河北省2016届中考数学模拟试卷(一)含答案解析
2016届中考数学真题模拟集训:专题16+图形的初步试题(新人教版含解析)(2年中考1年模拟)
专题16 图形的初步知识点名师点晴直线、射线、线段直线的性质理解并掌握直线的性质线段的性质能利用线段的中点和线段的性质进行线段的有关计算相交线对顶角与邻补角理解并掌握对顶角与邻补角的有关性质垂线的性质理解垂线的性质,并能解决相关的实际问题平行线平行线的定义与画法掌握平行公理及平行线的画法平行线的判定定理利用平行线的判定证明两直线互相平行平行线的性质能利用平行线的性质解决有关角的计算问题☞2年中考【2015年题组】1.(2015南宁)如图,一块含30°角的直角三角板ABC的直角顶点A在直线DE上,且BC∥DE,则∠CAE等于()A.30°B.45°C.60°D.90°【答案】A.【解析】试题分析:∵∠C=30°,BC∥DE,∴∠CAE=∠C=30°.故选A.考点:平行线的性质.2.(2015贵港)如图,直线AB∥CD,直线EF与AB,CD相交于点E,F,∠BEF的平分线与CD相交于点N.若∠1=63°,则∠2=()A.64°B.63°C.60°D.54°【答案】D.考点:平行线的性质.3.(2015天水)如图,将矩形纸带ABCD,沿EF折叠后,C.D两点分别落在C′、D′的位置,经测量得∠EFB=65°,则∠AED′的度数是()A.65°B.55°C.50°D.25°【答案】C.【解析】试题分析:∵AD∥BC,∠EFB=65°,∴∠DEF=65°,∴∠DED′=2∠DEF=130°,∴∠AED′=180°﹣130°=50°.故选C.考点:1.平行线的性质;2.翻折变换(折叠问题).4.(2015天水)如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=22,CD=2,点P在四边形ABCD的边上.若点P到BD的距离为32,则点P的个数为()A.2 B.3 C.4 D.5 【答案】A.考点:1.等腰直角三角形;2.点到直线的距离.5.(2015北海)已知∠A=40°,则它的余角为()A.40°B.50°C.130°D.140°【答案】B.【解析】试题分析:∠A的余角等于90°﹣40°=50°.故选B.考点:余角和补角.6.(2015崇左)下列各图中,∠1与∠2互为余角的是()A.B.C.D.【答案】C.【解析】试题分析:观察图形,互为余角的只能是C,故选C.考点:余角和补角.7.(2015崇左)如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A.的B.中C.国D.梦【答案】D.考点:专题:正方体相对两个面上的文字.8.(2015无锡)如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()A .B .C .D .【答案】D.【解析】试题分析:根据正方体的表面展开图,两条黑线在一列,故A错误,且两条相邻成直角,故B错误,中间相隔一个正方形,故C错误,只有D选项符合条件,故选D.考点:几何体的展开图.9.(2015广元)一副三角板按如图方式摆放,且∠1比∠2大50°,若设∠1=x°,∠2=y°.则可得到的方程组为()A.50180x yx y=-⎧⎨+=⎩B.50180x yx y=+⎧⎨+=⎩C.5090x yx y=-⎧⎨+=⎩D.5090x yx y=+⎧⎨+=⎩【答案】D.考点:1.由实际问题抽象出二元一次方程组;2.余角和补角.10.(2015西宁)如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是()A.74°12′B.74°36′C.75°12′D.75°36′【答案】C.【解析】试题分析:过点D作DF⊥AO交OB于点F.∵入射角等于反射角,∴∠1=∠3,∵CD∥OB,∴∠1=∠2(两直线平行,内错角相等);∴∠2=∠3(等量代换);在Rt△DOF中,∠ODF=90°,∠AOB=37°36′,∴∠2=90°﹣37°36′=52°24′;∴在△DEF中,∠DEB=180°﹣2∠2=75°12′.故选C.考点:1.平行线的性质;2.度分秒的换算;3.跨学科.11.(2015崇左)若直线a∥b,a⊥c,则直线b____c.【答案】⊥.【解析】试题分析:∵a⊥c,∴∠1=90°,∵a∥b,∴∠1=∠2=90°,∴c⊥b.故答案为:⊥.考点:1.平行线的性质;2.垂线.12.(2015梧州)如图,已知直线AB与CD交于点O,ON平分∠DOB,若∠BOC=110°,则∠AON的度数为度.【答案】145.考点:1.对顶角、邻补角;2.角平分线的定义.13.(2015钦州)如图,直线AB和OC相交于点O,∠AOC=100°,则∠1= 度.【答案】80.【解析】试题分析:由邻补角互补,得∠1=180°﹣∠AOC=180°﹣100°=80°,故答案为:80.考点:对顶角、邻补角.14.(2015宿迁)如图,在平面直角坐标系中,点P的坐标为(0,4),直线343-=xy与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为.【答案】28 5.考点:1.一次函数图象上点的坐标特征;2.垂线段最短;3.最值问题.15.(2015扬州)如图,已知矩形纸片的一条边经过直角三角形纸片的直角顶点,若矩形纸片的一组对边与直角三角形纸片的两条直角边相交成∠1、∠2,则∠2﹣∠1= .【答案】90°.【解析】试题分析:∵∠2+∠3=180°,∴∠3=180°﹣∠2.∵直尺的两边互相平行,∴∠4=∠3,∴∠4=180°﹣∠2.∵∠4+∠1=90°,∴180°﹣∠2+∠1=90°,即∠2﹣∠1=90°.故答案为:90°.考点:平行线的性质.16.(2015泰州)如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2= .【答案】140°.考点:平行线的性质.17.(2015绵阳)如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F= .【答案】9.5°.【解析】试题分析:∵AB∥CD,∠CDE=119°,∴∠AED=180°﹣119°=61°,∠DEB=119°.∵GF交∠DEB的平分线EF于点F,∴∠GEF=12×119°=59.5°,∴∠GEF=61°+59.5°=120.5°.∵∠AGF=130°,∴∠F=∠AGF﹣∠GEF=130°﹣120.5°=9.5°.故答案为:9.5°.考点:平行线的性质.18.(2015宿迁)如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.【答案】证明见试题解析.考点:1.等腰三角形的性质;2.平行线的性质;3.和差倍分.19.(2015武汉)如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.【答案】(1)证明见试题解析;(2)证明见试题解析.【解析】试题分析:(1)用SAS证明△ABC≌△DEF;(2)由△ABC≌△DEF,得出∠B=∠DEF,即可得出结论.试题解析:(1)∵AC⊥BC于点C,DF⊥EF于点F,∴∠ACB=∠DFE=90°,在△ABC和△DEF中,∵BC=EF,∠ACB=∠DFE,AC=DF,∴△ABC≌△DEF(SAS);(2)∵△ABC≌△DEF,∴∠B=∠DEF,∴AB∥DE.考点:1.全等三角形的判定与性质;2.平行线的判定.20.(2015益阳)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.【答案】50°.考点:平行线的性质.21.(2015六盘水)如图,已知,l1∥l2,C1在l1上,并且C1A⊥l2,A为垂足,C2,C3是l1上任意两点,点B在l2上,设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.【答案】理由见试题解析.【解析】试题分析:根据两平行线间的距离相等,即可得出结论.试题解析:∵直线l1∥l2,∴△ABC1,△ABC2,△ABC3的底边AB上的高相等,∴△ABC1,△ABC2,△ABC3这3个三角形同底,等高,∴△ABC1,△ABC2,△ABC3这些三角形的面积相等.即S1=S2=S3.考点:1.平行线之间的距离;2.三角形的面积.22.(2015曲靖)如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC 的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.【答案】①当M在线段CD上时,OD=DM+ON;②当M在线段CD延长线上时,OD=ON -DM,证明见试题解析.考点:1.全等三角形的判定与性质;2.平行线的性质;3.等腰三角形的判定与性质;4.分类讨论;5.探究型;6.综合题.23.(2015金华)图1、图2为同一长方体房间的示意图,图3为该长方体的表面展开图.(1)蜘蛛在顶点A′处.①苍蝇在顶点B处时,试在图1中画出蜘蛛为捉住苍蝇,沿墙面爬行的最近路线;②苍蝇在顶点C处时,图2中画出了蜘蛛捉住苍蝇的两条路线,往天花板ABCD爬行的最近路线A′GC和往墙面BB′C′C爬行的最近路线A′HC,试通过计算判断哪条路线更近;(2)在图3中,半径为10dm的⊙M与D′C′相切,圆心M到边CC′的距离为15dm,蜘蛛P 在线段AB上,苍蝇Q在⊙M的圆周上,线段PQ为蜘蛛爬行路线,若PQ与⊙M相切,试求PQ长度的范围.【答案】(1)①作图见试题解析;②往天花板ABCD爬行的最近路线A′GC更近;(2)206dm≤PQ≤55dm.试题解析:(1)①根据“两点之间,线段最短”可知:线段A′B为最近路线,如图1所示.②Ⅰ.将长方体展开,使得长方形ABB′A′和长方形ABCD在同一平面内,如图2①.在Rt△A′B′C中,∠B′=90°,A′B′=40,B′C=60,∴22406052002013Ⅱ.将长方体展开,使得长方形ABB′A′和长方形BCC′B′在同一平面内,如图2②.在Rt △A′C′C 中,∠C′=90°,A′C′=70,C′C=30,∴A′C=227030+=5800=1058.∵5200<5800,∴往天花板ABCD 爬行的最近路线A′GC 更近;(2)过点M 作MH ⊥AB 于H ,连接MQ 、MP 、MA 、MB ,如图3.∵半径为10dm 的⊙M 与D′C′相切,圆心M 到边CC′的距离为15dm ,BC′=60dm ,∴MH=60﹣10=50,HB=15,AH=40﹣15=25,根据勾股定理可得AM=22AH MH +=222550+=255,MB=22BH MH +=221550+=2725,∴50≤MP≤255.∵⊙M 与D′C′相切于点Q ,∴MQ ⊥PQ ,∠MQP=90°,∴PQ=222210PM QM MP -=-.当MP=50时,PQ=2400=206;当MP=255时,PQ=3025=55. ∴PQ 长度的范围是206dm≤PQ≤55dm .考点:1.圆的综合题;2.几何体的展开图;3.切线的性质;4.综合题;5.压轴题.【2014年题组】1.(2014年福建龙岩)如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于( )A .40°B .50°C .70°D .80°【答案】C.考点:平行线的性质;平角定义.2.(2014年甘肃白银)将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与∠α互余的角共有()A.4个 B.3个C.2个D.1个【答案】C.【解析】试题分析:如答图,∵斜边与这根直尺平行,∴∠α=∠2.又∵∠1+∠2=90°,∴∠1+∠α=90°.又∠α+∠3=90°,∴与α互余的角为∠1和∠3.故选C.考点:1.平行线的性质;2.互余的定义.3.(2014年广东汕尾)如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE 【答案】D.考点:平行线的判定.4(2014抚顺)如图所示,已知AB∥CD,CE平分∠ACD,当∠A=120°时,∠ECD的度数是()A. 45°B. 40°C. 35°D. 30°【答案】D.【解析】试题分析:∵AB∥CD,∠A=120°,∴∠DCA=180°-∠A=60°,∵CE平分∠ACD,∴∠ECD=∠DCA=30°,故选D.考点:平行线的性质.5.(2014·吉林)如图,将三角形的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10°B. 15°C. 20°D. 25°【答案】D.考点:平行线的性质.6.(2014年湖南岳阳)如图,若AB∥CD∥EF,∠B=40°,∠F=30°,则∠BCF= .【答案】70°.【解析】试题分析:∵AB∥CD∥EF,∴∠B=∠BCD,∠F=∠DCF.又∠B=40°,∠F=30°,∴∠BCF=∠BCD +∠DCF =70°.考点:平行线的性质.7.(2014镇江)如图,直线m∥n,Rt△ABC的顶点A在直线n上,∠C=90°,若∠1=25º,∠2=70º.则∠B=°.【答案】45.考点:1.平行线的性质;2.直角三角形两锐角的关系.8.(2014长沙)如图,直线a∥b,直线c分别与a,b相交,若∠1=70°,则∠2=.【答案】110°.【解析】试题分析:直线a∥b,直线c分别与a,b相交,根据平行线的性质,以及对顶角的定义可求出.试题解析:如图:∵∠1=70°,∴∠3=∠1=70°,∵a∥b,∴∠2+∠3=180°,∴∠2=180°﹣70°=110°.考点:1.平行线的性质;2.对顶角、邻补角.☞考点归纳归纳1:直线、射线和线段基础知识归纳:1.直线(1)直线公理:经过两个点有一条直线,并且只有一条直线。
2024年河北省邯郸市中考数学模拟试卷+答案解析
2024年河北省邯郸市中考数学模拟试卷一、选择题:本题共16小题,共42分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.()A. B.2 C. D.12.下列算式中,结果等于的是()A. B. C. D.3.若,则下列式子正确的是()A. B. C. D.4.如图所示,该几何体的俯视图是()A.B.C.D.5.某小区的圆形花园中间有两条互相垂直的小路,园丁在花园中栽种了8棵桂花树,A,B两处桂花树的位置关于小路对称.在如图所示的平面直角坐标系内,若点A的坐标为,则点B的坐标为()A.B.C.D.6.化简的结果是()A. B. C.x D.7.宋苏轼《赤壁赋》:“寄蜉蝣于天地,渺沧海之一粟.”比喻非常渺小.据测量,200粒粟的重量大约为1克,用科学记数法表示一粒粟的重量约为()A.克B.克C.克D.克8.若实数a、b满足,,则ab的值是()A. B.2 C. D.509.如图所示,两台天平保持平衡,已知每块巧克力的重量相等,每个果冻的重量相等,则每块巧克力和每个果冻的重量分别是()A.10g,40gB.15g,35gC.20g,30gD.30g,20g10.若一元二次方程的两根为,,则的值是()A.4B.2C.1D.11.如图,在直角坐标系中,一次函数与反比例函数的图象交于A,B两点,下列结论正确的是()A.当时,B.当时,C.当时,D.当时,12.对于题目:“小丽同学带11元钱去买钢笔和笔记本两种文具都买,钢笔每支3元,笔记本每本1元,那么钢笔能买多少支?”,甲同学的答案是1支,乙同学的答案是2支,丙同学的答案是3支,则正确的是()A.只有甲的答案对B.甲、乙答案合在一起才完整C.甲、乙、丙答案合在一起才完整D.甲、乙、丙答案合在一起也不完整13.如图,小明家的客厅有一张高米的圆桌,直径BC为1米,在距地面2米的A处有一盏灯,圆桌的影子最外侧两点分别为D、E,依据题意建立如图所示的平面直角坐标系,其中点D的坐标为,则点E 的坐标是()A. B. C. D.14.在平面直角坐标系中,若直线不经过第一象限,则关于x的方程的实根的个数是()A.0B.1C.2D.1或215.如图,四边形ABCD是边长为2cm的正方形,点E,点F分别为边AD,CD中点,点O为正方形的中心,连接OE,OF,点P从点E出发沿运动,同时点Q从点B出发沿BC运动,两点运动速度均为,当点P运动到点F时,两点同时停止运动,设运动时间为t s,连接BP,PQ,的面积为,下列图象能正确反映出S与t的函数关系的是()A. B.C. D.16.现要在抛物线为常数,上找点,所能找到点P 的个数是()A.1个B.2个C.3个D.无数个二、填空题:本题共3小题,共12分。
【中考数学】2024届河北省石家庄市模拟试题(一模)含答案
【中考数学】2024届河北省石家庄市模拟试题(一模)注意事项:1.本试卷共6页,,考试时间120分钟.2.答题前,考生务必将姓名、准考证号填写在试卷和答题卡相应位置.3.所均在答题卡上作答,在本试卷或草稿纸上作答无效.答题前,请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题.4.答选择题时,用2B 铅笔将答题卡上对应题目的答案标号涂黑;答非选择题时,请在答题卡上对应题目的答题区域内答题.5.考试范围:九年级全学年·符合河北中考之必考内容.一、选择题(本大题有16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形中,既是轴对称图形又是中心对称图形的是A .B .C .D .2.如图1所示的几何体中,主视图是图1A .B .C .D .3.将抛物线向左平移3个单位长度,再向下平移2个单位长度,得到抛物()232y x =-+线的解析式是A .B .C .D .2y x=()264y x =-+()26y x =-24y x =+4.下列说法正确的是A .了解一批灯泡的使用寿命,应采用抽样调查的方式图2图32,3 A.()图5A.π图613图7A.12寸图8图9图10图11...方案一方案二方案三图13图14(1)若有六个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长是 ;(2)有n 个长均为1的正六边形,采用上述两种方式的一种或两种方式混合拼接,若图案的外轮廓的周长为18,则n 的最大值为.三、解答题(本大题有7个小题,共72分,解答应写出文字说明、证明过程或演算步骤)20.(本小题满分10分)下面是杨老师讲解一元二次方程的解法时在黑板上的板书过程:请认真阅读并完成任务.解方程:.22350x x --=解:第一步23522x x -=,第二步22233532424x x ⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭,第三步2349416x ⎛⎫-= ⎪⎝⎭,第四步3744x -=±,.第五步152x =21x =-(1)任务一:①杨老师解方程的方法是 ;A .直接开平方法B .配方法C .公式法D .因式分解法第二步变形的依据是 ;(2)任务二:请你按要求解下列方程:①;(公式法)2230x x +-=②.(因式分解法)()2324x x -=-21.(本小题满分8分)如图15,在平面直角坐标系中,△ABC 的三个顶点坐标分别为,,()2,1A -()1,2B -.()3,3C -图15(1)将△ABC向上平移4个单位长度,再向右平移图16图17图18(1)求证:△CAB图19 25.(本小题满分12图20(1)点A的坐标是(2)求满足的函数关系1 y=-图21(2)如图22,在(1)的条件下。
年河北省中考数学试卷含答案解析(word版)
2016年河北省中考数学试卷一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:﹣(﹣1)=( )A.±1 B.﹣2ﻩC.﹣1ﻩD.12.计算正确的是()A.(﹣5)0=0ﻩB.x2+x3=x5C.(ab2)3=a2b5ﻩD.2a2•a﹣1=2a3.下列图形中,既是轴对称图形又是中心对称图形的是()A. B.C.ﻩD.4.下列运算结果为x﹣1的是( )A.1﹣B.•ﻩC.÷ D.5.若k≠0,b<0,则y=kx+b的图象可能是()A.ﻩB.ﻩC.ﻩD.6.关于▱ABCD的叙述,正确的是( )A.若AB⊥BC,则▱ABCD是菱形ﻩB.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形 D.若AB=AD,则▱ABCD是正方形7.关于的叙述,错误的是( )A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点8.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①ﻩB.②ﻩC.③ﻩD.④9.如图为4×4的网格图,A,B,C,D,O均在格点上,点O是()A.△ACD的外心B.△ABC的外心ﻩC.△ACD的内心 D.△ABC的内心10.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段ADB.AC平分∠BADC.S△ABC=BC•AH D.AB=AD11.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论: 甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是( )A.甲乙ﻩB.丙丁ﻩC.甲丙 D.乙丁12.在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是()A.=﹣5B.=+5ﻩC.=8x﹣5ﻩD.=8x+513.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°14.a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根ﻩB.有两个不相等的实数根C.无实数根ﻩD.有一根为015.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A.ﻩB.C.D.16.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A .1个ﻩB.2个ﻩC .3个ﻩD.3个以上二、填空题(本大题有3小题,共10分.17-18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.8的立方根是______.18.若mn=m +3,则2mn +3m﹣5mn +10=______.19.如图,已知∠AOB=7°,一条光线从点A 出发后射向OB 边.若光线与O B边垂直,则光线沿原路返回到点A,此时∠A=90°﹣7°=83°.当∠A <83°时,光线射到OB 边上的点A 1后,经OB反射到线段AO 上的点A 2,易知∠1=∠2.若A1A 2⊥AO,光线又会沿A2→A 1→A原路返回到点A ,此时∠A=______°.…若光线从A 点出发后,经若干次反射能沿原路返回到点A ,则锐角∠A 的最小值=______°.三、解答题(本大题有7个小题,共68分.解答应写出必要的文字说明、证明过程或演算步骤)20.请你参考黑板中老师的讲解,用运算律简便计算: (1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.21.如图,点B,F ,C ,E 在直线l上(F ,C之间不能直接测量),点A,D 在l 异侧,测得AB=DE,AC =DF,BF=EC .(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.22.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.23.如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P,并指出她与嘉嘉落回到圈A的可2能性一样吗?24.某商店通过调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x(元)满足一次函数关系,如表:第1个第2个第3个第4个…第n个调整前的单价x(元) x1x2=6 x3=72x4…xn调整后的单价y(元)y1y2=4y=59y4…y n3已知这个n玩具调整后的单价都大于2元.(1)求y与x的函数关系式,并确定x的取值范围;(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?(3)这n个玩具调整前、后的平均单价分别为,,猜想与的关系式,并写出推导过程.25.如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在上且不与A点重合,但Q点可与B点重合.发现:的长与的长之和为定值l,求l:思考:点M与AB的最大距离为______,此时点P,A间的距离为______;点M与AB的最小距离为______,此时半圆M的弧与AB所围成的封闭图形面积为______;探究:当半圆M与AB相切时,求的长.(注:结果保留π,cos35°=,cos55°=)26.如图,抛物线L:y=﹣(x﹣t)(x﹣t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线y=(k>0,x>0)于点P,且OA•MP=12,(1)求k值;(2)当t=1时,求AB的长,并求直线MP与L对称轴之间的距离;(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标;(4)设L与双曲线有个交点的横坐标为x,且满足4≤x0≤6,通过L位置随t变化的过程,直接写出0t的取值范围.2016年河北省中考数学试卷参考答案与试题解析一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。
河北中考数学试卷(含答案解析)
河北省中考数学试卷一、选择题(共12小题,1-6小题每小题2分,7-12小题,每题3分,满分30分)1、(•河北)计算30的结果是()A、3B、30C、1D、0考点:零指数幂。
专题:计算题。
分析:根据零指数幂:a0=1(a≠0)计算即可.解答:解:30=1,故选C.点评:本题主要考查了零指数幂,任何非0数的0次幂等于1.2、(•河北)如图,∠1+∠2等于()A、60°B、90°C、110°D、180°考点:余角和补角。
专题:计算题。
分析:根据平角的定义得到∠1+90°+∠2=180°,即由∠1+∠2=90°.解答:解:∵∠1+90°+∠2=180°,∴∠1+∠2=90°.故选B.点评:本题考查了平角的定义:180°的角叫平角.3、(•河北)下列分解因式正确的是()A、﹣a+a3=﹣a(1+a2)B、2a﹣4b+2=2(a﹣2b)C、a2﹣4=(a﹣2)2D、a2﹣2a+1=(a﹣1)2考点:提公因式法与公式法的综合运用。
专题:因式分解。
分析:根据提公因式法,平方差公式,完全平方公式求解即可求得答案.解答:解:A、﹣a+a3=﹣a(1﹣a2)=﹣a(1+a)(1﹣a),故本选项错误;B、2a﹣4b+2=2(a﹣2b+1),故本选项错误;C、a2﹣4=(a﹣2)(a+2),故本选项错误;D、a2﹣2a+1=(a﹣1)2,故本选项正确.故选D.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,理解因式分解与整式的乘法是互逆运算是解题的关键.4、(•河北)下列运算中,正确的是()A、2x﹣x=1B、x+x4=x5C、(﹣2x)3=﹣6x3D、x2y÷y=x2考点:整式的除法;合并同类项;幂的乘方与积的乘方。
专题:计算题。
分析:A中整式相减,系数相减再乘以未知数,故错误;B,不同次数的幂的加法,无法相加;C,整式的幂等于各项的幂,错误;D,整式的除法,相同底数幂底数不变,指数相减.解答:解:A中整式相减,系数相减再乘以未知数,故本选项错误;B,不同次数的幂的加法,无法相加,故本选项错误;C,整式的幂等于各项的幂,故本选项错误;D,整式的除法,相同底数幂底数不变,指数相减.故本答案正确.故选D.点评:本题考查了整式的除法,A中整式相减,系数相减再乘以未知数,故错误;B,不同次数的幂的加法,无法相加;C,整式的幂等于各项的幂,错误;D,整式的除法,相同底数幂底数不变,指数相减.本题很容易判断.5、(•河北)一次函数y=6x+1的图象不经过()A、第一象限B、第二象限C、第三象限D、第四象限考点:一次函数的性质。
2020-2021学年河北省中考数学模拟试卷(1)及答案解析
河北省中考数学模拟试卷(1)一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题3分,共24分)1.﹣3的相反数是()A.3 B.C.﹣3 D.﹣2.下列计算正确的是()A.a+a=a2B.(2a)3=6a3C.(a﹣1)2=a2﹣1 D.a3÷a=a23.如图,将边长为4个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,则四边形ABFD的周长为()A.12 B.16 C.20 D.244.下列命题中,真命题是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直且相等的四边形是正方形D.两条对角线互相平分的四边形是平行四边形5.用配方法解方程x2+x﹣1=0,配方后所得方程是()A.(x﹣)2=B.(x+)2=C.(x﹣)2=D.(x+)2=6.在半径为1的⊙O中,弦AB=1,则的长是()A.B.C.D.7.估计+1的值是()A.在42和43之间 B.在43和44之间 C.在44和45之间 D.在45和46之间8.已知如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0)和点B,化简的结果为①c,②b,③b﹣a,④a﹣b+2c,其中正确的有()A.一个B.两个C.三个D.四个二、填空题9.从一副扑克牌(除去大小王)中摸出两张牌都是梅花的概率为.10.如图,直线y=kx(k>0)与双曲线y=交于A(a,b),B(c,d)两点,则3ad ﹣5bc= .11.分解因式:x3﹣xy2= .12.如图,四边形ABCD是平行四边形,E为BC边的中点,DE、AC相交于点F,若△CEF的面积为6,则△ADF的面积为.13.等腰三角形的腰长为2,腰上的高为1,则它的底角等于.14.有边长为1的等边三角形卡片若干张,使用这些三角形卡片拼出边长为2、3、4…的等边三角形(如图所示),根据图形推断,每个等边三角形所用的等边三角形所用的卡片数S与边长n的关系式是.15.如果一个三角形的三边长为5、12、13,与其相似的三角形的最长的边为39,那么较大的三角形的周长为,面积为.16.△ABC是⊙O的内接三角形,∠BAC=60°,D是的中点,AD=a,则四边形ABDC 的面积为.三、解答题(第17小题6分,第18、19小题各8分,第20小题10分,共32分)17.3﹣2+4﹣(2006﹣sin45°)018.已知,求代数式的值.19.如图,在平面直角坐标系中,点A的坐标为(3,﹣3),点B的坐标为(﹣1,3),回答下列问题(1)点C的坐标是.(2)点B关于原点的对称点的坐标是.(3)△ABC的面积为.(4)画出△ABC关于x轴对称的△A′B′C′.20.已知:如图,AB是⊙O的直径,⊙O过AC的中点D,DE切⊙O于点D,交BC 于点E.(1)求证:DE⊥BC;(2)如果CD=4,CE=3,求⊙O的半径.四、应用题21.初三年(4)班要举行一场毕业联欢会,主持人同时转动下图中的两个转盘,由一名同学在转动前来判断两个转盘上指针所指的两个数字之和是奇数还是偶数,如果判断错误,他就要为大家表演一个节目;如果判断正确,他可以指派别人替自己表演节目.现在轮到小明来选择,小明不想自己表演,于是他选择了偶数.小明的选择合理吗?从概率的角度进行分析(要求用树状图或列表方法求解)22.如图,在一块如图所示的三角形余料上裁剪下一个正方形,如果△ABC为直角三角形,且∠ACB=90°,AC=4,BC=3,正方形的四个顶点D 、E 、F 、G 分别在三角形的三条边上.求正方形的边长.五、解答题(本题12分)23.已知:如图所示的一张矩形纸片ABCD (AD >AB ),将纸片折叠一次,使点A 与C 重合,再展开,折痕EF 交AD 边于E ,交BC 边于F ,分别连接AF 和CE . (1)求证:四边形AFCE 是菱形;(2)若AE=10cm ,△ABF 的面积为24cm 2,求△ABF 的周长;(3)在线段AC 上是否存在一点P ,使得2AE 2=AC •AP ?若存在,请说明点P 的位置,并予以证明;若不存在,请说明理由.六、解答题(本题12分)24.某开发公司现有员工50名,所有员工的月工资情况如下表:员工 管理人员 普通工作人员 人员结构总经理部门经理 科研人员 销售人员 高级技工中级技工 勤杂工 员工数/名14 2 322 3 每人月工资/元 21000 84002025220018001600950请你根据上述内容,解答下列问题:(1)该公司“高级技工”有人;(2)该公司的工资极差是元;(3)小张到这家公司应聘普通工作人员,咨询过程中得到两个答案,你认为用哪个数据向小张介绍员工的月工资实际水平更合理些?(4)去掉最高工资的前五名,再去掉最低工资的后五名,然后算一算余下的40人的平均工资,说说你的看法.七、计算题(本题12分)25.某软件公司开发出一种图书管理软件,前期投入的开发广告宣传费用共50000元,且每售出一套软件,软件公司还需支付安装调试费用200元.(1)试写出总费用y(元)与销售套数x(套)之间的函数关系式.(2)如果每套定价700元,软件公司售出多少套可以收回成本?(3)某承包商与软件开发公司签订合同,买下公司生产的全部软件,但700元的单价要打折,并且公司仍然要负责安装调试.如果公司总共可生产该软件1500套,并且公司希望从这个软件项目上获得不少于280000元的利润,最多可以打几折?八、计算题(本题14分)26.如图,抛物线y=x2﹣4x﹣1顶点为D,与x轴相交于A、B两点,与y轴相交于点C.(1)求这条抛物线的顶点D的坐标;(2)经过点(0,4)且与x轴平行的直线与抛物线y=x2﹣4x﹣1相交于M、N两点(M在N的左侧),以MN为直径作⊙P,过点D作⊙P的切线,切点为E,求点DE 的长;(3)上下平移(2)中的直线MN,以MN为直径的⊙P能否与x轴相切?如果能够,求出⊙P的半径;如果不能,请说明理由.参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题3分,共24分)1.﹣3的相反数是()A.3 B.C.﹣3 D.﹣【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:∵互为相反数相加等于0,∴﹣3的相反数是3.故选:A.【点评】此题主要考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.下列计算正确的是()A.a+a=a2B.(2a)3=6a3C.(a﹣1)2=a2﹣1 D.a3÷a=a2【考点】完全平方公式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.【分析】根据合并同类项运算法则和积的乘方法则、完全平方公式以及同底数幂的除法法则逐项计算即可.【解答】解:A,a+a=2a≠a2,故该选项错误;B,(2a)3=8a3≠6a3,故该选项错误C,(a﹣1)2=a2﹣2a+1≠a2﹣1,故该选项错误;D,a3÷a=a2,故该选项正确,故选D.【点评】本题考查了并同类项运算法则和积的乘方法则、完全平方公式以及同底数幂的除法法则,解题的关键是熟记以上各种运算法则.3.如图,将边长为4个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,则四边形ABFD的周长为()A.12 B.16 C.20 D.24【考点】平移的性质;等边三角形的性质.【专题】数形结合.【分析】根据平移的性质易得AD=BE=2,那么四边形ABFD的周长即可求得.【解答】解:∵将边长为4个单位的等边△ABC沿边BC向右平移2个单位得到△DEF,∴AD=BE=2,各等边三角形的边长均为4.∴四边形ABFD的周长=AD+AB+BE+FE+DF=16.故选B.【点评】本题考查平移的性质,用到的知识点为:平移前后对应线段相等;关键是找到所求四边形的各边长.4.下列命题中,真命题是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直且相等的四边形是正方形D.两条对角线互相平分的四边形是平行四边形【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A.两条对角线相等的平行四边形是矩形,故本选项错误;B.两条对角线互相垂直的平行四边形是菱形,故本选项错误;C.两条对角线互相垂直且相等的平行四边形是正方形,故本选项错误;D.两条对角线互相平分的四边形是平行四边形,正确;故选:D.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.用配方法解方程x2+x﹣1=0,配方后所得方程是()A.(x﹣)2=B.(x+)2=C.(x﹣)2=D.(x+)2=【考点】解一元二次方程﹣配方法.【分析】移项后两边都配上一次项系数一半的平方可得.【解答】解:∵x2+x=1,∴x2+x+=1+,即(x+)2=,故选:D.【点评】本题主要考查配方法解一元二次方程,熟练掌握配方法解方程的基本步骤是解题的关键.6.在半径为1的⊙O中,弦AB=1,则的长是()A.B.C.D.【考点】弧长的计算.【分析】先利用垂径定理求出角的度数,再利用弧长公式求弧长.【解答】解:如图,作OC⊥AB,则利用垂径定理可知BC=∵弦AB=1,∴sin∠COB=∴∠COB=30°∴∠AOB=60°∴的长==.故选C.【点评】此题先利用垂径定理求出角的度数,再利用弧长公式求弧长.7.估计+1的值是()A.在42和43之间 B.在43和44之间 C.在44和45之间 D.在45和46之间【考点】估算无理数的大小.【分析】首先拿44的平方试一下,45的平方大于2009,所以很容易得到结果.【解答】解:∵1936<2009<2025,∴44<<45,即45<<46.故选D.【点评】本题考查估计无理数的大小,本题是选择题可以先从选项算起,很容易得到结论.8.已知如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0)和点B,化简的结果为①c,②b,③b﹣a,④a﹣b+2c,其中正确的有()A.一个B.两个C.三个D.四个【考点】抛物线与x轴的交点;二次根式的性质与化简.【专题】压轴题;数形结合.【分析】先把A点坐标代入抛物线的解析式可得a﹣b+c=0,再根据抛物线的开口向下可得a<0,由抛物线的图象可知对称轴在x轴的正半轴可知﹣>0,抛物线与y 轴相交于y轴的正半轴,所以c>0,根据此条件即可判断出a+c及c﹣b的符号,再根据二次根式的性质即可进行解答.【解答】解:∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),∴a﹣b+c=0,即a+c=b,∵抛物线的开口向下,∴a<0,∵对称轴在x轴的正半轴可知﹣>0,∴b>0,∵抛物线与y轴相交于y轴的正半轴,∴c>0,∴a+c=b>0,c>b,∴①原式=b+(c﹣b)=c,故①正确,④原式=a+c+c﹣b=a﹣b+2c,故④正确.③∵a﹣b+c=0∴原式=a﹣b+2c=a﹣b+c+c=0+c=c,故③正确.故选C.【点评】本题考查的是抛物线与x轴的交点,涉及到抛物线的图象与系数的关系,抛物线的对称轴方程等相关知识.二、填空题9.从一副扑克牌(除去大小王)中摸出两张牌都是梅花的概率为.【考点】加法原理与乘法原理.【专题】计算题.【分析】让摸出第一张牌是梅花的概率乘以摸出第二张牌是梅花的概率即为所求的概率.【解答】解:第一张摸出梅花的概率:=,此时梅花还剩12张,牌一共还有51张,第二张又摸到梅花的概率是:=,两张牌都摸到梅花的概率是:×=,故答案为.【点评】考查乘法原理的应用;两次实验的概率=第一次实验的可能性与第二次实验的可能性的积.10.如图,直线y=kx(k>0)与双曲线y=交于A(a,b),B(c,d)两点,则3ad ﹣5bc= 6 .【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】本题需先根据交点的性质,把A(a,b),B(c,d)分别代入直线y=kx(k >0)与双曲线y=中,求出它们之间相等的量,最后再把他们代入及可求出结果.【解答】解:∵直线y=kx(k>0)与双曲线y=交于A(a,b),B(c,d)两点,∴把A(a,b),B(c,d)代入上式得;k=,k=∴∴ad=bc∵ab=3,cd=3∴abcd=9,即(ad)2=9,∴ad=bc=﹣3,∴3ad﹣5bc=﹣9+15=6.故答案为6.【点评】本题主要考查了反比例函数与一次函数的交点问题,在解题时要注意交点与函数的性质问题.11.分解因式:x3﹣xy2= x(x+y)(x﹣y).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式x,进而利用平方差公式分解因式得出答案.【解答】解:x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y).故答案为:x(x+y)(x﹣y).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.12.如图,四边形ABCD是平行四边形,E为BC边的中点,DE、AC相交于点F,若△CEF的面积为6,则△ADF的面积为24 .【考点】平行四边形的性质.【专题】压轴题;数形结合.【分析】根据E为BC边的中点可得出CE和AD的比,进而根据面积比等于相似比的平方可得出△ADF的面积.【解答】解:∵四边形ABCD是平行四边形,E为BC边的中点,∴=,∴S△CFE:S△ADF=1:4,又∵△CEF的面积为6,∴△ADF的面积为24.故答案为:24.【点评】本题考查平行四边形的性质,属于基础的应用题,难度不大,解答本题的关键是掌握面积比等于相似比的平方.13.等腰三角形的腰长为2,腰上的高为1,则它的底角等于15°或75°..【考点】等腰三角形的性质;勾股定理.【专题】计算题;分类讨论.【分析】此题分两种情况,当顶角为锐角时,利用勾股定理,AD的长,然后即可得出∠ABD=60°,可得顶角度数.同理即可求出顶角为钝角时,底角的度数.【解答】解;如图1,△ABC中,AB=AC=2,BD为腰上的高,且BD=1,顶角为锐角,∵AD2=AB2﹣BD2,∴AD2=4﹣1=3,∴AD=,∴∠ABD=60°,∴顶角为30°,底角为75°;如图2,△ABC中,AB=AC=2,BD为腰上的高,且BD=1,顶角为钝角同理可得,底角为15°.故答案为:15°或75°.【点评】此题主要考查学生对等腰三角形性质的理解和掌握,解答此题的关键是利用分类讨论的思想进行分析,对顶角为锐角和顶角为钝角时分别进行分析.14.有边长为1的等边三角形卡片若干张,使用这些三角形卡片拼出边长为2、3、4…的等边三角形(如图所示),根据图形推断,每个等边三角形所用的等边三角形所用的卡片数S与边长n的关系式是S=n2(n≥2).【考点】函数关系式;规律型:图形的变化类.【分析】长特殊到一般探究规律后,利用规律即可解决问题.【解答】解:图1中,当n=2时,S=4;如图2中当n=3时,S=9;图3中,当n=4时,S=16.….依此类推,总数S与边长n的关系式S=n2(n≥2).故答案为S=n2(n≥2)【点评】本题考查函数关系式、规律型:图形的变化类题目,解题的关键是学会从特殊到一般的探究方法,学会探究规律,利用规律解决问题.15.如果一个三角形的三边长为5、12、13,与其相似的三角形的最长的边为39,那么较大的三角形的周长为90 ,面积为270 .【考点】相似三角形的性质;勾股定理的逆定理.【分析】由相似三角形对应边比相等,知道已知三角形的三边和较大三角形的最大边,根据相应比求得边和周长,由三角形是直角三角形面积即求得.【解答】解:设较大三角形的其他两边长为a,b.∵由相似三角形的对应边比相等∴解得:a=15,b=36,则较大三角形的周长为90,面积为270.故较大三角形的周长为90,面积为270.【点评】本题考查了相似三角形对应边的比相等,根据已知三角形的三边,未知三角形的最长边,知道了对应比,从而求得.16.△ABC是⊙O的内接三角形,∠BAC=60°,D是的中点,AD=a,则四边形ABDC的面积为a2.【考点】圆内接四边形的性质;含30度角的直角三角形;圆周角定理.【专题】计算题;压轴题.【分析】根据题意求得∠DBC=∠DCB=30°,设BD=DC=x,那么BC=x,由正弦定理和托勒密定理AB+AC=a,再根据S四边形ABDC=S△ABD+S△ACD,从而求得答案.【解答】解:解法一:在ABDC中,∠BAC=60度,所以∠BDC=120°,∵点D是弧BC的中点,∴BD=DC,∴∠DBC=∠DCB=30°,在△BDC中用正弦定理,得∴BC=BD,设BD=DC=x,那么BC=x,用托勒密定理:AD•BC=AB•DC+BD•AC,即ax=x•AB+x•AC,则AB+AC=a,S四边形ABDC=S△ABD+S△ACD=(AB•AD•sin∠BAD+AC•AD•sin∠DAC),=(AB+AC)AD•sin30°,=a2;解法二:如图,过点D作DE⊥AB,DF⊥AC,垂足分别为E、F,∵D是的中点,∴BD=CD,∠BAD=∠FAD,∴DE=DF(角平分线上的点到角的两边的距离相等),在Rt△DBE与Rt△DCF中,,∴Rt△DBE≌Rt△DCF(HL),∴S△DBE=S△DCF,∴S四边形ABDC=S四边形AEDF,∵点D是弧BC的中点,∠BAC=60°,∴∠BAD=∠BAC=×60°=30°,∵AD=a,∴AE=AD•cos30°=a,DE=AD•sin30•=a,∴S四边形AEDF=2S△ADE=2××a×a=a2.故答案为:a2.【点评】本题考查了圆内接四边形的性质以及圆周角定理,是竞赛题难度偏大.三、解答题(第17小题6分,第18、19小题各8分,第20小题10分,共32分)17.3﹣2+4﹣(2006﹣sin45°)0【考点】特殊角的三角函数值;二次根式的混合运算.【专题】计算题.【分析】本题涉及零指数幂、二次根式化简及特殊角的三角函数值等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:3﹣2+4﹣(2006﹣sin45°)0,=3﹣2+20﹣×1,=20.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握零指数幂、二次根式化简及特殊角的三角函数值等考点的运算.18.已知,求代数式的值.【考点】二次根式的化简求值.【专题】计算题.【分析】由已知条件得到a﹣1=1﹣<0,再把代数式利用因式分解变形得到原式=﹣,则根据二次根式的性质得原式=a﹣1﹣=a﹣1+,然后把a的值代入计算即可.【解答】解:∵a=2﹣,∴a﹣1=1﹣<0,∴原式=﹣=a﹣1﹣=a﹣1+,当a=2﹣时,原式=2﹣﹣1+=2﹣﹣1+2+=3.【点评】本题考查了二次根式的化简求值:一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.19.如图,在平面直角坐标系中,点A的坐标为(3,﹣3),点B的坐标为(﹣1,3),回答下列问题(1)点C的坐标是(﹣3,﹣2).(2)点B关于原点的对称点的坐标是(1,﹣3).(3)△ABC的面积为16 .(4)画出△ABC关于x轴对称的△A′B′C′.【考点】作图﹣轴对称变换.【专题】作图题.【分析】(1)根据平面直角坐标系写出即可;(2)根据关于原点对称的点的横坐标与纵坐标都互为相反数解答;(3)利用三角形所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解;(4)根据网格结构找出点A、B、C关于x轴的对称点A′、B′、C′的位置,然后顺次连接即可.【解答】解:(1)点C的坐标是(﹣3,﹣2);(2)点B关于原点的对称点的坐标是(1,﹣3);(3)△ABC的面积=6×6﹣×2×5﹣×1×6﹣×4×6,=36﹣5﹣3﹣12,=36﹣20,=16;(4)如图所示,△A′B′C′即为所求作的三角形.故答案为:(1)(﹣3,﹣2),(2)(1,﹣3),(3)16.【点评】本题考查了利用轴对称变换作图,平面直角坐标系的相关知识,熟练掌握网格结构,准确找出对应点的位置是解题的关键.20.已知:如图,AB是⊙O的直径,⊙O过AC的中点D,DE切⊙O于点D,交BC 于点E.(1)求证:DE⊥BC;(2)如果CD=4,CE=3,求⊙O的半径.【考点】切线的性质;圆周角定理;相似三角形的判定与性质.【专题】几何综合题;压轴题.【分析】本题由已知DE是⊙O的切线,可联想到常作的一条辅助线,即“见切点,连半径,得垂直”,然后再把要证的垂直与已有的垂直进行联系,即可得出证法.【解答】(1)证明:连接OD,(1分)∵DE切⊙O于点D,∴DE⊥OD,∴∠ODE=90°,(2分)又∵AD=DC,AO=OB,∴OD是中位线,∴OD∥BC,∴∠DEC=∠ODE=90°,∴DE⊥BC;(4分)(2)解:连接BD,(5分)∵AB是⊙O的直径,∴∠ADB=90°,∴BD⊥AC,∴∠BDC=90°,又∵DE⊥BC,Rt△CDB∽Rt△CED,(7分)∴,∴BC=,(9分)又∵OD=BC,∴OD=,即⊙O的半径为.【点评】命题立意:此题主要考查圆的切线的性质、垂直的判定、圆周角的性质、三角形相似等知识.四、应用题21.初三年(4)班要举行一场毕业联欢会,主持人同时转动下图中的两个转盘,由一名同学在转动前来判断两个转盘上指针所指的两个数字之和是奇数还是偶数,如果判断错误,他就要为大家表演一个节目;如果判断正确,他可以指派别人替自己表演节目.现在轮到小明来选择,小明不想自己表演,于是他选择了偶数.小明的选择合理吗?从概率的角度进行分析(要求用树状图或列表方法求解)【考点】列表法与树状图法.【专题】应用题.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式分别求出两个数字之和是奇数与是偶数的概率,根据概率的大小即可判断小明的选择是否合理.【解答】解:小明的选择不合理;列表得234635679578911810111214∴共出现12中等可能的结果,其中出现奇数的次数是7次,概率为,出现偶数的次数为5次,概率为,∵,即出现奇数的概率较大,∴小明的选择不合理.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.注意哪个概率大,选择哪个的可能性就大.用到的知识点为:概率=所求情况数与总情况数之比.22.如图,在一块如图所示的三角形余料上裁剪下一个正方形,如果△ABC为直角三角形,且∠ACB=90°,AC=4,BC=3,正方形的四个顶点D、E、F、G分别在三角形的三条边上.求正方形的边长.【考点】相似三角形的判定与性质;勾股定理;正方形的性质.【专题】压轴题.【分析】作辅助线:作CH⊥AB于H,由四边形DEFG为正方形,可得CM⊥GF与求得AB、CH的值,还可证得△ABC∽△GFC,由相似三角形对应高的比等于相似比,即可求得正方形的边长.【解答】解:作CH⊥AB于H,∵四边形DEFG为正方形,∴CM⊥GF,由勾股定理可得:AB=5,根据三角形的面积不变性可求得CH=,设GD=x,∵GF∥AB,∴∠CGF=∠A,∠CFG=∠B,∴△ABC∽△GFC,∴,即,整理得:12﹣5x=x,解得:x=,答:正方形的边长为.【点评】此题考查了相似三角形的判定与性质与直角三角形、正方形的性质.注意相似三角形对应高的比等于相似比定理的应用与数形结合思想与方程思想的应用.五、解答题(本题12分)23.已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A 与C重合,再展开,折痕EF交AD边于E,交BC边于F,分别连接AF和CE.(1)求证:四边形AFCE是菱形;(2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长;(3)在线段AC上是否存在一点P,使得2AE2=AC•AP?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由.【考点】菱形的判定;勾股定理;矩形的性质;相似三角形的判定与性质.【专题】压轴题;开放型;存在型.【分析】(1)因为是对折所以AO=CO,利用三角形全等证明EO=FO,四边形便是菱形;(2)因为面积是24,也就是AB、BF的积可以求出,所以求周长只要求出AB、BF 的和就可以,而结合勾股定理它们和的平方减去乘积二倍就是AF的平方;(3)因为AC=AO所以可以从与△AOE相似的角度考虑,即过E作EP⊥AD.【解答】(1)证明:连接EF交AC于O,当顶点A与C重合时,折痕EF垂直平分AC,∴OA=OC,∠AOE=∠COF=90°(1分)∵在矩形ABCD中,AD∥BC,∴∠EAO=∠FCO,∴△AOE≌△COF(ASA).∴OE=OF(2分)∴四边形AFCE是菱形.(2)解:四边形AFCE是菱形,∴AF=AE=10.设AB=x,BF=y,∵∠B=90,∴(x+y)2﹣2xy=100①又∵S△ABF=24,∴xy=24,则xy=48.②(5分)由①、②得:(x+y)2=196∴x+y=14,x+y=﹣14(不合题意舍去)∴△ABF的周长为x+y+AF=14+10=24.(7分)(3)解:过E作EP⊥AD交AC于P,则P就是所求的点.(9分)证明:由作法,∠AEP=90°,由(1)得:∠AOE=90°,又∠EAO=∠EAP,∴△AOE∽△AEP,∴=,则AE2=AO•AP∵四边形AFCE是菱形,∴AO=AC,AE2=AC•AP(11分)∴2AE2=AC•AP即P的位置是:过E作EP⊥AD交AC于P.【点评】本题主要考查(1)菱形的判定方法“对角线互相垂直且平分的四边形”,(2)相似三角形的判定和性质.六、解答题(本题12分)24.某开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数/名1423223每人月工资/元2100084002025220018001600950请你根据上述内容,解答下列问题:(1)该公司“高级技工”有15 人;(2)该公司的工资极差是20050 元;(3)小张到这家公司应聘普通工作人员,咨询过程中得到两个答案,你认为用哪个数据向小张介绍员工的月工资实际水平更合理些?(4)去掉最高工资的前五名,再去掉最低工资的后五名,然后算一算余下的40人的平均工资,说说你的看法.【考点】中位数;加权平均数;众数;极差.【专题】压轴题;图表型.【分析】(1)高级技工人数=总数﹣各类员工人数;(2)根据极差=最大值﹣最小值计算即可;(3)先求出平均数,中位数和众数,再继续判断;(4)去掉最高工资的前五名,再去掉最低工资的后五名,再根据加权平均数的公式:计算即可.【解答】解:(1)50﹣1﹣4﹣2﹣3﹣22﹣3=15人(2分)(2)21000﹣950=20050元(4分)(3)员工的说法更合理些.这组数据的平均数是2606元,中位数是1700元,众数是1600元由于个别较大数据的影响,平均数不能准确地代表平近水平,此时中位数或众数可以较好的反映工资的平均水平,因此员工的说法更合理一些.(9分)(4)(元)这样计算更能代表员工的平均工资水平.【点评】本题为统计题,考查极差、平均数、众数与中位数的意义.极差是指一组数据中最大数据与最小数据的差.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.七、计算题(本题12分)25.某软件公司开发出一种图书管理软件,前期投入的开发广告宣传费用共50000元,且每售出一套软件,软件公司还需支付安装调试费用200元.(1)试写出总费用y(元)与销售套数x(套)之间的函数关系式.(2)如果每套定价700元,软件公司售出多少套可以收回成本?(3)某承包商与软件开发公司签订合同,买下公司生产的全部软件,但700元的单价要打折,并且公司仍然要负责安装调试.如果公司总共可生产该软件1500套,并且公司希望从这个软件项目上获得不少于280000元的利润,最多可以打几折?【考点】一次函数的应用.【专题】销售问题.【分析】(1)由题意得;总费用=广告宣传费+x套安装调试费.可得出函数关系式;(2)根据每套定价700元,前期投入的开发广告宣传费用共50000元,且每售出一套软件,软件公司还需支付安装调试费用200元,即可得出等量关系,求出即可;(3)根据总利润以及打折运算,得出等式方程求出即可.【解答】解:(1)根据题意得:y=50000+200x.(2)设软件公司售出x套软件能收回成本,700x=50000+200x,解得:x=100,答:软件公司售出100套软件可以收回成本.(3)设该软件按m折销售时可获利280000元,由题意可得:(700×﹣200)×1500=280000+50000,解得:m=6,答:公司最多可以打6折.【点评】此题主要考查了一元一次方程的应用以及打折问题,利用已知条件得出等量关系是解决问题的关键.八、计算题(本题14分)26.如图,抛物线y=x2﹣4x﹣1顶点为D,与x轴相交于A、B两点,与y轴相交于。
2024年河北省中考真题数学试卷含答案解析
2024年河北省中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是( )A .B .C .D .【答案】A 【分析】本题考查了正负数的大小比较,熟练掌握正负数大小比较的方法解题的关键.由五日气温为2,4,0,1,1---℃℃℃℃℃得到24->-,401-<<,11>-,则气温变化为先下降,然后上升,再上升,再下降.【详解】解:由五日气温为2,4,0,1,1---℃℃℃℃℃得到24->-,401-<<,11>-∴气温变化为先下降,然后上升,再上升,再下降.故选:A .2.下列运算正确的是( )A .734a a a -=B .222326a a a ⋅=C .33(2)8a a -=-D .44a a a÷=【答案】C【分析】本题考查整式的运算,根据合并同类项,单项式乘以单项式,积的乘方,同底数幂的除法依次对各选项逐一分析判断即可.解题的关键是掌握整式运算的相关法则.【详解】解:A .7a ,4a 不是同类项,不能合并,故此选项不符合题意;B .224326a a a ⋅=,故此选项不符合题意;C .()3328a a -=-,故此选项符合题意;D .441a a ÷=,故此选项不符合题意.故选:C .3.如图,AD 与BC 交于点O ,ABO 和CDO 关于直线PQ 对称,点A ,B 的对称点分别是点C ,D .下列不一定正确的是( )A .AD BC⊥B .AC PQ ⊥C .ABO CDO △≌△D .AC BD∥【答案】A 【分析】本题考查了轴对称图形的性质,平行线的判定,熟练掌握知识点是解题的关键.根据轴对称图形的性质即可判断B 、C 选项,再根据垂直于同一条直线的两条直线平行即可判断选项D .【详解】解:由轴对称图形的性质得到ABO CDO △≌△,,AC PQ BD PQ ⊥⊥,∴AC BD ∥,∴B 、C 、D 选项不符合题意,故选:A .4.下列数中,能使不等式516x -<成立的x 的值为( )A .1B .2C .3D .45.观察图中尺规作图的痕迹,可得线段BD 一定是ABC 的( )A .角平分线B .高线C .中位线D .中线【答案】B 【分析】本题考查的是三角形的高的定义,作线段的垂线,根据作图痕迹可得BD AC ⊥,从而可得答案.【详解】解:由作图可得:BD AC ⊥,∴线段BD 一定是ABC 的高线;故选B6.如图是由11个大小相同的正方体搭成的几何体,它的左视图是( )A .B .C .D .【答案】D【分析】本题考查简单组合体的三视图,左视图每一列的小正方体个数,由该方向上的小正方体个数最多的那个来确定,通过观察即可得出结论.掌握几何体三种视图之间的关系是解题的关键.【详解】解:通过左边看可以确定出左视图一共有3列,每列上小正方体个数从左往右分别为3、1、1.故选:D .7.节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x 度,则能使用y 天.下列说法错误的是( )A .若5x =,则100y =B .若125y =,则4x =C .若x 减小,则y 也减小D .若x 减小一半,则y 增大一倍8.若a ,b 是正整数,且满足8282222222a b a a a b b b ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯ 个相加个相乘,则a 与b 的关系正确的是( )A .38a b+=B .38a b =C .83a b +=D .38a b=+【答案】A 【分析】本题考查了同底数幂的乘法,幂的乘方的运算的应用,熟练掌握知识点是解题的关键.由题意得:()8822a b ⨯=,利用同底数幂的乘法,幂的乘方化简即可.【详解】解:由题意得:()8822a b ⨯=,∴38222a b ⨯=,∴38a b +=,故选:A .9.淇淇在计算正数a 的平方时,误算成a 与2的积,求得的答案比正确答案小1,则=a ( )A .1B 1C 1D .11【答案】C【分析】本题考查了一元二次方程的应用,解一元二次方程,熟练掌握知识点是解题的关键.由题意得方程221a a +=,利用公式法求解即可.【详解】解:由题意得:221a a +=,10.下面是嘉嘉作业本上的一道习题及解答过程:已知:如图,ABC 中,AB AC =,AE 平分ABC 的外角CAN ∠,点M 是AC 的中点,连接BM 并延长交AE 于点D ,连接CD .求证:四边形ABCD 是平行四边形.证明:∵AB AC =,∴3ABC ∠=∠.∵3CAN ABC ∠=∠+∠,12CAN ∠=∠+∠,12∠=∠,∴①______.又∵45∠=∠,MA MC =,∴MAD MCB △≌△(②______).∴MD MB =.∴四边形ABCD 是平行四边形.若以上解答过程正确,①,②应分别为( )A .13∠=∠,AASB .13∠=∠,ASAC .23∠∠=,AASD .23∠∠=,ASA11.直线l 与正六边形ABCDEF 的边,AB EF 分别相交于点M ,N ,如图所示,则a β+=( )A .115︒B .120︒C .135︒D .144︒12.在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”.如图,矩形ABCD 位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是( )A .点AB .点BC .点CD .点D13.已知A 为整式,若计算22A y xy y x xy -++的结果为x y xy -,则A =( )A .x B .y C .x y +D .x y -14.扇文化是中华优秀传统文化的组成部分,在我国有着深厚的底蕴.如图,某折扇张开的角度为120︒时,扇面面积为S 、该折扇张开的角度为n ︒时,扇面面积为n S ,若n m SS =,则m 与n 关系的图象大致是( )D.15.“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法⨯,运算结果为3036.图运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示132232表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是( )A .“20”左边的数是16B .“20”右边的“□”表示5C .运算结果小于6000D .运算结果可以表示为41001025a +则由题意得:20,5,2,mz nz ny nx a ====,∴4mz nz=,即4=m n ,∴当2,1n y ==时, 2.5z =不是正整数,不符合题意,故舍;当1,2n y ==时,则4,5,m z x a ===,如图:,∴A 、“20”左边的数是248⨯=,故本选项不符合题意;B 、“20”右边的“□”表示4,故本选项不符合题意;∴a 上面的数应为4a ,如图:∴运算结果可以表示为:()1000411002541001025a a a +++=+,∴D 选项符合题意,当2a =时,计算的结果大于6000,故C 选项不符合题意,故选:D .16.平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.例:“和点”()2,1P 按上述规则连续平移3次后,到达点()32,2P ,其平移过程如下:若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q -,则点Q 的坐标为( )A .()6,1或()7,1B .()15,7-或()8,0C .()6,0或()8,0D .()5,1或()7,1【答案】D【分析】本题考查了坐标内点的平移运动,熟练掌握知识点,利用反向运动理解是解决本题的关键.先找出规律若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,按照16Q 的反向运动理解去分类讨论:①16Q 先向右1个单位,不符合题意;②16Q 先向下1个单位,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1.【详解】解:由点()32,2P 可知横、纵坐标之和除以3所得的余数为1,继而向上平移1个单位得到()42,3P ,此时横、纵坐标之和除以3所得的余数为2,继而向左平移1个单位得到()41,3P ,此时横、纵坐标之和除以3所得的余数为1,又要向上平移1个单位 ,因此发现规律为若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,若“和点”Q 按上述规则连续平移16次后,到达点()161,9Q -,则按照“和点”16Q 反向运动16次求点Q 坐标理解,可以分为两种情况:①16Q 先向右1个单位得到()150,9Q ,此时横、纵坐标之和除以3所得的余数为0,应该是15Q 向右平移1个单位得到16Q ,故矛盾,不成立;②16Q 先向下1个单位得到()151,8Q -,此时横、纵坐标之和除以3所得的余数为1,则应该向上平移1个单位得到16Q ,故符合题意,那么点16Q 先向下平移,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为()17,98-+-,即()6,1,那么最后一次若向右平移则为()7,1,若向左平移则为()5,1,故选:D .二、填空题17.某校生物小组的9名同学各用100粒种子做发芽实验,几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,以上数据的众数为.【答案】89【分析】本题考查了众数,众数是一组数据中次数出现最多的数.根据众数的定义求解即可判断.【详解】解:几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,89出现的次数最多,∴以上数据的众数为89.故答案为:89.18.已知a,b,n均为正整数.(1)若1<<+,则n=;n n(2)若1,1-<<<<+,则满足条件的a的个数总比b的个数少个.n n n n2n 与()21n +之间的整数有2n 个,∴满足条件的a 的个数总比b 的个数少()2222222n n n n --=-+=(个),故答案为:2.19.如图,ABC 的面积为2,AD 为BC 边上的中线,点A ,1C ,2C ,3C 是线段4CC 的五等分点,点A ,1D ,2D 是线段3DD 的四等分点,点A 是线段1BB 的中点.(1)11AC D △的面积为 ;(2)143B C D △的面积为 .【点睛】本题考查三角形中线的性质,全等三角形的判定与性质,相似三角形的判定与性质,等分点的意义,三角形的面积.掌握三角形中线的性质是解题的关键.三、解答题20.如图,有甲、乙两条数轴.甲数轴上的三点A,B,C所对应的数依次为4-,2,32,乙数轴上的三点D,E,F所对应的数依次为0,x,12.(1)计算A ,B ,C 三点所对应的数的和,并求ABAC的值;(2)当点A 与点D 上下对齐时,点B ,C 恰好分别与点E ,F 上下对齐,求x 的值.21.甲、乙、丙三张卡片正面分别写有,2,a b a b a b ++-,除正面的代数式不同外,其余均相同.a b +2a b +a b-a b +22a b+2a2a b+a b-2a(1)将三张卡片背面向上并洗匀,从中随机抽取一张,当1,2a b ==-时,求取出的卡片上代数式的值为负数的概率;(2)将三张卡片背面向上并洗匀,从中随机抽取一张,放回后重新洗匀,再随机抽取一张.请在表格中补全两次取出的卡片上代数式之和的所有可能结果(化为最简),并求出和为单项式的概率.22.中国的探月工程激发了同学们对太空的兴趣.某晚,淇淇在家透过窗户的最高点P 恰好看到一颗星星,此时淇淇距窗户的水平距离4m BQ =,仰角为α;淇淇向前走了3m 后到达点D ,透过点P 恰好看到月亮,仰角为β,如图是示意图.已知,淇淇的眼睛与水平地面BQ 的距离1.6m ==AB CD ,点P 到BQ 的距离2.6m PQ =,AC 的延长线交PQ 于点E .(注:图中所有点均在同一平面)(1)求β的大小及tanα的值;∠的值.(2)求CP的长及sin APC∵1tan tan 4CH PAE AH α=∠==,设∴()22249x x AC +==,解得:31717x =,∴317CH =m,23.情境 图1是由正方形纸片去掉一个以中心O 为顶点的等腰直角三角形后得到的.该纸片通过裁剪,可拼接为图2所示的钻石型五边形,数据如图所示.(说明:纸片不折叠,拼接不重叠无缝隙无剩余)操作 嘉嘉将图1所示的纸片通过裁剪,拼成了钻石型五边形.如图3,嘉嘉沿虚线EF ,GH 裁剪,将该纸片剪成①,②,③三块,再按照图4所示进行拼接.根据嘉嘉的剪拼过程,解答问题:(1)直接写出线段EF的长;(2)直接写出图3中所有与线段BE相等的线段,并计算BE的长.探究淇淇说:将图1所示纸片沿直线裁剪,剪成两块,就可以拼成钻石型五边形.请你按照淇淇的说法设计一种方案:在图5所示纸片的BC边上找一点P(可以借助刻度尺或圆规),画出裁剪线(线段PQ)的位置,并直接写出BP的长.由拼接可得:HF FO KG '==由正方形的性质可得:45A ∠=∴AHG ,H G D '' ,AFE △为等腰直角三角形,∴G KH '' 为等腰直角三角形,设H K KG x ''==,此时2BP '=,222P Q ''=+=,符合要求,或以C 圆心,CO 为半径画弧,交BC 此时2CP CQ ==,222PQ =+=∴22BP =-,综上:BP 的长为2或22-.24.某公司为提高员工的专业能力,定期对员工进行技能测试,考虑多种因素影响,需将测试的原始成绩x (分)换算为报告成绩y (分).已知原始成绩满分150分,报告成绩满分100分、换算规则如下:当0x p ≤<时,80x y p=;当150p x ≤≤时,()2080150x p y p -=+-.(其中p 是小于150的常数,是原始成绩的合格分数线,80是报告成绩的合格分数线)公司规定报告成绩为80分及80分以上(即原始成绩为p 及p 以上)为合格.(1)甲、乙的原始成绩分别为95分和130分,若100p =,求甲、乙的报告成绩;(2)丙、丁的报告成绩分别为92分和64分,若丙的原始成绩比丁的原始成绩高40分,请推算p 的值:(3)下表是该公司100名员工某次测试的原始成绩统计表:原始成绩(分)9510010511115120125130135140145150人数1225810716201595①直接写出这100名员工原始成绩的中位数;②若①中的中位数换算成报告成绩为90分,直接写出该公司此次测试的合格率.25.已知O 的半径为3,弦MN =ABC 中,90,3,ABC AB BC ∠=︒==先将ABC 和O 按图1位置摆放(点B 与点N 重合,点A 在O 上,点C 在O 内),随后移动ABC ,使点B 在弦MN 上移动,点A 始终在O 上随之移动,设BN x =.(1)当点B与点N重合时,求劣弧 AN的长;∥时,如图2,求点B到OA的距离,并求此时x的值;(2)当OA MN(3)设点O到BC的距离为d.①当点A在劣弧 MN上,且过点A的切线与AC垂直时,求d的值;②直接写出d的最小值.∵O 的半径为3,3AB =,∴3OA OB AB ===,∴AOB 为等边三角形,∴60AOB ∠=︒,∴ AN 的长为60π3π180´=;∵25MN =,O H M N ⊥,∴5MH NH ==,而OM =∴222OH OM MH =-==∴点B 到OA 的距离为2;⊥于J,过O作过O作OJ BC∴四边形KOJB为矩形,=,∴OJ KB∵3AB=,32BC=,∴2233=+=,AC AB BC⊥于Q 如图,过A作AQ OB⊥∵B为MN中点,则OB MN∵90ABC AQB ∠=︒=∠,∴90OBJ ABO ABO ∠+∠=︒=∠∴OBJ BAQ ∠=∠,∴tan tan OBJ BAQ ∠=∠,∴122OJ BQ BJ AQ ==,26.如图,抛物线21:2C y ax x =-过点(4,0),顶点为Q .抛物线22211:()222C y x t t =--+-(其中t 为常数,且2t >),顶点为P .(1)直接写出a 的值和点Q 的坐标.(2)嘉嘉说:无论t 为何值,将1C 的顶点Q 向左平移2个单位长度后一定落在2C 上.淇淇说:无论t 为何值,2C 总经过一个定点.请选择其中一人的说法进行说理.(3)当4t =时,①求直线PQ 的解析式;②作直线l PQ ∥,当l 与2C 的交点到x 轴的距离恰为6时,求l 与x 轴交点的横坐标.(4)设1C 与2C 的交点A ,B 的横坐标分别为,A B x x ,且A B x x <.点M 在1C 上,横坐标为()2B m m x ≤≤.点N 在2C 上,横坐标为()A n x n t ≤≤.若点M 是到直线PQ 的距离最大的点,最大距离为d ,点N 到直线PQ 的距离恰好也为d ,直接用含t 和m 的式子表示n .∴交点()426,6J --,交点()426,6K +,由直线l PQ ∥,设直线l 为4y x b =+,∴()44266b -+=-,解得:8622b =-,∴直线l 为:48622y x =+-,∵()2,2P -,21,22Q t t ⎛⎫- ⎪⎝⎭,∴L 的横坐标为2t 2+,∵21,22M m m m ⎛⎫- ⎪⎝⎭,()21,2N n n t ⎡--+⎢⎣∴L 的横坐标为2m n +,。
人教版中考模拟考试数学试卷及答案(共七套)
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号
√
√ቤተ መጻሕፍቲ ባይዱ
√
由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,
人教版中考第一次模拟测试《数学试卷》含答案解析
人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共有10个小题,每小题3分,共30分)1.在下列四个实数-3,-0.5,0,2中,最小的是( )A. -3B. - 0.5C. 0D. 22.下列计算结果正确的是( )A. a6 ÷a2=a3B. (ab)2=a2b2C. a4 ·a2=a8D. (a4)2=a63.下列立体图形中,俯视图与主视图不同是( )A 正方体 B. 圆柱 C. 圆锥 D. 球4.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为( )A. 80°B. 90°C. 100°D. 102°5.防范新冠病毒感染要养成戴口罩、勤洗手、多通风、常消毒等卫生习惯,其中对物体表面进行消毒可以采用浓度为75%的酒精.现有一瓶浓度为95%的酒精500ml,需将其加入适量的水,使浓度稀释为75%.设加水量为x ml,可列方程为( )A. 75%x=95%×500B. 95%x=75%×500C. 75%(500+x)=95%×500D. 95%(500+x)=75%×5006.若单项式-3x2y2m+n与2x m+n y4是同类项,则m2+2mn的算术平方....根.为( )A 0 B. 2 C. -2 D. ±2--,1)的一元二次方程有两个实7.定义(a,b,c)为方程20ax bx c++=的特征数.若特征数为(2k,12k数根,则k 的取值范围是( )A.<14-B. k > 14-C. k > 14-且0k ≠D. k ≥14-且0k ≠ 8.如图,将⊙O 沿弦AB 折叠,圆弧恰好经过圆心O ,点P 是优弧AMB 上一点,则∠APB 的度数为( )A. 45°B. 30°C. 75°D. 60°9.二次函数y =ax 2+bx +c 的图象如图所示,则一次函数y =bx +ac 的 图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限10.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点. 已知菱形的一个角(∠O )为60°,A ,B ,C 都在格点上,则tan ∠ABC 的值是 .333 D. 36二、填空题(本大题共6个小题,每小题3分,共18分)11.将3x 2﹣27分解因式的结果是 _______________________.12.若点(1,k )关于y 轴的对称点为(-1,1),则y 关于x 的函数k x y -=的取值范围是_______. 13.点P 的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是 .14.如图,在Rt∆ABC 中,∠C =90°,以顶点B 为圆心,适当长度为半径画弧,分别交AB ,BC 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D .当∠A =30°时,小敏正确求得∆BCD S :ABD S ∆=1:2.写出两条..小敏求解中用到的数学依据....:__________________.15.如图,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆底端D 到大楼前梯坎底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i =1:3,则大楼AB 的高度为________米.(精确到0.1米,参考数据:2 1.41≈,3 1.73≈,6 2.45≈)16.定义新运算:对于任意实数a ,b ,都有a ⊕b =ab +a +b ,其中等式右边是通常的加法、乘法运算,例如2⊕3=2×3+2+3=11.若y 关于x 的函数y =(kx +1)⊕(x -1)图象与x 轴仅有一个公共点,则实数k 的值为_______.三、解答题(本大题共有8小题,共72分)17.先化简,再求值:226(2)369x x x x -÷+++,其中x 是不等式组20218x x ->⎧⎨+<⎩的整数解. 18.若实数m ,n 满足210m m n -++-=,请用配方法...解关于x 的一元二次方程20x mx n ++=. 19.如图,在正方形ABCD 中,E 为边BC 上一点(不与点B ,C 重合),垂直于AE 的一条直线MN 分别交AB ,AE ,CD 于点M ,P ,N .小聪过点B 作BF ∥MN 分别交AE ,CD 于点G ,F 后,猜想线段EC ,DN ,MB 之间的数量关系为EC =DN +MB .他的猜想正确吗?请说明理由.20.为了解”停课不停学”过程中学生对网课内容的喜爱程度,某校开展了一次网上问卷调查.随机抽取部分学生,按四个类别统计,其中A 表示”很喜欢”,B 表示”喜欢”,C 表示”一般”,D 表示”不喜欢”,并将调查结果绘制成下面两幅不完整的统计图.请根据图中提供的信息,解决下列问题:(1)这次共抽取名学生进行统计调查,扇形统计图中D类所在扇形的圆心角度数为;(2)将条形统计图补充完整;(3)若该校共有3000名学生,估计该校表示”喜欢”的B类学生大约有多少人?21.参照学习函数的过程与方法,探究函数y=2(0)xxx-≠的图象与性质.因y=221-=-xx x,即y=﹣2x+1,所以我们对比函数y=﹣2x来探究.列表:x …﹣4 ﹣3 ﹣2 ﹣1 ﹣12121 2 3 4 …y=﹣2x…12231 2 4 ﹣4 ﹣1 1 ﹣23﹣12…y=2xx-…32532 3 5 ﹣3 ﹣1 01312…描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=2xx-相应的函数值为纵坐标,描出相应的点,如图所示:(1)请把y轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;(2)观察图象并分析表格,回答下列问题:①当x<0时,y随x的增大而;(填”增大”或”减小”)②y=2xx-的图象是由y=﹣2x的图象向平移个单位而得到;③图象关于点中心对称.(填点的坐标)(3)设A(x1,y1),B(x2,y2)是函数y=2xx-的图象上的两点,且x1+x2=0,试求y1+y2+3的值.22.已知:在△ABC中,AB=AC,点D为BC边的中点,点F是AB边上一点,点E在线段DF的延长线上,∠BAE=∠BDF,点M在线段DF上,∠ABE=∠DBM.(1)如图1,当∠ABC=45°时,求证:AE2MD;(2)如图2,当∠ABC=60°时,①直接写出....线段AE,MD之间的数量关系;②延长BM到P,使MP=BM,连接CP,若AB=7,AE=27,探求sin∠PCB的值.23.为了抗击新冠病毒疫情,全国人民众志成城,守望相助.春节后某地一水果购销商安排15辆汽车装运A,B,C三种水果120吨销售,所得利润全部捐赠湖北抗疫.已知按计划15辆汽车都要装满且每辆汽车只能装同一种水果,每种水果所用车辆均不少于3辆,汽车对不同水果的运载量和每吨水果销售获利情况如下表.水果品种 A B C汽车运载量(吨/辆) 10 8 6水果获利(元/吨) 800 1200 1000(1)设装运A种水果的车辆数为x辆,装运B种水果车辆数为y辆,根据上表提供的信息,①求y与x之间的函数关系式;②设计车辆的安排方案,并写出每种安排方案;(2)若原有获利不变的情况下,当地政府按每吨50元的标准实行运费补贴,该经销商打算将获利连同补贴全部捐出.问应采用哪种车辆安排方案,可以使这次捐款数w(元)最大化?捐款w(元)最大是多少?24.在平面直角坐标系xOy中,已知点P是反比例函数23(0)y xx=>图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A.(1)如图1,⊙P运动到与x轴相切,设切点为K,试判断四边形OKP A的形状,并说明理由.(2)如图2,⊙P运动到与x轴相交,设交点为B,C.当四边形ABCP是菱形时,①求过点A,B,C三点的抛物线解析式;②在过A,B,C三点的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的12?若存在,直接写...出.所有满足条件的M点的坐标;若不存在,试说明理由.答案与解析一、选择题(本大题共有10个小题,每小题3分,共30分)1.在下列四个实数-0.5,0中,最小的是( )A. B. - 0.5 C. 0 D.【答案】A【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,由此时行比较即可.【详解】∵正实数都大于0,负实数都小于0,∴最小的数是-0.5,又∵|-0.5|∴,∴实数-0.5,0中,最小是故选:A.【点睛】考查了实数大小比较,解题关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.下列计算结果正确的是( )A. a6 ÷a2=a3B. (ab)2=a2b2C. a4 ·a2=a8D. (a4)2=a6【答案】B【解析】分析】根据同底数幂的乘除法、幂的乘方和积的乘方计算法则进行计算,再进行判断即可.【详解】A选项:a6 ÷a2=a6-2=a4,故计算错误;B选项:(ab)2=a2b2,计算正确;C选项:a4 ·a2=a4+2=a6,故计算错误;⨯=,故计算错误;D选项:(a4)2=428a a故选:B.【点睛】考查了同底数幂的乘除法、幂的乘方和积的乘方,解题关键是熟记其计算法则,根据计算法则进行计算.3.下列立体图形中,俯视图与主视图不同的是( )A. 正方体B. 圆柱C. 圆锥D. 球【答案】C【解析】【分析】从正面看所得到的图形是主视图,从上面看到的图象是俯视图,再根据判断即可.【详解】A选项:俯视图与主视图都是正方形,故不合题意;B选项:俯视图与主视图都是长方形,故不合题意;C选项:俯视图是圆,主视图是三角形;故符合题意;D选项:俯视图与主视图都是圆,故不合题意;故选:C.【点睛】考查了立体图形的三视图,解题关键是理解:从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.4.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为( )A. 80°B. 90°C. 100°D. 102°【答案】A【解析】分析:根据平行线性质求出∠A,根据三角形内角和定理得出∠2=180°∠1−∠A,代入求出即可.详解:∵AB∥CD.∴∠A=∠3=40°,∵∠1=60°,∴∠2=180°∠1−∠A=80°,故选:A.点睛:本题考查了平行线的性质:两直线平行,内错角相等.三角形内角和定理:三角形内角和为180°.5.防范新冠病毒感染要养成戴口罩、勤洗手、多通风、常消毒等卫生习惯,其中对物体表面进行消毒可以采用浓度为75%的酒精.现有一瓶浓度为95%的酒精500ml,需将其加入适量的水,使浓度稀释为75%.设加水量为x ml,可列方程为( )A. 75%x=95%×500B. 95%x=75%×500C. 75%(500+x)=95%×500D. 95%(500+x)=75%×500【答案】C【解析】【分析】根据稀释前后纯酒精的量不变列方程即可.【详解】设加水量为x ml,则稀释前纯酒精的量为95%×500,稀释后纯酒精的量为75%(500+x),根据稀释前后纯酒精的量不变可得:75%(500+x)=95%×500.故选:C.【点睛】考查了一元二次方程应用,解题关键是设未知数,根据题意找出等量关系:稀释前后纯酒精的量不变列方程.6.若单项式-3x2y2m+n与2x m+n y4是同类项,则m2+2mn的算术平方根.....为( )A. 0B. 2C. -2D. ±2【答案】B【解析】【分析】直接利用同类项的定义得出m,n的值,进而求得m2+2mn的值,再求其算术平方根即可.【详解】∵单项式-3x2y2m+n与2x m+n y4是同类项,∴224m nm n+=⎧⎨+=⎩,∴2mn=⎧⎨=⎩,∴m2+2mn=4,∴m2+2mn的算术平方根为2.故选:B .【点睛】考查了解二元一次方程组、算术平方根和同类项的概念,解题关键是根据同类项的概念得到关于m 、n 的二元一次方程组,并正确求解.7.定义(a ,b ,c )为方程20ax bx c ++=的特征数.若特征数为(2k ,12k --,1)的一元二次方程有两个实数根,则k 的取值范围是( )A.<14-B. k > 14-C. k > 14-且0k ≠D. k ≥14-且0k ≠ 【答案】C【解析】【分析】根据特征数的定义得到一个一元二次方程,再由方程有两个实数根得到k 的取值范围即可.【详解】∵定义(a ,b ,c )为方程20ax bx c ++=的特征数,∴特征数为(2k ,12k --,1)的一元二次方程为:22(12)10k x k x +--+=,又∵特征数为(2k ,12k --,1)的一元二次方程有两个实数根,∴0>且0k ≠,即22(12)40k k --->且0k ≠,∴k > 14-且0k ≠. 故选:C .【点睛】考查了一元二次方程的根与系数的关系,解题关键是熟记:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程没有实数根.8.如图,将⊙O 沿弦AB 折叠,圆弧恰好经过圆心O ,点P 是优弧AMB 上一点,则∠APB 的度数为( )A. 45°B. 30°C. 75°D. 60°【答案】D【解析】 【详解】作半径OC ⊥AB 于点D ,连结OA ,OB ,∵将O 沿弦AB 折叠,圆弧较好经过圆心O ,∴OD=CD,OD=12OC=12OA,∴∠OAD=30°(30°所对的直角边等于斜边的一半),同理∠OBD=30°,∴∠AOB=120°,∴∠APB=12∠AOB=60°.(圆周角等于圆心角的一半)故选D.9.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+ac的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】根据二次函数y=ax2+bx+c的图象可以判断a、b、c的正负,从而可以判断一次函数y=bx+ac的图象经过哪几个象限即可.【详解】由二次函数y=ax2+bx+c的图象可得:a>0,b>0,c>0,∴ac>0,∴一次函数y=bx+ac的图象经过第一、二、三象限,不经过第四象限.故选:D.【点睛】考查了二次函数的图象与系数的关系,解题关键是根据函数的图象得到a>0,b>0,c>0,由此再判断一次函数的图象.10.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C 都在格点上,则tan∠ABC的值是.A.32B.33C.34D.36【答案】A【解析】如图,连接EA,EC,设菱形的边长为a,由题意得∠AEF=30°,∠BEF=60°,AE=3a,EB=2a,∴∠AEB=90°,∴tan∠ABC=AEBE=32aa=32,故选A.二、填空题(本大题共6个小题,每小题3分,共18分)11.将3x2﹣27分解因式的结果是_______________________.【答案】3(x-3)(x+3)【解析】【分析】先提取公因式3,再利用平方差公式进行因式分解.【详解】3x2﹣27=3(x2-9)=3(x-3)(x+3).故答案为:3(x-3)(x+3).【点睛】考查了综合因式分解,解题关键先提取公式后再利用平方差公式进行因式分解.12.若点(1,k)关于y轴的对称点为(-1,1),则y关于x的函数k xy-=的取值范围是_______.【答案】x≤1且x≠0 【解析】【分析】由关于坐标轴对称两点坐标特点求得k的值,再代入k xy-=中求得取值范围.【详解】∵点(1,k)关于y轴的对称点为(-1,1),∴k=1,∴y关于x的函数为1-=xyx,∴1-x≥0且x≠0,∴x ≤1且x ≠0.故答案为:x ≤1且x ≠0.【点睛】考查了分式和根式有意义的条件,解题关键是关于坐标轴对称两点坐标特点求得k 的值和根式被开方数≥0,分式的分母不能为0.13.点P 的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是 .【答案】【解析】画树状图为:共有20种等可能的结果数,其中点P(a ,b)在平面直角坐标系中第二象限内的结果数为4,所以点P(a ,b)在平面直角坐标系中第二象限内的概率=420=15. 故答案为15. 14.如图,在Rt∆ABC 中,∠C =90°,以顶点B 为圆心,适当长度为半径画弧,分别交AB ,BC 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D .当∠A =30°时,小敏正确求得∆BCD S :ABD S ∆=1:2.写出两条..小敏求解中用到的数学依据....:__________________.【答案】答案不唯一,如直角三角形30度角所对直角边等于斜边的一半和等边对等角【解析】【分析】由已知条件得到∆BCD S :ABD S ∆=1:2,写出其中的2条依据即可.【详解】由作法得BD 平分∠ABC ,∵∠C=90°,∠A=30°,∴∠ABC=60°,(三角形的内角和为180º)∴∠ABD=∠CBD=30°(角平分线的性质),∴DA=DB (等角对等边),在Rt △BCD 中,BD=2CD ,(直角三角形30度角所对直角边等于斜边的一半)∴AD=2CD (等量代换),∴∆BCD S :ABD S ∆=1:2.故答案为:答案不唯一,如直角三角形30度角所对直角边等于斜边的一半和等边对等角.【点睛】考查了含30度角的直角三角形的性质和基本作图,解题关键是理解题意,并根据已知条件得到结论:∆BCD S :ABD S ∆=1:2.15.如图,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆底端D 到大楼前梯坎底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i =1:3,则大楼AB 的高度为________米.(精确到0.1米,参考数据:2 1.41≈,3 1.73≈,6 2.45≈)【答案】3【解析】【分析】延长AB 交DC 于H ,作EG ⊥AB 于G ,则GH =DE =15米,EG =DH ,设BH =x 米,则CH 3米,在Rt △BCH 中,BC =12米,由勾股定理得出方程,解方程求出BH =6米,CH =3BG 、EG 的长度,证明△AEG 是等腰直角三角形,得出AG =EG =3+20(米),即可得出大楼AB 的高度.【详解】延长AB 交DC 于H ,作EG ⊥AB 于G ,如图所示:则GH =DE =15米,EG =DH , ∵梯坎坡度i =13∴BH :CH =13设BH =x 米,则CH 3米,在Rt △BCH 中,BC =12米,由勾股定理得:x 2+3)2=122,解得:x=6,∴BH=6米,CH=63米,∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=63+20(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=63+20(米),∴AB=AG+BG=63+20+9=(63+29)m.故答案为:3.【点睛】考查了解直角三角形的应用-坡度、俯角问题;解题关键是作辅助线运用勾股定理求出BH,得出EG.16.定义新运算:对于任意实数a,b,都有a⊕b=ab+a+b,其中等式右边是通常的加法、乘法运算,例如2⊕3=2×3+2+3=11.若y关于x的函数y=(kx+1)⊕(x-1)图象与x轴仅有一个公共点,则实数k的值为_______.【答案】-1【解析】【分析】由定义的新运算求得y关于x的函数为:y=kx2+2x-1,再由y关于x函数的图象与x轴仅有一个公共点得到4+4k=0,求解即可.【详解】∵(kx+1)⊕(x-1)=(kx+1)(x-1)+(kx+1)+(x-1)=kx2+2x-1,∴y= kx2+2x-1,又∵y= kx2+2x-1图象与x轴仅有一个公共点,∴△=0,即4+4k=0,∴k=-1.故答案是:-1.【点睛】考查了一元二次方程的根与二次函数图像和x 轴交点坐标的关系,解题关键是熟记:一元二次方程有两个根,说明二次函数图像和x 轴的横坐标有两个交点;一元二次方程有一个根,说明二次函数图像和x 轴的横坐标有一个交点;一元二次方程(在实数范围)无解,说明二次函数图像和x 轴的横坐标没有交点.三、解答题(本大题共有8小题,共72分)17.先化简,再求值:226(2)369x x x x -÷+++,其中x 是不等式组20218x x ->⎧⎨+<⎩的整数解. 【答案】4【解析】【分析】先化简和求得x 的整数解,再代入计算即可. 【详解】226(2)369x x x x -÷+++ =22(3)(3)3x x x x x++⨯+ =22(3)x x x + =26x x+ =2+6x ; 20218x x ->⎧⎨+<⎩①② 解不等式①得:x>2,解不等式②得:x<72, 所以不等式的解集为:722x ,则其整数解为3, 把x =3代入原式=6243+=. 【点睛】考查了分式的混合运算和解不等式组,解题关键是正确化简分式和求得x 的值.18.若实数m ,n满足20m -=,请用配方法...解关于x 的一元二次方程20x mx n ++=. 【答案】x=1【解析】【分析】根据绝对值、算术平方根的非负性求得m 、n 的值,再代入一元二次方程中,再求解即可.【详解】∵m ,n 满足210m m n -++-=,∴m-2=0,m+n-1=0,∴m=2,n=-1,∴一元二次方程为2210x x +-=,∴221110x x ++--=,即2(1)2x +=,∴x=21±-.【点睛】考查了利用配方法解一元二次方程,解题关键是根据绝对值、算术平方根的非负性求得m 、n 的值和熟记完全平方公式的特点.19.如图,在正方形ABCD 中,E 为边BC 上一点(不与点B ,C 重合),垂直于AE 的一条直线MN 分别交AB ,AE ,CD 于点M ,P ,N .小聪过点B 作BF ∥MN 分别交AE ,CD 于点G ,F 后,猜想线段EC ,DN ,MB 之间的数量关系为EC =DN +MB .他的猜想正确吗?请说明理由.【答案】正确,理由见解析【解析】【分析】先证明四边形MBFN 是平等四边形,从而得到MB =NF ;根据ASA 证明△ABE ≌△BCF ,从而得到BE =CF ,则有DF =EC ,再根据DF =NF+DN 和MB =NF 可得到EC =DN+MB .【详解】∵四边形ABCD 是正方形,∴MB//NF ,∠C =∠ABC ,AB//DC ,∠BFC+∠CBF =90º,AB =BC ,又∵MN//BF ,∴四边形MBFN 是平行四边形,∠AMP =∠ABF ,∴MB =NF ,∵AB//DC ,∴∠BFC=∠ABF ,又∵∠AMP =∠ABF ,∴∠AMP =∠BFC ,∵MN ⊥AE ,∴∠APM 是直角,则∠AMP+∠MAE =90º,又∵∠BFC+∠CBF =90º,∴∠MAE =CBF ,在△ABE 和△BCF 中AB BC C ABC MAE CBF =⎧⎪∠∠⎨⎪∠⎩==,∴△ABE ≌△BCF (AAS ),∴BE =CF ,∴CE =DF又∵DF =NF+DN (由图可得),MB =NF (已证)∴CE =DF =DN+MB ,即CE =DN+MB .【点睛】考查了正方形的性质、平行四边形的性质和判定,解题关键证明△ABE ≌△BCF 从而得到BE =CF 和MB =NF .20.为了解”停课不停学”过程中学生对网课内容的喜爱程度,某校开展了一次网上问卷调查.随机抽取部分学生,按四个类别统计,其中A 表示”很喜欢”,B 表示”喜欢”,C 表示”一般”,D 表示”不喜欢”,并将调查结果绘制成下面两幅不完整的统计图.请根据图中提供的信息,解决下列问题:(1)这次共抽取 名学生进行统计调查,扇形统计图中D 类所在扇形的圆心角度数为 ;(2) 将条形统计图补充完整;(3) 若该校共有3000名学生,估计该校表示”喜欢”的B 类学生大约有多少人?【答案】(1)50,72°;(2)见解析;(3)1380人【解析】【分析】(1)这次共抽取:12÷24%=50(人),D 类所对应的扇形圆心角的大小360°×1050 =72°; (2)A 类学生:50-23-12-10=5(人),据此补充条形统计图;(3)该校表示”喜欢”的B 类的学生大约有3000×2350=690(人). 【详解】(1)这次共抽取:12÷24%=50(人), D 类所对应的扇形圆心角的大小360°×1050=72°; (2)A 类学生:50-23-12-10=5(人),条形统计图补充如下该校表示”喜欢”的B 类的学生大约有3000×2350=1380(人), 答:该校表示”喜欢”的B 类的学生大约有1380人;【点睛】考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.参照学习函数的过程与方法,探究函数y=2(0)x x x-≠的图象与性质. 因为y=221-=-x x x ,即y=﹣2x +1,所以我们对比函数y=﹣2x 来探究. 列表: x … ﹣4 ﹣3 ﹣2 ﹣1 ﹣12 12 1 2 3 4 …y=﹣2x … 12 23 1 2 4 ﹣4 ﹣1 1 ﹣23 ﹣12…y=2xx-…32532 3 5 ﹣3 ﹣1 01312…描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=2xx-相应的函数值为纵坐标,描出相应的点,如图所示:(1)请把y轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;(2)观察图象并分析表格,回答下列问题:①当x<0时,y随x的增大而;(填”增大”或”减小”)②y=2xx-的图象是由y=﹣2x的图象向平移个单位而得到;③图象关于点中心对称.(填点的坐标)(3)设A(x1,y1),B(x2,y2)是函数y=2xx-的图象上的两点,且x1+x2=0,试求y1+y2+3的值.【答案】(1)图象见解析;(2)增大,上,1,(0,1);(3)5.【解析】【分析】(1)用光滑曲线顺次连接即可;(2)观察图象,利用图象法即可解决问题;(3)根据中心对称的性质,可知A(x1,y1),B(x2,y2)关于(0,1)对称,由此即可解决问题. 【详解】(1)函数图象如图所示:(2)①当x<0时,y随x的增大而增大;②y=2xx的图象是由y=﹣2x的图象向上平移1个单位而得到;③图象关于点(0,1)中心对称,故答案为①增大;②上,1;③(0,1);(3)∵x1+x2=0,∴x1=﹣x2,∴A(x1,y1),B(x2,y2)关于(0,1)对称,∴y1+y2=2,∴y1+y2+3=5.【点睛】本题考查反比例函数的性质、中心对称的性质等知识,解题的关键是灵活运用所学知识解决问题.22.已知:在△ABC中,AB=AC,点D为BC边的中点,点F是AB边上一点,点E在线段DF的延长线上,∠BAE=∠BDF,点M在线段DF上,∠ABE=∠DBM.(1)如图1,当∠ABC=45°时,求证:AE2MD;(2)如图2,当∠ABC=60°时,①直接写出....线段AE,MD之间的数量关系;②延长BM到P,使MP=BM,连接CP,若AB=7,AE=27,探求sin∠PCB的值.【答案】(1)见解析;(2)①AE=2DM,理由见解析;②3 2【解析】【分析】(1)由题意知∠BAE=∠BDM,∠ABE=∠DBM故有△ABE∽△DBM,从而得到AE:DM=AB:BD,而∠ABC =45°,再得到AB=2BD,则有AE=2MD;(2)①由于△ABE∽△DBM,相似比为2,故有EB=2BM,进而确定出AE与DM的关系;②由题意知得△BEP为等边三角形,有EM⊥BP,∠BMD=∠AEB=90°,在Rt△AEB中求得AE、AB、tan∠EAB的值,由D为BC中点,M为BP中点,得DM∥PC,求得tan∠PCB的值,在Rt△ABD和Rt△NDC 中,由锐角三角函数的定义求得AD、ND的值,进而求得tan∠PCB的值.【详解】(1)证明:如图1,连接AD.∵AB=AC,BD=CD,∴AD⊥BC.又∵∠ABC=45°,∴BD=AB•cos∠ABC,即AB2BD.∵∠BAE=∠BDM,∠ABE=∠DBM,∴△ABE∽△DBM.∴AEDM=ABDB2,∴AE2MD.(2)①如图2,连接AD,EP,过N作NH⊥AC,垂足为H,连接NH,∵AB=AC,∠ABC=60°,∴△ABC是等边三角形,又∵D为BC的中点,∴AD⊥BC,∠DAC=30°,BD=DC=12 AB,∵∠BAE=∠BDM,∠ABE=∠DBM,∴△ABE∽△DBM,∴AEDM=BEBM=ABDB=2,∠AEB=∠DMB,即AE=2DM;②∵△ABE∽△DBM,∴AEDM=BEBM=ABDB=2,∴EB=2BM,又∵BM=MP,∴EB=BP,∵∠EBM=∠EBA+∠ABM=∠MBD+∠ABM=∠ABC=60°,∴△BEP为等边三角形,∴EM⊥BP,∴∠BMD=90°,∴∠AEB=90°,在Rt△AEB中,AE=7AB=7,∴BE2AB AE21,∴tan∠EAB=BEAE3∵D为BC中点,M为BP中点,∴DM∥PC,∴∠MDB=∠PCB,∴∠EAB=∠PCB,∴tan∠PCB【点睛】考查了相似三角形的判定与性质、等边三角形的判定与性质、直角三角形的性质和锐角三角函数的定义,解题关键是正确作出辅助线,明确线段与线段的关系.23.为了抗击新冠病毒疫情,全国人民众志成城,守望相助.春节后某地一水果购销商安排15辆汽车装运A,B,C三种水果120吨销售,所得利润全部捐赠湖北抗疫.已知按计划15辆汽车都要装满且每辆汽车只能装同一种水果,每种水果所用车辆均不少于3辆,汽车对不同水果的运载量和每吨水果销售获利情况如下表.(1)设装运A种水果的车辆数为x辆,装运B种水果车辆数为y辆,根据上表提供的信息,①求y与x之间的函数关系式;②设计车辆的安排方案,并写出每种安排方案;(2)若原有获利不变的情况下,当地政府按每吨50元的标准实行运费补贴,该经销商打算将获利连同补贴全部捐出.问应采用哪种车辆安排方案,可以使这次捐款数w(元)最大化?捐款w(元)最大是多少?【答案】(1)①y=15-2x;②有四种方案,方案一:装运A、B、C三种不同品质的车辆分别是3辆、9辆、3辆;方案二:装运A、B、C三种不同品质的车辆分别是4辆、7辆、4辆;方案三:装运A、B、C三种不同品质的车辆分别是5辆、5辆、5辆;方案四:装运A、B、C三种不同品质的车辆分别是6辆、3辆、6辆;(2)装运A、B、C三种不同品质的车辆分别是3辆、9辆、3辆,利润W(元)的最大值是134400元【解析】【分析】(1)①根据题意和表格中的数据可以求得y与x之间的函数关系式;②根据题意和(1)中函数关系式可以列出相应的不等式,从而可以解答本题;(2)根据题意和表格中的数据可以求得采用哪种车辆安排方案可以使得W最大,并求得W的最大值.【详解】(1)①由题意可得:10x+8y+6(15-x-y)=120,化简得:y=15-2x ,所以y 与x 之间的函数关系式为y=15-2x ;②由题意可得,()31523151523x x x x ⎧≥⎪-≥⎨⎪---≥⎩, 解得:3≤x≤6,∴有四种方案,方案一:装运A 、B 、C 三种不同品质的车辆分别是3辆、9辆、3辆;方案二:装运A 、B 、C 三种不同品质的车辆分别是4辆、7辆、4辆;方案三:装运A 、B 、C 三种不同品质的车辆分别是5辆、5辆、5辆;方案四:装运A 、B 、C 三种不同品质的车辆分别是6辆、3辆、6辆;(2)设装运A 种椪柑的车辆数为x 辆,W=10x×800+8(15-2x )×1200+6[15-x-(15-2x )]×1000+120×50=-5200x+150000,∵3≤x≤6,∴x=3时,W 取得最大值,此时W=134400,答:采用方案一:装运A 、B 、C 三种不同品质的车辆分别是3辆、9辆、3辆,利润W (元)的最大值是134400元.【点睛】考查一次函数的应用、一元一次不等式的应用,解题的关键是明确题意,找出所求问题需要的条件,利用一次函数和不等式的性质解答.24.在平面直角坐标系xOy 中,已知点P是反比例函数0)y x =>图象上一个动点,以P 为圆心圆始终与y 轴相切,设切点为A .(1)如图1,⊙P 运动到与x 轴相切,设切点为K ,试判断四边形OKP A 的形状,并说明理由.(2)如图2,⊙P 运动到与x 轴相交,设交点为B ,C .当四边形ABCP 是菱形时,①求过点A ,B ,C 三点的抛物线解析式;②在过A ,B ,C 三点的抛物线上是否存在点M ,使△MBP 的面积是菱形ABCP 面积的12?若存在,直接写...出.所有满足条件的M 点的坐标;若不存在,试说明理由.【答案】(1)四边形OKP A 是正方形,理由见解析;(2)①y 3243x 3;;②存在,M 的坐标为(0,3)或(3,0)或(43)或(7,83【解析】【分析】(1)先证明四边形OKP A 是矩形,又P A =PK ,所以四边形OKP A 是正方形;(2)①证明△PBC 为等边三角形;在Rt △PBG 中,∠PBG =60°,设PB =P A =a ,BG =2a ,由勾股定理得:PG 3,所以P (a 3a ),将P 点坐标代入y 23,求出PG 3,P A =BC =2,又四边形OGP A 是矩形,P A =OG =2,BG =CG =1,故OB =OG ﹣BG =1,OC =OG +GC =3,即可求得a 、b 、c 的值;设二次函数的解析式为:y =ax 2+bx +c ,根据题意得:a +b +c =0,9a +3b +c =0,而c 3 ②【详解】(1)四边形OKP A 是正方形,理由:∵⊙P 分别与两坐标轴相切,∴P A ⊥OA ,PK ⊥OK ,∴∠P AO =∠OKP =90°.又∵∠AOK =90°,∴∠P AO =∠OKP =∠AOK =90°.∴四边形OKP A 是矩形.又∵P A =PK ,∴四边形OKP A 是正方形;(2)①连接PB ,过点P 作PG ⊥BC 于G .∵四边形ABCP为菱形,∴BC=P A=PB=PC.∴△PBC为等边三角形.在Rt△PBG中,∠PBG=60°,设PB=P A=a,BG=2a由勾股定理得:PG 3,所以P(a 3a),将P点坐标代入y23,解得:a=2或﹣2(舍去负值),∴PG3P A=BC=2.又四边形OGP A是矩形,P A=OG=2,BG=CG=1,∴OB=OG﹣BG=1,OC=OG+GC=3.∴A(03,B(1,0),C(3,0);设:二次函数的解析式为:y=ax2+bx+c,根据题意得:a+b+c=0,9a+3b+c=0,而c3解得:a 3b43c3,∴二次函数的解析式为:y=33x243x3②设直线BP的解析式为:y=ux+v,据题意得:0 23 u vu v+=⎧⎪⎨+=⎪⎩解之得:u3v3∴直线BP 的解析式为:yx过点A 作直线AM ∥BP ,则可得直线AM的解析式为:y =+解方程组:2y y x ⎧=+⎪⎨=-+⎪⎩得:110x y =⎧⎪⎨=⎪⎩227x y =⎧⎪⎨=⎪⎩ 过点C 作直线CM ∥PB ,则可设直线CM的解析式为:y t =+. ∴0=t .∴t =-∴直线CM的解析式为:y =-.解方程组:2y y x ⎧=-⎪⎨=-+⎪⎩得:1130x y =⎧⎨=⎩;224x y =⎧⎪⎨=⎪⎩ 综上可知,满足条件的M 的坐标有四个,分别为(0,(3,0),(4),(7,.【点睛】考查了二次函数的综合运用.解题关键是灵活运用菱形和圆的性质和数形结合.。
2020届河北省中考数学模拟试卷(有答案)(word版)(已纠错)
河北省中考数学试卷一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:﹣(﹣1)=()A.±1 B.﹣2 C.﹣1 D.12.计算正确的是()A.(﹣5)0=0 B.x2+x3=x5C.(ab2)3=a2b5 D.2a2•a﹣1=2a3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列运算结果为x﹣1的是()A.1﹣B.•C.÷D.5.若k≠0,b<0,则y=kx+b的图象可能是()A.B.C.D.6.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形7.关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点8.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④9.如图为4×4的网格图,A,B,C,D,O均在格点上,点O是()A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心10.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC•AH D.AB=AD11.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙 B.丙丁 C.甲丙 D.乙丁12.在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是()A.=﹣5 B.=+5 C.=8x﹣5 D.=8x+513.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°14.a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根 D.有一根为015.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B. C.D.16.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上二、填空题(本大题有3小题,共10分.17-18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.8的立方根是______.18.若mn=m+3,则2mn+3m﹣5mn+10=______.19.如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°﹣7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=______°.…若光线从A点出发后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=______°.三、解答题(本大题有7个小题,共68分.解答应写出必要的文字说明、证明过程或演算步骤)20.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.21.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.22.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.23.如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?24.某商店通过调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x(元)满足一次函数关系,如表:第1个第2个第3个第4个…第n个调整前的单价x(元)x1x2=6 x3=72 x4…x n调整后的单价y(元)y1y2=4 y3=59 y4…y n已知这个n玩具调整后的单价都大于2元.(1)求y与x的函数关系式,并确定x的取值范围;(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?(3)这n个玩具调整前、后的平均单价分别为,,猜想与的关系式,并写出推导过程.25.如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在上且不与A点重合,但Q点可与B点重合.发现:的长与的长之和为定值l,求l:思考:点M与AB的最大距离为______,此时点P,A间的距离为______;点M与AB的最小距离为______,此时半圆M的弧与AB所围成的封闭图形面积为______;探究:当半圆M与AB相切时,求的长.(注:结果保留π,cos35°=,cos55°=)26.如图,抛物线L:y=﹣(x﹣t)(x﹣t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA 的中点M作MP⊥x轴,交双曲线y=(k>0,x>0)于点P,且OA•MP=12,(1)求k值;(2)当t=1时,求AB的长,并求直线MP与L对称轴之间的距离;(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标;(4)设L与双曲线有个交点的横坐标为x0,且满足4≤x0≤6,通过L位置随t变化的过程,直接写出t的取值范围.河北省中考数学试卷参考答案与试题解析一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。
中考数学模拟试卷一(含解析)-人教版初中九年级全册数学试题
某某市铜梁区巴川中学2016届中考数学模拟试卷一一、选择题(本大题共12个小题,每小题4分,共48分)1.的算术平方根是()A.2 B.±2C.D.±2.计算(﹣2a2b)3的结果是()A.﹣6a6b3B.﹣8a6b3C.8a6b3 D.﹣8a5b33.下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B.C.D.4.函数y=+中自变量x的取值X围是()A.x≤2 B.x≤2且x≠1C.x<2且x≠1D.x≠15.下列说法不正确的是()A.了解全市中学生对某某“三个名城”含义的知晓度的情况,适合用抽样调查B.若甲组数据方差=0.39,乙组数据方差=0.27,则乙组数据比甲组数据稳定C.某种彩票中奖的概率是,买100X该种彩票一定会中奖D.数据﹣1、1.5、2、2、4的中位数是2.6.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°7.如图,▱ABCD的周长为20cm,AE平分∠BAD,若CE=2cm,则AB的长度是()A.10cm B.8cm C.6cm D.4cm8.如图,已知AB是⊙O的切线,点A为切点,连接OB交⊙O于点C,∠B=38°,点D是⊙O上一点,连接CD,AD.则∠D等于()A.76° B.38° C.30° D.26°9.甲、乙两人进行慢跑练习,慢跑路程y(米)与所用时间t(分钟)之间的关系如图所示,下列说法错误的是()A.甲乙两人8分钟各跑了800米B.前2分钟,乙的平均速度比甲快C.5分钟时两人都跑了500米D.甲跑完800米的平均速度为100米∕分10.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值X围是()A.m≤3 B.m<3 C.m<3且m≠2D.m≤3且m≠211.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是()A.222 B.280 C.286 D.29212.如图,在平面直角坐标系中,正方形ABCD的顶点O在坐标原点,点B的坐标为(1,4),点A 在第二象限,反比例函数y=的图象经过点A,则k的值是()A.﹣2 B.﹣4 C.﹣D.二、填空题(本大题6个小题,每小题4分,共24分)13.第十八届中国(某某)国际投资暨全球采购会上,某某共签约528个项目,签约金额602 000 000 000元.把数字602 000 000 000用科学记数法表示为.14.计算:( +1)0+(﹣1)2015+sin45°﹣()﹣1.15.如图,已知D、E分别是△ABC的边AB和AC上的点,DE∥BC,BE与CD相交于点F,如果AE=1,CE=2,那么EF:BF等于.16.如图,Rt△ABC中,∠C=90°,AC=BC=4,点D是线段AB的中点,分别以点A,B为圆心,AD为半径画弧,分别交AC,BC于点E,F.则阴影部分面积为(结果保留π).17.从﹣3,﹣2,﹣1,0,1,2,3这七个数中随机抽取一个数记为a,则a的值是不等式组的解,但不是方程x2﹣3x+2=0的实数解的概率为.18.如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=x﹣3与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为.三、解答题(本大题2个小题,共14分)19.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.20.为了解外来务工子女就学情况,某校对七年级各班级外来务工子女的人数情况进行了统计,发现各班级中外来务工子女的人数有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅统计图:(1)求该校七年级平均每个班级有多少名外来务工子女?并将该条形统计图补充完整;(2)学校决定从只有2名外来务工子女的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名外来务工子女来自同一个班级的概率.四、解答题(本大题4个小题,共40分)21.化简下列各式(1)(a﹣b)2+(2a﹣b)(a﹣2b)(2).22.现从A,B向甲、乙两地运送蔬菜,A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨.(1)设A地到甲地运送蔬菜x吨,请完成下表:运往甲地(单位:吨)运往乙地(单位:吨)A xB(2)设总运费为W元,请写出W与x的函数关系式.(3)怎样调运蔬菜才能使运费最少?23.阅读下列材料:(1)关于x的方程x2﹣3x+1=0(x≠0)方程两边同时乘以得:即,(2)a3+b3=(a+b)(a2﹣ab+b2);a3﹣b3=(a﹣b)(a2+ab+b2).根据以上材料,解答下列问题:(1)x2﹣4x+1=0(x≠0),则=, =, =;(2)2x2﹣7x+2=0(x≠0),求的值.24.如图,高36米的楼房AB正对着斜坡CD,点E在斜坡CD的中点处,已知斜坡的坡角(即∠DCG)为30°,AB⊥BC.(1)若点A、B、C、D、E、G在同一个平面内,从点E处测得楼顶A的仰角α为37°,楼底B的俯角β为24°,问点A、E之间的距离AE长多少米?(精确到十分位)(2)现计划在斜坡中点E处挖去部分斜坡,修建一个平行于水平线BC的平台EF和一条新的斜坡DF,使新斜坡DF的坡比为:1.某施工队承接这项任务,为尽快完成任务,增加了人手,实际工作效率提高到原计划的1.5倍,结果比原计划提前2天完成任务,施工队原计划平均每天修建多少米?(参考数据:cos37°≈0.80,tan37°≈0.75,tan24°≈0.45,cos24°≈0.91)五、解答题(本大题2个小题,共24分)25.如图1,△ABC是等腰直角三角形,AC=BC,∠ACB=90°,直线l经过点C,AF⊥l于点F,AE⊥l 于点E,点D是AB的中点,连接ED.(1)求证:△ACF≌△CBE;(2)求证:AF=BE+DE;(3)如图2,将直线l旋转到△ABC的外部,其他条件不变,(2)中的结论是否仍然成立,如果成立请说明理由,如果不成立AF、BE、DE又满足怎样的关系?并说明理由.26.如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.2016年某某市铜梁区巴川中学中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分)1.的算术平方根是()A.2 B.±2C.D.±【考点】算术平方根.【专题】计算题.【分析】先求得的值,再继续求所求数的算术平方根即可.【解答】解:∵ =2,而2的算术平方根是,∴的算术平方根是,故选:C.【点评】此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.2.计算(﹣2a2b)3的结果是()A.﹣6a6b3B.﹣8a6b3C.8a6b3 D.﹣8a5b3【考点】幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:(﹣2a2b)3=﹣8a6b3.故选B.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.3.下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.函数y=+中自变量x的取值X围是()A.x≤2 B.x≤2且x≠1C.x<2且x≠1D.x≠1【考点】函数自变量的取值X围.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据二次根式有意义,分式有意义得:2﹣x≥0且x﹣1≠0,解得:x≤2且x≠1.故选:B.【点评】本题考查函数自变量的取值X围,涉及的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.5.下列说法不正确的是()A.了解全市中学生对某某“三个名城”含义的知晓度的情况,适合用抽样调查B.若甲组数据方差=0.39,乙组数据方差=0.27,则乙组数据比甲组数据稳定C.某种彩票中奖的概率是,买100X该种彩票一定会中奖D.数据﹣1、1.5、2、2、4的中位数是2.【考点】全面调查与抽样调查;中位数;方差;概率的意义.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似;以及方差的意义,概率公式中位数的定义对各选项分析判断后利用排除法求解.【解答】解:A、了解全市中学生对某某“三个名城”含义的知晓度的情况,知道大概情况即可,适合用抽样调查,正确,故本选项错误;B、0.39<0.27,乙组数据比甲组数据稳定,正确,故本选项错误;C、概率是针对数据非常多时,趋近的一个数,所以概率是,并不能说买100X该种彩票就一定能中奖,错误,故本选项正确;D、五个数按照从小到大排列,第3个数是2,所以,中位数是2,正确,故本选项错误.故选C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查,方差的意义,概率的意义以及中位数的定义.6.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°【考点】平行线的性质.【分析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.【解答】解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.【点评】本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.7.如图,▱ABCD的周长为20cm,AE平分∠BAD,若CE=2cm,则AB的长度是()A.10cm B.8cm C.6cm D.4cm【考点】平行四边形的性质.【分析】根据平行四边形的性质得出AB=CD,AD=BC,AD∥BC,推出∠DAE=∠BAE,求出∠BAE=∠AEB,推出AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,得出方程x+x+2=10,求出方程的解即可.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠DAE=∠BAE,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠AEB,∴AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,∵▱ABCD的周长为20cm,∴x+x+2=10,解得:x=4,即AB=4cm,故选D.【点评】本题考查了平行四边形的在,平行线的性质,等腰三角形的判定的应用,解此题的关键是能推出AB=BE,题目比较好,难度适中.8.如图,已知AB是⊙O的切线,点A为切点,连接OB交⊙O于点C,∠B=38°,点D是⊙O上一点,连接CD,AD.则∠D等于()A.76° B.38° C.30° D.26°【考点】切线的性质.【专题】计算题.【分析】先根据切线的性质得到∠OAB=90°,再利用互余计算出∠AOB=52°,然后根据圆周角定理求解.【解答】解:∵AB是⊙O的切线,∴OA⊥AB,∴∠OAB=90°,∵∠B=38°,∴∠AOB=90°﹣38°=52°,∴∠D=∠AOB=26°.故选D.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理的运用.9.甲、乙两人进行慢跑练习,慢跑路程y(米)与所用时间t(分钟)之间的关系如图所示,下列说法错误的是()A.甲乙两人8分钟各跑了800米B.前2分钟,乙的平均速度比甲快C.5分钟时两人都跑了500米D.甲跑完800米的平均速度为100米∕分【考点】函数的图象.【专题】探究型.【分析】根据函数图象可以判断各选项是否正确,从而可以解答本题.【解答】解:由图可得,甲8分钟跑了800米,乙8分钟跑了700米,故选项A错误;前2分钟,乙跑了300米,甲跑的路程小于300米,从而可知前2分钟,乙的平均速度比甲快,故选项B正确;由图可知,5分钟时两人都跑了500米,故选项C正确;由图可知,甲8分钟跑了800米,可得甲跑完800米的平均速度为100米/分,故选项D正确;故选A.【点评】本题考查函数的图象,解题的关键是利用数形结合的思想判断选项中的说法是否正确.10.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值X围是()A.m≤3 B.m<3 C.m<3且m≠2D.m≤3且m≠2【考点】根的判别式;一元二次方程的定义.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac的意义得到m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,然后解不等式组即可得到m的取值X围.【解答】解:∵关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,∴m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,解得m≤3,∴m的取值X围是m≤3且m≠2.故选:D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.11.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是()A.222 B.280 C.286 D.292【考点】规律型:图形的变化类.【专题】规律型.【分析】设连续搭建三角形x个,连续搭建正六边形y个,根据搭建三角形和正六边形共用了2016根火柴棍,并且三角形的个数比正六边形的个数多6个,列方程组求解【解答】解:设连续搭建三角形x个,连续搭建正六边形y个.由题意得,,解得:.故选D.【点评】本题考查了二元一次方程组的应用及图形的变化类问题,解答本题的关键是读懂题意,仔细观察图形,找出合适的等量关系,列方程组求解.12.如图,在平面直角坐标系中,正方形ABCD的顶点O在坐标原点,点B的坐标为(1,4),点A 在第二象限,反比例函数y=的图象经过点A,则k的值是()A.﹣2 B.﹣4 C.﹣D.【考点】反比例函数图象上点的坐标特征.【分析】作AD⊥x轴于D,CE⊥x轴于E,先通过证得△AOD≌△OCE得出AD=OE,OD=CE,设A(x,),则C(,﹣x),根据正方形的性质求得对角线解得F的坐标,根据直线OB的解析式设出直线AC 的解析式为:y=﹣x+b,代入交点坐标求得解析式,然后把A,C的坐标代入即可求得k的值.【解答】解:作AD⊥x轴于D,CE⊥x轴于E,∵∠AOC=90°,∴∠AOD+∠COE=90°,∵∠AOD+∠OAD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴AD=OE,OD=CE,设A(x,),则C(,﹣x),∵点B的坐标为(1,4),∴OB==,直线OB为:y=4x,∵AC和OB互相垂直平分,∴它们的交点F的坐标为(,2),设直线AC的解析式为:y=﹣x+b,代入(,2)得,2=﹣×+b,解得b=,直线AC的解析式为:y=﹣x+,把A(x,),C(,﹣x)代入得,解得k=﹣.故选C.【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求解析式,正方形的性质,三角形求得的判定和性质,熟练掌握正方形的性质是解题的关键.二、填空题(本大题6个小题,每小题4分,共24分)13.第十八届中国(某某)国际投资暨全球采购会上,某某共签约528个项目,签约金额602 000 000 000元.把数字602 000 000 000用科学记数法表示为 6.02×1011.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:602 000 000 000=6.02×1011,故答案为:6.02×1011.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.计算:( +1)0+(﹣1)2015+sin45°﹣()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式第一项利用零指数幂法则计算,第二项利用乘方的意义计算,第三项利用特殊角的三角函数值计算,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=1﹣1+1﹣3=﹣2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.15.如图,已知D、E分别是△ABC的边AB和AC上的点,DE∥BC,BE与CD相交于点F,如果AE=1,CE=2,那么EF:BF等于.【考点】相似三角形的判定与性质.【分析】由DE∥B C,证得△ADE∽△ABC,根据相似三角形的性质得到=,由于△DEF∽△BCF,根据相似三角形的性质即可得到结论.【解答】解:∵AE=1,CE=2,∴AC=3,∵DE∥BC,∴△ADE∽△ABC,∴=,∵DE∥BC,∴△DEF∽△BCF,∴=,故答案为:1:3.【点评】本题考查了相似三角形的判定和性质,熟练正确相似三角形的判定和性质是解题的关键.16.如图,Rt△ABC中,∠C=90°,AC=BC=4,点D是线段AB的中点,分别以点A,B为圆心,AD为半径画弧,分别交AC,BC于点E,F.则阴影部分面积为8﹣2π(结果保留π).【考点】扇形面积的计算.【分析】利用等腰直角三角形的性质得出AD,BD的长,再利用扇形面积求法以及直角三角形面积求法得出答案.【解答】解:∵∠C=90°,AC=BC=4,点D是线段AB的中点,∴AD=BD=2,∴阴影部分面积为:AC•BC﹣2×=8﹣2π.故答案为:8﹣2π.【点评】此题主要考查了扇形面积求法以及等腰直角三角形的性质,得出AD,BD的长是解题关键.17.从﹣3,﹣2,﹣1,0,1,2,3这七个数中随机抽取一个数记为a,则a的值是不等式组的解,但不是方程x2﹣3x+2=0的实数解的概率为.【考点】概率公式;根的判别式;解一元一次不等式组.【分析】首先解不等式组,即可求得a的取值X围,解一元二次方程x2﹣3x+2=0,可求得a的值,然后直接利用概率公式求解即可求得答案.【解答】解:,由①得:x>﹣2,由②得:x>﹣,∵a的值是不等式组的解,∴a=0,1,2,3,∵x2﹣3x+2=0,∴(x﹣1)(x﹣2)=0,解得:x1=1,x2=2,∵a不是方程x2﹣3x+2=0的实数解,∴a=0或3;∴a的值是不等式组的解,但不是方程x2﹣3x+2=0的实数解的概率为:.故答案为:.【点评】此题考查了概率公式的应用、不等式组的解集以及一元二次方程的解法.用到的知识点为:概率=所求情况数与总情况数之比.18.如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=x﹣3与x轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为.【考点】一次函数图象上点的坐标特征;垂线段最短.【分析】认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用△PBM∽△ABO,即可求出本题的答案.【解答】解:如图,过点P作PM⊥AB,则:∠PMB=90°,当PM⊥AB时,PM最短,因为直线y=x﹣3与x轴、y轴分别交于点A,B,可得点A的坐标为(4,0),点B的坐标为(0,﹣3),在Rt△AOB中,AO=4,BO=3,AB==5,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴=,即:,所以可得:PM=.【点评】本题主要考查了垂线段最短,以及三角形相似的性质与判定等知识点,是综合性比较强的题目,注意认真总结.三、解答题(本大题2个小题,共14分)19.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据平行线的性质得出∠B=∠C,再根据AAS证出△ABE≌△DCF,从而得出AB=CD.【解答】解:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF,∴AB=CD.【点评】本题考查了全等三角形的判定与性质,用到的知识点是平行线的性质,全等三角形的判定和性质,关键是根据平行线的性质证出∠B=∠C.20.为了解外来务工子女就学情况,某校对七年级各班级外来务工子女的人数情况进行了统计,发现各班级中外来务工子女的人数有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅统计图:(1)求该校七年级平均每个班级有多少名外来务工子女?并将该条形统计图补充完整;(2)学校决定从只有2名外来务工子女的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名外来务工子女来自同一个班级的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)根据外来务工子女有4名的班级占20%,可求得有外来务工子女的总班级数,再减去其它班级数,即可补全统计图;(2)根据班级个数和班级人数,求出总的外来务工子女数,再除以总班级数,即可得出答案;(3)根据(1)可知,只有2名外来务工子女的班级有2个,共4名学生,再设A1,A2来自一个班,B1,B2来自一个班,列出树状图可得出来自一个班的共有4种情况,再根据概率公式即可得出答案.【解答】解:(1)该校班级个数为4÷20%=20(个),只有2名外来务工子女的班级个数为:20﹣(2+3+4+5+4)=2(个),条形统计图补充完整如下该校平均每班外来务工子女的人数为:(1×2+2×2+3×3+4×4+5×5+6×4)÷20=4(个);(2)由(1)得只有2名外来务工子女的班级有2个,共4名学生,设A1,A2来自一个班,B1,B2来自一个班,画树状图如图所示;由树状图可知,共有12种可能的情况,并且每种结果出现的可能性相等,其中来自一个班的共有4种情况,则所选两名外来务工子女来自同一个班级的概率为: =.【点评】本题考查了条形统计图和扇形统计图、树状图的画法以及规律公式;读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.四、解答题(本大题4个小题,共40分)21.化简下列各式(1)(a﹣b)2+(2a﹣b)(a﹣2b)(2).【考点】分式的混合运算;整式的混合运算.【专题】计算题.【分析】(1)利用乘法公式展开,然后合并同类项即可;(2)先把括号内通分后进行同分母的减法运算,再把分子分母因式分解和除法运算化为乘法运算,然后约分即可.【解答】解:(1)原式=a2﹣2ab+b2+2a2﹣ab﹣4ab+2b2=3a2﹣7ab+3b2;(2)原式=、====.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.也考查了整式的混合运算.22.现从A,B向甲、乙两地运送蔬菜,A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨.(1)设A地到甲地运送蔬菜x吨,请完成下表:运往甲地(单位:吨)运往乙地(单位:吨)A x 14﹣xB 15﹣x x﹣1(2)设总运费为W元,请写出W与x的函数关系式.(3)怎样调运蔬菜才能使运费最少?【考点】一次函数的应用.【专题】压轴题.【分析】(1)根据题意A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,可得解.(2)根据从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨可列出总费用,从而可得出答案.(3)首先求出x的取值X围,再利用w与x之间的函数关系式,求出函数最值即可.【解答】解:(1)如图所示:运往甲地(单位:吨)运往乙地(单位:吨)A x 14﹣xB 15﹣x x﹣1(2)由题意,得W=50x+30(14﹣x)+60(15﹣x)+45(x﹣1)=5x+1275(1≤x≤14).(3)∵A,B到两地运送的蔬菜为非负数,∴,解不等式组,得:1≤x≤14,在W=5x+1275中,∵k=5>0,∴W随x增大而增大,∴当x最小为1时,W有最小值,∴当x=1时,A:x=1,14﹣x=13,B:15﹣x=14,x﹣1=0,即A向甲地运1吨,向乙地运13吨,B向甲地运14吨,向乙地运0吨才能使运费最少.【点评】本题考查了利用一次函数的有关知识解答实际应用题,一次函数是常用的解答实际问题的数学模型,是中考的常见题型,同学们应重点掌握.23.阅读下列材料:(1)关于x的方程x2﹣3x+1=0(x≠0)方程两边同时乘以得:即,(2)a3+b3=(a+b)(a2﹣ab+b2);a3﹣b3=(a﹣b)(a2+ab+b2).根据以上材料,解答下列问题:(1)x2﹣4x+1=0(x≠0),则= 4 , = 14 , = 194 ;(2)2x2﹣7x+2=0(x≠0),求的值.【考点】一元二次方程的解.【专题】阅读型.【分析】(1)模仿例题利用完全平方公式即可解决.(2)模仿例题利用完全平方公式以及立方和公式即可.【解答】解;(1)∵x2﹣4x+1=0,∴x+=4,∴(x+)2=16,∴x2+2+=16,∴x2+=14,∴(x2+)2=196,∴x4++2=196,∴x4+=194.故答案为4,14,194.(2)∵2x2﹣7x+2=0,∴x+=,x2+=,∴=(x+)(x2﹣1+)=×(﹣1)=.【点评】本题考查一元一次方程的解、完全平方公式、立方和公式,解决问题的关键是灵活应用完全平方公式,记住两边平方不能漏项(利用完全平方公式整体平方),属于中考常考题型.24.如图,高36米的楼房AB正对着斜坡CD,点E在斜坡CD的中点处,已知斜坡的坡角(即∠DCG)为30°,AB⊥BC.(1)若点A、B、C、D、E、G在同一个平面内,从点E处测得楼顶A的仰角α为37°,楼底B的俯角β为24°,问点A、E之间的距离AE长多少米?(精确到十分位)(2)现计划在斜坡中点E处挖去部分斜坡,修建一个平行于水平线BC的平台EF和一条新的斜坡DF,使新斜坡DF的坡比为:1.某施工队承接这项任务,为尽快完成任务,增加了人手,实际工作效率提高到原计划的1.5倍,结果比原计划提前2天完成任务,施工队原计划平均每天修建多少米?(参考数据:cos37°≈0.80,tan37°≈0.75,tan24°≈0.45,cos24°≈0.91)【考点】解直角三角形的应用-坡度坡角问题;分式方程的应用;解直角三角形的应用-仰角俯角问题.【分析】(1)延长FE交AB于M,设ME=x,根据直角三角形函数得出AM=tanα•x,BM=tanβ•x,然后根据tanα•x+tanβ•x=36,即可求得EM的长,然后通过余弦函数即可求得AE;(2)根据BM=NG=DN,得到DN的长,然后解直角三角形函数求得EN和FN,进而求得EF和DF的长,然后根据题意列出方程,解方程即可求得.【解答】解:(1)延长FE交AB于M,∵EF∥BC,∴MN⊥AB,MN⊥DG,设ME=x,∴AM=tanα•x,BM=tanβ•x,∵AB=36,∴tanα•x+tanβ•x=36,∴tan37°x+tan24°x=36,0.75x+0.45x=36,解得x=30,∴AE==≈37.5(米);(2)延长EF交DG于N,∵GN=BM=tan24°•30=13.5,DE=CE,EF∥BC,∴DN=GN=13.5(米),∵∠DCG=30°,∴∠DEN=30°,∴EN=DN•cot30°=13.5×,∵=,∴∠DFN=60°,∴∠EDF=30°,FN=DN•cot60°=13.5×,∴DF=EF=EN﹣FN=13.5×,∴EF+DF=27×=18,设施工队原计划平均每天修建y米,根据题意得, =+2,解得x=3(米),经检验,是方程的根,答:施工队原计划平均每天修建3米.【点评】本题考查了解直角三角形的应用,题目中涉及到了仰俯角和坡度角的问题,解题的关键是构造直角三角形.五、解答题(本大题2个小题,共24分)25.如图1,△ABC是等腰直角三角形,AC=BC,∠ACB=90°,直线l经过点C,AF⊥l于点F,AE⊥l 于点E,点D是AB的中点,连接ED.(1)求证:△ACF≌△CBE;(2)求证:AF=BE+DE;(3)如图2,将直线l旋转到△ABC的外部,其他条件不变,(2)中的结论是否仍然成立,如果成立请说明理由,如果不成立AF、BE、DE又满足怎样的关系?并说明理由.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)根据垂直的定义得到∠BEC=∠ACB=90°,根据全等三角形的性质得到∠EBC=∠CAF,。
【最新】河北省衡水市中考数学模拟检测试卷(含答案解析)
河北省衡水市中考数学模拟试卷(含答案)(时间120分钟满分:120分)一、选择题(本大愿共16个小题,1~10小题,每小题3分:11~16小题,每小题3分,共42分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)在“有理数的加法与减法运算”的学习过程中,我们做过如下数学实验.“把笔尖放在数轴的原点处,先向左移动3个单位长度,再向右移动1个单位长度,这时笔尖的位置表示什么数?”用算式表示以上过程和结果的是()A.(﹣3)﹣(+1)=﹣4 B.(﹣3)+(+1)=﹣2C.(+3)+(﹣1)=+2 D.(+3)+(+1)=+42.(3分)如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为()A.45°B.55°C.135° D.145°3.(3分)PM2.5是指大气中直径小于或等于0.00000025m的颗粒物,将0.00000025用科学记数法表示为()A.2.5×10﹣7 B.2.5×10﹣8 C.25×10﹣6 D.0.25×10﹣74.(3分)如图所示是4×5的方格纸,请在其中选取一个白色的方格并涂黑,使图中阴影部分是一个轴对称图形,这样的涂法有()A.4种B.3种C.2种D.1种5.(3分)下列运算正确的是()A.a2+a3=2a5B.(﹣a3)2=a9C.(﹣x)2﹣x2=0 D.(﹣bc)4÷(﹣bc)2=﹣b2c26.(3分)如果式子有意义,那么x的取值范围在数轴上表示出来,正确的是()A. B.C. D.7.(3分)如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于()A.122°B.151° C.116° D.97°8.(3分)如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为()A.15°B.18°C.20°D.28°9.(3分)某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是()动时间(小时) 3 3.5 4 4.5人数 1 1 2 1A.中位数是4,平均数是3.75 B.众数是4,平均数是3.75 C.中位数是4,平均数是3.8 D.众数是2,平均数是3.810.(3分)如图,在矩形中截取两个相同的正方形作为立方体的上下底面,剩余的矩形作为立方体的侧面,刚好能组成立方体.设矩形的长和宽分别为y和x,则y与x的函数图象大致是()A. B. C.D.11.(2分)由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.12.(2分)关于x的分式方程=有解,则字母a的取值范围是()A.a=5或a=0 B.a≠0 C.a≠5 D.a≠5且a≠013.(2分)如图,在△ABC与△ADE中,∠BAC=∠D,要使△ABC与△ADE相似,还需满足下列条件中的()A. = B. = C. = D. =14.(2分)如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0),下列结论:①ab<0,②b2>4,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0.其中正确结论的个数是()A.2个 B.3个 C.4个D.5个15.(2分)如图,正三角形ABC(图1)和正五边形DEFGH(图2)的边长相同.点O为△ABC的中心,用5个相同的△BOC拼入正五边形DEFGH中,得到图3,则图3中的五角星的五个锐角均为()A.36° B.42°C.45° D.48°16.(2分)将一个无盖正方体纸盒展开(如图1),沿虚线剪开,用得到的5张纸片(其中4张是全等的直角三角形纸片)拼成一个正方形(如图2),则所剪得的直角三角形较短的与较长的直角边的比是()A. B. C. D.二、填空题(17、18题每題3分,19题每空2分,共10分.把答案写在题中横线上)17.(3分)计算: = .18.(3分)阅读下面材料:如图,AB是半圆的直径,点D、E在半圆上,且D为弧BE的中点,连接AE、BD并延长,交圆外一点C,按以下步骤作图:①以点C为圆心,小于BC长为半径画弧,分别交AC、BC于点G、H;②分别以点G、H为圆心,大于GH的长为半径画弧,两弧相交于点M;③作射线CM,交连接A、D两点的线段于点I.则点I到△ABC各边的距离.(填“相等”或“不等”)19.(4分)将一列有理数﹣1,2,﹣3,4,﹣5,6,……,按如图所示有序排列.如图所示有序排列.如:“峰1”中峰顶C的位置是有理数4,那么,(1)“峰6”中峰顶C的位置是有理数;(2)2008应排在A、B、C、D、E中的位置.三解答题(共68分)20.(本小题满分8分)(1)a克糖水中有b克糖(a>b>0),则糖的质量与糖水的质量比为;若再添加c克糖,并全部溶解(c>0),则糖的质量与糖水的质量比为;生活常识告诉我们,添加的糖完全溶解后,频数 1 2 3 4 5 6 天图9糖水会更甜,因此我们可以猜想出以上两个质量比之间的大小关系是 ;.(2)我们的猜想正确吗?请你证明这个猜想。
人教版中考第一次模拟检测《数学试卷》含答案解析
人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________ 一.选择题(共10小题)1.12-的相反数是( )A. B. 2 C.12- D.122. 中国是一个干旱缺水严重的国家,淡水资源总量约为28000亿立方米,约占全球水资源的6%.将28000用科学记数法表示为()A. 28×103B. 2.8×104C. 2.8×105D. 0.28×1063. 下列各运算中,计算正确的是()A. 4a2﹣2a2=2B. (a2)3=a5C. a3•a6=a9D. (3a)2=6a24.下列四个图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.5. 如图所示的图形是由7个完全相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是( )A. B. C. D.6.下面是扬帆中学九年八班43名同学家庭人口统计表:这43个家庭人口的众数和中位数分别是( )家庭人口数(人) 2 3 4 5 6学生人数(人) 3 15 10 8 7A. 5,6B. 3,4C. 3,5D. 4,67.如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=45°,若使直线b与直线c平行,则可将直线b 绕点A 逆时针旋转( )A. 15°B. 30°C. 45°D. 60°8. 圆心角为120°,弧长为12π的扇形半径为( )A 6 B. 9 C. 18 D. 369.在同一直角坐标系中,函数y =kx +1与y =﹣k x(k ≠0)的图象大致是( ) A. B.C. D.10.如图,在ABC 中,点D E F 、、分别在AB AC BC 、、边上,连接DE EF 、,若//,//DE BC EF AB ,则下列结论错误的是( )A. AE BF EC FC =B. AD AB BF BC =C. EF DE AB BC =D. CE EA CF BF= 二.填空题(共10小题)11.计算:6826)=_____.12.在函数y=34xx--中,自变量x取值范围是___________.13.在平面直角坐标系中,已知一次函数y=2x+1图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1_____y2.(填”>”“<”或”=”)14.小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是.15.分式方程12x xx x-=+的解为x=_______.16.如图,AB是⊙O的直径,AB=6,BD、CD分别是过⊙O上点B、C的切线,且∠BDC=120°,连接AC,则AC=_____.17.如图,在平面直角坐标系xOy中,已知点M0的坐标为(1,0),将线段OM0绕原点O逆时针方向旋转45°,再将其延长到M1,使得M1M0⊥OM0,得到线段OM1;又将线段OM1绕原点O逆时针方向旋转45°,再将其延长到M2,使得M2M1⊥OM1,得到线段OM2;如此下去,得到线段OM3,OM4,OM5,…根据以上规律,请直接写出OM2014的长度为_______.18.如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于_____cm.19.如图,矩形ABCD中,点E,F分别在AD,BC上,且AE=DE,BC=3BF,连接EF,将矩形ABCD沿EF折叠,点A恰好落在BC边上的点G处,则cos∠EGF的值为_____.20.如图,在Rt△ABC中,∠ACB=90°,点D在AC上,DE⊥AB于点E,且CD=DE.点F在BC上,连接EF,AF,若∠CEF=45°,∠B=2∠CAF,BF=2,则AB的长为_____.三.解答题(共7小题)21.先化简,再求代数式(1﹣25 4a-)223aa a+⋅-的值,其中a=2tan45°﹣cos60°.22.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A、B、C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB'C'.(1)在正方形网格中,画出△AB'C';(2)计算线段AB在旋转过程中所扫过的面积.23.某中学开展以”我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制成的不完整统计图.(1)把折线统计图补充完整;(2)求出扇形统计图中,公务员部分对应的圆心角的度数;(3)若从被调查的学生中任意抽取一名,求取出的这名学生最喜欢的职业是”教师”的概率.24.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,连接AD,E为AD的中点,过A作AF∥BC交BE 延长线于F,连接CF.(1)求证:四边形ADCF是菱形;(2)在不添加任何辅助线的情况下,请直接写出与△ACD面积相等的三角形(不包含△ACD).25.某水果商贩用600元购进了一批水果,上市后销售非常好,商贩又用1400元购进第二批这种水果,所购水果数量是第一批购进数量的2倍,但每箱进价多了5元.(1)求该商贩第一批购进水果每箱多少元;(2)由于储存不当,第二批购进的水果中有10%腐坏,不能售卖,该商贩将两批水果按同一价格全部销售完毕后获利不低于800元,求每箱水果的售价至少是多少元?26.已知:点A,B,C都在⊙O上,连接AB,AC,点D,E分别在AC,AB上,连接CE并延长交⊙O于点F,连接BD,BF,∠BDC﹣∠BFC=2∠ABF.(1)如图1,求证:∠ABD=2∠ACF;(2)如图2,CE交BD于点G,过点G作GM⊥AC于点M,若AM=MD,求证:AE=GD;(3)如图3,在(2)的条件下,当AE:BE=8:7时,连接DE,且∠ADE=30°.延长BD交⊙O于点H,连接AH,AH=83,求⊙O的半径.27.如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+b交y轴于点A,交x轴于点B,S△AOB=81 2.(1)求b的值;(2)点C以每秒1个单位长度速度从O点出发沿x轴向点B运动,点D以每秒2个单位长度的速度从A点出发沿y轴向点O运动,C,D两点同时出发,当点D运动到点O时,C,D两点同时停止运动.连接CD,设点C的运动时间为t秒,△CDO的面积为S,求S与t的函数关系式(不要求写出自变量t的取值范围);(3)在(2)条件下,过点C作CE⊥CD交AB于点E,过点D作DF∥x轴交AB于点F,过点F作FH⊥CE,垂足为H.在CH上取点M,使得MH:HE=8:33,连接FM,若∠FMH=32∠FEH,求t的值.答案与解析一.选择题(共10小题)1.12-的相反数是( )A. B. 2 C.12- D.12【答案】D 【解析】【详解】因为-12+12=0,所以-12的相反数是12.故选D.2. 中国是一个干旱缺水严重的国家,淡水资源总量约为28000亿立方米,约占全球水资源的6%.将28000用科学记数法表示为()A. 28×103B. 2.8×104C. 2.8×105D. 0.28×106【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:28000=2.8×104,故选B.考点:科学记数法——表示较大的数.3. 下列各运算中,计算正确的是( )A. 4a2﹣2a2=2B. (a2)3=a5C. a3•a6=a9D. (3a)2=6a2【答案】C【解析】【详解】试题分析:A、合并同类项,系数相加字母部分不变,故A错误;B、幂的乘方,底数不变指数相乘,故B错误;C、同底数幂相乘,底数不变指数相加,故C正确;D、3的平方是9,故D错误;故选C.考点:1、幂的乘方与积的乘方;2、合并同类项;3、同底数幂的乘法.4.下列四个图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A选项:不是轴对称图形,是中心对称图形,故错误;B选项:不是轴对称图形,是中心对称图形.故错误;C选项:是轴对称图形,也是中心对称图形.故正确;D选项:不是轴对称图形,是中心对称图形.故错误;故选C.【点睛】考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5. 如图所示的图形是由7个完全相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是( )A. B. C. D.【答案】B【解析】【详解】试题分析:根据立方体的组成,结合三视图的观察角度,可得出:A、是几何体的左视图,故此选项错误;B、不是几何体的三视图,故此选项正确;C、是几何体的主视图,故此选项错误;D、是几何体的俯视图,故此选项错误.故选B.考点:简单组合体的三视图.6.下面是扬帆中学九年八班43名同学家庭人口的统计表:这43个家庭人口的众数和中位数分别是( ) 家庭人口数(人) 2 3 4 5 6学生人数(人) 3 15 10 8 7A. 5,6B. 3,4C. 3,5D. 4,6【答案】B【解析】【分析】根据众数和中位数的概念求解可得.【详解】解:这43个家庭人口的众数3,将家庭人口数从小到大排列后,第22个数为4,即中位数为4,故选:B.【点睛】此题考查的是求众数和中位数,掌握众数和中位数的概念是解决此题的关键.7.如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=45°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转( )A. 15°B. 30°C. 45°D. 60°【答案】A【解析】试题分析:先根据邻补角的定义得到∠3=60°,根据平行线的判定当b与a的夹角为45°时,b∥c,由此得到直线b绕点A逆时针旋转60°﹣45°=15°.解:∵∠1=120°,∴∠3=60°,∵∠2=45°,∴当∠3=∠2=45°时,b ∥c ,∴直线b 绕点A 逆时针旋转60°﹣45°=15°.故选A .点评:本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;两条直线都和第三条直线平行,那么这两条直线平行.8. 圆心角为120°,弧长为12π的扇形半径为( )A. 6B. 9C. 18D. 36 【答案】C【解析】 试题分析:直接根据弧长的公式180n r l π=列式求解: 设该扇形的半径是r , ∵n=120°,l=12π,∴1201218180r r ππ=⇒= .故选C .考点:弧长的计算.9.在同一直角坐标系中,函数y =kx +1与y =﹣k x(k ≠0)的图象大致是( ) A. B.C. D.【答案】D【解析】【分析】先根据一次函数图象与系数的关系得到k 的范围,然后根据k 的范围判断反比例函数图象的位置,逐一判断即可.【详解】解:A 、对于y =kx +1经过第一、三象限,则k >0,﹣k <0,所以反比例函数图象应该分布在第二、四象限,所以A 选项错误;B 、一次函数y =kx +1与y 轴的交点在x 轴上方,所以B 选项错误;C 、对于y =kx +1经过第二、四象限,则k <0,﹣k >0,所以反比例函数图象应该分布在第一、三象限,所以C 选项错误;D 、对于y =kx +1经过第二、四象限,则k <0,﹣k >0,所以反比例函数图象应该分布在第一、三象限,所以D 选项正确.故选:D .【点睛】此题考查的是反比例函数和一次函数的综合题型,掌握一次函数的图象及性质和反比例函数的图象及性质是解决此题的关键.10.如图,在ABC 中,点D E F 、、分别在AB AC BC 、、边上,连接DE EF 、,若//,//DE BC EF AB ,则下列结论错误的是( )A. AE BF EC FC =B. AD AB BF BC =C. EF DE AB BC =D. CE EA CF BF= 【答案】C【解析】【分析】根据平行线分线段成比例定理分别对每一项进行判断即可.【详解】解:A .∵EF ∥AB ,∴AE BF EC FC=,故本选项正确; B .∵DE ∥BC ,∴AD DE AB BC=,∵EF∥AB,∴四边形BDEF是平行四边形,∴DE=BF,∴AD BF AB BC=,∴AD ABBF BC=,故本选项正确;C.∵EF∥AB,∴EF CF AB BC=,∵CF和DE的大小关系不能确定,∴EF DEAB BC≠,故本选项错误;D.∵EF∥AB,∴CE CF EA BF=,∴CE EACF BF=,故本选项正确,故选:C.【点睛】此题主要考查平行线分线段成比例定理,关键是根据平行线分线段成比例定理列出比例式并能进行灵活变形.二.填空题(共10小题)11.计算:)=_____.【答案】-2【解析】【分析】利用平方差公式和二次根式的乘法公式计算.【详解】解:原式=﹣2)=6﹣8=﹣2.故答案为﹣2.【点睛】此题考查的是二次根式的运算,掌握平方差公式和二次根式的乘法公式是解决此题的关键.12.在函数y=34xx--中,自变量x的取值范围是___________.【答案】x≥3且x≠4.【解析】【详解】试题解析:根据题意知:30 {40 xx-≥-≠解得:x≥3且x≠4故答案为:x≥3且x≠4.【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.13.在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1_____y2.(填”>”“<”或”=”)【答案】<【解析】【分析】根据一次函数的性质,当k>0时,y随x的增大而增大,然后根据横坐标的大小关系即可求出结论.【详解】解:∵一次函数y=2x+1中k=2>0,∴y随x的增大而增大,∵x1<x2,∴y1<y2.故答案为:<.【点睛】此题考查的是一次函数增减性的应用,掌握一次函数增减性与k的符号关系是解决此题的关键.14.小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是.【答案】14.【解析】分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】如图,根据矩形的性质易证矩形的对角线把矩形分成的四个三角形均为同底等高的三角形,故其面积相等,根据平行线的性质易证S1=S2,故阴影部分的面积占一份,故针头扎在阴影区域的概率为14.15.分式方程12x xx x-=+的解为x=_______.【答案】2.【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:去分母得:x2=x2﹣x+2x﹣2,解得:x=2,经检验x=2是分式方程的解.故答案为:2.【点睛】本题考查解分式方程.16.如图,AB是⊙O的直径,AB=6,BD、CD分别是过⊙O上点B、C的切线,且∠BDC=120°,连接AC,则AC=_____.【答案】3【解析】【分析】连接OC,BC.只要证明∠A=30°,根据AC=AB•cos30°计算即可.【详解】解:连接OC,BC.∵BD,CD分别是过⊙O上点B,C的切线,∴OC⊥CD,OB⊥BD,∴∠OCD=∠OBD=90°,∵∠BDC=120°,∴∠BOC=360°﹣∠OCD﹣∠BDC﹣∠OBD=60°,∴∠A=12∠BOC=30°,∵AB是直径,∴∠ACB=90°,∴AC=AB•cos30°=33故答案为:33.【点睛】此题考查的是切线的性质、四边形的内角和、圆周角定理及推论和锐角三角函数,掌握是切线的性质、四边形的内角和、圆周角定理及推论和锐角三角函数是解决此题的关键.17.如图,在平面直角坐标系xOy中,已知点M0的坐标为(1,0),将线段OM0绕原点O逆时针方向旋转45°,再将其延长到M1,使得M1M0⊥OM0,得到线段OM1;又将线段OM1绕原点O逆时针方向旋转45°,再将其延长到M2,使得M2M1⊥OM1,得到线段OM2;如此下去,得到线段OM3,OM4,OM5,…根据以上规律,请直接写出OM2014的长度为_______.【答案】21007.【解析】【分析】根据点M0的坐标求出OM0,然后判断出△OM0M1是等腰直角三角形,然后根据等腰直角三角形的性质求出OM1,同理求出OM2,OM3,然后根据规律写出OM2014即可.【详解】解:∵点M0的坐标为(1,0),∴OM0=1.∵线段OM0绕原点O逆时针方向旋转45°,M1M0⊥OM0,∴△OM0M1是等腰直角三角形.∴OM1=2OM0=2,同理,OM2=2OM1=(2)2,OM3=2OM2=(2)3,…,OM2014=2OM2013=(2)2014=21007.故答案为:21007.【点睛】本题考查探索规律题(图形的变化类);点的坐标;旋转的性质;等腰直角三角形的判定和性质.18.如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于_____cm.【答案】1或2.【解析】【详解】解:根据题意画出图形,过P作PN⊥BC,交BC于点N,∵四边形ABCD为正方形,∴AD=DC=PN,在Rt△ADE中,∠DAE=30°,AD=3cm,∴tan30°=DEAD,即3cm,根据勾股定理得:223(3)23cm,∵M为AE的中点,∴3cm在Rt△ADE和Rt△PNQ中,AD=PN,AE=PQ,∴Rt△ADE≌Rt△PNQ(HL),∴DE=NQ,∠DAE=∠NPQ=30°,∵PN∥DC,∴∠PFA=∠DEA=60°,∴∠PMF=90°,即PM⊥AF,在Rt△AMP中,∠MAP=30°,cos30°=AM AP,∴AP=2cm;由对称性得到AP′=DP=AD-AP=3-2=1cm,综上,AP等于1cm或2cm.故答案为:1或2【点睛】本题考查全等三角形的判定与性质;正方形的性质;锐角三角函数.19.如图,矩形ABCD中,点E,F分别在AD,BC上,且AE=DE,BC=3BF,连接EF,将矩形ABCD沿EF折叠,点A恰好落在BC边上的点G处,则cos∠EGF的值为_____.【答案】2 3【解析】【分析】连接AF,由矩形的性质得AD∥BC,AD=BC,由平行线的性质得∠AEF=∠GFE,由折叠的性质得∠AFE =∠GFE,AF=FG,推出∠AEF=∠AFE,则AF=AE,AE=FG,得出四边形AFGE是菱形,则AF∥EG,得出∠EGF=∠AFB,设BF=2x,则AD=BC=6x,AF=AE=FG=3x,在Rt△ABF中,cos∠AFB=BF AF=23,即可得出结果.【详解】解:连接AF,如图所示:∵四边形ABCD为矩形,∴AD∥BC,AD=BC,∴∠AEF=∠GFE,由折叠的性质可知:∠AFE=∠GFE,AF=FG,∴∠AEF=∠AFE,∴AF=AE,∴AE=FG,∴四边形AFGE是菱形,∴AF∥EG,∴∠EGF=∠AFB,设BF=2x,则AD=BC=6x,AF=AE=FG=3x,在Rt△ABF中,cos∠AFB=BFAF=23xx=23,∴cos∠EGF=23,故答案为:23.【点睛】此题考查的是矩形与折叠问题、菱形的判定及性质、等腰三角形的性质和锐角三角函数,掌握矩形的性质、折叠的性质、菱形的判定及性质、等角对等边和等角的锐角三角函数值相等是解决此题的关键.20.如图,在Rt△ABC中,∠ACB=90°,点D在AC上,DE⊥AB于点E,且CD=DE.点F在BC上,连接EF,AF,若∠CEF=45°,∠B=2∠CAF,BF=2,则AB的长为_____.【答案】10【解析】分析】以AC为轴将△ACF翻至△ACK,在AB边上截取BL=BF=2,设CF=x,则EL=CK=x,分别用含x的式子表示出Rt△ABC中的三边长,根据勾股定理列方程,解得x值,则可得答案.【详解】解:如图,以AC为轴将△ACF翻至△ACK,在AB边上截取BL=BF=2∵∠ACB=90°,DE⊥AB∴∠BCE+∠DCE=90°,∠BEC+∠DEC=90°∵CD=DE∴∠DCE=∠DEC∴∠BCE=∠BEC∴BC=BE∵BF=BL=2∴EL=CF设CF=x,则EL=CK=x∴BK=2x+2,BC=BE=x+2设∠B=2∠CAF=2α则∠CAK=α,∠K=90°﹣α∴∠KAB=180°﹣2α﹣(90°﹣α)=90°﹣α∴∠K=∠KAB∴BA=BK=2x+2在△CBL和△EBF中CB EB B B BL BF =⎧⎪∠=∠⎨⎪=⎩∴△CBL ≌△EBF (SAS )∴∠BCL =∠BEF又∵∠CEF =45°,∠BCE =∠BEC∴∠ECL =∠CEF =45°∴∠ALC =180°﹣45°﹣45°﹣∠BEF =90°﹣∠BEF∵∠ACL =90°﹣∠BCL ,∠BCL =∠BEF∴∠ALC =∠ACL∴AC =AL =2x在Rt △ABC 中,由勾股定理得:(x +2)2+(2x )2=(2x +2)2解得x =4或x =0(舍)∴AB =10故答案为:10.【点睛】此题考查的是等腰三角形的判定及性质、全等三角形的判定及性质和勾股定理,掌握等角对等边、等边对等角、全等三角形的判定及性质和勾股定理是解决此题的关键.三.解答题(共7小题)21.先化简,再求代数式(1﹣254a -)223a a a+⋅-的值,其中a =2tan45°﹣cos60°. 【答案】3(2)a a a +-,-6 【解析】【分析】 根据特殊角的锐角三角函数值求出a 的值,然后根据分式的运算法则化简,代入即可求出答案.【详解】解:a =2×1﹣12=32∴原式=22924(3)-+•--a a a a a =(3)(3)2(2)(2)(3)+-+•-+-a a a a a a a=3 (2) aa a+-将32a=代入,得原式=33233222+⎛⎫⨯-⎪⎝⎭=﹣6.【点睛】此题考查的是分式的化简求值题和特殊角的锐角三角函数值,掌握分式的各个运算法则和特殊角的锐角三角函数值是解决此题的关键.22.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A、B、C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB'C'.(1)在正方形网格中,画出△AB'C';(2)计算线段AB在旋转过程中所扫过的面积.【答案】(1)画图见解析;(2)面积为254π.【解析】试题分析:(1)根据旋转性质得出对应点旋转后位置进而得出答案;(2)利用勾股定理得出AB=5,再利用扇形面积公式求出即可.解:(1)如图所示:△AB′C′即为所求;(2)∵AB==5,∴线段AB在变换到AB′的过程中扫过区域的面积为:=π.考点:作图-旋转变换;扇形面积的计算.23.某中学开展以”我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制成的不完整统计图.(1)把折线统计图补充完整;(2)求出扇形统计图中,公务员部分对应的圆心角的度数;(3)若从被调查的学生中任意抽取一名,求取出的这名学生最喜欢的职业是”教师”的概率.【答案】(1)见解析;(2)72°;(3)1 5【解析】【分析】(1)根据军人的人数与所占的百分比求出调查总人数,再分别求出教师、医生的人数,补全统计图即可;(2)根据公务员的人数占总人数的比例再乘360°即可得出结论;(3)根据教师的人数占总人数的比例即可得出结论.【详解】解:(1)∵军人的人数为20,百分比为10%,∴学生总人数为20÷10%=200(人);∵医生的人数占15%,∴医生的人数为:200×15%=30(人),∴教师的人数为:200﹣30﹣40﹣20﹣70=40(人),∴折线统计图如图所示;(2)∵由扇形统计图可知,公务员占20%,∴20%×360°=72°;(3)∵最喜欢的职业是”教师”的人数是40人,∴从被调查的学生中任意抽取一名,求抽取的这名学生最喜欢的职业是”教师”的概率=40200=15.【点睛】此题考查的是折线统计图、扇形统计图和求概率问题,结合折线统计图、扇形统计图得出有用信息和掌握概率公式是解决此题的关键.24.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,连接AD,E为AD的中点,过A作AF∥BC交BE 延长线于F,连接CF.(1)求证:四边形ADCF是菱形;(2)在不添加任何辅助线的情况下,请直接写出与△ACD面积相等的三角形(不包含△ACD).【答案】(1)见解析;(2)与△ACD面积相等的三角形有:△ABD,△ACF,△AFB【解析】【分析】(1)首先由E是AD的中点,AF∥BC,易证得△AFE≌△DBE,即可得AF=BD,又由在Rt△ABC中,∠BAC =90°,D是BC的中点,可得AD=BD=CD=AF,证得四边形ADCF是平行四边形,继而判定四边形ADCF 是菱形;(2)根据平行线之间的距离处处相等、等高模型和菱形的性质即可解决问题;【详解】(1)证明:如图,∵AF∥BC,∴∠AFE=∠DBE,∵E 是AD 的中点,AD 是BC 边上的中线,∴AE =DE ,BD =CD ,在△AFE 和△DBE 中,AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△DBE (AAS );∴AF =DB .∵DB =DC ,∴AF =CD ,∴四边形ADCF 是平行四边形,∵∠BAC =90°,D 是BC 的中点,∴AD =DC =12BC , ∴四边形ADCF 是菱形;(2)∵BD=CD ,而△ABD 的边BD 上的高即为△ACD 的边CD 上的高∴S △ACD =S △ABD ;∵四边形ADCF 是菱形∴S △ACD =S △ACF ;∵AF ∥CD∴△ACD 的边CD 上的高等于△BAF 的边AF 上的高∵AF=CD∴S △ACD =S △AFB综上:与△ACD 面积相等的三角形有:△ABD ,△ACF ,△AFB .【点睛】此题考查的是全等三角形的判定及性质、菱形的判定及性质、直角三角形的性质和三角形的面积,掌握全等三角形的判定及性质、菱形的判定及性质、直角三角形斜边上的中线等于斜边的一半和平行线之间的距离处处相等是解决此题的关键.25.某水果商贩用600元购进了一批水果,上市后销售非常好,商贩又用1400元购进第二批这种水果,所购水果数量是第一批购进数量的2倍,但每箱进价多了5元.(1)求该商贩第一批购进水果每箱多少元;(2)由于储存不当,第二批购进的水果中有10%腐坏,不能售卖,该商贩将两批水果按同一价格全部销售完毕后获利不低于800元,求每箱水果的售价至少是多少元?【答案】(1)每箱30元;(2)至少为50元【解析】【分析】(1)设该商场第一批购进了这种水果x箱,则第二批购进这种水果2x箱,根据关键语句”每个进价多了5元”可得方程140060052-=x x,解方程即可;(2)设水果的售价为y元,根据题意可得不等关系:水果的总售价﹣成本﹣损耗≥利润,由不等关系列出不等式即可.【详解】解:(1)设该商场第一批购进了这种水果x箱,则第二批购进这种水果2x箱,可得:14006005 2-=x x,解得:x=20,经检验:x=20是原分式方程的解,6003020=元,答:该商贩第一批购进水果每箱30元;(2)这两批水果共有20+2×20=60箱设水果的售价为y元,根据题意得:60y﹣(600+1400)﹣2×20×10%y≥800,解得:y≥50,则水果的售价为50元.答:水果的售价至少为50元.【点睛】此题考查的是分式方程的应用和一元一次不等式的应用,掌握实际问题中的等量关系和不等关系是解决此题的关键.26.已知:点A,B,C都在⊙O上,连接AB,AC,点D,E分别在AC,AB上,连接CE并延长交⊙O于点F,连接BD,BF,∠BDC﹣∠BFC=2∠ABF.(1)如图1,求证:∠ABD=2∠ACF;(2)如图2,CE交BD于点G,过点G作GM⊥AC于点M,若AM=MD,求证:AE=GD;(3)如图3,在(2)的条件下,当AE:BE=8:7时,连接DE,且∠ADE=30°.延长BD交⊙O于点H,连接AH,AH=3,求⊙O的半径.【答案】(1)见解析;(2)见解析;(3)13【解析】【分析】(1)注意到同弧所对的圆周角相等以及∠BDC是△ABD的外角,结合题中所告诉的角度等式进行代换变形即可得结论;(2)连接AG,设∠CGD=∠BGE=β,∠ACF=α,然后推出∠AEG=∠AGE,再根据等角对等边即可证出结论;(3)首先注意到特殊角∠ADE=30°,于是作AP⊥DE于P,由HL定理可得△AEP≌△AGM,进而推出△AEG 是等边三角形,设AE=8k,BE=7k,作GN⊥AE于N,解△BGN可得sin∠ABG的值,而∠ABG是圆周角且所对的弦为AH,于是连接AO并延长交圆O于Q,连接HQ,sin∠AQH=sin∠ABG=AHAQ,而AH已知,从而求出直径AQ,半径也就自然知道了.【详解】解:(1)∵∠BDC=∠ABD+∠BAC,∠BDC﹣∠BFC=2∠ABF,∴∠ABD+∠BAC﹣∠BFC=2∠ABF,∵∠ABF=∠ACF,∠BFC=∠BAC,∴∠ABD+∠BFC﹣∠BFC=2∠ACF,∴∠ABD=2∠ACF.(2)如图2,连接AG.设∠CGD=∠BGE=β,∠ACF=α,则∠ABD=2α,∠AEG=∠ABD+∠BGE=2α+β,∠GDA=∠CGD+∠ACF=α+β,∵GM⊥AD于M且AM=DM,∴AG=DG,∴∠GAD=∠GDA=α+β,∴∠AGE=∠GAD+∠ACF=α+β+α=2α+β,∴∠AGE=∠AEG,∴AE=AG=GD.(3)如图3,连接AG,作AP⊥DE于P,∵∠ADE=30°,∴∠P AD=60°,AP=12 AD,∵GM⊥AD,∴∠AMG=∠APE=90°,∵AM=MD,∴AM=12AD=AP,由(2)可知AE =AG ,在Rt △AEP 和Rt △AGM 中:AE AG AP AM=⎧⎨=⎩ ∴Rt △AEP ≌Rt △AGM (HL ),∴∠EAP =∠GAM ,∵∠GAM +∠P AG =∠P AD =60°,∴∠EAP +∠P AG =∠EAG =60°,∴△AEG 是等边三角形,∴EG =AE =AG =DG ,∵AE :BE =8:7,∴设AE =8k ,BE =7k ,作GN ⊥AE 于N ,AN =EN =4k ,NG =,∴BN =BE +EN =11k ,∴BG 13k ,∴sin ∠ABG =NG BG =13, 连接AO 并延长交圆O 于Q ,连接HQ ,则AQ 直径,∠AHQ =90°,∴sin ∠AQH =AH AQ,∵∠AQH =∠ABG ,AH =∴AQ =26,∴AO =12A Q =13, 即⊙O 的半径为13.【点睛】此题考查的是圆周角定理及推论、三角形外角的性质、垂直平分线的性质、等腰三角形的判定及性质、直角三角形的性质、全等三角形的判定及性质和锐角三角函数,此题难度较大,掌握是圆周角定理及推论、三角形外角的性质、垂直平分线的性质、等腰三角形的判定及性质、直角三角形的性质、全等三角形的判定及性质和锐角三角函数是解决此题的关键.27.如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+b交y轴于点A,交x轴于点B,S△AOB=81 2.(1)求b的值;(2)点C以每秒1个单位长度的速度从O点出发沿x轴向点B运动,点D以每秒2个单位长度的速度从A 点出发沿y轴向点O运动,C,D两点同时出发,当点D运动到点O时,C,D两点同时停止运动.连接CD,设点C的运动时间为t秒,△CDO的面积为S,求S与t的函数关系式(不要求写出自变量t的取值范围);(3)在(2)条件下,过点C作CE⊥CD交AB于点E,过点D作DF∥x轴交AB于点F,过点F作FH⊥CE,垂足为H.在CH上取点M,使得MH:HE=8:33,连接FM,若∠FMH=32∠FEH,求t的值.【答案】(1)b=9;(2)S=﹣t2+92t;(3)t=1【解析】【分析】(1)由直线解析式可得A、B两点坐标,根据△AOB的面积列方程解出b的值.(2)分别用t表示OC和OD的长即可得到S与t的表达式.(3)首先根据题意画出示意图,然后根据所给定的线段等量关系与角度等量关系推导出∠FEM的正切值,过点E作GP⊥OB于P交DF的延长线于点G,可以推证∠DEG=∠FEM,于是利用∠DEG的正切值列出比例方程,最后解出t的值.【详解】解:(1)如图1,∵直线y=﹣x+b交y轴于点A,交x轴于点B,∴A (0,b ),B (b ,0)∴OA =OB =b ,∴S △AOB =212b =812. ∴b =9或-9(不符合与y 轴的交点,舍去负值).(2)如图2,由题意知OC =t ,AD =2t ,则OD =OA ﹣AD =9﹣2t , ∴S =12OD •OC =12t (9﹣2t )=﹣t 2+92t . (3)∵MH HE =833, ∴设MH =8k ,HE =33k ,如图3,在HE 上截取HN =MH =8k ,连接FN ,则EN =EH ﹣HN =25k ,∵FH ⊥CE 于H ,∴FM =FN ,∠FME =∠FNM ,∵∠FME =32∠FEM , ∴设∠FEM =2α,∠FME =3α,∴∠FNM=3α,∵∠FNM=∠NFE+∠FEN,∴∠NFE=∠FNM﹣∠FEM=3α﹣2α=α,在FE上取一点Q,连接NQ,使NQ=NE=25k,则∠NQE=∠FEM=2α,∵∠NQE=∠NFE+∠QNF=α+∠QNF,∴∠QNF=α=∠NFE,∴FQ=NQ=25k,作NR⊥QE于R,则QR=RE=n,∴FE=FQ+QE=25k+2n,∵cos∠FEH=cos2α=HEFE=REEN,∴33252+kk n=25nk,解得n=15k,∴QR=RE=15k,∴NR20k,∴tan2α=NRRE=43.过点E作GP⊥OB于P交DF的延长线于点G,∴∠CPE=∠BPE=90°,∵OA=OB=9,∴∠OAB=∠OBA=45°,∴∠PEB=45°,∴BP=PE,∵DF∥OB,∴∠ODF=∠ADF=90°,∴四边形DOPG为矩形,∴GP=OD,DG=OP,作CT⊥OB交AB于T,交DF于K,连接DT,则ODKC 为矩形,△CTB 为等腰直角三角形,∴DK =OC =t ,CK =OD ,CT =CB ,∵∠FDA =90°,∠F AF =45°,∴△ADF 为等腰直角三角形,∴DF =AD =2OC =2t ,∴KDF 中点,∴T 为AF 中点,∴△DTF 为等腰直角三角形,∴∠DTK =∠FTK =45°,∵DC ⊥CE ,∴∠DCT +∠TCE =∠TCE +∠BCE =90°,∴∠DCT =∠ECB ,在△DCT 和△ECB 中:DTC EBC CT CBDCT ECB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DCT ≌△ECB (ASA ),∴CD =CE ,∴△DCE 为等腰直角三角形,∴∠CED =45°,∵∠DCO +∠ECP =∠DCO +∠ODC =90°,∴∠ODC =∠ECP ,在△DOC 和△CPE 中:DOC CPE ODC PCE DC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DOC ≌△CPE (AAS ),∴BP =PE =OC =t ,∴DG =OP =OB ﹣PB =9﹣t ,∴FG =DG ﹣DF =9﹣3t ,∵∠GFE =∠AFD =45°,∠GEF =∠BEP =45°,。
中考数学仿真模拟测试题(附答案解析)
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________(满分120分,考试用时120分钟)一、填空题(本大题共6小题,每小题3分,共18分)1.(2020•盱眙县校级模拟)若m与﹣2互为相反数,则m的值为.2.(2021•东港市模拟)在式子中,x的取值范围是.3.(2021•成都模拟)已知x1,x2是关于x的一元二次方程x2﹣3x+a=0的两个实数根,且x12+x22=5,则a =.4.(2021•山西模拟)已知,A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,则反比例函数的解析式为.5.(2021春•长白县期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).6.(2021•和平区一模)如图,在四边形ABCD中,∠DAB=∠BCD=90°,对角线AC与BD相交于点E,点F,G分别是AC,BD的中点,当∠CBD=15°,EG=EC,FG=时,则线段AC的长为.二、选择题(本大题共8小题,每小题4分,共32分,每小题正确的选项只用一个)7.(2021•裕华区模拟)全国已有29个省份在政府工作报告中设定:2021年GDP增速目标不低于6%.已知河北省2020年GDP总量为36206.9亿元,若今年比上年增长6%,则河北省2021年GDP总量用科学记数法(精确到百亿位)表示为()A.5.8×1011元B.3.41×1012元C.3.83×1012元D.3.84×1012元8.(2021•南关区一模)如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的左视图为()A.B.C.D.9.(2021•山西模拟)下列运算正确的是()A.a2•a3=a6B.(3a2)3=9a6C.2﹣3÷2﹣5=D.(﹣ab2)3=﹣a3b610.(2021•赣州模拟)本学期某校举行了四次数学测试,李娜同学四次的成绩(单位:分)分别为80,70,90,70,王玥同学四次的成绩分别为80,a(a≥70),70,90,且李娜同学四次成绩的中位数比王玥同学四次成绩的中位数少5分,则下列说法正确的是()A.a的值为70B.两位同学成绩的平均数相同C.李娜同学成绩的众数比王玥同学成绩的众数大D.王玥同学的成绩比李娜同学的成绩稳定11.(2021•碑林区校级二模)如图,在△ABC中,AB=10,BC=16,点D、E分别是边AB、AC的中点,点F是线段DE上的一点,连接AF、BF,若∠AFB=90°,则线段EF的长为()A.2B.3C.4D.512.(2021•武汉模拟)如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种13.(2021•莱州市模拟)如图,AB是⊙O的直径,弦CD⊥AB,延长弦AF,DC交于点E.若∠DFC=48°,则∠CFE的度数为()A.60°B.66°C.68°D.72°14.(2021•长清区二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,以点A为圆心、AC的长为半径作交AB于点E,以点B为圆心、BC的长为半径作交AB于点D,则阴影部分的面积为()A.π一2B.2π﹣4C.4π﹣8D.2π﹣2三、解答题(本大题共9小题,共70分)15.(本小题满分6分)(2021•铁西区二模)计算:(﹣2)2+2×(tan60°﹣20210)﹣|﹣2|.16.(本小题满分6分)(2021•常州一模)如图,△ABC中,AB=AC,点D、E是BC边上不重合的两点,BD =CE.(1)求证:AD=AE;(2)若DA⊥AE,∠B=26°,求∠BAD的大小.17.(本小题满分8分)(2021•南通一模)某校组织学生参加”防疫卫生知识竞赛”(满分为100分).竞赛结束后,随机抽取甲、乙两班各40名学生的成绩,并对数据(成绩)进行了整理、描述和答案.下面给出了部分信息.信息一:甲、乙两班40名学生数学成绩的频数分布统计表:成绩班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲41113102乙6315122 (说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)信息二:甲班成绩在70≤x<80这一组的是:70,70,70,71,74,75,75,75,76,76,76,76,78信息三:甲、乙两班成绩的平均分、中位数、众数:班级平均分中位数众数甲74.2n85乙73.57384根据以上信息,回答下列问题:(1)写出表中n的值.(2)在此次测试中,某学生的成绩是74分,在他所属班级排在前20名,由表中数据可知该学生是班的学生(填”甲”或”乙”),给出理由.(3)假设学校1200名学生都参加此次竞赛,估计成绩优秀的学生人数.18.(本小题满分6分)(2021•广东模拟)为提升青少年的身体素质,在全市中小学推行”阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?19.(本小题满分7分)(2021•前郭县三模)嫦娥、神舟、北斗、天问被称为中国航天的”四大天王”.2020年”北斗”组网、”天问”问天、”嫦五”探月,一个个好消息从太空传来,照亮了中国航天界的未来!小玲对航空航天非常感兴趣,她收集到了嫦娥五号、神舟十一号、北斗三号、天问一号的模型图,依次制成编号为A、B、C、D的四张卡片(背面完全相同),将这四张卡片背面朝上,洗匀放好.(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为;(2)小玲先从四张卡片中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率.20.(本小题满分8分)(2021•余姚市一模)如图,已知二次函数y=x2﹣x+c的图象经过点P(﹣3,6).(1)求该二次函数的表达式.(2)求该二次函数图象的顶点坐标.(3)点Q(m,n)在该二次函数图象上,若点Q到y轴的距离小于3.请根据图象直接写出n的取值范围.21.(本小题满分8分)(2021•宁波模拟)如图,已知四边形ABCD是菱形,点E,F分别在线段AB,AD上,EG∥BC,FH∥DC,点G,H分别在线段CD,BC上,EG和FH相交于点P,BE=DF.(1)求证:四边形HCGP是菱形.(2)若四边形BHPE是菱形,求证:点E是线段AB的中点.22.(本小题满分9分)(2021•台安县模拟)某商店购进了一种新款小电器,为了制定合适的销售价格,进行了为期4周的试营销,试营销的情况如下表所示:第1周第2周第3周第4周售价/(元/台)50456055销售/台360390300330已知该款小电器的进价每台40元,设该款小电器每台的售价为x元,每周的销售量为y台.(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;(2)若想每周的销售利润为6000元,则其售价应定为多少元?(3)若每台小电器的售价不低于45元,但又不能高于进价的1.5倍,则如何定价才能使每周的销售利润最大?23.(本小题满分12分)(2021•泉州模拟)如图1,在⊙O中,点A是优弧BAC上的一点,点I为△ABC的内心,连接AI并延长交⊙O于点D,连接OD交BC于点E,连接BI.(1)求证:OD⊥BC;(2)连接DB,求证:DB=DI;(3)如图2,若BC=24,tan∠OBC=,当B、O、I三点共线时,过点D作DG∥BI,交⊙O于点G,求DG的长.参考答案四、填空题(本大题共6小题,每小题3分,共18分)1.(2020•盱眙县校级模拟)若m与﹣2互为相反数,则m的值为.【答案】2.【解析】解:∵﹣2的相反数是2,∴m=2.故答案为:2.2.(2021•东港市模拟)在式子中,x的取值范围是.【答案】x>﹣1.【解析】解:由题意得,x+1>0,解得,x>﹣1,故答案为:x>﹣1.3.(2021•成都模拟)已知x1,x2是关于x的一元二次方程x2﹣3x+a=0的两个实数根,且x12+x22=5,则a =.【答案】2.【解析】解:根据题意得:△=9﹣4a≥0,解得:a,x1+x2=3,x1x2=a,x12+x22=﹣2x1x2=9﹣2a=5,解得:a=2(符合题意),故答案为:2.4.(2021•山西模拟)已知,A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,则反比例函数的解析式为.【答案】:y=﹣..【解析】解:∵A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,∴n=,2=,即m=﹣3n,m=2(3n﹣6),消去m得:﹣3n=2(3n﹣6),解得:n=,把n=代入得:m=﹣4,则反比例函数解析式为y=﹣.故答案为:y=﹣.5.(2021春•长白县期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).【答案】①②③.【解析】解:①∠A与∠1是同位角,此结论正确;②∠A与∠B是同旁内角,此结论正确;③∠4与∠1是内错角,此结论正确;④∠1与∠3不是同位角,原来的结论错误;故答案为:①②③.6.(2021•和平区一模)如图,在四边形ABCD中,∠DAB=∠BCD=90°,对角线AC与BD相交于点E,点F,G分别是AC,BD的中点,当∠CBD=15°,EG=EC,FG=时,则线段AC的长为.【答案】6.【解析】解:如图所示,连接AG,CG,由题意,△ABD与△BCD均是BD为斜边的直角三角形,∴AG=BD,CG=BD,即:AG=CG,∴△ACG为等腰三角形,∵∠CBD=15°,CG=BG,∴∠CGE=2∠CBD=30°,∵EC=EG,∴∠ECD=∠CGE=30°,又∵F为AC的中点,∴GF为△ACG的中线,AF=CF,∴由”三线合一”知,GF⊥AC,∠GFC=90°,∵FG=,∴CF=FG=3,∴AC=2FC=6,故答案为:6.五、选择题(本大题共8小题,每小题4分,共32分,每小题正确的选项只用一个)7.(2021•裕华区模拟)全国已有29个省份在政府工作报告中设定:2021年GDP增速目标不低于6%.已知河北省2020年GDP总量为36206.9亿元,若今年比上年增长6%,则河北省2021年GDP总量用科学记数法(精确到百亿位)表示为()A.5.8×1011元B.3.41×1012元C.3.83×1012元D.3.84×1012元【答案】D.【解析】解:36206.9×(1+6%)=38379.314亿元≈38400亿元=3840000000000元=3.84×1012元.故选:D.8.(2021•南关区一模)如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的左视图为()A.B.C.D.【答案】B.【解析】解:立体图形的左视图是.故选:B.9.(2021•山西模拟)下列运算正确的是()A.a2•a3=a6B.(3a2)3=9a6C.2﹣3÷2﹣5=D.(﹣ab2)3=﹣a3b6【答案】D.【解析】解:A.a2•a3=a2+3=a5,故A运算不符合题意,B.(3a2)3=33•(a2)3=27a6,故B运算不符合题意,C.2﹣3÷2﹣5=2﹣3﹣(﹣5)=22,故C运算不符合题意,D.(﹣ab2)3=﹣a3b2×3=﹣a3b6,故D运算符合题意,故选:D.10.(2021•赣州模拟)本学期某校举行了四次数学测试,李娜同学四次的成绩(单位:分)分别为80,70,90,70,王玥同学四次的成绩分别为80,a(a≥70),70,90,且李娜同学四次成绩的中位数比王玥同学四次成绩的中位数少5分,则下列说法正确的是()A.a的值为70B.两位同学成绩的平均数相同C.李娜同学成绩的众数比王玥同学成绩的众数大D.王玥同学的成绩比李娜同学的成绩稳定【答案】D.【解析】解:∵李娜同学四次的成绩的中位数为=75(分),∴由题意知王玥同学四次的成绩的中位数为80分,则a=80分,故A选项错误;李娜成绩的平均数为=77.5(分),王玥成绩的平均数为=80(分),故B选项错误;李娜同学成绩的众数为70分,王玥同学成绩的众数为80分,故C选项错误;王玥同学的成绩的方差为×[(70﹣80)2+2×(80﹣80)2+(90﹣80)2]=50,李娜同学的成绩的方差为×[2×(70﹣77.5)2+(80﹣77.5)2+(90﹣77.5)2]=68.75,∴王玥同学的成绩比李娜同学的成绩稳定,故D选项正确;故选:D.11.(2021•碑林区校级二模)如图,在△ABC中,AB=10,BC=16,点D、E分别是边AB、AC的中点,点F是线段DE上的一点,连接AF、BF,若∠AFB=90°,则线段EF的长为()A.2B.3C.4D.5【答案】解:∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∵BC=16,∴DE=BC=8.∵∠AFB=90°,D是AB的中点,AB=10,∴DF=AB=5,∴EF=DE﹣DF=8﹣5=3.故选:B.【解析】利用三角形中位线定理得到DE=BC.由直角三角形斜边上的中线等于斜边的一半得到DF =AB.所以由图中线段间的和差关系来求线段EF的长度即可.12.(2021•武汉模拟)如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种【答案】C.【解析】解:如图所示,直线代表一个1×2的小矩形纸片:1+4+3=8(种).答:不同的覆盖方法有8种.故选:C.13.(2021•莱州市模拟)如图,AB是⊙O的直径,弦CD⊥AB,延长弦AF,DC交于点E.若∠DFC=48°,则∠CFE的度数为()A.60°B.66°C.68°D.72°【答案】B.【解析】解:连接AD,∵AB是⊙O的直径,弦CD⊥AB,∴=,∴∠DAB=∠DFC=×48°=24°,∴∠ADC=90°﹣∠DAB=90°﹣24°=66°,∵四边形ADCF内接与⊙O,∴∠CFE=∠ADC=66°,故选:B.14.(2021•长清区二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,以点A为圆心、AC的长为半径作交AB于点E,以点B为圆心、BC的长为半径作交AB于点D,则阴影部分的面积为()A.π一2B.2π﹣4C.4π﹣8D.2π﹣2【答案】C.【解析】解:∵∠ACB=90°,AC=BC=4,∴S△ABC=×4×4=8,S扇形BCD==2π,S空白=2×(8﹣2π)=16﹣4π,S阴影=S△ABC﹣S空白=8﹣16+4π=4π﹣8,故选:C.六、解答题(本大题共9小题,共70分)15.(本小题满分6分)(2021•铁西区二模)计算:(﹣2)2+2×(tan60°﹣20210)﹣|﹣2|.【答案】解:原式=4+2×(﹣1)﹣2=4+2﹣2﹣2=2.【解析】直接利用特殊角的三角函数值以及绝对值的性质、零指数幂的性质分别计算得出答案.16.(本小题满分6分)(2021•常州一模)如图,△ABC中,AB=AC,点D、E是BC边上不重合的两点,BD =CE.(1)求证:AD=AE;(2)若DA⊥AE,∠B=26°,求∠BAD的大小.【答案】.证明:(1)∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE;(2)∵∠C=∠B=26°,∴∠BAC=180°﹣(26°+26°)=128°,∵∠BAC=128°,∠DAE=90°,∴∠BAD+∠CAE=128°﹣90°=38°,∵△ABD≌△ACE,∴∠BAD=∠CAE,∴∠BAD=38°÷2=19°.【解析】(1)由”SAS”可证△ABD≌△ACE,可得AD=AE;(2)由全等三角形的性质可得∠BAD=∠CAE,由三角形内角和定理可求解17.(本小题满分8分)(2021•南通一模)某校组织学生参加”防疫卫生知识竞赛”(满分为100分).竞赛结束后,随机抽取甲、乙两班各40名学生的成绩,并对数据(成绩)进行了整理、描述和答案.下面给出了部分信息.信息一:甲、乙两班40名学生数学成绩的频数分布统计表:成绩班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲41113102乙6315122 (说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)信息二:甲班成绩在70≤x<80这一组的是:70,70,70,71,74,75,75,75,76,76,76,76,78信息三:甲、乙两班成绩的平均分、中位数、众数:班级平均分中位数众数甲74.2n85乙73.57384根据以上信息,回答下列问题:(1)写出表中n的值.(2)在此次测试中,某学生的成绩是74分,在他所属班级排在前20名,由表中数据可知该学生是班的学生(填”甲”或”乙”),给出理由.(3)假设学校1200名学生都参加此次竞赛,估计成绩优秀的学生人数.【答案】解:(1)这组数据的中位数是第20、21个数据的平均数,所以中位数n==74.5,故答案为:74.5;(2)这名学生的成绩为74分,小于甲班样本数据的中位数74.5分,大于乙班样本数据的中位数73分,说明这名学生是乙班的学生,故答案为:乙,这名学生的成绩为74分,小于甲班样本数据的中位数74.5分,大于乙班样本数据的中位数73分,说明这名学生是乙班的学生;(3)1200×=390(人),答:学校1200名学生中成绩优秀的大约有390人.【解析】(1)根据中位数的定义求解可得;(2)根据这名学生的成绩为74分,大于甲班样本数据的中位数72.5分,小于乙班样本数据的中位数76分可得;(3)利用样本估计总体思想求解可得.18.(本小题满分6分)(2021•广东模拟)为提升青少年的身体素质,在全市中小学推行”阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?【答案】解:(1)设跳绳的单价为x元,则键球的单价为x元,依题意得:﹣=24,解得:x=45,经检验,x=45是原方程的解,且符合题意,∴x=18(元).答:键球的单价为18元,跳绳的单价为45元.(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,依题意得:45m+18(100﹣m)≤2700,解得:m≤.又∵m为正整数,∴m的最大值为33.答:最多可以购买33条跳绳.【解析】(1)设跳绳的单价为x元,则键球的单价为x元,根据数量=总价÷单价,结合用720元购买键球的个数比购买跳绳的条数多24,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,根据总价=单价×数量,结合总价不多于2700元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其中的最大整数值即可得出结论.19.(本小题满分7分)(2021•前郭县三模)嫦娥、神舟、北斗、天问被称为中国航天的”四大天王”.2020年”北斗”组网、”天问”问天、”嫦五”探月,一个个好消息从太空传来,照亮了中国航天界的未来!小玲对航空航天非常感兴趣,她收集到了嫦娥五号、神舟十一号、北斗三号、天问一号的模型图,依次制成编号为A、B、C、D的四张卡片(背面完全相同),将这四张卡片背面朝上,洗匀放好.(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为;(2)小玲先从四张卡片中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率.【答案】解:(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为,故答案为:;(2)画树状图如图:共有12种等可能的情况,其中抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的有2种情况,∴抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率为=.【解析】(1)根据概率公式直接得出答案;(2)先画树状图列出所有等可能的结果数,两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的结果数为2种,再根据概率公式求解可得.20.(本小题满分8分)(2021•余姚市一模)如图,已知二次函数y=x2﹣x+c的图象经过点P(﹣3,6).(1)求该二次函数的表达式.(2)求该二次函数图象的顶点坐标.(3)点Q(m,n)在该二次函数图象上,若点Q到y轴的距离小于3.请根据图象直接写出n的取值范围.【答案】解:(1)把点P(﹣3,6)代入y=x2﹣x+c中,得:6=×(﹣3)2﹣(﹣3)+c,解得:c=﹣,∴该二次函数的表达式为y=x2﹣x﹣;(2)y=x2﹣x﹣=(x﹣1)2﹣2,∴该二次函数图象的顶点坐标为(1,﹣2);(3)∵点Q到y轴的距离小于3,∴|m|<3,∴﹣3<m<3,∵x=﹣3时,y=x2﹣x﹣=×(﹣3)2﹣(﹣3)﹣=6,x=3时,y=x2﹣x﹣=×32﹣3﹣=0,又∵顶点坐标为(1,﹣2),∴﹣3<m<3时,n≥2,∴﹣2≤n<6.【解析】(1)把点P(﹣3,6)代入y=x2﹣x+c中,即可求解;(2)把二次函数的表达式化为顶点式即可得该二次函数图象的顶点坐标;(3)由点Q到y轴的距离小于3,可得﹣3<m<3,在此范围内求n即可.21.(本小题满分8分)(2021•宁波模拟)如图,已知四边形ABCD是菱形,点E,F分别在线段AB,AD上,EG∥BC,FH∥DC,点G,H分别在线段CD,BC上,EG和FH相交于点P,BE=DF.(1)求证:四边形HCGP是菱形.(2)若四边形BHPE是菱形,求证:点E是线段AB的中点.【答案】证明:(1)∵四边形ABCD是菱形,∴AB∥CD,AD∥BC,∵EG∥BC,FH∥DC,∴四边形HCGP、四边形BCGE、四边形CDFH都是平行四边形,∴BE=CG,CH=DF,∵BE=DF,∴CG=CH,∴平行四边形HCGP是菱形;(2)由(1)可知,BE=CG=CH,∵四边形BHPE是菱形,∴BE=BH,∴BE=BH=CH=BC,∵四边形ABCD是菱形,∴AB=BC,∴BE=AB,∴点E是线段AB的中点.【解析】(1)先证四边形HCGP、四边形BCGE、四边形CDFH都是平行四边形,得BE=CG,CH=DF,再证CG=CH,即可得出结论;(2)由(1)可知,BE=CG=CH,再由菱形的性质得BE=BH,AB=BC,则BE=BH=CH=BC=AB,即可得出结论.22.(本小题满分9分)(2021•台安县模拟)某商店购进了一种新款小电器,为了制定合适的销售价格,进行了为期4周的试营销,试营销的情况如下表所示:第1周第2周第3周第4周售价/(元/台)50456055销售/台360390300330已知该款小电器的进价每台40元,设该款小电器每台的售价为x元,每周的销售量为y台.(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;(2)若想每周的销售利润为6000元,则其售价应定为多少元?(3)若每台小电器的售价不低于45元,但又不能高于进价的1.5倍,则如何定价才能使每周的销售利润最大?【答案】解:(1)y与x满足一次函数关系,设y与x的函数关系式为y=kx+b,,解得:,即这个函数关系式是y=﹣6x+660;(2)由题意可得,(x﹣40)(﹣6x+660)=6000,解得,x1=60,x2=90,答:若想每周的利润为6000元,则其售价应定为每台60元或每台90元;(3)设每周的销售利润为w元,定价为x元,由题意可得,w=(x﹣40)(﹣6x+660)=﹣6(x﹣75)2+7350,45≤x≤40×1.5,即45≤x≤60,∵y=﹣6x+660,∵﹣6<0,对称轴为直线x=75,∴x<75时,y随x的增大而增大,∴当x=60时,w取得最大值,答:定价为60元/台时,才能使每周的销售利润最大.【解析】(1)根据题意和表格中的数据可以判断出y与x的函数关系,并求出这个函数关系式;(2)根据题意可以得到每周的利润为6000元,则其售价应定为多少元;(3)设每周的销售利润为w元,定价为x元,根据题意和(1)中的函数关系式,利用一次函数的性质可以解析本题.23.(本小题满分12分)(2021•泉州模拟)如图1,在⊙O中,点A是优弧BAC上的一点,点I为△ABC的内心,连接AI并延长交⊙O于点D,连接OD交BC于点E,连接BI.(1)求证:OD⊥BC;(2)连接DB,求证:DB=DI;(3)如图2,若BC=24,tan∠OBC=,当B、O、I三点共线时,过点D作DG∥BI,交⊙O于点G,求DG的长.【答案】(1)证明:如图1中,∵I是△ABC的内心,∴∠BAD=∠CAD,∴=,∴OD⊥BC.(2)证明:如图1中,连接BD.∵I是△ABC的内心,∴∠BAI=∠CAI,∠ABI=∠CBI,∵∠DIB=∠BAI+∠ABI,∠DBI=∠CBI+∠CBD,∠CBD=∠CAI,∴∠DBI=∠DIB,∴DB=DI.(3)解:如图2中,连接OG,过点O作OH⊥DG于H.∵OD⊥BC,∴BE=EC=12,∵tan∠OBE==,∴OE=5,∵DG∥OB,∴∠BOE=∠ODH,∵∠BEO=∠OHD=90°,OB=OD,∴△OBE≌△ODH(AAS),∴OE=DH=5,∵OH⊥DG,∴DH=HG=5,∴DG=10.【解析】(1)证明=,再利用垂径定理可得结论.(2)想办法证明∠DBI=∠DIB,即可解决问题.(3)如图2中,连接OG,过点O作OH⊥CG于H,解直角三角形求出OE,再利用全等三角形的性质求出DH,可得结论.。
河北省中考数学模拟试卷(5)
河北省中考数学模拟试卷(5)一.选择题(共16小题)1.下列关于的说法中,正确的是()A.是有理数B.是2的算术平方根C.不是实数D.不是无理数2.下列多边形中,既是轴对称图形又是中心对称图形的是()A.平行四边形B.正方形C.等腰梯形D.等边三角形3.下列运算:①a•a3=a3;②a6÷a3=a2;③(a﹣2)2=a2﹣4;④(a﹣3)(a+2)=a2﹣a﹣6,不正确的有()个.A.1B.2C.3D.44.若实数a,b,c,d在数轴上的对应点的位置如图所示,则①a>﹣4;②b+d<0;③|a|<c2;④c<的结论中,正确的是()A.①②B.①④C.②③D.③④5.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.对顶角相等,两直线平行6.根据相关部门统计,2020年全国普通高校毕业生约8340000人.将8340000用科学记数法表示应为()A.83.4×105B.8.34×105C.8.34×106D.0.834×107 7.由一些大小相同的小正方体组成的几何体从上面看的图形如右图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么这个几何体从左面看的图形是()A.B.C.D.8.方程3+2x=﹣1的解为()A.x=1B.x=﹣2C.x=3D.x=49.如图,△ABC中,AB<AC<BC,如果要用尺规作图的方法在BC上确定一点P,使P A+PB =BC,那么符合要求的作图痕迹是()A.B.C.D.10.从调查消费者购买汽车能源类型的扇形统计图中可看出,人们更倾向购买的是()A.纯电动车B.混动车C.轻混车D.燃油车11.如图,Rt△ABC中,∠ACB=90°,∠BAC=30°,∠ACB的平分线与∠ABC的外角平分线交于E点,连接AE,∠AEB的度数是()A.30°B.35°C.45°D.60°12.已知分式,当x=2时,分式的值为零;当x=﹣2时,分式没有意义,则分式有意义时,a+b的值为()A.﹣2B.2C.6D.﹣613.如图,边长为1的正六边形螺帽在足够长的桌面上滚动(没有滑动)一周,则O点所经过的路径长为()A.6B.5C.2πD.14.将一个圆分成四个扇形,使它们的圆心角的度数比为1:2:3:4,则这四个扇形中最大的圆心角是()A.90°B.144°C.180°D.210°15.我市某中学为便于管理,决定给每个学生编号,设定末尾用1表示男生,2表示女生.如果编号202003231表示“2020年入学的3班23号学生,是位男生”,那么2022年入学的6班20号女生同学的编号为()A.202006202B.202006201C.202206202D.202206201 16.如图,在△ABC中,点D、E、F分别是AB、BC、AC的中点,则下列四个判断中,不正确的是()A.四边形ADEF是平行四边形B.若∠A=90°,则四边形ADEF是矩形C.若AB=AC,则四边形ADEF是菱形D.若四边形ADEF是正方形,则△ABC是等边三角形二.填空题(共3小题)17.如图,把一个蛋糕分成n等份,要使每份中的角是45°,则n的值为.18.如果一个正多边形的一个内角是162°,则这个正多边形是正边形.19.平面直角坐标系xOy中,抛物线y=kx2﹣2k2x﹣3交y轴于A点,交直线x=﹣4于B 点.(1)若AB∥x轴,则抛物线的解析式是;(2)当﹣4<k<0时,记抛物线在A,B之间的部分为图象G(包含A,B两点),若对于图象G上任意一点P(x P,y P),y P≥﹣3,则k的取值范围是.三.解答题(共7小题)20.两组数据m,6,n与1,m,2n,7的平均数都是6,求这两组数据合并成一组数据后,这组新数据的中位数.21.全运会吉祥物以陕西秦岭独有的四个国宝级动物“金丝猴、羚牛、大熊猫、朱鹮”为创意原型,设计了一组幸福快乐、充满活力、精神焕发、积极向上的运动吉祥物形象.现有四张纪念卡片分别绘有吉祥物的图案(如图),纪念卡片背面完全相同,背面朝上,洗匀放好.(1)小丽从四张纪念卡片任意抽取一张,则小丽抽取到的卡片绘有吉祥物“羚羚”的概率为.(2)小明从四张纪念卡片中随机抽取两张卡片,请你用列表法或画树状图法求出小明抽到两张卡片恰好是“羚羚”和“熊熊”的概率.22.观察下列等式,,,将以上三个等式两边分别相加得.(1)猜想并写出;(2)计算:;(3)探究并计算:=;(4)计算:=.23.在平面直角坐标系xOy中,一次函数y=kx+5(x>﹣5)的图象G经过点A(﹣2,3),直线l:y=﹣x+b与图象G交于点B,与x轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为W.①当b=2时,直接写出区域W内的整点个数;②区域W内恰有3个整点,结合函数图象,求b的取值范围.24.问题提出:(1)如图1,已知Rt△ACB和Rt△ADB,∠ACB=90°,∠ADB=90°,其中CA=CB,∠DAB=30°,AB=4,求△ACB和△ADB的面积分别是多少?问题探究:滨河学校初二年级小张是一名特别爱好专研数学的学生,他在数学老师的帮助下发现:对于任意三角形,其中一个内角和其对边都为定值时,当另两边相等时,该三角形面积达到最大.例如,如图2,在△ABC中,已知三角形内角B和其对边AC都为定值,当BA=BC时,△ACB的面积达到最大.请利用小张同学的发现完成以下问题.(2)如图3,在△ACB中,∠BAC=120°,点D为BC的中点,AD=4,当△ABD面积最大时,求线段AB的值.问题解决:(3)如图4,已知等边△ACB,∠ADB=30°,CD=4,求四边形ADBC的面积的最小值.25.为预防新冠病毒,口罩成了生活必需品,某药店销售一种口罩,每包进价为6元,日均销售量y(包)与每包售价x(元)满足y=﹣5x+80,且10≤x≤16.(1)每包售价定为多少元时,药店的日均利润最大?最大为多少元?(2)当进价提高了a元,且每包售价为13元时,日均利润达到最大,求a的值.26.如图,AB、CD均为⊙O的直径,AB⊥CD.点M是射线CD上异于点C、O、D的一个动点,AM所在直线交⊙O于点N.点P是射线CD上另一点,且PM=PN.猜想:如图①,点M在直径CD上,PN与⊙O的位置关系是.探究:如图②,点M在直径CD的延长线上,判断PN与⊙O的位置关系,并说明理由.应用:如图③,点M在直径CD的延长线上,∠NMO=15°,⊙O的半径为1,直接写出图中阴影部分图形的面积.。
河北省沧州市中考数学模拟试卷(解析版).
精品文档河北省沧州市2021年中考数学模拟试卷一、选择题:本大题共 16小题,1-10小题,每题 3分,11-16小题,每题 3分,共42分,在每题给出的四个选项中,只有一项符合题目要求..下面哪个式子可以用来验证小明的计算3﹣〔﹣ 1〕=4是否正确?〔4﹣〔﹣〕4+1 C4×1 4÷1 〕.〔﹣〕. 〔﹣〕〔﹣2 .以下运算正确的选项是〔〕A .a 3+a 2=a 5B .3a 2﹣a 2=22C .a 3?a 2=a 5D .a 6÷a 3=a 23.下了四个图形中,既是轴对称图形又是中心对称图形的是〔 〕A .B .C .D .4.以下各式中,能用平方差公因式分解的是〔 〕A .x 2+xB .x 2+8x+16C .x 2+4D .x 2﹣15.如图是一个几何体的三视图,那么这个几何体的侧面积是〔 〕A .12πcm 2B .8πcm 2C .6πcm 2D .3πcm26.如图,在⊙O 的内接四边形 ABCD 中,AB 是直径,∠BCD=120°,过D 点的切线 PD 与直线AB交于点P ,那么∠ADP 的度数为〔 〕A .40°B .35°C .30°D .45°7.a= ,b= ,c= ,那么以下大小关系正确的选项是〔 〕A .a >b >cB .c >b >aC .b >a >cD .a >c >b精品文档精品文档8.如图,直线AB、CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠BOD=15°30′,那么以下结论中不正确的选项是〔〕A.∠AOF=45°B.∠BOD=∠AOCC.∠BOD的余角等于75°30′D.∠AOD与∠BOD互为补角9.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,那么tan∠DBC的值为〔〕A.B.﹣1C.2﹣D.10.图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,那么以下结论正确的选项是〔〕A.当x=3时,EC<EM B.当y=9时,EC>EMC .当x增大时,EC CF的值增大D.当y增大时,BEDF的值不变??11.如下图是测量一物体体积的过程:步骤一,将180ml的水装进一个容量为300ml的杯子中.步骤二,将三个相同的玻璃球放入水中,结果水没有满.步骤三,同样的玻璃球再加一个放入水中,结果水满溢出.根据以上过程,推测一颗玻璃球的体积在以下哪一范围内〔1ml=1cm 3〕〔〕精品文档精品文档A .10cm 3以上,20cm 3以下 B .20cm 3以上,30cm 3以下 C .30cm 3以上,40cm 3以下D .40cm 3以上,50cm 3以下12.假设关于x 的一元二次方程〔 k ﹣1〕x 2+2x ﹣2=0有实数根,那么 k 的取值范围是〔〕A .k >B .k ≥C .k > 且k ≠1D .k ≥且k ≠113.如图是某市 7月 1日至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染, 某人随机选择7月1日至7月8日中的某一天到达该市,并连续停留3天,那么此人在该市停留期间有且仅有1天空气质量优良的概率是〔〕A .B .C .D .14.如图,函数 y =ax+b 和y=kx 的图象交于点P ,那么根据图象可得,关于x 、y 的二元一次方程组的解是〔 〕A .B .C .D .15.如图,正六边形ABCDEF内接于⊙O ,半径为4,那么这个正六边形的边心距OM和的长分别为〔 〕精品文档精品文档A.2,B.2,πC.,D.2,16.一个大正方形和四个全等的小正方形按①、②两种方式放,②的大正方形中未被小正方形覆盖局部的面是〔用含a、b的式子表示〕〔〕A.〔a+b〕2B.〔a b〕2C.2ab D.ab二、填空:本大共4小,每小3分,共12分,把答案写在中横上.17.算2sin45°的果是.18.假设〔x1〕2=2,代数式x22x+5的.19.如,在半径2的⊙O中,两个点重合的内接正四形与正六形,阴影局部的面.20.如,所有正三角形的一都与x平行,一点在y正半上,点依次用A1,A2,A3,A4⋯表示,坐原点O到A1A2,A4A5,A7A8⋯的距离依次是1,2,3,⋯,从内到外,正三角形的依次246⋯A23的坐是.,,,,精品文档精品文档三、解答题:本大题共6个小题,共 66分,解容许写出文字说明、证明过程或演算步骤.21.现规定=a ﹣b+c ﹣d ,试计算 ,其中x=2,y=1.22.如图,点 A 〔﹣4,2〕,B 〔﹣1,﹣2〕,平行四边形 ABCD 的对角线交于坐标原点O .1〕请直接写出点C 、D 的坐标;2〕写出从线段AB 到线段CD 的变换过程;3〕直接写出平行四边形ABCD 的面积.23.为了节省材料,某水产养殖户利用水库的岸堤〔岸堤足够长〕为一边,用总长为 80m 的围网在水库中围成了如下图的 ①②③ 三块矩形区域,而且这三块矩形区域的面积相等.设 BC 的长度为xm ,矩形区域 ABCD 的面积为ym 2.〔1〕求y 与x 之间的函数关系式,并注明自变量 x 的取值范围;〔2〕x 为何值时,y 有最大值?最大值是多少?精品文档精品文档24.如图是根据某市国民经济和社会开展统计公报中的相关数据绘制的两幅统计图〔不完整〕.根据图中信息解答以下问题:〔1〕2021年该市私人轿车拥有量约是多少万辆?〔精确到 1万辆〕〔2〕请补全折线统计图.〔3〕经测定,汽车的碳排放量与汽车的排量大小有关,驾驶排量为的轿车,假设一年行驶的路 程为1万千米,那么这一年该轿车的碳排放量约为 万吨,从该市随机抽取400辆私人轿车,不同排量的轿车数量统计如下表:排量〔L 〕小于大于 轿车数量〔辆〕602008060按照上述的统计数据, 通过计算估计:2021年该市仅排量为的私人轿车〔假定每辆车平均一年行驶的路程都为 1万千米〕的碳排放总量为多少万吨?25.如图,经过点A 〔0,﹣6〕的抛物线y= x 2+bx+c 与x 轴相交于B 〔﹣2,0〕,C 两点.〔1〕求此抛物线的函数关系式和顶点 D 的坐标;〔2〕将〔1〕中求得的抛物线向左平移 1个单位长度,再向上平移 m 〔m >0〕个单位长度得到新抛物线y 1,假设新抛物线y 1的顶点P 在△ABC 内,求m 的取值范围;〔3〕设点M 在y 轴上,∠OMB+∠OAB=∠ACB ,直接写出AM 的长.26.在平面直角坐标系中,O 为原点,四边形 OABC 的顶点A 在x 轴的正半轴上,OA=4,OC=2,点P ,点Q 分别是边 BC ,边AB 上的点,连结AC ,PQ ,点B 1是点B 关于PQ 的对称点.精品文档精品文档〔1〕假设四边形OABC为矩形,如图1,①求点B的坐标;②假设BQ:BP=1:2,且点B1落在OA上,求点B1的坐标;〔2〕假设四边形OABC为平行四边形,如图2,且OC⊥AC,过点B1作B1F∥x轴,与对角线AC、边OC分别交于点E、点F.假设B1E:B1F=1:3,点B1的横坐标为m,求点B1的纵坐标,并直接写出m的取值范围.精品文档精品文档2021年河北省沧州市中考数学模拟试卷〔3月份〕参考答案与试题解析一、选择题:本大题共16小题,1-10小题,每题3分,11-16小题,每题3分,共42分,在每题给出的四个选项中,只有一项符合题目要求.1.下面哪个式子可以用来验证小明的计算3﹣〔﹣1〕=4是否正确?〔〕A.4﹣〔﹣1〕B.4+〔﹣1〕C.4×〔﹣1〕D.4÷〔﹣1〕【考点】有理数的减法.【分析】根据被减数、减数、差三者之间的关系解答.【解答】解:可以用4+〔﹣1〕验证.应选B.【点评】此题主要考查了有理数的减法,熟记被减数=差+减数是解题的关键.2.以下运算正确的选项是〔〕A .a3+a2=a5B.3a2﹣a2=22C.a3a2=a5D.a6a3=a2?÷【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【分析】根据同底数幂的乘法,可判断A,C;根据合并同类项,可判断B;根据同底数幂的除法,可判断D.【解答】解:A、不是同底数幂的乘法指数不能相加,故A错误;B、合并同类项系数相加字母局部不变,故B错误;C、同底数幂的乘法底数不变指数相加,故C正确;D、同底数幂的除法底数不变指数相减,故D错误;应选:C.【点评】此题考查了同底数幂的除法,熟记法那么并根据法那么计算是解题关键.3.下了四个图形中,既是轴对称图形又是中心对称图形的是〔〕A.B.C.D.精品文档精品文档【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A 、不是轴对称图形,是中心对称图形.故错误;B 、是轴对称图形,也是中心对称图形,故正确;C 、是轴对称图形,不是中心对称图形,故错误;D 、是轴对称图形,不是中心对称图形,故错误.应选B .【点评】此题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两 局部沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转 180度后与原图重合.4.以下各式中,能用平方差公因式分解的是〔〕A .x 2+xB .x 2+8x+16C .x 2+4D .x 2﹣1 【考点】因式分解-运用公式法.【分析】直接利用公式法以及提取公因式法分解因式进而得出答案.【解答】解:A 、x 2+x=x 〔x+1〕,是提取公因式法分解因式,故此选项错误;B 、x 2+8x+16=〔x+4〕2,是公式法分解因式,故此选项错误;C 、x 2+4,无法分解因式,故此选项错误;D 、x 2﹣1=〔x+1〕〔x ﹣1〕,能用平方差公因式分解,故此选项正确.应选:D .【点评】此题主要考查了公式法以及提取公因式法分解因式,正确运用公式法分解因式是解题关键.5.如图是一个几何体的三视图,那么这个几何体的侧面积是〔〕A .12πcm 2B .8πcm 2C .6πcm 2D .3πcm 2【考点】由三视图判断几何体;圆柱的计算.【分析】首先判断出该几何体,然后计算其面积即可.精品文档精品文档【解答】解:观察三视图知:该几何体为圆柱,高为3cm,底面直径为2cm,侧面积为:πdh=2×3π=6π,应选C.【点评】此题考查了由三视图判断几何体及圆柱的计算,解题的关键是首先判断出该几何体.6.如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB 交于点P,那么∠ADP的度数为〔〕A.40°B.35°C.30°D.45°【考点】切线的性质.【分析】连接DB,即∠ADB=90°,又∠BCD=120°,故∠DAB=60°,所以∠DBA=30°;又因为PD为切线,利用切线与圆的关系即可得出结果.【解答】解:连接BD,∵∠DAB=180°﹣∠C=60°,AB是直径,∴∠ADB=90°,∴∠ABD=90°﹣∠DAB=30°,PD是切线,∴∠ADP=∠ABD=30°,应选:C.【点评】此题考查了圆内接四边形的性质,直径对圆周角等于直角,弦切角定理,弦切角等于它所夹的弧对的圆周角求解.精品文档精品文档7.a=,b=,c=,那么以下大小关系正确的选项是〔〕A.a>b>c B.c>b>a C.b>a>c D.a>c>b【考点】实数大小比拟.【专题】计算题.【分析】将a,b,c变形后,根据分母大的反而小比拟大小即可.【解答】解:∵a==,b==,c==,且<<,∴>>,即a>b>c,应选A.【点评】此题考查了实数比拟大小,将a,b,c进行适当的变形是解此题的关键.8.如图,直线AB、CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠BOD=15°30′,那么以下结论中不正确的选项是〔〕A.∠AOF=45°B.∠BOD=∠AOCC.∠BOD的余角等于75°30′D.∠AOD与∠BOD互为补角【考点】垂线;余角和补角;对顶角、邻补角.【分析】根据垂线的定义和角平分线得出A正确;根据对顶角相等得出B正确;求出∠BOD的余角得出C不正确;根据邻补角关系得出D正确.【解答】解:∵OE⊥AB,∴∠AOE=90°,∵OF平分∠AOE,∴∠AOF=∠AOE=45°,∴A正确;夜∠BOD和∠AOC是对顶角,∴∠BOD=∠AOC,精品文档精品文档∴B正确;∵∠BOD的余角=90°﹣15°30′=74°30′,∴C不正确;∵∠AOD+∠BOD=180°,∴∠AOD和∠BOD互为补角,D正确;应选:C.【点评】此题考查了垂线、余角以及对顶角、邻补角的定义;熟练掌握角的互余和互补关系是解题的关键.9.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,那么tan∠DBC的值为〔〕A.B.﹣1C.2﹣D.【考点】解直角三角形;等腰直角三角形.【分析】利用等腰直角三角形的判定与性质推知BC=AC,DE=EC=DC,然后通过解直角△DBE 来求tan∠DBC的值.【解答】解:∵在△ABC中,∠BAC=90°,AB=AC,∴∠ABC=∠C=45°,BC=AC.又∵点D为边AC的中点,∴AD=DC=AC.∵DE⊥BC于点E,∴∠CDE=∠C=45°,∴DE=EC=DC=AC.精品文档精品文档∴tan∠DBC===.应选:A.【点评】此题考查了解直角三角形的应用、等腰直角三角形的性质.通过解直角三角形,可求出相关的边长或角的度数或三角函数值.10.图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,那么以下结论正确的选项是〔〕A.当x=3时,EC<EMB.当y=9时,EC>EMC.当x增大时,EC?CF的值增大D.当y增大时,BE?DF的值不变【考点】动点问题的函数图象.【专题】数形结合.【分析】由于等腰直角三角形AEF的斜边EF过C点,那么△BEC和△DCF都是直角三角形;观察反比例函数图象得反比例解析式为y=;当x=3时,y=3,即BC=CD=3,根据等腰直角三角形的性质得CE=3,CF=3,那么C点与M点重合;当y=9时,根据反比例函数的解析式得x=1,即BC=1,CD=9,所以EF=10,而EM=5;由于EC?CF=x×y;利用等腰直角三角形的性质BE?DF=BC?CD=xy,然后再根据反比例函数的性质得BE?DF=9,其值为定值.【解答】解:因为等腰直角三角形AEF的斜边EF过C点,M为EF的中点,所以△BEC和△DCF都是直角三角形;观察反比例函数图象得x=3,y=3,那么反比例解析式为y=;精品文档精品文档A 、当x=3时,y=3,即BC=CD=3,所以CE=BC=3 ,CF= CD=3 ,C 点与M 点重合,那么EC=EM ,所以A 选项错误;B、当y=9时,x=1,即BC=1,CD=9,所以EC= ,EF=10 ,EM=5 ,所以B 选项错误;C、因为EC?CF= x?y=2×xy=18,所以,EC?CF 为定值,所以C 选项错误;D、因为 BEDF=BC ? CD=xy=9 ,即 BEDF 的值不变,所以 D选项正确. ? ?应选D .【点评】此题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.11.如下图是测量一物体体积的过程:步骤一,将180ml 的水装进一个容量为 300ml 的杯子中.步骤二,将三个相同的玻璃球放入水中,结果水没有满.步骤三,同样的玻璃球再加一个放入水中,结果水满溢出.根据以上过程,推测一颗玻璃球的体积在以下哪一范围内〔 1ml=1cm 3〕〔 〕A .10cm 3以上,20cm 3以下 B .20cm 3以上,30cm 3以下C .30cm 3以上,40cm 3以下D .40cm 3以上,50cm 3以下【考点】一元一次不等式的应用.【专题】操作型.【分析】先求出剩余容量,然后分别除以 3和4,就可知道球的体积范围.【解答】解:300﹣180=120,120÷3=40,120÷4=30应选:C .【点评】特别注意水没满与满的状态.12.假设关于x 的一元二次方程〔 k ﹣1〕x 2+2x ﹣2=0有实数根,那么 k 的取值范围是〔〕A .k >B .k ≥C .k >且k ≠1D .k ≥且k ≠1【考点】根的判别式;一元二次方程的定义.精品文档精品文档【分析】根据根的判别式和一元二次方程的定义可得4﹣4〔k ﹣1〕〔﹣2〕=8k ﹣4≥0且k ≠1,求出k 的取值范围即可. 【解答】解:∵关于x 的一元二次方程〔k ﹣1〕x 2+2x ﹣2=0有实数根, ∴△≥0且k ≠1,∴△=4﹣4〔k ﹣1〕〔﹣2〕=8k ﹣4≥0且k ≠1, ∴k ≥且k ≠1, 应选:D .【点评】此题主要考查了根的判别式以及一元二次方程的定义的知识,解答此题的关键是掌握一元二次方程有实数根,那么△≥0,此题难度不大.13.如图是某市 7月1日至10日的空气质量指数趋势图, 空气质量指数小于 100表示空气质量优良,空气质量指数大于 200表示空气重度污染, 某人随机选择 7月1日至7月8日中的某一天到达该市,并连续停留 3天,那么此人在该市停留期间有且仅有 1天空气质量优良的概率是〔 〕A .B .C .D .【考点】概率公式;折线统计图. 【专题】图表型. 【分析】先求出3天中空气质量指数的所有情况,再求出有一天空气质量优良的情况,根据概率公 式求解即可. 【解答】解:∵由图可知,当 1号到达时,停留的日子为1、2、3号,此时为〔86,25,57〕,3天空气质量均为优;当2 号到达时,停留的日子为 2、3 、4 号,此时为〔25 ,57,143〕,2 天空气质量为优; 当3 号到达时,停留的日子为 3、4 、5 号,此时为〔57 ,143,220〕, 1天空气质量为优; 当4 号到达时,停留的日子为4、5 、6 号,此时为〔143,220,160〕,空气质量为污染;精品文档精品文档当5号到达时,停留的日子为5、6、7号,此时为〔220,160,40〕,1天空气质量为优;当6号到达时,停留的日子为6、7、8号,此时为〔160,40,217〕,1天空气质量为优;当7号到达时,停留的日子为7、8、9号,此时为〔40,217,160〕,1天空气质量为优;当8号到达时,停留的日子为8、9、10号,此时为〔217,160,121〕,空气质量为污染∴此人在该市停留期间有且仅有1天空气质量优良的概率= =.应选:C.【点评】此题考查的是概率公式,熟知随机事件A的概率P〔A〕=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.14.如图,函数y=ax+b 和y=kx的图象交于点P,那么根据图象可得,关于x、y的二元一次方程组的解是〔〕A.B.C.D.【考点】一次函数与二元一次方程〔组〕.【分析】由图可知:两个一次函数的交点坐标为〔﹣3,1〕;那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:函数y=ax+b和y=kx的图象交于点P〔﹣3,1〕,即x=﹣3,y=1同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.应选C.【点评】此题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.精品文档精品文档15.如图,正六边形ABCDEF内接于⊙O,半径为4,那么这个正六边形的边心距OM和的长分别为〔〕A.2,B.2,πC.,D.2,【考点】正多边形和圆;弧长的计算.【专题】压轴题.【分析】正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角关系即可求出OM,再利用弧长公式求解即可.【解答】解:连接OB,OB=4,∴BM=2,∴OM=2,==π,应选D.【点评】此题考查了正多边形和圆以及弧长的计算,将扇形的弧长公式与多边形的性质相结合,构思巧妙,利用了正六边形的性质,是一道好题.16.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,那么图②的大正方形中未被小正方形覆盖局部的面积是〔用含a、b的式子表示〕〔〕精品文档精品文档A .〔a+b 〕2B .〔a ﹣b 〕2C .2abD .ab【考点】整式的混合运算.【分析】用大正方形的面积减去 4个小正方形的面积即可.【解答】解:〔 〕2﹣4×〔〕2= ﹣==ab , 应选D .【点评】此题考查了整式的混合运算,求得大正方形的边长和小正方形的边长是解题的关键.二、填空题:本大题共4小题,每题 3分,共12分,把答案写在题中横线上.17.计算 ﹣2sin45°的结果是 .【考点】实数的运算;特殊角的三角函数值.【分析】利用二次根式的性质以及特殊角的三角函数值求出即可.【解答】解: ﹣2sin45°=2 ﹣2×.故答案为:.【点评】此题主要考查了实数运算等知识,正确掌握相关性质是解题关键.18.假设〔x ﹣1〕2=2,那么代数式x 2﹣2x+5的值为6.【考点】完全平方公式.【分析】根据完全平方公式展开,先求出x 2﹣2x 的值,然后再加上 5计算即可.【解答】解:∵〔x ﹣1〕2=2, ∴x 2﹣2x+1=2,精品文档精品文档x 2﹣2x=1, 两边都加上5,得x 2﹣2x+5=1+5=6. 故答案为:6.【点评】此题考查了完全平方公式,熟记公式是解题的关键,利用“整体代入〞的思想使计算更加简便.19.如图,在半径为2的⊙O 中,两个顶点重合的内接正四边形与正六边形,那么阴影局部的面积为 6﹣2. 【考点】正多边形和圆. 【分析】如图,连接 OB ,OF ,根据题意得:△BFO 是等边三角形,△CDE 是等腰直角三角形,求 得△ABC 的高和底即可求出阴影局部的面积. 【解答】解:如图,连接OB ,OF , 根据题意得:△BFO 是等边三角形,△CDE 是等腰直角三角形,∴BF=OB=2,∴△BFO 的高为; ,CD=2〔2 ﹣ 〕=4﹣2,∴BC=〔2﹣4+2〕=﹣1,∴阴影局部的面积 =4S △ABC =4×〔 〕?=6﹣2.故答案为:6﹣2.精品文档精品文档【点】本考了正多形和,三角形的面,解的关是知道阴影局部的面等于4个三角形的面.20.如,所有正三角形的一都与x平行,一点在y正半上,点依次用A1,A2,A3,A4⋯表示,坐原点O到A1A2,A4A5,A7A8⋯的距离依次是1,2,3,⋯,从内到外,正三角形的依次2,4,6,⋯,A23的坐是〔8,8〕.【考点】律型:点的坐.【分析】根据每一个三角形有三个点确定出A23所在的三角形,再求出相的三角形的以及23的坐的度,即可得解.【解答】解:∵23÷3=7⋯2,∴A23是第8个等三角形的第2个点,第8个等三角形2×8=16,∴点A23的横坐×16=8,∵A1A2与A4A5、A4A5与A7A8、⋯均相距一个位,∴点A23的坐8,∴点A23的坐〔8,8〕.故答案:〔8,8〕.【点】此考点的坐化律,主要利用了等三角形的性,确定出点A23所在三角形是解的关.三、解答:本大共6个小,共66分,解答写出文字明、明程或演算步.21.定=a b+c d,算,其中x=2,y=1.精品文档精品文档【考点】整式的混合运算 —化简求值.【专题】新定义;整式.【分析】原式利用题中的新定义化简,将 x 与y 的值代入计算即可求出值. 【解答】解:原式=〔xy ﹣3x 2〕﹣〔﹣2xy 〕﹣2x 2﹣〔﹣5+xy 〕=xy ﹣3x2+2xy ﹣2x2+5﹣xy=﹣5x 2+2xy+5, 当x=2,y=1时,原式=﹣20+4+5=﹣11.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法那么是解此题的关键. 22.如图,点 A 〔﹣4,2〕,B 〔﹣1,﹣2〕,平行四边形 ABCD 的对角线交于坐标原点 O . 1〕请直接写出点C 、D 的坐标; 2〕写出从线段AB 到线段CD 的变换过程; 3〕直接写出平行四边形ABCD 的面积. 【考点】平行四边形的性质;坐标与图形性质;平移的性质. 【分析】〔1〕利用中心对称图形的性质得出 C ,D 两点坐标; 2〕利用平行四边形的性质以及结合平移的性质得出即可; 3〕利用S ABCD 的可以转化为边长为;5和4的矩形面积,进而求出即可.【解答】解:〔1〕∵四边形ABCD 是平行四边形, ∴四边形ABCD 关于O 中心对称, A 〔﹣4,2〕,B 〔﹣1,﹣2〕,∴C 〔4,﹣2〕,D 〔1,2〕; 〔2〕线段AB 到线段CD 的变换过程是:绕点O 旋转180°; 〔3〕由〔1〕得:A 到y 轴距离为:4,D 到y 轴距离为:1,A 到x 轴距离为:2,B 到x 轴距离为:2,∴S ABCD 的可以转化为边长为; 5和4的矩形面积,精品文档精品文档S ABCD =5×4=20.【点评】此题主要考查了平行四边形的性质以及中心对称图形的性质,根据题意得出S ABCD 的可以转化为矩形面积是解题关键.23.为了节省材料,某水产养殖户利用水库的岸堤〔岸堤足够长〕为一边,用总长为 80m 的围网在水库中围成了如下图的 ①②③ 三块矩形区域,而且这三块矩形区域的面积相等.设 BC 的长度为xm ,矩形区域 ABCD 的面积为ym 2.〔1〕求y 与x 之间的函数关系式,并注明自变量 x 的取值范围;〔2〕x 为何值时,y 有最大值?最大值是多少?【考点】二次函数的应用.【专题】应用题.【分析】〔1〕根据三个矩形面积相等, 得到矩形AEFD 面积是矩形 BCFE 面积的2倍,可得出AE=2BE ,设BE=a ,那么有AE=2a ,表示出 a 与2a ,进而表示出 y 与x 的关系式,并求出 x 的范围即可;〔2〕利用二次函数的性质求出 y 的最大值,以及此时 x 的值即可.【解答】解:〔1〕∵三块矩形区域的面积相等,∴矩形AEFD 面积是矩形 BCFE 面积的2倍,∴AE=2BE ,设BE=a ,那么AE=2a ,∴8a+2x=80,∴a=﹣x+10,3a=﹣ x+30,y=〔﹣x+30〕x=﹣x 2+30x ,a=﹣x+10>0,∴x <40,精品文档精品文档那么y=﹣x 2+30x 〔0<x <40〕;〔2〕∵y=﹣x 2+30x=﹣〔x ﹣20〕2+300〔0<x <40〕,且二次项系数为﹣<0,∴当x=20时,y 有最大值,最大值为 300平方米.【点评】此题考查了二次函数的应用,以及列代数式,熟练掌握二次函数的性质是解此题的关键.24.如图是根据某市国民经济和社会开展统计公报中的相关数据绘制的两幅统计图〔不完整〕.根据图中信息解答以下问题:〔1〕2021年该市私人轿车拥有量约是多少万辆?〔精确到1万辆〕 〔2〕请补全折线统计图.〔3〕经测定,汽车的碳排放量与汽车的排量大小有关,驾驶排量为 的轿车,假设一年行驶的路程为1万千米,那么这一年该轿车的碳排放量约为 万吨,从该市随机抽取 400辆私人轿车,不同排量的轿车数量统计如下表:排量〔L 〕小于大于轿车数量〔辆〕60200 8060按照上述的统计数据, 通过计算估计:2021 年该市仅排量为的私人轿车〔假定每辆车平均一年行驶的路程都为 1万千米〕的碳排放总量为多少万吨? 【考点】折线统计图;条形统计图.【分析】〔1〕设2021 年该市私人轿车拥有量为 x 万辆,根据2021年拥有量=2021年拥有量×〔1+2021年的增长率〕列出方程,解方程可得;〔2〕设2021年增长率为m ,根据 2021年拥有量×〔1+增长率〕=2021年拥有量,列方程求解即可;〔3〕根据2021年20私人轿车总量由 14年的私人轿车占私人轿车拥有量的比例可得排量为的私人轿车数,再计算碳排放总量.精品文档精品文档【解答】解:〔1〕设2021年该市私人轿车拥有量为 x 万辆,根据题意,得:〔1+30%〕x=108,解得:x=83,答:2021年该市私人轿车拥有量约是 83万辆; 2〕设2021年增长率为m ,那么60〔1+m 〕=69, 解得:m=0.15=15%,补全统计图如以下图所示:〔3〕2021年私人轿车的拥有量为: 108×〔200÷400〕=54〔万辆〕,所以2021 年该市仅排量为的私人轿车的碳排放总量为: 540000×2.7=1458000〔万吨〕, 答:2021 年该市仅排量为的私人轿车的碳排放总量为1458000万吨.【点评】此题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个工程的数据,折线统计图表示的是事物的变化情况.25.如图,经过点 A 〔0,﹣6〕的抛物线y= x 2+bx+c 与x 轴相交于B 〔﹣2,0〕,C 两点.〔1〕求此抛物线的函数关系式和顶点 D 的坐标;〔2〕将〔1〕中求得的抛物线向左平移1个单位长度,再向上平移m 〔m >0〕个单位长度得到新抛物线y 1,假设新抛物线 y 1的顶点P 在△ABC 内,求m 的取值范围; 〔3〕设点M 在y 轴上,∠OMB+∠OAB=∠ACB ,直接写出 AM 的长.【考点】二次函数综合题. 【分析】〔1〕该抛物线的解析式中只有两个待定系数,只需将A 、B两点坐标代入即可得解.精品文档精品文档〔2〕首先根据平移条件表示出移动后的函数解析式,从而用m 表示出该函数的顶点坐标,将其代入直线AB 、AC的解析式中,即可确定P 在△ABC 内时m 的取值范围.〔3〕先在OA 上取点N ,使得∠ONB=∠ACB ,那么只需令∠NBA=∠OMB 即可,显然在 y 轴的正 负半轴上都有一个符合条件的 M 点;以y 轴正半轴上的点 M 为例,先证△ABN 、△AMB 相似,然后通过相关比例线段求出 AM 的长.【解答】解:〔1〕将A 〔0,﹣6〕、B 〔﹣2,0〕代入抛物线 y=x 2+bx+c 中,得:, 解得. ∴抛物线的解析式: y=x 2﹣2x ﹣6=〔x ﹣2〕2﹣8,顶点D 〔2,﹣8〕;〔2〕由题意,新抛物线的解析式可表示为:y=〔x ﹣2+1〕2﹣8+m ,即:y= 〔x ﹣2+1〕2﹣8+m .它的顶点坐标 P 〔1,m ﹣8〕.由〔1〕的抛物线解析式可得: C 〔4,0〕.∴直线AB :y=﹣3x ﹣6;直线AC :y=x ﹣6.当点P 在直线 AB上时,﹣ 3﹣6=m ﹣8,解得:m=﹣1;当点P 在直线AC又∵m >0,∴当点P 在△ABC 上时, 内时,﹣6=m ﹣8,解得:0<m < .m=;3〕由A 〔0,﹣6〕、C 〔6,0〕得:OA=OC=6,且△OAC 是等腰直角三角形.如图,在OA 上取ON=OB=2,那么∠ONB=∠ACB=45°.∴∠ONB=∠NBA+∠OAB=∠ACB=∠OMB+∠OAB ,即∠NBA=∠OMB .精品文档精品文档如图,在△ABN 、△AM 1B 中,BAN=∠M 1AB ,∠ABN=∠AM 1B ,∴△ABN ∽△AM 1B ,得:AB 2=AN?AM 1;由勾股定理,得 AB 2=〔﹣2〕2+〔﹣6〕2=40,又∵AN=OA ﹣ON=6﹣2=4, AM 1=40÷4=10,OM 1=AM 1﹣OA=10﹣6=4OM 2=OM 1=4AM 2=OA ﹣OM 2=6﹣4=2. 综上所述,AM 的长为4或2.【点评】考查了二次函数综合题,曲线上点的坐标与方程的关系,平移的性质,二次函数的性质,等腰直角三角形的判定和性质,相似三角形的判定与性质,勾股定理.26.在平面直角坐标系中,O 为原点,四边形 OABC 的顶点A 在x 轴的正半轴上,OA=4,OC=2, 点P ,点Q 分别是边BC ,边AB 上的点,连结 AC ,PQ ,点B 1是点B 关于PQ 的对称点.〔1〕假设四边形OABC 为矩形,如图1, ① 求点B 的坐标;② 假设BQ :BP=1:2,且点B 1落在OA 上,求点B 1的坐标;〔2〕假设四边形OABC 为平行四边形,如图2,且OC ⊥AC ,过点B 1作B 1F ∥x 轴,与对角线 AC 、边OC 分别交于点E 、点F .假设B 1E :B 1F=1:3,点B 1的横坐标为m ,求点B 1的纵坐标,并直接写出m 的取值范围.【考点】四边形综合题.【专题】压轴题.【分析】〔1〕①根据OA=4,OC=2,可得点B 的坐标;②利用相似三角形的判定和性质得出点的坐标;精品文档。
人教版中考数学模拟试卷(含答案)
人教版中考数学模拟试卷(含答案) 中考数学模拟试卷(1)一、选择题(共10小题)1.下列说法中,正确的是()A。
最小的整数B。
最大的负整数是-1C。
有理数包括正有理数和负有理数D。
一个有理数的平方总是正数2.一家商店将某种服装按成本价提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是()A。
140元B。
135元C。
125元D。
120元3.若=0无解,则m的值是()A。
-2B。
2C。
3D。
-34.为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如表,则下列说法错误的是()阅读量(单位:本/周)人数(单位:人)1 42 63 24 3A。
中位数是2B。
平均数是2C。
众数是2D。
极差是25.下列各式中能用完全平方公式分解因式的是()A。
x^2 + x + 1B。
x^2 + 2x + 1C。
x^2 + 2x - 1D。
x^2 - 2x - 16.如图所示,扇形AOB的圆心角120°,半径为2,则图中阴影部分的面积为()A。
-2B。
-√3C。
-π/3D。
-π/67.若方程组的解x,y满足<x+y<1,则k的取值范围是()A。
-4 < k <B。
-1 < k <C。
< k < 8D。
k。
-48.将一个四边形纸片依次按图示①、②的方式对折,然后沿图③中的虚线裁剪成④样式。
将纸片展开铺平,所得到的图形是图中的()A.B.C.D.9.若关于x不等式组有且只有四个整数解,且一次函数y=(k+3)x+k+5的图像不经过第三象限,则符合题意的整数k 有()个。
A。
4B。
3C。
2D。
110.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A。
第504个正方形的左下角B。
第504个正方形的右下角C。
第505个正方形的左上角D。
第505个正方形的右下角二、填空题(共8小题)11.如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为()。
中考第一次模拟测试《数学试卷》含答案解析
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题:1. 我市南水北调配套工程建设进展顺利,工程运行调度有序.截止2015年12月底,已累计接收南水北调来水812000000立方米.使1100余万市民喝上了南水;通过”存水”增加了约550公顷水面,密云水库蓄水量稳定在10亿立方米左右,有效减缓了地下水位下降速率.将812000000用科学记数法表示应为A. 812×106B. 81.2×107C. 8.12×108D. 8.12×1092. 下列运算正确的是( )A. 3a2+5a2=8a4B. a6•a2=a12C. (a+b)2=a2+b2D. (a2+1)0=13. 如图所示的标志中,是轴对称图形的有( )A. 1个B. 2个C. 3个D. 4个4. 为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是( )A. 15mB. 17mC. 20mD. 28m5. 如图,已知AB∥CD,∠A=40°,∠D=45°,则∠1的度数是( )A. 80°B. 85°C. 90°D. 95°6. 估计7+1的值( )A. 在1和2之间B. 在2和3之间C. 3和4之间D. 在4和5之间7. 在平面直角坐标系中,点(-1,2)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限8. 已知一次函数y=kx-k,y随x的增大而减小,则该函数的图像不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9. 计算8-2的结果是( )A. 6B. 6C. 2D. 210. 一个暗箱里装有10个黑球,8个红球,12个白球,每个球除颜色外都相同,从中任意摸出一球,不是白球的概率是( )A415B.13C.25D.3511. 如图,1l∥2l∥3l,两条直线与这三条平行线分别交于点A、B、C和D、E、F.已知32ABBC,则DEDF的值为( )A. 32B.23C.25D.3512. 如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD最大面积是( )A. 60 m 2B. 63 m 2C. 64 m 2D. 66 m 2二 、填空题:13. 分解因式:x 3y ﹣2x 2y+xy=______.14. 函数y=12-x x 的自变量x 的取值范围是_____. 15. 化简221(1)11x x -÷+-的结果是 . 16. 某直角三角形三条边的平方和为200,则这个直角三角形的斜边长为 .17. 如图,△ABC 中,AB=AC=10,BC=8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长为 .18. 已知⊙O 的半径为5,AB 是⊙O 的直径,D 是AB 延长线上一点,DC 是⊙O 的切线,C 是切点,连接AC ,若∠CAB =30°,则BD 的长为____.三 、计算题:19. 解方程组: 3(1)4(4)05(1)3(5)x y y x ---=⎧⎨-=+⎩20. 解不等式组2102323x x x +>⎧⎪-+⎨≥⎪⎩. 四 、解答题:21. 如图,四边形ABCD 中,90,1,3A ABC AD BC ︒∠=∠===,E 是边CD 中点,连接BE 并延长与AD 的延长线相较于点F .(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.22. 如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.23. 为了更好的治理西流湖水质,保护环境,市治污公司决定购买10 台污水处理设备.现有A、B 两种型号的设备,其中每台的价格,月处理污水量如下表:A 型B 型价格(万元/台) a b处理污水量(吨/月) 240 200经调查:购买一台A 型设备比购买一台B 型设备多2 万元,购买2 台A 型设备比购买3 台B 型设备少6 万元.(1)求a,b值;(2)经预算:市治污公司购买污水处理设备的资金不超过105 万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于2040 吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.24. 对于某一函数给出如下定义:若存在实数p,当其自变量值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q的取值范围;(3) 记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为 .答案与解析一、选择题:1. 我市南水北调配套工程建设进展顺利,工程运行调度有序.截止2015年12月底,已累计接收南水北调来水812000000立方米.使1100余万市民喝上了南水;通过”存水”增加了约550公顷水面,密云水库蓄水量稳定在10亿立方米左右,有效减缓了地下水位下降速率.将812000000用科学记数法表示应为A. 812×106B. 81.2×107C. 8.12×108D. 8.12×109【答案】C【解析】试题解析:将812000000用科学记数法表示为:8.12×108.故选C.考点:科学记数法—表示较大的数.2. 下列运算正确的是( )A. 3a2+5a2=8a4B. a6•a2=a12C. (a+b)2=a2+b2D. (a2+1)0=1【答案】D【解析】试题分析:A、原式合并同类项得到结果,即可做出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用完全平方公式展开得到结果,即可做出判断;D、原式利用零指数幂法则计算得到结果,即可做出判断.解:A、原式=8a2,故A选项错误;B、原式=a8,故B选项错误;C、原式=a2+b2+2ab,故C选项错误;D、原式=1,故D选项正确.故选D.点评:此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及零指数幂,熟练掌握公式及法则是解本题的关键.3. 如图所示的标志中,是轴对称图形的有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【详解】试题分析:四个标志中是轴对称图形的有:,所以共有3个.故应选C.考点:轴对称图形4. 为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是( )A. 15mB. 17mC. 20mD. 28m【答案】D【解析】试题分析:根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得16﹣12<AB<16+12,再解即可.解:根据三角形的三边关系可得:16﹣12<AB<16+12,即4<AB<28,故选D.考点:三角形三边关系.5. 如图,已知AB∥CD,∠A=40°,∠D=45°,则∠1的度数是( )A. 80°B. 85°C. 90°D. 95°【答案】B【解析】试题分析:∵AB∥CD,∴∠A=∠C=40°,∵∠1=∠D+∠C,∵∠D=45°,∴∠1=∠D+∠C=45°+40°=85°,故选B.考点:平行线的性质.6. 7+1的值( )A. 在1和2之间B. 在2和3之间C. 在3和4之间D. 在4和5之间【答案】C【解析】∵7,∴7,7在在3和4之间.故选C.7. 在平面直角坐标系中,点(-1,2)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】∵点(-1,2)的横坐标为负数,纵坐标为正数,∴点(-1,2)在第二象限.故选B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8. 已知一次函数y=kx-k,y随x的增大而减小,则该函数的图像不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】解:∵一次函数y=kx﹣k的图象y随x的增大而减小,∴k<0.即该函数图象经过第二、四象限,∵k<0,∴﹣k>0,即该函数图象与y轴交于正半轴.综上所述:该函数图象经过第一、二、四象限,不经过第三象限.故选C.点睛:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b 所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.9. 的结果是( )A. 6 C. 2【答案】D【解析】-==D.考点:二次根式的加减法.10. 一个暗箱里装有10个黑球,8个红球,12个白球,每个球除颜色外都相同,从中任意摸出一球,不是白球的概率是( )A.415B.13C.25D.35【答案】D【解析】1231305-=,故选D.11. 如图,1l∥2l∥3l,两条直线与这三条平行线分别交于点A、B、C和D、E、F.已知32ABBC=,则DEDF的值为( )A. 32B.23C.25D.35【答案】D 【解析】试题分析:∵1l∥2l∥3l,32ABBC=,∴DEDF=ABAC=332+=35,故选D.考点:平行线分线段成比例.12. 如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD最大面积是( )A. 60 m2B. 63 m2C. 64 m2D. 66 m2【答案】C【解析】试题分析:设BC=xm,表示出AB,矩形面积为ym2,表示出y与x的关系式为y=(16﹣x)x=﹣x2+16x=﹣(x ﹣8)2+64,,利用二次函数性质即可求出求当x=8m时,y max=64m2,即所围成矩形ABCD的最大面积是64m2.故答案选C.考点:二次函数的应用.二、填空题:13. 分解因式:x3y﹣2x2y+xy=______.【答案】xy(x﹣1)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=xy(x2-2x+1)=xy(x-1)2.故答案为:xy(x-1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 14. 函数y=12-x x 的自变量x 的取值范围是_____. 【答案】x≤12且x≠0 【解析】【详解】根据题意得x≠0且1﹣2x≥0,所以12x ≤且0x ≠. 故答案为12x ≤且0x ≠. 15. 化简221(1)11x x -÷+-的结果是 . 【答案】(x-1)2.【解析】试题解析:原式=11x x -+•(x+1)(x-1) =(x-1)2.考点:分式的混合运算.16. 某直角三角形三条边的平方和为200,则这个直角三角形的斜边长为 .【答案】10.【解析】解:∵一个直角三角形的三边长的平方和为200,∴斜边长的平方为100,则斜边长为:10.故答案为10. 17. 如图,△ABC 中,AB=AC=10,BC=8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长为 .【答案】14.【解析】试题解析:∵AB=AC ,AD 平分∠BAC ,BC=8,∴AD⊥BC,CD=BD=12BC=4,∵点E为AC的中点,∴DE=CE=12AC=5,∴△CDE周长=CD+DE+CE=4+5+5=14.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.18. 已知⊙O的半径为5,AB是⊙O的直径,D是AB延长线上一点,DC是⊙O的切线,C是切点,连接AC,若∠CAB=30°,则BD的长为____.【答案】5.【解析】解:连接OC,BC.∵AB是圆O的直径,DC是圆O的切线,C是切点,∴∠ACB=∠OCD=90°.∵∠CAB=30°,∴∠COD=2∠A=60°,∴OD=2OC=10,∴BD=OD-OB=10-5=5.故答案为5.三、计算题:19. 解方程组:3(1)4(4)0 5(1)3(5)x yy x---=⎧⎨-=+⎩【答案】x=5,y=7.【解析】试题分析:先把组中的方程化简后,再求方程组的解.试题解析:解:原方程化简得:3413 5320x yy x-=-⎧⎨-=⎩①②①+②,得:y=7,把y=7代入①,得:x=5,所以原方程组的解为:57 xy=⎧⎨=⎩.20. 解不等式组2102323x x x +>⎧⎪-+⎨≥⎪⎩. 【答案】﹣0.5<x≤0.【解析】【分析】先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【详解】解:2102323x x x +>⎧⎪⎨-+≥⎪⎩①②由①得:x >﹣0.5,由②得:x ≤0,则不等式组的解集是﹣0.5<x ≤0.【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.四 、解答题:21. 如图,四边形ABCD 中,90,1,3A ABC AD BC ︒∠=∠===,E 是边CD 的中点,连接BE 并延长与AD 的延长线相较于点F .(1)求证:四边形BDFC 平行四边形;(2)若△BCD 是等腰三角形,求四边形BDFC 的面积.【答案】(1)见解析;(2)2或35【解析】【分析】(1)根据平行线的性质和中点的性质证明三角形全等,然后根据对角线互相平分的四边形是平行四边形完成证明;(2)由等腰三角形的性质,分三种情况:①BD=BC,②BD=CD,③BC=CD,分别求四边形的面积.【详解】解:(1)证明:∵∠A=∠ABC=90°∴AF∥BC∴∠CBE=∠DFE,∠BCE=∠FDE∵E是边CD的中点∴CE=DE∴△BCE≌△FDE(AAS)∴BE=EF∴四边形BDFC是平行四边形(2)若△BCD等腰三角形①若BD=BC=3在Rt△ABD中,AB=229122BD AD-=-=∴四边形BDFC的面积为S=22×3=62;②若BC=DC=3过点C作CG⊥AF于G,则四边形AGCB是矩形,所以,AG=BC=3,所以,DG=AG-AD=3-1=2,在Rt△CDG中,由勾股定理得,2222=-=-=CG CD DG325∴四边形BDFC的面积为S=35③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾,此时不成立;综上所述,四边形BDFC的面积是2或35【点睛】本题考查了平行四边形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,(1)确定出全等三角形是解题的关键,(2)难点在于分情况讨论.22. 如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.【答案】(1)详见解析;(2)详见解析;(3)6 5 .【解析】(1)证明:连接CE,如图1所示:∵BC是直径,∴∠BEC=90°,∴CE⊥AB;又∵AC=BC,∴AE=BE.(2)证明:连接OE,如图2所示:∵BE=AE,OB=OC,∴OE是△ABC的中位线,∴OE∥AC,AC=2OE=6.又∵EG⊥AC,∴FE⊥OE,∴FE是⊙O的切线.(3)解:∵EF是⊙O的切线,∴FE2=FC•FB.设FC=x,则有2FB=16,∴FB=8,∴BC=FB﹣FC=8﹣2=6,∴OB=OC=3,即⊙O的半径为3;∴OE=3.∵OE∥AC,∴△FCG∽△FOE,∴CG FCOE FO=,即2323CG=+,解得:CG=65.点睛:本题利用了等腰三角形三线合一定理,三角形中位线的判定,切割线定理,以及勾股定理,还有平行线分线段成比例定理,切线的判定等知识.23. 为了更好的治理西流湖水质,保护环境,市治污公司决定购买10 台污水处理设备.现有A、B 两种型号的设备,其中每台的价格,月处理污水量如下表:A 型B 型价格(万元/台) a b处理污水量(吨/月) 240 200经调查:购买一台A 型设备比购买一台B 型设备多2 万元,购买2 台A 型设备比购买3 台B 型设备少6 万元.(1)求a,b 的值;(2)经预算:市治污公司购买污水处理设备的资金不超过105 万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于2040 吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.【答案】(1)1210ab==⎧⎨⎩;(2)①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台. ;(3)为了节约资金,应选购A型设备1台,B型设备9台.【解析】【分析】(1)根据”购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元”即可列出方程组,继而进行求解;(2)可设购买污水处理设备A型设备x台,B型设备(10-x)台,则有12x+10(10-x)≤105,解之确定x的值,即可确定方案;(3)因为每月要求处理流溪河两岸的污水量不低于2040吨,所以有240x+200(10-x)≥2040,解之即可由x的值确定方案,然后进行比较,作出选择.【详解】(1)根据题意得:2326a bb a-=-=⎧⎨⎩,∴1210ab==⎧⎨⎩;(2)设购买污水处理设备A型设备x台,B型设备(10−x)台,则:12x+10(10−x)⩽105,∴x⩽2.5,∵x取非负整数,∴x=0,1,2,∴有三种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台.(3)由题意:240x+200(10−x)⩾2040,∴x⩾1,又∵x⩽2.5,x取非负整数,∴x为1,2.当x=1时,购买资金为:12×1+10×9=102(万元),当x=2时,购买资金为:12×2+10×8=104(万元),∴为了节约资金,应选购A型设备1台,B型设备9台.【点睛】此题考查一元一次不等式的应用,二元一次方程组的应用,解题关键在于理解题意列出方程.24. 对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.①若其不变长度为零,求b值;②若1≤b≤3,求其不变长度q取值范围;(3) 记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为 .【答案】详见解析.【解析】试题分析:(1)根据定义分别求解即可求得答案;(2)①首先由函数y=2x2﹣bx=x,求得x(2x﹣b﹣1)=0,然后由其不变长度为零,求得答案;②由①,利用1≤b≤3,可求得其不变长度q的取值范围;(3)由记函数y=x2﹣2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,可得函数G的图象关于x=m对称,然后根据定义分别求得函数的不变值,再分类讨论即可求得答案.试题解析:解:(1)∵函数y=x﹣1,令y=x,则x﹣1=x,无解;∴函数y=x﹣1没有不变值;∵y=x-1 =1x,令y=x,则1xx=,解得:x=±1,∴函数1yx=的不变值为±1,q=1﹣(﹣1)=2.∵函数y=x2,令y=x,则x=x2,解得:x1=0,x2=1,∴函数y=x2的不变值为:0或1,q=1﹣0=1;(2)①函数y=2x2﹣bx,令y=x,则x=2x2﹣bx,整理得:x(2x﹣b﹣1)=0.∵q=0,∴x=0且2x﹣b﹣1=0,解得:b=﹣1;②由①知:x(2x﹣b﹣1)=0,∴x=0或2x﹣b﹣1=0,解得:x 1=0,x 2=12b +.∵1≤b ≤3,∴1≤x 2≤2,∴1﹣0≤q ≤2﹣0,∴1≤q ≤2; (3)∵记函数y =x 2﹣2x (x ≥m )的图象为G 1,将G 1沿x =m 翻折后得到的函数图象记为G 2,∴函数G 的图象关于x =m 对称,∴G :y =22)22()(2(2)()m x x x x m m x x m -⎧-≥⎨--<⎩ .∵当x 2﹣2x =x 时,x 3=0,x 4=3; 当(2m ﹣x )2﹣2(2m ﹣x )=x 时,△=1+8m ,当△<0,即m <﹣18时,q =x 4﹣x 3=3;当△≥0,即m ≥﹣18时,x 5x 6 ①当﹣18≤m ≤0时,x 3=0,x 4=3,∴x 6<0,∴x 4﹣x 6>3(不符合题意,舍去); ②∵当x 5=x 4时,m =1,当x 6=x 3时,m =3;当0<m <1时,x 3=0(舍去),x 4=3,此时0<x 5<x 4,x 6<0,q =x 4﹣x 6>3(舍去);当1≤m ≤3时,x 3=0(舍去),x 4=3,此时0<x 5<x 4,x 6>0,q =x 4﹣x 6<3;当m >3时,x 3=0(舍去),x 4=3(舍去),此时x 5>3,x 6<0,q =x 5﹣x 6>3(舍去);综上所述:m 的取值范围为1≤m ≤3或m <﹣18. 点睛:本题属于二次函数的综合题,考查了二次函数、反比例函数、一次函数的性质以及函数的对称性.注意掌握分类讨论思想的应用是解答此题的关键.。
2016年河北省中考数学试卷附详细答案(原版+解析版)
2016年河北省中考数学试卷一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算:﹣(﹣1)=()A.±1 B.﹣2 C.﹣1 D.12.(3分)计算正确的是()A.(﹣5)0=0 B.x2+x3=x5C.(ab2)3=a2b5D.2a2•a﹣1=2a3.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)下列运算结果为x﹣1的是()A.1﹣B.•C.÷D.5.(3分)若k≠0,b<0,则y=kx+b的图象可能是()A.B.C.D.6.(3分)关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形7.(3分)关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点8.(3分)图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④9.(3分)如图为4×4的网格图,A,B,C,D,O均在格点上,点O是()A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心10.(3分)如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC•AH D.AB=AD11.(2分)点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0;乙:a+b>0;丙:|a|<|b|;丁:>0其中正确的是()A.甲乙B.丙丁C.甲丙D.乙丁12.(2分)在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是()A.=﹣5 B.=+5 C.=8x﹣5 D.=8x+513.(2分)如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°14.(2分)a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.有一根为015.(2分)如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.16.(2分)如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上二、填空题(本大题有3小题,共10分.17-18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.(3分)8的立方根是.18.(3分)若mn=m+3,则2mn+3m﹣5mn+10=.19.(4分)如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°﹣7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=°.…若光线从A点出发后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=°.三、解答题(本大题有7个小题,共68分.解答应写出必要的文字说明、证明过程或演算步骤)20.(9分)请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.21.(9分)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.22.(9分)已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.23.(9分)如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?24.(10分)某商店通过调低价格的方式促销n个不同的玩具,调整后的单价y (元)与调整前的单价x(元)满足一次函数关系,如表:第1个第2个第3个第4个…第n个调整前的单价x(元)x1x2=6x3=72x4…x n调整后的单价y(元)y1y2=4y3=59y4…y n已知这个n玩具调整后的单价都大于2元.(1)求y与x的函数关系式,并确定x的取值范围;(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?(3)这n个玩具调整前、后的平均单价分别为,,猜想与的关系式,并写出推导过程.25.(10分)如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在上且不与A点重合,但Q点可与B点重合.发现:的长与的长之和为定值l,求l:思考:点M与AB的最大距离为,此时点P,A间的距离为;点M与AB的最小距离为,此时半圆M的弧与AB所围成的封闭图形面积为;探究:当半圆M与AB相切时,求的长.(注:结果保留π,cos35°=,cos55°=)26.(12分)如图,抛物线L:y=﹣(x﹣t)(x﹣t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线y=(k >0,x>0)于点P,且OA•MP=12,(1)求k值;(2)当t=1时,求AB的长,并求直线MP与L对称轴之间的距离;(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标;(4)设L与双曲线有个交点的横坐标为x0,且满足4≤x0≤6,通过L位置随t变化的过程,直接写出t的取值范围.2016年河北省中考数学试卷参考答案与试题解析一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年河北省中考数学模拟试卷(一)一、选择题:本大题共16题,1-10小题,每小题3分,11-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算4﹣(﹣4)0的结果是()A.0 B.2 C.3 D.42.下列各数中,最小的数是()A.1 B.﹣|﹣2| C.D.2×10﹣103.如图,已知直线a∥b,点A、B、C在直线a上,点D、E、F在直线b上,AB=EF=2,若△CEF 的面积为5,则△ABD的面积为()A.2 B.4 C.5 D.104.下列说法中,不正确的是()A.5是25的算术平方根B.m2n与mn2是同类项C.多项式﹣3a3b+7ab+1的次数是4D.﹣8的立方根为﹣25.已知不等式组,则该不等式组的解集(阴影部分)在数轴上表示正确的是()A.B.C.D.6.如图,已知△ABC与△A′B′C′关于点O成中心对称图形,则下列判断不正确的是()A.∠ABC=∠A′B′C′B.∠BOC=∠B′A′C′C.AB=A′B′D.OA=OA′7.某商品的外包装盒的三视图如图所示,则这个包装盒的侧面积为()A.150πcm2B.200πcm2C.300πcm2D.400πcm28.将抛物线y=x2先向右平移2个单位长度,再向上平移4个单位长度,得到的新的抛物线的解析式为()A.y=(x+2)2+4 B.y=(x+2)2﹣4 C.y=(x﹣2)2+4 D.y=(x﹣2)2﹣49.如图是小鹏自己制作的正方形飞镖盘,并在盘内画了两个小正方形,则小鹏在投掷飞镖时,飞镖扎在阴影部分的概率为()A.B.C.D.10.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC的长为()A.2πB.4πC.5πD.6π11.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N 两点相距100海里,则∠NOF的度数为()A.50°B.60°C.70°D.80°12.如图,已知△ABC在平面直角坐标系中,点A的坐标为(0,3),若以点B为位似中心,在平面直角坐标系内画出△A′BC′,使得△A′BC′与△ABC位似,且相似比为2:1,则点C′的坐标为()A.(0,0) B.(0,1) C.(1,﹣1)D.(1,0)13.若关于x的一元二次方程kx2﹣4x+2=0有实数根,则k的非负整数值为()A.1 B.0,1 C.1,2 D.0,1,214.如图,在△ABC中,∠ABC>90°,∠C=30°,BC=12,P是BC上的一个动点,过点P作PD⊥AC 于点D,设CP=x,△CDP的面积为y,则y与x之间的函数图象大致为()A.B.C.D.15.张萌和小平两人打算各用一张正方形的纸片ABCD折出一个等边三角形,两人作法如下:张萌:如图1,将纸片对折得到折痕EF,沿点B翻折纸片,使点A落在EF上的点M处,连接CM,△BCM 即为所求;小平:如图2,将纸片对折得到折痕EF,沿点B翻折纸片,使点C落在EF上的点M处,连接BM,△BCM即为所求,对于两人的作法,下列判断正确的是()A.小平的作法正确,张萌的作法不正确B.两人的作法都不正确C.张萌的作法正确,小平的作法不正确D.两人的作法都正确16.如图,四边形OABC是菱形,对角线OB在x轴负半轴上,位于第二象限的点A和第三象限的点C分别在双曲线y=和y=的一支上,分别过点A、C作y轴的垂线,垂足分别为E和F.下列结论:①|k1|=|k2|;②AE=CF;③若四边形OABC是正方形,则∠EAO=45°.其中正确的有()A.0个B.1个C.2个D.3个二、填空题:本大题共4个小题,每小题3分,共12分,把答案写在题中横线上.17.分解因式:x3﹣2x2y+xy2=.18.若x=﹣2,则代数式x2+1的值为.19.如图,鹏鹏从点P出发,沿直线前进10米后向右转α,接着沿直线前进10米,再向右转α,…,照这样走下去,他第一次回到出发地点P时,一共走了100米,则α的度数为.20.如图,在矩形ABCD中,AD=4,AB=2,连接其对边中点,得到四个矩形,顺次连接AF、FG、AE三边的中点,得到三角形①;连接矩形GMCH对边的中点,又得到四个矩形,顺次连接GQ、QP、GN三边的中点,得到三角形②;…;如此操作下去,得到三角形,则三角形的面积为.三、解答题:本大题共6个小题,共66分,解答应写出文字说明、证明过程或演算步骤.21.请你根据王老师所给的内容,完成下列各小题.(1)如果x=﹣5,2◎4=﹣18,求y的值;(2)若1◎1=8,4◎2=20,求x、y的值.22.如图,已知AD∥BC,按要求完成下列各小题(保留作图痕迹,不要求写作法).(1)用直尺和圆规作出∠BAD的平分线AP,交BC于点P.(2)在(1)的基础上,若∠APB=55°,求∠B的度数.(3)在(1)的基础上,E是AP的中点,连接BE并延长,交AD于点F,连接PF.求证:四边形ABPF是菱形.23.如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.24.为普及消防安全知识,预防和减少各类火灾事故的发生,2015年11月,河北内丘中学邀请邢台市安全防火中心的相关人员,为全校教师举行了一场以“珍爱生命,远离火灾”为主题的消防安全知识讲座.在该知识讲座结束后,王老师组织了一场消防安全知识竞赛活动,其中九年级有七个班参赛.在竞赛结束后,王老师对九年级的获奖人数进行统计,得到每班平均有10人获奖,王老师将每班获奖人数绘制成如图所示的不完整的折线统计图.(1)请将折线统计图补充完整,并直接写出九年级获奖人数最多的班级是班;(2)求九年级七个班的获奖人数的这组数据的中位数;(3)若八年级参赛的总人数比九年级的多50名,获奖总人数比九年级多10名,但八年级和九年级获奖人数的百分比相同,求八年级参加竞赛的总人数.25.2015年全球葵花籽产量约为4200万吨,比2014年上涨2.1%,某企业加工并销售葵花籽,假设销售量与加工量相等,在图中,线段AB、折线CDB分别表示葵花籽每千克的加工成本y1(元)、销售价y2(元)与产量x(kg)之间的函数关系;(1)请你解释图中点B的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数解析式;(3)当0<x≤90时,求该葵花籽的产量为多少时,该企业获得的利润最大?最大利润是多少?26.四边形ABCD是⊙O的内接正方形,AD=8,EB、EC是⊙O的两条,切点分别为B、C,P是边AB上的动点,连接DP.(1)如图1,当点P与点B重合时,连接OC.①求∠E的度数;②求CE的长度;(2)如图2,当点P在AB上,且AP<AB时,过点P作FP⊥DP于点P,交BE于点F,连接DF.①试判断DP与FP之间的数量关系,并说明理由;②若,求DP的长度.2016年河北省中考数学模拟试卷(一)参考答案与试题解析一、选择题:本大题共16题,1-10小题,每小题3分,11-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算4﹣(﹣4)0的结果是()A.0 B.2 C.3 D.4【考点】零指数幂.【分析】根据非零的零次幂等于1,可得答案.【解答】解:原式=4﹣1=3,故选:C.【点评】本题考查了零指数幂,利用非零的零次幂等于1得出(﹣4)0=1是解题关键.2.下列各数中,最小的数是()A.1 B.﹣|﹣2| C.D.2×10﹣10【考点】实数大小比较.【分析】根据绝对值、算术平方根、负整数指数幂的性质判断各数的符号,根据正实数大于一切负实数解答即可.【解答】解:∵1、、2×10﹣10都是正数,﹣|﹣2|是负数,∴最小的数是﹣|﹣2|.故选:B.【点评】本题考查的是实数的大小比较,任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.3.如图,已知直线a∥b,点A、B、C在直线a上,点D、E、F在直线b上,AB=EF=2,若△CEF 的面积为5,则△ABD的面积为()A.2 B.4 C.5 D.10【考点】平行线之间的距离;三角形的面积.【分析】△CEF与△ABD是等底等高的两个三角形,它们的面积相等.【解答】解:∵直线a∥b,点A、B、C在直线a上,∴点D到直线a的距离与点C到直线B的距离相等.又∵AB=EF=2,∴△CEF与△ABD是等底等高的两个三角形,∴S△ABD=S△CEF=5,故选:C.【点评】本题考查了平行线间的距离和三角形的面积.注意:平行线间的距离处处相等.4.下列说法中,不正确的是()A.5是25的算术平方根B.m2n与mn2是同类项C.多项式﹣3a3b+7ab+1的次数是4D.﹣8的立方根为﹣2【考点】算术平方根;立方根;同类项;多项式.【分析】分别利用算术平方根以及多项式的次数、同类项的定义、立方根的定义分别分析得出答案.【解答】解:A、5是25的算术平方根,正确,不合题意;B、m2n与mn2不是同类项,故此选项错误,符合题意;C、多项式﹣3a3b+7ab+1的次数是4,正确,不合题意;D、﹣8的立方根为﹣2,正确,不合题意.故选:B.【点评】此题主要考查了算术平方根以及多项式的次数、同类项的定义、立方根的定义等知识,正确掌握相关定义是解题关键.5.已知不等式组,则该不等式组的解集(阴影部分)在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:由x+2>1,得x>﹣1,由x+3≤5,得x≤2,不等式组的解集为﹣1<x≤2,故选:D.【点评】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.如图,已知△ABC与△A′B′C′关于点O成中心对称图形,则下列判断不正确的是()A.∠ABC=∠A′B′C′B.∠BOC=∠B′A′C′C.AB=A′B′D.OA=OA′【考点】中心对称.【分析】根据中心对称的定义:把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,来求解可得即可.【解答】解:因为△ABC与△A′B′C′关于点O成中心对称图形,所以可得∠ABC=∠A′B′C′,AB=A′B′,OA=OA',故选B.【点评】本题主要考查了中心对称的定义,解题的关键是熟记中心对称的定义.也可用三角形全等来求解.7.某商品的外包装盒的三视图如图所示,则这个包装盒的侧面积为()A.150πcm2B.200πcm2C.300πcm2D.400πcm2【考点】由三视图判断几何体.【分析】首先根据商品的外包装盒的三视图确定几何体的形状是圆柱,然后根据圆柱的侧面积=底面周长×高,求出这个包装盒的侧面积即可.【解答】解:根据图示,可得商品的外包装盒是底面直径是10cm,高是15cm的圆柱,则这个包装盒的侧面积为:10π×15=150π(cm2);故选:A.【点评】此题主要考查了由三视图判断几何体,关键是分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.8.将抛物线y=x2先向右平移2个单位长度,再向上平移4个单位长度,得到的新的抛物线的解析式为()A.y=(x+2)2+4 B.y=(x+2)2﹣4 C.y=(x﹣2)2+4 D.y=(x﹣2)2﹣4【考点】二次函数图象与几何变换.【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.【解答】解:抛物线y=x2先向右平移2个单位长度,得:y=(x﹣2)2;再向上平移4个单位长度,得:y=(x﹣2)2+4.故选C.【点评】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.9.如图是小鹏自己制作的正方形飞镖盘,并在盘内画了两个小正方形,则小鹏在投掷飞镖时,飞镖扎在阴影部分的概率为()A.B.C.D.【考点】几何概率.【分析】先求出阴影部分的面积占整个大正方形面积的,再根据概率公式即可得出答案.【解答】解:∵阴影部分的面积占总面积的,∴飞镖落在阴影部分的概率为;故选A.【点评】此题考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比;关键是求出阴影部分的面积.10.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC的长为()A.2πB.4πC.5πD.6π【考点】弧长的计算;圆内接四边形的性质.【分析】连接OA、OC,然后根据圆周角定理求得∠AOC的度数,最后根据弧长公式求解.【解答】解:连接OA、OC,∵∠ADC=60°,∴∠AOC=2∠ADC=120°,则劣弧AC的长为:=4π.故选:B.【点评】本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式l=.11.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N 两点相距100海里,则∠NOF的度数为()A.50°B.60°C.70°D.80°【考点】勾股定理的逆定理;方向角.【专题】应用题.【分析】求出OM2+ON2=MN2,根据勾股定理的逆定理得出∠MON=90°,根据平角定义求出即可.【解答】解:∵OM=60海里,ON=80海里,MN=100海里,∴OM2+ON2=MN2,∴∠MON=90°,∵∠EOM=20°,∴∠NOF=180°﹣20°﹣90°=70°,故选C.【点评】本题考查了勾股定理的逆定理的应用,能根据勾股定理的逆定理求出∠MON=90°是解此题的关键.12.如图,已知△ABC在平面直角坐标系中,点A的坐标为(0,3),若以点B为位似中心,在平面直角坐标系内画出△A′BC′,使得△A′BC′与△ABC位似,且相似比为2:1,则点C′的坐标为()A.(0,0) B.(0,1) C.(1,﹣1)D.(1,0)【考点】位似变换;坐标与图形性质.【分析】利用位似图形的性质结合位似比得出△BA′C′,进而得出C′点坐标.【解答】解:如图所示:△A′BC′与△ABC位似,相似比为2:1,点C′的坐标为:(1,0).故选:D.【点评】此题主要考查了位似变换以及坐标与图形的性质,正确得出对应点位置是解题关键.13.若关于x的一元二次方程kx2﹣4x+2=0有实数根,则k的非负整数值为()A.1 B.0,1 C.1,2 D.0,1,2【考点】根的判别式;一元二次方程的定义.【分析】根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集得到k的范围,即可确定出k的非负整数值.【解答】解:根据题意得:△=16﹣8k≥0,且k≠0,解得:k≤2且k≠0,则k的非负整数值为1或2.故选:C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.14.如图,在△ABC中,∠ABC>90°,∠C=30°,BC=12,P是BC上的一个动点,过点P作PD⊥AC 于点D,设CP=x,△CDP的面积为y,则y与x之间的函数图象大致为()A.B.C.D.【考点】动点问题的函数图象.【分析】由含30°角的直角三角形的性质得出PD=PC=x,求出CD=PD=x,由三角形的面积公式得出y=x2(0<x≤12),由二次函数的图象和自变量的取值范围即可得出结果.【解答】解:∵PD⊥AC,∴∠CDP=90°,∵∠C=30°,∴PD=PC=x,∴CD=PD=x,∴△CDP的面积y=PD•CD=×x×x=x2,x的取值范围为:0<x≤12,即y=x2(0<x≤12),∵>0,∴二次函数图形的开口向上,顶点为(0,0),图象在第一象限.故选:A.【点评】本题考查动点问题的函数图象、含30°角的直角三角形的性质、三角形面积的计算、二次函数的图象;求出y是x的二次函数是解决问题的突破口.15.张萌和小平两人打算各用一张正方形的纸片ABCD折出一个等边三角形,两人作法如下:张萌:如图1,将纸片对折得到折痕EF,沿点B翻折纸片,使点A落在EF上的点M处,连接CM,△BCM 即为所求;小平:如图2,将纸片对折得到折痕EF,沿点B翻折纸片,使点C落在EF上的点M处,连接BM,△BCM即为所求,对于两人的作法,下列判断正确的是()A.小平的作法正确,张萌的作法不正确B.两人的作法都不正确C.张萌的作法正确,小平的作法不正确D.两人的作法都正确【考点】翻折变换(折叠问题).【分析】在图1中,由BM=2BF推出∠BMF=30°,所以∠MBF=60°,再根据等边三角形的判定方法即可证明.在图2中,证明方法类似.【解答】解:图1中,∵四边形ABCD是正方形,∴AB=AD=BC∵AE=ED=BF=FC,AB=BM,∴BM=2BF,∵∠MFB=90°,∴∠BMF=30°,∴∠MBF=90°﹣∠BMF=60°,∵MB=MC,∴△MBC是等边三角形,∴张萌的作法正确.在图2中,∵BM=BC=2BF,∠MFB=90°,∴∠BMF=30°,∴∠MBF=90°﹣∠BMF=60°,∵MB=MC∴△MBC是等边三角形,∴小平的作法正确.故选D.【点评】本题考查正方形的性质、翻折不变性、直角三角形的性质,解题的关键是在一个直角三角形中如果斜边是直角边的两倍那么这条直角边所对的锐角是30度.16.如图,四边形OABC是菱形,对角线OB在x轴负半轴上,位于第二象限的点A和第三象限的点C分别在双曲线y=和y=的一支上,分别过点A、C作y轴的垂线,垂足分别为E和F.下列结论:①|k1|=|k2|;②AE=CF;③若四边形OABC是正方形,则∠EAO=45°.其中正确的有()A.0个B.1个C.2个D.3个【考点】反比例函数综合题.【分析】连接AC交OB于D,由菱形的性质得出AC⊥OB,AD=CD,BD=OD,得出△AOD的面积=△COD的面积,由三角形的面积与k的关系即可得出①正确;证出四边形ADOE是矩形,得出AE=DO,同理:CF=DO,得出AE=CF,②正确;若四边形OABC是正方形,则∠AOB=45°,得出∠AOE=45°,求出∠EAO=45°,③正确;即可得出结论.【解答】解:连接AC交OB于D,如图所示:∵四边形OABC是菱形,∴AC⊥OB,AD=CD,BD=OD,∴△AOD的面积=△COD的面积,∵△AOD的面积=|k1|,△COD的面积=|k2|,∴|k1|=|k2|,①正确;∵AE⊥y轴,AC⊥BD,∴∠AEO=∠ADO=90°,∵∠DOE=90°,∴四边形ADOE是矩形,∴AE=DO,同理:CF=DO,∴AE=CF,②正确;若四边形OABC是正方形,则∠AOB=45°,∴∠AOE=90°﹣45°=45°,∵∠AEO=90°,∴∠EAO=45°,③正确;正确的有3个,故选:D.【点评】本题是反比例函数的综合题,考查了反比例函数的图象、反比例函数k的几何意义、菱形的性质、矩形的判定与性质以及正方形的性质;熟练掌握菱形的对角线互相垂直平分的性质是解题的关键.二、填空题:本大题共4个小题,每小题3分,共12分,把答案写在题中横线上.17.分解因式:x3﹣2x2y+xy2=x(x﹣y)2.【考点】提公因式法与公式法的综合运用.【专题】常规题型.【分析】先提取公因式x,再对余下的多项式利用完全平方公式继续分解.【解答】解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.故答案为:x(x﹣y)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.18.若x=﹣2,则代数式x2+1的值为10﹣4.【考点】二次根式的化简求值.【分析】把x的值代入所求的代数式进行化简求值即可.【解答】解:把x=﹣2代入x2+1,得(﹣2)2+1=()2﹣4+4+1=10﹣4.故答案是:10﹣4.【点评】本题考查了二次根式的化简求值.解题的关键是数学完全平方差公式.19.如图,鹏鹏从点P出发,沿直线前进10米后向右转α,接着沿直线前进10米,再向右转α,…,照这样走下去,他第一次回到出发地点P时,一共走了100米,则α的度数为36°.【考点】多边形内角与外角.【分析】第一次回到出发点A时,所经过的路线正好构成一个的正多边形,用100÷10=10,求得边数,再根据多边形的外角和为360°,即可求解.【解答】解:∵第一次回到出发点A时,所经过的路线正好构成一个的正多边形,∴正多边形的边数为:100÷10=10,根据多边形的外角和为360°,∴则他每次转动的角度为:360°÷10=36°,故答案为:36°.【点评】本题考查了多边形的内角与外角,解决本题的关键是明确第一次回到出发点A时,所经过的路线正好构成一个正多边形.20.如图,在矩形ABCD中,AD=4,AB=2,连接其对边中点,得到四个矩形,顺次连接AF、FG、AE三边的中点,得到三角形①;连接矩形GMCH对边的中点,又得到四个矩形,顺次连接GQ、QP、GN三边的中点,得到三角形②;…;如此操作下去,得到三角形,则三角形的面积为.【考点】矩形的性质.【专题】规律型.【分析】根据矩形的性质和三角形的面积公式求出三角形①、②、③的面积,得出规律写出第n 个三角形的面积.【解答】解:∵矩形ABCD的长AD=4,宽AB=2,∴AF=2,AE=1,=×2×=;则S三角形①S=×1×=;三角形②=××=;S三角形③…=,∴S三角形n故答案为:.【点评】本题考查的是矩形的性质,掌握三角形的面积公式、通过计算找出规律是解题的关键.三、解答题:本大题共6个小题,共66分,解答应写出文字说明、证明过程或演算步骤.21.请你根据王老师所给的内容,完成下列各小题.(1)如果x=﹣5,2◎4=﹣18,求y的值;(2)若1◎1=8,4◎2=20,求x、y的值.【考点】解二元一次方程组;解一元一次方程.【专题】新定义;一次方程(组)及应用.【分析】(1)已知等式根据题中的新定义化简,将x的值代入即可求出y的值;(2)已知等式利用题中的新定义化简组成方程组,求出方程组的解即可得到x与y的值.【解答】解:(1)根据题意得:2◎4=2x+4y=﹣18,把x=﹣5代入得:﹣10+4y=﹣18,解得:y=﹣2;(2)根据题意得:,②﹣①得:x=2,把x=2代入得:y=6.【点评】此题考查了解二元一次方程组,弄清题中的新定义是解本题的关键.22.如图,已知AD∥BC,按要求完成下列各小题(保留作图痕迹,不要求写作法).(1)用直尺和圆规作出∠BAD的平分线AP,交BC于点P.(2)在(1)的基础上,若∠APB=55°,求∠B的度数.(3)在(1)的基础上,E是AP的中点,连接BE并延长,交AD于点F,连接PF.求证:四边形ABPF是菱形.【考点】作图—复杂作图;菱形的判定.【专题】作图题;证明题.【分析】(1)利用基本作图(作已知角的平分线)作AP平分∠DAB;(2)先利用平行线的性质得∠DAP=∠APB=55°,再利用角平分线定义得∠BAP=∠DAP=55°,然后根据三角形内角和计算∠ABP的度数;(2)先由∠BAP=∠APB得到BA=BP,再判断△ABF为等腰三角形得到AB=AF,所以AF=BP,则可判断四边形ABPF是平行四边形,然后加上AB=BP可判断四边形ABPF是菱形.【解答】(1)解:如图,AP为所作;(2)解:∵AD∥BC,∴∠DAP=∠APB=55°,∵AP平分∠DAB,∴∠BAP=∠DAP=55°,∴∠ABP=180°﹣55°﹣55°=70°;(2)证明:∵∠BAP=∠APB,∴BA=BP,∵BE=FE,AE平分∠BAF,∴△ABF为等腰三角形,∴AB=AF,∴AF=BP,而AF∥BP,∴四边形ABPF是平行四边形,∵AB=BP,∴四边形ABPF是菱形.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了菱形的判定.23.如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.【考点】一次函数图象与几何变换.【分析】(1)根据平移的性质得到点C的坐标;把点B、C的坐标代入直线方程y=kx+b(k≠0)来求该直线方程;(2)根据平移的性质得到点D的坐标,然后将其代入(1)中的函数解析式进行验证即可;(3)根据点B的坐标求得直线l2的解析式,据此求得相关线段的长度,并利用三角形的面积公式进行解答.【解答】解:(1)∵B(﹣3,3),将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,∴﹣3+1=﹣2,3﹣2=1,∴C的坐标为(﹣2,1),设直线l1的解析式为y=kx+c,∵点B、C在直线l1上,∴代入得:解得:k=﹣2,c=﹣3,∴直线l1的解析式为y=﹣2x﹣3;(2)∵将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,C(﹣2,1),∴﹣2﹣3=﹣5,1+6=7,∴D的坐标为(﹣5,7),代入y=﹣2x﹣3时,左边=右边,即点D在直线l1上;(3)把B的坐标代入y=x+b得:3=﹣3+b,解得:b=6,∴y=x+6,∴E的坐标为(0,6),∵直线y=﹣2x﹣3与y轴交于A点,∴A的坐标为(0,﹣3),∴AE=6+3=9,∵B(﹣3,3),∴△ABE的面积为×9×|﹣3|=13.5.【点评】本题考查了用待定系数法求一次函数的解析式,平移的性质,一次函数图象上点的坐标特征,三角形的面积的应用,能理解每个点的求法是解此题的关键.24.为普及消防安全知识,预防和减少各类火灾事故的发生,2015年11月,河北内丘中学邀请邢台市安全防火中心的相关人员,为全校教师举行了一场以“珍爱生命,远离火灾”为主题的消防安全知识讲座.在该知识讲座结束后,王老师组织了一场消防安全知识竞赛活动,其中九年级有七个班参赛.在竞赛结束后,王老师对九年级的获奖人数进行统计,得到每班平均有10人获奖,王老师将每班获奖人数绘制成如图所示的不完整的折线统计图.(1)请将折线统计图补充完整,并直接写出九年级获奖人数最多的班级是(3)班;(2)求九年级七个班的获奖人数的这组数据的中位数;(3)若八年级参赛的总人数比九年级的多50名,获奖总人数比九年级多10名,但八年级和九年级获奖人数的百分比相同,求八年级参加竞赛的总人数.【考点】折线统计图;中位数.【分析】(1)先求出九年级有七个班的获奖人数,减去给出的6个班的获奖人数,可得(3)班获奖人数,依此将折线统计图补充完整,再比较大小可得九年级获奖人数最多的班级;(2)根据中位数的定义求出九年级七个班的获奖人数的这组数据的中位数;(3)设八年级参加竞赛的总人数为x人,根据等量关系:八年级和九年级获奖人数的百分比相同,列出方程求解即可.【解答】解:(1)10×8﹣(8+11+6+9+12+10)=80﹣66=14(人),如图所示:故九年级获奖人数最多的班级是(3)班;故答案为:(3)(2)从小到大排列为6,8,9,10,11,12,14,正中间的数是10,九年级七个班的获奖人数的这组数据的中位数是10;(3)设八年级参加竞赛的总人数为x人,依题意有=,解得x=400,经检验x=400是原分式方程的解.故八年级参加竞赛的总人数为400人.【点评】本题考查的折线统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,用到的知识点是中位数的定义.25.2015年全球葵花籽产量约为4200万吨,比2014年上涨2.1%,某企业加工并销售葵花籽,假设销售量与加工量相等,在图中,线段AB、折线CDB分别表示葵花籽每千克的加工成本y1(元)、销售价y2(元)与产量x(kg)之间的函数关系;(1)请你解释图中点B的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数解析式;(3)当0<x≤90时,求该葵花籽的产量为多少时,该企业获得的利润最大?最大利润是多少?。