系统的设计与校正问题

合集下载

线性系统校正方法-系统的设计与校正问题

线性系统校正方法-系统的设计与校正问题

γ 180 G(jωc ) 90 tg1
1 4ζ 4 2ζ 2 tg1

2ζ 1 4ζ 4 2ζ 2
ωc ω n 1 4ζ 4 2ζ 2
系统的设计与校正问题
90
60
30
0
0 0.4 0.8
100
1.2 1.6 2.0
0 60
3 Mr
2 Mr
1
p
p
0 0.2 0.4 0.6 0.8 1.0
• 稳态特性--反映了系统稳定后的精度,
• 动态特性--反映了系统响应的快速性。
• 人们追求的是稳定性强,稳态精度高,动态响应快。
• 不同域中的性能指标的形式又各不相同:
• 1.时域指标:超调量σp、过渡过程时间t s、以及

峰值时间tp、上升时间tr等。
• 2.频域指标:(以对数频率特性为例)
• ① 开环:剪切频率ωc、相位裕量r及增益裕量 Kg等。
稳 由运动方程的系数 态 决定。
系统工作点处对应的 取决于系统低频段特
开环根轨迹增益K1越 性,型号数相同,低
大,ess越小。
频段幅值越大,ess越小
动 态
过渡过程时间: ts 最大超调量 : σP (及tr、tP、td、振 荡次数u等)。
ts越短,σP越小, 动态特性越好。
主要取决于系统主导 主要取决于频率特性中
极点位置。
频段的特性。参数:
主要特性参数:
相位裕量:γ
阻尼比 : ζ
无阻尼自然频率:ωn 主导极点距虚轴越近 ,系统振荡越厉害。
增益剪切频率:ωc γ越小,振荡越厉害,
ωc越大,响应速度越快
线性系统的校正方法>>系统的设计与校正问题

《自动控制原理》第6章_自动控制系统的校正

《自动控制原理》第6章_自动控制系统的校正
频率法校正的基本原理: 利用校正网络的特性来增大系统的相位裕度,
改善系统瞬态响应。
校正装置分类
校正装置按 控制规律分
超前校正(PD) 滞后校正(PI)
滞后超前校正(PID)
校正装置按 实现方式分
有源校正装置(网络) 无源校正装置(网络)
有源超前校正装置
R2
u r (t)
i 2 (t)
R1
i1(t)
(aTa s
1)(Tb a
s
1)
滞后--超前网络
L'()
20db / dec
20 lg K c
1 1/ T1 2 1/ T2
设相角为零时的角频率
1
()
a)
20db / dec
5
1 T1T2
90
5 校正网络具有相
5
位滞后特性。
90
b)
5 校正网络具有相位
超前特性。
G( j)
Kc
( jT1
G1 (s)
N (s) C(s)
G2 (s)
性能指标
时域:
超调量 σ%
调节时间 ts
上升时间 tr 稳态误差 ess
开环增益 K
常用频域指标:
开环频域 指标
截止频率: 相角裕度:
c
幅值裕度:
h
闭环频域 指标
峰值 : M p
峰值频率: r
带宽: B
复数域指标 是以系统的闭环极点在复平面
上的分布区域来定义的。
解:由稳态速度误差系数 k v 1应00 有
G( j)
100
j( j0.1 1)( j0.01 1)
100 A()
1 0.012 1 0.00012

第六章 线性系统的校正方法

第六章 线性系统的校正方法

例6-4
调小了开环增益
(快速算)
串联滞后校正基本原理总结:
利用滞后网络或PI控制器的高频幅值衰减特性,使已校正 系统截止频率下降,从而使系统获得足够的相角裕度。因此, 滞后网络的最大滞后角应力求避免发生在系统截止频率附近。
在系统响应速度要求不高而抑制噪声电平性能要求较高的 情况下,可考虑采用串联滞后校正。
理上难以准确实现)
2)频率响应校正设计的实质(问答题)
依据:三段频理论
用频域法设计控制系统的实质,就是在系统中加入频率 特性形状合适的校正装置,使得开环系统频率特性形状变成 所期望的形状:低频段增益充分大,以保证稳态误差要求; 中频段对数幅频特性斜率一般为20dB / dec,并且占据充分宽的 频带,以保证具备适当的相角裕度和时域响应的快速性;高 频段增益尽快减小,以消弱噪声影响。
Gc
(s)
(1 Tas)(1 Tbs)
(1 Tas)(1
Tb
s)
1
5. 串联综合法校正
综合校正方法将性能指标要求转化为期望开环对 数幅频特性,再与待校正系统的开环对数幅频特性 比较,从而确定校正装置的形式和参数。该方法适 用于最小相位系统,但有可能求出来的校正装置无 法物理实现。
6-4. 反馈校正
负实零点
(可提高相角裕度)
例6-2
注:
PID控制器可利用有源装置实现
PID控制器各部分参数的 选择,通常可以在系统现 场进行调试(经验很重 要),最后确定。
注:
PID控制的优点: 校正装置中最常用的是PID控制规律。在科学技D由于它自身的优点仍然是得到最广 泛应用的基本控制规律。
第六章 线性系统的校正方法
▪ 6-1 . 系统的设计与校正问题 ▪ 6-2. 常用校正装置及其特性 ▪ 6-3. 串联校正 ▪ 6-4. 反馈校正 ▪ 6-5. 复合校正 ▪ 6-6. 控制系统校正设计

自动控制原理第六章

自动控制原理第六章

G(s)

K0 K p (Ti s 1) Ti s2 (Ts 1)
表明:PI控制器提高系统的型号,可消除控制系统对斜 坡输入信号的稳态误差,改善准确性。
校正前系统闭环特征方程:Ts2+s+K0=0 系统总是稳定的
校正后系统闭环特征方程:TiTs3 Ti s2 K p K0Ti s K p K0 0
调节时间 谐振峰值
ts

3.5
n
Mr
2
1 ,
1 2
0.707
谐振频率 r n 1 2 2 , 0.707
带宽频率 b n 1 2 2 2 4 2 4 4 截止频率 c n 1 4 4 2 2
相角裕度
arctan
低频段:
开环增益充分大, 满足闭环系统的 稳态性能的要求。
中频段:
中频段幅频特性斜 率为 -20dB/dec, 而且有足够的频带 宽度,保证适当的 相角裕度。
高频段:
高频段增益尽 快减小,尽可 能地削弱噪声 的影响。
常用的校正装置设计方法 -均仅适用最小相位系统
1.分析法(试探法)
特点:直观,物理上易于实 现,但要求设计者有一定的 设计经验,设计过程带有试 探性,目前工程上多采用的 方法。
列劳思表:
s3 TiT
K p K0Ti
s2 Ti
K pK0
s1 K p K0 (Ti T )
s0 K p K0
若想使系统稳定,需要Ti>T。如果 Ti 太小,可能造成系 统的不稳定。
5.比例-积分-微分(PID)控制规律
R( s )
E(s)
C(s)
K
p (1

控制系统校正的设计原理

控制系统校正的设计原理

控制系统校正的设计原理控制系统校正的设计原理是通过对控制系统进行检测和调整,使其达到预期的性能和稳定性。

校正设计的目标是最大限度地减小系统的误差,并使系统能够在不同的工况下保持稳定和可靠的运行。

以下是控制系统校正设计的一些基本原理。

1. 误差检测与分析:首先需要对控制系统的误差进行检测和分析。

误差可以分为静态误差和动态误差。

静态误差是指系统在稳态下的偏差,动态误差则是指系统在过渡过程中的偏差。

通过对误差的检测和分析,可以确定所需的校正策略和方法。

2. 校正模型建立:校正设计的第一步是建立系统的数学模型。

根据实际情况,可以利用传递函数、状态空间模型或其他数学方法来描述系统的动态特性。

校正模型的建立是校正设计的基础,它可以帮助我们理解系统的行为和性能,并作为校正过程中的参考。

3. 校正方法选择:根据校正设计的目标和要求,选择合适的校正方法。

常见的校正方法包括增益校正、相位校正、时间延迟校正等。

不同的校正方法适用于不同的系统和校正需求,选择恰当的校正方法可以提高系统的性能和稳定性。

4. 校正过程设计:校正过程设计是校正设计中的关键步骤。

根据校正方法的选择,设计出合理的校正过程。

校正过程一般包括系统的输入输出信号获取、信号处理和计算、校正参数的确定等步骤。

设计良好的校正过程可以提高校正的效率和准确性。

5. 校正效果评估:在完成校正过程后,需要对校正效果进行评估。

校正效果评估可以通过比较校正前后的系统性能指标、误差大小等来进行。

如果校正的效果达到了预期的要求,即达到了设计指标,那么校正过程可以结束。

如果校正效果不理想,可以重新调整校正参数,或者尝试其他的校正方法。

6. 长期稳定性考虑:除了短期的校正设计,还需要考虑系统的长期稳定性。

随着时间的推移,系统的参数和性能可能会发生变化,因此需要定期进行校正和调整,以确保系统始终能够保持良好的性能和稳定性。

以上是控制系统校正设计的一些基本原理。

校正设计是控制系统工程中重要的环节,能够帮助提高系统的控制性能和稳定性。

第六章线性系统的校正方法

第六章线性系统的校正方法

第六章线性系统的校正方法第六章线性系统的校正方法一、教学目的与要求:通过对本章内容的讲述,要让学生懂得校正的目的,校正的基本方式。

掌握控制系统的基本控制规律,常用校正装置的特点与功能,串联超前、滞后、滞后- 超前校正的设计步骤。

关键是通过这些知识的学习,将前面几章的内容综合起来加以运用,本章知识是在实际应用中的指导思想。

二、授课主要内容:1.系统的设计与校正问题1)性能指标2)校正方式3)基本控制规律2.常用校正装置及其特性1)无源校正装置2)有源校正装置3.串联校正1)串联超前校正2)串联滞后校正3)串联滞后—超前校正(详细内容见讲稿)三、重点、难点及对学生的要求(掌握、熟悉、了解、自学)(1)重点掌握的内容1)掌握用解析法设计一阶、二阶串联校正装置的方法。

2)掌握本书介绍的两大类利用Bode 图设计串级校正装置的频率域方法。

3)掌握本书中介绍的前馈校正装置(包括前置滤波器)的设计方法。

(2)一般掌握的内容1)掌握用解析法设计串联PID 控制器的方法。

2)掌握用解析法设计并联校正装置的方法。

(3)一般了解的内容1)了解校正的四大方式及其作用。

2)了解校正装置的RC 网络实现的物理构成。

3)了解解析法设计一般二次校正装置的思想。

4)了解频率域与时域指标间的互换公式。

四、主要外语词汇性能指标performance specification 校正方式compensation mode 基本控制规律basic control rule 串联校正series compensation 反馈校正feedbackcompensation 超前校正lead compensation 滞后校正lag compensation 超前-滞后校正lag-lead compensation 复合校正complex compensation五、辅助教学情况(见课件)六、复习思考题1. 什么是控制系统的校正?什么是串联校正方式?校正装置的选取原则是什么?2. 简述串联校正方式中调节器的设计方法并说明各设计方法的特点?3. 比例微分控制规律对改变系统的性能有什么作用?4. 比例积分控制规律对改变系统的性能有什么作用?5. Kc、Ti 及Td 改变后对系统控制质量的影响如何?6. 分析积分作用的强弱,对系统有何影响?7. 将PID 环节中的微分部分改为不完全微分形式,曲线形状如何?七、参考教材(资料)1.《自动控制理论与设计》曹柱中徐薇莉编上海交通大学出版社2.《自动控制原理》翁思义杨平编著中国电力出版社参考两书第六章有关内容。

三阶系统的分析与校正

三阶系统的分析与校正

三阶系统的分析与校正引言:在控制系统中,三阶系统是一种常见且重要的系统。

它具有更高的阶数,因此对于控制系统的性能和稳定性有着更高的要求。

因此,对于三阶系统的分析和校正具有一定的复杂性。

本文将围绕三阶系统的分析和校正展开讨论,并介绍常见的校正方法。

一、三阶系统的基本特点和模型表示三阶系统是一个具有三个自由度的系统,可以用如下的传递函数表示:G(s)=K/(s^3+a*s^2+b*s+c)其中,K为传递函数的增益,a、b、c分别为系统的阻尼、震荡频率和系统自然频率。

二、三阶系统的稳定性分析稳定性是控制系统设计和校正的基本要求。

对于三阶系统的稳定性分析可以采用Bode图和Nyquist图等方法。

1. Bode图分析通过绘制传递函数的幅频响应和相频响应曲线,可以得到系统的幅度余弦曲线和相位余弦曲线。

根据Bode图的特点,可以确定系统的稳定性。

2. Nyquist图分析Nyquist图是对传递函数的极坐标表示。

通过绘制传递函数的Nyquist图,可以分析系统的稳定性。

以上两种方法都可以用来评估系统的稳定性。

如果系统的Bode图和Nyquist图图像均在单位圆内,则系统是稳定的。

三、三阶系统的校正方法校正是为了使控制系统具有所需的性能指标,通过调整系统中的参数和控制器等手段实现。

1.PID控制器的设计PID控制器是最常用的控制器之一,具有简单、稳定、易于实现等特点。

PID控制器由比例控制、积分控制和微分控制三部分组成。

通过调整PID控制器中的三个参数,可以实现对三阶系统的控制。

2.根轨迹法根轨迹法是一种经典的校正方法,通过分析系统的根轨迹来设计合适的校正器。

根轨迹是描述系统根位置随参数变化而变化的曲线。

通过调整参数,可以使根轨迹满足设计要求,进而实现对系统的校正。

3.频率响应方法频率响应方法基于传递函数的幅频响应和相频响应特性进行校正。

根据系统的特性,通过调整增益和相位等参数,可以实现对系统的校正。

以上是常见的三阶系统的校正方法,可以根据实际需求选择合适的方法进行校正。

系统的设计与校正问题

系统的设计与校正问题

m(t)
-
c(t)
I控制器
串联校正时,采用I控制器可以提高系统的类别号,有利于系统稳态性能的提高,但I控制器是系统增加了一个位于原点的开环极点,使信号产生90度的相角之后,不利于系统的稳定性。
系统校正设计中很少单独使用。
(四) 比例-积分(PI)控制规律
m(t)
-
c(t)
根据被控对象及其控制要求,选择适当的控制器及控制规律设计一个满足给定性能指标的控制系统。
校正(补偿):通过改变系统结构,或在系统中增加附加装置或元件对已有的系统(固有部分)进行再设计使之满足性能要求。
控制系统的设计本质上是寻找合适的校正装置
(校正装置)
一、控制系统的设计任务
P控制器:具有比例控制规律的控制器。
(串联校正中,提高Kp可以提高系统的开环增益,减小系统稳态误差,提高系统的精度,但会降低系统的相对稳定性,可能造成闭环系统的不稳定)
P控制器相当与一个可调增益的放大器
P控制器只改变信号的增益而不改变相位
系统校正设计中很少单独使用
Kp<1
Kp>1 对系统性能的影响正好相反。 开环增益加大,稳态误差减小;幅值穿越频率增大,过渡过程时间缩短;系统稳定程度变差。 原系统稳定裕量充分大时才采用比例控制。
(二) 比例-微分(PD)控制规律
m(t) PD控制器
1
3
2
预先作用抑制阶跃响应的超调 缩短调节时间 抗高频干扰能力 转折频率
相位裕量增加,稳定性提高;
c增大,快速性提高
Kp=1时,系统的稳态性能没有变化。
高频段增益上升,可能导致执行元件输出饱和,并且降低了系统抗干扰的能力;
微分控制仅仅在系统的瞬态过程中起作用,一般不单独使用。

自动控制原理第六章

自动控制原理第六章

R(s) + -
校正装置 Gc (s)
原有部分 Go(s)
C(s)
R(s)
+ -
+ -
原有部分 Go(s) 校正装置 Gc (s)
C(s)
(a) 串联校正
(b ) 反馈校正
R(s) + -
校正装置 Gc1(s)
+ -
原有部分 Go(s) 校正装置 Gc2(s)
C(s) R(s)
校正装置 Gc (s) + - + + 原有部分 Go(s) C(s)
第六章 线性系统的校正方法
系统的设计与校正问题 常用校正装置及其特性 串联校正 反馈校正
前面几章,我们主要学习了如何分析一个控制系统, 分析控制系统是否稳定,并且通过求解系统暂态性能指标、
稳态误差我们可以评价此系统性能的好坏。
这一章,我们着重介绍如何设计校正装臵使原不满足性 能指标要求的系统满足所要求的性能指标。
制器对系统性能的影响。
R(s) + - E(s) Kp(1 +Tds)
1 Js 2
C(s)
图 6-3 比例-微分控制系统
解 无PD控制器时, 系统的特征方程为
Js2+1=0
显然, 系统的阻尼比等于零, 系统处于临界稳定状态, 即 实际上的不稳定状态。 接入PD控制器后, 系统的特征方程

Js2+KpTds+Kp=0
系统由原来的Ⅰ型系统提高到了Ⅱ型系统。若系统的输入 信号为单位斜坡函数, 则无PI控制器时, 系统的稳态误差为1/K;
接入PI控制器后, 稳态误差为零。表明Ⅰ型系统采用PI控制器
后, 可以消除系统对斜坡输入信号的稳态误差, 控制精度大为 改善。 采用PI控制器后, 系统的特征方程为

自动控制原理第6章

自动控制原理第6章

二、带宽的确定
Mr
( j 0) 0.707Φ( j 0)
( j )
b的选择要兼顾跟 踪输入信号的能力 和抗干扰的能力。 若输入信号的带宽 为 0~ M,扰动信 号带宽为 1~ 2, 则b=(5~10) M, 且使 1~ 2 置于b 之外。
0
r b
输入信号

R( jw)


结束
6-2 PID控制器及其控制规律
• 注明:讲课顺序调整,本节内容在教材 P246~ P248和P254~P257
比例-积分-微分(PID)控制器 是串联校正 中常用的有源校正装置。 PID (Proportional Integral Derivative)是实 际工业控制过程中应用最广泛、最成功的一种控 制规律。 PID :对偏差信号e(t)进行比例、积分和微分运 算变换后形成的一种控制规律。
系统的闭环零点改变 系统的闭环极点未改变 增加系统抑制干扰的能力 稳定性未受影响
u0
+
ug
+
△u 电压

+
u1 功率

+
+ ua
R
n
SM 负 载
放大
放大
电压 放大

i
+
un
TG
图1-8 电动机速度复合控制系统
说明:

串联校正和反馈校正都属于主反馈回路之内的校
正。 前馈补偿和扰动补偿则属于主反馈回路之外的校 正。 对系统校正可采取以上几种方式中任何一种,也 可采用某几种方式的组合。
给定 元件
比较 元件
-
串联 校正元件
-
放大 元件
执行 元件

第六章 系统校正

第六章 系统校正
有源校正网络有多种形式。下图a为同相输入超前(微分)有源 网络,其等效电路见图b 。
常用的有源校正网络见书。
三、串联校正 1 频率响应法校正设计
用频率法对系统进行校正的基本思路是通过校正装置 的引入改变开环频率特性中频部分的形状,即使校正后系 统的开环频率特性具有如下的特点:低频段增益满足稳态 精度的要求;中频段对数幅频特性渐近线的斜率为-20dB /dec,并具有一定宽度的频带,使系统具有满意的动态性 能;高频段幅值能迅速衰减,以抑制高频噪声的影响。
3)积分(Ⅰ)控制规律 具有积分控制规律的控制器,称为Ⅰ控制器。Ⅰ控制器的输出信
号m(t)与其输入信号e(t)的积分成正比,即
其中Ki为可调比例系数。 在串联校正时,采用Ⅰ控制器可以提高系 统的型别(无差度),有利于系统稳态性能的提高,但积分控制使 系统增加了一个位于原点的开环极点,使信号产生90°的相角滞后, 对系统不利。因此,在控制系统的校正设计中,通常不宜采用单一 的Ⅰ控制器。
控制系统方框图
R(s)
+_
K s(s 1)
C(s)
若要求系统在单位斜坡输入信号作用时,稳态误
差ess≤0.1,开环系统剪切频率c≥4.4 (弧度/秒),相 角裕度g ≥45°,幅值裕度h(dB) ≥10.试选择串联无
源超前网络的参数。
为首Ⅰ先型调系整统开,所环以增有益Ke.s本s 例K1未校0正.1系统
待校正系统相角迅速减小,使已校正系统的相角裕度 改善不大,很难得到足够的相角超前量。在一般情况 下,产生这种相角迅速减小的原因是,在待校正系统 截止频率的附近,或有两个交接频率彼此靠近的惯性
环节;或有两个交接频率彼此相等的惯性环节;或有 一个振荡环节。 在上述情况下,系统可采用其它方法进行校正。

第六章_线性系统的校正方法

第六章_线性系统的校正方法
若输入信号的带宽:
中频区
0 ~ M
噪声信号主要作用的频带为:
1 ~ n
而且使
1 ~ n
b (5 ~ 10) M
处于
0 ~ b 之外。
0
M
1
n

b
第一节 系统的设计与校正问题 三、 校正方式 串联校正、反馈校正、前馈校正、复合校正 1、串联校正与反馈校正
R( s )
N (s)
(Ta s 1)( T20 1)a b s log Gc ( s) , (T1s 1 Ts ()( Ta 1)1) 2s 网络的滞后 T1T2 TaTb , ( aTa s 1) 部分: T1 T2 Ta Tb Tab
a
T2 1 T1 Ta , , T1 Tb a Tb T1 aTa , T2 a (Ta s 1) (Tb s 1) Gc ( s) , (aTa s 1) Tb ( s 1) a
1 4 2
4
2
第一节 系统的设计与校正问题 相角裕度
arctg
2 1 4 4 2 2
1 2
超调量
% e
ts
100%
调节时间
3.5
n
7 c t s tg
第一节 系统的设计与校正问题 二、 系统带宽的确定
一般要求系统的稳定裕度在45o左右 的斜率为-20dB/dec
2
第三节 串联校正
2.超前校正装置的设计
超前校正是利用相位超前特性来增加系 统的相角稳定裕量,利用幅频特性曲线的正斜 率段增加系统的穿越频率。从而改善系统的平 稳性和快速性。为此,要求校正装臵的最大超 前角出现在系统校正后的穿越频率处。

第6章线性系统的校正方法

第6章线性系统的校正方法
(3) 适用范围(限制)
① 闭环带宽要求较高. 若已校正系统带宽过大, 使得通过 系统的高频噪声电平很高, 不符合对系统的性能要求 .
② 对截止频率附近相角迅速减小的待校正系统, 不宜采用 串联超前校正. 因为很难提供足够的相角超前量. 此时可考虑 两个或两个以上串联校正网络由隔离放大器串联在一起使用.
图6-2 串联校正与反馈校正
前馈校正又称顺馈校正, 是在系统主反馈回路之外采用的 校正方式.前馈校正装置接在系统给定值(或指令、参考输入信 号)之后, 主反馈作用点之前的前向通道上, 如图(a)所示.
(a)
另一种前馈校正装置接在系统可测扰动作用点与误差测 量点之间, 对扰动信号进行测量,并经变换后接入系统,形成一 条附加的对扰动影响进行曲补偿的通道, 如图(b)所示.

最大超前角为 m arctgaTm arctgTm
根据三角函数两角求和公式 仅与a有关, 一般a≤20.
m处的对数幅值为 Lm 20lg aGc ( jm) 10lg a
2 无源滞后网络 滞后网络传递函数为
式中分度系数 时间常数
传递函数与超前网络相似, 超前a>1, 滞后b<1
最大滞后角m发生在最大滞 后角频率m处, 且是1/T与1/bT 的几何中心. m及m分别为
为了使系统满足性能指标要求, 要对系统进行调整, 通常 首先调整系统开环增益值. 这是一种最简单的方法. 但是在多 数情况中, 仅改变增益仍有可能不满足给定性能指标的要求. 此时就需要在系统中引入称之为校正装置的附加装置.
所谓校正就是在系统中加入一些其参数可以根据需要而 改变的机构或装置,使系统整个特性发生变化,从而满足给 定的各项性能指标要求。
串联滞后校正设计的一般步骤.

线性系统的矫正方法

线性系统的矫正方法

线性系统的校正方法>>系统的设计与校正问题
不同域中动态性能指标的表示及其转换 • 稳 定 性--是系统工作的前提, • 稳态特性--反映了系统稳定后的精度, • 动态特性--反映了系统响应的快速性。 • 人们追求的是稳定性强,稳态精度高,动态响应快。 • 不同域中的性能指标的形式又各不相同: • 1.时域指标:超调量σp、过渡过程时间t s、以及 • 峰值时间tp、上升时间tr等。 • 2.频域指标:(以对数频率特性为例) • ① 开环:剪切频率ωc、相位裕量r及增益裕量 Kg等。 • ②闭环:谐振峰值Mr、谐振频率ωr及带宽ωb等。
线性系统的校正方法>>系统的设计与校正问题
域 域 域






微分方程—分析法
传递函数—根轨迹法 闭环传递函数的极点 分布在s的左半平面, 则系统稳定。
频率特性—频率法
(开环Bode图为例)
稳 运动方程的特征根具 定 有负实部,则系统稳 性 定。 稳 态 由运动方程的系数 决定。 过渡过程时间: ts 最大超调量 : σP (及tr、tP、td、振 荡次数u等)。 ts越短,σP越小, 动态特性越好。
(s) (35 γ 90 ωc )
ts

1 1 2 K 2 1 . 5 ( 1) 2.5( 1) (35 γ 90 ) sin sin γ

• 系统的动态性能主要取决于开环对数幅频特性的中 • 频段。
线性系统的校正方法>>系统的设计与校正问题
G ) c(s
Rs ()
N(s)


G ) 1(s


G ) 2(s
G ) c(s

控制系统的设计与校正

控制系统的设计与校正

(c)r18 0
γ—为要求达到的相角裕度。 —是为补偿滞后网络的副作用而提供的相角裕度的修正量,一般取
5°~12°。
原系统中对应 处的频率即为(校c正r)后系统的剪切频率ω。
(4)求滞后网络的β值。 未校正系统在ω的对数幅频值为L0(ω)应满足
L 0(c)r2l0 g)(0 由此式求出β值。
了平系稳统性的将截有止所频下率降,获还得会足降够低的系快统速抗性高。频干扰的能力。
Ts 1
Xo s
Gs Ts 1
L
20 40
20lg Kg
20
11
11
c1 c2
T2 T
20lg
T1 T
60
90 180
80
二、滞后校正 1、滞后网络
Xi s
R1 R2 C
Gc
s
Xos Xi s
Phase Margin (deg): 18
At frequency (rad/sec): 8.91
Delay Margin (sec): 0.0508
Closed Loop Stable? Yes
-135
At frequency (rad/sec): 6.17
Closed Loop Stable? Yes
用希望对数频率特性进行校正装置的设计
G *(S)G 0(S)G c(S)
只要求得希望对数幅频特性与原系统固有开环对数幅频 特性之差即为校正装置的对数幅频特性曲线,从而可 以确定(s),进而确定校正参数和电路
G* (S )为希望的开环传递函数 Gc (S)为校正装置的传递函数 G0 (S)为系统固有的传递函数
各种校正装置的比较:
超前校正通过相位超前特性获得所需要的结果;滞后校正则是通过高频衰减特性获得所需要的结 果;而在某些问题中,只有同时采用滞后校正和超前校正才能获得所需要的结果。

自动控制原理胡寿松第六版第六章

自动控制原理胡寿松第六版第六章

闭环传递函数为 ( s) 1 /( Js 2 1) 增加PD校正后,系统的闭环传递函数为 ( s) K F (1 s) /( Js 2 K Ps K P )
效果:1)增加了阻尼;2)增加了一个 闭环零点;3)不影响稳态误差。
积分(I)控制规律 一般很少单独使用。 比例—积分(PI)控制规律 一般很少单独使用。
L( ) 20 lg a
( )
1 / aTa 1 / Ta 1 / Tb
a / Tb
表6-1 常见的无源 校正网络

• 有源校正装臵
用运算放大器来构成的校正装臵,由于装臵工作时,除了连接输入
和输出端外,换需外接电源(功率源),称为有源装臵。
同样的校正装臵,可以用无源网络也可用有源网络来实现,从功能
1/ T 1 / aT 零极点分布
最大超前角计算
(a 1)T ( ) tan (aT ) tan (T ) tan 1 aT 2 2 极值点 m 1 / aT ,即极值点在1 / aT 和 1 / T 的几何中心。
1 1 1
最大超前角
m tan 1
0 40
低频段1/s -20db/dec
位臵确定1: 与ω=1的交 点位臵 位臵确定2: 延长线与ω 轴的交点位 臵 100 ω=1处,增 加一贯性环 节,斜率增 加-20
20 lg K 20
1
K 1/ 10
4 .4
( )0.1
90o 180o
10
36.9o 12.8o
④比较期望系统与实际系统的差,确定校正量 在期望的截止频率 "c 4.4rad / s 处,幅值为-6db,相角为-167.2o 20 lg Gc ( j "c ) 6db Gc ( j "c ) 32.2o "c 4.4rad / s 时, 校正量:

题目雷达天线伺服控制系统设计与校正_实用模板

题目雷达天线伺服控制系统设计与校正_实用模板
2.4.1 传递函数Simulink模型
课程设计说明书
课程设计说明书
2.4.2 在前向通道中接入饱和非线性环节的Simulink模型及仿真分析
课程设计说明书
由图11与图13对比可得在校正后系统的前向通道中接入饱和非线性环节后超调量轻微减小
2.4.3在前向通道中接入回环非线性环节的Simulink模型及仿真分析 由图11与图15对比可得在接入回环非线性环节后超调量增大,调整时间变大
sys=tf(num,den) nyquist(sys) 由图3分析可知Nyquist轨迹包围点(-1,j0),故校正前 闭环系统不稳定 2.1.5未校正系统的根轨迹分析 用MATLAB进行编程,程序如下
clear;clc num=[2000 100000]
课程设计说明书
den=[1 35 350 1000 0] sys=tf(num,den) rlocus(sys) hold on grid hold on
20XX
题目:雷达天线伺服 控制系统设计与校正
汇报人:xxx
-
目录
课程设计说明书
题目:雷达天线伺服控制系统设计与校正
1PART 1
课程设计说明 书
课程设计说明书
1.课程设计简介 1.1课程设计任务 1. 使学生初步掌握控制系统数字仿真的基本方法 2. 学会利用利用MATLAB语言进行控制系统仿真和辅助设计的基本技能 1.2 课程设计内容 已知某雷达天线伺服反馈控制系统的开环传递函数为:。要求设计系统的校正装置,使系 统达到下列指标:(1)在单位斜坡信号作用下,系统的稳态误差ess≤1%(系统的速度误差 系数 Kv=100s-1;);(2)超调量 Mp<30%,调节时间 Ts<2秒;(3)相角稳定裕度在 Pm >45°,幅值定裕度Gm>20 1.3 课程设计任务要求 1. 画出未校正系统的根轨迹图,分析系统是否稳定

工程系统校正方案怎么写

工程系统校正方案怎么写

工程系统校正方案怎么写一、前言工程系统校正是指在工程实施过程中对系统进行检查、调整和修正,以确保工程系统的正常运行和稳定性。

工程系统校正方案的编制是为了保证工程系统能够达到设计要求,并在系统正常运行期间具有高效率和低故障率。

本方案将对工程系统校正的目的、范围、方法、程序和注意事项进行详细阐述,以期通过科学的校正措施保障工程系统的安全稳定运行。

二、校正目的1. 确保工程系统能够按照设计要求正常运行,达到设定的性能指标;2. 保障工程系统能够在使用寿命内保持高效率、低故障率的运行状态;3. 增强工程系统的可靠性和安全性,减少系统故障和事故发生的可能性;4. 提高工程系统的能源利用效率,减少能源浪费,降低运行成本。

三、校正范围本方案适用于各类工程系统,包括但不限于建筑物电气系统、暖通空调系统、给排水系统、火灾报警系统、安防监控系统等。

针对各类工程系统的不同特点和运行要求,校正范围主要包括以下内容:1. 工程系统设备的检查、调整和测试;2. 系统运行参数的监测、校正和记录;3. 软件系统的更新、升级和优化。

四、校正方法1. 检查与测试校正前,应对工程系统进行全面的检查和测试,了解系统设备的运行状态、参数配置是否符合设计要求,软硬件是否存在异常。

对重要设备和系统部件的性能参数进行测试和记录。

2. 调整与优化根据检查和测试的结果,对系统设备进行必要的调整和优化,如调整设备的参数配置、优化控制策略、清理设备内部或更换易损件等,以保证设备在正常范围内运行。

3. 测试与验证对校正后的系统设备进行再次测试和验证,确保校正效果符合要求,系统能够正常运行和达到设计性能指标。

五、校正程序1. 制定校正计划根据工程系统的实际情况和校正要求,制定详细的校正计划,明确校正的范围、内容、时限和责任。

计划要求包括校正的时间安排、所需人员和物资配置、校正过程中的安全措施等。

2. 实施校正措施根据校正计划,对工程系统设备进行检查、调整和测试,进行设备参数的校正和优化,保证系统设备处于最佳运行状态。

自动控制原理

自动控制原理
m(t ) = K p e(t ) + Kp Ti
∫ e(t )dt
0
t
K p 称为比例系数, Ti 为可调积分时间常数。
在串联校正时,PI 控制器相当于在系统中增加一个位于原点的开环极点,同时也增加了一个位于 S 平面左半部的开环零点。位于原点的极点可以提高系统的型别,以消除或减小系统的稳态误差,改 善系统的稳态性能;二增加的负实零点则用来减小系统的阻尼程度,缓和 PI 控制器极点对系统稳定 性及动态过程产生的不利影响。在工程实践中,PI 控制器主要用来改善系统的稳态性能。
P 控制器实质上是一个具有可调增益的放大器。P 控制规律只改变信号 的增益而不影响其相位。在串联校正中,加大控制器增益可以提高系统 的开环增益,减小系统稳态误差,从而提高系统的控制精度,但是会降 低系统的稳定裕度,甚至造成闭环系统不稳定,因此很少单独使用比例 控制规律。
2)比例-积分(PI)控制规律 具有比例积分控制规律的控制器,称为 PI 控制器,其输出信号同时成比例 地反映输入信号及其积分,即
4)复合校正 复合校正方式是在反馈控制回路中,加入前馈校正通路,组成一个有机 整体。可以为扰动补偿方式,或者按输入补偿的方式。
常用的校正方式为串联校正和反馈校正两种; 究竟选用哪种校正方式,取决于系统中的信号性质、技术实现的方 便性、可选用的元器件、抗扰性要求、经济性要求、环境使用条件以及 设计者的经验等因素。 一般来说,串联校正设计比反馈校正设计简单,也比较容易对信号 进行各种必要形式的变化; 相比之下,反馈校正所需元件数目比串联校正少,而且一般不需要 附加放大器。 在性能指标要求较高的控制系统设计中,常常兼用串联校正和反馈 校正两种方式。
4、基本控制规律
选择校正装置的具体形式时,应该首先了解装置所需提供的控制规律, 以便选择相应的元件。包含校正装置在内的控制器,常常采用比例、积 分、微分等基本控制规律,或者采用这些基本规律的某些组合,如:比 例-积分,比例-微分,比例-积分-微分,以实现对被控对象的有效控制。

工程系统校正方案有哪些

工程系统校正方案有哪些

工程系统校正方案有哪些一、引言工程系统校正是指对于已经建造完成的工程系统进行调试、测试和优化,以确保系统的正常运行和高效性能。

工程系统包括了建筑物内的水电气设备、通风空调设备、照明系统等各种设备。

为了保证建筑物的正常运行和使用,需要对这些设备进行校正和优化。

本文将针对工程系统校正的相关内容进行详细的介绍,并在实际操作中提出一些可行的校正方案,以期对工程系统校正工作的实际操作提供一些帮助。

二、校正前的准备工作1. 准备校正的设备和工具:在进行工程系统校正之前,需要准备一些专业的测试仪器和工具,如电压表、电流表、压力表、温度计等。

这些设备和工具将用于对工程系统进行调试和测试。

2. 获取相关的资料和信息:在校正之前,需要对建筑物的设计图纸、安装图纸、设备运行手册等进行详细了解和熟悉。

这些资料和信息将对校正工作起到重要的指导作用。

3. 工程系统的检查和评估:在进行校正之前,需要对工程系统进行详细的检查和评估。

这包括对设备的状态、运行情况、故障情况等进行全面的了解。

三、校正方案的制定1. 根据工程系统的实际情况,确定校正的具体内容和范围。

校正的具体内容可以包括电气系统的电压电流测量、设备的功率消耗测试、通风系统的风速压力测试等。

2. 根据工程系统的实际情况,确定校正的时间和工作进程。

校正的时间可以根据建筑物的使用情况和设备的运行情况进行合理安排,以便最大限度地减少对建筑物的影响。

3. 根据工程系统的实际情况,确定校正的具体要求和标准。

校正的要求和标准可以根据建筑物的使用要求和设备的规定要求进行制定,以便确保校正工作的质量和效果。

四、校正方案的实施1. 按照校正方案的要求,对工程系统进行详细的检查和测试。

对于电气系统,可以通过测试仪器对电压、电流和功率进行测量,对设备的运行情况进行评估。

对于通风系统,可以通过测试仪器对风速、风压进行测量,对设备的运行情况进行评估。

2. 根据校正方案的要求,对工程系统进行详细的调试和优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相角的频率ωm远离校正 后系统的幅值穿越频率ωc ,否则会对系统的动态性
能产生不利影响。常取
2
1c
T2
c
10
第六章 线性系统的校正方法
校正后
校正前
➢对于稳定的系统
提高稳态准确度,1/T
和1/T 向左远离c, 使c附 近的相位不受滞 后环节的影响。
校正装置
➢对于不稳定的系统 增益降低使得c减小。
➢滞后校正装置实质上 是 一个低通滤波器, 它对低 频信号基本上 无衰减作用,但能削弱 高频噪声, α越大,抑 制噪声能力越强。通常 选α = 10左右。
dd0m
a T
第六章 线性系统的校正方法
最大超前角
d d 0 msin 1a a 1 1
a 1sinm 1sinm
超前校正的特点
➢α m
α=20时, m65°
➢高通滤波特性, α 值
过大对抑制系统高频噪 相位超前 系统带宽
声不利。
动态性能
➢为保持较高的系统信噪比,通
噪声
常选择α=10(此时m=55°)。
第六章 线性系统的校正方法
第六章 线性系统的校正方法
系统的设计与校正问题
邹斌
上海大学 自动化系
地 址:上海市延长路149号 邮政编码:200072 电子邮件: 电 话: 13122601880
上海大学 自动化系 邹斌
第六章 线性系统的校正方法
性能如何描述? 控制器的设计:传递函数的结构 与参数 选择
上海大学 自动化系 邹斌
第六章 线性系统的校正方法
1、传递函数 2、实现形式
Gc(s)
T1s1 T2s1
T1 s1T2s1
滞后—超前校正 滞后-超前校正
T2 R2C2 T1 R1C1
T1 R1C1 T2 R2C2 R1C2
a R1 R2 R2
G cUUoi((ss))
Gc(s)T1T2(sT2 1s(1 T)1 T (2 sT 21 )s)1
aR1R2 R2
,TR2C2
Gc(s)
Ts1 aTs1
Gc
(
s
)
Ts 1 aTs1
1 a
(
1
1 Ts
)
K
p
(
1
1 Ts
)
上海大学 自动化系 邹斌
Kp
R2 R1
TR2C2
Uo(s) Ui(s)
Kp(1T1s)
第六章 线性系统的校正方法
滞后校正
串联校正时
Gc(s)
Ts1 aTs1
➢在整个频率范围内相 位都 滞后,相位滞后 校正。 dd 0mT1a 转角频率1/T,1/T的几何中点。
T1 T2 [1 1 T1T2 s]
(T1 T2)s T1 T2
上海大学 自动化系 邹斌
第六章 线性系统的校正方法
Gc(s)T1T2(sT2 1s(1 T)1 T (2 sT 21 )s)1
T2T1,1
PID与滞后超前
G c ( T 1 ( s T 1 1 )T T 2 2 ( s ) s 1 ) T T 1 1 T T 2 2 [ 1 ( T 1 1 T 2 ) s T 1 T 1 T T 2 2 s ]
上海大学 自动化系 邹斌
第六章 线性系统的校正方法
稳态性能不变 校正前
校正后
超前校正的特点
使中频段 斜率减小
校正装置
在1/T 和/T间 引入相位超前
动态性能变好
Gc (s)
Ts 1 T s1
上海大学 自动化系 邹斌
第六章 线性系统的校正方法
1、传递函数 2、实现形式
滞后校正
Gc(s)
Ts1 aTs1
上海大学 自动化系 邹斌
第六章 线性系统的校正方法
1、传递函数 2、实现形式
1 Ts1
Gc(s) T s 1
超前校正
a R1 R2 1 R2
T R1C1
Gc(s)U Uoi((ss))
1
Ts1 Ts1
上海大学 自动化系 邹斌
U Uoi((ss))R R12(R1C1s1)
T1 R1C1
Kp
R2 R1
G c(s)Kp(T1s1)
第六章 线性系统的校正方法
Gc (s)
1
Ts 1 T s 1
转角频率1/T,/T的几何中点
超前校正的特点
➢整个系统的开环增益 下降 α 倍。为满足 稳态精度的要 求,必 须提高放大器的增益 予以补偿。
➢在整个频率范围内都 产生相位超前。
上海大学 自动化系 邹斌
➢后半段是相位超前 部分,可以提高系统 的相位裕量,加大幅 值穿越频率,改善 系统的动态性能。
第六章 线性系统的校正方法 上海大学 自动化系 邹斌
滞后-超前校正
开环传递函数
Go(s)
4K s(s 2)
超前校正
Gc(s)[TTss11]148.ss4.411100..202574ss11
超前校正使得校正后的系 统的截止频率为超前校正 的最大超前角处,充分利 用超前角提高相稳定裕度
➢开环对数频率特性的 中高频部分增益交界 频率 稳定裕量
➢开环对数频率特性的 低频部分稳态精度
上海大学 自动化系 邹斌
第六章 线性系统的校正方法
d d 0 msin 1a a 1 1
滞后校正特点
a1sin(m) 1sin(m)
上海大学 自动化系 邹斌
➢α越大,相位滞后越严 重。
➢应尽量使产生最大滞后
T1T2 T1 T2
PID校正
Gc(s)
T1s1 T2s1
T1 s1T2s1
滞后-超前校正
上海大学 自动化系 邹斌
第六章 线性系统的校正方法
Gc(s)
T1s1 T2s1
T1 s1T2s1
上海大学 自动化系 邹斌
滞后超前Bode图
➢前半段是相位滞后 部分,由于具有使增 益衰减的作用,所 以允许在低频段提 高增益,以改善系 统的稳态性能。
上海大学 自动化系 邹斌
控制系统的性能指标
截止频率 谐振频率
相稳定裕度 幅稳定裕度 谐振峰值
稳态误差与误差系 数有什么差别?
第六章 线性系统的校正方法
常用校正装置及特点
校正装置
无源校 正装置
无相移校正装置 相位超前校正装置 相位滞后校正装置 相位滞后—超前校正装置
有源校 正装置
无相移校正装置 相位超前校正装置 相位滞后校正装置 相位滞后—超前校正装置
校正的含义 不可变部分

控 制 器
执 行 器 受 控 对 象
测 量 装 置
校正的目的:设计控制器使系统满 足给定的性能
上海大学 自动化系 邹斌
第六章 线性系统的校正方法
校正的任务
根据被控对象以及控制要求,选择适当的控制 器及控制规律设计一个满足给定性能指标的控制 系统。
校正(补偿):通过改变系统结构,或在系统中增加 附加装置或元件对已有的系统(固有部分)进行 再设计使之满足性能要求。
(校正装置)
控制系统的设计本质上是寻找合适的校正装置
上海大学 自动化系 邹斌
第六章 线性系统的校正方法
校正方式
串联校正
并联校正(反馈校正)
复合(前馈、顺馈)校正
上海大学 自动化系 邹斌
第六章 线性系统的校正方法
稳定性
代数判据 频率判据
动态性能
调节时间 超调量
稳态性能
稳态误差 误差系数
相关文档
最新文档