2018-2019学年最新苏科版八年级数学上册《平面直角坐标系》综合提优卷及答案-精品试题

合集下载

苏科版八年级数学上册第五章《平面直角坐标系》单元提优检测试卷(有答案)

苏科版八年级数学上册第五章《平面直角坐标系》单元提优检测试卷(有答案)

第五章《平面直角坐标系》单元提优检测试卷一、选择题1.若点P (a ,﹣b )在第三象限,则M (ab ,﹣a )应在 ( ) A .第一象限B .第二象限C .第三象限D .第四象限2.点M 到x 轴的距离为3,到y 的距离为4,则点M 的坐标为 ( ) A .(3,4)B .(4,3)C .(4,3),(﹣4,3)D .(4,3),(﹣4,3)(﹣4,﹣3),(4,﹣3) 3.设点A (m ,n )在x 轴上,位于原点的左侧,则下列结论正确的是 ( ) A .m=0,n 为一切数 B .m=0,n <0 C .m 为一切数,n=0D .m <0,n=04.在坐标平面内有一点P (x ,y ),若xy=0,那么点P 的位置在 ( ) A .原点B .x 轴上C .y 轴上D .坐标轴上5.直角坐标系中,一个图案上各个点的横坐标和纵坐标分别乘以正数a (a >1),那么所得的图案与原来图案相比 ( ) A .形状不变,大小扩大到原来的a 倍 B .图案向右平移了a 个单位 C .图案向上平移了a 个单位 D .图案沿纵向拉长为a 倍6.点P (4,3)所在的象限是 ( ) A .第一象限B .第二象限C .第三象限D .第四象限7.在平面直角坐标系中,点(20,)P a -与点(,13)Q b 关于原点对称,则a b +的值为 ( ) A .33 B .33- C .7- D .78.如图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向,表示太和门的点的坐标为(0,﹣1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是 ( )A.景仁宫(4,2)B.养心殿(﹣2,3)C.保和殿(1,0)D.武英殿(﹣3.5,﹣4)9.对平面上任意一点(a,b),定义f,g两种变换:f(a,b)=(a,﹣b).如f(1,2)=(1,﹣2);g(a,b)=(b,a).如g(1,2)=(2,1).据此得g(f(5,﹣9))= ()A.(5,﹣9) B.(﹣9,﹣5)C.(5,9)D.(9,5)10.坐标平面上有一点A,且A点到x轴的距离为3,A点到y轴的距离恰为到x 轴距离的3倍.若A点在第二象限,则A点坐标为何?()A.(﹣9,3) B.(﹣3,1) C.(﹣3,9) D.(﹣1,3)二、填空题11.已知点P在第二象限,它的横坐标与纵坐标的和为1,点P的坐标是_______(写出符合条件的一个点即可)12.在长方形ABCD中,A(4,1),B(0,1),C(0,3),则点D的坐标为_______.13.在平面直角坐标系中,点M(t-3,5-t)在坐标轴上,则t=_______.14.如图,小强告诉小华图中A,B两点的坐标分别为(-3,5),(3,5),小华一下就说出了C在同一坐标系下的坐标_______.15.已知线段MN=4,MN∥y轴,若点M坐标为(-1,2),则N点坐标为_______.16.已知点P(a,-2),Q(3,6)且PQ∥y轴,则a_______,b_______.17.在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(-2,3),B(-4,-1),C(2,0),将△ABC平移至△A1B1C1的位置,点A、B、C的对应点分别是A1B1C1,若点A,的坐标为(3,1),则点C1的坐标为_______.18.在平面直角坐标系中,规定把一个三角形先沿x轴翻折,再向右平移两个单位称为一次变换,如图,已知等边三角形ABC的顶点B、C的坐标分别是(-1,-1)、(-3,-1),把三角形ABC经过连续9次这样的变换得到三角形A'B'C',则点A的对应点A'的坐标是_______.19.将正整数按如图所示的规律排列下去,若有序实数对 (n,m) 表示第n排从左到右第m个数,如 (4,2) 表示实数9,则表示实数17的有序实数对是.20.九年级某班有54名学生,所在教室有6行9列座位,用 (m,n) 表示第m 行第n列的座位.新学期准备调整座位,设某个学生原来的座位为 (m,n),若调整后的座位为 (i,j),则称该生作了平移 [a,b]=[m-i,n-j],并称a+b 为该生的位置数.若某生的位置数为10,则当m+n取最小值时,m·n的最大值为.三、解答题21.已知点O(0,0),A(3,0),点B在y轴上,且△OAB的面积是6,求点B 的坐标.22如图,在△OAB中,已知A (2,4),B (6,2),求△OAB的面积.23.王霞和爸爸、妈妈到希望公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示.可是她忘了在图中标出原点和x轴、y轴.只知道游乐园D的坐标为 (2,-2),你能帮她求出其他各景点的坐标吗?24.如图,四边形OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标.25.【操作发现】在计算器上输入一个正数,不断地按“”键求算术平方根,运算结果越来越接近1或都等于1.【提出问题】输入一个实数,不断地进行“乘以常数k,再加上常数b”的运算,有什么规律?【分析问题】我们可用框图表示这种运算过程(如图a).也可用图象描述:如图1,在x轴上表示出x1,先在直线y=kx+b上确定点(x1,y),再在直线y=x上确定纵坐标为y1的点(x2,y1),然后再x轴上确定对应的1数x2,…,以此类推.【解决问题】研究输入实数x1时,随着运算次数n的不断增加,运算结果x,怎样变化.(1)若k=2,b=﹣4,得到什么结论?可以输入特殊的数如3,4,5进行观察研究;(2)若k>1,又得到什么结论?请说明理由;(3)①若k=﹣,b=2,已在x轴上表示出x1(如图2所示),请在x轴上表示x2,x3,x4,并写出研究结论;②若输入实数x1时,运算结果x n互不相等,且越来越接近常数m,直接写出k的取值范围及m的值(用含k,b的代数式表示)第五章《平面直角坐标系》单元提优检测试卷参考答案一、选择题1.B.2.D.3.D.4.D.5.A.6.A.7.D.8.B.9.D.10.A.二、填空题11.(-1,2),答案不唯一.12.(4,3) 13.3或5 14.(-1,7)15. (-1,-2)或(-1,6) 16.-3 ,≠-2 17.(7,-2)18.(16,13)19.(6,5) 20.36 [提示:由已知,得a+b=m-i+n-j,即m-i+n-j=10,∴m+n=10+i+j.当m+n取最小值时,i+j的最小值为2,∴m+n的最小值为12.即n=12-m,m·n=m(12-m)= -(m-6)2+36,∴当m=6时,m·n有最大值为6×6=36]三、解答题21.由题意知S△OAB =12×OA×OB=6,∵A (3,0),∴OA=3,∴OB=4,∴点B的坐标为(0,4)或(0,-4)22.如图,构造长方形OCDE.∵A (2,4),B (6,2),∴AE=2,OE=4,OC=6,BC=2,∴AD=6-2=4,BD=4-2=2 ,∴ S△OAB =4×6-12×4×2-12×6×2-12×2×4=1023.由题意可知,本题是以点F为坐标原点(0,0),FA为y轴的正半轴,建立平面直角坐标系,则A,B,C,E的坐标分别为:A (0,4),B (-3,2),C (-2,-1),E (3,3) 24.(1) 由题意可知折痕AD是四边形OAED的对称轴.在Rt△ABE中,AE=AO=10,AB=8,BE=22AE AB-=22108-=6,∴CE=4,∴ E(4,8).在Rt△DCE中,DC2+CE2=DE2.又DE=OD,∴ (8-OD)2+42=OD2,∴OD=5,∴ D(0,5)25. (1)若k=2,b=﹣4,y=2x﹣4,取x1=3,则x2=2,x3=0,x4=﹣4,…取x1=4,则x2x3=x4=4,…取x1=5,则x2=6,x3=8,x4=12,…由此发现:当x1<4时,随着运算次数n的增加,运算结果x n越来越小.当x1=4时,随着运算次数n的增加,运算结果x n的值保持不变,都等于4.当x1>4时,随着运算次数n的增加,运算结果x n越来越大.(2)当x1>时,随着运算次数n的增加,x n越来越大.当x1<时,随着运算次数n的增加,x n越来越小.当x1=时,随着运算次数n的增加,x n保持不变.理由:如图1中,直线y=kx+b与直线y=x的交点坐标为(,),当x1>时,对于同一个x的值,kx+b>x,∴y1>x1∵y1=x2,∴x1<x2,同理x2<x3<…<x n,∴当x1>时,随着运算次数n的增加,x n越来越大.同理,当x1<时,随着运算次数n的增加,x n越来越小.当x1=时,随着运算次数n的增加,x n保持不变.(3)①在数轴上表示的x1,x2,x3如图2所示.随着运算次数的增加,运算结果越来越接近.②由(2)可知:﹣1<k<1且k≠0,由消去y得到x=∴由①探究可知:m=.。

第五章平面直角坐标系综合提优测试卷 苏科版八年级上册数学

第五章平面直角坐标系综合提优测试卷 苏科版八年级上册数学

2021-2022学年苏科版八年级上册数学第五章平面直角坐标系综合提优测试卷(时间60分钟满分100分)一、选择题(每题2分,共20分)1.在平面直角坐标系中,已知点P(12,-8),则点P在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.在直角坐标系中,点A(3,1),点B(3,3),则线段AB的中点坐标是().(A)(2,3)(B)(3,2)(C)(6,2)(D)(6,4)3.若点P在第四象限,且到两条坐标轴的距离都是4,则点P的坐标为()A.(-4,4) B.(-4,-4) C.(4,-4) D.(4,4)4.一辆汽车行驶的路程与行驶时间的关系如图所示,下列说法正确的是().(A)前3h中汽车的速度越来越快(B)3h后汽车静止不动(C)3h后汽车以相同的速度行驶(D)前3h汽车以相同速度行驶5.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A. 4 B.5 C.6 D.86.在平面直角坐标系中,对于平面内任意一点(x,y),若规定以下两种变换:①f(x,y)=(y,x)如f(2,3)=(3,2)②g(x,y)=(﹣x,﹣y)如g(2,3)=(﹣2,﹣3).按照以上变换有:f(g(2,3))=f(﹣2,﹣3)=(﹣3,﹣2),那么g(f(﹣6,7))等于 ( )A.(7,6) B.(7,﹣6) C.(﹣7,6) D.(﹣7,﹣6)7.如图,直角坐标系中,正方形ABCD的面积是().(A)1 (B)2 (C)4 (D)1 28.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2021次碰到矩形的边时,点P的坐标为()A.(1,4) B.(5,0) C.(6,4) D.(8,3)9.一个长方形在平面直角坐标系中三个顶点的坐标为(–1,–1)、(–1,2)、(3,–1),则第四个顶点的坐标为()A.(2,2) B.(3,2) C.(3,3) D.(2,3)10.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕点D顺时针方向旋转90°后,点B的坐标为( ).A.(-2,2) B.(4,1)C.(3,1) D.(4,0)二、填空题(每题3分,共30分)11.点P(a+1,a-1)在平面直角坐标系的y轴上,则点P坐标为________.12.小刚家位于某住宅楼A座16层,可记为A16,按这种方法,小红家住B座10层,可记为_______.13.在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是_______.14.一辆汽车以60km/h的速度行驶,设行驶的路程为s(km),行驶的时间为t(h),则s与t的函数关系式为___________,变量是___________,常量是___________.15.若点P(x,y)的坐标满足x+y=xy,则称点P为“和谐点”.请写出一个“和谐点”的坐标:_______.16.在平面直角坐标系中,点A1(1,1),A2(2,4),A3(3,9),A4(4,16),…,用你发现的规律确定点A9的坐标为_______.17.等边三角形ABC的两顶点A、B的坐标分别为(-4,0),(4,0),则点C的坐标为_______.18.在平面直角坐标系中,规定把一个三角形先沿x轴翻折,再向右平移两个单位称为一次变换,如图,已知等边三角形ABC的顶点B、C的坐标分别是,(-1,-1),(-3,-1),把三角形ABC经过连续12次这样的变换得到三角形A’B’C’,则点A的对应点A’的坐标是.19.则当m+n取最小值时,m·n的最大值为_______.20.在平面直角坐标系xOy中,已知点A(0,1),B(1,2),点P在x轴上运动,当点P到A、B两点距离之差的绝对值最大时,点P的坐标是.三、解答题(共50分)21. △ABC在方格纸中的位置如图所示,方格纸中的每个小正方形的边长为1个单位.(1)△A1B1C1与△ABC关于y轴对称,请你在图中画出△A1B1C1;(2)将△ABC向下平移8个单位后得到△A2B2C2,请你在图中画出△A2B2C2.(3)请分别写出A2、B2 、C2 的坐标.22. 在平面直角坐标系中,以任意两点P(x 1,y 1)、Q(x 2,y 2)为端点的线段的中点坐标为(122x x +,122y y +) 【运用】(1)如图,矩形ONEF 的对角线交于点M ,ON 、OF 分别在x 轴和y 轴上,O 为坐标原点,点E 的坐标为(4,3),则点M 的坐标为_______;(2)在直角坐标系中,有A (-1,2),B(3,1),C(1,4)三点,另有一点D 与点A 、B 、C 构成平行四边形的顶点,求点D 的坐标.23.在同一平面直角坐标系中分别描出点A (-3,0),B(2,0),C(1,3),再用线段将这三点首尾依次连接起来,求△ABC 的面积与周长.24.在平面直角坐标系中,一只蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.(1)填写下列各点的坐标:A 4(_______,_______),A8(_______,_______),A 12(_______,_______);(2)写出点A 4n 的坐标(n 是正整数);(3)指出蚂蚁从点A 100到点A 101的移动方向.25.在平面直角坐标系中,分别描出点A(-1,0),B(0,2),C(1,0),D(0,-2).(1)试判断四边形ABCD的形状;(2)若B、D两点不动,你能通过变动点A、C的位置使四边形ABCD成为正方形吗?•若能,请写出变动后的点A、C的坐标.1yx126.在平面直角坐标系中,点A、B的坐标分别为(-1,0),(3,0),现同时将点A、B分别向上平移2个单位,再向右平移1个单位,分别得到点A、B的对应点C、D,连接AC、BD。

苏科版八级上册数学_平面直角坐标系练习题(附解析)

苏科版八级上册数学_平面直角坐标系练习题(附解析)

一、单选题(注释)1、如图,阴影部分组成的图案既是关于轴成轴对称的图形,又是关于坐标原点成中心对称的图形.若点的坐标是,则点和点的坐标分别为( )A.B.C.D.2、若点A(-2,n)在x轴上,则B(n-1,n+1)在( )A.第一象限B.第二象限C.第三象限D.第四象限3、m为整数,点P(3m-9,3-3m)是第三象限的点,则P点的坐标为( )A.(-3,-3) B.(-3,-2) C.(-2,-2) D.(-2,-3)4、课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4) B.(4,5)-C.(3,4)-D.(4,3)5、若a<0,在平面直角坐标系中,将点(a,-3)分别向左、向上平移4个单位,可以得到的对应点的位置在( )A.第一象限B.第二象限C.第三象限D.第四象限6、如图:下列说法正确的是( )A.A与D的横坐标相同B.C与D的纵坐标相同C.B与C的纵坐标相同D.B与D的横坐标相同7、如图,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后的三个顶点的坐标是().A.(2,2),(3,4),(1,7)B.(-2,2),(4,3),(1,7)C.(-2,2),(3,4),(1,7)D.(2,-2),(3,3),(1,7)8、一枝蜡烛长20cm,点燃后每小时燃烧掉5cm,则下列4幅图象中能大致刻画出这枝蜡烛点燃后剩下的长度h(cm)与点燃时间t之间的变化关系的是().A.B.C.D.9、弹簧上挂物体会伸长,测得一弹簧的长度y(cm)与所挂物体重量x(kg)之间的关系如下表所示:下面说法不正确的是().(A)y是随x的变化而变化的(B)弹簧不挂重物时的长度是0(C)物体质量每增加1kg,弹簧长度增加0.5cm(D)当所挂物体的质量为7kg时,弹簧长为13.5分卷II分卷II 注释二、填空题(注释)10、如图,2008年奥运火炬在去南省传递传递路线为“昆明—丽江—香格里位),某校学生小明在省地图上设定的临沧市位置点的坐标为(-1,0),火炬传递起点昆明市位置点的坐标为(1,1)。如图,请帮助小明确定出火炬传递终点香格拉位置的坐标为________________。11、将点P向左平移2个单位,再向上平移1个单位得到P′(-1,3),则点P的坐标是______.12、若点A(m,n)在第二象限,则点B(︱m︱,-n)在第_____象限.13、已知点(3,m)与点(n,-2)关于坐标系原点对称,则mn=_______14、如图,点关于轴的对称点的坐标是____________.15、正方形ABCD中,其中两个顶点的坐标分别是(0,0)、(4,0),另外两个顶点的坐标是___________________________________.16、在平面直角坐标系中,点(-1,2)关于x轴对称的点的坐标是____________,关于y轴对称的点的坐标是____________,关于原点对称的点的坐标是_____________.17、将直角坐标系上的点(2,3)向左平移2个单位后得到的点的坐标是_______;将点(2,3)向下平移2个单位后得到的点的坐标是__________.18、如图,是某汽车行驶的路程s(km)与时间t(min)的数量关系图,观察图中所提供的信息可知:汽车在前9分钟行驶了_________ km,汽车路途停了_______分钟.19、举出一个生活中反映两个量之间的变化关系的例子__________________________.20、设地面温度是25,如果每升高1 km,气温就下降6,那么气温T(℃)与高度h (km)的变化关系式(用含h的式子表示T)为_____________________.三、解答题(注释)21、根据指令[S, A](S≥0,0°<A<180°),机器人在平面上能完成下列动作:先原地逆时针旋转角度A,再朝其面对的方向沿直线行走距离S,现机器人在直角坐标系坐标原点,且面对x轴正方向。(1)若给机器人下了一个指令[4,60],则机器人应移动到点_________;(2)请你给机器人下一个指令_________,使其移到点(-5,5)。22、如图:AC与BD交于P点,PA=PB=PC=PD.已知△PAB的三点坐标为A(2,2),B(6,2),P(4,5).(1)求出C,D的坐标;(2)将△PAB沿AC方向平移,使P与C重合,则平移后的A,B点的坐标.23、如图是重百商场的各个柜台分布平面示意图,请建立合适的直角坐标系,标出各个柜台的坐标.24、平行四边形ABCD,AD=6,AB=8,点A的坐标为(-3,0),求B、C、D各点的坐标。25、在直角坐标系中,四边形ABCD各个顶点的坐标分别为A(0,0),B(3,6),C(7,8),D(12,0),求四边形ABCD的面积.26、如图,在下面的平面直角坐标系中,先画出以A(-2,3),B(-2,-3),C(-3.5,0)三点为顶点的三角形,再画出△ABC关于y轴对称的△.27、如图,是小王骑自行车离家的距离S(千米)与时间t (小时)之间的变化关系.(1)根据图形填表:(2)小王离家最远时是什么的时刻?这时离家有多远?(3)他骑自行车最快的速度是多少?最慢的速度是多少?(4)小王在哪一时刻与家相距20千米?28、下面是一城市某日的气温变化图,在这个图中可以看出很多温度变化的信息.例如:这一天的最高气温是14°.请你另外指出3条图中所反映的信息.试卷答案1.C2.B3.A4.D5.B6.B7.C8.C9.B10.(–1,4)11.(1,2)12.四13.-614.(5,3)15.(0,4)、(4,4),(0,-4)、(4,-4),(2,2)、(2,-2).16.(-1,-2),(1,2),(1,-2)17.(0,3);(2,1)18.12,719.汽车匀速行驶时,路程随着时间的增加而增加。

苏科版数学八年级上册 平面直角坐标系 压轴提优复习习题(含答案)

苏科版数学八年级上册  平面直角坐标系   压轴提优复习习题(含答案)

平面直角坐标系提优复习一.选择题(共11小题)1.如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB平移,使其一个端点到C(3,2),则平移后另一端点的坐标为()A.(1,3)B.(5,1)C.(1,3)或(3,5)D.(1,3)或(5,1)2.若点M(x,y)满足(x﹣y)2=x2+y2﹣2,则点M所在的象限是()A.第一象限或第三象限B.第一象限或第二象限C.第二象限或第四象限D.不能确定3.已知点P(m﹣1,n+2)与Q(2m﹣4,2)关于x轴对称,则(m+n)2019的值为()A.1B.﹣1C.2019D.﹣20194.在直角坐标系中,点O为坐标原点,点A(3,4),把线段OA绕点O顺时针旋转90°得到线段OA',则点A'的坐标为()A.(4,3)B.(4,﹣3)C.(﹣4,3)D.(3,﹣4)5.如图,等边△OAB的边OB在x轴上,点B坐标为(2,0),以点O为旋转中心,把△OAB逆时针旋转90°,则旋转后点A的对应点A'的坐标是()A.(﹣1,)B.(,﹣1)C.(﹣,1)D.(﹣2,1)第5题第6题6.如图,线段OA,OB分别从与x轴和y轴重合的位置出发,绕着原点O顺时针转动,已知OA每秒转动45°,OB的转动速度是每秒转动30°,则第2020秒时,OA与OB之间的夹角的度数为()A.90°B.145°C.150°D.165°7.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,2),且|a﹣c|+=0,将线段PQ向右平移a个单位长度,其扫过的面积为24,那么a+b+c的值为()A.12B.14C.16D.208.在平面直角坐标系中,将A(m2,1)沿着x的正方向向右平移m2+3个单位后得到B点.有四个点M (﹣m2,1)、N(m2,m2+3)、P(m2+2,1)、Q(3m2,1),一定在线段AB上的是()A.点M B.点N C.点P D.点Q9.如图,△ABC三个顶点的坐标分别是A(1,﹣1),B(2,﹣2),C(4,﹣1),将△ABC绕着原点O 旋转75°,得到△A1B1C1,则点B1的坐标为()A.(,)或(﹣,﹣)B.(,)或(﹣,﹣)C.(﹣,﹣)或(,)D.(﹣,﹣)或(,)第9题第11题10.对平面上任意一点(a,b),定义f,g两种变换:f(a,b)=(﹣a,b),如f(1,2)=(﹣1,2);g(a,b)=(b,a),如g(1,2)=(2,1),据此得g[f(5,﹣9)]=()A.(5,﹣9)B.(﹣5,﹣9)C.(﹣9,﹣5)D.(﹣9,5)11.如图,已知点C(0,1),A(0,0),点B在x轴上,∠ABC=30°,在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,……,则第10个等边三角形的边长等于()A.B.C.D.二.填空题(共13小题)12.已知m为任意实数,则点(﹣3m2﹣1,|m|+1)在第象限.13.已知点M(3a﹣8,a﹣1),点M在第二、四象限的角平分线上,则点M的坐标为.14.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,2),则点B2016的坐标为.15.如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3;过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2016的纵坐标为.第15题第16题16.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2012个点的横坐标为.17.如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3…已知:A(1,3),A1(2,3),A2(4,3),A3(8,3);B(2,0),B1(4,0),B2(8,0),B3(16,0).观察每次变换前后的三角形有何变化,按照变换规律,第五次变换后得到的三角形A5的坐标是,B5的坐标是.第17题第18题18.如图,在平面直角坐标系内,点A、点B的坐标分别为A(﹣7,0),B(5,0),现将线段AB向上平移9个单位,得到对应线段DC,连接AD、BC、AC,若AC=15,动点E从C点出发,以每秒3个单位的速度沿C→D→C作匀速移动,点F从点B出发,以每秒4个单位的速度沿B→A→B作匀速运动,点G从点A出发沿AC向点C匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒.在移动过程中,若△CEG与△AFG全等,则此时的移动时间t的值为.19.教材上曾让同学们探索过线段的中点坐标:在平面直角坐标系中,若两点A(x1,y1)、B(x2,y2),所连线段AB的中点是M,则M的坐标为(,),例如:点A(1,2)、点B(3,6),则线段AB的中点M的坐标为(,),即M(2,4)请利用以上结论解决问题:在平面直角坐标系中,若点E(a﹣1,a),F(b,a﹣b),线段EF的中点G恰好位于x轴上,且到y轴的距离是2,则2a+b的值等于.20.在平面直角坐标系中,对于点P(x,y),若点的坐标为(ax+y,x+ay),其中a为常数,则称点Q是点P的“a级关联点”,例如,点P(1,4)的3级关联点”为Q(3×1+4,1+3×4)即Q(7,13),若点B的“2级关联点”是B′(3,3),则点B的坐标为.21.如图,在平面内两条直线l1、l2相交于点O,对于平面内任意一点M,若p、q分别是点M到直线l1、l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,3)的点共有个.22.如图,坐标系中,四边形OABC与CDEF都是正方形,OA=2,M,D分别是AB,BC的中点,当把正方形CDEF绕点C旋转某个角度后,如果点F的对应点为F′,且O F′=OM.则点F′的坐标是.第22题第23题23.将正整数按如图所示的规律排列下去.若用有序实数对(n,m)表示第n排,从左到右第m个数,如(4,3)表示实数9,则(7,2)表示的实数是.24.下列说法中,正确的是.①在平面内,两条互相垂直的数轴,组成了平面直角坐标系;②如果点A到x轴和y轴的距离分别为3、4,那么点A(4,3);③如果点A(a,b)位于第四象限,那么ab<0;④如果点A的坐标为(a,b)那么点A到坐标原点的距离为;⑤如果点A(a+3,2a+4)在y轴上,那么点P(2a+4,a+3)的坐标是(0,﹣2).三.解答题(共7小题)25.在平面直角坐标系中,有点A(a,1)、点B(2,b).(1)当A、B两点关于直线y=﹣1对称时,求△AOB的面积;(2)当线段AB∥x轴,且AB=4时,求a﹣b的值.26.已知点P(2a﹣12,1﹣a)位于第三象限,点Q(x,y)位于第二象限且是由点P向上平移一定单位长度得到的.(1)若点P的纵坐标为﹣3,试求出a的值;(2)在(1)题的条件下,试求出符合条件的一个点Q的坐标;(3)若点P的横、纵坐标都是整数,试求出a的值以及线段PQ长度的取值范围.27.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“近似距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1(x1,y1)与点P2(x2,y2)的“近似距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则P1(x1,y1)与点P2(x2,y2)的“近似距离”为|y1﹣y2|;(1)已知点P(﹣3,4)、点Q(1,1),则点P与点Q的“近似距离”为.(2)已知点A(0,﹣2),B为x轴上的动点,①若点A与B的“近似距离为3”,写出满足条件的B点的坐标.②直接写出点A与点B的“近似距离”的最小值.(3)已知C(2m+2,m),D(1,0),写出点C与点D的“近似距离”的最小值及相应的C点坐标.28.已知在平面直角坐标系中,A(﹣a,a),a≠0,B(b,c),a、b、c满足a﹣2b﹣3c=﹣1,2a﹣3b﹣5c=﹣4.(1)若c=0,求A、B两点的坐标;(2)在(1)的条件下,C(m,0)为一动点,且m>0,连接AB、AC,平移线段AB得到线段ED,使B点的对应点D落在线段AC上,则∠EDC、∠ABC、∠ACB之间有何数量关系?证明你的结论;(3)若将线段AB平移到OF处,点F在第二象限,坐标原点O与点A对应,F与B对应,求F点的坐标.29.附加题:已知△ABC的三边长均为整数,△ABC的周长为奇数.(1)若AC=8,BC=2,求AB的长;(2)若AC﹣BC=5,求AB的最小值;(3)若A(﹣2,1),B(6,1),在第一、三象限角平分线上是否存在点P,使△ABP的面积为16?若存在,求出P点坐标;若不存在,说明理由.30.已知如图,在平面直角坐标系中有四点,坐标分别为A(﹣4,3)、B(4,3)、M(0,1)、Q(1,2),动点P在线段AB上,从点A出发向点B以每秒1个单位运动.连接PM、PQ并延长分别交x轴于C、D两点(如图).(1)在点P移动的过程中,若点M、C、D、Q能围成四边形,则t的取值范围是,并写出当t =2时,点C的坐标.(2)在点P移动的过程中,△PMQ可能是轴对称图形吗?若能,请求出符合条件的点P的坐标;若不能,请说明理由.(3)在点P移动的过程中,求四边形MCDQ的面积S的范围.31.在平面直角坐标系中,以任意两点P(x1,y1)、Q(x2,y2)为端点的线段的中点坐标为.(1)如图(1),C为线段AB中点,A点坐标为(0,4),B点坐标为(5,4),则点C的坐标为(2)如图(2),F为线段DE中点,D点坐标为(﹣4,﹣3),E点坐标为(1,﹣3).则点F的坐标为应用:(1)如图(3),矩形ONDF的对角线相交于点M,ON,OF分别在x轴和y轴上,O为坐标原点,点D的坐标为(4,3),则点M的坐标为;(2)在直角坐标系中.有A(﹣1,2),B(3,1),C(1,4)三点,另有一点D与A,B,C构成平行四边形的顶点,求D的坐标.参考答案一.选择题1-5.DABBC CCCB二.填空题12.二.13.(,).14.(6048,2).15.﹣()2015.16.45.17.A5(32,3),B5(64,0).18.或秒或秒.19.或﹣4.20.(1,1).21.4.22.(﹣1,2),(1,2).23.23.24.③④.三.解答题25.解:(1)由题意,得a=2,b=﹣3,则A(2,1),B(2,﹣3).设AB与x轴相交于点D,则OD=2,AB=4.∴S△AOB=AB×OD=×4×2=4.(2)∵AB∥x轴,∴A、B的纵坐标相同,∴b=1.∴B(2,1)∵AB=4,∴|a﹣2|=4.解得a=﹣2或a=6.当a=﹣2,b=1时,a﹣b=﹣3.当a=6,b=1时,a﹣b=5.26.解:(1)1﹣a=﹣3,a=4.(2)由a=4得:2a﹣12=2×4﹣12=﹣4,又点Q(x,y)位于第二象限,所以y>0;取y=1,得点Q的坐标为(﹣4,1).(3)因为点P(2a﹣12,1﹣a)位于第三象限,所以,解得:1<a<6.因为点P的横、纵坐标都是整数,所以a=2或3或4或5;当a=2时,1﹣a=﹣1,所以PQ>1;当a=3时,1﹣a=﹣2,所以PQ>2;当a=4时,1﹣a=﹣3,所以PQ>3;当a=5时,1﹣a=﹣4,所以PQ>4.27.解:(1)∵点P(﹣3,4)、点Q(1,1),则点P与点Q的“近似距离”为4.故答案为:4;(2)①∵B为x轴上的一个动点,∴设点B的坐标为(x,0).∵A、B两点的“近似距离为3”,A(0,﹣2),∵|0﹣x|=3,|﹣2﹣0|=2,解得x=3或x=﹣3,∴点B的坐标是(3,0)或(﹣3,0),故答案为:(3,0)或(﹣3,0);②∵设点B的坐标为(x,0),且A(0,﹣2),∴|﹣2﹣0|=2,|0﹣x|=x,∴若|﹣2﹣0|<|0﹣x|,则点A、B两点的“近似距离”为|x|>2,若|﹣2﹣0|≥|0﹣x|,则点A、B两点的“近似距离”为|﹣2﹣0|=2;∴A、B两点的“近似距离”的最小值为2,故答案为:2;(3)∵C(2m+2,m),D(1,0),∴|2m+2﹣1|=|m﹣0|=|2m+1|,当m>0时,m=2m+1,解得:m=﹣1(舍去);当﹣<m<0时,﹣m=2m+1,解得:m=﹣;∴点C与D的“近似距离”的最小值为|m|=;相应的C点坐标为(,﹣);答:点C与D的“近似距离”的最小值及相应的C点坐标为:,(,﹣).28.解:(1)当c=0时,a、b满足:a﹣2b=﹣1,2a﹣3b=﹣4,解得a=﹣5,b=﹣2,∴A点的坐标为(5,﹣5),B点的坐标为(﹣2,0);(2)∠EDC=∠ABC+∠ACB.证明:如图,延长BA至G,由平移得,AB∥DE,∴∠EDC=∠GAC,又∵∠GAC是△ABC的外角,∴∠GAC=∠ABC+∠ACB,∴∠EDC=∠ABC+∠ACB;(3)如图,∵坐标原点O与点A对应,且A(5,﹣5),∴线段AB向上平移5个单位,再向左平移5个单位,可平移到OF处,又∵F与B对应,且B(﹣2,0),∴F点的横坐标为:﹣2﹣5=﹣7,纵坐标为:0+5=5,∴F点的坐标为(﹣7,5).29.解:(1)由三角形的三边关系知,AC﹣BC<AB<AC+BC,即:8﹣2<AB<8+2,∴6<AB<10,又∵△ABC的周长为奇数,而AC、BC为偶数,∴AB为奇数,故AB=7或9;(2)∵AC﹣BC=5,∴AC、BC中一个奇数、一个偶数,又∵△ABC的周长为奇数,故AB为偶数,AB>AC﹣BC=5,得AB的最小值为6;(3)存在.由A(﹣2,1),B(6,1)两点坐标可知:AB∥x轴,且AB=6﹣(﹣2)=8,而△ABP的面积为16,由三角形计算面积公式可知,点P到AB的距离为4,即P点纵坐标为5或﹣3,又P点在第一、三象限角平分线上,故P点坐标为(5,5)或(﹣3,﹣3).30.解:(1)0≤t≤8,且t≠6;点C的坐标为(1,0);(2)若△PMQ可能是轴对称图形,则△PMQ必为等腰三角形.①当PQ=QM时,设P点坐标为P(a,3),则有:PQ==,易知MQ=,∴=,解得a=2,a=0,当a=2时,AP=4+2=6,即t=6不合题意,舍去.∴P点坐标为(0,3);②当PM=PQ时,设P点坐标为P(b,3),则有:PQ=,PM=,∴=,解得b=﹣1,∴P点坐标为(﹣1,3).综上所述:点P的坐标为(﹣1、3)、(0、3);(3)当0≤t<6时,S=﹣t+,Smax=.当6<t≤8,S=﹣t+3,Smax=3;∴四边形MCDQ的面积S的范围是0<S≤.31.解:(1)因为C为线段AB中点,A点坐标为(0,4),B点坐标为(5,4),则点C的坐标为(,),化简得C(2.5,4)故答案为:(2.5,4)(2)因为F为线段DE中点,D点坐标为(﹣4,﹣3),E点坐标为(1,﹣3).则点F的坐标为(,),化简得F(﹣1.5,﹣3);故答案为:(﹣1.5,﹣3).应用(1)因为矩形ONDF的对角线互相平分且相交于点M,所以点M是OD的中点,O为坐标原点,点D的坐标为(4,3),则点M的坐标为(2,1.5);故答案为:(2,1.5).(2)因为A(﹣1,2),B(3,1),C(1,4)三点,另有一点D与A,B,C构成平行四边形的顶点,设D的坐标为(x,y)如图:若AC∥BD,AB∥CD,连接对角线AD和BC,交点为E,由平行四边形对角线互相平分知,E是BC 的中点,所以M(,),M(2,2.5)又因为M是AD的中点,所以:,,解得x=5,y=3,所以点D(5,3)同理可求当AD∥BC,AB∥CD时,点D(﹣3,5)当AC∥BD,AD∥BC时,点D(1,﹣1)综上所述:点D的坐标为:(5,3),(﹣3,5),(1,﹣1).。

最新2018-2019学年苏教版数学八年级上册期末模拟检测卷及答案解析-精品试卷

最新2018-2019学年苏教版数学八年级上册期末模拟检测卷及答案解析-精品试卷

苏教版八年级第一学期期末模拟考试数学试题一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列各数中,无理数是()A.πB.C.D.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D.了解全国九年级学生的身高现状3.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)4.下列图形中,对称轴的条数最多的图形是()A.线段B.角C.等腰三角形D.正方形5.在平面直角坐标系中,一次函数y=2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是6二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.4的平方根是.8.平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B 的坐标是(,).9.任意掷一枚质地均匀的骰子,比较下列事件发生的可能性大小,将它们的序号按从小到大排列为.①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数.10.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为人.11.比较大小:1(填“>”、“<”或“=”).12.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是.13.如图,在平面直角坐标系中,函数y=﹣2x与y=kx+b的图象交于点P(m,2),则不等式kx+b>﹣2x的解集为.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为.15.如图,D为等边△ABC的边AB上一点,且DE⊥BC,EF⊥AC,FD⊥AB,垂足分别为点E、F、D.若AB=6,则BE= .16.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是(填序号).三、解答题(本大题共10小题,共68分)17.(4分)计算:.18.(6分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是,并补全频数分布直方图;(2)C组学生的频率为,在扇形统计图中D组的圆心角是度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?19.(6分)如图:点C、D在AB上,且AC=BD,AE=FB,AE∥BF.求证:DE∥CF.20.(6分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的角平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.21.(7分)已知平移一次函数y=2x﹣4的图象过点(﹣2,1)后的图象为l1.(1)求图象l1对应的函数表达式,并画出图象l1;(2)求一次函数y=﹣2x+4的图象l2与l1及x轴所围成的三角形的面积.22.(8分)如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a= km,AB两地的距离为km;(2)求线段PM、MN所表示的y与x之间的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?23.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.24.(7分)如图,△ABC中,AB=AC,D、E分别是AB及AC延长线上的点,且BD=CE,连接DE交BC于点O.过点D作DH⊥BC,过E作EK⊥BC,垂足分别为H、K.(1)求证:DH=EK;(2)求证:DO=EO.25.(7分)某工厂每天生产A、B两种款式的布制环保购物袋共4500个.已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设该厂每天生产A种购物袋x个,购物袋全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本10000元,那么该厂每天生产的购物袋全部售出后最多能获利多少元?26.(10分)(1)如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB.求证:CA+AD=BC.小明为解决上面的问题作了如下思考:作△ADC关于直线CD的对称图形△A′DC,∵CD平分∠ACB,∴A′点落在CB上,且CA′=CA,A′D=AD.因此,要证的问题转化为只要证A′D=A′B.请根据小明的思考写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长.参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列各数中,无理数是()A.πB.C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数就是无限不循环小数,π是无理数,故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D.了解全国九年级学生的身高现状【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解一批圆珠笔的寿命,调查具有破坏性,适合抽样调查,故A错误;B、检查一枚用于发射卫星的运载火箭的各零部件是精确度要求高的调查,适合普查,故B正确;C、考察人们保护海洋的意识,调查范围广适合抽样调查,故C错误;D、了解全国九年级学生的身高现状,调查范围广适合抽样调查,故D错误;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)【分析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解.【解答】解:A、(1,2)在第一象限,故本选项错误;B、(﹣1,2)在第二象限,故本选项错误;C、(1,﹣2)在第四象限,故本选项正确;D、(﹣1,﹣2)在第三象限,故本选项错误.故选:C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.下列图形中,对称轴的条数最多的图形是()A.线段B.角C.等腰三角形D.正方形【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、线段有2条对称轴,故此选项错误;B、角有1条对称轴,故此选项错误;C、等腰三角形有1条或3条对称轴,故此选项错误;D、正方形有4条对称轴,故此选项正确;故选:D.【点评】此题主要考查了轴对称图形,关键是正确确定对称轴.5.在平面直角坐标系中,一次函数y=2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的性质可知一次函数y=2x﹣3的图象经过哪几个象限,不经过哪个象限,从而可以解答本题.【解答】解:∵y=2x﹣3,∴该函数的图象经过第一、三、四象限,不经过第二象限,故选:B.【点评】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是6【分析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【解答】解:A、从一装有2个白球和1个红球的袋子中任取一球,取到白球的概率是≈0.67>0.16,故此选项错误;B、从一副扑克牌中任意抽取一张,这张牌是“红色的概率=≈0.24>0.16,故此选项错误;C、掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率==0.5>0.16,故此选项错误;D、掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率=≈0.16故此选项正确,故选:D.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.4的平方根是±2 .【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.平面直角坐标系中,将点A(1,﹣2)向上平移1个单位长度后与点B重合,则点B 的坐标是( 1 ,﹣1 ).【分析】让横坐标不变,纵坐标加1可得到所求点的坐标.【解答】解:∵﹣2+1=﹣1,∴点B的坐标是(1,﹣1),故答案为:1,﹣1.【点评】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.9.任意掷一枚质地均匀的骰子,比较下列事件发生的可能性大小,将它们的序号按从小到大排列为①③②.①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数.【分析】根据概率公式分别求出每种情况发生的概率,然后比较出它们的大小即可.【解答】解:任意掷一枚质地均匀的骰子,共有6种等可能结果,其中①面朝上的点数小于2的有1种结果,其概率为;②面朝上的点数大于2的有4种结果,其概率为=;③面朝上的点数是奇数的有3种结果,其概率为=;所以按事件发生的可能性大小,按从小到大排列为①③②,故答案为:①③②.【点评】此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为120 人.【分析】用学校总人数乘以教师所占的百分比,计算即可得解.【解答】解:1500×(1﹣48%﹣44%)=1500×8%=120.故答案为:120.【点评】本题考查的是扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.11.比较大小:>1(填“>”、“<”或“=”).【分析】直接估计出的取值范围,进而得出答案.【解答】解:∵2<<3,∴1<﹣1<2,故>1.故答案为:>.【点评】此题主要考查了实数大小比较,正确得出的取值范围是解题关键.12.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是a>b .【分析】根据一次函数的一次项系数结合一次函数的性质,即可得出该一次函数的单调性,由此即可得出结论.【解答】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为:a>b.【点评】本题考查了一次函数的性质,解题的关键是找出该一次函数单调递减.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的解析式结合一次函数的性质,找出该函数的单调性是关键.13.如图,在平面直角坐标系中,函数y=﹣2x与y=kx+b的图象交于点P(m,2),则不等式kx+b>﹣2x的解集为x>﹣1 .【分析】先利用正比例函数解析式确定P点坐标,然后观察函数图象得到,当x>﹣1时,直线y=﹣2x都在直线y=kx+b的下方,于是可得到不等式kx+b>﹣2x的解集.【解答】解:当y=2时,﹣2x=2,x=﹣1,由图象得:不等式kx+b>﹣2x的解集为:x>﹣1,故答案为:x>﹣1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)﹣2x的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在﹣2x上(或下)方部分所有的点的横坐标所构成的集合.14.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为.【分析】根据线段的垂直平分线的性质得到DB=DC=2,根据角平分线的性质得到DE=AD=1,根据勾股定理计算即可.【解答】解:∵DE是BC的垂直平分线,∴DB=DC=2,∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,∴DE=AD=1,∴BE==,故答案为:.【点评】本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15.如图,D为等边△ABC的边AB上一点,且DE⊥BC,EF⊥AC,FD⊥AB,垂足分别为点E、F、D.若AB=6,则BE= 2 .【分析】求出∠BDE=∠FEC=∠AFD=30°,求出∠DEF=∠DFE=∠EDF=60°,推出DF=DE=EF,即可得出等边三角形DEF,根据全等三角形性质推出三个三角形全等即可.求出AB=3BE,即可解答.【解答】解:∵△ABC是等边三角形,∴AB=AC=BC,∠B=∠C=∠A=60°,∵DE⊥BC、EF⊥AC、FD⊥AB,∴∠DEB=∠EFC=∠FDA=90°,∴∠BDE=∠FEC=∠AFD=30°,∴∠DEF=∠DFE=∠EDF=180°﹣90°﹣30°=60°,∴DF=DE=EF,∴△DEF是等边三角形,在△ADF、△BED、△CFE中∴△ADF≌△BED≌△CFE,∴AD=BE=CF,∵∠DEB=90°,∠BDE=30°,∴BD=2BE,∴AB=3BE,∴BE=AB=2.故答案为:2.【点评】本题考查了等边三角形性质,含30度角的直角三角形性质,解决本题的关键是熟记含30度角的直角三角形性质.16.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是①②③(填序号).【分析】根据甲步行720米,需要9分钟,进而得出甲的运动速度,利用图形得出乙的运动时间以及运动距离,进而分别判断得出答案.【解答】解:由图象得出甲步行720米,需要9分钟,所以甲的运动速度为:720÷9=80(m/分),当第15分钟时,乙运动15﹣9=6(分钟),运动距离为:15×80=1200(m),∴乙的运动速度为:1200÷6=200(m/分),∴200÷80=2.5,(故②正确);当第19分钟以后两人之间距离越来越近,说明乙已经到达终点,则乙先到达青少年宫,(故①正确);此时乙运动19﹣9=10(分钟),运动总距离为:10×200=2000(m),∴甲运动时间为:2000÷80=25(分钟),故a的值为25,(故④错误);∵甲19分钟运动距离为:19×80=1520(m),∴b=2000﹣1520=480,(故③正确).故正确的有:①②③.故答案为:①②③.【点评】此题主要考查了一次函数的应用,利用数形结合得出乙的运动速度是解题关键.三、解答题(本大题共10小题,共68分)17.(4分)计算:.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:=﹣2﹣2+1=﹣3【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(6分)某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是50 ,并补全频数分布直方图;(2)C组学生的频率为0.32 ,在扇形统计图中D组的圆心角是72 度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?【分析】(1)根据A组的百分比和频数得出样本容量,并计算出B组的频数补全频数分布直方图即可;(2)由图表得出C组学生的频率,并计算出D组的圆心角即可;(3)根据样本估计总体即可.【解答】解:(1)这次抽样调查的样本容量是4÷8%=50,B组的频数=50﹣4﹣16﹣10﹣8=12,补全频数分布直方图,如图:(2)C组学生的频率是0.32;D组的圆心角=;(3)样本中体重超过60kg的学生是10+8=18人,该校初三年级体重超过60kg的学生=人,故答案为:(1)50;(2)0.32;72.【点评】此题考查频数分布直方图,关键是根据频数分布直方图得出信息进行计算.19.(6分)如图:点C、D在AB上,且AC=BD,AE=FB,AE∥BF.求证:DE∥CF.【分析】欲证明DE∥CF,只要证明∠ADE=∠BCF,只要证明△AED≌△BFC即可;【解答】证明:∵AE∥BF,∴∠A=∠B,∵AC=BD,∴AC+BD=BD+CD,即:AD=BC,在△AED和△BFC中,∴△AED≌△BFC(SAS),∴∠ADE=∠BCF,∴DE∥CF.【点评】本题考查全等三角形的判定和性质、平行线的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.20.(6分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的角平分线交BC于点D(要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=10cm,△ADB的面积为15cm2,求CD的长.【分析】(1)根据角平分线的尺规作图即可得;(2)作DE⊥AB,由△ADB的面积为15cm2求得DE=3cm,再根据角平分线的性质可得.【解答】解:(1)如图所示,AD即为所求;(2)过D作DE⊥AB,E为垂足,由△ADB的面积为15cm2,得AB•ED=15,解得:ED=3cm,∵AD平分∠BAC,DE⊥AB,∠ACB=90°∴CD=ED=3cm.【点评】本题主要考查作图﹣基本作图,解题的关键是熟练掌握角平分线的尺规作图及角平分线的性质.21.(7分)已知平移一次函数y=2x﹣4的图象过点(﹣2,1)后的图象为l1.(1)求图象l1对应的函数表达式,并画出图象l1;(2)求一次函数y=﹣2x+4的图象l2与l1及x轴所围成的三角形的面积.【分析】(1)根据平行一次函数的定义可知:k=2,再利用待定系数法求出b的值即可;(2)过点A作AD⊥x轴于D点,利用三角形面积公式解答即可.【解答】解:(1)由已知可设l1对应的函数表达式为y=2x+b,把x=﹣2,y=1代入表达式解得:b=5,∴l1对应的函数表达式为y=2x+5,画图如下:,(2)设l1与l2的交点为A,过点A作AD⊥x轴于D点,由题意得,解得即A(,),则AD=,设l1、l2分别交x轴的于点B、C,由y=﹣2x+4=0,解x=2,即C(2,0)由y=2x+5=0解得,即B(,0)∴BC=,∴即l2与l1及x轴所围成的三角形的面积为.【点评】本题考查了函数的平移和两条直线的平行问题;同时还要熟练掌握若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.22.(8分)如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a= 240 km,AB两地的距离为390 km;(2)求线段PM、MN所表示的y与x之间的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?【分析】(1)根据图象中的数据即可得到A,B两地的距离;(2)根据函数图象中的数据即可得到两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)根据题意可以分相遇前和相遇后两种情况进行解答.【解答】解:(1)由题意和图象可得,a=千米,A,B两地相距:150+240=390千米,故答案为:240,390(2)由图象可得,A与C之间的距离为150km汽车的速度,PM所表示的函数关系式为:y1=150﹣60xMN所表示的函数关系式为:y2=60x﹣150(3)由y1=60得 150﹣60x=60,解得:x=1.5由y2=60得 60x﹣150=60,解得:x=3.5由图象可知当行驶时间满足:1.5h≤x≤3.5h,小汽车离车站C的路程不超过60千米【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和函数的思想解答.23.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.【分析】欲证明AO垂直平分BC,只要证明AB=AC,BO=CO即可;【解答】证明:∵BD⊥AC,CE⊥AB,∴∠BEC=∠BDC=90°,在Rt△BEC和Rt△CDB中,∴Rt△BEC≌Rt△CDB (HL),∴∠ABC=∠ACB,∠ECB=∠DBC,∴AB=AC,BO=OC,∴点A、O在BC的垂直平分线上,∴AO垂直平分BC.【点评】本题考查全等三角形的判定和性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.24.(7分)如图,△ABC中,AB=AC,D、E分别是AB及AC延长线上的点,且BD=CE,连接DE交BC于点O.过点D作DH⊥BC,过E作EK⊥BC,垂足分别为H、K.(1)求证:DH=EK;(2)求证:DO=EO.【分析】(1)只要证明△BDH≌△CEK,即可解决问题;(2)只要证明△DHO≌△EKO即可解决问题;【解答】解:(1)∵DH⊥BC,EK⊥BC,∴∠DHB=∠K=90°,∵AB=AC,∴∠B=∠ACB,又∵∠ACB=∠ECK,∴∠B=∠ECK,在△BDH和△CEK中∵∠ACB=∠ECK,∠B=∠ECK,BD=CE∴△BDH≌△CEK(AAS).∴DH=EK.(2)∵DH⊥AC,EK⊥BC,∴∠DHO=∠K=90°,由(1)得EK=DH,在△DHO和△EKO中,∵∠DHO=∠K,∠DOH=∠EOK,DH=EK∴△DHO≌△EKO(AAS),∴DO=EO.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.(7分)某工厂每天生产A、B两种款式的布制环保购物袋共4500个.已知A种购物袋成本2元/个,售价2.3元/个;B种购物袋成本3元/个,售价3.5元/个.设该厂每天生产A种购物袋x个,购物袋全部售出后共可获利y元.(1)求出y与x的函数表达式;(2)如果该厂每天最多投入成本10000元,那么该厂每天生产的购物袋全部售出后最多能获利多少元?【分析】(1)根据总成本y=A种购物袋x个的成本+B种购物袋x个的成本即可得到答案.(2)列出不等式,根据函数的增减性解决.【解答】解:(1)根据题意得:y=(2.3﹣2)x+(3.5﹣3)(4500﹣x)=﹣0.2x+2250即y与x的函数表达式为:y=﹣0.2x+2550,(2)根据题意得:﹣x+13500≤10000,解得:x≥3500元,∵k=﹣0.2<0,∴y随x增大而减小,∴当x=3500时,y取得最大值,最大值y=﹣0.2×3500+2250=1550,答:该厂每天最多获利1550元.【点评】本题考查了销售量、成本、售价、利润之间的关系,正确理解这些量之间的关系是解决问题的关键,学会用函数的增减性解决实际问题.26.(10分)(1)如图1,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB.求证:CA+AD=BC.小明为解决上面的问题作了如下思考:作△ADC关于直线CD的对称图形△A′DC,∵CD平分∠ACB,∴A′点落在CB上,且CA′=CA,A′D=AD.因此,要证的问题转化为只要证A′D=A′B.请根据小明的思考写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长.【分析】(1)作△ADC关于CD的对称图形△A′DC,再证明AD=BA′即可;(2)如图,作△ADC关于AC的对称图形△A′DC.过点C作CE⊥AB于点E,则D′E=BE.设D′E=BE=x.在Rt△CEB中,CE2=CB2﹣BE2=102﹣x2,在Rt△CEA中,CE2=AC2﹣AE2=172﹣(9+x)2.由此构建方程即可解决问题;【解答】(1)证明:作△ADC关于CD的对称图形△A′DC,∴A′D=AD,C A′=CA,∠CA′D=∠A=60°,∵CD平分∠ACB,∴A′点落在CB上∵∠ACB=90°,∴∠B=90°﹣∠A=30°,∵CD平分∠ACB,∴∠ACD=45°在△ACD中,∠ADC=180°﹣∠A﹣∠A CD=75°∴∠A′DC=∠ADC=75°,∴∠A′DB=180°﹣∠ADC﹣∠A′DC=30°,∴∠A′DB=∠B,∴A′D=A′B,∴CA+AD=CA′+A′D=C A′+A′B=CB.(2)如图,作△ADC关于AC的对称图形△A′DC.∴D′A=DA=9,D′C=DC=10,∵AC平分∠BAD,∴D′点落在AB上,∵BC=10,∴D′C=BC,过点C作CE⊥AB于点E,则D′E=BE.设D′E=BE=x.在Rt△CEB中,CE2=CB2﹣BE2=102﹣x2,在Rt△CEA中,CE2=AC2﹣AE2=172﹣(9+x)2.∴102﹣x2=172﹣(9+x)2,解得:x=6,∴AB=AD′+D′E+EB=9+6+6=21.【点评】本题考查全等三角形的判定和性质、直角三角形30度角性质、轴对称、勾股定理、一元二次方程等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用方程的思想思考问题,属于中考常考题型.。

2018-2019学年江苏省苏州市八年级(上)期末数学试卷(解析版)

2018-2019学年江苏省苏州市八年级(上)期末数学试卷(解析版)

2018-2019学年江苏省苏州市八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题2分,共20分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)下列四个图标中,轴对称图案为()A.B.C.D.2.(2分)下面四个实数中,是无理数的为()A.0B.C.﹣2D.3.(2分)最“接近”(﹣1)的整数是()A.0B.1C.2D.34.(2分)如图,在△ABC中,AD=BD=AC,∠B=25°,则∠DAC为()A.70°B.75°C.80°D.85°5.(2分)在同一平面直角坐标系中,函数y=﹣x与y=3x﹣4的图象交于点P,则点P 的坐标为()A.(﹣1,1)B.(1,﹣1)C.(2,﹣2)D.(﹣2,2)6.(2分)已知三组数据:①2,3,4;②3,4,5;③,2,.以每组数据分别作为三角形的三边长,其中能构成直角三角形的为()A.①B.①②C.①③D.②③7.(2分)等腰三角形的底边长为24,底边上的高为5,它的腰长为()A.10B.11C.12D.138.(2分)已知m为任意实数,则点A(m,m2+1)不在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限9.(2分)如图,函数y=﹣x+3的图象分别与x轴、y轴交于点A、B,∠BAO的平分线AC与y轴交于点C,则点C的纵坐标为()A.B.C.2D.10.(2分)如图,已知P(3,2),B(﹣2,0),点Q从P点出发,先移动到y轴上的点M处,再沿垂直于y轴的方向向左移动1个单位至点N处,最后移动到点B处停止,当点Q移动的路径最短时(即三条线段PM、MN、NB长度之和最小),点M的坐标为()A.(0,)B.(0,)C.(0,)D.(0,)二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把答案直接填写在答题卡相应位置上,)11.(2分)π﹣30.14.(填“>”、“<”或“=”)12.(2分)27的立方根为.13.(2分)已知一次函数y=kx+1的图象经过点P(﹣1,0),则k=.14.(2分)如图,已知CB⊥AD,AE⊥CD,垂足分别为B、E,AE、BC相交于点F,AB =BC.若AB=8,CF=2,则CD=.15.(2分)如图,直线l1:y=kx+b与直线l2:y=mx+n相交于点P(1,2),则不等式kx+b>mx+n的解集为.16.(2分)如图,△ABC为等腰直角三角形,∠ABC=90°,△ADB为等边三角形,则∠ADC=°.17.(2分)如图,已知E为长方形纸片ABCD的边CD上一点,将纸片沿AE对折,点D 的对应点D′恰好在线段BE上.若AD=3,DE=1,则AB=.18.(2分)如图,已知点A(a,0)在x轴正半轴上,点B(0,b)在y轴的正半轴上,△ABC为等腰直角三角形,D为斜边BC上的中点,若OD=,则a+b=.三、解答题(本大题共10小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明证明过程或演算步骤.)19.(5分)计算:(﹣)2﹣+(﹣1)0.20.(5分)某人平均一天饮水1980毫升.(1)求此人30天一共饮水多少毫升?(2)用四舍五入法将(1)中计算得到的数据精确到10000,并用科学记数法表示.21.(5分)如图,已知AB⊥BC,AE⊥BE,CD⊥BE,垂足分别为B、E、D,AB=BC.求证:BE=CD.22.(5分)如图,在△ABC中,∠C=90°,DE为AB的垂直平分线,DE交AC于点D,连接BD.若∠ABD=2∠CBD,求∠A的度数.23.(6分)如图,在正方形网格纸中,每个小正方形的边长为1,△ABC三个顶点都在格点上.(1)写出点A、B、C的坐标;(2)直线l经过点A且与y轴平行,画出△ABC关于直线l成轴对称的△A1B1C1,连接BC1,求线段BC1的长.24.(6分)如图,在△ABD和△ABC中,∠ADB=∠ACB=90°,点E为AB中点,AB =8,CD=4,点E、F关于CD成轴对称,连接FD、FC.(1)求证:△FDC为等边三角形;(2)连接EF,求EF的长.25.(8分)如图,已知直线l1:y=kx+2与x轴的负半轴交于点A,与y轴交于点B,OA =1.直线l2:y=﹣2x+4与x轴交于点D,与l1交于点C.(1)求直线l1的函数表达式;(2)求四边形OBCD的面积.26.(8分)如图,在四边形ABCD中,已知AB∥CD,AD⊥AB,AD=2,AB+CD=4,点E为BC的中点.(1)求四边形ABCD的面积;(2)若AE⊥BC,求CD的长.27.(8分)如图,在边长为12cm的正方形ABCD中,M是AD边的中点,点P从点A出发,在正方形边上沿A→B→C→D的方向以大于1cm/s的速度匀速移动,点Q从点D出发,在CD边上沿D→C方向以1cm/s的速度匀速移动,P、Q两点同时出发,当点P、Q相遇时即停止移动.设点P移动的时间为t(s),正方形ABCD与∠PMQ的内部重叠部分面积为y(cm2).已知点P移动到点B处,y的值为96(即此时正方形ABCD与∠PMQ的内部重叠部分面积为96cm2).(1)求点P的速度;(2)求y与t的函数关系式,并直接写出t的取值范围.28.(8分)如图①,A、B两个圆柱形容器放置在同一水平桌面上,开始时容器A中盛满水,容器B中盛有高度为1dm的水,容器B下方装有一只水龙头,容器A向容器B匀速注水.设时间为t(s),容器A、B中的水位高度h A(dm)、h B(dm)与时间t(s)之间的部分函数图象如图②所示.根据图中数据解答下列问题:(1)容器A向容器B注水的速度为dm3/s(结果保留π),容器B的底面直径m =dm;(2)当容器B注满水后,容器A停止向容器B注水,同时开启容器B的水龙头进行放水,放水速度为dm3/s.请在图②中画出容器B中水位高度h B与时间t(t≥4)的函数图象,说明理由;(3)当容器B注满水后,容器A继续向容器B注水,同时开启容器B的水龙头进行放水,放水速度为2πdm3/s,直至容器A、B水位高度相同时,立即停止放水和注水,求容器A向容器B全程注水时间t.(提示:圆柱体积=圆柱的底面积×圆柱的高)2018-2019学年江苏省苏州市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)下列四个图标中,轴对称图案为()A.B.C.D.【分析】根据轴对称图形的概念解答.【解答】解:A、是轴对称图形,符合题意;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.【点评】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(2分)下面四个实数中,是无理数的为()A.0B.C.﹣2D.【分析】根据无理数的定义:无限不循环小数是无理数即可求解.【解答】解:A、0是有理数,故选项错误;B、是无理数,故选项正确;C、﹣2是有理数,故选项错误;D、是有理数,故选项错误.故选:B.【点评】此题主要考查了无理数的定义.初中常见的无理数有三类:①π类;②开方开不尽的数,如;③有规律但无限不循环的数,如0.8080080008…(每两个8之间依次多1个0).3.(2分)最“接近”(﹣1)的整数是()A.0B.1C.2D.3【分析】先估计的大小,进而解答即可.【解答】解:∵,∴,∴最“接近”(﹣1)的整数是0,故选:A.【点评】此题考查无理数的大小估计,关键是根据无理数对进行估计解答.4.(2分)如图,在△ABC中,AD=BD=AC,∠B=25°,则∠DAC为()A.70°B.75°C.80°D.85°【分析】先根据等腰三角形的性质及三角形外角与内角的关系求出∠ADC的度数,再根据等腰三角形的性质及三角形内角和定理求出∠DAC的度数即可.【解答】解:∵△ABD中,AD=BD,∠B=25°,∴∠BAD=25°,∴∠ADC=25°×2=50°,∵AD=AC,∴∠C=50°,∴∠DAC=180°﹣50°×2=80°.故选:C.【点评】本题考查了等腰三角形的性质,三角形的内角和,熟练掌握等腰三角形的性质是解题的关键.5.(2分)在同一平面直角坐标系中,函数y=﹣x与y=3x﹣4的图象交于点P,则点P 的坐标为()A.(﹣1,1)B.(1,﹣1)C.(2,﹣2)D.(﹣2,2)【分析】联立两一次函数的解析式求出x、y的值即可得出P点坐标.【解答】解:解得,,∴点P的坐标为(1,﹣1),故选:B.【点评】本题考查的是两条直线相交或平行问题.正确的得出方程组的解是解答此题的关键.6.(2分)已知三组数据:①2,3,4;②3,4,5;③,2,.以每组数据分别作为三角形的三边长,其中能构成直角三角形的为()A.①B.①②C.①③D.②③【分析】如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.依据勾股定理的逆定理进行判断即可.【解答】解:①22+32≠42,故不能构成直角三角形;②42+32=52,故能构成直角三角形;③()2+22=()2,故能构成直角三角形;故选:D.【点评】本题主要考查了勾股定理的逆定理,要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.7.(2分)等腰三角形的底边长为24,底边上的高为5,它的腰长为()A.10B.11C.12D.13【分析】根据题意画出图形,根据等腰三角形的性质得出BD的长,由勾股定理求出AB 的长即可.【解答】解:如图所示,∵△ABC是等腰三角形,且AB=AC,AD是底边BC的高,∴BD=BC=×24=12,∴AB===13.故选:D.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.8.(2分)已知m为任意实数,则点A(m,m2+1)不在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限【分析】根据非负数的性质判断出点A的纵坐标是正数,再根据各象限内点的坐标特征解答.【解答】解:∵m2≥0,∴m2+1>0,∴点A(m,m2+1)不在第三、四象限.故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.(2分)如图,函数y=﹣x+3的图象分别与x轴、y轴交于点A、B,∠BAO的平分线AC与y轴交于点C,则点C的纵坐标为()A.B.C.2D.【分析】过点C作CF⊥BA,由题意可得AO=4,BO=3,根据“AAS”可证△ACF≌△ACO,可得CO=CF,AO=AF=4,再根据勾股定理可求OC的长,即可得点C的纵坐标.【解答】解:如图,过点C作CF⊥BA,∵y=﹣x+3的图象分别与x轴、y轴交于点A、B,∴点A坐标为(4,0),点B坐标为(0,3),∴AO=4,BO=3,在Rt△ABO中,AB==5,∵AC平分∠BAO,∴∠FAC=∠OAC,且AC=AC,∠CFA=∠COA=90°,∴△ACF≌△ACO(AAS)∴CO=CF,AO=AF=4∴BF=1,在Rt△BCF中,BC2=BF2+CF2,∴(3﹣CO)2=1+CO2,∴CO=故选:B.【点评】本题考查了一次函数图象上点的坐标特征,勾股定理,全等三角形的判定和性质等知识,灵活运用相关的性质定理进行推理是本题的关键.10.(2分)如图,已知P(3,2),B(﹣2,0),点Q从P点出发,先移动到y轴上的点M处,再沿垂直于y轴的方向向左移动1个单位至点N处,最后移动到点B处停止,当点Q移动的路径最短时(即三条线段PM、MN、NB长度之和最小),点M的坐标为()A.(0,)B.(0,)C.(0,)D.(0,)【分析】将BN沿NM方向平移MN长的距离得到AM,连接AB,可得四边形ABNM是平行四边形,根据当A,M,P在同一直线上时,AM+PM有最小值,最小值等于线段AP 的长,即BN+PM的最小值等于AP长,可得PM、MN、NB长度之和最小,再根据待定系数法求得AP的解析式,即可得到点M的坐标.【解答】解:如图,将BN沿NM方向平移MN长的距离得到AM,连接AB,则BN=AM,∴四边形ABNM是平行四边形,∴MN=AB=1,∴当A,M,P在同一直线上时,AM+PM有最小值,最小值等于线段AP的长,即BN+PM 的最小值等于AP长,此时PM、MN、NB长度之和最小,∵P(3,2),B(﹣2,0),AB=1,∴A(﹣1,0),设AP的解析式为y=kx+b,则,解得,∴y=x+,令x=0,则y=,即M(0,),故选:A.【点评】本题主要考查了最短路线问题以及待定系数法的运用,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把答案直接填写在答题卡相应位置上,)11.(2分)π﹣3>0.14.(填“>”、“<”或“=”)【分析】直接得出π的近似值,进而得出答案.【解答】解:∵π≈3.14159,∴π﹣3≈0.14159,∴π﹣3>0.14.故答案为:>.【点评】此题主要考查了实数比较大小,正确得出π的近似值是解题关键.12.(2分)27的立方根为3.【分析】找到立方等于27的数即可.【解答】解:∵33=27,∴27的立方根是3,故答案为:3.【点评】考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算.13.(2分)已知一次函数y=kx+1的图象经过点P(﹣1,0),则k=1.【分析】将点P坐标代入解析式可求k的值.【解答】解:∵一次函数y=kx+1的图象经过点P(﹣1,0),∴0=﹣k+1∴k=1故答案为:1【点评】本题考查了一次函数图象上点的坐标特征,熟练掌握函数图象上的点的坐标满足函数解析式.14.(2分)如图,已知CB⊥AD,AE⊥CD,垂足分别为B、E,AE、BC相交于点F,AB =BC.若AB=8,CF=2,则CD=10.【分析】先利用垂直得到∠ABF=∠CEF=90°,再证明∠A=∠C,然后根据“ASA”可以判断△ABF≌△CBD,从而得到BF=BD,求出BC,BD,利用勾股定理即可解决问题.【解答】证明:∵CB⊥AD,AE⊥DC,∴∠ABF=∠CEF=90°,∵∠AFB=∠CFE,∴∠A=∠C,在△ABF和△CBD中,∴△ABF≌△CBD(ASA),∴BF=BD,∵AB=BC=8,CF=2,∴BF=BD=8﹣2=6,在Rt△BCD中,CD===10,故答案为10.【点评】本题考查了全等三角形的判定与性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.15.(2分)如图,直线l1:y=kx+b与直线l2:y=mx+n相交于点P(1,2),则不等式kx+b>mx+n的解集为x>1.【分析】观察函数图象得到,当x>1时,一次函数y=kx+b的图象都在一次函数y=mx+n 的图象的上方,由此得到不等式kx+b>mx+n的解集.【解答】解:不等式kx+b>mx+n的解集为x>1.故答案为:x>1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.16.(2分)如图,△ABC为等腰直角三角形,∠ABC=90°,△ADB为等边三角形,则∠ADC=135°.【分析】利用等腰三角形的性质分别求出∠ADB,∠BDC即可解决问题.【解答】解:∵△ABD是等边三角形,∴∠ABD=∠ADB=60°,BA=BD,∵BA=BC,∠ABC=90°,∴BD=BC,∠CBD=30°,∴∠BDC=∠BCD=(180°﹣30°)=75°,∴∠ADC=∠ADB+∠BDC=135°,故答案为135.【点评】本题考查了等腰直角三角形的性质,等边三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(2分)如图,已知E为长方形纸片ABCD的边CD上一点,将纸片沿AE对折,点D 的对应点D′恰好在线段BE上.若AD=3,DE=1,则AB=5.【分析】由折叠的性质可得AD=AD'=3,DE=D'E=1,∠DEA=∠D'EA,根据矩形的性质可证∠EAB=∠AEB,即AB=BE,根据勾股定理可求AB的长.【解答】解:∵折叠,∴△ADE≌△AD'E,∴AD=AD'=3,DE=D'E=1,∠DEA=∠D'EA,∵四边形ABCD是矩形,∴AB∥CD,∴∠DEA=∠EAB,∴∠EAB=∠AEB,∴AB=BE,∴D'B=BE﹣D'E=AB﹣1,在Rt△ABD'中,AB2=D'A2+D'B2,∴AB2=9+(AB﹣1)2,∴AB=5故答案为:5【点评】本题考查了折叠的性质,矩形的性质,勾股定理,熟练运用折叠的性质是本题的关键.18.(2分)如图,已知点A(a,0)在x轴正半轴上,点B(0,b)在y轴的正半轴上,△ABC为等腰直角三角形,D为斜边BC上的中点,若OD=,则a+b=2.【分析】作CP⊥x轴于点P,由余角的性质得到∠OBA=∠PAC,根据全等三角形的性质得到AP=OB=b,PC=OA=a.于是得到C点坐标是(a+b,a),求得D(,),根据勾股定理即可得到结论.【解答】解:如图:作CP⊥x轴于点P,∴∠APC=90°,∵△ABC为等腰直角三角形,∴∠BAC=90°,∴∠ABO+∠BAO=∠BAO+∠CAP=90°,∴∠OBA=∠PAC,在△OBA和△PAC中,,∴△OBA≌△PAC(AAS),∴AP=OB=b,PC=OA=a.由线段的和差,得OP=OA+AP=a+b,即C点坐标是(a+b,a),∵B(0,b),C(a+b,a),∵D是BC的中点,得D(,),∵OD=,∴()2+()2=2,∴a+b=2,故答案为:2.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.三、解答题(本大题共10小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明证明过程或演算步骤.)19.(5分)计算:(﹣)2﹣+(﹣1)0.【分析】直接利用立方根以及零指数幂的性质分别化简得出答案.【解答】解:原式=3﹣2+1=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(5分)某人平均一天饮水1980毫升.(1)求此人30天一共饮水多少毫升?(2)用四舍五入法将(1)中计算得到的数据精确到10000,并用科学记数法表示.【分析】(1)用天数乘以日饮水量即可求得总饮水量;’(2)先用科学记数法表示,然后根据近似数的精确度求解.【解答】解:(1)∵平均一天饮水1980毫升,∴30天一共饮水30×1980=59400毫升;(2)59400≈6×104(精确到10000).【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.21.(5分)如图,已知AB⊥BC,AE⊥BE,CD⊥BE,垂足分别为B、E、D,AB=BC.求证:BE=CD.【分析】欲证明BE=CD,只要证明△ABE≌△BCD(AAS)即可解决问题;【解答】证明:∵AB⊥BC,AE⊥BE,CD⊥BE,∴∠AEC=∠CDB=∠ABC=90°,∴∠A+∠ABE=90°,∠ABE+∠CBD=90°,∴∠A=∠CBD,在△ABE和△BCD中,,∴△ABE≌△BCD(AAS),∴BE=CD.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.22.(5分)如图,在△ABC中,∠C=90°,DE为AB的垂直平分线,DE交AC于点D,连接BD.若∠ABD=2∠CBD,求∠A的度数.【分析】依据线段垂直平分线的性质,可得∠A=∠ABD=2∠CBD,设∠A=α,则∠ABD=α,∠CBD=α,依据三角形内角和定理,即可得到∠A的度数.【解答】解:∵DE为AB的垂直平分线,∴∠A=∠ABD,又∵∠ABD=2∠CBD,∴∠A=∠ABD=2∠CBD,设∠A=α,则∠ABD=α,∠CBD=α,又∵∠C=90°,∴∠A+∠ABC=90°,即α+α+α=90°,解得α=36°,∴∠A=36°.【点评】此题考查了线段垂直平分线的性质,等腰三角形性质,三角形内角和定理的应用,解题的关键是注意线段垂直平分线上任意一点,到线段两端点的距离相等.23.(6分)如图,在正方形网格纸中,每个小正方形的边长为1,△ABC三个顶点都在格点上.(1)写出点A、B、C的坐标;(2)直线l经过点A且与y轴平行,画出△ABC关于直线l成轴对称的△A1B1C1,连接BC1,求线段BC1的长.【分析】(1)依据△ABC三个顶点的位置,即可得到点A、B、C的坐标;(2)依据轴对称的性质,即可得到△ABC关于直线l成轴对称的△A1B1C1,依据勾股定理进行计算,即可得出线段BC1的长.【解答】解:(1)A(1,1),B(3,4),C(4,2);(2)如图所示,△A1B1C1即为所求;由勾股定理可得,BC1==.【点评】本题主要考查了勾股定理以及轴对称性质的运用,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.24.(6分)如图,在△ABD和△ABC中,∠ADB=∠ACB=90°,点E为AB中点,AB =8,CD=4,点E、F关于CD成轴对称,连接FD、FC.(1)求证:△FDC为等边三角形;(2)连接EF,求EF的长.【分析】(1)首先证明CD=DE=EC,再证明FD=FC=DC即可.(2)连接EF,设EF交CD于点O.分别求出OE,OF即可解决问题.【解答】(1)证明:连接DE,EC.∵∠ADB=∠ACB=90°,AE=EB,∴DE=EC=AB=4,∵CD=4,∴DE=EC=CD=4,∴△DEC是等边三角形,∵E,F关于CD对称,∴DF=DE,FC=CE,∴DF=FC=CD,∴△DFC是等边三角形,(2)解:连接EF,设EF交CD于点O.∵△DCE,△DFC都是等边三角形,边长为4,∴FD=FC=ED=EC,∴EF⊥CD,∴OE=×4=2,OF=×4=2,∴EF=4.【点评】本题考查轴对称的性质,等边三角形的判定和性质,直角三角形斜边中线的性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.25.(8分)如图,已知直线l1:y=kx+2与x轴的负半轴交于点A,与y轴交于点B,OA =1.直线l2:y=﹣2x+4与x轴交于点D,与l1交于点C.(1)求直线l1的函数表达式;(2)求四边形OBCD的面积.【分析】(1)由已知得到A(﹣1,0),把(﹣1,0)代入y=kx+2即可得到结论;(2)解方程组得到C (,3),根据三角形的面积公式即可得到结论.【解答】解:(1)∵OA =1,∴A (﹣1,0),把(﹣1,0)代入y =kx +2得,k =2,∴直线l 1的函数表达式为:y =2x +2;(2)解得,∴C (,3),∵B (0,2),∴OB =2,当y =0时,﹣2x +4=0,∴x =2,∴D (2,0),∴AD =3,∴四边形OBCD 的面积=S △ACD ﹣S △AOB =×3×3﹣×1×2=.【点评】本题考查了两条直线相交与平行问题,待定系数法求函数的解析式,三角形的面积,正确的理解题意是解题的关键.26.(8分)如图,在四边形ABCD 中,已知AB ∥CD ,AD ⊥AB ,AD =2,AB +CD =4,点E 为BC 的中点.(1)求四边形ABCD 的面积;(2)若AE ⊥BC ,求CD 的长.【分析】(1)作辅助线,构建三角形全等,将四边形ABCD 的面积转化为三角形DAF 的面积来解答;(2)连接AC ,设CD =x ,根据勾股定理列方程可解答.【解答】解:(1)如图1,连接DE 并延长,交AB 的延长线于F ,∵DC ∥AB ,∴∠C =∠EBF ,∵CE =BE ,∠DEC =∠FEB ,∴△DCE ≌△FBE (ASA ),∴BF =DC ,∵AB +CD =4,∴AB +BF =4=AF ,∴S 四边形ABCD =S 四边形ABED +S △DCE =S 四边形ABED +S △EBF =S △DAF ===4;(2)如图2,连接AC ,∵CE =BE ,AE ⊥BC ,∴AC =AB ,设CD =x ,则AB =AC =4﹣x ,Rt △ACD 中,由勾股定理得:CD 2+AD 2=AC 2,x 2+22=(4﹣x )2,x =,∴CD =.【点评】本题考查了直角梯形的性质,还考查了线段垂直平分线的性质,全等三角形的性质和判定,勾股定理的应用,能正确作辅助线是解此题的关键.27.(8分)如图,在边长为12cm的正方形ABCD中,M是AD边的中点,点P从点A出发,在正方形边上沿A→B→C→D的方向以大于1cm/s的速度匀速移动,点Q从点D出发,在CD边上沿D→C方向以1cm/s的速度匀速移动,P、Q两点同时出发,当点P、Q相遇时即停止移动.设点P移动的时间为t(s),正方形ABCD与∠PMQ的内部重叠部分面积为y(cm2).已知点P移动到点B处,y的值为96(即此时正方形ABCD与∠PMQ的内部重叠部分面积为96cm2).(1)求点P的速度;(2)求y与t的函数关系式,并直接写出t的取值范围.【分析】(1)根据正方形的性质得到∠A=∠D=90°,AB=AD=CD=BC=12,AM=AD=6,根据三角形的面积公式列方程即可得到结论;(2)分三种情况:当点P在边AB上时,当点P在边BC上时,当点P在边CD上时,列函数关系式即可.【解答】解:(1)∵在边长为12cm的正方形ABCD中,M是AD边的中点,∠A=∠D=90°,AB=AD=CD=BC=12,AM=AD=6,∴根据题意得,12×12﹣×12×6﹣×6t=96,解得:t=4,∴点P的速度为=3cm/s;(2)当点P在边AB上时,y=12×12﹣×6×3t﹣×6t=144﹣12t(0≤t≤4);当点P在边BC上时,y=×(24﹣3t)×12+×6×(12﹣t)=180﹣21t(4<t≤8);当点P在边CD上时,y=×(36﹣4t)×6=﹣12t+108(8<t≤9);综上所述,y与t的函数关系式为:y=.【点评】本题考查了正方形的性质,根据实际问题列函数关系式,三角形的面积,正确的理解题意是解题的关键.28.(8分)如图①,A、B两个圆柱形容器放置在同一水平桌面上,开始时容器A中盛满水,容器B中盛有高度为1dm的水,容器B下方装有一只水龙头,容器A向容器B匀速注水.设时间为t(s),容器A、B中的水位高度h A(dm)、h B(dm)与时间t(s)之间的部分函数图象如图②所示.根据图中数据解答下列问题:(1)容器A向容器B注水的速度为dm3/s(结果保留π),容器B的底面直径m=2dm;(2)当容器B注满水后,容器A停止向容器B注水,同时开启容器B的水龙头进行放水,放水速度为dm3/s.请在图②中画出容器B中水位高度h B与时间t(t≥4)的函数图象,说明理由;(3)当容器B注满水后,容器A继续向容器B注水,同时开启容器B的水龙头进行放水,放水速度为2πdm3/s,直至容器A、B水位高度相同时,立即停止放水和注水,求容器A向容器B全程注水时间t.(提示:圆柱体积=圆柱的底面积×圆柱的高)【分析】(1)注水速度=注水体积÷注水时间,圆柱体积=圆柱的底面积×圆柱的高,代入公式求解即可.(2)放水时间=放水体积÷放水速度,求出时间补全图象.(3)圆柱的高=圆柱体积÷圆柱的底面积,代入公式求解.【解答】解:(1)由图象可知,4秒,A容器内水的高度下降了1dm,V=sh=π()2•1=3π,则注水速度u==,由图象可知,4秒,B容器内水的高度上升了3dm,B容器增加的水的体积等于A容器减少的水的体积,V1=sh=π()2•3=,∴=3π,∴d=2.故答案为;2.(2)注满后B容器中水的总体积为:4π,∵放水速度为dm3/s,∴放空所需要的时间为:4π÷()=16.(3)A容器内水的高度:B容器内水的高度:∴=解得,t=6,∴容器A向容器B全程注水时间t为6s.【点评】此题考查了一次函数与注水的相关问题,注水速度=注水体积÷注水时间,圆柱体积=圆柱的底面积×圆柱的高,这两个公式为解题关键.。

苏科版八年级上册 第五章 平面直角坐标系(含答案)

苏科版八年级上册 第五章 平面直角坐标系(含答案)

初中数学苏科版八年级上册5.2 平面直角坐标系同步练习一、单选题(共10题;共20分)1.已知点P(3,a﹣1)到两坐标轴的距离相等,则a的值为()A. 4B. 3C. ﹣2D. 4或﹣22.在平面直角坐标系中,点A位于第二象限,距x轴1个单位长度,距y轴4个单位长度,则点A的坐标为( )A. (1,4)B. (-1,4)C. (-4,1)D. (4,-1)3.平面直角坐标系中,若P(m,n)在第三象限且到x轴,y轴的距离分别为2,3,则点P的坐标为( )A. (-2,3)B. (-2,-3)C. (3,-2)D. (-3,-2)4.如果在y轴上,那么点P的坐标是()A. B. C. D.5.已知点A(n+1,-2)和点B(3,n-1),若直线AB//x轴,则n的值为()A. 2B. -4C. -1D. 36.若x轴上的点P到y轴的距离为2,则点P的坐标为()A. (2,0)B. (2,0)或(﹣2,0)C. (0,2)D. (0,2)或(0,﹣2)7.在直角坐标系中,点A(3,1)和点B(﹣1,3),则线段AB的中点坐标是()A. (2,3)B. (1,2)C. (6,2)D. (6,4)8.已知点(3﹣2k2,4k﹣3)在第一象限的角平分线上,则k=()A. 1B. ﹣1C. 0D. 0或19.如图:下列说法正确的是( )A. A与D的横坐标相同B. C与D的纵坐标相同C. B与C的纵坐标相同D. B与D的横坐标相同10.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形OABC的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()A. (1,4)B. (5,0)C. (6,4)D. (8,3)二、填空题(共8题;共9分)11.点M(- 5,-3)到x轴的距离是________,到y轴的距离是________ .12.点P(m+2,3m)在x轴上,则m的值为________.13.如果点B (n2-4,-n-3) 在y轴上,那么n=________14.已知点A(m﹣1,2),点B(3,2m),且AB∥y轴,则点B的坐标为________.15.P(x,y)点在第三象限,且P点到x轴的距离为3,到y轴的距离为2,则P点的坐标为________.16.已知点A在x轴的下方,且到x轴的距离为5,到y轴的距离为3,则点A的坐标为________.17.已知点M(3,2)与点N(x,y)在同一条平行于x轴的直线上,且点N到y轴的距离为8,则点N的坐标为________.18.在平面直角坐标系中,已知点A(-3,0),B(3,0),点C在坐标轴上,且AC+BC=10,写出满足条件的所有点C的坐标:________.三、解答题(共4题;共40分)19.(1)将图中三角形各点的横坐标都乘以-1,纵坐标不变,画出所得到的图形.你所画的图形与原图形发生了什么变化?(2)若把原图中各点横坐标保持不变,纵坐标都乘以-2,画出所得到的图形,并说明该图与原图相比发生了什么变化?20.如图,已知四边形ABCD,则四边形ABCD的面积是多少?21.已知点P(2m+4,m﹣1),请分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,﹣4)点,且与y轴平行的直线上;(3)点P到两坐标轴的距离相等.22.已知点M(3a-2,a+6).(1)若点M在x轴上,求点M的坐标(2)变式一:已知点M(3a-2,a+6),点N(2,5),且直线MN∥x轴,求点M的坐标. (3)变式二:已知点M(3a-2,a+6),若点M到x轴、y轴的距离相等,求点M的坐标.答案解析部分一、单选题1.【答案】D解:∵点P(3,a-1)到两坐标轴的距离相等,∴|a-1|=3,解得a=4或a=-2.故答案为:D.【分析】根据平面直角坐标系内点的坐标的几何意义即可解答.2.【答案】C解:设A(x,y),由点A在第二象限,所以x<0,y>0.因为点A到x轴、y轴的距离分别为1、4,所以点A的坐标为(-4,1),故答案为:C【分析】设A(x,y),由点A在第二象限,可得出x<0,y>0,再由点A到x轴、y轴的距离分别为1、4,就可得出点A的坐标。

苏科版八年级数学上册《平面直角坐标系》单元测试卷(含答案) (9)

苏科版八年级数学上册《平面直角坐标系》单元测试卷(含答案) (9)

苏科版八年级上册《平面直角坐标系》单元测试卷(满分:100分时间:60分钟)一、选择题(每题3分,共24分)1.下列坐标在第二象限的是( )A.(2,3) B.(-2,3) C.(-2,-3) D.(2,-3) 2.点P (-2,-3)向左平移1个单位长度,再向上平移3个单位长度,所得到的点的坐标为( )A.(-3,0) B.(-1,6) C.(-3,-6) D.(-1,0) 3.在平面直角坐标系xOy中,若点A的坐标为(-3,3),点B的坐标为(2,0),则△ABO的面积为( )A.15 B.7.5 C.6 D.34.下图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东、正北方向为x轴和y轴的正方向,表示太和殿的点的坐标为(0,-1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是( )A.景仁宫(4,2) B.养心殿(-2,3)C.保和殿(1,0) D.武英殿(-3.5,-4)5.一天晚饭后,小明陪妈妈从家里出去散步,上图描述了他们散步过程中离家的距离s(m)与散步时间t (min)之间的函数关系.下面的描述符合他们散步情景的是( ) A.从家出发,到了一家书店,看了一会儿书就回家了B.从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了C.从家出发,一直散步(没有停留),然后回家了D.从家出发,散了一会儿步,到了一家书店,看了一会儿书,继续向前走了一段,18分钟后开始返回6.匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t 的变化规律如图所示(图中OABC为一折线),则这个容器的形状是( )7.小米同学乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间的距离是l km (小圆半径是l km),若小艇C相对于游船的位置可表示为(0°,-1.5),则正确描述图中另外两个小艇A,B的位置的是( )A.小艇A (60°,3),小艇B(-30°,2)B.小艇A (30°,4),小艇B (-60°,3)C.小艇A (60°,3),小艇B (-30°,3)D.小艇A (30°,3),小艇B (-60°,2)8.在平面直角坐标系中,孔明做走棋的游戏,其走法:棋子从原点出发,第1步向右走1个单位长度,第2步向右走2个单位长度,第3步向上走1个单位长度,第4步向右走1个单位长度……依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位长度;当n被3除,余数为1时,则向右走1个单位长度;当n被3除,余数为2 时,则向右走2个单位长度.当走完第100步时,棋子所处位置的坐标是( )A.(66,34) B.(67,33) C.(100,33) D.(99,34)二、填空题(每题2分,共20分)9.若点P (m+5,m+1) 在直角坐标系的y轴上,则点P的坐标为.10.如图,点A在射线OX上,OA的长等于2cm.如果OA绕点O按逆时针方向旋转30°到OA1,那么点A1的位置可以用(2,30°)表示.如果将OA1再按逆时针方向继续旋转55°到OA2,那么点A2的位置可以用( ,)表示.11.在平面直角坐标系中,点A的坐标是(2,-3),若作点A关于x轴的对称点得到点A',再作点A'关于y轴的对称点,得到点A",则点A"的坐标是.12.在平面直角坐标系中,若正方形ABCD的顶点A,B,C的坐标分别为(-1,1),(-1,-1),(1,-1),则顶点D的坐标为.13.如图,小强告诉小华图中A,B两点的坐标分别为(-3,5),(3,5),小华一下就说出了点C在同一坐标系中的坐标,点C的坐标是.14.下图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别是A (-2,1) 和B (-2,-3),那么第一架轰炸机C的平面坐标是.15.在直角坐标系中,已知点A (0,2),点.P (x,0) 为x轴上的一个动点,当x= 时,线段PA的长度最小,最小值是.16.如图,A,B两点的坐标分别为(2,4),(6,0),点P是x轴上一点,且三角形ABP的面积为6,则点P的坐标为.17.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,M为坐标轴上一点.若要使△MOA为等腰三角形,则满足条件的点M的个数为.18.在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移2个单位长度为1次变换.如图,已知等边三角形ABC的顶点B,C的坐标分别是(-1,-1),(-3,-1),若把△ABC经过连续9次这样的变换得到△A'B'C',则点A的对应点A'的坐标是.三、解答题(共56分)19.(本题6分) 如图,点A用(3,1) 表示,点B用(8,5)表示.若用(3,1)→(3,3)→(5,3)→(5,4)→(8,4)→(8,5)表示由点A到点B的一种走法,并规定从点A到点B只能向上或向右走,试用上述表示方法写出另外两种走法,并判断这几种走法的路程是否相等.20.(本题6分) 在平面直角坐标系中,点A (1,2a+3) 在第一象限.(1) 若点A到x轴的距离与到y轴的距离相等,求a的值;(2) 若点A到x轴的距离小于到y轴的距离,求a的取值范围.21.(本题6分) 已知点O (0,0),A (3,0),点B 在y 轴上,且△OAB 的面积是6,求点B 的坐标.22.(本题8分) 如图,在△OAB 中,已知A (2,4),B (6,2),求△OAB 的面积.23.(本题9分) 如图,在平面直角坐标系中,点A (-3b ,0) 为x 轴负半轴上一点,点B (0,4b )为y 轴正半轴上一点,其中b 满足方程3(b +1)=6.(1) 求点A ,B 的坐标.(2) 若点C 为y 轴负半轴上一点,且△ABC 的面积为12,求点C 的坐标.(3) 在x 轴上是否存在点P ,使得△PBC 的面积等于△ABC 的面积的一半? 若存在,求出相应的点P 的坐标;若不存在,请说明理由.24.(本题9分) 阅读下面一段文字,然后回答问题.已知在平面内有两点P 1 (x 1,y 1),P 2 (x 2,y 2),两点间的距离P 1P 2=坐标轴时,两点间的距离公式可简化为或.21x x -21y y -(1) 已知A (2,4),B (-3,-8),试求A,B两点间的距离.(2) 已知A,B在平行于y轴的同一条直线上,点A的纵坐标为5,点B的纵坐标为-1,试求A,B两点间的距离.(3) 已知一个三角形各顶点的坐标为A(0,6),B(-3,2),C(3,2),你能判定此三角形的形状吗? 请说明理由.25.(本题10分) 在平面直角坐标系中,横坐标、纵坐标都为整数的点叫作整点。

苏科版八年级数学上册第五章《平面直角坐标系》提优检测试卷一

苏科版八年级数学上册第五章《平面直角坐标系》提优检测试卷一

第五章《平面直角坐标系》提优检测试卷一、选择题1.在平面直角坐标系中,若点P的坐标为(﹣3,2),则点P所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.在下列所给出坐标的点中,在第二象限的是()A.(2,3)B.(﹣2,3) C.(﹣2,﹣3)D.(2,﹣3)3.在平面直角坐标系中,点M(﹣2,1)在()A.第一象限B.第二象限C.第三象限D.第四象限4.在平面直角坐标系中,点A(2,﹣3)在第几象限.()A.一 B.二 C.三 D.四5.若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在第几象限()A.第一象限B.第二象限C.第三象限D.第四象限6.如图,点A(﹣2,1)到y轴的距离为()A.﹣2 B.1 C.2 D.6.如果点P(m+3,m+1)在直角坐标系的x轴上,P点坐标为()A.(0,2)B.(2,0)C.(4,0)D.(0,﹣4)7.A(﹣3,2)关于原点的对称点是B,B关于x轴的对称点是C,则点C的坐标是()A.(3,2)B.(﹣3,2) C.(3,﹣2) D.(﹣2,3)8.如果直线AB平行于y轴,则点A,B的坐标之间的关系是()A.横坐标相等 B.纵坐标相等C.横坐标的绝对值相等 D.纵坐标的绝对值相等9.方程x+2y=7在自然数范围内的解()A.有无数个B.只有一个C.只有3个D.以上都不对10.已知是二元一次方程组的解,则a﹣b的值为()A.﹣1 B.1 C.2 D.3二、填空题11.坐标平面内的点与_______是一一对应的.12.点P(5,-12)到原点的距离是_______.13.已知点P的坐标为(2a+1,a-3).(1)点P在x轴上,则a=_______;(2)点P在y轴上,则a=_______.14.点A(2,3)到x轴的距离为_______;点B(-4,0)到y轴的距离为_______;点C到x轴的距离为1,到y轴的距离为3,且在第三象限,则点C的坐标是_______.15.已知点P1关于x轴的对称点P2(3-2a,2a-5)是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则点P 1的坐标是_______.16.已知P 1点关于x 轴的对称点P 2(3-2a ,2a -5)是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则P 1点的坐标是_______.17.已知直角坐标平面内的△ABC 三个顶点A 、B 、C 的坐标分别为(4,3)、(1,2)、(3,-4),则△ABC 的形状是_______.18.在直角坐标系中,O 为原点,已知A(1,1),在坐标轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 有_______个.19.如图,所有正三角形的一边平行于x 轴,一顶点在y 轴上.从内到外,它们的边长依次为2、4、6、8、…,顶点依次用A 1、A 2、A 3、A 4、…表示,其中A 1A 2与x 轴、底边A 1A 2与A 4A 5、A 4A 5与A 7A 8、…均相距一个单位,则顶点A 3的坐标是 ,A 92的坐标是 .20.在平面直角坐标系xOy 中,已知点A (0,1),B (1,2),点P 在x 轴上运动,当点P 到A 、B 两点距离之差的绝对值最大时,点P 的坐标是 .三、解答题21. 如图,在平面直角坐标系中,ABC ∆的三个顶点都在格点上,点A 的坐标为(2,2).请解答下列问题:(1)画出ABC ∆关于y 轴对称的111A B C ∆,并写出点1A 的坐标;(2)画出ABC ∆绕点B 逆时针旋转90º后得到的222A B C ∆,并写出点2A 的坐标; (3)画出222A B C ∆绕原点O 旋转180º后得到的333A B C ∆,并写出点3A 的坐标.22.中国象棋棋盘中蕴含着平面直角坐标系,如下图是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走,例如:图中“马”所在的位置可以直接走到点A 、B 处.(1)如果“帅”位于点(0,0),“相”位于点(4,2),则“马”所在的点的坐标为_______,点C 的坐标为_______,点D 的坐标为_______;(2)若“马”的位置在C 点,为了到达D 点,请按“马”走的规则,在图中画出一种你认为合理的行走路线,并用坐标表示.23.如图,在平面直角坐标系xOy中,点A(0,8),点B(6,8).(1)只用直尺(没有刻度)和圆规,求作一个点P,使点P同时满足下列两个条件:(要求保留作图痕迹,不必写出作法)①点P到A、B两点的距离相等;②点P到∠xOy的两边的距离相等.(2)在(1)作出点P后,写出点P的坐标.24.如图所示为一风筝的图案.(1) 写出图中所标各个顶点的坐标.(2) 若图中各点的纵坐标保持不变,横坐标分别乘以2,所得各点的坐标分别是什么?所得图案与原来图案相比有什么变化?(3) 若图中各点的横坐标保持不变,纵坐标分别乘以-2,所得各点的坐标分别是什么? 所得图案与原来(1)中的图案相比有什么变化?25.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△QA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3.已知A(1,3),A(2,3),A2(4,3),A3(8,3);B(2,0),B1(4,0),B2(8,0),B3(16,0).(1)观察每次变换前后三角形的变化规律,若再将△OA3B3变换成△OA4B4,则点A4的坐标为_______,点B4的坐标为_______;(2)若按第(1)题找到的规律将△OAB进行n次变换,得到△OAn Bn,则点An的坐标为_______,点Bn的坐标为_______.26.操作与探究.(1) 对数轴上的点P进行如下操作:先把点P表示的数乘以13,再把所得数对应的点向右平移1个单位长度,得到点P的对应点P′.点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′.如图1,若点A表示的数是-3,则点A′表示的数是;若点B′表示的数是2,则点B表示的数是;已知线段AB上的点E经过上述操作后得到的对应点E′与点E重合,则点E表示的数是.(2) 如图2,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a,将得到的点先向右平移m个单位长度,再向上平移n个单位长度(m>0,n>0),得到正方形A'B'C'D′及其内部的点,其中点A,B的对应点分别为A′,B′.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F 重合,求点F的坐标.。

第5章平面直角坐标系 复习提优测试-苏科版八年级数学上册期末复习

第5章平面直角坐标系 复习提优测试-苏科版八年级数学上册期末复习

平面直角坐标系章节提优测试卷
(时间:60分钟满分100分)
一、选择题(每小题3分,共24分)
1.在平面直角坐标系中,点P(2,-3)所在的象限是()
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
2.坐标平面上有一点A,且点A到x轴的距离为3,点A到y轴的距离恰为x轴距离的3倍.若点A在第二象限,则点A的坐标为()
A.(-9,3)
B.(-3,1)
C.(-3,9)
D.(-1,3)
3.已知点P(a+1,2a-3)关于x轴的对称点在第一象限,则a的取值范围是()
4.如图,已知棋子“卒”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()
A.(3,2)
B.(3,1)
C.(2,2)
D.(-2,2)
5.若点A的坐标是(2,2),点P在x轴上,且△APO是等腰三角形,则点P的坐标不可能是()
6.点M(-2,1)关于x轴的对称点的坐标是()
A.(2,-1)
B.(2,1)
C.(-2,-1)
D.(1,-2)
7.如图,若图中各点的横坐标不变,将纵坐标分别乘-1,所得图形为()。

苏科版八年级数学上册平面直角坐标系单元测试卷6

苏科版八年级数学上册平面直角坐标系单元测试卷6

苏科版八年级数学上册平面直角坐标系单元测试卷6一、选择题(共10小题;共50分)1. 在平面直角坐标系中,若点在第二象限,则的取值范围是A. B. D.2. 如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为和,那么第一架轰炸机的平面坐标是A. B. C. D.3. 平面直角坐标系内与点关于原点对称的点的坐标是A. B. C.4. 象棋在中国有着三千多年的历史,属于二人对抗性游戏的一种.由于用具简单,趣味性强,成为流行极为广泛的棋艺活动.如图是一方的棋盘,如果“帅”的坐标是,“卒”的坐标是,那么“马”的坐标是B. C. D.5. 课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用表示,小军的位置用表示,那么你的位置可以表示成A. B. C. D.6. 如图,小明家相对于学校的位置,下列描述最正确的是A. 在距离学校米处B. 在学校的西北方向C. 在西北方向米处D. 在学校西北方向米处7. 如图,动点在平面直角坐标系中按图中箭头所示方向运动,第次从原点运动到点,第次接着运动到点,第次接着运动到点,按这样的运动规律,经过第次运动后,动点的坐标是A. B. C. D.8. 在平面直角坐标系中,对于点,我们把点叫做点的伴随点.已知点的伴随点为,点的伴随点为,点的伴随点为,这样依次得到点,,,,,若点的坐标为,则点的坐标为A. B. C.9. 在平面直角坐标系中,点关于原点的对称点的坐标是A. D.10. 小军邀请小亮去他家做客,以下是他俩的对话:小军:“你在公交总站下车后,往正前方直走米,然后右转直走米就到我家了”小亮:“我是按照你说的走的,可是走到了邮局,不是你家”小军:“你走到邮局,是因为你下公交车后朝向东方走的,应该朝向北方走才能到我家”根据两人的对话记录,从邮局出发走到小军家应A. 先向北直走米,再向西走米B. 先向北直走米,再向西走米C. 先向北直走米,再向西走米D. 先向北直走米,再向西走米二、填空题(共6小题;共30分)11. 众所周知,利用电影票可找到其相应的位置,如果将“ 排座”简记作,那么“ 排座”简记作,那么表示这张电影票是排座.12. 如图是某班的课程表,星期一第节的美术课用(一,)表示,星期五的第节音乐课用(五,)表示.(1)星期二的第节的英语课用(,)表示;(2)有序数对(三,)表示星期第节的课.13. 如图,点、的坐标分别为、,将沿轴向右平移,得到,已知,则点的坐标为.14. 已知点和点两点,且直线与坐标轴围成的三角形的面积等于,则的值是.15. 火车车厢中,如果号车厢号座位记为,那么号车厢号座位记为.16. 在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第个正方形(实线)四条边上的整点共有个.三、解答题(共8小题;共104分)17. 在如图所示的平面直角坐标系中,用坐标表示出,,,各点的位置.18. 如图,三角形中任意一点经平移后对应点为,将三角形作同样的平移得到三角形.求,,的坐标.19. 已知平面直角坐标系中有一点.(1)点到轴的距离为时,求的坐标.(2)点,且时,求的坐标.(3)点在第二象限的角平分线上,求的坐标.20. 如图所示是一台雷达探测器测的结果.图中显示,在,,,处有目标出现,请用适当方式分别表示每个目标的位置.21. 如图所示,某省为了加快城市发展,准备在现有的四座城市,,,附近新建机场.试建立适当的直角坐标系,写出点,,,,的坐标.22. 在平面内,将一个多边形以点为相似中心放大或缩小,使所得多边形与原多边形对应线段的比为,并且原多边形上的任一点的对应点在线段或其延长线上,这种经过放缩的图形变换叫做相似变换,记作,其中点表示相似中心,表示相似比.已知的顶点坐标分别为,,,是经过相似变换所得的图形.(1)写出,的坐标;(2)如果点为线段上一点,的对应点的坐标为,求点的坐标.23. 如图,在平面直角坐标系中,的三个顶点分别是,,.(1)将以点为旋转中心旋转,画出旋转后对应的,平移;若的对应点的坐标为,画出平移后对应的.(2)若将绕某一点旋转可以得到,请直接写出旋转中心的坐标.24. 对于数轴上的,,三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足倍的数量关系,则称该点是其它两个点的“联盟点”.例如数轴上点,,所表示的数分别为,,,此时点是点,的“联盟点”.(1)若点表示数,点表示的数,下列各数,,所对应的点分别,,,,其中是点,的“联盟点”的是;(2)点表示数,点表示的数,在为数轴上一个动点:①若点在点的左侧,且点是点,的“联盟点”,求此时点表示的数;②若点在点的右侧,点,,中,有一个点恰好是其它两个点的“联盟点”,写出此时点表示的数.答案第一部分1. C2. A3. C4. C5. D6. D7. D 【解析】分析图象可以发现,点的运动每次位置循环一次.每循环一次向右移动四个单位.,当第循环结束时,点位置在,在此基础之上运动三次到.8. D 【解析】因为的坐标为,所以,,,,,依此类推,每个点为一个循环组依次循环,因为,所以点的坐标与的坐标相同,为.9. B10. A第二部分11. ,,12. (1)二,,(2)三,,数学13.【解析】点、的坐标分别为、,,,沿轴向右平移了个单位,点的坐标为.14. 或【解析】点可以在轴正半轴上,也可以在轴负半轴上,所以,所以,所以.15.16.第三部分17. ,,,.18. ,,.19. (1)点,点到轴的距离为,,解得或,当时,点的坐标为,当时,点的坐标为;综上所述,点的坐标为或.(2)点,点且,,解得,故点的坐标为.(3)根据题意得,解得,点的坐标为.20. ,,,.21. 以点作为坐标原点,经过点的水平线作为轴,经过点的竖直线作为轴,每个小方格的边长作为单位长,建立平面直角坐标系,各点的坐标为:,,,,.22. (1),.(2).23. (1)将以点为旋转中心旋转,旋转后对应的如图所示;平移后对应的如图所示.(2)若将绕某一点旋转可以得到,点坐标.24. (1),(2)①点表示的数为.如图,当点在点左侧时,,则,解得.点表示的数为;如图,当点在线段上且时,则,解得.点表示的数为;如图,当点在线段上且时,则,解得.点表示的数为综上所述,当点在点的左侧时,点表示的数为或或②或或。

苏科版八年级数学上册平面直角坐标系单元测试卷63

苏科版八年级数学上册平面直角坐标系单元测试卷63

苏科版八年级数学上册平面直角坐标系单元测试卷63一、选择题(共10小题;共50分)1. 平面直角坐标系中,某点在第二象限且它的横坐标、纵坐标之和为,则该点的坐标可以是下列A. C. D.2. 如图,直线,在某平面直角坐标系中,,,点的坐标为,点的坐标为,则点的坐标为A. C.3. 点关于轴的对称点为A. B. D. 以上都不对4. 课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用表示,小军的位置用表示,那么你的位置可以表示成A. B. C. D.5. 如图所示,已知校门的坐标是,下列对于实验楼位置的叙述正确的有①实验楼的坐标是②实验楼的坐标是③实验楼的坐标为④实验楼在校门的东北方向上,距校门A. 个B. 个C. 个D. 个6. 一渔船在海岛南偏东方向的处遇险,测得海岛与的距离为海里.渔船将险情报告给位于处的救援船后,沿北偏西方向向海岛靠近.同时,从处出发的救援船沿南偏西方向匀速航行.分钟后,救援船在海岛处恰好追上渔船,那么救援船航行的速度为A. 海里/小时B. 海里/小时C. 海里/小时D. 海里/小时7. 如图所示,等边三角形的边长依次为,,,,其中,,,,,,按此规律下去,则的坐标为A. B.C. D.8. 如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“”方向排列,如,,,,,,.根据这个规律探索可得,第个点的坐标为A. B. C. D.9. 正方形在平面直角坐标系中的位置如图,将正方形绕点顺时针方向旋转后,点到达的位置坐标为A. B. C. D.10. 京津冀都市圈是指以北京、天津两座直辖市以及河北省的保定、廊坊、唐山、邯郸、邢台、秦皇岛、沧州、衡水、承德、张家口和石家庄为中心的区域.若“数对”表示图中承德的位置,“数对”,表示图中保定的位置,则与图中张家口的位置对应的“数对”为A. ,B. ,C. ,D. ,二、填空题(共6小题;共30分)11. 如图是某校的平面示意图的一部分,若用表示图书馆的位置,表示校门的位置,则教学楼的位置可表示为.12. 如图是某班的课程表,星期一第节的美术课用(一,)表示,星期五的第节音乐课用(五,)表示.(1)星期二的第节的英语课用(,)表示;(2)有序数对(三,)表示星期第节的课.13. 如下图,在平面直角坐标系中,右边的图案是由左边的图案经过平移得到的,左边图案中左、右眼睛的坐标分别是,右边图案中左眼的坐标是,则右边图案中右眼的坐标是.14. 在平面直角坐标系中,点,,点在坐标轴的负半轴上,若,则点的坐标为.15. 中国象棋是一个具有悠久历史的游戏.如图的棋盘上,可以把每个棋子看作是恰好在某个正方形顶点上的一个点,若棋子“帅”对应的数对,棋子“象”对应的数对,则图中棋盘上“卒”对应的数对是.16. 在平面直角坐标系中有,其中,,,那么该三角形边上的高的长等于.三、解答题(共8小题;共104分)17. 指出下列各点的横坐标和纵坐标,并指出各点所在的象限.,,,.18. 如图,三角形中任意一点经平移后对应点为,将三角形作同样的平移得到三角形.求,,的坐标.19. 问题情境:在平面直角坐标系中有不重合的两点和点,小明在学习中发现,若,则轴,且线段的长度为;若,则轴,且线段的长度为.(1)【应用】:()若点,,则轴,的长度为.()若点,且轴,且,则点的坐标为.(2)【拓展】:我们规定:平面直角坐标系中任意不重合的两点,之间的折线距离为;例如:图中,点与点之间的折线距离为.解决下列问题:()如图,已知,若,则;()如图,已知,,若,则;()如图,已知,点在轴上,且三角形的面积为,则.20. 如图,传说中的一个藏宝岛图,藏宝人生前用直角坐标系的方法画了这幅图,现今的寻宝人没有原来的地图,但知道在该图上有两块大石头,,而藏宝地的坐标是,试设法在地图上找到藏宝地点.21. 建立适当的坐标系表示图中各景点的位置.22. 画一画:在下列方格图中,画出四边形的一个相似图形(注:不能全等).23. 如图,在平面直角坐标系中,的三个顶点分别为,,.(1)画出关于原点对称的,并写出点的坐标.(2)画出绕原点逆时针旋转后的,并写出点的坐标.24. 一只电子蚱蜢落在数轴上的点(如图)处,点表示的数为电子蚱蜢按以下规律跳动:第一步从向右跳一个单位到处;第二步从向左跳个单位到;第三步从向右跳个单位到;第四步从向左跳个单位到;求:(1)点表示的数是多少?(2)点表示的数是多少?(3)点表示的数是多少?(用含的式子表示,是正整数)答案第一部分1. B2. C3. B4. D5. B6. D 【解析】由题意可知,,,海里,海里,救援船分钟到达,其速度为海里/小时.7. A ,由规律可知,是第个等边三角形的第个顶点,在第四象限内,坐标为,,则横坐标为,纵坐标绝对值,因为在第四象限,所以纵坐标为:,所以坐标为.8. A 【解析】由图形可知:点的个数依次是,,,,,,且横坐标是偶数时,箭头朝上,,,第个点的坐标为,第个点横坐标为.在第行点走向为向上,纵坐标为从第个点向上数个点,即为.第个点的坐标为.9. D10. A【解析】【分析】根据题意,可以画出坐标系,再根据题目中信息,可以解答本题.【解析】解:由题意可得,建立的坐标系如右图所示“数对”,表示图中承德的位置,“数对”,表示图中保定的位置,张家口的位置对应的“数对”为,,故选:.【点评】本题考查坐标位置的确定,解题的关键是明确题意,画出相应的坐标系.第二部分11.12. (1)二,,(2)三,,数学13.【解析】左眼坐标由变为,由此可知由左图得到右图是向上平移个单位,向右平移个单位,从而得到右眼平移后的坐标为.14. ,15.16.第三部分17. 点,,,的横坐标分别是,;点,,,的纵坐标分别是,点在第一象限,点在第二象限,点在第三象限,点在第四象限.18. ,,.19. (1);或【解析】()的长度为.故答案为:.()由轴,可设点的坐标为,,,解得:,点的坐标为或.故答案为:或.(2);或;或【解析】().故答案为:.(),,,,解得:.故答案为:或()由点在轴上,可设点的坐标为,三角形的面积为,,解得:.当点的坐标为时,;当点的坐标为时,.故答案为:或.20. 略.21. 建立如图所示的以猴山为原点的平面直角坐标系,则猴山、鸟语林、蝴蝶馆、蛇山、熊猫馆的坐标分别为,,,,.22. 略.23. (1)图象见解析,.【解析】(2).24. (1).(2).(3)当为偶数时,点表示的数是,当为奇数时,点表示的数是.第11页(共11 页)。

苏科版八年级上册数学第五章 平面直角坐标系综合提优卷(含答案)

苏科版八年级上册数学第五章 平面直角坐标系综合提优卷(含答案)

第五章平面直角坐标系综合提优卷(时间:60分钟满分:100分)一、选择题(每题2分,共20分)1、若点N(a,b),且ab>0,则点N在( )、A、第一或第二象限B、第二或第三象限C、第一或第三象限D、第二或第四象限2、若点P(2x,y)在第二、四象限的角平分线上,则( )、A、2x=yB、x=-yC、-x=yD、2x y3、在平面直角坐标系中,将点A(1,2)的横坐标乘以-1,纵坐标不变得到点A',则点A与点A'的关系是( )、A、关于x轴对称B、关于y轴对称C、关于原点对称D、将点A向x轴负方向平移一个单位得点A'4、已知△ABC在平面直角坐标系中的位置如图所示,将△ABC向下平移5个单位,再向左平移2个单位,则平移后点C的坐标是( )、A、(5,-2)B、(1,-2)C、(2,-1)D、(2,-2)5、如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2)、把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A-B-C-D-A…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是( )、A、(1,-1)B、(-1,1)C、(-1,-2)D、(1,-2)6、坐标平面内一点A(2,-1),点O是原点,点P是x轴上一个动点,如果△POA为等腰三角形,那么符合条件的动点P的个数为( )A 、2B 、3C 、4D 、57、如果m 是任意实数,则点(4P m -,1)m +一定不在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限8、在平面直角坐标系中,点(20,)P a -与点(,13)Q b 关于原点对称,则a b +的值为 ( ) A 、33B 、33-C 、7-D 、79、在平面直角坐标系中,线段OP 的两个端点坐标分别为O (0,0),P (4,3),将线段OP 绕点O 逆时针旋转90°到OP ′位置,则点P ′的坐标为 ( )A 、(3,4)B 、(-4,3)C 、(-3,4)D 、(4,-3)10、如图,动点P 从(0,3)出发,沿所示的方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2013次碰到矩形的边时,点P 的坐标为( )A 、(1,4)B 、(5,0)C 、(6,4)D 、(8,3) 二、填空题(每题2分,共38分)11、小刚家位于某住宅楼A 座16层,可记为A 16,按这种方法,小红家住B 座10层,可记为_______、12、点B (-3,4)关于y 轴的对称点为A ,则点A 的坐标是_______、 13、若第二象限内的点P (x ,y )满足x =9,y 2=4,则点P 的坐标是_______、14、在平面直角坐标系中,点P (m ,m -2)在第一象限内,则m 的取值范围是_______、 15、已知在直角坐标系中,点A (x ,y ),且xy =-2、试写出两个满足这些条件的点:_______、 16、在直角坐标系中,点A (-1,2),点P (x ,0)为x 轴上的一个动点,则当x =_______时,线段P A 的长得到最小值,最小值是_______、17、若点B (-a ,-b )在x 轴负半轴上,则a _______0,b _______0、(填“>”“<”或“=”) 18、已知点Q (-a 2-1,b 2+2),则它在第_______象限、19、若点P 到x 轴的距离为3,到y 轴的距离为2,则点P 的坐标为_______、 20、已知点P (a ,3),Q (-2,b )关于x 轴对称,则a =_______,b =_______、 21、若点P (x ,y )的坐标满足x +y =xy ,则称点P 为“和谐点”、请写出一个“和谐点”的坐标:_______、22、如图,△ABC 的顶点都在正方形网格格点上,点A 的坐标为(-1,4)、将△ABC 沿y 轴翻折到第一象限,则点C 的对应点C '的坐标是_______、23、在平面直角坐标系中,点A 1(1,1),A 2(2,4),A 3(3,9),A 4(4,16),…,用你发现的规律确定点A9的坐标为_______、24、观察数表、根据表中数的排列规律,则B+D=_______、25、已知正方形ABCD在平面直角坐标系中的位置如图所示,点A的坐标(0,4),点B的坐标(-3,0),则点C的坐标是_______、26、等边三角形ABC的两顶点A、B的坐标分别为(-4,0),(4,0),则点C的坐标为_______、27、若点P在x轴的下方,在y轴的左侧,且到两条坐标轴的距离都是3,则点P的坐标是_______、28、点(-1,0)与点(7,0)的距离为_______、29、九年级某班有54名学生,所在教室有6行9列座位,用(m,n)表示第m行第n列的座位,新学期准备调整座位、设某个学生原来的座位为(m,n),若调整后的座位为(i,j),则称该生作了平移[a,b]=[m-i,n-j],并称a+b为该生的位置数、若某生的位置数为10,则当m+n取最小值时,m·n的最大值为_______、三、解答题(第26~29题每题7分,其余每题8分,共44分)30、已知点P(a+3,4-a),Q(2a,2b+3)关于y轴对称、求ab的值、31、求点A(1,1)和B(-3,2)的距离、32、如图,在4×4个边长为1的正方形组成的方格中,标有A 、B 两点,请你用两种不同方法表述点B 相对点A 的位置、33、在同一平面直角坐标系中分别描出点A (-3,0),B (2,0),C (1,3),再用线段将这三点首尾依次连接起来,求△ABC 的面积与周长、34、如图,在平面直角坐标系中,已知点M 0的坐标为(1,0),将线段OM 0绕原点O 沿逆时针方向旋转45°,再将其延长到点M 1,使得M 1M 0⊥OM 0,得到线段OM 1;又将线段OM 1绕原点O 沿逆时针方向旋转45°,再将其延长到点M 2,使得M 1M 1⊥OM 1,得到线段OM 2,如此下去,得到线段OM 3、OM 4、…、OM n 、 (1)写出点M 5的坐标; (2)求△M 5OM 6的周长;(3)我们规定:把点M n (x n ,y n )(n =0,1,2,3…)的横坐标x n ,纵坐标y n 都取绝对值后得到的新坐标(n x ,n y )称之为点M n 的“绝对坐标”,根据图中点M n 的分布规律,请你猜想点M n 的“绝对坐标”,并写出来、35、如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△QA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3、已知A(1,3),A(2,3),A2(4,3),A3(8,3);B(2,0),B1(4,0),B2(8,0),B3(16,0)、(1)观察每次变换前后三角形的变化规律,若再将△OA3B3变换成△OA4B4,则点A4的坐标为_______,点B4的坐标为_______;(2)若按第(1)题找到的规律将△OAB进行n次变换,得到△OA n B n,则点A n的坐标为_______,点Bn的坐标为_______、参考答案1、C2、D3、B4、B5、B6、C7、D8、D9、C 10、D 11、B 10 12、(3,4) 13、(-9,2) 14、m >2 15、答案不唯一,如:(-1,2)和(1,-2) 16、-1 2 17、> = 18、二 19、(2,3)或(-2,3)或(-2,-3)或(2,-3)、20、-2 -3 21、(0,0),(2,2)、 22、(3,1) 23、(9,81) 24、 23 25、(-1,3) 26、(0,±3 27、(-3,-3) 28、8 29、3630、ab =-1、 31、AB 1732、方法1:用有序实数对(a ,b )表示、比如:以点A 为原点,水平方向为x 轴,建立直角坐标系,则B (3,3)、方法2:用方向和距离表示,比如:点B 位于点A 的东北方向(北偏东45°等均可),距离点A 2 33、101034、(1)M 5(-4,-4) (2)8+2 (3)(12n -,12n -)35、(1)(16,3) (32,0) (2)(2n,3) (2n+1,0)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章平面直角坐标系综合提优卷
(时间:60分钟满分:100分)
一、选择题(每题2分,共20分)
1.若点N(a,b),且a
b
>0,则点N在( ).
A.第一或第二象限 B.第二或第三象限
C.第一或第三象限 D.第二或第四象限
2.若点P(2x,y)在第二、四象限的角平分线上,则( ).
A.2x=y B.x=-y
C.-x=y D.2x y
3.在平面直角坐标系中,将点A(1,2)的横坐标乘以-1,纵坐标不变得到点A',则点A 与点A'的关系是( ).
A.关于x轴对称
B.关于y轴对称
C.关于原点对称
D.将点A向x轴负方向平移一个单位得点A'
4.已知△ABC在平面直角坐标系中的位置如图所示,将△ABC向下平移5个单位,再向左平移2个单位,则平移后点C的坐标是( ).
A.(5,-2) B.(1,-2)
C .(2,-1)
D .(2,-2)
5.如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A -B -C -D -A …的规律紧绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是( ).
A .(1,-1)
B .(-1,1)
C .(-1,-2)
D .(1,-2) 6.坐标平面内一点A(2,-1),点O 是原点,点P 是x 轴上一个动点,如果△POA 为等腰三角形,那么符合条件的动点P 的个数为( )
A .2
B .3
C .4
D .5
7.如果m 是任意实数,则点(4P m -,1)m +一定不在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
8.在平面直角坐标系中,点(20,)P a -与点(,13)Q b 关于原点对称,则a b +的值为 ( )
A .33
B .33-
C .7-
D .7
9.在平面直角坐标系中,线段OP 的两个端点坐标分别为O(0,0),P(4,3),将线段OP 绕点O 逆时针旋转90°到OP ′位置,则点P ′的坐标为 ( )
A .(3,4)
B .(-4,3)
C .(-3,4)
D .(4,-3)
10.如图,动点P 从(0,3)出发,沿所示的方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2013次碰到矩形的边时,点P 的坐标为( )
A .(1,4)
B .(5,0)
C .(6,4)
D .(8,3)
二、填空题(每题2分,共38分)
11.小刚家位于某住宅楼A 座16层,可记为A 16,按这种方法,小红家住B 座10层,可
记为_______.
12.点B(-3,4)关于y轴的对称点为A,则点A的坐标是_______.
13.若第二象限内的点P(x,y)满足x=9,y2=4,则点P的坐标是_______.
14.在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是_______.15.已知在直角坐标系中,点A(x,y),且xy=-2.试写出两个满足这些条件的点:_______.16.在直角坐标系中,点A(-1,2),点P(x,0)为x轴上的一个动点,则当x=_______时,线段PA的长得到最小值,最小值是_______.
17.若点B(-a,-b)在x轴负半轴上,则a_______0,b_______0.(填“>”“<”或“=”)18.已知点Q(-a2-1,b2+2),则它在第_______象限.
19.若点P到x轴的距离为3,到y轴的距离为2,则点P的坐标为_______.
20.已知点P(a,3),Q(-2,b)关于x轴对称,则a=_______,b=_______.
21.若点P(x,y)的坐标满足x+y=xy,则称点P为“和谐点”.请
写出一个“和谐点”的坐标:_______.
22.如图,△ABC的顶点都在正方形网格格点上,点A的坐标为(-
1,4).将△ABC沿y轴翻折到第一象限,则点C的对应点C'的坐
标是_______.
23.在平面直角坐标系中,点A1(1,1),A2(2,4),A3(3,9),A4(4,16),…,用你发现的规律确定点A9的坐标为_______.
24.观察数表.
根据表中数的排列规律,则B+D=_______.
25.已知正方形ABCD在平面直角坐标系中的位置如图所示,点A的坐标(0,4),点B的坐标(-3,0),则点C的坐标是_______.
26.等边三角形ABC的两顶点A、B的坐标分别为(-4,0),(4,0),则点C的坐标为_______.27.若点P在x轴的下方,在y轴的左侧,且到两条坐标轴的距离都是3,则点P的坐标是_______.
28.点(-1,0)与点(7,0)的距离为_______.
29.九年级某班有54名学生,所在教室有6行9列座位,用(m,n)表示第m行第n列的座位,新学期准备调整座位.设某个学生原来的座位为(m,n),若调整后的座位为(i,j),则称该生作了平移[a,b]=[m-i,n-j],并称a+b为该生的位置数.若某生的位置数为10,则当m+n取最小值时,m·n的最大值为_______.
三、解答题(第26~29题每题7分,其余每题8分,共44分)
30.已知点P(a+3,4-a),Q(2a,2b+3)关于y轴对称.求ab的值.
31.求点A(1,1)和B(-3,2)的距离.
32.如图,在4×4个边长为1的正方形组成的方格中,标有A 、B
两点,请你用两种不同方法表述点B 相对点A 的位置.
33.在同一平面直角坐标系中分别描出点A (-3,0),B(2,0),C(1,3),再用线段将这三点首尾依次连接起来,求△ABC 的面积与周长.
34.如图,在平面直角坐标系中,已知点M 0的坐标为(1,0),将线段OM 0绕原点O 沿逆时针方向旋转45°,再将其延长到点M 1,使得M 1M 0⊥OM 0,得到线段OM 1;又将线段OM 1绕原点O 沿逆时针方向旋转45°,再将其延长到点M 2,使得M 1M 1⊥OM 1,得到线段OM 2,如此下去,得到线段OM 3、OM 4、…、OM n .
(1)写出点M 5的坐标;
(2)求△M 5OM 6的周长;
(3)我们规定:把点M n (x n ,y n )(n =0,1,2,3…)的横坐标x n ,纵坐标y n 都取绝对值后得到的新坐标(n x ,n y )称之为点M n 的“绝对坐标”,根据图中点M n 的分布规律,请你猜想点M n 的“绝对坐标”,并写出来.
35.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△QA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3.已知A(1,3),A(2,3),A2(4,3),A3(8,3);B(2,0),B1(4,0),B2(8,0),B3(16,0).
(1)观察每次变换前后三角形的变化规律,若再将△OA3B3变换成△OA4B4,则点A4的坐标为_______,点B4的坐标为_______;
(2)若按第(1)题找到的规律将△OAB进行n次变换,得到△OA n B n,则点A n的坐标为_______,点Bn的坐标为_______.
参考答案
1.C 2.D 3.B 4.B 5.B 6.C 7.D 8.D 9.C 10.D
11.B10 12.(3,4) 13.(-9,2)
14.m>2 15.答案不唯一,如:(-1,2)和(1,-2)
16.-1 2 17.> = 18.二 19.(2,3)或(-2,3)或(-2,-3)或(2,-3).20.-2 -3 21.(0,0),(2,2). 22.(3,1)
23.(9,81) 24. 23 25.(-1,3)
26.(0,±43) 27.(-3,-3)
28.8
29.36
30.ab=-1.
31.AB=17
32.方法1:用有序实数对(a ,b )表示.比如:以点A 为原点,水平方向为x 轴,建立直角坐标系,则B(3,3).
方法2:用方向和距离表示,比如:点B 位于点A 的东北方向(北偏东45°等均可),距离点A32处.
33.10+10
34.(1)M 5(-4,-4) (2)8+82 (3)(()12n -,()12n -)
35.(1)(16,3) (32,0) (2)(2n ,3) (2n +1,0)。

相关文档
最新文档