高中数学必修2 课内课外直通车 一课一练 课堂精练_2
人教b版高中数学必修2同步练习题及答案全册汇编
人B版高中数学必修2同步习题目录第1章1.1.1同步练习第1章1.1.2同步练习第1章1.1.3同步练习第1章1.1.4同步练习第1章1.1.5同步练习第1章1.1.6同步练习第1章1.1.7同步练习第1章1.2.1同步练习第1章1.2.2第一课时同步练习第1章1.2.2第二课时同步练习第1章1.2.3第一课时同步练习第1章1.2.3第二课时同步练习第1章章末综合检测第2章2.1.1同步练习第2章2.1.2同步练习第2章2.2.1同步练习第2章2.2.2第一课时同步练习第2章2.2.2第二课时同步练习第2章2.2.3第一课时同步练习第2章2.2.3第二课时同步练习第2章2.2.4同步练习第2章2.3.1同步练习第2章2.3.2同步练习第2章2.3.3同步练习第2章2.3.4同步练习第2章2.4.1同步练习第2章2.4.2同步练习第2章章末综合检测人教B版必修2同步练习1.关于平面,下列说法正确的是()A.平行四边形是一个平面B.平面是有大小的C.平面是无限延展的D.长方体的一个面是平面答案:C2.如图所示的两个相交平面,其中画法正确的有()A.1个B.2个C.3个D.4个解析:选B.被平面遮住的部分应画虚线,故(1)(4)正确.3.如图,是一个无盖正方体盒子的表面展开图,A、B、C为其上三点,则在正方体盒子中,∠ABC等于()A.45°B.60°C.90°D.120°答案:B4.飞机飞行表演在空中留下漂亮的“彩带”,用数学知识解释为________.答案:点动成线5.一个平面将空间分成________部分;两个平面将空间分成________部分.答案:23或41.下列不属于构成几何体的基本元素的是()A.点B.线段C.曲面D.多边形(不含内部的点)解析:选D.点、线、面是构成几何体的基本元素.2. 如图是一个正方体的展开图,每一个面内都标注了字母,则展开前与B相对的是()A.字母E B.字母CC.字母A D.字母D解析:选B.正方体展开图有很多种,可以通过实物观察,选一个面作为底面,通过空间想象操作完成.不妨选字母D所在的面为底面,可以得到A,F是相对的面,E与D相对;若选F做底面,则仍然得到A,F是相对的面,E与D相对,则与B相对的是字母C.3.如图,下列四个平面图形,每个小四边形皆为正方形,其中可以沿两个正方形的相邻边折叠围成一个立方体的图形是()解析:选C.借助模型进行还原.4.下列命题正确的是()A.直线的平移只能形成平面B.直线绕定直线旋转肯定形成柱面C.直线绕定点旋转可以形成锥面D.曲线的平移一定形成曲面解析:选C.直线的平移,可以形成平面或曲面,命题A不正确;当两直线平行时旋转形成柱面,命题B不正确;曲线平移的方向与曲线本身所在的平面平行时,不能形成曲面,D不正确,只有C正确.故选C.5.下列几何图形中,可能不是平面图形的是()A.梯形B.菱形C.平行四边形D.四边形解析:选D.四边形可能是空间四边形,如将菱形沿一条对角线折叠成4个顶点不共面的四边形.6.下面空间图形的画法中错误的是()解析:选D.被遮住的地方应该画成虚线或不画,故D图错误.7.在以下图形中,正方体ABCD-A1B1C1D1不可以由四边形________(填序号)平移而得到.①ABCD;②A1B1C1D1;③A1B1BA;④A1BCD1.解析:①ABCD,②A1B1C1D1,③A1B1BA,按某一方向平移可以得到正方体ABCD-A1B1C1D1,④A1BCD1平移不能得到正方体ABCD-A1B1C1D1.答案:④8. 把如图的平面沿虚线折叠可以折叠成的几何体是________.解析:图中由六个正方形组成,可以动手折叠试验,得到正方体.答案:正方体9.如右图小明设计了某个产品的包装盒,但是少设计了其中一部分,请你把它补上,使其成为两边均有盖的正方体盒子.你能有________种方法.答案:410. 指出下面几何体的点、线、面.解:顶点A 、B 、C 、D 、M 、N ;棱AB 、BC 、CD 、DA 、MA 、MB 、MC 、MD 、NA 、NB 、NC 、ND ;面MAD 、面MAB 、面MBC 、面MDC 、面NAB 、面NAD 、面NDC 、面NBC .11.搬家公司想把长2.5 m ,宽0.5 m ,高2 m 的长方体家具从正方形窗口穿过,正方形窗口的边长为a ,则a 至少是多少?解:如图,问题实质是求正方形的内接矩形边长为2 m,0.5 m 时正方形的边长a =2+0.52=524≈1.77(m).所以a 至少是1.77 m 时,长方体家具可以通过.12.要将一个正方体模型展开成平面图形,需要剪断多少条棱?你能从中得出什么规律来吗?解:需要剪断7条棱.因为正方体有6个面,12条棱,两个面有一条棱相连,展开后六个面就有5条棱相连,所以剪断7条棱.规律是正方体的平面展开图只能有5条棱相连,但是,有5条棱相连的6个正方形图形不一定是正方体的平面展开图.人教B 版必修2同步练习1.在下列立体图形中,有5个面的是( ) A .四棱锥 B .五棱锥 C .四棱柱 D .五棱柱解析:选A.柱体均有两个底面,锥体只有一个底面.2.如图所示的长方体,将其左侧面作为上底面,右侧面作为下底面,水平放置,所得的几何体是( )A .棱柱B .棱台C .棱柱与棱锥组合体D .无法确定 答案:A3.在四棱锥的四个侧面中,直角三角形最多可有( ) A .1个 B .2个 C .3个 D .4个 答案:D4.棱柱的侧面是________形,棱锥的侧面是________形,棱台的侧面是________形. 答案:平行四边 三角 梯5.在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,沿AE 、AF 、EF 将其折成一个多面体,则此多面体是________.答案:三棱锥1.下列命题正确的是( )A .斜棱柱的侧棱有时垂直于底面B .正棱柱的高可以与侧棱不相等C .六个面都是矩形的六面体是长方体D .底面是正多边形的棱柱为正棱柱解析:选C.四个侧面都是矩形的棱柱是直平行六面体.两个底面是矩形的直平行六面体是长方体.故正确答案为C.2.将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体为( )A .棱柱B .棱台C .棱柱与棱锥的组合体D .不能确定 解析:选A.水面始终与固定的一边平行,且满足棱柱的定义.3. 如图所示,正四棱锥S -ABCD 的所有棱长都等于a ,过不相邻的两条棱SA ,SC 作截面SAC ,则截面的面积为( )A.32a 2 B .a 2C.12a 2 D.13a 2 解析:选C.根据正棱锥的性质,底面ABCD 是正方形,∴AC =2a .在等腰三角形SAC中,SA =SC =a ,又AC =2a ,∴∠ASC =90°,即S △SAC =12a 2.故正确答案为C.4.若要使一个多面体是棱台,则应具备的条件是( ) A .两底面是相似多边形 B .侧面是梯形 C .两底面平行D .两底面平行,侧棱延长后交于一点解析:选D.根据棱台的定义可知,棱台必备的两个条件:底面平行,侧棱延长后相交于一点.5.若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是( ) A .正三棱锥 B .正四棱锥 C .正五棱锥 D .正六棱锥解析:选D.正三棱锥的底面边长和侧棱相等时叫做正四面体,因此该棱锥可以是正三棱锥,所以不选A ,另外,正四棱锥,正五棱锥也是可能的,故B 、C 也不选,根据正六边形的特点,正六边形的中心到各个顶点的距离相等,在空间中,除中心外,不可能再找到和各顶点的连线都等于底面边长的点,因此该棱锥不可能是正六棱锥.故选D. 6.已知正四棱锥的侧棱长是底面边长的k 倍,则k 的取值范围是( )A .(0,+∞)B .(12,+∞)C .(2,+∞)D .(22,+∞)解析:选D.由正四棱锥的定义知如图,正四棱锥S -ABCD 中,S 在底面ABCD 内的射影O 为正方形的中心,而SA >OA =22AB ,∴SA AB >22,即k >22. 7.长方体表面积为11,十二条棱长度的和为24,则长方体的一条对角线长为________. 解析:设长方体的长、宽、高分别为a 、b 、c ,则4(a +b +c )=24,∴a +b +c =6.又(ab +bc +ac )×2=11.∴长方体的一条对角线长l =a 2+b 2+c 2=(a +b +c )2-2(ab +bc +ac )=62-11=5. 答案:58.在正方体上任意选择4个顶点,它们可能是如下各种几何体(图形)的4个顶点,这些几何体(图形)是________(写出所有正确结论的编号).①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.解析:本题借助正方体的结构特征解答,4个顶点连成矩形的情形很容易作出;图(1)中四面体A 1D 1B 1A 是③中描述的情形;图(2)中四面体DA 1C 1B 是④中描述的情形;图(3)中四面体A 1D 1B 1D 是⑤中描述的情形.因此正确答案为①③④⑤.答案:①③④⑤9.正四棱台的上、下底面边长分别是5和7,体对角线长为9,则棱台的斜高等于________.解析:如图,四边形BDD 1B 1是等腰梯形,B 1D 1=52,BD =72,BD 1=9,所以OO 1 =BD 21-(BD +B 1D 12)2=3. 又E 1,E 分别为B 1C 1,BC 的中点,所以O 1E 1=52,OE =72.所以在直角梯形OEE 1O 1中,斜高E 1E =OO 21+(OE -O 1E 1)2=10.答案:1010.已知正四棱锥V -ABCD 中,底面面积为16,一条侧棱的长为211,求该棱锥的高.解:取正方形ABCD 的中心O ,连接VO 、AO ,则VO 就是正四棱锥V -ABCD 的高. 因为底面面积为16,所以AO =2 2. 因为一条侧棱长为211, 所以VO =VA 2-AO 2=44-8=6.所以正四棱锥V -ABCD 的高为6.11. 如图所示,长方体ABCD -A 1B 1C 1D 1.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCFE 把这个长方体分成两部分后,各部分形成的几何体还是棱柱吗?如果是,是几棱柱?如果不是,请说明理由.解:(1)是棱柱,并且是四棱柱.因为它可以看成由四边形ADD 1A 1沿AB 方向平移至BCC 1B 1形成的几何体,符合棱柱的定义.(2)截面BCFE 右边的部分是三棱柱BEB 1-CFC 1,其中△BEB 1和△CFC 1是底面.截面BCFE 左边的部分是四棱柱ABEA 1-DCFD 1,其中四边形ABEA 1和四边形DCFD 1是底面.12. 如图所示,正三棱柱ABC -A 1B 1C 1中,AB =3,AA 1=4,M 为AA 1的中点,P 是BC 上一点,且由P 沿棱柱侧面经过棱CC 1到M 的最短路线长为29,设这条最短路线与CC 1的交点为N ,求:(1)该三棱柱的侧面展开图的对角线长; (2)PC 和NC 的长. 解:(1)正三棱柱ABC -A 1B 1C 1的侧面展开图是一个长为9,宽为4的矩形,如图所示,其对角线长为92+42=97.(2)由P 沿棱柱侧面经过棱CC 1到M 的最短路线,即侧面展开图中的线段MP ,设PC 的长为x ,则在Rt △AMP 中,AM =2,MP =29,∴AP 2=PM 2-AM 2=25,即(x +3)2=25, ∴x =2,即PC =2. ∵NC MA =PC P A =25, 又MA =2,∴NC =45,故PC 和NC 的长分别为2,45.人教B 版必修2同步练习1.下列说法正确的是( )A .圆台是直角梯形绕其一边旋转而成的B .圆锥是直角三角形绕其一边旋转而成的C .圆柱不是旋转体D .圆台可以看成是用平行于底面的平面截一个圆锥而得到的解析:选D.A 错误,这里需指明绕直角梯形与底边垂直的一腰旋转.B 错误,圆锥是直角三角形绕一条直角边旋转而成.C 错误,圆柱是旋转体.2.一条直线绕着与它相交但不垂直的直线旋转一周所得的几何图形是( ) A .旋转体 B .两个圆锥 C .圆柱 D .旋转面 答案:D3.一个等腰梯形绕着它的对称轴旋转半周所得的几何体是( ) A .圆柱 B .圆锥 C .圆台 D .以上都不对 答案:C4.一个圆柱的母线长为15 cm ,底面半径为12 cm ,则圆柱的轴截面面积是________.答案:360 cm 25.有下列说法:①球的半径是连接球心和球面上任意一点的线段; ②球的直径是连接球面上两点的线段; ③不过球心的截面截得的圆叫做小圆. 其中正确说法的序号是________.解析:利用球的结构特征判断:①正确;②不正确,因为直径必过球心;③正确. 答案:①③1.正方形ABCD 绕对角线AC 所在直线旋转一周所得组合体的结构特征是( ) A .两个圆台组合成的 B .两个圆锥组合成的C .一个圆锥和一个圆台组合成的D .一个圆柱和一个圆锥组合成的解析:选B.如图△ABO 与△CBO 绕AC 旋转,分别得到一个圆锥.2.边长为5 cm 的正方形EFGH 是圆柱的轴截面,则从E 点沿圆柱的侧面到相对顶点G 的最短距离是( )A .10 cmB .5 2 cmC .5π2+1 cm D.52π2+4 cm解析:选D.圆柱的侧面展开图如图所示,展开后E ′F =12·2π·(52)=52π,∴E ′G = 52+(52π)2=52π2+4(cm).3.若圆柱的轴截面是一个正方形,其面积为4S ,则它的一个底面面积是( ) A .4S B .4πS C .πS D .2πS 解析:选C.由题意知圆柱的母线长为底面圆的直径2R ,则2R ·2R =4S ,得R 2=S .所以底面面积为πR 2=πS .4.用平行于圆锥底面的平面截圆锥,所得截面面积与底面面积的比是1∶3,这截面把圆锥母线分为两段的比是( )A .1∶3B .1∶9C .1∶(3-1) D.3∶2解析:选C.由圆锥的截面性质可知,截面仍是圆,设r 1、r 2分别表示截面与底面圆的半径.而l 1与l 2表示母线被截得的线段.则r 1r 2=l 1l 1+l 2=13=13,∴l 1∶l 2=1∶(3-1). 5.设M 、N 是球O 半径OP 上的两点,且NP =MN =OM ,分别过N 、M 、O 作垂直于OP 的平面,截球面得三个圆,则这三个圆的面积之比为( )A .3∶5∶6B .3∶6∶8C .5∶7∶9D .5∶8∶9解析:选D.作出球的轴截面图如图, 设球的半径为3R , 则MM ′=9R 2-R 2=8R ,NN ′=9R 2-4R 2=5R .所截三个圆的面积之比为:π·(5R )2∶π·(8R )2∶π·(3R )2=5∶8∶9.故选D.6.已知一个正方体内接于一个球,过球心作一截面,则截面不可能是( )解析:选D.过球心的任何截面都不可能是圆的内接正方形. 7.一圆锥的轴截面的顶角为120°,母线长为1,过顶点作圆锥的截面中,最大截面的面积为________.解析:当截面顶点为90°时,截面面积最大,为12×1×1=12.答案:128. 如图所示,在透明塑料制成的长方体容器ABCD -A 1B 1C 1D 1中灌进一些水,将固定容器底面的一边BC 置于地面上,再将容器倾斜,随着倾斜程度的不同,以下命题:①水的形状成棱柱形;②水面EFGH 的面积不变;③A 1D 1始终与水面EFGH 平行.其中正确的 序号是________.解析:在倾斜的过程中,因为前后两面平行,侧面(上下、左右)为平行四边形,所以是棱柱.故填①③.答案:①③9.已知一个圆柱的轴截面是一个正方形且其面积是Q ,则此圆的半径为________.解析:设圆柱底面半径为r ,母线为l ,则由题意得⎩⎪⎨⎪⎧2r =l ,2r ·l =Q ,解得r =Q 2.答案:Q210.圆台的两底面面积分别为1,49,平行于底面的截面面积的2倍等于两底面面积之和,求圆台的高被截面分成的两部分的比.解:将圆台还原成圆锥,如图所示.O 2、O 1、O 分别是圆台上底面、截面和下底面的圆心,V 是圆锥的顶点,令VO 2=h, O 2O 1=h 1,O 1O =h 2则⎩⎪⎨⎪⎧h +h 1h=49+121,h +h 1+h 2h =491,所以⎩⎪⎨⎪⎧h 1=4h ,h 2=2h ,即h 1∶h 2=2∶1.11. 如图是一个底面直径为20 cm 的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6 cm ,高为20 cm 的圆锥形铅锤,当铅锤从水中取出后,杯里的水将下降多少?解:因为圆锥形铅锤的体积为13×π×(62)2×20=60π(cm 3).设水面下降的高度为x cm , 则小圆柱的体积为 π(202)2x =100πx (cm 3). 所以有60π=100πx , 解此方程得x =0.6. 故杯里的水下降了0.6 cm.12.用一张4 cm ×8 cm 的矩形硬纸卷成圆柱的侧面,求圆柱轴截面的面积(接头忽略不计).解:分两种情况:(1)以矩形8 cm 的边为母线长,把矩形硬纸卷成圆柱侧面(如图(1))轴截面为矩形A 1ABB 1,根据题意可知底面圆的周长为:2π·OA =4,则OA =2π,于是AB =4π.根据矩形的面积公式得:S 截面=A 1A ·AB =8·4π=32π(cm 2).(2)以矩形4 cm 的边长为母线长,把矩形硬纸卷成圆柱侧面(如图(2)),轴截面为矩形A 1ABB 1,根据题意可知底面圆的周长为:2π·OA =8,则OA =4π,于是AB =8π.根据矩形的面积公式得:S 截面=A 1A ·AB =4·8π=32π(cm 2).综上所述,轴截面的面积为32πcm 2.人教B 版必修2同步练习1.直线的平行投影可能是( ) A .点 B .线段 C .射线 D .曲线 答案:A2.在灯光下,圆形窗框在与窗框平行的墙面上的影子的形状是( ) A .平行四边形 B .椭圆形 C .圆形 D .菱形解析:选C.由点光源的中心投影的性质可知影子应为圆形.3.如图所示的是水平放置的三角形的直观图,D ′是△A ′B ′C ′中B ′C ′边上的一点,且D ′离C ′比D ′离B ′近,又A ′D ′∥y ′轴,那么原△ABC 的AB 、AD 、AC 三条线段中( )A .最长的是AB ,最短的是AC B .最长的是AC ,最短的是AB C .最长的是AB ,最短的是AD D .最长的是AD ,最短的是AC 答案:C4.已知有一个长为5 cm ,宽为4 cm 的矩形,则其斜二测直观图的面积为________. 解析:由于该矩形的面积为S =5×4=20(cm 2). 所以其斜二测直观图的面积为S ′=24S =52(cm 2). 答案:5 2 cm 25.长度相等的两条平行线段的直观图的长度________. 答案:相等1.放晚自习后,小华走路回家,在经过一盏路灯时,他发现自己的身影( ) A .变长 B .变短 C .先变长后变短 D .先变短后变长 答案:D2.下列关于直观图画法的说法中,不正确的是( )A .原图中平行于x 轴的线段,其对应线段仍平行于x ′轴,长度不变B .原图中平行于y 轴的线段,其对应线段仍平行于y ′轴,长度不变C .画与坐标系xOy 对应的坐标系x ′O ′y ′时,∠x ′O ′y ′可以等于135°D .画直观图时,由于选轴不同,所画的直观图可能不同解析:选B.平行于y 轴的线段其长度变为原来的12.3. 如图所示,梯形A ′B ′C ′D ′是平面图形ABCD 的直观图,若A ′D ′∥O ′y ′,A ′B ′∥C ′D ′,A ′B ′=23C ′D ′=2,A ′D ′=1,则四边形ABCD 的面积是( )A .10B .5 2C .5D .10 2解析:选C.还原后的四边形ABCD 为直角梯形,AD 为垂直底边的腰,AD =2,AB =2,CD =3,S 四边形ABCD =5,故正确答案为C.4.如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是BB 1,BC 的中点,则图中阴影部分在平面ADD 1A 1上的射影为( )答案:A5.如果图形所在的平面不平行于投射线,那么下列说法正确的是( ) A .矩形的平行投影一定是矩形 B .梯形的平行投影一定是梯形 C .正方形的平行投影一定是矩形 D .正方形的平行投影一定是菱形解析:选B.因为梯形两底的平行投影仍然平行,故选B.6.如下图所示为一平面图形的直观图,则此平面图形可能是下图中的( )解析:选C.根据斜二测画法的规则:平行于x 轴或在x 轴上的线段的长度在新坐标系中不变,在y 轴上或平行于y 轴的线段的长度在新坐标中变为原来的12,并注意到∠xOy =90°,∠x ′O ′y ′=45°,因此由直观图还原成原图形为选项C.7. 如图所示,已知用斜二测画法画出的△ABC 的直观图△A ′B ′C ′是边长为a 的正三角形,那么原△ABC 的面积为________.解析:过C ′作y ′轴的平行线C ′D ′与x ′轴交于D ′,则C ′D ′=32a sin45°=62a .又∵C ′D ′是原△ABC 的高CD 的直观图, ∴CD =6a .∴S △ABC =12AB ·CD =12a ·6a =62a 2.答案:62a 28.给出下列说法:①正方形的直观图是一个平行四边形,其相邻两边长的比为1∶2,有一内角为45°;②水平放置的正三角形的直观图是一个底边长不变,高为原三角形高的一半的三角形;③不等边三角形水平放置的直观图是不等边三角形;④水平放置的平面图形的直观图是平面图形.写出其中正确说法的序号________.解析:对于①,若以该正方形的一组邻边所在的直线为x 轴、y 轴,则结论正确;但若以该正方形的两条对角线所在的直线为x 轴、y 轴,由于此时该正方形的各边均不在坐标轴上或与坐标轴平行,则其直观图中相邻两边长不一定符合“横不变,纵减半”的规则;对于②,水平放置的正三角形的直观图是一个底边长不变,高比原三角形高的一半还要短的三角形;对于③,只要坐标系选取的恰当,不等边三角形的水平放置的直观图可以是等边三角形.答案:④9. 水平放置的△ABC 的斜二测直观图如图所示,已知A ′C ′=3,B ′C ′=2,则AB 边上的中线的实际长度为________.解析:在直观图中,∠A ′C ′B ′=45°,则在原图形中∠ACB =90°,AC =3,BC =4,则斜边AB =5,故斜边的中线长为52.答案:5210.在有太阳的某时刻,一个大球放在水平地面上,球的影子伸到距离球与地面接触点10 m 处,同一时刻一根长 3 m 的木棒垂直于地面,且影子长1 m ,求此球的半径.解:由题设知BO ′=10,设∠ABO ′=2α(0°<α<45°)(如图),由题意知tan 2α=31=3,即2α=60°,∴α=30°,∴tan α=33. 在Rt △OO ′B 中,tan α=RBO ′,∴R =BO ′·tan α=1033 m.即此球的半径为1033m.11. 如图所示,一建筑物A 高为BC ,眼睛位于点O 处,用一把长为22 cm 的刻度尺EF 在眼前适当地运动,使眼睛刚好看不到建筑物A ,这时量得眼睛和刻度尺的距离MN 为10 cm ,眼睛与建筑物的距离MB 为20 m ,求建筑物A 的高.(假设刻度尺与建筑物平行)解:由题意可知O ,F ,C 三点共线,O ,E ,B 三点共线.因为EF ∥BC ,所以EF BC =OE OB =MNMB.把EF =22 cm ,MN =10 cm ,MB =2000 cm 代入上式,得22BC =102000,解得BC =4400 cm =44 m.即建筑物A 高44 m.12. 某地夏季中午,当太阳移到屋顶上方偏南时,光线与地面成60°角,房屋向南的窗户AB 高1.6米,现要在窗子外面的上方安装一个水平遮阳蓬AC ,如图所示,求:(1)当遮阳蓬AC 的宽度在什么范围内时,太阳光线直接射入室内?(2)当遮阳蓬AC 的宽度在什么范围内时,太阳光线不能直接射入室内(精确到0.01米)? 解:(1)在Rt △ABC 中,∠ACB =60°,AB =1.6米, 则AC =AB tan ∠ACB=3AB 3,∴AC =1.63≈0.92(米).当0<AC ≤0.92米时,太阳光可直接射入室内. (2)当AC >0.92米时,太阳光不能直接射入室内.人教B版必修2同步练习1.下列说法中正确的是()A.任何物体的三视图都与物体的摆放位置有关B.任何物体的三视图都与物体的摆放位置无关C.有的物体的三视图与物体的摆放位置无关D.正方体的三视图一定是三个全等的正方形解析:选C.球的三视图与它的摆放位置无关,从任何方向看都是圆.2.如图所示,桌面上放着一个圆锥和一个长方体,其俯视图是()答案:D3.(2011年高考山东卷)下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是()A.3B.2C.1 D.0解析:选A.对于①,可以是放倒的三棱柱;容易判断②③可以.4.一件物体的三视图的排列规则是:俯视图放在主视图的________,长度与主视图一样,左视图放在主视图的______,高度与主视图一样,宽度与俯视图的宽度一样.答案:下面右面5.某个几何体的三视图如图,这个几何体是________.答案:圆锥1. 如图所示的是水平放置的圆柱形物体,其三视图是()解析:选A.此题主要研究从物体到三视图的转化过程,主视图是从正面观察物体的形状;左视图是从左侧面观察物体的形状;俯视图是从上往下观察物体的形状.从正面看是个矩形,从左面看是个圆,从上往下看是一个矩形,对照图中的A,B,C,D,可知A是正确的.2.图中三图顺次为一个建筑物的主视图、左视图、俯视图,则其为________的组合体.()A.圆柱和圆锥B.正方体和圆锥C.正四棱柱和圆锥D.正方形和圆解析:选C.直接画出符合条件的组合体,可以得解.3.如图所示,有且仅有两个视图相同的几何体是()A.(1)(2) B.(1)(3)C.(1)(4) D.(2)(4)解析:选D.在这四个几何体中,图(2)与图(4)均只有主视图和左视图相同.4.如图(1)所示是物体的实物图,在图(2)四个选项中是其俯视图的是()答案:C5.一个几何体由一些小正方体摆成,其主视图与左视图如图所示,其俯视图不可能是()解析:选C.通过分析主视图第一列有两个,而左视图第二列有两个,所以俯视图是选项C时,不符合要求.6. 把10个相同的小正方体按如图所示位置堆放,它的表面有若干个小正方形,如果将图中标了字母A的一个小正方体搬走,这时表面的小正方形个数与搬动前相比()A.不增不减B.减少1个C.减少2个D.减少3个答案:A7.欣赏下列物体的三视图,并写出它们的名称.答案:(1)主视图(2)左视图(3)俯视图(4)主视图(5)左视图(6)俯视图8.下图是某个圆锥的三视图,根据主视图中所标尺寸,则俯视图中圆的面积为________,圆锥母线长为________.解析:由主视图的底边可知俯视图的半径为10,则面积为100π.由主视图知圆锥的高为30,又底面半径为10,则母线长为102+302=1010.答案:100π10109.一个几何体由几个相同的小正方体组合而成,它的主视图、左视图、俯视图如图所示,则这个组合体包含的小正方体的个数是________.解析:由三视图画出几何体如图.观察知,包含小正方体个数为5个.答案:510.如图所示是一些立体图形的视图,但是观察的方向不同,试说明下列各图可能是哪一种立体图形的视图.图(1)可能为球、圆柱,如图(4)所示.图(2)可能为棱锥、圆锥、棱柱,如图(5)所示.图(3)可能为正四棱锥,如图(6)所示.11. 如图是根据某一种型号的滚筒洗衣机抽象出来的几何体,数据如图所示(单位:cm),试画出它的三视图.解:这个几何体是由一个长方体和一个圆柱体构成的.三视图如下图所示.12.如图,BC⊥CD,且CD⊥MN,ABCD绕AD所在直线MN旋转,在旋转前,点A 可以在DM上选定.当点选在射线上的不同位置时,形成的几何体大小、形状不同,分别画出它的三视图并比较异同.解:(1)当点A在下图(a)中射线DM的位置时,绕MN旋转一周所得几何体为底面半径为CD的圆柱和圆锥叠加而成,其三视图如下图(a).(2)当点A在下图(b)中射线DM的位置时,即B到MN作垂线的垂足时旋转后的几何体为圆柱,其三视图如下图(b).(3)当点A在下图(c)中所示位置时,其旋转所得几何体为圆柱中挖去同底的圆锥,其三视图如下图(c).(4)当点A位于点D时,如下图(d)中,旋转体为圆柱中挖去同底等高的圆锥,其三视图如下图(d).人教B 版必修2同步练习1.一正四棱锥各棱长均为a ,则其表面积为( ) A.3a 2 B .(1+3)a 2 C .22a 2 D .(1+2)a 2解析:选B.正四棱锥的底面积为S 底=a 2,侧面积为S 侧=4×12×a ×32a =3a 2,故表面积为S 表=S 底+S 侧=(1+3)a 2.2.底面为正方形的直棱柱,它的底面对角线长为2,体对角线长为6,则这个棱柱的侧面积是( )A .2B .4C .6D .8 答案:D3.若球的大圆周长为C ,则这个球的表面积是( ) A.C 24π B.C 22π C.C 2πD .2πC 2 答案:C4.一个圆锥的底面半径为2,高为23,则圆锥的侧面积为________.解析:S 侧=πRl =π×2×22+(23)2=8π. 答案:8π5.已知棱长为1,各面都是正三角形的四面体,则它的表面积是________. 答案: 31.正三棱锥的底面边长为a ,高为66a ,则此棱锥的侧面积等于( ) A.34a 2 B.32a 2 C.334a 2 D.332a 2解析:选A.斜高h ′ =(66a )2+(3a 6)2=12a , 则S 侧=12·3a ·12a =34a 2.2.正六棱柱的高为6,底面边长为4,则它的全面积是( ) A .48(3+3) B .48(3+23) C .24(6+2) D .144解析:选A.S 两底=34×42×6×2=483,S 侧=6×4×6=144.∴S 全=144+483=48(3+3).3.正四棱台两底面边长分别为3 cm 和5 cm ,那么它的中截面面积为( ) A .2 cm 2 B .16 cm 2 C .25 cm 2 D .4 cm 2。
高中数学必修2全册课时同步练习题及答案
高中数学必修2全册课时同步练习题及答案第一章空间几何体§1.1空间几何体的结构1.1.1柱、锥、台、球的结构特征【课时目标】认识柱、锥、台、球的结构特征,并能运用这些特征描述现实生活中简单物体的结构.1.一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都________________,由这些面所围成的多面体叫做棱柱.2.一般地,有一个面是多边形,其余各面都是________________________________,由这些面所围成的多面体叫做棱锥.3.以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫________.4.以直角三角形的一条________所在直线为旋转轴,其余两边旋转形成的面围成的旋转体叫做圆锥.5.(1)用一个________________________的平面去截棱锥,底面与截面之间的部分叫做棱台.(2)用一个________于圆锥底面的平面去截圆锥,底面和截面之间的部分叫做圆台.6.以半圆的________所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称球.一、选择题1.棱台不具备的性质是()A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点2.下列命题中正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱D.用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台3.下列说法正确的是()A.直角三角形绕一边旋转得到的旋转体是圆锥B.夹在圆柱的两个截面间的几何体还是一个旋转体C.圆锥截去一个小圆锥后剩余部分是圆台D.通过圆台侧面上一点,有无数条母线4.下列说法正确的是()A.直线绕定直线旋转形成柱面B.半圆绕定直线旋转形成球体C.有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台D.圆柱的任意两条母线所在的直线是相互平行的5.观察下图所示几何体,其中判断正确的是()A.①是棱台B.②是圆台C.③是棱锥D.④不是棱柱6.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北,现在沿该正方体的一些棱将正方体剪开,外面朝上展平,得到右侧的平面图形,则标“△”的面的方位是()A.南B.北C.西D.下二、填空题7.由若干个平面图形围成的几何体称为多面体,多面体最少有________个面.8.将等边三角形绕它的一条中线旋转180°,形成的几何体是________.9.在下面的四个平面图形中,哪几个是侧棱都相等的四面体的展开图?其序号是________.三、解答题10.如图所示为长方体ABCD—A′B′C′D′,当用平面BCFE把这个长方体分成两部分后,各部分形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.11.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392 cm2,母线与轴的夹角是45°,求这个圆台的高、母线长和底面半径.能力提升12.下列四个平面图形中,每个小四边形皆为正方形,其中可以沿两个正方形的相邻边折叠围成一个正方体的图形的是()13.如图,在底面半径为1,高为2的圆柱上A点处有一只蚂蚁,它要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?1.学习本节知识,要注意结合集合的观点来认识各种几何体的性质,还要注意结合动态直观图从运动变化的观点认识棱柱、棱锥和棱台的关系.2.棱柱、棱锥、棱台中的基本量的计算,是高考考查的热点,要注意转化,即把三维图形化归为二维图形求解.在讨论旋转体的性质时轴截面具有极其重要的作用,它决定着旋转体的大小、形状,旋转体的有关元素之间的关系可以在轴截面上体现出来.轴截面是将旋转体问题转化为平面问题的关键.3.几何体表面距离最短问题需要把表面展开在同一平面上,然后利用两点间距离的最小值是连接两点的线段长求解.第一章空间几何体§1.1空间几何体的结构1.1.1柱、锥、台、球的结构特征答案知识梳理1.互相平行2.有一个公共顶点的三角形3.圆柱4.直角边5.(1)平行于棱锥底面(2)平行6.直径作业设计1.C[用棱台的定义去判断.]2.C[A、B的反例图形如图所示,D显然不正确.]3.C[圆锥是直角三角形绕直角边旋转得到的,如果绕斜边旋转就不是圆锥,A不正确,圆柱夹在两个平行于底面的截面间的几何体才是旋转体,故B不正确,通过圆台侧面上一点,有且只有一条母线,故D不正确.]4.D[两直线平行时,直线绕定直线旋转才形成柱面,故A错误.半圆以直径所在直线为轴旋转形成球体,故B不正确,C不符合棱台的定义,所以应选D.] 5.C6.B7.48.圆锥9.①②10.解截面BCFE右侧部分是棱柱,因为它满足棱柱的定义.它是三棱柱BEB′—CFC′,其中△BEB′和△CFC′是底面.EF,B′C′,BC是侧棱,截面BCFE左侧部分也是棱柱.它是四棱柱ABEA′—DCFD′.其中四边形ABEA′和四边形DCFD′是底面.A′D′,EF,BC,AD为侧棱.11.解圆台的轴截面如图所示,设圆台上、下底面半径分别为x cm 和3x cm ,延长AA 1交OO 1的延长线于点S .在Rt △SOA 中,∠ASO =45°,则∠SAO =45°.∴SO =AO =3x cm ,OO 1=2x cm .∴12(6x +2x)·2x =392,解得x =7,∴圆台的高OO 1=14 cm ,母线长l =2OO 1=14 2 cm ,底面半径分别为7 cm 和21 cm .12.C13.解 把圆柱的侧面沿AB 剪开,然后展开成为平面图形——矩形,如图所示,连接AB ′,则AB ′即为蚂蚁爬行的最短距离.∵AB =A ′B ′=2,AA ′为底面圆的周长,且AA ′=2π×1=2π, ∴AB ′=A ′B ′2+AA ′2=4+(2π)2=21+π2,即蚂蚁爬行的最短距离为21+π2.【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
高中数学必修2练习一课一练[含答案]
2.2 直线、平面平行的判定及其性质一、选择题1、若α//l ,α∈A ,则下列说法正确的是( ) A 、过A 在平面α内可作无数条直线与l 平行 B 、 过A 在平面α内仅可作一条直线与l 平行 C 、 过A 在平面α内可作两条直线与l 平行 D 、 与A 的位置有关2、b a //,P a =⋂α,则b 与α的关系为( )A 、 必相交B 、 必平行C 、 必在内D 、 以上均有可能3、α∉A ,过A 作与α平行的直线可作( )A 、 不存在B 、 一条C 、 四条D 、 无数条4、α//a ,b 、c α⊂,b a //,c b ⊥,则有( ) A 、 c a // B 、 c a ⊥C 、 a 、c 共面D 、 a 、c 异面,所成角不确定5、下列四个命题(1)b a //,c b //c a //⇒ (2)b a ⊥,c b ⊥c a //⇒ (3)α//a ,α⊂b b a //⇒ (4)b a //,α//b α//a ⇒ 正确有( )个A 、 1B 、 2C 、 3D 、 46、若直线a ∥直线b ,且a ∥平面α,则b 与a 的位置关系是( ) A 、一定平行 B 、不平行 C 、平行或相交 D 、平行或在平面内7、直线a ∥平面α,平面α内有n 条直线交于一点,那么这n 条直线中与直线a 平行的( )A 、至少有一条B 、至多有一条C 、有且只有一条D 、不可能有8、若a //b //c , 则经过a 的所有平面中( )A 、必有一个平面同时经过b 和cB 、必有一个平面经过b 且不经过cC 、必有一个平面经过b 但不一定经过cD 、不存在同时经过b 和c 的平面二、填空题9、过平面外一点,与平面平行的直线有_________条,如果直线m ∥平面,那么在平面内有_________条直线与m 平行10、n ⊂平面α,则m ∥n 是m ∥α的______条件11、若P 是直线l 外一点,则过P 与l 平行的平面有___________个。
最新【精品】人教a版高中数学必修2一课一练全册汇编含答案名师优秀教案
【精品】人教a版高中数学必修2一课一练全册汇编含答案人教A版高中数学必修2《一课一练》全册汇编含答案《1.1 空间几何体的结构》一课一练1《1.1 空间几何体的结构》一课一练2《1.2 空间几何体的三视图》一课一练1《1.2 空间几何体的直观图》一课一练2《1.3 柱体、锥体、台体的体积》一课一练2《1.3 柱体、锥体、台体的表面积》一课一练1《2.1 直线与平面、平面与平面位置关系》一课一练2《2.1 空间中直线与直线之间的位置关系》一课一练1《2.2 直线、平面平行的判定及其性质》一课一练1《2.2 直线、平面平行的判定及其性质》一课一练2《2.2 直线、平面平行的判定及其性质》一课一练3《2.2 直线、平面平行的判定及其性质》一课一练4《2.3 直线、平面垂直的判定及其性质》一课一练1《2.3 直线、平面垂直的判定及其性质》一课一练2《2.3 直线、平面垂直的判定及其性质》一课一练3《2.3 直线、平面垂直的判定及其性质》一课一练4《3.1 直线的倾斜角与斜率》一课一练1《3.1 直线的倾斜角与斜率》一课一练2《3.2 直线的方程》一课一练1《3.2 直线的方程》一课一练2《3.2 直线的方程》一课一练3《3.2 直线的方程》一课一练4《3.2 直线的方程》一课一练5《3.2 直线的方程》一课一练6《3.3 直线的交点坐标与距离公式》一课一练1《3.3 直线的交点坐标与距离公式》一课一练2《4.1 圆的方程》一课一练1《4.1 圆的方程》一课一练2《4.1 圆的方程》一课一练3《4.1 圆的方程》一课一练4《4.2 直线、圆的位置关系》一课一练1《4.2 直线、圆的位置关系》一课一练2《4.3 空间直角坐标系》一课一练1《4.3 空间直角坐标系》一课一练2- 1 -人教A版高中数学必修2《一课一练》新课标高一数学同步测试(1)—1.1空间几何体本试卷分第?卷和第?卷两部分.共150分.第?卷(选择题,共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)(1(直线绕一条与其有一个交点但不垂直的固定直线转动可以形成 ( )A(平面 B(曲面 C(直线 D(锥面 2(一个多边形沿不平行于矩形所在平面的方向平移一段距离可以形成 ( )A(棱锥 B(棱柱 C(平面 D(长方体 3(有关平面的说法错误的是 ( )A(平面一般用希腊字母α、β、γ…来命名,如平面α…B(平面是处处平直的面C(平面是有边界的面D(平面是无限延展的4(下面的图形可以构成正方体的是 ( )A B C D5(圆锥的侧面展开图是直径为a的半圆面,那么此圆锥的轴截面是 ( )A(等边三角形 B(等腰直角三角形C(顶角为30?的等腰三角形 D(其他等腰三角形6(A、B为球面上相异两点,则通过A、B两点可作球的大圆有 ( )A(一个 B(无穷多个 C(零个 D(一个或无穷多个 7(四棱锥的四个侧面中,直角三角最多可能有 ( )A(1 B(2 C(3 D(4 8(下列命题中正确的是 ( )A(由五个平面围成的多面体只能是四棱锥B(棱锥的高线可能在几何体之外C(仅有一组对面平行的六面体是棱台D(有一个面是多边形,其余各面是三角形的几何体是棱锥9(长方体三条棱长分别是AA′=1,AB=2,AD=4,则从A点出发,沿长方体的表面到C′的最短矩离是 ( )2937 A(5 B(7 C( D( 10(已知集合A={正方体},B={长方体},C={正四棱柱},D={直四棱柱},E={棱柱},F={直平行六面体},则 ( )A,B,C,D,F,E A( B( ACBFDE,,,,,C( D(它们之间不都存在包含关系 CABDFE,,,,,第1页共127页人教A版高中数学必修2《一课一练》第?卷(非选择题,共100分)二、填空题:请把答案填在题中横线上(每小题6分,共24分). 11(线段AB长为5cm,在水平面上向右平移4cm后记为CD,将CD沿铅垂线方向向下移动3cm后记为C′D′,再将C′D′沿水平方向向左移4cm记为A′B′,依次连结构成长方体ABCD—A′B′C′D′.?该长方体的高为 ;?平面A′B′C′D′与面CD D′C′间的距离为 ;?A到面BC C′B′的距离为 .12(已知,ABCD为等腰梯形,两底边为AB,CD且AB>CD,绕AB所在的直线旋转一周所得的几何体中是由、、的几何体构成的组合体. 13(下面是一多面体的展开图,每个面内都给了字母,请根据要求回答问题: ?如果A在多面体的底面,那么哪一面会在上面 ;?如果面F在前面,从左边看是面B,那么哪一个面会在上面 ;?如果从左面看是面C,面D在后面,那么哪一个面会在上面 .14(长方体ABCD—ABCD中,AB=2,BC=3, 1111AA=5,则一只小虫从A点沿长方体的表面爬到C点的最短距离是 ( 11三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分) 15((12分)根据图中所给的图形制成几何体后,哪些点重合在一起(16((12分)若一个几何体有两个面平行,且其余各面均为梯形,则它一定是棱台,此命题是否正确,说明理由(第2页共127页人教A版高中数学必修2《一课一练》17((12分)正四棱台上,下底面边长为a,b,侧棱长为c,求它的高和斜高( 18((12分)把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1?4,母线长10cm.求:圆锥的母长(19((14分)已知正三棱锥S-ABC的高SO=h,斜高SM=n,求经过SO的中点且平行于底面的截面?ABC的面积( 11120((14分)有在正方形ABCD中,E、F分别为AB、BC的中点,现在沿DE、DF 及EF第3页共127页人教A版高中数学必修2《一课一练》把?ADE、?CDF和?BEF折起,使A、B、C三点重合,重合后的点记为P.问:?依据题意制作这个几何体;?这个几何体有几个面构成,每个面的三角形为什么三角形;?若正方形边长为a,则每个面的三角形面积为多少(参考答案(一)一、DBCCA DDBAB二、11(?3CM?4CM?5CM; 12(圆锥、圆台、圆锥; 13(?F?C?A; 14(5( 2三、15(解:J与N,A、M与D,H与E,G与F,B与C.16(解:未必是棱台,因为它们的侧棱延长后不一定交于一点,如图,用一个平行于楔形底面的平面去截楔形,截得的几何体虽有两个面平行,其余各面是梯形,但它不是棱台,所以看一个几何体是否棱台,不仅要看是否有两个面平行,其余各面是否梯形,还要看其侧棱延长后是否交于一点.小结:棱台的定义,除了用它作判定之外,至少还有三项用途:?为保证侧棱延长后交于一点,可以先画棱锥再画棱台;?如果解棱台问题遇到困难,可以将它还原为棱锥去看,因为它是由棱锥截来的;?可以利用两底是相似多边形进行有关推算.,,,,,,OOBB,OOEE和BEEB17(分析:棱台的有关计算都包含在三个直角梯形及两个直角三角形,,,,OBEOBE和中,而直角梯形常需割成一个矩形和一个直角三角形对其进行求解,所以要熟悉两,,,,底面的外接圆半径()内切圆半径()的差,特别是正三、正四、正六棱台. OB,OBOE,OE略解: hOOBFhEEBG,,,,,,,,,,21BF,(b,a)BG,(b,a)22122222?h,c,(b,a),2c,(b,a)22112222hcbacba,,,,,,,()()4 42第4页共127页人教A版高中数学必修2《一课一练》l,圆台上、下底半径为. 18(解:设圆锥的母线长为rR,l,10r?,lRl,101 ?,l440?,lcm()340 答:圆锥的母线长为cm. 332219(解:设底面正三角形的边长为a,在RT?SOM中SO=h,SM=n,所以OM=,又MO=a,即n,l66332222222a=,,截面面积为3(n,l)( n,l?s,a,33(n,l),ABC44320(解:?略(?这个几何体由四个面构成,即面DEF、面DFP、面DEP、面EFP.由平几知识可知DE=DF,?DPE=?EPF=?DPF=90?,所以?DEF为等腰三角形,?DFP、?EFP、?DEP为直角三角形.325a,EF=2a,所以,S=a。
新教材人教A版高中数学必修第二册全册课时练习(一课一练,含解析)
人教A版高中数学必修第二册全册课时练习6.1 平面向量的概念 .............................................................................................................. - 2 - 6.2.1 向量的加法运算........................................................................................................ - 5 - 6.2.2 向量的减法运算........................................................................................................ - 8 - 6.2.3 向量的数乘运算...................................................................................................... - 11 - 6.2.4 向量的数量积............................................................................................................ - 14 - 6.3.1 平面向量基本定理.................................................................................................... - 18 - 6.3.2 平面向量的正交分解及坐标表示............................................................................ - 21 - 6.3.3 平面向量加、减运算的坐标表示............................................................................ - 21 - 6.3.4 平面向量数乘运算的坐标表示.............................................................................. - 24 - 6.3.5 平面向量数量积的坐标表示.................................................................................. - 27 - 6.4 平面向量的应用........................................................................................................ - 30 -7.1.1 数系的扩充和复数的概念...................................................................................... - 34 - 7.1.2 复数的几何意义...................................................................................................... - 37 - 7.2.1 复数的加、减运算及其几何意义.......................................................................... - 39 -7.2.2 复数的乘、除运算.................................................................................................. - 43 -8.1.1 棱柱、棱锥、棱台的结构特征................................................................................ - 46 - 8.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征................................................ - 49 - 8.2 立体图形的直观图........................................................................................................ - 51 - 8.3.1 棱柱、棱锥、棱台的表面积和体积...................................................................... - 55 - 8.3.2 圆柱、圆锥、圆台、球的表面积和体积.............................................................. - 59 - 8.4.1 平面 ......................................................................................................................... - 62 - 8.4.2 空间点、直线、平面之间的位置关系.................................................................. - 66 - 8.5.1 直线与直线平行...................................................................................................... - 69 - 8.5.2 直线与平面平行...................................................................................................... - 73 - 8.5.3 平面与平面平行...................................................................................................... - 76 - 8.6.1 直线与直线垂直...................................................................................................... - 80 - 8.6.2 直线与平面垂直...................................................................................................... - 85 -8.6.3平面与平面垂直 ....................................................................................................... - 89 -9.1.1简单随机抽样 ........................................................................................................... - 94 - 9.1.2 分层随机抽样 ............................................................................................................. - 96 - 9.1.3 获取数据的途径 ......................................................................................................... - 96 - 9.2.1总体取值规律的估计 ............................................................................................. - 100 - 9.2.2 总体百分位数的估计 ............................................................................................... - 105 - 9.2.3 总体集中趋势的估计 ............................................................................................... - 105 -9.2.4 总体离散程度的估计 ............................................................................................... - 105 -10.1.1有限样本空间与随机事件.................................................................................... - 110 - 10.1.2事件的关系和运算 ............................................................................................... - 112 - 10.1.3古典概型 ............................................................................................................... - 115 - 10.1.4概率的基本性质 ................................................................................................... - 118 - 10.2事件的相互独立性 .................................................................................................. - 121 - 10.3频率与概率 .............................................................................................................. - 126 -6.1 平面向量的概念一、选择题1.下列物理量:①质量;②速度;③位移;④力;⑤加速度;⑥路程;⑦密度;⑧功.其中不是向量的有( )A .1个B .2个C .3个D .4个【解析】一个量是不是向量,就是看它是否同时具备向量的两个要素:大小和方向.由于速度、位移、力、加速度都是由大小和方向确定的,所以是向量;而质量、路程、密度、功只有大小而没有方向,所以不是向量. 【答案】D2.下列命题中,正确命题的个数是( ) ①单位向量都共线; ②长度相等的向量都相等; ③共线的单位向量必相等;④与非零向量a 共线的单位向量是a|a |.A .3B .2C .1D .0【解析】根据单位向量的定义,可知①②③明显是错误的,对于④,与非零向量a 共线的单位向量是a |a |或-a|a |,故④也是错误的.【答案】D3.如图,等腰梯形ABCD 中,对角线AC 与BD 交于点P ,点E ,F 分别在两腰AD ,BC 上,EF 过点P ,且EF ∥AB ,则( )A.AD →=BC →B.AC →=BD →C.PE →=PF →D.EP →=PF →【解析】由平面几何知识知,AD →与BC →方向不同, 故AD →≠BC →;AC →与BD →方向不同,故AC →≠BD →; PE →与PF →的模相等而方向相反,故PE →≠PF →. EP →与PF →的模相等且方向相同,∴EP →=PF →.【答案】D4.若|AB →|=|AD →|且BA →=CD →,则四边形ABCD 的形状为( ) A .正方形 B .矩形 C .菱形 D .等腰梯形【解析】由BA →=CD →,知AB =CD 且AB ∥CD ,即四边形ABCD 为平行四边形.又因为|AB →|=|AD →|,所以四边形ABCD 为菱形. 【答案】C 二、填空题5.如图,已知正方形ABCD 的边长为2,O 为其中心,则|OA →|=________.【解析】因为正方形的对角线长为22,所以|OA →|= 2. 【答案】 2 6.如图,四边形ABCD 是平行四边形,E ,F 分别是AD 与BC 的中点,则在以A 、B 、C 、D 四点中的任意两点为始点和终点的所有向量中,与向量EF →方向相反的向量为________.【解析】因为AB ∥EF ,CD ∥EF ,所以与EF →平行的向量为DC →,CD →,AB →,BA →,其中方向相反的向量为BA →,CD →. 【答案】BA →,CD →7.给出下列命题:①若AB →=DC →,则A 、B 、C 、D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有AB →=DC →; ③若a =b ,b =c ,则a =c ; ④若a ∥b ,b ∥c ,则a ∥c .其中所有正确命题的序号为________.【解析】AB →=DC →,A 、B 、C 、D 四点可能在同一条直线上,故①不正确;在▱ABCD 中,|AB →|=|DC →|,AB →与DC →平行且方向相同,故AB →=DC →,故②正确;a =b ,则|a |=|b |,且a 与b 方向相同;b =c ,则|b |=|c |,且b 与c 方向相同,则a 与c 长度相等且方向相同,故a =c ,故③正确;对于④,当b =0时,a 与c 不一定平行,故④不正确. 【答案】②③ 三、解答题8.在如图的方格纸(每个小方格的边长为1)上,已知向量a . (1)试以B 为起点画一个向量b ,使b =a ;(2)画一个以C 为起点的向量c ,使|c |=2,并说出c 的终点的轨迹是什么.【解析】(1)根据相等向量的定义,所作向量b 应与a 同向,且长度相等,如下图所示. (2)由平面几何知识可作满足条件的向量c ,所有这样的向量c 的终点的轨迹是以点C 为圆心,2为半径的圆,如下图所示.9.一辆汽车从A 点出发向西行驶了100千米到达B 点,然后又改变了方向向北偏西40°走了200千米到达C 点,最后又改变方向,向东行驶了100千米到达D 点. (1)作出向量AB →,BC →,CD →; (2)求|AD →|.【解析】(1)如图所示.(2)由题意,易知AB →与CD →方向相反,故AB →与CD →共线,即AB ∥CD . 又|AB →|=|CD →|,所以四边形ABCD 为平行四边形. 所以|AD →|=|BC →|=200(千米).10.如图,在△ABC 中,已知向量AD →=DB →,DF →=EC →,求证:AE →=DF →.证明:由DF →=EC →,可得DF =EC 且DF ∥EC , 故四边形CEDF 是平行四边形,从而DE ∥FC . ∵AD →=DB →,∴D 为AB 的中点. ∴AE →=EC →,∴AE →=DF →.6.2.1 向量的加法运算一、选择题1.点O 是平行四边形ABCD 的两条对角线的交点,则AO →+OC →+CB →等于( )A.AB →B.BC →C.CD →D.DA →【解析】因为点O 是平行四边形ABCD 的两条对角线的交点,则AO →+OC →+CB →=AC →+CB →=AB →.故选A. 【答案】A2.设a 表示“向东走5 km”,b 表示“向南走5 km”,则a +b 表示( ) A .向东走10 km B .向南走10 km C .向东南走10 km D .向东南走5 2 km 【解析】如图所示,AC →=a +b ,|AB →|=5,|BC →|=5,且AB ⊥BC ,则|AC →|=52,∠BAC =45°. 【答案】D3.已知向量a ∥b ,且|a |>|b |>0,则向量a +b 的方向( ) A .与向量a 方向相同 B .与向量a 方向相反 C .与向量b 方向相同 D .不确定【解析】如果a 和b 方向相同,则它们的和的方向应该与a (或b )的方向相同;如果它们的方向相反,而a 的模大于b 的模,则它们的和的方向与a 的方向相同. 【答案】A4.如图所示的方格纸中有定点O ,P ,Q ,E ,F ,G ,H ,则OP →+OQ →=( )A.OH →B.OG →C.FO →D.EO →【解析】设a =OP →+OQ →,以OP ,OQ 为邻边作平行四边形,则OP 与OQ 之间的对角线对应的向量即向量a =OP →+OQ →,由a 和FO →长度相等,方向相同,得a =FO →,即OP →+OQ →=FO →. 【答案】C 二、填空题5.在△ABC 中,AB →=a ,BC →=b ,CA →=c ,则a +b +c =________.【解析】由向量加法的三角形法则,得AB →+BC →=AC →,即a +b +c =AB →+BC →+CA →=0. 【答案】06.化简(AB →+MB →)+(BO →+BC →)+OM →=________.【解析】原式=(AB →+BO →)+(OM →+MB →)+BC →=AO →+OB →+BC →=AB →+BC →=AC →. 【答案】AC →7.在菱形ABCD 中,∠DAB =60°,|AB →|=1,则|BC →+CD →|=________. 【解析】在菱形ABCD 中,连接BD , ∵∠DAB =60°,∴△BAD 为等边三角形, 又∵|AB →|=1,∴|BD →|=1,|BC →+CD →|=|BD →|=1. 【答案】1 三、解答题8.如图,已知向量a 、b ,求作向量a +b .【解析】(1)作OA →=a ,AB →=b ,则OB →=a +b ,如图(1); (2)作OA →=a ,AB →=b ,则OB →=a +b ,如图(2); (3)作OA →=a ,AB →=b ,则OB →=a +b ,如图(3).9.如图所示,设O 为正六边形ABCDEF 的中心,作出下列向量: (1)OA →+OC →; (2)BC →+FE →.【解析】(1)由图可知,四边形OABC 为平行四边形,所以由向量加法的平行四边形法则,得OA →+OC →=OB →.(2)由图可知,BC →=FE →=OD →=AO →,所以BC →+FE →=AO →+OD →=AD →.10.如图,在重300 N 的物体上拴两根绳子,这两根绳子在铅垂线的两侧,与铅垂线的夹角分别为30°,60°,当整个系统处于平衡状态时,求两根绳子的拉力.【解析】如图,作▱OACB ,使∠AOC =30°,∠BOC =60°, 则∠ACO =∠BOC =60°,∠OAC =90°.设向量OA →,OB →分别表示两根绳子的拉力,则CO →表示物体所受的重力,且|OC →|=300 N. 所以|OA →|=|OC →|cos 30°=1503(N), |OB →|=|OC →|cos 60°=150 (N).所以与铅垂线成30°角的绳子的拉力是150 3 N ,与铅垂线成60°角的绳子的拉力是150 N.6.2.2 向量的减法运算一、选择题1.下列运算中正确的是( ) A.OA →-OB →=AB → B.AB →-CD →=DB → C.OA →-OB →=BA → D.AB →-AB →=0【解析】根据向量减法的几何意义,知OA →-OB →=BA →,所以C 正确,A 错误;B 显然错误;对于D ,AB →-AB →应该等于0,而不是0.【答案】C2.下列四式中不能化简为PQ →的是( ) A.AB →+(PA →+BQ →) B .(AB →+PC →)+(BA →-QC →) C.QC →-QP →+CQ → D.PA →+AB →-BQ →【解析】D 中,PA →+AB →-BQ →=PB →-BQ →=PB →+QB →不能化简为PQ →,其余选项皆可. 【答案】D3.在△ABC 中,D 是BC 边上的一点,则AD →-AC →等于( ) A.CB → B.BC → C.CD → D.DC →【解析】在△ABC 中,D 是BC 边上一点,则由两个向量的减法的几何意义可得AD →-AC →=CD →. 【答案】C4.如图,在四边形ABCD 中,设AB →=a ,AD →=b ,BC →=c ,则DC →=( ) A .a -b +c B .b -(a +c ) C .a +b +c D .b -a +c【解析】DC →=DA →+AB →+BC →=a -b +c . 【答案】A 二、填空题5.EF →+DE →-DB →=________.【解析】EF →+DE →-DB →=EF →+BE →=BF →. 【答案】BF →6.若a ,b 为相反向量,且|a |=1,|b |=1,则|a +b |=________,|a -b |=________.【解析】若a ,b 为相反向量,则a +b =0,所以|a +b |=0,又a =-b ,所以|a |=|-b |=1,因为a 与-b 共线同向,所以|a -b |=2. 【答案】0 27.设点M 是线段BC 的中点,点A 在直线BC 外,且|BC →|=4,|AB →+AC →|=|AB →-AC →|,则|AM →|=________.【解析】以AB ,AC 为邻边作平行四边形ACDB ,由向量加减法几何意义可知,AD →=AB →+AC →,CB →=AB →-AC →,∵|AB →+AC →|=|AB →-AC →|,平行四边形ABCD 为矩形,∴|AD →|=|CB →|,又|BC →|=4,M 是线段BC 的中点, ∴|AM →|=12|AD →|=12|BC →|=2.【答案】2 三、解答题8.如图,已知向量a ,b ,c 不共线,求作向量a +b -c .【解析】方法一:如图①,在平面内任取一点O ,作OA →=a ,AB →=b ,则OB →=a +b ,再作OC →=c ,则CB →=a +b -c .方法二:如图②,在平面内任取一点O ,作OA →=a ,AB →=b ,则OB →=a +b ,再作CB →=c ,连接OC ,则OC →=a +b -c .9.化简下列各式:(1)(AB →+MB →)+(-OB →-MO →); (2)AB →-AD →-DC →.【解析】(1)方法一 原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB →=AB →. 方法二 原式=AB →+MB →+BO →+OM →=AB →+(MB →+BO →)+OM →=AB →+MO →+OM →=AB →+0=AB →. (2)方法一 原式=DB →-DC →=CB →.方法二 原式=AB →-(AD →+DC →)=AB →-AC →=CB →. 10.如图,解答下列各题:(1)用a ,d ,e 表示DB →; (2)用b ,c 表示DB →; (3)用a ,b ,e 表示EC →; (4)用d ,c 表示EC →.【解析】由题意知,AB →=a ,BC →=b ,CD →=c ,DE →=d ,EA →=e ,则 (1)DB →=DE →+EA →+AB →=a +d +e . (2)DB →=CB →-CD →=-BC →-CD →=-b -c . (3)EC →=EA →+AB →+BC →=a +b +e . (4)EC →=-CE →=-(CD →+DE →)=-c -d .6.2.3 向量的数乘运算一、选择题1.4(a -b )-3(a +b )-b 等于( ) A .a -2b B .a C .a -6b D .a -8b【解析】原式=4a -4b -3a -3b -b =a -8b .2.点C 在直线AB 上,且AC →=3AB →,则BC →等于( ) A .-2AB → B.13AB →C .-13AB →D .2AB →【解析】如图,AC →=3AB →,所以BC →=2AB →. 【答案】D3.已知向量a ,b 是两个不共线的向量,且向量m a -3b 与a +(2-m )b 共线,则实数m 的值为( )A .-1或3 B. 3 C .-1或4 D .3或4【解析】因为向量m a -3b 与a +(2-m )b 共线,且向量a ,b 是两个不共线的向量,所以m =-32-m ,解得m =-1或m =3. 【答案】A 4.如图,已知AB →=a ,AC →=b ,BD →=3DC →,用a ,b 表示AD →,则AD →=( ) A .a +34bB.34a +14bC.14a +14bD.14a +34b 【解析】AD →=AB →+BD →=AB →+34BC →=AB →+34(AC →-AB →)=14AB →+34AC →=14a +34b .【答案】D5.已知|a |=4,|b |=8,若两向量方向同向,则向量a 与向量b 的关系为b =________a . 【解析】由于|a |=4,b =8,则|b |=2|a |,又两向量同向,故b =2a . 【答案】26.点C 在线段AB 上,且AC CB =32,则AC →=________AB →,BC →=________AB →.【解析】因为C 在线段AB 上,且AC CB =32,所以AC →与AB →方向相同,BC →与AB →方向相反,且AC AB =35,BC AB =25,所以AC →=35AB →,BC →=-25AB →. 【答案】35 -257.已知向量a ,b 满足|a |=3,|b |=5,且a =λb ,则实数λ的值是________. 【解析】由a =λb ,得|a |=|λb |=|λ||b |.∵|a |=3,|b |=5, ∴|λ|=35,即λ=±35.【答案】±35三、解答题 8.计算(1)13(a +2b )+14(3a -2b )-12(a -b ); (2)12⎣⎢⎡⎦⎥⎤3a +2b-23a -b -76⎣⎢⎡⎦⎥⎤12a +37⎝ ⎛⎭⎪⎫b +76a . 【解析】(1)原式=⎝ ⎛⎭⎪⎫13+34-12a +⎝ ⎛⎭⎪⎫23-12+12b =712a +23b . (2)原式=12⎝ ⎛⎭⎪⎫73a +b -76⎝ ⎛⎭⎪⎫a +37b =76a +12b -76a -12b =0. 9.已知E ,F 分别为四边形ABCD 的对角线AC ,BD 的中点,设BC →=a ,DA →=b ,试用a ,b 表示EF →.【解析】如图所示,取AB 的中点P ,连接EP ,FP .在△ABC 中,EP 是中位线, 所以PE →=12BC →=12a .在△ABD 中,FP 是中位线,所以PF →=12AD →=-12DA →=-12b .在△EFP 中,EF →=EP →+PF →=-PE →+PF →=-12a -12b =-12(a +b ).10.已知e ,f 为两个不共线的向量,若四边形ABCD 满足AB →=e +2f ,BC →=-4e -f ,CD →=-5e -3f .(1)用e 、f 表示AD →;(2)证明:四边形ABCD 为梯形.【解析】(1)AD →=AB →+BC →+CD →=(e +2f )+(-4e -f )+(-5e -3f )=(1-4-5)e +(2-1-3)f =-8e -2f .(2)证明:因为AD →=-8e -2f =2(-4e -f )=2BC →, 所以AD →与BC →方向相同,且AD →的长度为BC →的长度的2倍, 即在四边形ABCD 中,AD ∥BC ,且AD ≠BC , 所以四边形ABCD 是梯形.6.2.4 向量的数量积一、选择题1.若|m |=4,|n |=6,m 与n 的夹角为45°,则m ·n =( ) A .12 B .12 2 C .-12 2 D .-12【解析】m ·n =|m ||n |cos θ=4×6×cos 45°=24×22=12 2. 【答案】B2.已知a ·b =-122,|a |=4,a 和b 的夹角为135°,则|b |=( ) A .12 B .3 C .6 D .3 3【解析】a ·b =|a ||b |cos 135°=-122,又|a |=4,解得|b |=6. 【答案】C3.已知向量a ,b 满足|a |=2,|b |=3,a ·(b -a )=-1,则a 与b 的夹角为( ) A.π6 B.π4 C.π3 D.π2【解析】因为|a |=2,a ·(b -a )=-1, 所以a ·(b -a )=a ·b -a 2=a ·b -22=-1, 所以a ·b =3.又因为|b |=3,设a 与b 的夹角为θ,则cos θ=a ·b |a ||b |=32×3=12.又θ∈[0,π],所以θ=π3. 【答案】C4.若a ·b >0,则a 与b 的夹角θ的取值范围是( )A.⎣⎢⎡⎭⎪⎫0,π2B.⎣⎢⎡⎭⎪⎫π2,πC.⎝⎛⎦⎥⎤π2,π D.⎝ ⎛⎭⎪⎫π2,π 【解析】因为a ·b >0,所以cos θ>0,所以θ∈⎣⎢⎡⎭⎪⎫0,π2.【答案】A 二、填空题5.如图所示,在Rt△ABC 中,∠A =90°,AB =1,则AB →·BC →的值是________.【解析】方法一 AB →·BC →=|AB →||BC →|cos(180°-∠B )=-|AB →||BC →|cos∠B =-|AB →||BC→|·|AB →||BC →|=-|AB →|2=-1.方法二 |BA →|=1,即BA →为单位向量,AB →·BC →=-BA →·BC →=-|BA →||BC →|cos∠B ,而|BC →|·cos∠B =|BA →|,所以AB →·BC →=-|BA →|2=-1. 【答案】-16.已知向量a ,b 满足|a |=1,|b |=4,且a ·b =2,则a 与b 的夹角为________.【解析】设a 与b 的夹角为θ,cos θ=a ·b |a |·|b |=21×4=12,又因为θ∈[0,π],所以θ=π3. 【答案】π37.已知|a |=3,向量a 与b 的夹角为π3,则a 在b 方向上的投影为________.【解析】向量a 在b 方向上的投影为|a |cos θ=3×cos π3=32.【答案】32三、解答题8.已知|a |=3,|b |=4,a 与b 的夹角为120°,求: (1)a 2-b 2;(2)(2a -b )·(a +3b ).【解析】(1)a 2-b 2=|a |2-|b |2=32-42=-7.(2)(2a -b )·(a +3b )=2a 2+5a ·b -3b 2=2|a |2+5|a ||b |·cos 120°-3|b |2=2×32+5×3×4×⎝ ⎛⎭⎪⎫-12-3×42=-60. 9.(1)已知|a |=|b |=5,向量a 与b 的夹角为π3,求|a +b |,|a -b |,|3a +b |;(2)已知|a |=|b |=5,且|3a -2b |=5,求|3a +b |的值;(3)如图,已知在▱ABCD 中,AB =3,AD =1,∠DAB =π3,求对角线AC 和BD 的长.【解析】(1)a ·b =|a ||b |cos π3=5×5×12=252,∴|a +b |=a +b 2=|a |2+2a ·b +|b |2=25+2×252+25=53,|a -b |=a -b2=|a |2+|b |2-2a ·b =25=5, |3a +b |=3a +b2=9a 2+b 2+6a ·b =325=513.(2)∵|3a -2b |2=9|a |2-12a ·b +4|b |2=9×25-12a ·b +4×25=325-12a ·b ,又|3a -2b |=5,∴325-12a ·b =25,则a ·b =25.∴|3a +b |2=(3a +b )2=9a 2+6a ·b +b 2=9×25+6×25+25=400.故|3a +b |=20. (3)设AB →=a ,AD →=b ,则|a |=3,|b |=1,a 与b 的夹角θ=π3.∴a ·b =|a ||b |cos θ=32.又∵AC →=a +b ,DB →=a -b , ∴|AC →|=AC →2=a +b 2=a 2+2a ·b +b 2=13,|DB →|=DB →2=a -b2=a 2-2a ·b +b 2=7.∴AC =13,BD =7.10.已知|a |=2|b |=2,且向量a 在向量b 方向上的投影为-1. (1)求a 与b 的夹角θ; (2)求(a -2b )·b ;(3)当λ为何值时,向量λa +b 与向量a -3b 互相垂直? 【解析】(1)由题意知|a |=2,|b |=1. 又a 在b 方向上的投影为|a |cos θ=-1, ∴cos θ=-12,∴θ=2π3.(2)易知a ·b =-1,则(a -2b )·b =a ·b -2b 2=-1-2=-3. (3)∵λa +b 与a -3b 互相垂直,∴(λa +b )·(a -3b )=λa 2-3λa ·b +b ·a -3b 2 =4λ+3λ-1-3=7λ-4=0, ∴λ=47.6.3.1 平面向量基本定理一、选择题1.已知向量a =e 1-2e 2,b =2e 1+e 2,其中e 1,e 2不共线,则a +b 与c =6e 1-2e 2的关系是( ) A .不共线 B .共线 C .相等 D .不确定 【解析】∵a +b =3e 1-e 2, ∴c =2(a +b ).∴a +b 与c 共线. 【答案】B2.已知AD 是△ABC 的中线,AB →=a ,AD →=b ,以a ,b 为基底表示AC →,则AC →=( ) A.12(a -b ) B .2b -a C.12(b -a ) D .2b +a【解析】如图,AD 是△ABC 的中线,则D 为线段BC 的中点,从而AD →=12(AB →+AC →),则AC →=2AD→-AB →=2b -a . 【答案】B3.在正方形ABCD 中,AC →与CD →的夹角等于( ) A .45° B.90° C .120° D.135° 【解析】如图所示,将AC →平移到CE →,则CE →与CD →的夹角即为AC →与CD →的夹角,夹角为135°. 【答案】D4.若D 点在三角形ABC 的边BC 上,且CD →=4DB →=rAB →+sAC →,则3r +s 的值为( ) A.165 B.125 C.85 D.45【解析】∵CD →=4DB →=rAB →+sAC →, ∴CD →=45CB →=45(AB →-AC →)=rAB →+sAC →,∴r =45,s =-45.∴3r +s =125-45=85.【答案】C 二、填空题5.已知向量a ,b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为________.【解析】因为a ,b 是一组基底,所以a 与b 不共线, 因为(3x -4y )a +(2x -3y )b =6a +3b ,所以⎩⎪⎨⎪⎧3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3,所以x -y =3.【答案】36.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,若OA →=a ,OB →=b ,用a ,b 表示向量OC →,则OC →=________.【解析】AC →=OC →-OA →,CB →=OB →-OC →,∵2AC →+CB →=0,∴2(OC →-OA →)+(OB →-OC →)=0,∴OC →=2OA →-OB →=2a -b . 【答案】2a -b7.在正方形ABCD 中,E 是DC 边上的中点,且AB →=a ,AD →=b ,则BE →=________.【解析】BE →=BC →+CE →=AD →-12AB →=b -12a .【答案】b -12a三、解答题8.已知e 1,e 2是平面内两个不共线的向量,a =3e 1-2e 2,b =-2e 1+e 2,c =7e 1-4e 2,试用向量a 和b 表示c .【解析】因为a ,b 不共线,所以可设c =x a +y b , 则x a +y b =x (3e 1-2e 2)+y (-2e 1+e 2) =(3x -2y )e 1+(-2x +y )e 2=7e 1-4e 2. 又因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧3x -2y =7,-2x +y =-4,解得⎩⎪⎨⎪⎧x =1,y =-2,所以c =a -2b .9.如图所示,设M ,N ,P 是△ABC 三边上的点,且BM →=13BC →,CN →=13CA →,AP →=13AB →,若AB →=a ,AC→=b ,试用a ,b 将MN →、NP →、PM →表示出来. 【解析】NP →=AP →-AN →=13AB →-23AC →=13a -23b ,MN →=CN →-CM →=-13AC →-23CB →=-13b -23(a -b )=-23a +13b ,PM →=-MP →=-(MN →+NP →)=13(a +b ).10.若点M 是△ABC 所在平面内一点,且满足:AM →=34AB →+14AC →.(1)求△ABM 与△ABC 的面积之比;(2)若N 为AB 中点,AM 与CN 交于点O ,设BO →=xBM →+yBN →,求x ,y 的值. 【解析】(1)由AM →=34AB →+14AC →可知M ,B ,C 三点共线,如图,令BM →=λBC →⇒AM →=AB →+BM →=AB →+λBC →=AB →+λ(AC →-AB →)=(1-λ)AB →+λAC →⇒λ=14,所以S △ABM S △ABC =14,即面积之比为1 4. (2)由BO →=xBM →+yBN →⇒BO →=xBM →+y 2BA →,BO →=x 4BC →+yBN ,由O ,M ,A 三点共线及O ,N ,C 三点共线⇒⎩⎪⎨⎪⎧ x +y2=1,x4+y =1⇒⎩⎪⎨⎪⎧x =47,y =67.6.3.2 平面向量的正交分解及坐标表示 6.3.3 平面向量加、减运算的坐标表示一、选择题1.设i ,j 是平面直角坐标系内分别与x 轴,y 轴正方向相同的两个单位向量,O 为坐标原点,若OA →=4i +2j ,OB →=3i +4j ,则2OA →+OB →的坐标是( ) A .(1,-2) B .(7,6) C .(5,0) D .(11,8)【解析】因为OA →=(4,2),OB →=(3,4), 所以2OA →+OB →=(8,4)+(3,4)=(11,8). 【答案】D2.已知向量a =(-1,2),b =(1,0),那么向量3b -a 的坐标是( ) A .(-4,2) B .(-4,-2) C .(4,2) D .(4,-2)【解析】3b -a =3(1,0)-(-1,2)=(4,-2).【答案】D3.已知向量a =(1,2),2a +b =(3,2),则b =( ) A .(1,-2) B .(1,2) C .(5,6) D .(2,0)【解析】b =(3,2)-2a =(3,2)-(2,4)=(1,-2). 【答案】A4.已知向量i =(1,0),j =(0,1),对坐标平面内的任一向量a ,给出下列四个结论: ①存在唯一的一对实数x ,y ,使得a =(x ,y );②若x 1,x 2,y 1,y 2∈R ,a =(x 1,y 1)≠(x 2,y 2),则x 1≠x 2,且y 1≠y 2; ③若x ,y ∈R ,a =(x ,y ),且a ≠0,则a 的起点是原点O ; ④若x ,y ∈R ,a ≠0,且a 的终点坐标是(x ,y ),则a =(x ,y ). 其中正确结论的个数是( ) A .1 B .2 C .3 D .4【解析】由平面向量基本定理知①正确;若a =(1,0)≠(1,3),但1=1,故②错误;因为向量可以平移,所以a =(x ,y )与a 的起点是不是原点无关,故③错误;当a 的终点坐标是(x ,y )时,a =(x ,y )是以a 的起点是原点为前提的,故④错误.【答案】A 二、填空题5.在平面直角坐标系内,已知i 、j 是两个互相垂直的单位向量,若a =i -2j ,则向量用坐标表示a =________.【解析】由于i ,j 是两个互相垂直的单位向量,所以a =(1,-2). 【答案】(1,-2)6.如右图所示,已知O 是坐标原点,点A 在第一象限,|OA →|=43,∠xOA =60°,则向量OA →的坐标为________.【解析】设点A (x ,y ),则x =|OA →|·cos 60°=43cos 60°=23,y =|OA →|·sin 60°=43sin 60°=6,即A (23,6),所以OA →=(23,6). 【答案】(23,6)7.已知向量a =(x +3,x 2-3x -4)与AB →相等,其中A (1,2),B (3,2),则x =________.【解析】易得AB →=(2,0),由a =(x +3,x 2-3x -4)与AB →相等得⎩⎪⎨⎪⎧x +3=2,x 2-3x -4=0,解得x =-1.【答案】-1 三、解答题8.如图,取与x 轴、y 轴同向的两个单位向量i ,j 作为基底,分别用i ,j 表示OA →,OB →,AB →,并求出它们的坐标.【解析】由图形可知,OA →=6i +2j ,OB →=2i +4j ,AB →=-4i +2j ,它们的坐标表示为OA →=(6,2),OB →=(2,4),AB →=(-4,2).9.已知a =(2,-4),b =(-1,3),c =(6,5),p =a +2b -c . (1)求p 的坐标 ;(2)若以a ,b 为基底,求p 的表达式.【解析】(1)p =(2,-4)+2(-1,3)-(6,5)=(-6,-3). (2)设p =λa +μb (λ,μ∈R ),则(-6,-3)=λ(2,-4)+μ(-1,3)=(2λ-μ,-4λ+3μ),所以⎩⎪⎨⎪⎧2λ-μ=-6,-4λ+3μ=-3,所以⎩⎪⎨⎪⎧λ=-212,μ=-15,所以p =-212a -15b .10.已知O 是△ABC 内一点,∠AOB =150°,∠BOC =90°,设OA →a ,OB →=b ,OC →=c ,且|a |=2,|b|=1,|c |=3,试用a ,b 表示c .【解析】如图,以O 为原点,OA →为x 轴的非负半轴建立平面直角坐标系,由三角函数的定义,得B (cos 150°,sin 150°),C (3cos 240°,3sin 240°). 即B ⎝ ⎛⎭⎪⎫-32,12,C ⎝ ⎛⎭⎪⎫-32,-332,又∵A (2,0), 故a =(2,0),b =⎝ ⎛⎭⎪⎫-32,12,c =⎝ ⎛⎭⎪⎫-32,-332. 设c =λ1a +λ2b (λ1,λ2∈R ),∴⎝ ⎛⎭⎪⎫-32,-332=λ1(2,0)+λ2⎝ ⎛⎭⎪⎫-32,12=⎝⎛⎭⎪⎫2λ1-32λ2,12λ2,∴⎩⎪⎨⎪⎧2λ1-32λ2=-32,12λ2=-332,∴⎩⎨⎧λ1=-3,λ2=-33,∴c =-3a -33b .6.3.4 平面向量数乘运算的坐标表示一、选择题1.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =( ) A .(-2,-4) B .(-3,-6) C .(-4,-8) D .(-5,-10)【解析】由a =(1,2),b =(-2,m ),且a ∥b ,得1×m =2×(-2),解得m =-4,所以b =(-2,-4),所以2a +3b =2(1,2)+3(-2,-4)=(-4,-8). 【答案】C2.已知向量a =(1,2),b =(λ,1),若(a +2b )∥(2a -2b ),则λ的值等于( ) A.12 B.13 C .1 D .2【解析】a +2b =(1,2)+2(λ,1)=(1+2λ,4),2a -2b =2(1,2)-2(λ,1)=(2-2λ,2),由(a +2b )∥(2a -2b ),可得2(1+2λ)-4(2-2λ)=0,解得λ=12,故选A.【答案】A3.已知A (1,-3),B ⎝ ⎛⎭⎪⎫8,12,且A ,B ,C 三点共线,则点C 的坐标可以是( ) A .(-9,1) B .(9,-1) C .(9,1) D .(-9,-1) 【解析】设点C 的坐标是(x ,y ), 因为A ,B ,C 三点共线, 所以AB →∥AC →.因为AB →=⎝ ⎛⎭⎪⎫8,12-(1,-3)=⎝ ⎛⎭⎪⎫7,72,AC →=(x ,y )-(1,-3)=(x -1,y +3),所以7(y +3)-72(x -1)=0,整理得x -2y =7,经检验可知点(9,1)符合要求,故选C. 【答案】C4.已知向量OA →=(3,-4),OB →=(6,-3),OC →=(2m ,m +1),若AB →∥OC →,则实数m 的值为( ) A.35 B .-35 C .3 D .-3【解析】向量OA →=(3,-4),OB →=(6,-3), ∴AB →=(3,1),∵OC →=(2m ,m +1),AB →∥OC →, ∴3m +3=2m ,解得m =-3,故选D.【答案】D 二、填空题5.已知向量a =(3x -1,4)与b =(1,2)共线,则实数x 的值为________.【解析】因为向量a =(3x -1,4)与b =(1,2)共线,所以2(3x -1)-4×1=0,解得x =1. 【答案】16.已知A (2,1),B (0,2),C (-2,1),O (0,0),给出下列结论: ①直线OC 与直线BA 平行; ②AB →+BC →=CA →; ③OA →+OC →=OB →; ④AC →=OB →-2OA →.其中,正确结论的序号为________.【解析】①因为OC →=(-2,1),BA →=(2,-1),所以OC →=-BA →,又直线OC ,BA 不重合,所以直线OC ∥BA ,所以①正确;②因为AB →+BC →=AC →≠CA →,所以②错误;③因为OA →+OC →=(0,2)=OB →,所以③正确;④因为AC →=(-4,0),OB →-2OA →=(0,2)-2(2,1)=(-4,0),所以④正确. 【答案】①③④7.已知向量a =(1,2),b =(1,λ),c =(3,4).若a +b 与c 共线,则实数λ=________. 【解析】因为a +b =(1,2)+(1,λ)=(2,2+λ),所以根据a +b 与c 共线得2×4-3×(2+λ)=0,解得λ=23.【答案】23三、解答题8.已知a =(x,1),b =(4,x ),a 与b 共线且方向相同,求x . 【解析】∵a =(x,1),b =(4,x ),a ∥b . ∴x 2-4=0,解得x 1=2,x 2=-2.当x =2时,a =(2,1),b =(4,2),a 与b 共线且方向相同; 当x =-2时,a =(-2,1),b =(4,-2),a 与b 共线且方向相反. ∴x =2.9.已知A ,B ,C 三点的坐标分别为(-1,0),(3,-1),(1,2),并且AE →=13AC →,BF →=13BC →,求证:EF →∥AB →.证明:设E (x 1,y 1),F (x 2,y 2),依题意有AC →=(2,2),BC →=(-2,3),AB →=(4,-1). ∵AE →=13AC →,∴AE →=⎝ ⎛⎭⎪⎫23,23,∵BF →=13BC →,∴BF →=⎝ ⎛⎭⎪⎫-23,1.∵AE →=(x 1+1,y 1)=⎝ ⎛⎭⎪⎫23,23,∴E ⎝ ⎛⎭⎪⎫-13,23,∵BF →=(x 2-3,y 2+1)=⎝ ⎛⎭⎪⎫-23,1,∴F ⎝ ⎛⎭⎪⎫73,0, ∴EF →=⎝ ⎛⎭⎪⎫83,-23.又∵4×⎝ ⎛⎭⎪⎫-23-83×(-1)=0,∴EF →∥AB →. 10.已知a =(1,0),b =(2,1). (1)当k 为何值时,k a -b 与a +2b 共线?(2)若AB →=2a +3b ,BC →=a +m b 且A ,B ,C 三点共线,求m 的值. 【解析】(1)k a -b =k (1,0)-(2,1)=(k -2,-1),a +2b =(1,0)+2(2,1)=(5,2).因为k a -b 与a +2b 共线,所以2(k -2)-(-1)×5=0,得k =-12.(2)因为A ,B ,C 三点共线, 所以AB →=λBC →,λ∈R , 即2a +3b =λ(a +m b ),所以⎩⎪⎨⎪⎧2=λ,3=mλ,解得m =32.6.3.5 平面向量数量积的坐标表示一、选择题1.若向量a =(3,m ),b =(2,-1),a ·b =0,则实数m 的值为( )A .-32 B.32C .2D .6【解析】依题意得6-m =0,m =6,选D. 【答案】D2.向量a =(1,-1),b =(-1,2),则(2a +b )·a =( ) A .-1 B .0 C .1 D .2【解析】a =(1,-1),b =(-1,2), ∴(2a +b )·a =(1,0)·(1,-1)=1. 【答案】C3.已知a ,b 为平面向量,且a =(4,3),2a +b =(3,18),则a ,b 夹角的余弦值等于( ) A.865 B .-865 C.1665 D .-1665【解析】∵a =(4,3),∴2a =(8,6).又2a +b =(3,18), ∴b =(-5,12),∴a ·b =-20+36=16. 又|a |=5,|b |=13, ∴cos〈a ,b 〉=165×13=1665.【答案】C4.已知向量a =(-1,2),b =(3,1),c =(k,4),且(a -b )⊥c ,则k =( ) A .-6 B .-1 C .1 D .6【解析】∵a =(-1,2),b =(3,1),∴a -b =(-4,1),∵(a -b )⊥c ,∴-4k +4=0,解得k =1. 【答案】C 二、填空题5.a =(-4,3),b =(1,2),则2|a |2-3a ·b =________. 【解析】因为a =(-4,3),所以2|a |2=2×(-42+32)2=50.a ·b =-4×1+3×2=2.所以2|a |2-3a ·b =50-3×2=44. 【答案】446.设向量a =(1,0),b =(-1,m ).若a ⊥(m a -b ),则m =________.。