高中数学常用逻辑用语知识点
高中数学 第一章 常用逻辑用语 1.3 全称量词与存在量词 1.3.1 全称量词与全称命题 1.3.
2.特称命题 “有些”“至少有一个”“有一个”“存在”等都有表示个别或一部分 的含义,这样的词叫作存在量词,含有存在量词的命题,叫作特称命 题. 【做一做2】 下列命题不是特称命题的是( ) A.有些实数没有平方根 B.能被5整除的数也能被2整除 C.存在x∈{x|x>3},使x2-5x+6<0 D.有一个m,使2-m与|m|-3异号 答案:B
题型一 题型二 题型三 题型四
解:(1)不等式m+f(x)>0可化为m>-f(x),即m>-x2+2x-5=-(x-1)2-4. 要使m>-(x-1)2-4对于任意x∈R恒成立,只需m>-4即可. 故存在实数m,使不等式m+f(x)>0对于任意x∈R恒成立,此时,只 需m>-4. (2)不等式m-f(x)>0可化为m>f(x),若存在一个实数x,使不等式 m>f(x)成立,只需m>f(x)min.
【做一做 3】 给出下列命题:
①任意 x∈R, ������是无理数; ②任意������, ������∈R,若 xy≠0,则 x,y 中至少
有一个不为 0;③存在实数既能被 3 整除又能被 19 整除.
其中真命题为
.(填序号)
解析:①是假命题,例如 4是有理数;②是假命题,若 xy≠0,则 x,y
题型一 题型二 题型三 题型四
题型三 利用全称命题、特称命题求参数范围
【例3】 已知函数f(x)=x2-2x+5. (1)是否存在实数m,使不等式m+f(x)>0对于任意x∈R恒成立?并 说明理由. (2)若存在一个实数x,使不等式m-f(x)>0成立,求实数m的取值范围. 分析:可考虑用分离参数法,转化为m>-f(x)对任意x∈R恒成立和 存在一个实数x,使m>f(x)成立.
数学高中专题 常用逻辑用语
数学高中专题常用逻辑用语1、逻辑联结词:⑴且(and) :命题形式p q ∧;⑵或(or):命题形式p q ∨;⑶非(not):命题形式p ⌝.2、⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;全称命题p:)(,xpMx∈∀;全称命题p的否定⌝p:)(,xpMx⌝∈∃。
⑵存在量词——“存在一个”、“至少有一个”等,用“∃”表示;特称命题p:)(,xpMx∈∃;特称命题p的否定⌝p:)(,xpMx⌝∈∀;高考理科数学新课标对常用逻辑用语的要求:3、简单的逻辑连接词了解逻辑连接词或,且,非的含义4、全称量词与存在量词(1)理解全称量词与存在量词的意义(2)能正确的对含有一个量词的命题进行否定高考对常用逻辑用语主要考查逻辑联结词的应用、特(全)称命题的否定、充要条件的判断等.高考中集合属于基础题,多与不等式相结合考查集合的交、并、补运算及集合间的关系.近五年除了2012年及2016年其余都以小题形式出现,试题难度较小。
题型1: 充分条件、必要条件、充要条件的判断与证明。
此类题目出现的频率较高,多与不等式,三角,立体几何等知识点交汇出现。
1.(2015重庆理4)“1x >”是“12og ()l 20x +<”的( ).A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件5.(2015北京理4)设α,β是两个不同的平面,m 是直线且m α⊂,“//m β”是“//αβ”的( ). A. 充分而不必要条件 B.必要而不充分条件 C. 充分必要条件 D.既不充分也不必要条件 变式练习1.(2015天津理4,文4)设x ∈R ,则“21x -< ”是“220x x +->”的( ). A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件2.(2015安徽理3)设:1<<2p x ,:21xq >,则p 是q 成立的( ).A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 3.(2015陕西理6,文6)“sin cos αα=”是“cos 20α=”的( ). A .充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要 4.(2015湖北理5)设12,,,n a a a ∈R ,3n …. 若p :12,,,n a a a 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++ ,则( ). A. p 是q 的充分条件,但不是q 的必要条件 B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件题型2:判断含逻辑联结词的命题的真假1.(2015浙江理6)设,A B 是有限集,定义(,)()()d A B card A B card A B =- ,其中()card A 表示有限集A 中的元素个数,命题①:对任意有限集,A B ,“A B ≠”是“ (,)0d A B >”的充分必要条件; 命题②:对任意有限集,,A B C ,(,)(,)(,)d A C d A B d B C +…. 下列判断正确的是( ).A. 命题①和命题②都成立B. 命题①和命题②都不成立C. 命题①成立,命题②不成立D. 命题①不成立,命题②成立题型3: 全(特)称命题的否定1.(2015全国I 理3)设命题:p n ∃∈N ,22n n >,则p ⌝为( ). A .n ∀∈N ,22n n > B .n ∃∈N ,22n n … C .n ∀∈N ,22n n … D .n ∃∈N ,22n n = 变式练习1.(2015浙江理4)命题“**,()f n n ∀∈∈N N 且()f n n …的否定形式是( ). A. **,()f n n ∀∈∈N N 且()f n n > B. **,()f n n ∀∈∈N N 或()f n n > C. **00,()f n n ∃∈∈N N 且00()f n n > D. **00,()f n n ∃∈∈N N 或00()f n n >题型 4 四种命题及关系1(2015山东文5)设m ∈N ,命题“若0m >,则方程20x x m +-=有实根”的逆否命题 是( ).A. 若方程20x x m +-=有实根,则0m > B. 若方程20x x m +-=有实根,则0m … C. 若方程20x x m +-=没有实根,则0m > D. 若方程20x x m +-=没有实根,则0m …题型5:充分条件、必要条件、充要条件的判断与证明1.(2015湖南文3) 设x ∈R ,则“1x >”是“21x >”的( ). A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件2.(2015四川文4) 设,a b 为正实数,则“1a b >>”是“22log log 0a b >>”的( ). A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 变式练习1.(2015浙江文3)设a ,b 是实数,则“0a b +>”是“0ab >”的( ). A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件2.(2015重庆文2)“1x =”是“2210x x -+=”的( ). A. 充要条件 B.充分不必要条件 C. 必要不充分条件 D.既不充分也不必要条件3.(2015安徽文3)设p :3x <,q :13x -<<,则p 是q 成立的( ). A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件4.(2015北京文6)设a ,b 是非零向量,“a b =a b ⋅”是“//a b ”的( ). A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 D .p 既不是q 的充分条件,也不是q 的必要条件1.命题“∀x ∈R ,x 3﹣x 2+1≤0”的否定是( )A .不存在x ∈R ,x 3﹣x 2+1≤0B .∃x 0∈R ,x﹣x+1≥0C .∃x 0∈R ,x﹣x+1>0D .∀x ∈R ,x 3﹣x 2+1>02..下列叙述中正确的是( )A .若,,a b c R ∈,则“20ax bx c ++≥”的充分条件是“240b ac -≤” B .若,,a b c R ∈,则“22ab cb >”的充要条件是“a c >”C .命题“对任意x R ∈,有20x ≥”的否定是“存在x R ∈,有20x ≥” D .l 是一条直线,,αβ是两个平面,若,l l αβ⊥⊥,则//αβ 3.下列四个结论:①若p q ∧是真命题,则p ⌝可能是真命题;②命题“2000,10x R x x ∃∈--<”的否定是“2,10x R x x ∃∈--≥”; ③“5a >且5b >-”是“0a b +>”的充要条件; ④当0a <时,幂函数a y x =在区间()0+∞,上单调递减. 其中正确结论的个数是( )A 、0个B 、 1个C 、2个D 、3个4.已知a ,b 都是实数,那么“>”是“lna >lnb”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 以下说法错误的是( )A .命题“若“x 2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x 2﹣3x+2≠0”B .“x=2”是“x 2﹣3x+2=0”的充分不必要条件C .若命题p :存在x 0∈R ,使得x 02﹣x 0+1<0,则¬p :对任意x ∈R ,都有x 2﹣x+1≥0D .若p 且q 为假命题,则p ,q 均为假命题 5.设a R ∈,则1a >是11a< 的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 6.若“x ∈[2,5]或x ∈{x|x <1或x >4}”是假命题,则x 的取值范围是 . 7.命题“∀x ∈R ,x 2≥0”的否定是 .8.若命题“∃x ∈R ,使x 2+(a ﹣1)x+1<0”是假命题,则实数a 的取值范围为 . 9.命题“若x 2﹣2x ﹣3>0,则x <﹣1或x >3”的逆否命题是 .10.若“∀x ∈[0,],tanx <m”是假命题,则实数m 的最大值为 .11.若命题“存在x ∈R ,使得2x 2﹣3ax+9<0成立”为假命题,则实数a 的取值范围是 .12.设x ∈R ,则“|x ﹣2|<1”是“x 2+x ﹣2>0”的 条件.(填充分不必要、必要不充分、充要条件、既不充分也不必要) 13.有下列命题:①双曲线与椭圆有相同的焦点;②“”是“2x 2﹣5x ﹣3<0”必要不充分条件;③“若xy=0,则x 、y 中至少有一个为0”的否命题是真命题.;④若p 是q 的充分条件,r 是q 的必要条件,r 是s 的充要条件,则s 是p 的必要条件; 其中是真命题的有: .(把你认为正确命题的序号都填上)14.已知命题p :x≤1,命题q :≥1,则命题p 是命题q 的 条件.15.(2015福建理7)若,l m 是两条不同的直线,m 垂直于平面α ,则“l m ⊥ ”是“//l α”的 ( B ). A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 16.(2015福建文12)“对任意π0,2x ⎛⎫∈ ⎪⎝⎭,sin cos k x x x <”是“1k <”的( ). A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件17.(2015湖北文5) 1l ,2l 表示空间中的两条直线,若p :1l ,2l 是异面直线,q :1l ,2l 不相交,则( ).A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件。
高中数学常用逻辑用语知识点
高中数学常用逻辑用语知识点一般地,我们把用语言、符号或式子表达的,可以判断真假的语句叫做命题.(1)命题由题设和结论两部分构成.命题通常用小写英文字母表示,如P. q, r, m, n 等.(2)命题有真假之分,正确的命题叫做真命题,错误的命题叫做假命题. 数学中的定义、公理、定理等都是真命题(3)命题FT广的真假判定方式:(D若要判断命题广是一个真命题,需要严格的逻辑推理;有时在推导时加上语气词“一定”能帮助判断。
如:P-定推出J②若要判断命题"Tq”是一个假命题,只需要找到一个反例即可.注意:“P不一定等于3”不能判定真假,它不是命题.2.逻辑联结词:“或”且”非”这些词叫做逻辑联结词.(1)不含逻辑联结词的命题叫简单命题,由简单命题与逻辑联结词构成的命题叫复合命题•(2)复合命题的构成形式:①P或q;②P且q;③非P (即命题P的否定)・(3)复合命题的真假判断(利用真值表):①当p、q同时为假时,k或q”为假,其它情况时为真,可简称为J 真必真”;②当p、q同时为真时,L且Cr为真,其它情况时为假,可简称为U- 假必假” O③“非P W与P的真假相反.注意:(D逻辑连结词“或”的理解是难点,“或”有三层含义,以L或q” 为例:一是P成立且q不成立,二是P不成立但q成立,三是P成立且q也成立。
可以类比于集合中叭"或"・(2)“或”、“且”联结的命题的否定形式:U P或q”的否定是F且7” ;U P且q M的否定是IP或詔'・(3)对命题的否定只是否定命题的结论;否命题,既否定题设,又否定结论。
知识点二:种命题1.种命题的形式:用P和q分别表示原命题的条件和结论,用¥和7分别表示P和q的否定,则四种命题的形式为:原命题:若P则q;逆命题:若q则P;否命题:若「P则7;逆否命题:若7则∙Ψ∙2.种命题的关系① 原命题Q 逆否命题•它们具有相同的真假性,是命题转化的依据和途径 之—.② 逆命题=否命题,它们之间互为逆否关系,具有相同的真假性,是 命题转化的另一依据和途径•除①、②之外,四种命题中其它两个命题的真伪无必然联系.命题与集合之间可以建立对应关系,在这样的对应下,逻辑联结词和集合 的运算具有一致性,命题的“且"「或”「非”恰好分别对应集合的“交”、 “并”「'补因此,我们就可以从集合的角度进一步认识有关这些逻辑 联结词的规定。
高中数学常用逻辑用语
逆否命题: 若 q 则 p
结论1:要写出一个命题的另外三个命
题关键是分清命题的题设和结论(即
把原命题写成“若p则q”的形式)
注意:三种命题中最难写 的是否命题。 高中数学常用逻辑用语
三、四种命题之间的 关系
原命题
பைடு நூலகம்若p则q
互逆 逆命题
若q则p
互
互
否
否
否命题
逆否命题
若﹁p则﹁q
互逆 若﹁q则﹁p
高中数学常用逻辑用语
x∈N”是“x∈M∩N”的
B
A.充要条件
B必要不充分条件
C充分不必要 D既不充分也不必要
注、集合法
2、a∈R,|a|<3成立的一个必要不充分条件是
A.a<3 B.|a|<2 C.a2<9 D.0<a<2
A
高中数学常用逻辑用语
练习5、
1.已知p是q的必要而不充分条件, 那么┐p是┐q的___充__分_不__必__要_条__件__.
(2)从这个假设出发,经过推理 论证,得出矛盾;
(3) 由矛盾判定假设不正确, 从而肯定命题的高中数结学常用论逻辑正用语 确。
归谬 结论
1.写出命题“当c>0时,若a>b, 则ac>bc“的逆命题,否命题 与逆否命题,并分别判断他们的真假
2.写出命题“若x≠a且x≠b, 则x2-(a+b)x+ab≠0”的否命题
充分非必要条件
2) 若A B且B A,则甲是乙的
必要非充分条件
3)若A B且B A,则甲是乙的
既不充分也不必要条件 4)若A=B ,则甲是高中乙数学的常用逻充辑用分语 且必要条件。
注意点
1.在判断条件时,要特别注意的是它们能否互相 推出,切不可不加判断以单向推出代替双向推出.
专题02 常用逻辑用语(学生版)高中数学53个题型归纳与方法技巧总结篇
【考点预测】一、充分条件、必要条件、充要条件1高中数学53个题型归纳与方法技巧总结篇专题02常用逻辑用语.定义如果命题“若p ,则q ”为真(记作p q ⇒),则p 是q 的充分条件;同时q 是p 的必要条件.2.从逻辑推理关系上看(1)若p q ⇒且q p ,则p 是q 的充分不必要条件;(2)若p q 且q p ⇒,则p 是q 的必要不充分条件;(3)若p q ⇒且q p ⇒,则p 是q 的的充要条件(也说p 和q 等价);(4)若p q 且q p ,则p 不是q 的充分条件,也不是q 的必要条件.对充分和必要条件的理解和判断,要搞清楚其定义的实质:p q ⇒,则p 是q 的充分条件,同时q 是p 的必要条件.所谓“充分”是指只要p 成立,q 就成立;所谓“必要”是指要使得p 成立,必须要q 成立(即如果q 不成立,则p 肯定不成立).二.全称量词与存在童词(1)全称量词与全称量词命题.短语“所有的”、“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.含有全称量词的命题叫做全称量词命题.全称量词命题“对M 中的任意一个x ,有()p x 成立”可用符号简记为“,()x M p x ∀∈”,读作“对任意x 属于M ,有()p x 成立”.(2)存在量词与存在量词命题.短语“存在一个”、“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.含有存在量词的命题叫做存在量词命题.存在量词命题“存在M 中的一个0x ,使0()p x 成立”可用符号简记为“00,()x M P x ∃∈”,读作“存在M 中元素0x ,使0()p x 成立”(存在量词命题也叫存在性命题).三.含有一个量词的命题的否定(1)全称量词命题:,()p x M p x ∀∈的否定p ⌝为0x M ∃∈,0()p x ⌝.(2)存在量词命题00:,()p x M p x ∃∈的否定p ⌝为,()x M p x ∀∈⌝.注:全称、存在量词命题的否定是高考常见考点之一.【方法技巧与总结】1.从集合与集合之间的关系上看设{}{}|(),|()A x p x B x q x ==.(1)若A B ⊆,则p 是q 的充分条件(p q ⇒),q 是p 的必要条件;若A B ,则p 是q 的充分不必要条件,q 是p 的必要不充分条件,即p q ⇒且q p ;注:关于数集间的充分必要条件满足:“小⇒大”.(2)若B A ⊆,则p 是q 的必要条件,q 是p 的充分条件;(3)若A B =,则p 与q 互为充要条件.2.常见的一些词语和它的否定词如下表原词语等于)(=大于)(>小于)(<是都是任意(所有)至多有一个至多有一个否定词语不等于)(≠小于等于)(≤大于等于)(≥不是不都是某个至少有两个一个都没有(1)要判定一个全称量词命题是真命题,必须对限定集合M 中的每一个元素x 证明其成立,要判断全称量词命题为假命题,只要能举出集合M 中的一个0x ,使得其不成立即可,这就是通常所说的举一个反例.(2)要判断一个存在量词命题为真命题,只要在限定集合M 中能找到一个0x 使之成立即可,否则这个存在量词命题就是假命题.【题型归纳目录】题型一:充分条件与必要条件的判断题型二:根据充分必要条件求参数的取值范围题型三:全称量词命题与存在量词命题的真假题型四:全称量词命题与存在量词命题的否定题型五:根据命题的真假求参数的取值范围【典例例题】题型一:充分条件与必要条件的判断例1.(2022·河北·模拟预测)“11a <”是“2,20x x x a ∃∈-+<R ”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件例2.(2022·重庆·三模)已知0a >且1a ≠,“函数()x f x a =为增函数”是“函数()1a g x x -=在()0,∞+上单调递增”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件例3.(2022·湖北·模拟预测)在等比数列{}n a 中,已知20200a >,则“20212024a a >”是“20222023a a >”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件例4.(2022·山东·德州市教育科学研究院二模)已知m ,n 是两条不重合的直线,α是一个平面,n ⊂α,则“m α⊥”是“m n ⊥”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件例5.(2022·四川·宜宾市教科所三模(理))已知两条直线m ,n 和平面α,则m n ⊥的一个充分条件是()A .m α⊥且n α⊥B .m α∥且n ⊂αC .m α⊥且n ⊂αD .m α∥且n α∥(多选题)例6.(2022·山东临沂·二模)已知a ,b ∈R ,则使“1a b +>”成立的一个必要不充分条件是()A .221a b +>B .||||1a b +>C .221a b +>D .4110b a b++>【方法技巧与总结】1.要明确推出的含义,是p 成立q 一定成立才能叫推出而不是有可能成立.2.充分必要条件在面对集合问题时,一定是小集合推出大集合,而大集合推不出小集合.3.充分必要条件考察范围广,失分率高,一定要注意各个知识面的培养.题型二:根据充分必要条件求参数的取值范围例7.(2022·湖南怀化·一模)已知,a R ∈,且“x a >”是“22x x >”的充分不必要条件,则a 的取值范围是___________.例8.(2022·浙江·高三专题练习)若2()4x a -<成立的一个充分不必要条件是1102x+≤-,则实数a 的取值范围为()A .(,4]-∞B .[1,4]C .(1,4)D .(1,4]例9.(2022·山西晋中·二模(理))已知条件p :11x -<<,q :x m >,若p 是q 的充分不必要条件,则实数m 的取值范围是()A .[)1,-+∞B .(),1-∞-C .()1,0-D .(],1-∞-例10.(2022·河南平顶山·高三期末(文))若1102x+≤-是()24x a -<成立的一个充分不必要条件,则实数a 的取值范围为()A .(],4 -B .[]1,4C .()1,4D .(]1,4例11.(2022·全国·高三专题练习(文))若关于x 的不等式1x a -<成立的充分条件是04x <<,则实数a 的取值范围是()A .(-∞,1]B .(-∞,1)C .(3,+∞)D .[3,+∞)例12.(2022·湖南怀化·一模)已知,a R ∈,且“x a >”是“22x x >”的充分不必要条件,则a 的取值范围是___________.例13.(2022·重庆·高三阶段练习)若不等式x a <的一个充分条件为20x -<<,则实数a 的取值范围是___________.例14.(2022·全国·高三专题练习(文))已知集合233|1,,224A y y x x x ⎧⎫⎡⎤==-+∈⎨⎬⎢⎥⎣⎦⎩⎭,{}2|1B x x m =+≥.若“x A ∈”是“x B ∈”的充分条件,则实数m 的取值范围为________.例15.(2022·全国·高三专题练习)已知函数()f x A ,关于x 的不等式2()(21)0x m x m --+≤的解集为B .(1)当m =2时,求()A B R ;(2)若x ∈A 是x ∈B 的充分条件,求实数m 的取值范围.例16.(2022·天津·汉沽一中高三阶段练习)不等式5212xx ->+的解集是A ,关于x 的不等式22450x mx m --≤的解集是B .(1)若1m =,求A B ;(2)若A B B ⋃=,求实数m 的取值范围.(3)设:p 实数x 满足22430x ax a -+<,其中>0a ,命题:q 实数x 满足2260280x x x x ⎧--≤⎨+->⎩.若p 是q 的必要不充分条件,求实数a 的取值范围.例17.(2022·陕西·武功县普集高级中学高三阶段练习(理))已知条件{}22:4410p A x x ax a =-+-≤∣,条件{}2:20q B xx x =--≤∣.U =R .(1)若1a =,求()U A B ⋂ .(2)若q 是p 的必要不充分条件,求a 的取值范围.【方法技巧与总结】1.集合中推出一定是小集合推大集合,注意包含关系.2.在充分必要条件求解参数取值范围时,要注意端点是否能取到问题,容易出错.题型三:全称量词命题与存在量词命题的真假例18.(2022·黑龙江齐齐哈尔·三模(理))已知01b a <<<,下列四个命题:①(0,)∀∈+∞x ,x x a b >,②(0,1)x ∀∈,log log a b x x >,③(0,1)x ∃∈,a b x x >,④(0,)x b ∃∈,log x a a x >.其中是真命题的有()A .①③B .②④C .①②D .③④例19.(2022·江西·二模(理))已知命题1p :存在00x >,使得0044+≤x x ,命题2p :对任意的x ∈R ,都有tan 2x =22tan 1tan xx-,命题3p :存在0x ∈R ,使得003sin 4cos 6+=x x ,其中正确命题的个数是()A .0B .1C .2D .3例20.(2022·河南·新乡县高中模拟预测(理))已知函数()f x 和()g x 的定义域均为[],a b ,记()f x 的最大值为1M ,()g x 的最大值为2M ,则使得“12M M >”成立的充要条件为()A .[]1,x a b ∀∈,[]2,x a b ∀∈,()()12f x g x >B .[]1,x a b ∀∈,[]2,x a b ∃∈,()()12f x g x >C .[]1,x a b ∃∈,[]2,x a b ∀∈,()()12f x g x >D .[],x a b ∀∈,()()f xg x >例21.(2022·浙江·高三专题练习)下列命题中,真命题为()A .存在0x R ∈,使得00x e ≤B .直线a b ⊥,a ⊂平面α,平面b αβ= ,则平面αβ⊥C .224sin (,)sin y x x k k Z xπ=+≠∈最小值为4D .1a >,1b >是1ab >成立的充分不必要条件(多选题)例22.(2022·全国·高三专题练习)下列命题中的真命题是()A .∀x ∈R ,2x -1>0B .∀x ∈N *,(x -1)2>0C .∃x ∈R ,lg x <1D .∃x ∈R ,tan x =2例23.(2022·全国·高三专题练习)下列命题中正确的是_____(写出正确命题的序号)(1)[]0,x a b ∃∈,使()()00f x g x >,只需()()max min f x g x >;(2)[],x a b ∀∈,()()f x g x >恒成立,只需()()min 0f x g x ->⎡⎤⎣⎦;(3)[]1,x a b ∀∈,[]2,x c d ∈,()()12f x g x >成立,只需()()min max f x g x >;(4)[]1,x a b ∃∈,[]2,x c d ∈,()()12f x g x >,只需()()min min f x g x >.【方法技巧与总结】1.全称量词命题与存在量词命题的真假判断既要通过汉字意思,又要通过数学结论.2.全称量词命题和存在量词命题的真假性判断较为简单,注意细节即可.题型四:全称量词命题与存在量词命题的否定例24.(2022·四川成都·三模(理))命题“x ∀∈R ,e 20x +>”的否定是().A .0x ∃∈R ,0e 20x +≤B .x ∀∈R ,e 20x +≤C .0x ∃∈R ,0e 20x +>D .0x ∀∈R ,0e 20x +<例25.(2022·云南昆明·模拟预测(文))已知命题p :*N n ∀∈,22n n +≥,则p ⌝为()A .*N n ∀∉,22n n +<B .*N n ∀∈,22n n +<C .*0N n ∃∉,2002n n +<D .*0N n ∃∈,2002n n +<例26.(2022·江西赣州·二模(文))已知命题p :x ∀∈R ,sin cos x x +≥p ⌝为()A .x ∀∈R ,sin cos x x +<B .x ∃∉R ,sin cos x x +<C .x ∀∉R ,sin cos x x +<D .x ∃∈R ,sin cos x x +<例27.(2022·辽宁·建平县实验中学模拟预测)命题“()00,x ∃∈+∞,00ln 1x x ≥-”的否定是()A .()00,x ∃∈+∞,00ln 1x x <-B .()00,x ∃∉+∞,00ln 1x x ≥-C .()0,x ∀∈+∞,ln 1x x <-D .()0,x ∀∉+∞,ln 1x x ≥-例28.(2022·山东潍坊·二模)十七世纪,数学家费马提出猜想:“对任意正整数2n >,关于x ,y ,z 的方程n n n x y z +=没有正整数解”,经历三百多年,1995年数学家安德鲁·怀尔斯给出了证明,使它终成费马大定理,则费马大定理的否定为()A .对任意正整数n ,关于x ,y ,z 的方程n n n x y z +=都没有正整数解B .对任意正整数2n >,关于x ,y ,z 的方程n n n x y z +=至少存在一组正整数解C .存在正整数2n ≤,关于x ,y ,z 的方程n n n x y z +=至少存在一组正整数解D .存在正整数2n >,关于x ,y ,z 的方程n n n x y z +=至少存在一组正整数解例29.(2022·全国·高三专题练习(文))已知命题p :存在一个无理数,它的平方是有理数,则p ⌝为()A .任意一个无理数,它的平方不是有理数B .存在一个无理数,它的平方不是有理数C .任意一个无理数,它的平方是有理数D .存在一个无理数,它的平方是无理数例30.(2022·山西晋中·模拟预测(理))命题p :0x ∀≥,222e 3x x -+≤,则¬p 为___________.【方法技巧与总结】1.全称量词命题与存在量词命题的否定是将条件中的全称量词和存在量词互换,结论变否定.1.全称量词命题和存在量词命题的否定要注意否定是全否,而不是半否.题型五:根据命题的真假求参数的取值范围例31.(2022·山东青岛·一模)若命题“R x ∀∈,210ax +≥”为真命题,则实数a 的取值范围为()A .0a >B .0a ≥C .0a ≤D .1a ≤例32.(2022·浙江·高三专题练习)若命题“存在R x ∈,使220x x m ++≤”是假命题,则实数m 的取值范围是()A .(],1-∞B .(),1-∞C .()1,+∞D .[)1,+∞例33.(2022·江苏·南京市宁海中学模拟预测)若命题“[]1,4x ∀∈时,2x m >”是假命题,则m 的取值范围()A .16m ≥B .m 1≥C .16m <D .1m <例34.(2022·黑龙江齐齐哈尔·二模(文))若命题“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题,则实数x 的取值范围为()A .[]1,4-B .50,3⎡⎤⎢⎥⎣⎦C .[]51,0,43⎡⎤⎢⎥⎣-⎦ D .[)51,0,43⎛⎤- ⎥⎝⎦例35.(2022·全国·高三专题练习)若“[,34x ππ∀∈-,tan x m ≥”是真命题,则实数m 的最大值为___________.例36.(2022·全国·高三专题练习)已知定义在R 上的函数()h x 满足'2()()0h x h x +>且21(1)e h =,其中2x1()e h x >的解集为A .函数21()1x x f x x -+=-,()()1xg x a a =>,若1x A ∀∈,2x A ∃∈使得()()12f x g x =,则实数a 的取值范围是___________.例37.(2022·湖北·荆门市龙泉中学二模)若命题“0,,63x ππ⎡⎤∃∈⎢⎥⎣⎦0tan x m >”是假命题,则实数m 的取值范围是__________.例38.(2022·全国·高三专题练习)若“[]01,1x ∃∈-,020x a +->”为假命题,则实数a 的最小值为______.例39.(2022·全国·高三专题练习)在①x ∃∈R ,2220x ax a ++-=,②a ∃∈R ,使得区间()2,4A =,(),3B a a =满足A B =∅ 这两个条件中任选一个,补充在下面的横线上,并解答.已知命题p :[]1,2x ∀∈,20x a -≥,命题q :______,p ,q 都是真命题,求实数a 的取值范围.例40.(2022·全国·高三专题练习)若f (x )=x 2-2x ,g (x )=ax +2(a >0),∀x 1∈[-1,2],∃x 0∈[-1,2],使g (x 1)=f (x 0),求实数a 的取值范围.【方法技巧与总结】1.在解决求参数的取值范围问题上,可以先令两个命题都为真命题,如果哪个是假命题,去求真命题的补级即可.2.全称量词命题和存在量词命题的求参数问题相对较难,要注重端点出点是否可以取到.【过关测试】一、单选题1.(2022·河北·模拟预测)已知2:10p x ax -+=无解,()2:()4q f x a x =-为增函数,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.(2022·北京房山·二模)已知,αβ是两个不同的平面,直线l α⊄,且αβ⊥,那么“//l α”是“l β⊥”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.(2022·江苏·华罗庚中学高三阶段练习)若1z ,2z 为复数,则“12z z -是纯虚数”是“1z ,2z 互为共轭复数”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件4.(2022·全国·高三专题练习)命题“12x ∀≤≤,220x a -≤”是真命题的一个必要不充分条件是()A .1a ≥B .3a ≥C .2a ≥D .4a ≤5.(2022·全国·高三专题练习)已知下列四个命题:正确的是()1p :00x ∃>,使得00ln 1x x >-;2p :R x ∀∈,都有210x x -+>;3p :00x ∃>,使得001ln1x x >-+;4p :()0,x ∀∈+∞,使得121log 2xx ⎛⎫> ⎪⎝⎭.A .2p ,4pB .1p ,4pC .2p ,3pD .1p ,3p 6.(2022·重庆南开中学模拟预测)命题“2x ∀≥,24x ≥”的否定为()A .02x ∃≥,204x <B .2x ∀≥,24x <C .02x ∃<,204x <D .2x ∀<,24x <7.(2022·江西景德镇·模拟预测(理))已知命题:函数32()(21)(0,0)f x x ax m a x m a m =++--->>,且关于x 的不等式|()|f x m <的解集恰为(0,1),则该命题成立的必要非充分条件为()A .m a ≥B .m a ≤C .2m a ≥D .2m a ≤8.(2022·全国·高三专题练习)定义{|,}A B x x A x B -=∈∉,设A 、B 、C 是某集合的三个子集,且满足()()A B B A C -⋃-⊆,则()()A C B B C ⊆-⋃-是A B C =∅ 的()A .充要条件B .充分非必要条件C .必要非充分条件D .既非充分也非必要条件二、多选题9.(2022·广东茂名·模拟预测)下列四个命题中为真命题的是()A .“a b <”是“22ac bc <”的必要不充分条件B .设,A B 是两个集合,则“A B A = ”是“A B ⊆”的充要条件C .“0,0x x e ∀>>”的否定是“0,0x x e ∃≤≤”D .8名同学的数学竞赛成绩分别为:80,68,90,70,88,96,89,98,则该数学成绩的15%分位数为70(注:一般地,一组数据的第P 百分位数是这样一个值,它使得这组数据中至少有%P 的数据小于或者等于这个值,且至少有()100%P -的数据大于或者等于这个值.)10.(2022·全国·高三专题练习)设0a >,0b >,且a b ,则“2a b +>”的一个必要条件可以是()A .332a b +>B .222a b +>C .1ab >D .112a b+>11.(2022·辽宁实验中学模拟预测)已知x ,y 均为正实数,则下列各式可成为“x y <”的充要条件是()A .11x y>B .sin sin x y x y ->-C .cos cos x y x y -<-D .22e e x y x y -<-12.(2022·湖北·武汉市武钢三中高三阶段练习)下列命题正确的是()A .“关于x 的不等式20mx x m ++>在R 上恒成立”的一个必要不充分条件是14m >B .设,x y ∈R ,则“2x 且2y ”是“224x y + ”的必要不充分条件C .“1a >”是“11a<”的充分不必要条件D .命题“[]0,1,0x x a ∃∈+ ”是假命题的实数a 的取值范围为{0}aa >∣三、填空题13.(2022·河南·南阳中学高三阶段练习(文))若命题“20001,30x x ax a ∃>-++<”是假命题,则a 的取值范围是_______.14.(2022·浙江·高三学业考试)已知函数2()23=-+f x x x ,2()log g x x m =+,若对[]12,4x ∀∈,[]28,16x ∃∈,使得12()()f x g x ≥,则实数m 的取值范围为______.15.(2022·全国·模拟预测(理))已知函数()()2221f x x ax a a =-+-∈R ,则“方程()0f x =在区间(),0 -和()1,+∞上各有一个解”的一个充分不必要条件是a =______.(写出满足条件的一个值即可)16.(2022·全国·高三专题练习)已知():ln p f x x a x =-在[)2+∞,上单调递增,:q a m <.若p 是q 的充分不必要条件,则实数m 的取值范围为____________.四、解答题17.(2022·全国·高三专题练习)已知函数()f x =的定义域为集合A ,函数()g x =B ,(1)当0a =时,求A B ;(2)设命题:p x A ∈,命题:q x B ∈,p q 是的充分不必要条件,求实数a 的取值范围.18.(2022·全国·高三专题练习)已知集合11122x A x ⎧⎫-=-<⎨⎬⎩⎭,{}227100B x x ax a =-+<,a ∈R .(1)当0a >时,x A ∈是x B ∈的充分条件,求实数a 的取值范围;(2)若R B A ⊆ ,求实数a 的取值范围.19.(2022·全国·高三专题练习)已知p :22114x y m m+=+-表示焦点在x 轴上的椭圆,q :2,10x R x mx ∃∈-+<,(1)若p 是真命题,求m 的取值范围;(2)若p ,q 都是真命题,求m 的取值范围.20.(2022·全国·高三专题练习)设:24p x ≤<,q :实数x 满足()222300x ax a a --<>.(1)若1a =,且,p q 都为真命题,求x 的取值范围;(2)若p 是q 的充分不必要条件,求实数a 的取值范围.21.(2022·全国·高三专题练习)已知集合{}2,1x A y y x ==≤,{}21,R B x a x a a =+≤≤-∈.求:(1)若A B =∅ ,求实数a 的取值范围.(2)若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围22.(2022·全国·高三专题练习)已知幂函数2242()(1)m m f x m x -+=-在(0,)+∞上单调递增,函数()2g x x k =-.(1)求m 的值;(2)当[1,2)x ∈时,记(),()f x g x 的值域分别为集合A ,B ,设:,:p x A q x B ∈∈,若p 是q 成立的必要条件,求实数k 的取值范围.(3)设2()()1F x f x kx k =-+-,且|()|F x 在[0,1]上单调递增,求实数k 的取值范围.。
高中数学集合与常用逻辑用语知识点总结PPT课件
【注意】 (1)从集合的观点看,全称量词命题是陈述某集合中所有元素都具有某种 性质的命题; (2)一个全称量词命题可以包含多个变量; (3)有些全称量词命题中的全称量词是省略的,理解时需要把它补出来。 如:命题“平行四边形对角线互相平行”理解为“所有平行四边形对角线 都互相平行”。
2、存在量词与存在量词命题 (1)存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫作存在 量词,并用符号“图片”表示. 【注意】常见的存在量词还有“有些”、“有一个”、“对某些”、“有 的”等; (2)存在量词命题:含有存在量词的命题,叫作存在量词命题。
2、集合运算中的常用二级结论(1)并集的性质:A∪∅=A;A∪A=A;A∪B= B∪A;A∪B=A⇔B⊆A. (2)交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B. (3)补集的性质:A∪(∁UA)=U;A∩(∁UA)=∅.∁U(∁UA)=A;∁U(A∪B)= (∁UA)∩(∁UB);∁U(A∩B)=(∁UA)∪(∁UB).
【注意】 (1)从集合的观点看,存在量词命题是陈述某集合中有一些 元素具有某种性质的命题; (2)一个存在量词命题可以包含多个变量; (3)有些命题虽然没有写出存在量词,但其意义具备“存 在”、“有一个”等特征都是存在量词命题
3、命题的否定:对命题p加以否定,得到一个新的命题,记作“图片”, 读作“非p”或p的否定.
知识点5 全称量词与存在量词 1、全称量词与全称量词命题 (1)全称量词:短语“所有的”“任意一个”在逻辑中通常 叫作全称量词,并用符号“图片”表示.
【注意】 (1)全称量词的数量可能是有限的,也可能是无限的,由有 题目而定; (2)常见的全称量词还有“一切”、“任给”等,相应的词 语是“都” (2)全称量词命题:含有全称量词的命题,称为全称量词命 题.
高中数学高考02第一章 集合与常用逻辑用语 1 2 命题及其关系、充分条件与必要条件
师生共研
题型三 充分、必要条件的应用
例2 已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P 是x∈S的必要条件,求m的取值范围.
解 由x2-8x-20≤0,得-2≤x≤10,∴P={x|-2≤x≤10}. 由x∈P是x∈S的必要条件,知S⊆P.
解析 依题意,可得(-1,4) (2m2-3,+∞), 所以2m2-3≤-1,解得-1≤m≤1.
(2)设n∈N*,则一元二次方程x2-4x+n=0有整数根的充要条件是n=__3_或__4_. 解析 由Δ=16-4n≥0,得n≤4, 又n∈N*,则n=1,2,3,4. 当n=1,2时,方程没有整数根; 当n=3时,方程有整数根1,3, 当n=4时,方程有整数根2.综上可知,n=3或4.
5.有下列命题:
①“若x+y>0题;
③“若m>1,则mx2-2(m+1)x+m+3>0的解集是R”的逆命题;
④“若a+7是无理数,则a是无理数”的逆否命题.
其中正确的是
A.①②③
B.②③④
√C.①③④
D.①④
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
∴充分性不成立;
取 α=3π,β=136π,sin α>sin β,但 α<β,必要性不成立.
故“α>β”是“sin α>sin β”的既不充分也不必要条件.
(2)已知条件p:x>1或x<-3,条件q:5x-6>x2,则綈p是綈q的
√A.充分不必要条件
C.充要条件
B.必要不充分条件 D.既不充分也不必要条件
高中数学-集合与常用逻辑用语
q⇒p
p是q的充要条件
p⇒q且q⇒p
p是q的充分不必要条件 p⇒q且q⇒/ p
p是q的必要不充分条件 p⇒/ q且q⇒p
p是q的既不充分也不必要 p⇒/ q且q⇒/ p 条件
集合法: A={x|p(x)}, B={x|q(x)} A⊆B A⊇B A=B A⫋B A⫌B A⊈B且A⊉B
考点二 全称量词与存在量词
3.含有量词的命题的否定 含有量词的命题的否定必须否定命题所含的量词,对于隐含量词的命题要结 合命题的含义显现量 词,再进行否定.
题型方法
充分条件与必要条件的判断及应用
1.充分、必要条件的判断方法
(1)定义法:根据p⇒q,q⇒p是否成立进行判断. (2)集合法:根据p,q成立与对应的集合间的关系进行判断.
x 1
是q的充分不必要条件,则实数a的取值范围是 [0,1/2]
.
1.全称量词与存在量词
名称 全称量词
存在量词
常见量词
符号
所有、一切、任意、全部、 ∀ 每 一个等存在来自个、至少一个、有些 ∃ 、 某些等
2.全称量词命题与存在量词命题
全称量词命题一般形式:对M中任意一个x,有p(x)成立,符号表示:∀x∈M,p(x). 存在量词命题一般形式:存在M中一个x,使p(x)成立,符号表示:∃x∈M,p(x).
C.充要条件
D.既不充分也不必要条件
(2)(2019北京文,6,5分)设函数f(x)=cos x+bsin x(b为常数),则“b=0”是“f(x)为偶
函数”的 ( C )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
(3)(2020山东省实验中学期中)设命题p: 2x 1 <0,命题q:x2-(2a+1)x+a(a+1)≤0,若p
高中数学:常用逻辑用语
常用逻辑用语一、知识框架1.命题定义:用语言、符号或式子表达的、可以判断正误的陈述语句,叫做命题。
其中,判断为真的即为真命题,为假的即为假命题。
2.命题的判断以及命题真假的判断(1)命题的判断:①判断该语句是否是陈述句;②能否判断真假。
(2)命题真假的判断:首先,分清条件与结论,其次,再判断命题真假。
3.一般地,用p 和q 分别表示原命题的条件和结论,用¬p 和¬q 表示p 与q 的否定,即如下:(四种命题的关系)4.充分条件和必要条件 (1)充分条件:如果A 成立,那么B 成立,则条件A 是B 成立的充分条件。
(2)必要条件:如果A 成立,那么B 成立,这时B 是A 的必然结果,则条件B 是A 成立的必要条件。
(3)充要条件:如果A 既是B 成立的充分条件,又是B 成立的必要条件,则A 是B 成立的充要条件,与此同时,B 也一定是A 成立的重要条件,所以此时,A 、B 互为充要条件。
【注意】充分条件与必要条件是完全等价的,是同一逻辑关系“A =>B ”的不同表达方法。
5.逻辑联结词(1)不含逻辑联结词的命题是简单命题,由简单命题和逻辑联结词“或”“且”“非”构成的命题是复合命题,它们有以下几种形式:p 或q (p ∨q );p 且q (p ∧q );非p (¬p )。
(2)逻辑联结词“或”“且”“非”的含义的理解 在集合中学习的“并集”“交集”“补集”与逻辑联结词中的“或”“且”“非”关系十分密切。
6.量词与命题量词名称 常见量词表示符号全称量词 所有、一切、任意、全部、每一个、任给等 ∀存在量词 存在一个、至少有一个、某个、有些、某些等∃命 题 表述形式 原命题 若p 则q 逆命题 若q 则p 否命题 若¬p 则¬q 逆否命题若¬q 则¬p(2)全称命题与特称命题 命题全称命题“()x p M x ,∈∀”特称命题“()00,x p M x ∈∃”定义短语“对所有的”“对任意一个”等,在逻辑中通常叫做全称量词,用符号“∀”表示。
高中数学知识点总结(第一章 集合与常用逻辑用语)
第一章 集合与常用逻辑用语第一节 集 合一、基础知识1.集合的有关概念(1)集合元素的三个特性:确定性、无序性、互异性.元素互异性,即集合中不能出现相同的元素,此性质常用于求解含参数的集合问题中. (2)集合的三种表示方法:列举法、描述法、图示法. (3)元素与集合的两种关系:属于,记为∈;不属于,记为∉. (4)五个特定的集合及其关系图:N *或N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.2.集合间的基本关系(1)子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,则称A 是B 的子集,记作A ⊆B (或B ⊇A ).(2)真子集:如果集合A 是集合B 的子集,但集合B 中至少有一个元素不属于A ,则称A 是B 的真子集,记作A B 或B A .A B ⇔⎩⎪⎨⎪⎧A ⊆B ,A ≠B .既要说明A 中任何一个元素都属于B ,也要说明B 中存在一个元素不属于A .(3)集合相等:如果A ⊆B ,并且B ⊆A ,则A =B .两集合相等:A =B ⇔⎩⎪⎨⎪⎧A ⊆B ,A ⊇B .A 中任意一个元素都符合B 中元素的特性,B 中任意一个元素也符合A 中元素的特性.(4)空集:不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作∅.∅∈{∅},∅⊆{∅},0∉∅,0∉{∅},0∈{0},∅⊆{0}.3.集合间的基本运算(1)交集:一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B,即A∩B={x|x∈A,且x∈B}.(2)并集:一般地,由所有属于集合A或属于集合B的元素组成的集合,称为A与B的并集,记作A∪B,即A∪B={x|x∈A,或x∈B}.(3)补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作∁U A,即∁U A={x|x∈U,且x∉A}.求集合A的补集的前提是“A是全集U的子集”,集合A其实是给定的条件.从全集U中取出集合A的全部元素,剩下的元素构成的集合即为∁U A.二、常用结论(1)子集的性质:A⊆A,∅⊆A,A∩B⊆A,A∩B⊆B.(2)交集的性质:A∩A=A,A∩∅=∅,A∩B=B∩A.(3)并集的性质:A∪B=B∪A,A∪B⊇A,A∪B⊇B,A∪A=A,A∪∅=∅∪A=A.(4)补集的性质:A∪∁U A=U,A∩∁U A=∅,∁U(∁U A)=A,∁A A=∅,∁A∅=A.(5)含有n个元素的集合共有2n个子集,其中有2n-1个真子集,2n-1个非空子集.(6)等价关系:A∩B=A⇔A⊆B;A∪B=A⇔A⊇B.第二节命题及其关系、充分条件与必要条件一、基础知识1.命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.一个命题要么是真命题,要么是假命题,不能模棱两可.2.四种命题及其相互关系3.充分条件、必要条件与充要条件(1)如果p⇒q,则p是q的充分条件;①A是B的充分不必要条件是指:A⇒B且B A;②A的充分不必要条件是B是指:B⇒A且A B,在解题中要弄清它们的区别,以免出现错误.(2)如果q⇒p,则p是q的必要条件;(3)如果既有p⇒q,又有q⇒p,记作p⇔q,则p是q的充要条件.充要关系与集合的子集之间的关系设A={x|p(x)},B={x|q(x)},①若A⊆B,则p是q的充分条件,q是p的必要条件.②若A B,则p是q的充分不必要条件,q是p的必要不充分条件.③若A=B,则p是q的充要条件.二、常用结论1.四种命题中的等价关系原命题等价于逆否命题,否命题等价于逆命题,所以在命题不易证明时,往往找等价命题进行证明.2.等价转化法判断充分条件、必要条件p是q的充分不必要条件,等价于非q是非p的充分不必要条件.其他情况以此类推.第三节简单的逻辑联结词、全称量词与存在量词一、基础知识1.简单的逻辑联结词(1)命题中的“且”“或”“非”❶叫做逻辑联结词.①用联结词“且”把命题p和命题q联结起来,得到复合命题“p且q”,记作p∧q;②用联结词“或”把命题p和命题q联结起来,得到复合命题“p或q”,记作p∨q;③对命题p的结论进行否定,得到复合命题“非p”,记作非p.❷❶“且”的数学含义是几个条件同时满足,“且”在集合中的解释为“交集”;“或”的数学含义是至少满足一个条件,“或”在集合中的解释为“并集”;“非”的含义是否定,“非p”只否定p的结论,“非”在集合中的解释为“补集”.❷“命题的否定”与“否命题”的区别(1)命题的否定只是否定命题的结论,而否命题既否定其条件,也否定其结论.(2)命题的否定与原命题的真假总是相对立的,即一真一假,而否命题与原命题的真假无必然联系.(2)命题真值表:命题真假的判断口诀p∨q→见真即真,p∧q→见假即假,p与非p→真假相反.2.全称量词与存在量词3.全称命题与特称命题4.全称命题与特称命题的否定二、常用结论含逻辑联结词命题真假的等价关系(1)p∨q真⇔p,q至少一个真⇔(非p)∧(非q)假.(2)p∨q假⇔p,q均假⇔(非p)∧(非q)真.(3)p∧q真⇔p,q均真⇔(非p)∨(非q)假.(4)p∧q假⇔p,q至少一个假⇔(非p)∨(非q)真.。
新教材高中数学第2章常用逻辑用语1命题定理定义2
判断下列各命题中p是q的什么条件: (1)p:x-2=0,q:(x-2)(x-3)=0; (2)p:t≠2,q:t2≠4; (3)p:0<x<3,q:|x-1|<2.
解析 (1)x-2=0⇒(x-2)(x-3)=0, (x-2)(x-3)=0⇒x-2=0或x-3=0. ∴“x-2=0”是“(x-2)(x-3)=0”的充分不必要条件. (2)t≠2 t2≠4(当t=-2时,t2=4), t2≠4⇒t≠2且t≠-2. ∴“t≠2”是“t2≠4”的必要不充分条件. (3)令A={x|0<x<3},B={x||x-1|<2}={x|-1<x<3}. 易知A⫋B,∴p是q的充分不必要条件.
探求充分条件、必要条件的步骤 (1)分清“条件”和“结论”,明确探求的方向; (2)分析题目中的已知条件和隐含条件,进行等价转化,即可得到使结论成立的充要条 件; (3)将得出的充要条件对应的范围扩大或缩小,即可得到结论成立的必要不充分条件 或充分不必要条件.
求方程x2+kx+1=0与x2+x+k=0有一个公共实数根的充要条件. 思路点拨 设两个方程的公共实数根为x0,列方程组求出k的值,再检验k取此值时两个方程是否有 一个公共实数根,从而解决问题.
1 | 命题、定理、定义的概念 1.命题 在数学中,我们将① 可判断真假 的陈述句叫作命题.许多命题可表示为“如果p, 那么q”或“若p,则q”的形式,其中p叫作命题的② 条件 ,q叫作命题的③ 结论 . 2.定理 在数学中,有些已经被证明为真的命题可以作为推理的依据而直接使用,一般称之为 定理. 3.定义 定义是对某些对象标明符号、指明称谓,或者揭示所研究问题中对象的内涵.
2 | 充分条件、必要条件的证明与探求
版高中数学必修一常用逻辑用语知识点归纳超级精简版
版高中数学必修一常用逻辑用语知识点归纳超级精简版逻辑是数学的重要组成部分,它以推理和证明为基础,帮助我们建立正确的思维方式。
常用逻辑用语主要包括命题、谓词、命题连接词、条件语句和等价语句等。
本文将对这些常用的逻辑用语进行归纳和总结。
一、命题命题是陈述句,可以判断陈述是否为真或为假。
命题常用的表示方式有以下几种:1.用大写字母P、Q、R等表示命题,例如:P表示“数学是一门有趣的学科”。
2.用P(x)表示含有变量x的命题,例如:P(x)表示“x是偶数”。
二、谓词谓词是含有变量的陈述句,变量可以代表任意对象。
常用的谓词有以下几种:1.定义域:谓词的变量所属的集合,例如:P(x)中x的定义域为整数集合。
2.真值:谓词在特定对象上的真假情况,例如:P(2)为真,表示2满足谓词P。
三、命题连接词命题连接词可以用来连接两个或多个命题,形成复合命题。
常用的命题连接词有以下几种:1.否定:连接一个命题,表示命题的相反情况,常用符号为¬,例如:¬P表示“不是所有的数学题都很难”。
2.合取(与):连接两个命题,并且两个命题都为真时,复合命题才为真,常用符号为∧,例如:P∧Q表示“数学和物理都是有趣的学科”。
3.析取(或):连接两个命题,其中至少一个命题为真时,复合命题才为真,常用符号为∨,例如:P∨Q表示“数学或物理是有趣的学科”。
4.异或:连接两个命题,其中有且仅有一个命题为真时,复合命题才为真,常用符号为⊕,例如:P⊕Q表示“数学或物理是有趣的学科,但不是同时有趣”。
5.蕴含(如果...那么...):连接两个命题,如果前提为真,则结论必为真,常用符号为→,例如:如果数学是有趣的学科,那么它的题目也是有趣的。
6.等价(当且仅当):连接两个命题,两个命题真值相等,常用符号为↔,例如:数学是有趣的学科当且仅当它的题目也是有趣的。
四、条件语句条件语句是一种特殊形式的蕴含命题,常用的条件语句有以下几种:1.充分条件:如果A为真,则B也为真,常用符号为A→B。
高中数学第一章常用逻辑用语1.2基本逻辑联结词1.2.2“非”(否定)b11b高二11数学
12/13/2021
第七页,共三十二页。
3.命题 p:“∃x∈R,x2+1<2x”的否定﹁p:________; ﹁p 为________命题.(填“真”“假”) 答案:∀x∈R,x2+1≥2x 真
12/13/2021
第八页,共三十二页。
4.写出下列命题的否定,并判断真假. (1)p:y=sin x 是周期函数; (2)p:3<2. 解:(1)﹁p:y=sin x 不是周期函数.是假命题. (2)﹁p:3≥2.是真命题.
12/13/2021
第九页,共三十二页。
命题的否定 写出下列命题的否定,并判断其真假: (1)p:圆(x-1)2+y2=4 的圆心是(1,0); (2)q:50 是 7 的倍数; (3)r:一元二次方程至多有两个解; (4)s:7<8.12/13源自2021第十页,共三十二页。
【解】 (1)“是”的否定词语为“不是”,利用命题的否定 的定义写出﹁p:圆(x-1)2+y2=4 的圆心不是(1,0).因原 命题为真,故其否定为假. (2)﹁q:50 不是 7 的倍数.因原命题为假,故其否定为真. (3)“至多有两个”的否定词是“至少有三个”,利用命题 的否定的定义写出该命题的否定﹁r:一元二次方程至少有 三个解.因原命题为真,故其否定为假. (4)﹁s:7≥8.因原命题为真,故其否定为假.
12/13/2021
第十九页,共三十二页。
命题的否定的应用 已知命题 p:“至少存在一个实数 x∈[1,2],使不 等式 x2+2ax+2-a>0 成立”为真,试求参数 a 的取值范围.
12/13/2021
第二十页,共三十二页。
【解】 由已知得﹁p:∀x∈[1,2],x2+2ax+2-a≤0 成 立. 所以设 f(x)=x2+2ax+2-a, 则ff( (12) )≤ ≤00, , 所以14++24aa++22--aa≤≤00,,
高中数学知识点总结:常用逻辑用语
优选精品优选精品 欢迎下载欢迎下载1 / 2高中数学知识点总结:常用逻辑用语高中学生在学习中或多或少有一些困惑,的编辑为大家总结了高中数学知识点总结:常用逻辑用语,各位考生可以参考。
常用逻辑用语:1、四种命题:⑴原命题:若p 则q;⑵逆命题:若q 则p;⑶否命题:若p;⑶否命题:若 p p 则 q;⑷逆否命题:若q;⑷逆否命题:若 q q 则 p注:注:11、原命题与逆否命题等价、原命题与逆否命题等价;;逆命题与否命题等价。
判断命题真假时注意转化。
2、注意命题的否定与否命题的区别:命题否定形式是、注意命题的否定与否命题的区别:命题否定形式是 ; ; ;否否命题是命题是 . . .命题命题或 的否定是 且 且 的否定是 或 . 3、逻辑联结词:⑴且⑴且(and) (and) (and) :命题形式:命题形式:命题形式 p q; p q p q p q p p q; p q p q p q p⑵或⑵或(or)(or)(or):命题形式:命题形式:命题形式 p q; p q; p q; 真真真 真 真 假 ⑶非⑶非(not)(not)(not):命题形式:命题形式:命题形式 p . p . p . 真真假 假 真 假 假 真 假 真 真假 假 假 假 真或命题的真假特点是一真即真,要假全假且命题的真假特点是一假即假,要真全真非命题的真假特点是一真一假4、充要条件优选精品优选精品 欢迎下载欢迎下载2 / 2 由条件可推出结论,条件是结论成立的充分条件由条件可推出结论,条件是结论成立的充分条件;;由结论可推出条件,则条件是结论成立的必要条件。
5、全称命题与特称命题:短语所有在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号表示。
含有全体量词的命题,叫做全称命题。
短语有一个或有些或至少有一个在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号 表示,含有存在量词的命题,叫做存在性命题。
通用版高中数学必修一常用逻辑用语知识点总结(超全)
(每日一练)通用版高中数学必修一常用逻辑用语知识点总结(超全)单选题1、对于给定的函数f (x )=(12)x −(12)−x (x ∈R ),给出五个命题其中真命题是①函数f (x )的图象关于原点对称;②函数f (x )在R 上具有单调性;③函数f (|x −1|)的图象关于y 轴对称;④函数f (|x |)的最大值是0.A .①②③B .①③④C .②③④D .①②④答案:D解析:①根据奇函数的定义进行判断;②根据函数单调性的性质进行判断;③根据偶函数的定义进行判断;④根据函数单调性和最值关系进行判断.解:①f(−x)=(12)−x −(12)x =−[(12)x −(12)−x ]=−f(x) 则函数f(x)是奇函数,则函数f(x)的图象关于原点对称;故①正确,②f(x)=(12)x −(12)−x =(12)x −2x 为减函数,故函数f(x)在R 上具有单调性;故②正确, ③f(|x −1|)=(12)|x−1|−(12)−|x−1|, 则设g(x)=f(|x −1|)=(12)|x−1|−(12)−|x−1| 则g(−x)=(1)|−x−1|−(1)−|−x−1|=(1)|x+1|−(1)−|x+1|则g(−x)≠g(x),则g(x)不是偶函数,则函数f(|x−1|)的图象关于y轴不对称;故③错误,④函数f(|x|)=(12)|x|−(12)−|x|为偶函数,且当x≥0时为减函数,故当x=0时,函数取得最大值,最大值为f(|0|)=(12)|0|−(12)−|0|=1−1=0,故④正确,故正确的是①②④,故选D.小提示:本题主要考查命题的真假判断,涉及函数奇偶性的判断和应用,以及函数最值和单调性的关系,综合性较强,有一定的难度.2、设曲线C是双曲线,则“C的方程为y28−x24=1”是“C的渐近线方程为y=±√2x”的()A.充分必要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件答案:B解析:根据C的方程为y 28−x24=1,则渐近线为y=±√2x;若渐近线方程为y=±√2x,则双曲线方程为x2−y22=λ(λ≠0)即可得答案.解:若C的方程为y 28−x24=1,则a=2√2,b=2,渐近线方程为y=±abx,即为y=±√2x,充分性成立;若渐近线方程为y=±√2x,则双曲线方程为x2−y22=λ(λ≠0),∴“C的方程为y28−x24=1”是“C的渐近线方程为y=±√2x”的充分而不必要条件.故选:B.小提示:本题通过圆锥曲线的方程主要考查充分条件与必要条件,属于中档题.判断充要条件应注意:首先弄清条件p和结论q分别是什么,然后直接依据定义、定理、性质尝试p⇒q,q⇒p.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.3、设x∈R,则“x2−5x<0”是“|x−1|<1”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件答案:B解析:分别求出两不等式的解集,根据两解集的包含关系确定.化简不等式,可知0<x<5推不出|x−1|<1;由|x−1|<1能推出0<x<5,故“x2−5x<0”是“|x−1|<1”的必要不充分条件,故选B.小提示:本题考查充分必要条件,解题关键是化简不等式,由集合的关系来判断条件.解答题4、已知集合P={x∣x2−5x+4≤0},S={x∣1−m≤x≤1+m}.(1)用区间表示集合P;(2)是否存在实数m ,使得x ∈P 是x ∈S 的______条件.若存在实数m ,求出m 的取值范围:若不存在,请说明理由.请从如下三个条件选择一个条件补充到上面的横线上:①充分不必要;②必要不充分;③充要.答案:(1)[1,4];(2)答案见解析.解析:(1)解不等式后可得集合P .(2)根据条件关系可得对应集合的包含关系,从而可得参数的取值范围.(1)因为x 2−5x +4即(x −1)(x −4)≤0,所以1≤x ≤4,P ={x|x 2−5x +4≤0}=[1,4].(2)若选择①,即x ∈P 是x ∈S 的充分不必要条件,则1−m ≤1+m 且{1−m ≤1,1+m ≥4(两个等号不同时成立), 解得m ≥3,故实数m 的取值范围是[3,+∞).若选择②,即x ∈P 是x ∈S 的必要不充分条件.当S =∅时,1−m >1+m ,解得m <0.当S ≠∅时,1−m ≤1+m 且{1−m ≥1,1+m ≤4,(两个等号不同时成立), 解得m =0.综上,实数m 的取值范围是(−∞,0].若选择③,即x ∈P 是x ∈S 的充要条件,则P =S ,即{1−m =1,1+m =4,此方程组无解, 则不存在实数m ,使x ∈P 是x ∈S 的充要条件.小提示:方法点睛:(1)若p是q的必要不充分条件,则q对应集合是p对应集合的真子集;(2)p是q的充分不必要条件,则p对应集合是q对应集合的真子集;(3)p是q的充分必要条件,则p对应集合与q对应集合相等;(4)p是q的既不充分又不必要条件,q对的集合与p对应集合互不包含.5、设命题α:A={x|x2+4x=0},命题β:B={x|x2+2(a+1)x+1−a=0},若α是β的必要条件,但α不是β的充分条件,求实数a的取值组成的集合.答案:(−3,0).解析:由α是β的必要不充分条件得出集合A与B的包含关系而得解.由x2+4x=0得x=0或x=−4,∴A={−4,0},由α是β的必要条件,但α不是β的充分条件得α⇏β且β⇒α,从而有BA,∴B=∅或B={−4}或B={0},当B=∅时,Δ=4(a+1)2−4(1−a)=4a(a+3)<0,∴−3<a<0;当B={−4}时,{42−8(a+1)+1−a=9−9a=0Δ=4(a+1)2−4(1−a)=4a(a+3)=0,无解;当B={0}时,{1−a=0Δ=4(a+1)2−4(1−a)=4a(a+3)=0,无解;综上:实数a的取值组成的集合为(−3,0).。
高中数学-必修一1.2常用逻辑用语-知识点
高中数学-必修一1.2常用逻辑用语-知识点
1、命题是可以判断真假的语句,通常用陈述句表述,分成条件和结论,判断一个命题是真命题,需给出证明,判断为假命题,只需要举一个反例即可。
2、如果“若α,则β”是真命题,那么就称α推出β,记作α⇒β。
推出关系具有传递性,若α⇒β,β⇒γ,则α⇒γ。
这是逻辑推理的基础,可用“小推大”来简记。
3、已知原命题:若α,则β。
则①逆命题:若β,则α。
②否命题:若α,则β。
③逆否命题:若β,则α。
其中,逆命题⇔否命题;逆否命题⇔原命题。
所以,当一个命题直接证明较复杂时,可以证明它的等价命题(即逆否命题)。
4、已知原命题:若α,则β。
则命题的否定为:若α,则β。
命题的否定≠否命题。
原命题和命题的否定,一定是一真一假,但原命题和否命题可能一真一假,也可能同真同假。
5、①若α⇒β,但β不能⇒α,则α是β的充分非必要条件。
②若α不能⇒β,但β⇒α,则α是β的必要非充分条件。
③若α⇔β,则α是β的充要条件。
④若α不能⇒β,且β不能⇒α;则α是β的既不充分也非必要条件。
6、充要条件的证明,分成两步:①证充分性,②证必要性。
非充分性和非必要性的证明,只需要举出一个反例即可。
7、反证法的三个步骤:①假设原命题的结论不成立,或假设原命题的反面成立,
②由假设出发,结合已知条件进行推理,得出与已知不相符的结论,或得出明显错误的结论,③判断假设不成立,即原命题得证。
8、一些常用的否定形式
小初高个性化辅导,助你提升学习力! 1。
高中数学常用逻辑用语
充分非必要条件
2) 若A B且B A,则甲是乙的
必要非充分条件
3)若A B且B A,则甲是乙的
既不充分也不必要条件
4)若A=B ,则甲是乙的充分且必要条件。
注意点
1.在判断条件时,要特别注意的是它们能否互相 推出,切不可不加判断以单向推出代替双向推出.
2.搞清 ①A是B的充分条件与A是B的充分非必要条件之间 的区别与联系; ②A是B的必要条件与A是B的必要非充分条件之间 的区别与联系
复合命题有以下三种形式: (1)P且q. (2)P或q. (3)非p.
逻辑联结词 : 或、且、非
一般地,用逻辑联结词”且”把命题p和命 题q联结起来.就得到一个新命题,记作
p q 读作”p且q”.
规定:当p,q都是真命题时, p q 是 真命题;当p,q两个命题中有一个命
题是假命题时, p q 是假命题. pq
结论1:要写出一个命题的另外三个命
题关键是分清命题的题设和结论(即
把原命题写成“若p则q”的形式)
注意:三种命题中最难写 的是否命题。
三、四种命题之间的 关系
原命题
若p则q
互逆 逆命题
若q则p
互
互
否
否
否命题
逆否命题
若﹁p则﹁q
互逆 若﹁q则﹁p
四、命题真假性判断
(1) 原命题为真,则其逆否命题一定为 真。但其逆命题、否命题不一定为真。 (2) 若其逆命题为真,则其否命题一定为 真。但其原命题、逆否命题不一定为真。
2.写出命题“若x≠a且x≠b, 则x2-(a+b)x+ab≠0”的否命题
充要条件
如果命题“若p则q”为真,则记
作p
高中数学-常用逻辑用语
常用逻辑用语一、命题1.定义:用语言、符号或式子表达的,可以判断真假的陈述句2.疑问句,祈使句,感叹句都不是命题3.真命题:判断为真的语句4.假命题:判断为假的语句5.一般用小写英文字母表示如p:∀x>0,x2+1>0二、量词1.全称量词所有、一切、任意、全部、每一个、任给等符号:∀2.存在量词存在、至少有、有一个、某个、某(有)些等符号:∃3.全称命题:含有全称量词的命题全称命题q:∀x∈A,q(x) 它的否定是⌝q:∃x∈A,⌝q(x) 4.存在性命题:含有存在量词的命题存在性命题p:∃x∈A,p(x) 它的否定是⌝p:∀x∈A,⌝p(x)三、“且”与“或”,“非”1. “且”(p∧q一假则假)“或”(p∨q一真则真)2. “非”(否定)互 否互 否互逆互逆四、推出与充分条件、必要条件 1.推出“如果p ,则q”经过推理证明断定是真命题时,我们就说由p 可以推出q ;记作:p ⇒q 2.充分条件、必要条件如果p 可推出q ,则称:p 是q 的充分条件;q 是p 的必要条件 3.充要条件如果p ⇒q ,且q ⇒p ,则称 p 是q 的充分且必要条件(p 是q 的充要条件) 五、命题的四种形式 1.若p ,则q原命题:若p ,则q 逆命题:若q ,则p 否命题:若非p ,则非q 逆否命题:若非q ,则非p 注:命题的否定(否结论)否命题(否条件,否结论)2.充分条件、必要条件的判定(一)(1)如果p ⇒q ,则p 是q 的充分条件,同时q 是p 的必要条件 (2)如果p ⇒q ,但q ⇏p ,则p 是q 的充分不必要条件 (3)如果p ⇒q ,且q ⇒p ,则p 是q 的充要条件 (4)如果q ⇒p ,但p ⇏q ,则p 是q 的必要不充分条件 (5)如果p ⇏q ,且q ⇏p ,则p 是q 的既不充分也不必要条件原命题:若p ,则q逆否命题:若非q ,则非p否命题:若非p ,则非q逆命题:若q ,则p3.充分条件、必要条件的判定(二)若p 以集合A 的形式出现,q 以集合B 的形式出现即A ={ x | p(x) },B ={ x | q(x) },则关于充分条件、必要条件又可以叙述为 (1)若A ⊆B ,则p 是q 的充分条件 (2)若A ⊇B ,则p 是q 的必要条件 (3)若A =B ,则p 是q 的充要条件(4)若A B ,则p 是q 的充分不必要条件(5)若A B ,则p 是q 的必要不充分条件 (6)若A ⊈B 且A ⊉B ,则p 是q 的既不充分也不必要条件 4.等价命题(1)两个命题互为逆否命题,它们有相同的真假性①¬q 是¬p 的充分不必要条件⇔p 是q 的充分不必要条件 ②¬q 是¬p 的必要不充分条件⇔p 是q 的必要不充分条件 ③¬q 是¬p 的充要条件⇔p 是q 的充要条件④¬q 是¬p 的既不充分也不必要条件⇔p 是q 的既不充分也不必要条件 (2)两个命题为互逆命题或互否命题,它们的真假性没有关系 5. 常见结论的否定形式≠⊂≠⊃。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学常用逻辑用语目标认知考试大纲要求:1. 理解命题的概念;了解逻辑联结词“或”、“且”、“非”的含义.2. 了解命题“若p,则q”的形式及其逆命题、否命题与逆否命题,分析四种命题相互关系.3. 理解必要条件、充分条件与充要条件的意义.4. 理解全称量词与存在量词的意义;能正确地对含有一个量词的命题进行否定.重点:充分条件与必要条件的判定难点:根据命题关系或充分(或必要)条件进行逻辑推理。
知识要点梳理知识点一:命题1. 定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的语句叫做命题.(1)命题由题设和结论两部分构成. 命题通常用小写英文字母表示,如p,q,r,m,n等.(2)命题有真假之分,正确的命题叫做真命题,错误的命题叫做假命题. 数学中的定义、公理、定理等都是真命题(3)命题“”的真假判定方式:①若要判断命题“”是一个真命题,需要严格的逻辑推理;有时在推导时加上语气词“一定”能帮助判断。
如:一定推出.②若要判断命题“”是一个假命题,只需要找到一个反例即可.注意:“不一定等于3”不能判定真假,它不是命题.2. 逻辑联结词:“或”、“且”、“非”这些词叫做逻辑联结词.(1)不含逻辑联结词的命题叫简单命题,由简单命题与逻辑联结词构成的命题叫复合命题.(2)复合命题的构成形式:①p或q;②p且q;③非p(即命题p的否定).(3非真真假真真真假假真假假真真真假假假真假假①当p、q同时为假时,“p或q”为假,其它情况时为真,可简称为“一真必真”;②当p、q同时为真时,“p且q”为真,其它情况时为假,可简称为“一假必假”。
③“非p”与p的真假相反.注意:(1)逻辑连结词“或”的理解是难点,“或”有三层含义,以“p或q”为例:一是p成立且q不成立,二是p不成立但q成立,三是p成立且q也成立。
可以类比于集合中“或”. (2)“或”、“且”联结的命题的否定形式:“p或q”的否定是“p且q”;“p且q”的否定是“p或q”.(3)对命题的否定只是否定命题的结论;否命题,既否定题设,又否定结论。
知识点二:四种命题1. 四种命题的形式:用p和q分别表示原命题的条件和结论,用p和q分别表示p和q的否定,则四种命题的形式为:原命题:若p则q;逆命题:若q则p;否命题:若p则q;逆否命题:若q则p.2. 四种命题的关系①原命题逆否命题.它们具有相同的真假性,是命题转化的依据和途径之一.②逆命题否命题,它们之间互为逆否关系,具有相同的真假性,是命题转化的另一依据和途径.除①、②之外,四种命题中其它两个命题的真伪无必然联系.命题与集合之间可以建立对应关系,在这样的对应下,逻辑联结词和集合的运算具有一致性,命题的“且”、“或”、“非”恰好分别对应集合的“交”、“并”、“补”,因此,我们就可以从集合的角度进一步认识有关这些逻辑联结词的规定。
知识点三:充分条件与必要条件1. 定义:对于“若p则q”形式的命题:从逻辑观点上,关于充分不必要条件、必要不充分条件、充分必要条件、既不充分也不必要条件的判定在于区分命题的条件p 与结论q 之间的关系.①若p q ,则p 是q 的充分条件,q 是p 的必要条件; ②若pq ,但qp ,则p 是q 的充分不必要条件,q 是p 的必要不充分条件;③若q p ⇒且p ??q ,则p 是q 成立的必要不充分条件;④若既有p q ,又有q p ,记作p q ,则p 是q 的充分必要条件(充要条件). ⑤若p ??q 且q ??p ,则p 是q 成立的既不充分也不必要条件.从集合的观点上,关于充分不必要条件、必要不充分条件、充分必要条件、既不充分也不必要条件的判定在于判断p 、q 相应的集合关系.建立与p 、q 相应的集合,即(){:p A x p x =成立},(){:q B x q x =成立}.若A B ⊆,则p 是q 的充分条件,若AB ,则p 是q 成立的充分不必要条件; 若B A ⊆,则p 是q 的必要条件,若BA ,则p 是q 成立的必要不充分条件;若A B =,则p 是q 成立的充要条件;若A ⊆/B 且B ⊇/A ,则p 是q 成立的既不充分也不必要条件.2. 理解认知:(1)在判断充分条件与必要条件时,首先要分清哪是条件,哪是结论;然后用条件推结论,再用结论 推条件,最后进行判断.(2)充要条件即等价条件,也是完成命题转化的理论依据.“当且仅当”.“有且仅有”.“必须且只须”.“等价于”“…反过来也成立”等均为充要条件的同义词语. 3. 判断命题充要条件的三种方法(1)定义法:(2)等价法:由于原命题与它的逆否命题等价,否命题与逆命题等价,因此,如果原 命题与逆命题真假不好判断时,还可以转化为逆否命题与否命题来判断.即利用与;与;与的等价关系,对于条件或结论是不等关系(或否定式)的命题,一般运用等价法. (3) 利用集合间的包含关系判断,比如AB 可判断为AB ;A=B 可判断为AB ,且BA ,即AB.如图: “”“,且”是的充分不必要条件.“”“”是的充分必要条件.知识点四:全称量词与存在量词1. 全称量词与存在量词全称量词及表示:表示全体的量词称为全称量词。
表示形式为“所有”、“任意”、“每一个”等,通常用符号“”表示,读作“对任意”。
含有全称量词的命题,叫做全称命题。
全称命题“对M中任意一个x,有p(x)成立”可表示为“”,其中M为给定的集合,p(x)是关于x的命题.(II)存在量词及表示:表示部分的量称为存在量词。
表示形式为“有一个”,“存在一个”, “至少有一个”,“有点”,“有些”等,通常用符号“”表示,读作“存在”。
含有存在量词的命题,叫做特称命题特称命题“存在M中的一个x,使p(x)成立”可表示为“”,其中M为给定的集合,p(x)是关于x的命题.2. 对含有一个量词的命题进行否定(I)对含有一个量词的全称命题的否定全称命题p:,他的否定:全称命题的否定是特称命题。
(II)对含有一个量词的特称命题的否定特称命题p:,他的否定:特称命题的否定是全称命题。
注意:(1)命题的否定与命题的否命题是不同的.命题的否定只对命题的结论进行否定(否定一次),而命题的否命题则需要对命题的条件和结论同时进行否定(否定二次)。
正面词等于大于小于是都是一定是至少一个至多一个否定词不等于不大于不小于不是不都是一定不是一个也没有至少两个规律方法指导1. 解答命题及其真假判断问题时,首先要理解命题及相关概念,特别是互为逆否命题的真假性一致.2. 要注意区分命题的否定与否命题.3. 要注意逻辑联结词“或”“且”“非”与集合中的“并”“交”“补”是相关的,将二者相互对照可加深认识和理解.4. 处理充要条件问题时,首先必须分清条件和结论。
对于充要条件的证明,必须证明充分性,又要证明必要性;判断充要条件一般有三种方法:用集合的观点、用定义和利用命题的等价性;求充要条件的思路是:先求必要条件,再证明这个必要条件是充分条件.5. 特别重视数形结合思想与分类讨论思想的运用。
总结升华:1. 判断复合命题的真假的步骤:①确定复合命题的构成形式;②判断其中简单命题p和q的真假;③根据规定(或真假表)判断复合命题的真假.2. 条件“或”是“或”的关系,否定时要注意.类型二:四种命题及其关系2. 写出命题“已知是实数,若ab=0,则a=0或b=0”的逆命题,否命题,逆否命题,并判断其真假。
解析:逆命题:已知是实数,若a=0或b=0, 则ab=0, 真命题;否命题:已知是实数,若ab≠0,则a≠0且b≠0,真命题;逆否命题:已知是实数,若a≠0且b≠0,则ab≠0,真命题。
总结升华:1.“已知是实数”为命题的大前提,写命题时不应该忽略;2. 互为逆否命题的两个命题同真假;3. 注意区分命题的否定和否命题.类型三:全称命题与特称命题真假的判断总结升华:1. 要判断一个全称命题是真命题,必须对限定的集合M中每一个元素,验证成立;要判断全称命题是假命题,只要能举出集合M中的一个,使不成立可;2. 要判断一个特称命题的真假,依据:只要在限定集合M中,至少能找到一个,使成立,则这个特称命题就是真命题,否则就是假命题.类型四:充要条件的判断总结升华:1. 处理充分、必要条件问题时,首先要分清条件与结论;2. 正确使用判定充要条件的三种方法,要重视等价关系转换,特别是与关系.类型五:求参数的取值范围总结升华:由p或q为真,知p、q必有其一为真,由p且q为假,知p、q必有一个为假,所以,“p假且q真”或“p真且q假”.可先求出命题p及命题q为真的条件,再分类讨论.总结升华:从认知已知条件切入,将四种命题或充要条件问题向集合问题转化,是解决这类问题的基本策略。
类型六:证明总结升华:1.利用反证法证明时,首先正确地作出反设(否定结论).从这个假设出发,经过推理论证,得出矛盾,从而假设不正确,原命题成立,反证法一般适宜结论本身以否定形式出现,或以“至多…”、“至少…”形式出现,或关于唯一性、存在性问题,或者结论的反面是比原命题更具体更容易研究的命题.2. 反证法时对结论进行的否定要正确,注意区别命题的否定与否命题.总结升华:1. 对于充要条件的证明,既要证明充分性,又要证明必要性,所以必须分清条件是什 么,结论是什么。
2. 充分性:由条件结论;必要性:由结论条件.3.叙述方式的变化(比如是的充分不必要条件”等价于“的充分不必要要条件是”).三、典型例题选讲例1 写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假.(1)已知a ,b ,c 为实数,若0ac <,则20ax bx c ++=有两个不相等的实数根; (2)两条平行线不相交; (3)若220x y +=,则x ,y 全为零.分析:写出一个命题的四种命题形式,关键是分清命题的条件与结论,把命题写成“如果…那么…”的形式,再根据四种命题的定义写出其他三种命题即可.解:(1)原命题是真命题;逆命题:若20ax bx c ++=有两个不相等的实数根,则0ac <,(假); 否命题:若0ac ≥,则20ax bx c ++=没有两个不相等的实数根,(假); 逆否命题:若20ax bx c ++=没有两个不相等的实数根,则0ac ≥,(真). (2)原命题形式可写成:若两条直线平行,则它们不相交,(真); 逆命题:若两条直线不相交,则它们平行,(假); 否命题:若两条直线不平行,则它们相交,(假); 逆否命题:若两条直线相交,则它们不平行,(真). (3)原命题是真命题;逆命题:若x ,y 全为零,则220x y +=,(真); 否命题:若220x y +≠,则x ,y 不全为零,(真); 逆否命题:若x ,y 不全为零,则220x y +≠,(真).归纳小结:(1)本题考查了命题的四种形式,并能进行真假判断,强化对知识运用的灵活性.(2)要注意四种命题之间的等价关系,即原命题与逆否命题等价,否命题与逆命题等价.在判断一个命题是真命题时,要严格按照数学逻辑进行推理证明,而要说明它是假命题时,只需要举出一个反例即可.(3)在否定条件或结论时,要注意否定词语的使用.常见否定词语有: 正面词语 等于 大于 小于 是 都是 至多有一个 否定词语 不等于不大于不小于 不是不都是至少有两个例2 说明下列命题形式,指出构成它们的简单命题:⑴矩形的对角线垂直平分; ⑵不等式220x x -->的解集是{2x x >或}1x <-;⑶43≥; ⑷方程没有实数根.正面词语 至少有一个 任意的 所有的 一定 否定词语一个也没有某个某些一定不分析:根据命题中出现的逻辑联结词或隐含的逻辑联结词,进行命题结构的判断,其中解题的关键是正确理解逻辑联结词“且”、“或”、“非”的含义.解:⑴这个命题是“p q ∧”的形式,其中p :矩形的对角线互相垂直,q :矩形的对角线互相平分.⑵这个命题是“p q ∨”的形式,其中p :不等式220x x -->的解集是{}2x x >,q :不等式220x x -->的解集是或{}1x x <-.⑶这个命题是“p q ∨”的形式,其中p :43>,q :43=. ⑷这个命题是“¬p ”的形式,其中p :方程有实数根.归纳小结:⑴本题考查了含有逻辑联结词的命题结构,要求能正确理解逻辑联结词,并找出隐含的逻辑联结词,能根据命题形式分析问题、解决问题.⑵把简单命题合成为复合命题或把复合命题分解为两个简单命题并判断其真假是本节的重点之一,关键在于理解逻辑联结词的含义.熟悉真值表可以加快对含有逻辑联结词的命题的真假判断.⑶逻辑联结词中的“或”、“且”、“非”与日常用语中的“或”、“且”、“非”的意义是不完全相同的.如逻辑词中的“或”含有可以兼有之意,而生活中的“或”一般不可兼有的意思.例3(2008广东)已知命题p :所有有理数都是实数,命题q :正数的对数都是负数,则下列命题中为真命题的是( )A .()p q ⌝∨B .p q ∧ C .()()p q ⌝∧⌝ D .()()p q ⌝∨⌝分析:本题只需要判断出命题p 和命题q 的真假,根据真值表进行判断即可.解:由题意可以判断命题p 是真命题,命题q 是假命题,所以命题p ⌝是假命题,命题q ⌝是真命题.只有()()p q ⌝∨⌝是真命题,故选D .归纳小结:(1)本题考查了命题的真假判断和真值表的使用,考查了逻辑判断的思辩能力和推理能力;(2)命题p q ∨的真假判断是“一真就真,全假为假”;命题p q ∧的真假判断是“一假就假,全真为真”;命题p 与p ⌝的真假相反.例4(2009年北京)“2()6k k Z παπ=+∈”是“1cos 22α=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件分析:简易逻辑中充要条件的判断前提是先明确条件与结论,即弄清楚哪个是条件,哪个是结论,再根据条件分析出推式的关系,从而利用定义和推式得到结论.解:当2()6k k Z παπ=+∈时,1cos 2cos 4cos 332k ππαπ⎛⎫=+== ⎪⎝⎭,即p q ⇒.反之,当1cos 22α=时,有()2236k k k Z ππαπαπ=+⇒=+∈,或()2236k k k Z ππαπαπ=-⇒=-∈,即q ??p .综上所述,“2()6k k Z παπ=+∈”是“1cos 22α=”的充分不必要条件,故选A . 例5(2008福建)设集合01x A x x ⎧⎫=<⎨⎬-⎩⎭,{}03B x x =<<,那么“m A ∈”是“m B ∈”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件分析:本题条件与结论的形式都是集合形式,只要理清集合之间的关系,按照充要条件与集合的对应关系即可作出判断.解:∵{}01A x x =<<,∴AB .故选A .归纳小结:(1)本题考查了充要条件的定义,这是高考试题题型的常见形式之一,可与其他考查内容综合.同时还考查了数学转化思想、合情推理能力.(2)充分不必要条件、必要不充分条件、充分必要条件、既不充分也不必要条件反映了条件p 和结论q 之间的因果关系,在结合具体问题进行判断时,要注意以下几点:①确定问题的条件和结论;②尝试从条件推结论,结论推条件;③确定条件是结论的什么条件.也可以从命题体现的集合运算关系,判断出命题间的条件.在从条件推结论,结论推条件时,可以利用学过的定理、定义和公式直接做逻辑判断,或利用数轴或Venn 图分析两个集合的关系判断出“p q ⇒”和“q p ⇒”的真假.例6(2007湖北)已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件.现有下列命题:①s 是q 的充要条件;②p 是q 的充分条件而不是必要条件;③r 是q 的必要条件而不是充分条件;④s p ⌝⌝是的必要条件而不是充分条件;⑤r 是s 的充分条件而不是必要条件,则正确命题序号是( )A.①④⑤B.①②④C.②③⑤D.②④⑤分析:本题命题及其关系较多,如果直接解决则比较麻烦,可以用符号“⇒”、“⇔”等符号表示,简化题意,解决方便.解:由题意可知:p r ⇒,且r ??p ,q r s q ⇒⇒⇒.所以s q ⇔,①正确;p r q ⇒⇔,且q ??p ,②正确;r q ⇔,③不正确; p r s ⇒⇔,且s ??p ,④正确;r s ⇔,⑤不正确.故选B .归纳小结:(1)本题考查了充分条件、必要条件、充要条件的概念及命题之间关系的转化,逆否命题的等价性,考查了逻辑思辩能力和转化思想.(2)在命题之间的充分条件、必要条件、充要条件的推导过程中,使用符号语言可以简化过程,降低思维量. 例7 已知命题p :1123x --≤,命题q :()222100x x m m -+-≤>,若¬p 是¬q 的充分不必要条件,求实数m 的取值范围.分析:¬p 是¬q 的充分不必要条件转化为等价命题形式:q 是p 的充分不必要条件,利用等价命题先进行命题的等价转化,搞清晰命题中条件与结论的关系,再去解不等式,找解集间的包含关系,从而求出m 的取值范围.解:记{}1122103x A xx x ⎧-⎫=-≤=-≤≤⎨⎬⎩⎭, ∵¬p 是¬q 的充分不必要条件, ∴q 是p 的充分不必要条件,即BA .∴012110m m m >⎧⎪->-⎨⎪+<⎩,解得03m <<. 所以实数m 的取值范围是03m <<.归纳小结:(1)本题以含绝对值的不等式及一元二次不等式的解法为考查对象,同时考查了充分必要条件及四种命题中等价命题的应用,考查了转化思想的运用,强调了知识点运用的灵活性.(2)对四种命题以及充要条件的定义实质理解不清晰是解此题的难点,在判断或利用两个命题的充要条件时,可以利用它们的等价式,即将命题转化为另一个等价形式的命题,一般可以利用逆否命题的等价形式:①若¬p ⇒¬q ,即q p ⇒,则p 是q 的必要条件,q 是p 的充分条件;②若¬p ⇒¬q ,且¬q ??¬p ,即q p ⇒,且p ??q ,则p 是q 的必要不充分条件;③若¬q ⇒¬p ,且¬p ??¬q ,即p q ⇒,且q ??p ,则p 是q 的充分不必要条件;④若¬p ⇔¬q ,则p q ⇔,即p 、q 互为充要条件;⑤若¬p ??¬q ,且¬q ??¬p ,即q ??p ,且p ??q ,则p 是q 的既不充分也不必要条件. 例8(2009年海南、宁夏)有四个关于三角函数的命题:1p :x R ∃∈,221sin cos 222x x += 2p :x ∃、y R ∈,()sin sin sin x y x y -=-3p :[]0,x π∀∈sin x = 4p :sin cos 2x y x y π=⇒+=其中是假命题的有( )A .1p ,4pB .2p ,4pC .1p ,3pD .2p ,4p分析:若全称命题为真命题,必须对限定范围内的元素中的全体都成立;若特称命题是真命题,只需在限定范围中有一个元素满足条件即可.解:1p 是假命题,因为x R ∀∈,22sincos 122x x+=; 2p 是真命题,如0x y ==时成立;3p 是真命题,Q []0,x π∀∈,sin 0x ≥.sin sin x x ===; 4p 是假命题,如2x π=,2y π=时,sin cos x y =,但2x y π+≠.故选A .归纳小结:(1)本题考查了全称命题与特称命题的真假判断,同时也考查了对概念的转化能力和推理能力. (2)一般地说,全称命题与特称命题的真假判断方法是:①判定一个全称命题是真命题时,必须对限定的集合M 中的每一个元素x ,验证()p x 成立即可;②判定一个全称命题是假命题时,只要能列举出集合M 中的一个元素0x ,使()0p x 不成立即可;③判定一个特称命题是真命题时,只要在限定的集合M 中,至少能找到一个元素0x ,使()0p x 成立即可,否则,这个特称命题就是假命题.例9(2007宁夏)已知命题p :1sin ,≤∈∀x R x ,则( )A.1sin ,:≥∈∃⌝x R x pB.1sin ,:≥∈∀⌝x R x pC.1sin ,:>∈∃⌝x R x pD.1sin ,:>∈∀⌝x R x p分析:对全称(特称)命题的否定是将其全称(存在)量词改为存在(全称)量词,再将结论否定. 解:将∀变为∃,同时否定sin 1x ≤,可以得到1sin ,:>∈∃⌝x R x p . 故选C .归纳小结:(1)本题考查了含有一个量词的命题的否定及否定词的运用,对学生的逻辑判断能力进行考查. (2)一般地,对于含有一个量词的全称命题的否定,有下面的结论: 全称命题p :(),x M p x ∀∈,它的否定¬p :0x M ∃∈,¬()0p x . 特称命题p :()00,x M p x ∃∈,它的否定¬p :x M ∀∈,¬()p x .要注意否定词的运用.例10 已知命题p :210x mx ++=有两个不等的负根,命题q :()2442x m x +-+10无实数根.若命题p 与命题q 有且只有一个为真,求实数m 的取值范围.分析:对命题p 和命题q 的条件进行化简可得m 的范围,再对p 、q 的真假进行讨论,得到参数成立的条件,利用交集求出m 的取值范围.解:∵方程210x mx ++=有两个不等的负根,∴2400m m ⎧->⎨-<⎩,解得2m >. ∵方程()2442xm x +-+10=无实数根,∴()2162160m --<,解得13m <<.若命题p 为真,命题q 为假,则213m m m >⎧⎨≤≥⎩或,得3m ≥. 若命题p 为假,命题q 为真,则213m m ≤⎧⎨<<⎩,得12m <≤. 综上所述,实数m 的取值范围为12m <≤或3m ≥.归纳小结:(1)本题考查了方程求解的条件、命题真假的讨论、集合运算等知识,突出考查了分类讨论思想,和把命题真假转化为集合运算的能力.(2)根据问题条件求出命题所对应的集合范围,将命题的真假条件转化为集合的运算,即当命题为真时,则条件所对集合为原集合,当命题为假时,则条件所对应的集合为补集.两个命题的真假同时成立,则条件所对应的集合为两个集合的交集.在命题的真假性不能确定的前提下,应作分类讨论.四、本专题总结本专题内容主要是常用逻辑用语,包括命题与量词,逻辑联结词以及充分条件、必要条件与命题的四种形式. 1.要理解命题的四种形式,并会运用逻辑推理判断真命题,利用举反例判断假命题.原命题与其逆否命题为等价命题,逆命题与否命题为等价命题,当一个命题的真假不易判断时,可考虑判断其等价命题的真假.2.理解逻辑联结词的含义,能正确分析命题形式,指出构成它们的简单命题,并会依据真值表判断命题的真假.3.注意一个命题的否定与命题的否命题是不同的,原命题的否定只否定结论,原命题的否命题既否定条件,又否定结论.4.判断充要条件的三种方法是:定义法、等价法、利用集合间的包含关系作判断.。