑Ramamurthy and Narayanan2000͒while Tada and Na-kano͑1983͒attributed the higher shrinkage in aerated concrete to its larger volume offiner pores,and Ziembicka͑1977͒and Geor-giades and Ftikos͑1991͒have related shrinkage to the volume and specific surface of micropores.Schubert͑1983͒related shrinkage to volume of pores affecting shrinkage,to the pore distribution and moisture content.In a comparative study on the shrinkage behavior with sand andfly ash͑FA͒asfiller,mixes with sand exhibited smaller drying shrinkage as the sand particles have higher shrinkage restraining capacity compared to FA par-ticles͑Jones et al.2003͒.Nmai et al.͑1997͒,in a study on new foaming agent for CLSM applications,indicated a reduction in shrinkage as density decreases.In addition,lightweight aggregate could be used to reduce the shrinkage of foam concrete͑Regan and Arasteh1990͒.Research SignificanceThe method of curing,composition,density,initial andfinal moisture content,duration and climate of storage,and micropore structure and its distribution are reported to affect the drying shrinkage of cellular concrete.Review shows that most of the earlier research on drying shrinkage of cellular concrete has been confined to aerated concrete.Only limited studies with specific parameters and conditions of test are reported on the shrinkage behavior of foam concrete.Hence,this paper discusses the results of experiments conducted to ascertain the influence of basic com-ponents,viz,density,moisture content,and composition like foam volume͑FV͒,filler-cement͑FC͒ratio,and replacement of sand with FA,on the drying shrinkage of moist-cured preformed foam concrete.Materials and MethodologyConstituent MaterialsThe constituent materials used to produce foamed concrete are given in Table1.Different mixes of foam concrete were made by varying͑1͒FC ratio from1to3͑2͒FA replacement for sand from 0to100%by weight,and͑3͒FV from10to50%.The water-solids ratio of these mixes were reached based on͑1͒the stability of the foam concrete mix which is defined as the state of condi-tion at which measured density is equal to or nearly equal to design density and͑2͒the consistency of mix͑for aflow cone spread value of45Ϯ5%͒͑E.K.K.Nambiar and K.Ramamurthy 2006,2007,2008͒.Experimental InvestigationsTests for drying shrinkage were carried out on prisms of size1Assistant Professor,Dept.of Civil Engineering,NSS College of En-gineering,Palakkad-678008,India.E-mail:ekknambiar@2Professor,Building Technology and Construction Management Div., Dept.of Civil Engineering,Indian Institute of Technology Madras, Chennai-600036,India͑corresponding author͒.E-mail:vivek@iitm.ac.in Note.This manuscript was submitted on February5,2007;approved on March31,2009;published online on October15,2009.Discussion period open until April1,2010;separate discussions must be submitted for individual papers.This paper is part of the Journal of Materials in Civil Engineering,V ol.21,No.11,November1,2009.©ASCE,ISSNof RILEM-ACC 5.2͑RILEM 1992͒and IS 6441-part II ͑Bureauof Indian Standards 1972͒for aerated concrete.Spherical gaugeplugs were attached at both the ends of the specimen to facilitatelength change measurements.For each combination of the param-eters,three specimens were tested for shrinkage and the meanvalue is reported.The specimens were immersed in water for 72h after removalfrom the molds.After this period of immersion,the specimenswere kept in a controlled environment ͑humidity chamber ͒at atemperature of 23Ϯ1.7°C and relative humidity of 50Ϯ4%͓ASTM C 157,ASTM ͑1998͔͒.First length measurement ͑l 1͒was made immediately after 72h of immersion in water.The moisturefrom the surface of the specimen was wiped off and the moistureon the gauge plugs also carefully removed to nullify chance offaulty readings.The length measurements were made in a lengthcomparator with a least count of 0.002mm.Length measurementswere taken for 28days.The change in length,ٌl expressed inpercent is calculated as ͓͑l 2−l 1͒/L d ͔ϫ100,where l 1is the firstreading of length,l 2is the final reading after 28days,and L d isthe original length of the specimen.Results and DiscussionInfluence of Filler-Cement Ratio and Filler TypeFig.1shows the effect of FC ratio on the shrinkage of foamconcrete at the end of 28days.As expected,both cement-sandand cement FA sand mixes showed a reduction in shrinkage withan increase in FC ratio,the variation being relatively steeper forthe FC ratio range of 1to 2.This is can be attributed to thecombined effect of reduction in cement content and restrainingeffect of increased fine aggregate content.Also,for a given FC ratio,cement-sand mix showed lower shrinkage than a typical mix with FA replacing sand ͑40%replacement ͒.This is due to the reduced shrinking ability of the sand particles compared to FA ͑Jones et al.2003;Ramamurthy and Narayanan 2000͒.Fig.2indicates that an increase in the FA content of the mix leads to an increase in shrinkage ͑i.e.,shrinkage of mix with 100%FA is 31%higher than that of mix with sand ͒.Similar observations were reported for foam concrete by Jones and Mc-Carthy ͑2005͒and for aerated concrete by Ramamurthy and Narayanan ͑2000͒.The variation of percentage shrinkage and 28-day compressive strength with dry density for foam concrete with cement-sand and cement FA sand mixes are shown in Fig.3.For a given density,mixes with FA replacement ͑say,40%replace-ment ͒showed relatively higher shrinkage ͑about 20%͒than that in cement-sand mix.Apart from the effect of reduced restraining capacity of FA compared to sand,higher water-solids ratio requirement of mixes with FA for achieving a stable and workable mix also will con-tribute to this higher shrinkage.Such an increase in water-solids ratio makes the mix more pervious resulting in higher water ab-sorption during curing.Higher water content leads to thicker layer of adsorbed water ͑Nmai et al.1998͒.The rate at which this water moves toward the surface of the specimen ͑drying ͒is increased as the mix is more pervious,leading to higher shrinkage.Further-more,mixes with FA takes relatively longer time to form a stable structure and until such a time this adsorbed water is allowed to escape from the surface of the unreacted as well as partially re-Table 1.Constituent Materials Used to Produce Foam ConcreteMaterialsRemarks CementOrdinary Portland cement 53grade conforming to IS 12269͑Bureau of Indian Standards 1987͒SandPulverized and finer than 300microns,specific gravity=2.52FAClass F type conforming to ASTM C 618͑ASTM 1989͒,specific gravity=2.09Foam Preformed foam by aerating an organic basedfoaming agent ͑dilution ratio 1:5by weight ͒using anindigenously fabricated foam generatorfoam density—40kg /m 3S h r i n k a g e%Filler-cement ratio Fig.1.Effect of FC ratio on shrinkage of foam concrete S h r i n k a g e %Fly ash replacement %Fig.2.Effect of FA replacement on shrinkage of foam concreteDry density,kg/m3S h r i n k a g e %0246810121416Compressive strength,MPa Fig.3.Variation of shrinkage and strength with density of foam concreteacted particles.Thus the physical structure of the gel formed with FA is also responsible for its increased shrinkage ͑Ramamurthy and Narayanan 2000͒.Adding to this,relatively lower FV require-ment ͑for mixes with FA to achieve a given density ͒resulting in higher volume of shrinkable paste,contributes to this increase in shrinkage.At the same time,for a constant density of foam concrete,mixes with FA resulted in a relatively higher strength ͑two to three times ͒as compared mixes with cement-sand ͑Fig.3͒.This increase in strength is attributed to the reduced FV requirement for FA mixes over and above the filler and pozzolanic effect ͑E.K.K.Nambiar and K.Ramamurthy 2006,2007,2008͒.Though inclusion of FA in the mix causes a small increase in shrinkage,it significantly contributes in enhancing the strength of foam concrete of comparable density.It can also be seen that irrespective of type of mixes,low density products are stable for drying shrinkage in spite of its low strength.Influence of Foam Volume The variations of shrinkage with time for different mixture com-positions in Figs.4͑a and b ͒indicate that the shrinkage reduces with an increase in FV ͑i.e.,with a reduction in density ͒.It is reported that the shrinkage of cellular concrete is a func-tion of volume and specific surface of micropores of radii be-tween 75and 625Å͑Ziembicka 1977͒.Georgiades and Ftikos ͑1991͒reported that the pore radii range is between 20and 200Å.Hence the removal of water from comparatively bigger pores willnot contribute to shrinkage.According to Cebeci ͑1981͒entrainedlarge air voids do not alter the characteristics of fine pore struc-mix,the micropores which affect shrinkage can be proportion-ately related to the paste content in a foam concrete.Thus lower shrinkage value at a higher FV is caused by lower paste content in the mix.In an attempt to characterize the air voids present in foam concrete at different FV ,images of polished and prepared cut surfaces of specimen were captured by an optical microscope and analyzed using an image processing software,after suitable mor-phological operations and shown in Fig.5for mixes with 10and 50%FV .These images were analyzed for pore wall thickness ͑median value of minimum distances between two air voids measured through the paste phase ͒and its variation with FV plotted in Fig.6shows that the pore wall thickness reduces as the air void vol-ume ͑FV ͒increases.This corroborates the observation of Tada and Nakano ͑1983͒who attributed the lower shrinkage at a higher FV to thinner pore wall and relatively reduced volume of micro-capillary pores which is distributed in this wall.Table 2shows that the shrinkage percentage of foam concrete is lower than the corresponding base mix ͑which is basically a normal mortar ͒.As the FV increases,the difference between the shrinkage values increases and this confirms the effect of paste content and thus the amount of pores which affects shrinkage in the mix.The reduction in shrinkage of foam concrete compared to base mix may also be attributed to the reduction in surface tension of pore water in the presence of foaming agents which are basi-cally surfactants.Similar concept is being used in shrinkage re-ducing admixtures which when added in concrete interfere with the surface chemistry of the air/water interface within the capil-lary pore,reducing surface tension and so reducing shrinkage as water evaporates ͑Concrete Society 2002͒.Similar observation of reduction in shrinkage with reduction in density ͑increase in FV ͒was reported by Nmai et al.͑1997͒for foam concrete and Schubert ͑1983͒for aerated concrete.How-ever,a study by Giannakou and Jones ͑2002͒on shrinkage ofS h r i n k a g e %Time,days (a)S h r i n k a g e %Time,days (b)Fig.4.͑a ͒Variation of drying shrinkage with time ͑foam concretewith cement-sand mix ͒;͑b ͒variation of drying shrinkage with time͑foam concrete with cement FA sand mix ͒(a)10%Foam Volume (b)50%Foam volume (c)Scale mm Fig.5.Typical binary images using an optical microscope showing air-void distribution P o r e w a l l t h i c k n e s s (m e d i a n v a l u e s ),m i c r o n s Foam volume %Fig.6.Variation of pore wall thickness with FVfoam concrete at different densities reported a slight increase inshrinkage at lower plastic densities.Such a behavior is attributedto mixture design procedure adopted by Giannakou and Jones͑2002͒,wherein the cement content and water-cement ratio were kept constant at all densities and the density was varied by replac-ing fine aggregate with air.Hence the sand content becomes lessfor lower densities,resulting in higher shrinkage.In the presentand Nmai et al.͑1997͒studies,the mixture design was done keep-ing the FC ratio constant at all FV dosage and so the reduction involume of paste with increase in FV causes lower shrinkage atlower densities.In order to investigate further the effect of paste content on theshrinkage of foam concrete,the variation of paste ratio ͑PR ͒withshrinkage ratio ͑SR ͒was plotted for both the mixes ͓Figs.7͑a andb ͔͒.The SR is defined as the ratio of shrinkage of foam concreteto corresponding base mix ͑without foam ͒and PR is the ratio ofthe total paste content in foam concrete to base mix.It is seen from the plot that SR reduces with paste content.Dotted line is marked in the plots to check whether the variation is linearly proportional to the paste content.But at any given paste content,the shrinkage was higher than the proportionality line and the difference is higher at high FV .A possible explana-tion for this is that the artificial air voids influence the volume stability by allowing some shrinkage and this effect was relatively more at a higher FV .The following relations for shrinkage of foam concrete fit well with R 2values of 0.974and 0.966for cement-sand mix and cement-sand FA mix,respectively for cement sand mix:s fc =0.9814s c ͑PR ͒0.693for cement-fly ash-sand mix:s fc =0.9993s c ͑PR ͒0.7721where s fc and s c =shrinkage of foam concrete and base mix,re-spectively.Effect of DryingFigs.8͑a and b ͒show the variation of shrinkage with moisture content in foam concrete with different FV .Moisture content was Table parison of Shrinkage of Base Mix with Foam Concrete Mix ͑1:2͒Foam concreteBase mix corresponding to each FV FV ͑%͒Cement-sand Cement-sand FA ͑FA 40%͒Cement-sand Cement-sand FA ͑FA 40%͒100.09890.11170.10780.1190300.08790.09460.11630.1240500.06960.08170.11280.1310S h r i n k a g e r a t i o (S R )Paste ratio (PR)(a)S h r i n k a g e r a t i o (S R )Paste ratio (PR)(b)Fig.7.͑a ͒Influence of paste content on shrinkage for cement-sandmixes;͑b ͒influence of paste content on shrinkage for cement FA sandmixesS h r i n k a g e %Moisture content (%by volume)(a)S h r i n k a g e %Moisture content (%by volume)(b)Fig.8.͑a ͒Relationship of shrinkage with moisture content for cement-sand mix;͑b ͒relationship of shrinkage with moisture content for cement-sand FA mixexpressed in percent by volume,as expressing it in percent byweight will give misleading results due to significant variations infoam concrete density͑E.K.K.Nambiar and K.Ramamurthy2006,2007,2008͒.The initial moisture content͑after storage inwater for72h͒is higher for foam concrete with lower FV.As theartificial air voids are not interconnected as well as air beingtrapped in these air voids,they are not taking part in water ab-sorption.Hence the contribution to water absorption is only bypores other than artificial air voids present in the sorbing paste.Thus the above observed increase in water absorption of foamconcrete containing lower FV͑artificial air voids͒is caused by thehigher volume of sorbing paste͑E.K.K.Nambiar and K.Rama-murthy2006,2007,2008͒.It can be seen that mixes with higherFV dried faster as they contain less absorbed water.Both cement-sand and cement-sand FA mixes showed similarbehavior with marginally higher shrinkage values for FA mixes atall FV contents.At any moisture content,the shrinkage reduceswith an increase in FV which,as mentioned earlier,is due to thelower content of micropores affecting shrinkage in foam concretewith higher FV.In the range of higher moisture content,a rela-tively small shrinkage occurs with loss of moisture as this loss ofmoisture is from relatively larger pores and the loss of free waterfrom such pores do not cause significant shrinkage.As dryingcontinues,the shrinkage rate is increased due to the removal ofwater from very small pores and the adsorbed water from gelsurface.At very low moisture content͑about3%or less͒all mixesexhibited a steep increase in shrinkage without any appreciablechange in moisture content.Similar relationship of shrinkage withmoisture content for aerated concrete was reported by Schubert ͑1983͒.Shrinkage in a conservative system,when no moisture movement to or from the paste is permitted,is known as autog-enous shrinkage͑Neville1995͒and thus at a lower moisture con-tent range autogenous shrinkage may also contribute to this totalshrinkage.Further experimental studies are necessary to explainthe above behavior.ConclusionsAs the FC ratio increases,shrinkage reduces due to the restrainingeffect of increased aggregate content.Shrinkage of foam concreteis lower than the corresponding base mix.For a foam concretewith50%FV,the shrinkage was observed to be about36%lowerthan that of a base mix.Shrinkage decreases with an increase infoam content.The lower shrinkage value at higher FV content iscaused by lower content of paste in the mix and thus the lowercontent of pores affecting shrinkage.The relationships developedconnecting shrinkage of foam concrete to that of base mixthrough PRfit well with R2values of0.974and0.966for cement-sand mix and cement-sand FA mix,respectively.For a typical PRof0.65,the reduction observed in the shrinkage compared to thatof base mix was about30%.The higher the FA content in thefoam concrete mix replacing sand,the higher the shrinkage.Thisis attributed to͑1͒low shrinkage resisting capacity offine FA thansand͑2͒greater volume water-solids ratio requirement with FAfor a stable and workable mix,and͑3͒greater volume of shrink-able paste with FA replacement due to reduced FV requirement ata given density.Even though addition of FA causes a small in-crease in shrinkage,it has a major contribution toward increasingthe strength of foam concrete of comparable density.It can alsobe seen that,irrespective of type of mixes,low density productsare stable for drying shrinkage in spite of its low strength.Artifi-some shrinkage;this effect increases with increase in FV.NotationThe following symbols are used in this paper:L dϭoriginal length of the specimen;l1ϭlength measured after72h immersion in water;l2ϭfinal reading after28days;s cϭshrinkage base mix;s fcϭshrinkage of foam concrete;andٌlϭchange in length expressed in%.ReferencesASTM.͑1989͒.“Standard specification forfly ash and raw or calcined natural pozzolana for use as a mineral admixture in Portland cement concrete.”C618,West Conshohocken,Pa.ASTM.͑1998͒.“Standard test method for length change of hardened hydraulic-cement mortar and concrete.”C157,West Conshohocken, Pa.Bureau of Indian Standards.͑1972͒.“Methods of tests for autoclaved cellular concrete—Determination of drying shrinkage.”IS6441-part II,New Delhi,India.Bureau of Indian Standards.͑1987͒.“Specifications for53grade ordinary Portland cement.”I S12269,New Delhi,India.Cebeci,O.Z.͑1981͒.“Pore structure of air-entrained hardened cement paste.”Cem.Concr.Res.,11,257–265.Concrete Society.͑2002͒.“A guide to the selection of admixtures for concrete.”Technical Rep.No.18,The Concrete Society,Berkshire, U.K.Georgiades,A.,and Ftikos,Ch.͑1991͒.“Effect of micropore structure on autoclaved aerated concrete shrinkage.”Cem.Concr.Res.,21,655–662.Giannakou,A.,and Jones,M.R.͑2002͒.“Potentials of foamed concrete to enhance the thermal performance of low rise dwellings.”Proc., Innovations and Development in Concrete Materials and Construc-tion,R.K.Dhir,P.C.Hewelett,and L.J.Csetenyi,eds.,Thomas Telford,London,533–544.Hansen,W.,and Almudaiheem,J.A.͑1987͒.“Ultimate drying shrinkage of concrete-Influence of major parameters.”ACI Mater.J.,84,217–223.Jones,M.R.,and McCarthy,A.͑2005͒.“Preliminary views on the po-tential of foamed concrete as a structural material.”Mag.Concrete Res.,57,21–31.Jones,M.R.,McCarthy,M.J.,and McCarthy,A.͑2003͒.“Movingfly ash utilization in concrete forward:A U K perspective.”Proc.,2003 Int.Ash Utilisation Symp.,Center for Applied Energy Research,Uni-versity of Kentucky,Lexington,Kent.,20–22.Nambiar,E.K.K.,and Ramamurthy,K.͑2006͒.“Influence offiller type on the properties of foam concrete.”pos.,28,475–480.Nambiar,E.K.K.,and Ramamurthy,K.͑2007͒.“Sorption characteristics of foam concrete.”Cem.Concr.Res.,37,1341–1347.Nambiar,E.K.K.,and Ramamurthy,K.͑2008͒.“Fresh state character-istics of foam concrete.”J.Mater.Civ.Eng.,20͑2͒,111–117. Neville,A.M.͑1995͒.Properties of concrete,Longman’s,London. Nmai,C.K.,McNeal,F.,and Martin,D.͑1997͒.“New foaming agent for CLSM applications.”Concr.Int.,4,44–47.Nmai, C.K.,Tomita,R.,Hondo, F.,and Buffenbarger,J.͑1998͒.“Shrinkage-reducing admixtures.”Concr.Int.,4,31–37. Ramamurthy,K.,and Narayanan,N.͑2000͒.“Influence of composition and curing on the drying shrinkage of aerated concrete.”Mater.Struct.,33,243–250.Regan,P.E.,and Arasteh,A.R.͑1990͒.“Lightweight aggregate foamedRILEM.͑1992͒.“Determination of drying shrinkage of AAC.”RILEM-AAC5.2technical recommendations for the testing and use of con-struction materials,E&FN Spon,London.Schubert,P.͑1983͒.“Shrinkage behaviour of aerated concrete.”Proc., Autoclaved Aerated Concrete,Moisture and Properties,F.H.Witt-mann,ed.,Elsevier Science,Amsterdam,207–217.Tada,S.,and Nakano,S.͑1983͒.“Microstructural approach to propertiesof moist cellular concrete.”Proc.,Autoclaved Aerated Concrete, Moisture and Properties,F.H.Wittmann,ed.,Elsevier Science,Am-sterdam,71–88.Valore,R.C.͑1954͒.“Cellular concrete part2.Physical properties.”ACI J.,50,817–836.Ziembicka,H.͑1977͒.“Effect of micropore structure on cellular concrete shrinkage.”Cem.Concr.Res.,7,323–332.。
混凝土外文翻译---混凝土的收缩
科技资料原文Shrinkage of ConcreteWhen concrete loses moisture by evaporation it shrinks. Shrinkage strains are mdependent of the stress conditions in the concrete. If restrained, shrinkage strains can cause cracking of concrete and will generally cause the deflection of structural members to increase with time. The calculation of stress and deformations due to shrinkage is deferred until Chapter 10.A curve showing the increase in shrinkage strain with time appears inFig.2.21. The shrinkage occurs at a decreasing rate with time appeard in shrinkage strains vary greatly, being generally in the range 0.0002 to 0.0006 but sometime as much as 0.0010.Fig.2.21. Typical shrinkage curve for concreteShrinkage is to a large extent a reversible phenomenon. If the concrete is saturated with water after it has shrunk, it will expand to almost its original volume. Thus alternating dry and wet conditions will cause alternating volume changes of concrete. This phenomenon is partly responsible for the fluctuating deflections of structures (e.g. concrete bridges) exposed to seasonal changes each year.As a rule, concrete that exhibits a high creep also displays high shrinkage. Thus the magnitude of the shrinkage strain depends on the composition of the concrete and on the environment in much the same way as discussed previously for creep.Both the ACI Committee 2092.26 and the CEB-FIP 2.27 have proposed empirical methods for the estimation of shrinkage strains. The former approach is described blow.According to ACI Committee 2092.26 for normal weight, sand lightweight concrete (using both moist and steam ouring and types I and III cement), the unrestrained shrinkage strain at any time t is given byWhere the coefficients are given below.Ultimate shrinkage strain,The value of can vary widely. In ACI Committee 209 review,was found to be in the range 0.000415 to 0.00107, with mean values of 0.00080 for moist-cured concrete or 0.00073 for steam-cured concrete. These average valuesS h r i n k a g e s t r a i n sh shu t h th s f e c s s s s s s s εε=shu εshu εshu εshould be assumed only in the absence of more exact date for the concrete to be used.Time of shrinkage coefficient, S tAt any time after age 7 days, for moist-cured concrete,(2.17a)Where t = time in days from age 7 days(St=0.46, 0.72, 0.84, 0.91,and 0.98 for t = 1 month, 3 months, 6months, 1 year, and 5 years, respectively)or, at any time after age 1 to 3 days for steam-cured concrete,(2.17b)Where t = time in days from age 3 days(St=0.35, 0.62, 0.77, 0.87,and 0.97 for t = 1 month, 3 months, 6months, 1 year, and 5 years, respectively)For shrinkage considered from greater ages than given above, the difference may be determined use Eq.2.17a or 2.17b for any period after than time. That is shrinkage for moist-cured concrete between, say, 1 month and 1 year would be equal to the 7-day to 1-year procedure assumes that the moist-cured concertehs been cured the shrinkage needs to be multiplied by 1.2; a linear interpolation between 1.2 at 1day and 1.0 abd 1.0 at 7 days may be used.Relative humidity coefficient, S hS h =1.4-0.01H for 40<H<80% (2.18a)or,S h =3.0-0.03H for 80<H<100% (2.18b)Where H = relative humidity in percent(S h = 1.00, 0.80, 0.60, 0,for 40, 60, 80, and 100% relative humidity)Minimum thickness of member coefficient, S thSth = 1.00 for 6 in or less and 0.84 for 9 in (1 in = 25.4mm)Slump of concrete coefficient, SsSs = 0.97 for 2 in ,1.00 for 2.7 in, 1.01 for 3in, 1.05 for 4 in, and 1.09 for 5 in (1 in =25.4mm)Fines coefficient, S fS f =0.86 for 40%, 1.00 for 50%, and 1.04 for 70% fines by weightAir content coefficient, S eS e =0.98 for 4%, 1.00 for 6%, and 1.03 for 10% airCement content factor, S c35t tS t =+55t tS t =+≤S c =0.87 for376 1b/yd 3, 0.95 for564 1b/ yd 3 ,1.00 for705 1b/yd 3 and1.09for 940 1b/yd 3(1 1b/yd 3=0.593kg/m 3)Example 2.2Estimate the free shrinkage strain that can be expected to occur in a 9 in (230mm) thick concrete wall from the age of 7 days during a 5-year period at a relative humidity of 60%. The concrete has a slump of 3 in (76mm), a fines content of 34% by weight, a cement content of 600 1b/yd 3 (356kg/m 3), an air content of 5%, and is moist cured for 5days after being placed.SolutionFrom Eq.0.16 we have原文翻译 混凝土的收缩当混凝土由蒸发丢失水分时便产生了收缩现象。
泡沫混凝土的规范简介及典型工程参数设计
泡沫混凝土的规范简介及典型工程参数设计泡沫混凝土(Foamed concrete)是将预制的泡沫通过机械搅拌的方式均匀掺入到水泥基胶凝材料净浆或砂浆中,经过泵送系统进行现浇施工或模具成型,经自然养护所形成的一种含有大量封闭气孔的新型轻质材料。
泡沫混凝土表现出了良好的防火性、阻燃性、抗老化性能;不仅如此,与一般有机材料如EPS相比,泡沫混凝土的强度及耐久性高、使用寿命长、施工加工过程简单、生产成本低;膨胀珍珠岩、膨胀蛭石等颗粒状松散保温材料吸水率高,制品不抗冻融,松散不易使用,其应用也受到限制。
而泡沫混凝土)价格低廉,原料易得,既可快速现浇施工,又可制成各种制品,同时具有防火性、隔声性、抗震性、耐候性以及与建筑同寿命等特点,发展前景十分广阔。
1 泡沫混凝土的特性泡沫混凝土与普通混凝土在组成材料上的最大区别在于泡沫混凝土中没有普通水泥混凝土中使用的粗集料,同时含有大量封闭的细小气泡孔,与普通混凝土相比,其具有以下特点:(1)质量轻泡沫混凝土的密度小,密度等级一般为300~1200kg/m3,其密度只相当于普通水泥混凝土的1/2~1/8。
近年来,密度更低的超轻泡沫混凝土也在建筑工程中开始出现,但尚未得到较大范围的应用。
由于泡沫混凝土的密度小,在建筑物的内外墙体、层面、楼面等建筑结构中采用该种材料,一般可使建筑物自重降低25%左右,有些可达结构物总重的30%~40%。
因此,在建筑工程中采用泡沫混凝土具有显著的经济效益。
(2)保温隔热性能好泡沫混凝土的内部充满大量封闭、均匀、细小的圆形孔隙,因此有良好的保温隔热性能,这是普通混凝土所不具备的。
通常密度等级在300~1200kg/m3范围的泡沫混凝土,导热系数在0.06~0.3W/(m2·K)之间。
采用其作为墙体或屋面材料具有良好的节能效果。
(3)隔音、耐火性能好泡沫混凝土属多孔材料,其内部含有大量的封闭孔隙,因此它也是良好的隔音材料。
在建筑物的楼层和高速公路的隔音板、地下建筑物的顶层等都可采用泡沫混凝土作为隔音层。
混凝土的收缩性能及检测方法
混凝土的收缩性能及检测方法一、背景介绍混凝土是建筑工程中应用最广泛的一种材料,但由于其在固化过程中存在收缩现象,会对混凝土结构的稳定性和耐久性造成影响。
因此,了解混凝土的收缩性能及检测方法,对于确保混凝土结构的安全性和可靠性具有重要意义。
二、混凝土的收缩性能1.概念:混凝土收缩是指混凝土在固化过程中,由于水分蒸发和水泥胶凝反应引起的体积减小现象。
2.种类:混凝土的收缩性能可以分为干缩、自由收缩、碳化收缩等。
3.影响因素:(1)水胶比:水胶比越大,混凝土的干缩和自由收缩量也越大。
(2)气候环境:气温、湿度等气候因素会影响混凝土的收缩性能。
(3)混凝土配合比:混凝土配合比的变化也会对混凝土的收缩性能产生影响。
三、混凝土收缩性能的检测方法1.测量干缩系数:干缩系数是指混凝土在干燥环境下的收缩量,可以通过测量混凝土的长度、宽度和厚度等尺寸参数来计算。
2.测量自由收缩系数:自由收缩系数是指混凝土在没有受到任何约束情况下的收缩量,可以通过在混凝土表面涂上一层薄膜,然后对薄膜上的标记点进行测量来计算。
3.碳化收缩系数的测量:碳化收缩系数是指混凝土在受到二氧化碳等化学物质的影响下产生的收缩量,可以通过测量混凝土长度、宽度和厚度等尺寸参数来计算。
四、混凝土收缩性能的控制措施1.控制水胶比:通过控制混凝土的水胶比,可以减少混凝土的收缩量。
2.添加收缩剂:在混凝土中加入适量的收缩剂,可以减少混凝土的收缩量。
3.增加钢筋和预应力:通过在混凝土中增加钢筋和预应力,可以减少混凝土的收缩量。
4.保持湿度:在混凝土固化过程中,保持湿度可以减少混凝土的收缩量。
五、结论混凝土的收缩性能对于混凝土结构的稳定性和耐久性具有重要影响,因此需要采取有效的控制措施来减少混凝土的收缩量。
在检测混凝土收缩性能时,应选择合适的检测方法,确保检测结果的准确性和可靠性。
外加组分对泡沫混凝土收缩性能的影响研究
Ad d e d wi t h s h r i ka n g e r e d u c i n g a g e n t , g l a s s i f b e r , a n d f l u i d i z e d b e d c o mb u s t i o n a s h , t h e s h r i ka n g e v a l u e s o f f o m e a d c o n c r e t e i n 2 8 d d e -
( 1 . S t a t e Ke yL a b o r a t o r yCu l t i v a t i o nBa s ef o r No n me t a l Co mp o s i t e a n dF u n c t i o nM a t e ia r l s , Mi ny a a n g6 2 1 0 1 0, C h i n a ;
纤维 、 固硫 灰对 泡 沫 混凝 土 收缩 性 能 的影 响 。 结果 表 明 : 水 料 比从 0 . 2 3增加 至 O . 3 3 , 泡沫 混 凝 土 2 8 、 5 6 d的 收缩 值呈 现先 减 少 后
增加的规律 ; 混凝土减缩剂 、 玻璃纤维 、 固硫灰的掺入降低泡沫混凝土 2 8 d的收缩值达 2 8 . O %、 1 3 . 3 %、 1 3 . 7 %, 降低其 5 6 d的收缩
值达 2 1 . 1 %、 1 7 . 5 %、 2 0 . O %
关键 词 : 泡 沫混 凝土 ;收 缩性 能 ;玻璃 纤 维 ;固硫 灰 ;减缩 剂
中 图分 类号 : T U5 2 8 . 2 文 献标 志码 : A 文 章编 号 : 1 0 0 2 — 3 5 5 0 ( 2 0 1 3 ) 0 8 — 0 0 4 7 — 0 4
《填筑用泡沫混凝土》
《填筑用泡沫混凝土》Foamed concrete for fillingJC/T XXX-202X编制说明《填筑用泡沫混凝土》标准编制组2021年06月《填筑用泡沫混凝土》行业标准编制说明1 工作简况1.1 任务来源根据中华人民共和国工业和信息化部工信厅科[2017]106号《工业和信息化部办公厅关于印发2017年第三批行业标准制修订计划的通知》,《填筑用泡沫混凝土》列入了行业标准计划,项目编号:2017-1280T-JC。
由建筑材料工业技术监督研究中心负责牵头组织国内主要填筑用泡沫混凝土研发、生产、应用等相关单位共同起草编制。
1.2 主要工作过程2018.1-2018.9 查询国内外填筑用泡沫混凝土的生产使用情况,并通过中国混凝土与水泥制品协会泡沫混凝土分会调研填筑用泡沫混凝土生产企业的生产状况以及该产品在工程中的使用情况,充分了解生产规模、产品性能、应用技术和要求;收集国内外相关标准和资料。
2018.10-2018.11 根据对填筑用泡沫混凝土行业信息的掌握以及对企业的调研结果并参考现有相关标准,起草标准的工作组讨论稿。
2018.12 在长沙召开标准的第一次工作会议并成立标准编制组,参会的30多家企业代表对标准工作组讨论稿进行了讨论,发表意见建议,形成标准初稿,同时进行了样品征集、验证试验等任务分配。
2019.1-2020.12 在泡沫混凝土分会支持下共收集国内11家企业的填筑用泡沫混凝土样品,分别进行了9项产品指标的测试工作,试验条件复杂。
本次验证试验主要由建筑材料工业技术监督研究中心所属建筑材料行业水泥基建筑节能材料重点实验室和建筑材料工业干混砂浆产品质量监督检验测试中心实验室进行。
2021.1-2021.6 标准编制组通过线上工作会议,对验证试验测试数据进行分析,根据结果在初稿基础上编制了标准的征求意见稿,并编写编制说明等其他文件。
2021.7-2021.8 向全行业发布征求意见稿,征求意见建议。
混凝土收缩性能评价标准
混凝土收缩性能评价标准一、引言混凝土是一种常见的建筑材料,其收缩性能对混凝土的使用寿命和性能有着重要的影响。
因此,混凝土的收缩性能评价标准至关重要。
二、混凝土收缩的分类混凝土收缩可分为自由收缩和约束收缩两种类型。
1. 自由收缩自由收缩指混凝土在无约束情况下的收缩。
这种收缩是由于混凝土内部水分的蒸发而导致的,是混凝土中水分流失的自然结果。
自由收缩是无法避免的。
2. 约束收缩约束收缩指混凝土在受到约束情况下的收缩。
如混凝土表面遇到空气干燥、环境温度变化、混凝土与钢筋之间的粘结等都会限制混凝土收缩,从而形成约束收缩。
约束收缩是可以通过改变混凝土的配合比、材料选择等手段来减少的。
三、混凝土收缩性能评价指标混凝土收缩性能评价指标主要包括线性收缩、干缩率、收缩应变等。
1. 线性收缩线性收缩是指混凝土在自由状态下的收缩量。
其计算公式为:Ls = L0 - L1其中,Ls为混凝土的线性收缩量,L0为混凝土试件的长度,L1为混凝土试件在完全干燥后的长度。
2. 干缩率干缩率是指混凝土干燥后的收缩量。
其计算公式为:Sd = Ww / Ws其中,Sd为混凝土的干缩率,Ww为混凝土干燥后的重量,Ws为混凝土初始重量。
3. 收缩应变收缩应变是指混凝土在受约束情况下的收缩量。
其计算公式为:εs = ΔL / L0其中,εs为混凝土的收缩应变,ΔL为混凝土试件受到约束后的长度变化量,L0为混凝土试件的长度。
四、混凝土收缩性能评价标准混凝土收缩性能评价标准是根据混凝土的使用环境和要求,制定的对混凝土收缩性能的要求。
其主要包括以下几个方面的要求:1. 线性收缩标准线性收缩标准是根据混凝土的使用环境和要求,制定的对混凝土线性收缩的要求。
一般来说,混凝土的线性收缩量应该小于0.05%。
2. 干缩率标准干缩率标准是根据混凝土的使用环境和要求,制定的对混凝土干缩率的要求。
一般来说,混凝土的干缩率应该小于0.05%。
3. 收缩应变标准收缩应变标准是根据混凝土的使用环境和要求,制定的对混凝土收缩应变的要求。
高强与高性能混凝土06收缩综述
高强与高性能混凝土06收缩综述P. C. Aïtcin, A. M. Neville, and P. Acker“收缩”看起来似乎就是混凝土失水造成体积缩小的简单现象。
严格地说,它是三维变形,但通常以线性变形表示,因为大多数情况下,混凝土构件一个或两个方向的尺寸往往要比第三个方向小很多,尺寸最大的方向上收缩也最大。
通常所谓收缩,是混凝土暴露在相对湿度小于100%的空气中产生“干燥收缩”的简称。
然而由于环境的作用,混凝土还会产生许多其它种类的收缩变形,它们彼此独立地发生或者同时出现。
文章提出了一些建议,以便尽量减小混凝土,尤其是高性能混凝土,由于收缩带来非常有害的结果。
硬化混凝土发生的干燥收缩是大家所最熟悉的。
按照时间顺序来划分,干燥收缩发生之前,即混凝土尚处于塑性状态时产生的收缩是塑性收缩。
通常,水分是往大气蒸发的,但也有可能被结构物下面干燥的混凝土或土壤所汲取。
其次,硬化混凝土的收缩变形,还由于水泥水化的进行所导致。
因为这种收缩发生在混凝土体内,与周围介质不相干,常称之为“自干燥收缩”(self-desiccation shrinkage)。
表示该收缩现象的另一个术语是“自身收缩”(autogenous shrinkage),在这里用该术语是为了与所有有关收缩的称呼相对应,偶尔也称其为“化学收缩”。
收缩变形还会自混凝土凝固,即构件体积与重量不再变化时,因温度下降而产生,这里称其为热收缩。
此外,水化水泥浆,在有水分存在时,与大气里的二氧化碳反应,要产生碳化收缩。
上述各种收缩,或某几种收缩同时产生时,它们的和称为总收缩。
为了充分地认识各种收缩的机理,首先要了解水泥的水化及其物理、力学与热力学作用,在此基础上才可能采取适当的方法,以减小各种收缩或者减轻它们造成的后果。
所谓水泥的水化,是硅酸盐水泥与水发生化学反应时出现几种现象的总称。
该反应生成有粘结力与粘附性的固相——水化水泥浆——混凝土产生强度的基图1—水化“永恒的三角”:强度、热和水化本成分。
泡沫混凝土的力学特性试验研究
泡沫混凝土的力学特性试验研究邵成健;徐永福;陈兵;丁鹏飞【摘要】According to the mass ratio 16:3:1(cement, fly ash, mineral powder, respectively)and the ration of water and material is 0.5, foam concrete with different content of foam was prepared with ordinary Portland cement and a small amount of fly ash and mineral powder .The uniaxial compression tests for sample were conducted and obtained the failure stress and stress-strain curves of foam concrete with different rate of foam under different curing age.The relationships between compressive strength , elastic modulus and void fraction , the change rules of com-pressive strength and elastic modulus along the curing time were studied .The main results were shown as following:the compressive strength of foam concrete was greatly influenced by curing age , while the elastic modulus was a lit-tle in a certain range .The compressive strength , elastic modulus , yield strain decreases with the increase of void fraction.The strength and elastic modulus are exponential with the void fraction , and the relationships between the strength and the elastic modulus is logarithmic .%利用普通硅酸盐水泥为胶凝材料,用少量粉煤灰和矿粉取代部分水泥,按照质量比16:3:1(依次为水泥、粉煤灰、矿粉)、水料比0.5,制备了不同气泡含量的泡沫混凝土。
陶粒泡沫混凝土收缩性能研究
A bs t r ac t : Th e t e x t r e s e a r c h e d d i fe r e n t s i z e of c e r a ms i t e o n f o a m c o n c r e t e s h r i n ka g e e fe c t . Th e r e s u l t s ho we d t h a t s ri h nk a g e r a t e o f
混 凝 土收 缩率 要小 。 合理 的级 配对 泡沫 混凝 土 的收缩 率有 一定 的影 响 。 蒸 压养 护后 陶 粒泡 沫混 凝 土 6 0 d收缩 率 为 0 . 0 6 %, 远 低于 标 准 养 护后 收缩 率 。 X R D和 S E M 分析 结果 显 示 , 陶粒 和凝 胶 体 结合 良好 , 蒸 养后 的 晶体 结 构 以托 勃莫 来 石 为主 , 而 标养 后 的 晶
体 结构 以 c a ( 0 H) 和部分 C S H凝 胶 为主 。 关键 词 : 陶粒 泡 沫 ;混凝 土 ;收 缩 ;托勃莫 来石
中 图分类 号 : T U 5 2 8 . 0 4 1 文 献标 志 码 : A 文 章编 号 : 1 0 0 2 — 3 5 5 0 ( 2 0 1 3 ) 1 1 - 0 1 0 5 — 0 3
Re se ar c h on per f or m anc e of shr i nk age of ce r a ms i t e f oam conc r et e
泡沫混凝土收缩开裂三大影响因素与预防开裂的技术措施
泡沫混凝土收缩开裂三大影响因素与预防开裂的技术措施泡沫混凝土的收缩、开裂和吸水是三个密切关联的问题:一般说来,泡沫混凝土由于早期养护不善、保水措施不够或使用过程中条件比较苛刻,均会引发其内部的水分蒸发,从而导致体积收缩、开裂或发生显著的吸水作用。
而泡沫混凝土过多吸水又会降低保温隔热效果,从泡沫混凝土的制备过程和对硬化体断面的观察研究发现,泡沫混凝土内的孔绝大多数是相对独立的封闭孔。
因此,得到完好养护的泡沫混凝土浸泡于水中。
其吸水主要集中于表层,并不具有大的吸水性。
影响泡沫混凝土收缩、开裂、吸水的因素主要有以下几方面:(一)水泥用量的影响普通硅酸盐水泥在水化硬化过程中固相体积是增加的,而水泥+水体系是收缩的。
其次,水泥水化过程中还伴随热效应,引起初始体积膨胀而冷却时又收缩,导致表观收缩量增大。
另外,水泥水化过程中还存在自吸水引起的自收缩现象。
所以,一般情况下如果其它条件基本相同,水泥用量增加,泡沫混凝土的收缩也会相应增大。
而水泥同时又是保证强度的重要因素之一,所以水泥用量存在一个合适的范围。
(二)水泥种类的影响并不是所有的水泥硬化前后的体积都是收缩的,膨胀水泥在硬化前后体积不但不收缩反而有所胀。
因此,如果采用适量的膨胀水泥,可以在一定程度上弥补或减轻泡沫混凝土整体的收缩。
但是,膨胀水泥不但影响体积变化,同时也会影响其他一系列性能,过多引人会引起硬化泡沫混凝土结构破坏,因此膨胀水泥的品种和掺用量必需通过试验确定。
(三)集料的影响试验和工程实际统计数据表明,普通水泥混凝土的收缩率最小,水泥净浆收缩率较大,泡沫混凝土的收缩率最大。
这是因为普通混凝土中掺有大量体积不变的粗集料,而没有集料的水泥净浆在硬化前后总体积本身就是减小的。
泡混凝土收缩最大,一方面是因为其中没有粗集料,另一方面是因为其中含有大量的孔隙,隙的大部分被水填充,使用过程随着孔隙中水分的逸出,外观表现出体积收缩。
由此可见,掺加集料无疑是减少沫混凝土收缩的措施之一。
混凝土收缩率要求
混凝土收缩率要求《混凝土收缩率要求》篇一混凝土收缩率要求引言:嘿,咱们为啥要对混凝土收缩率提出要求呢?这事儿可太重要了。
你想啊,在建筑工程里,混凝土就像骨架一样支撑着整个建筑。
如果混凝土收缩率没控制好,那就像骨架突然变小了,那建筑可不得出问题嘛。
比如说,可能会导致墙体出现裂缝,这裂缝就像脸上的皱纹一样难看,而且还影响建筑的安全性。
从目标上讲,我们希望建筑能稳稳当当的,几十年甚至上百年都屹立不倒。
这就需要我们好好把控混凝土的收缩率这个关键因素。
主体要求:一、原材料方面1. 水泥:水泥的品种和标号对混凝土收缩率影响不小。
一般来说,高标号的水泥早期强度高,但收缩率也可能较大。
所以,要根据工程的具体需求选择合适标号的水泥。
比如说,对于一些普通住宅建筑,不是特别着急要强度的,就别用那种超高级别的水泥,不然收缩率大了,后期麻烦事儿多着呢。
*这里要特别注意,不能为了图省事或者省钱,随便选水泥,不然就像穿错了鞋子,走路肯定不舒服,建筑也会出问题。
*2. 骨料:骨料的大小、形状和级配也是重点。
粗骨料粒径大、级配良好的话,混凝土的收缩率相对较小。
就好比一群人排队,如果大家大小个头合适,排得整整齐齐的,那这个队伍就很稳定。
对于细骨料,含泥量一定要控制在3%以内,这可是个红线,超过了这个数,混凝土收缩率就像脱缰的野马,很难控制住了。
二、配合比1. 水灰比:水灰比是个关键中的关键。
水灰比越大,混凝土的收缩率就越大。
通常情况下,水灰比要控制在0.4 - 0.6之间。
这就像是做饭时水和面粉的比例,多一点少一点,做出来的东西口感就不一样。
在混凝土里,水灰比不合适,收缩率就会失控。
*你要是随便加水,觉得多加点水混凝土好搅拌,那可就大错特错了,这就像在炒菜时乱加盐一样,味道肯定不对,建筑也会有隐患。
*2. 外加剂:外加剂能改善混凝土的性能,但也得谨慎使用。
减水剂可以减少用水量,从而降低收缩率,但使用量得严格按照说明书来。
比如说,聚羧酸系减水剂的掺量一般在0.15% - 0.3%之间,多了少了都不行。
混凝土和易性名词解释
混凝土和易性名词解释混凝土(Concrete)是一种由水泥、砂、石料和水按一定比例配制而成的人工石材。
混凝土在建筑、水利、交通、市政等领域得到广泛应用,是最重要的建筑材料之一。
以下是混凝土及与其相关的易性名词的解释。
1. 强度(Strength):混凝土的抗压强度是评估其质量和耐久性的重要指标之一。
强度越高,混凝土的负荷承载能力越强。
2. 塑性(Plasticity):混凝土在未硬化之前具有一定的塑性,可以通过可塑性、可流动性的状态塑造成各种形状。
3. 流动性(Workability):混凝土的流动性是指混凝土在施工过程中易于流动和填充各种细小空隙的性质。
良好的流动性有利于提高混凝土的紧密性和强度。
4. 凝结(Setting):混凝土在水泥与水发生反应形成水化产物的过程。
凝结过程可分为凝结初期、凝结中期和凝结后期。
5. 初凝时间(Initial setting time):混凝土开始凝结的时间。
初凝时间长短直接关系到施工的进展。
6. 终凝时间(Final setting time):混凝土完全凝结的时间。
终凝时间长短与混凝土的硬化过程和强度发展有关。
7. 塌落度(Slump):塌落度用来评估混凝土的流动性,是指在试验条件下混凝土塔型坍塌的高度。
塌落度的大小直接影响着施工的操作性和混凝土的质量。
8. 胶体颗粒(Colloidal particles):混凝土中的胶体颗粒是指颗粒大小在1nm至1μm的微细固体颗粒。
胶体颗粒对混凝土的流动性和强度发展有重要影响。
9. 质量控制(Quality control):混凝土生产过程中的质量控制是通过控制原材料的配比、质量和施工工艺的要求,以确保混凝土的性能达到设计要求。
10. 龄期(Age):指混凝土的硬化时间,随着时间的推移,混凝土会逐渐增强。
混凝土是一种广泛应用于建筑、桥梁、水利、公路等工程领域的材料,了解混凝土的基本概念和易性名词对于设计、施工和维护工作具有重要意义。
混凝土收缩种类
混凝土收缩种类混凝土是一种常用的建筑材料,具有优良的强度和耐久性。
然而,混凝土在硬化过程中会发生收缩现象,这可能会对结构的稳定性和性能产生负面影响。
了解混凝土收缩的种类对于设计和施工过程中的控制非常重要。
本文将介绍几种常见的混凝土收缩种类。
1. 干缩收缩干缩收缩是指混凝土在干燥过程中由于水分蒸发而引起的收缩现象。
当混凝土中的水分逐渐蒸发时,水分与水泥胶凝体之间的粘结力会减弱,导致混凝土体积的收缩。
干缩收缩是混凝土收缩中最常见的一种类型。
2. 热收缩热收缩是指混凝土在硬化过程中由于温度变化而引起的收缩现象。
当混凝土受热时,其中的水分会蒸发,导致体积收缩。
相反,当混凝土受冷时,其中的水分会凝结,导致体积膨胀。
热收缩是由于混凝土中的水分变化引起的。
3. 微观收缩微观收缩是指混凝土中的水泥胶凝体在硬化过程中发生的微观收缩现象。
水泥胶凝体的形成是由于水泥与水发生化学反应而产生的,这个过程会导致水泥胶凝体的体积收缩。
微观收缩是混凝土收缩中最微小但最普遍的一种类型。
4. 剥落收缩剥落收缩是指混凝土表面由于干燥而引起的收缩现象。
当混凝土表面的水分蒸发时,混凝土表面会收缩,导致混凝土与表面材料之间的粘结力减弱,从而引起剥落现象。
剥落收缩是混凝土收缩中常见的一种类型,特别是在干燥和高温环境下。
5. 可塑收缩可塑收缩是指混凝土在浇筑和振捣过程中由于水泥胶凝体的流动性而引起的收缩现象。
当混凝土中的水泥胶凝体流动时,其中的水分会随着流动而移动,导致混凝土体积的收缩。
可塑收缩是混凝土收缩中与施工过程密切相关的一种类型。
混凝土收缩是混凝土工程中需要重视和控制的问题。
通过了解不同种类的混凝土收缩,我们可以采取相应的措施来减少其对结构的影响。
例如,在设计阶段可以选择合适的混凝土配合比和控制水胶比,以减少干缩和可塑收缩的影响。
在施工过程中,可以采取适当的养护措施来减少剥落收缩和热收缩的影响。
混凝土收缩是混凝土工程中不可忽视的问题。
混凝土收缩的定义、分类及影响
塑性收缩
• 又称沉缩,发生在硬化前的塑性阶段。 这里指在塑性阶段混凝土由于表面失水 而产生的收缩,多见于道路、地坪、楼 板等大面积的工程,以夏季施工最为普 遍。
化学减缩
• 又称水化收缩,水泥水化后,固相体积 增加,但水泥—水体系的绝对体积减小。 所有的胶凝材料水化以后都有这种减缩 作用,因为 水化反应前后的平均密度不 同,大部分硅酸盐水泥浆完全水化后, 体积减缩总量为7%~9%
水泥矿物成分与水泥类型
混凝土 自收缩 影响因 素
水胶比 矿物掺合料 骨料 水泥浆体含量、外加剂、 水泥细度、养护温度、试件尺寸
降低混凝土自收缩的措施
从 材 料 角 度 出 发
充 分 水 养 护
应 • Click to add Text 用 • Click to add Text 减 缩 剂
• Click to add Text
参考文献
1、南京化工学院等 (1961). 胶凝物质工学. 北京,
中国工业出版社. 2、吴中伟 (1999). “高性能混凝土 3、陈先锋 (2011). 轻骨料对高性能混凝土早期自 收缩影响机理. 4、蒋正武,孙振平,王新友,王玉吉,张冠伦 (2011). "国外混凝土自收缩研究进展评述." 混凝 土 4.
轻骨料混凝土早期自收缩 预测模型
1200 1000 800 600 400 200 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泡沫混凝土的收缩性能
E. K. Kunhanandan Nambiar1 and K. Ramamurthy, M.ASCE2
摘要:
在缺乏粗集料的情况下,影响泡沫混凝土收缩的因素与普通混凝土相比可能是不同的。
本文介绍了影响泡沫的预制混凝土的收缩性能的基本参数,即,密度,含水量,填料组成的水灰比,更换砂粉煤灰标准,和泡沫数量。
泡沫混凝土的收缩比相应的基本组合更低。
对于有50%的泡沫体积泡沫混凝土,收缩大约为36%,比基本组合更低,泡沫混凝土的收缩是泡沫体积和间接相关的数量和收缩糊化特性的一个功能。
在低水分含量范围内,收缩率大大增加,虽然从相对较大的人造空气毛孔来除水分不会有助于收缩,人工空隙率可能也不会有助于收缩,但是在某种程度上,通过一些收缩间接影响体积的稳定性,这对更高的泡沫体积影响更大。
关键词:收缩;脱水;泡沫;粉煤灰;水泥;混凝土;
1、介绍:
水泥基材料水分的去除导致体积变化主要是由于通过来自凝胶孔表面吸附水的去除不受限制水化水泥量的改变,至于普通混凝土考虑到,被确定的主要参数为浆料的收缩和骨料。
泡沫混凝土,像加气混凝土和泡沫混凝土由于具有高干燥收缩,由于缺乏合体,比一个正常体重所观察到的混凝土达到10倍以上,通过高压灭菌法来获得能显著降低收缩的加气混凝土,表明干水收缩主要是水化产品物理结构的一种功能,然而Tada和Nakanoj将加气混凝土的更高收缩归因于其体积较大的毛细孔隙。
Ziembicka、Georgiades和Ftikos已经对微孔的体积和比表面积的收缩进行了叙述。
Schubert对影响收缩气孔体积、气孔的分布和水分的含量进行了叙述。
在对收缩性能的比较研究中,以砂子和粉煤灰为填料,与展现较小干水收缩的沙子混合作为沙粒,与FA沙粒相比,其有更高的收缩抑制能力。
Nmai 等人,为了CLSM应用,在新发泡剂的研究中,表明以降低密度来减少收缩。
除此之外,轻骨料可以用来降低泡沫混凝土的收缩。
2、研究意义:
固化、组成、密度,最初与最后含水率、持续时间和气候的存储和微孔结构及
其分布的方法被报道,其能够影响泡沫混凝土的干水收缩。
审查表明,大多数多孔混凝土干燥收缩早期的研究已限于加气混凝土。
只有有限的研究与特定试验参数和测试条件的收缩报道了关于泡沫混凝土的性能。
为此,本文探讨了这一试验结果来确定的基本成分的影响,即,密度、含水率及组成如泡沫体积、填料、FA 的更换砂等关于潮湿预成型泡沫混凝土的干水收缩。
3、材料与方法:
3.1、组成材料:
用于生产泡沫混凝土的组成材料列于表1。
泡沫的不同混合通过按比例FC从1:3,沙子的替代FA按重量从0%至100%,FV从10%至50%。
这些混合水固比例表1 用于生产泡沫混凝土的成分材料
取决于泡沫混凝土混合的能力,这种泡沫混凝混合是以国家确定的条件而定义的,测量密度等于或接近相等设计密度和混合的一致性(对于流锥为45的散布值)。
3.2、实验研究:
以大小为40x40x160毫米棱镜对于加气混凝土实施干缩试验,与RILEM-ACC 5.2 和IS 6441-part II的优良方法相一致,球规插头被装在两个试样的两端,以方便长度变化的测量。
对于每个参数组合,测试三个样本的收缩,报道其平均值。
从模具中去除后,将样本浸泡在水中为72小时。
浸泡时期过后,将样品保持在一个受控的环境中(湿度箱),温度为23加或减1.7C,相对湿度为50加或减4%。
在
水里浸泡72小时后,立即进行第一次测量。
将样本表面上的水抹去,压力表插头上的水分移动导致无效的错误读数,长度测量是以0.002毫米计数的一个长度比较器,长度测量采取了28天。
在长度上的变化中,L用百分比来表示,通过式子(l2−l1)_ L d x 100来计算,式中L1是第一个长度读数,L2是28天后的最后长度读数,Ld是样本原始读数。
4、结果与讨论:
4.1、填料水泥比例与填料类型的影响:
图1显示了在28天结束时FC的比对泡沫收缩效应混凝土。
正如预期的那样,水泥沙和水泥粉煤灰混合砂展示随着FC比例的增加收缩会降低,当FC在1至2范围内波动相对更陡。
这是可以归因于减少水泥用量的增加和抑制细骨料含量的综合影响。
另外,对于一给定的FC比例,水泥沙的混合比一个典型的FA取代沙的混合有更低的收缩,这是由于与FA相比降低了沙粒的收缩能力。
图1 水泥填充剂比例对泡沫混凝土的影响图2显示混合的FA含量增加将导致在收缩增加(也就是说,与100%FA混合的收缩比与沙混合的高出31%还要多)。
图2 粉煤灰的替换对泡沫混凝土的影响
Jones和McCarthy已经报道了泡沫混凝土的类似观测结果,Ramamurthy 和Narayanan报道了加气混凝土的类似观察结果。
水泥沙和水泥粉煤灰混合砂泡沫混凝土密度的收缩的百分比变化和28天抗压强度在图3中所示:
图3 收缩与强度随泡沫混凝土密度的变化
对于已经给定的密度,粉煤灰的替代(40%替代)混合比水泥沙混合有相对更高的收缩率。
除了与沙相比的粉煤灰抑制能力降低影响之外,高的水固混合比例要求与FA 为实现一个稳定的和可行的组合也将有助于更高的收缩,这种增加在水固分混合比例,在烘烤过程中可使混合更渗透导致更多水吸附。
较高的水含量会导致吸附水的厚层,水朝样本表面移动速率随混合的更多渗透而增加,形成较大的收缩。
此外,与FA混合需要相对较长时间才能形成稳定这样的结构,直到这个时候吸附水才被允许从未反应以及部分颗粒反应的表面离开,形成凝胶物理结构的粉煤灰也能导致增加收缩。
加进这个,相对降低FV需求量(为粉煤灰的搅拌料获得一个给定的密度)导致更高的收缩粘贴量,这有助于增加收缩。
与此同时,对于固定密度的泡沫混凝土,粉煤灰的搅拌料导致了相对较高的强度(2-3倍),此时与水泥沙搅拌料相比较的情况下。
强度的增加归因于粉煤灰搅拌料FV需求量的减少和以上填料和火山灰的影响。
虽然混合中含有粉煤灰的收缩有少数增加,但是这大大有助于提高强度泡沫混凝土的可比密度。
它也可以看出,无论搅拌料的类型,低密度产品对于干收缩是稳定的,尽管它有低的强度。
5、泡沫体积的影响:
对于不同的混合组分,收缩随时间的变化在图4中(a和b)所示,表明随着FV的增加收缩会减少。
据报道,泡沫混凝土的收缩是体积和半径为75和625之间的微孔比表面积的一个函数。