图形的平移与旋转知识点总结,中考数学图形的平移与旋转典型例题讲解与题型总结解析
形的旋转和平移知识点总结
形的旋转和平移知识点总结形的旋转和平移是几何学中的重要概念,它们描述了图形在平面上的移动和变化。
了解和掌握形的旋转和平移知识,不仅可以帮助我们理解几何形状的特性,还可以在实际问题中应用到设计、构造和解决空间问题的过程中。
本文将对形的旋转和平移的相关知识进行总结和讨论。
一、形的旋转形的旋转是指图形绕固定点旋转一定角度后所得的新图形。
在形的旋转中,有几个重要的概念需要了解:1. 旋转中心:旋转的固定点,通常用O表示。
2. 旋转角度:旋转所转过的角度,通常用θ表示。
3. 旋转方向:顺时针旋转或逆时针旋转。
进行形的旋转时,可以根据旋转角度的不同,将旋转分为以下几种情况:1. 旋转90°:图形绕旋转中心顺时针或逆时针旋转90°,新图形与原图形对应边相等,但位置不同。
2. 旋转180°:图形绕旋转中心顺时针或逆时针旋转180°,新图形与原图形对应边相等,位置相同。
3. 旋转270°:图形绕旋转中心顺时针或逆时针旋转270°,新图形与原图形对应边相等,但位置不同。
需要注意的是,形的旋转不改变图形的大小和形状,只是改变了其位置和方向。
在实际应用中,形的旋转可以用于设计和建筑中的对称性问题,以及旋转体的模型制作等方面。
二、形的平移形的平移是指图形在平面上沿着一定方向进行的移动,平移过程中图形的形状、大小、方向都不发生变化。
在形的平移中,有几个重要概念需要了解:1. 平移矢量:平移的方向和距离,通常用向量表示。
2. 平移向量的性质:平移向量具有平行四边形的性质,即具有相同长度和平行的边。
进行形的平移时,可以根据平移矢量的不同,将平移分为以下几种情况:1. 向上平移:图形沿着上方向移动一定距离。
2. 向下平移:图形沿着下方向移动一定距离。
3. 向左平移:图形沿着左方向移动一定距离。
4. 向右平移:图形沿着右方向移动一定距离。
形的平移在实际应用中有广泛的应用,比如在地图上标识建筑物位置、机器人路径规划、图案设计等方面。
初中数学知识归纳形的平移旋转与翻折
初中数学知识归纳形的平移旋转与翻折在初中数学课程中,形的平移、旋转和翻折是非常重要的概念和技巧。
通过学习和理解这些概念,学生可以更好地认识和应用几何形状。
本文将对初中数学中形的平移、旋转和翻折进行归纳总结,并介绍相关的基本原理和技巧。
一、形的平移形的平移是指在平面内将一个形状整体移动到另一个位置,而形状保持不变。
在平移过程中,形状的大小、形状以及内部的相互关系都不会发生变化。
平移的基本原理是:确定一个平移向量,然后根据该向量的大小和方向,将形状内的每个点都移动到对应的新位置上。
平移向量可以用有序对表示,如(u, v),其中u表示横向位移,v表示纵向位移。
形状中的每个点的新坐标可以通过将原坐标与平移向量的分量相加得到。
例如,将一个矩形形状A平移到新的位置B,平移向量为(3, 4)。
假设矩形角点的坐标为A(1, 2), B(4, 6),则可以计算出新位置上的所有角点坐标为B(4, 6), C(4, 10), D(7, 10), E(7, 6)。
形的平移有以下几个重要性质:1. 平移前后的形状相等。
2. 平移前后形状内的各点之间的距离保持不变。
3. 平移不改变形状内角的度数。
二、形的旋转形的旋转是指将形状围绕某一固定点旋转一定角度,使得形状保持不变。
旋转中心可以位于形状内部、外部或者边上。
旋转的基本原理是:确定旋转中心和旋转角度,根据旋转的顺时针或逆时针方向将形状内的每个点绕旋转中心旋转一定的角度,并保持距离不变。
假设旋转中心为O(0, 0),旋转角度为θ,对于一个点P(x, y),点P 经过旋转后的新坐标可以通过以下公式计算得到:x' = x * cosθ - y * sinθy' = x * sinθ + y * cosθ例如,将一个矩形形状A绕原点逆时针旋转60度,矩形的角点坐标为A(2, 1), B(5, 1), C(5, 4), D(2, 4)。
根据旋转公式,可以计算出新位置上的所有角点坐标为A'(1.732, 1), B'(4.732, 1), C'(4.732, 4), D'(1.732, 4)。
平移旋转图形知识点总结
平移旋转图形知识点总结平移和旋转是几何学中两个重要的变换操作,它们可以改变图形的位置和方向,扩展了几何学的应用领域。
在本文中,我们将对平移和旋转的基本概念、性质和应用进行总结。
一、平移的基本概念平移是指图形在平面上沿着一定方向按照一定距离移动的变换操作。
在平移过程中,图形的大小和形状保持不变,只是位置发生改变。
平移可以用向量来描述,移动向量即为图形移动的方向和距离。
1. 平移的向量表示设图形A经过平移得到图形A',平移向量为向量→a,表示为A→A' = →a。
向量→a的方向和长度即为平移的方向和距离。
2. 平移的性质平移操作满足以下性质:(1)平移不改变图形的大小和形状;(2)平移不改变图形的面积和周长;(3)平移不改变图形的对称性。
3. 平移的表示方法平移可以通过向量、坐标和平移矩阵等多种方式来表示和描述。
在向量表示中,平移向量→a可以作为图形平移的唯一标识。
二、平移的应用平移在几何学和其他领域中有着广泛的应用,例如地图制作、计算机图形学和物理学等。
下面我们将介绍平移在几何学中的应用场景和相关问题。
1. 平移的作用(1)简化计算:通过平移操作,可以将图形移动到方便计算的位置,简化问题的解决过程;(2)构造对称图形:利用平移可以构造出一些对称图形,如平移正方形可以构造出菱形;(3)解决坐标运算:在坐标运算中,平移可以使坐标系原点发生偏移,方便计算。
2. 平移的问题在平移问题中,常见的问题包括:给定图形A和平移向量→a,求出图形A经过平移后的位置和形状;给定平移前后的图形A和A',求出平移向量→a。
解决这些问题需要灵活运用平移的基本性质和表示方法。
三、旋转的基本概念旋转是指图形围绕一点按照一定角度转动的变换操作。
在旋转过程中,图形的大小和形状保持不变,只是方向发生改变。
旋转可以用角度来描述,旋转角度即为图形旋转的方向和角度。
1. 旋转的角度表示设图形A经过旋转得到图形A',旋转角度为θ,表示为A→A' = θ。
图形的平移、旋转与轴对称单元知识点总结
二、图形的平移、旋转与轴对称1.图形的平移●平移的定义:平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定距离的图形运动。
●平移两要素:平移的方向、平移的距离●平移前的图形:画虚线;箭头:表示平移的方向;平移后的图形:画实线。
●注意:平移几格不是原图形与平移后图形之间的格数,而是指图形的对应点之间的格数。
●关键点:一般是图形的各顶点或线段的交点。
●注意:平移前后,图形的大小、形状、方向都不变,只是位置变了。
●画平移后图形的方法:①找关键点②定平移方向、距离③找对应点④依次连线。
2.图形的旋转●旋转的定义:旋转是指在平面内,将某个图形绕一个定点沿某个方向旋转一个角度的图形运动。
这个定点称为旋转中心,旋转的角度称为旋转角度。
●旋转三要素①旋转中心:点/轴②旋转方向:顺时针方向/逆时针方向③旋转角度●怎样描述图形的旋转:将某图形绕某点沿某时针方向旋转某度到某位置。
●画旋转后图形的方法:①找旋转中心②找准关键线段③旋转关键线段④画出旋转后的图形●旋转中心:一般是两个图形的公共点●关键线段:过旋转中心的线段。
为了保证旋转角度,一般选与方格纸重合的线段作为关键线段。
●注意:旋转前后,图形的大小、形状都不发生改变,但位置和方向一般会发生变化。
3.轴对称图形●定义:轴对称图形沿一条直线对折后,两部分能完全重合,折痕所在的直线叫做它的对称轴(对称轴画虚线,画超出图形)。
●轴对称图形至少有一条对称轴。
●轴对称图形中每一组对称点到对称轴的距离相等。
●轴对称图形中对称点的连线与对称轴互相垂直。
●轴对称图形和对称轴的数量:①正方形(4条对称轴)②长方形(2条对称轴)③等腰三角形(1条对称轴)④等边三角形也叫正三角形(3条对称轴)⑤菱形(2条对称轴)⑥圆形(无数条对称轴)⑦等腰梯形(1条对称轴)⑧五角星(5条对称轴)⑨正五边形(5条对称轴)●生活中的轴对称图形或轴对称现象:京剧脸谱、剪纸、国徽、天坛、北京故宫、凯旋门、蝴蝶、空调、人的五官和身体等●画对称轴的方法:①找一组对应点②画对应点间线段的中垂线③画虚线●画轴对称图形另一半的方法:①找关键点②定对称点③依次连线(一般画虚线)4.设计图案●利用平移设计图案的方法:①选好基本图形②确定平移的方向③确定平移的距离④进行多次平移●利用旋转设计图案的方法:①选和基本图形②确定旋转方向和角度③确定旋转中心④依次画出每次旋转后的图形●利用轴对称设计图案的方法:①选好基本图形②确定对称轴③画出基本图形的另一半5.探索规律●观察图形变化时,先确定变化方式(平移、旋转或轴对称),再确定位置变化的规律。
八年级数学学案图形平移与旋转知识点考点
第三讲:图形的平移与旋转【知识精讲】知识点1 平移、旋转和轴对称的区别和联系(1)区别。
①三者概念的区别:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移;在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转;在平面内,将一个图形沿着某条直线折叠。
如果它能够与另一个图形重合,则这两个图形成轴对称。
②三者运动方式不同:平移是将图形沿某个方向移动一定的距离。
旋转是将一个图形绕一个定点沿某个方向转动一个角度;轴对称是将图形沿着某一条直线折叠。
③对应线段、对应角之间的关系不同:平移变换前后图形的对应线段平行(或共线)且相等;对应点所连的线段平行且相等;对应角的两边分别平行且对应角的方向一致。
轴对称的对应线段或延长线相交,交点在对称轴上:对应点的连线被对称轴垂直平分。
旋转变换前后图形的任意一对对应点与旋转中心的距离相等、与旋转中心的连线所成的角是旋转角。
④三者作图所需的条件不同:平移要有平移的方向和平移的距离,旋转要有旋转中心、旋转方向和旋转角:轴对称要有对称轴。
(2)联系。
①它们都在平面内进行图形变换②它们都只改变图形的位置不改变图形的形状和大小,因此变换前后的两个图形全等。
③都要借助尺规作图及全等三角形的知识作图。
知识点2 组合图案的形成(1)确定图案中的“基本图案”。
(2)发现该图案各组成部分之间的内在联系。
(3)探索该图案的形成过程:运用平移、旋转、轴对称分析各个组成部分如何通过“基本图案”演变成“形”的。
要用运动的观点、整体的思想分析“组合图案”的形成过程。
运动的观点就是要求我们不能静止地挖掘“基本图案”与“组合图案”的内在联系,头脑中应想象、再现图案形成的过程,做到心中有数,特别是有的图案含有不同的“基本图案”其形成的方式也多种多样,可以通过平移、旋转、轴对称变换中的一种或两种变换方式来实现,也可以通过同一种变换方式的重复使用来实现。
整体的思想包括整体的构思和“基本图案”的组合。
新人教版初中数学——图形的轴对称、平移与旋转-知识点归纳及中考典型题解析
新人教版初中数学——图形的轴对称、平移与旋转知识点归纳及中考典型题解析一、轴对称图形与轴对称轴对称图形轴对称图形定义如果一个图形沿着某条直线对折后,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴如果两个图形对折后,这两个图形能够完全重合,那么我们就说这两个图形成轴对称,这条直线叫做对称轴性质对应线段相等AB=ACAB=A′B′,BC=B′C′,AC=A′C′对应角相等∠B=∠C∠A=∠A′,∠B=∠B′,∠C=∠C′对应点所连的线段被对称轴垂直平分区别(1)轴对称图形是一个具有特殊形状的图形,只对一个图形而言;(2)对称轴不一定只有一条(1)轴对称是指两个图形的位置关系,必须涉及两个图形;(2)只有一条对称轴关系(1)沿对称轴对折,两部分重合;(2)如果把轴对称图形沿对称轴分成“两个图形”,那么这“两个图形”就关于这条直线成轴对称(1)沿对称轴翻折,两个图形重合;(2)如果把两个成轴对称的图形拼在一起,看成一个整体,那么它就是一个轴对称图形1等腰三角形、矩形、菱形、正方形、圆.2.折叠的性质折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.【注意】凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.解决折叠问题时,首先清楚折叠和轴对称能够提供我们隐含的且可利用的条件,分析角之间、线段之间的关系,借助勾股定理建立关系式求出答案,所求问题具有不确定性时,常常采用分类讨论的数学思想方法.3.作某点关于某直线的对称点的一般步骤(1)过已知点作已知直线(对称轴)的垂线,标出垂足;(2)在这条直线另一侧从垂足除法截取与已知点到垂足的距离相等的线段,那么截点就是这点关于该直线的对称点.4.作已知图形关于某直线的对称图形的一般步骤(1)作出图形的关键点关于这条直线的对称点;(2)把这些对称点顺次连接起来,就形成了一个符合条件的对称图形.二、图形的平移1.定义在平面内,一个图形由一个位置沿某个方向移动到另一个位置,这样的图形运动叫做平移.平移不改变图形的形状和大小.2.三大要素一是平移的起点,二是平移的方向,三是平移的距离.3.性质(1)平移前后,对应线段平行且相等、对应角相等;(2)各对应点所连接的线段平行(或在同一条直线上)且相等;(3)平移前后的图形全等.4.作图步骤(1)根据题意,确定平移的方向和平移的距离;(2)找出原图形的关键点;(3)按平移方向和平移距离平移各个关键点,得到各关键点的对应点;(4)按原图形依次连接对应点,得到平移后的图形.三、图形的旋转1.定义在平面内,一个图形绕一个定点沿某个方向(顺时针或逆时针)转过一个角度,这样的图形运动叫旋转.这个定点叫做旋转中心,转过的这个角叫做旋转角.2.三大要素旋转中心、旋转方向和旋转角度.3.性质(1)对应点到旋转中心的距离相等;(2)每对对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等.4.作图步骤(1)根据题意,确定旋转中心、旋转方向及旋转角;(2)找出原图形的关键点;(3)连接关键点与旋转中心,按旋转方向与旋转角将它们旋转,得到各关键点的对应点;(4)按原图形依次连接对应点,得到旋转后的图形.【注意】旋转是一种全等变换,旋转改变的是图形的位置,图形的大小关系不发生改变,所以在解答有关旋转的问题时,要注意挖掘相等线段、角,因此特殊三角形性质的运用、锐角三角函数建立的边角关系起着关键的作用.四、中心对称图形与中心对称中心对称图形中心对称图形定义如果一个图形绕某一点旋转180°后能与它自身重合,我们就把这个图形叫做中心对称图形,这个点叫做它的对称中心如果一个图形绕某点旋转180°后与另一个图形重合,我们就把这两个图形叫做成中心对称性质对应点点A与点C,点B与点D点A与点A′,点B与点B′,点C与点C′对应线段AB=CD,AD=BCAB=A′B′,BC=B′C′,AC=A′C′对应角∠A=∠C∠B=∠D∠A=∠A′,∠B=∠B′,∠C=∠C′区别中心对称图形是指具有某种特性的一个图形中心对称是指两个图形的关系联系把中心对称图形的两个部分看成“两个图形”,则这“两个图形”成中心对称把成中心对称的两个图形看成一个“整体”,则“整体”成为中心对称图形平行四边形、矩形、菱形、正方形、正六边形、圆等.考向一轴对称轴对称图形与轴对称的区别与联系区别:轴对称图形是针对一个图形而言,它是指一个图形所具有的对称性质,而轴对称则是针对两个图形而言的,它描述的是两个图形的一种位置关系,轴对称图形沿对称轴对折后,其自身的一部分与另一部分重合,而成轴对称的两个图形沿对称轴对折后,一个图形与另一个图形重合.联系:把成轴对称的两个图形看成一个整体时,它就成了一个轴对称图形.典例1第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行,全国上下掀起喜迎冬奥热潮,下列四个汉字中是轴对称图形的是A.B.C.D.【答案】A【解析】A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选A.1.下列图形中不是轴对称图形的是A.B.C.D.考向二平移1.平移后,对应线段相等且平行,对应点所连的线段平行(或共线)且相等.2.平移后,对应角相等且对应角的两边分别平行或一条边共线,方向相同.3.平移不改变图形的形状和大小,只改变图形的位置,平移后新旧两图形全等.典例2下列运动中:①荡秋千;②钟摆的摆动;③拉抽屉时的抽屉;④工厂里的输送带上的物品,不属于平移的有A.4个B.3个C.2个D.1个【答案】C【解析】①荡秋千,是旋转,不是平移;②钟摆的摆动,是旋转,不是平移;③拉抽屉时抽屉的运动,是平移;④工厂里的输送带上的物品运动,是平移;故选C.2.下列四组图形都含有两个可以重合的三角形,其中可以通过平移其中一个三角形得到另一个三角形的是A.B.C.D.3.如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从A出发爬到B,则A.乙比甲先到B.甲比乙先到C.甲和乙同时到D.无法确定考向三旋转通过旋转,图形中的每一点都绕着旋转中心沿相同的方向旋转了同样大小的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等,对应线段相等,对应角相等.在旋转过程中,图形的形状与大小都没有发生变化.典例3 如图,在ABC △中,65BAC ∠=︒,以点A 为旋转中心,将ABC △绕点A 逆时针旋转,得AB C ''△,连接BB ',若BB'AC ∥,则BAC '∠的大小是A .15︒B .25︒C .35︒D .45︒【答案】A【解析】∵△ABC 绕点A 逆时针旋转到△AB ′C ′的位置, ∴AB ′=AB ,∠B ′AC ′=∠BAC =65︒, ∴∠AB ′B =∠ABB ′, ∵BB ′∥AC ,∴∠ABB ′=∠CAB =65°, ∴∠AB ′B =∠ABB ′=65°, ∴∠BAB ′=180°–2×65°=50°,∴∠BAC ′=∠B ′AC ′–∠BAB ′=65°–50°=15°, 故选A .4.五角星可以看成由一个四边形旋转若干次而生成的,则每次旋转的度数可以是A .36°B .60°C .72°D .90°5.如图将△ABC 绕点A 顺时针旋转90°得到△AED ,若点B 、D 、E 在同一条直线上,∠BAC =20°,则∠ADB的度数为A.55°B.60°C.65°D.70°考向四中心对称识别轴对称图形与中心对称图形:①识别轴对称图形:轴对称图形是一类具有特殊形状的图形,若把一个图形沿某条直线对称,直线两旁的部分能完全重合,则称该图形为轴对称图形.这条直线为它的一条对称轴.轴对称图形有一条或几条对称轴.②中心对称图形识别:看是否存在一点,把图形绕该点旋转180°后能与原图形重合.典例4下列图形中,既是中心对称图形,又是轴对称图形的是A.B.C.D.【答案】B【解析】A、不是中心对称图形,也不是轴对称图形,故此选项错误;B、是中心对称图形,又是轴对称图形,故此选项正确;C、不是中心对称图形,也不是轴对称图形,故此选项错误;D、不是中心对称图形,也不是轴对称图形,故此选项错误,故选B.6.下列图形中,△A′B′C′与△ABC成中心对称的是A.B.C.D.1.下列四个图形中,不是轴对称图形的是A.B.C.D.2.已知点A的坐标为(3,–2),则点A向右平移3个单位后的坐标为A.(0,–2)B.(6,–2)C.(3,1)D.(3,–5)3.下列说法中正确的有①旋转中心到对应点的距离相等;②对称中心是对称点所连线段的中点;③旋转后的两个图形的对应边所在直线的夹角等于旋转角;④任意一个等边三角形都是中心对称图形.A.1个B.2个C.3个D.4个4.如图,在方格纸中的△ABC经过变换得到△DEF,正确的变换是A.把△ABC向右平移6格B.把△ABC向右平移4格,再向上平移1格C.把△ABC绕着点A顺时针旋转90°,再向右平移6格D.把△ABC绕着点A逆时针旋转90°,再向右平移6格5.如图,已知菱形OABC的顶点O(0,0),B(–2,–2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为A.(1,–1)B.(–1,–1)C.(1,1)D.(–1,1)6.在菱形ABCD中,AB=2,∠BAD=120°,点E,F分别是边AB,BC边上的动点,沿EF折叠△BEF,使点B的对应点B’始终落在边CD上,则A、E两点之间的最大距离为__________.7.将一张长方形纸条折成如图所示的形状,若∠1=110°,则∠2=__________°.8.如图所示,直线EF过平行四边形ABCD对角线的交点O,且分别交AD、BC于E、F,那么阴影部分的面积是平行四边形ABCD面积的____.9.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α=__________°.10.△ABC 在平面直角坐标系xOy 中的位置如图所示.(1)若△A 1B 1C 1与△ABC 关于原点O 成中心对称,则点A 1的坐标为__________; (2)将△ABC 向右平移4个单位长度得到△A 2B 2C 2,则点B 2的坐标为__________; (3)画出△ABC 绕O 点顺时针方向旋转90°得到的△A 3B 3C 3,并求点C 走过的路径长.11.如图,在ABC △中,D 为BC 上任一点,DE AC ∥交AB 于点E DF AB ,∥交AC 于点F ,求证:点E F ,关于AD 的中点对称.12.在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3),点B坐标为(2,1);(2)请作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标;(3)判断△ABC的形状.并说明理由.13.如图,已知∠BAC=40°,把△ABC绕着点A顺时针旋转,使得点B与CA的延长线上的点D重合,连接CE.(1)△ABC旋转了多少度?(2)连接CE,试判断△AEC的形状.(3)若∠ACE=20°,求∠AEC的度数.1.下列四个图形中,可以由下图通过平移得到的是A.B.C.D.2.在平面直角坐标系中,将点(2,1)向右平移3个单位长度,则所得的点的坐标是A.(0,5)B.(5,1)C.(2,4)D.(4,2)3.如图,在平面直角坐标系中,已知点A(2,1),点B(3,–1),平移线段AB,使点A落在点A1(–2,2)处,则点B的对应点B1的坐标为A.(–1,–1)B.(1,0)C.(–1,0)D.(3,0)4.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为A.30°B.90°C.120°D.180°5.如图,在ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为A.12 B.15 C.18 D.216.如图,将△ABC沿BC边上的中线AD平移到△A′B′C′的位置.已知△ABC的面积为16,阴影部分三角形的面积9.若AA′=1,则A′D等于A.2 B.3 C.4 D.3 27.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置.若四边形AECF的面积为20,DE=2,则AE的长为A.4 B.25C.6 D.268.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB 绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是__________.9.如图,在△ABC中,∠BAC=90°,AB=AC=10 cm,点D为△ABC内一点,∠BAD=15°,AD=6 cm,连接BD,将△ABD绕点A按逆时针方向旋转,使AB与AC重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为__________cm.10.如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为__________.11.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.(1)画出△OAB关于y轴对称的△OA1B1,并写出点A1的坐标;(2)画出△OAB绕原点O顺时针旋转90°后得到的△OA2B2,并写出点A2的坐标;(3)在(2)的条件下,求线段OA在旋转过程中扫过的面积(结果保留π).12.如图,在矩形ABCD中,对角线AC的中点为O,点G,H在对角线AC上,AG=CH,直线GH绕点O 逆时针旋转α角,与边AB、CD分别相交于点E、F(点E不与点A、B重合).(1)求证:四边形EHFG是平行四边形;(2)若∠α=90°,AB=9,AD=3,求AE的长.13.在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点A顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.(1)当点E恰好在AC上时,如图1,求∠ADE的大小;(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.变式拓展1.【答案】A【解析】A.不是轴对称图形,故本选项符合题意;B.是轴对称图形,故本选项不符合题意;C.是轴对称图形,故本选项不符合题意;D.是轴对称图形,故本选项不符合题意.故选A.2.【答案】D【解析】A、可以通过轴对称得到,故此选项错误;B、可以通过旋转得到,故此选项错误;C、可以通过轴对称得到,故此选项错误;D、可通过平移得到,故此选项正确;故选D.3.【答案】C【解析】由平移的性质可知,甲、乙两只蚂蚁的行走的路程相同,且两只蚂蚁的速度相同,所以两只蚂蚁同时到达,故选C.4.【答案】C【解析】根据旋转的性质可知,每次旋转的度数可以是360°÷5=72°或72°的倍数.故选C.5.【答案】C【解析】∵将△ABC绕点A顺时针旋转90°得到△AED,∴∠BAC=∠DAE=20°,AB=AE,∠BAE=90°,∴∠BEA=45°,∵∠BDA=∠BEA+∠DAE=45°+20°,∴∠BDA=65°.故选C.6.【答案】A【解析】A、是中心对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是旋转变换图形,故本选项错误;D、是旋转变换图形,故本选项错误.1.【答案】C【解析】A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不符合题意;故选C.2.【答案】B【解析】∵将点A(3,–2)向右平移3个单位所得点的坐标为(6,–2),∴正确答案是B选项.故选B.3.【答案】C【解析】①旋转中心到对应点的距离相等,正确;②对称中心是对称点所连线段的中点,正确;③旋转后的两个图形的对应边所在直线的夹角等于旋转角,正确;④任意一个等边三角形都是中心对称图形,错误.说法正确的有3个,故选C.4.【答案】D【解析】根据图象,△ABC 绕着点A 逆时针方向90°旋转与△DEF 形状相同,向右平移6格就可以与△DEF 重合.故选D . 5.【答案】C【解析】菱形OABC 的顶点O (0,0),B (–2,–2), 得D 点坐标为(022-,022-),即(–1,–1). 每秒旋转45°,则第60秒时,得45°×60=2700°,2700°÷360°=7.5周, OD 旋转了7周半,菱形的对角线交点D 的坐标为(1,1); 故选C . 6.【答案】23-【解析】如图,作AH ⊥CD 于H .∵四边形ABCD 是菱形,∠BAD =120°, ∴AB ∥CD ,∴∠D +∠BAD =180°, ∴∠D =60°, ∵AD =AB =2,∴AH =AD ·sin60°3= ∵B ,B ′关于EF 对称, ∴BE =EB ′,当BE 的值最小时,AE 的值最大,根据垂线段最短可知,当EB ′3AH ==时,BE 的值最小, ∴AE 的最大值=23, 故答案为:23. 7.【答案】55【解析】∵1110∠=︒,纸条的两边互相平行,∴3180118011070.∠=︒-∠=︒-︒=︒根据翻折的性质,()()1121803180705522∠=⨯︒-∠=⨯︒-︒=︒.故答案为:55. 8.【答案】14【解析】根据中心对称图形的性质,得AOE COF △≌△,则阴影部分的面积等于BOC △的面积,为平行四边形ABCD 面积的14.故答案为:14. 9.【答案】22【解析】如图,∵21112∠=∠=︒(对顶角相等),∴336090211268.∠=-⨯︒-=︒︒︒ ∴'906822BAB ∠=-=︒︒︒,∴旋转角'22.BAB α∠=∠=︒故答案为:22.10.【解析】(1)若△A 1B 1C 1与△ABC 关于原点O 成中心对称,则点A 1的坐标为(2,–3).(2)将△ABC 向右平移4个单位长度得到△A 2B 2C 2,则点B 2的坐标为(3,1). (3)将△ABC 绕O 点顺时针方向旋转90°,则点C 走过的路径长=90π2180=π.11.【解析】如图,连接EF 交AD 于点O .DE AC ∥交AB 于E DF AB ,∥交AC 于F ,∴四边形AEDF 是平行四边形, ∴点E F ,关于AD 的中点对称.12.【解析】(1)如图所示:(2)如图所示:'''A B C △即为所求:C '的坐标为()55-,; (3)2221454162091625AB AC BC =+==+==+=,,,∴222AB AC BC +=, ∴ABC △是直角三角形.13.【解析】(1)∵∠BAC =40°,∴∠BAD =140°,∴△ABC 旋转了140°.(2)由旋转的性质可知AC =AE ,∴△AEC 是等腰三角形. (3)由旋转的性质可知,∠CAE =∠BAD =140°,又AC =AE , ∴∠AEC =(180°–140°)÷2=20°.1.【答案】D【解析】∵只有D 的图形的形状和大小没有变化,符合平移的性质,属于平移得到; 故选D . 2.【答案】B【解析】将点(2,1)向右平移3个单位长度,则所得的点的坐标横坐标增加3,即(5,1).故选B . 3.【答案】【解析】由点A (2,1)平移后所得的点A 1的坐标为(–2,2),可得坐标的变化规律是:左移4个单位,上移1个单位,∴点B 的对应点B 1的坐标为(–1,0).故选C . 4.【答案】C【解析】∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故选C . 5.【答案】C【解析】由折叠可得,∠ACD =∠ACE =90°,∴∠BAC =90°, 又∵∠B =60°,∴∠ACB =30°,∴BC =2AB =6,∴AD =6,直通中考由折叠可得,∠E =∠D =∠B =60°,∴∠DAE =60°,∴△ADE 是等边三角形,∴△ADE 的周长为6×3=18,故选C . 6.【答案】B【解析】∵S △ABC =16.S △A ′EF =9,且AD 为BC 边的中线,∴S △A ′DE =12S △A ′EF =92,S △ABD =12S △ABC =8, ∵将△ABC 沿BC 边上的中线AD 平移得到△A 'B 'C ',∴A ′E ∥AB ,∴△DA ′E ∽△DAB , 则2()A'DE ABD S A'D AD S =△△,即299()1816A'D A'D ==+,解得A ′D =3或A ′D =﹣37(舍),故选B . 7.【答案】D【解析】∵△ADE 绕点A 顺时针旋转90°到△ABF 的位置.∴四边形AECF 的面积等于正方形ABCD 的面积等于20,∴AD =DC =2,∵DE =2,∴Rt △ADE 中,AE =22AD DE +=26,故选D .8.【答案】(﹣2,﹣23) 【解析】作BH ⊥y 轴于H ,如图,∵△OAB 为等边三角形,∴OH =AH =2,∠BOA =60°,∴BH =3OH =23,∴B 点坐标为(2,23), ∵等边△AOB 绕点O 顺时针旋转180°得到△A ′OB ′, ∴点B ′的坐标是(﹣2,﹣23). 故答案为:(﹣2,﹣23). 9.【答案】10–26【解析】如图,过点A 作AG ⊥DE 于点G ,由旋转知:AD =AE ,∠DAE =90°,∠CAE =∠BAD =15°,∴∠AED =∠ADG =45°,在△AEF 中,∠AFD =∠AED +∠CAE =60°,在Rt △ADG 中,AG =DG =2AD =32, 在Rt △AFG 中,GF =3AG =6,AF =2FG =26,∴CF =AC –AF =10–26, 故答案为:10–26.10.【答案】23–2【解析】根据旋转过程可知:∠CAD =30°=∠CAB ,AC =AD =4.∴∠BCA =∠ACD =∠ADC =75°.∴∠ECD =180°–2×75°=30°.∴∠E =75°–30°=45°.过点C 作CH ⊥AE 于H 点,在Rt △ACH 中,CH =12AC =2,AH =23. ∴HD =AD –AH =4–23.在Rt △CHE 中,∵∠E =45°,∴EH =CH =2.∴DE =EH –HD =2–(4–23)=23–2.故答案为3–2.11.【解析】(1)如下图所示,点A 1的坐标是(–4,1);(2)如下图所示,点A 2的坐标是(1,–4);(3)∵点A (4,1),∴OA 221417+=∴线段OA 290(17)⨯π⨯=174π.12.【解析】(1)∵对角线AC的中点为O,∴AO=CO,且AG=CH,∴GO=HO,∵四边形ABCD是矩形,∴AD=BC,CD=AB,CD∥AB,∴∠DCA=∠CAB,且CO=AO,∠FOC=∠EOA,∴△COF≌△AOE(ASA),∴FO=EO,且GO=HO,∴四边形EHFG是平行四边形;(2)如图,连接CE,∵∠α=90°,∴EF⊥AC,且AO=CO,∴EF是AC的垂直平分线,∴AE=CE,在Rt△BCE中,CE2=BC2+BE2,∴AE2=(9–AE)2+9,∴AE=5.13.【解析】(1)如图1,∵△ABC绕点A顺时针旋转α得到△DEC,点E恰好在AC上,∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,∵CA=CD,∴∠CAD=∠CDA=12(180°–30°)=75°,∴∠ADE=90°–75°=15°;(2)如图2,∵点F是边AC中点,∴BF=12 AC,∵∠ACB=30°,∴AB=12AC,∴BF=AB,∵△ABC绕点A顺时针旋转60得到△DEC,∴∠BCE=∠ACD=60°,CB=CE,DE=AB,∴DE=BF,△ACD和△BCE为等边三角形,∴BE=CB,∵点F为△ACD的边AC的中点,∴DF⊥AC,易证得△CFD≌△ABC,∴DF=BC,∴DF=BE,而BF=DE,∴四边形BEDF是平行四边形.。
图形的平移与旋转知识点汇总.doc
第十五章图形的平移与旋转一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
一个图形经过平移后得到一个新图形,这个新图形与原图形是互相重合的,互相重合的点称为,互相重合的角称为,互相重合的线段称为。
注意:1. 平移有两个要素:(1)沿某一方向移动;(2)移动一定的距离;2. 平移的方向就是原图上的点指向它的对应点的方向;图像上每点都沿同一方向移动距离,这个距离是指对应点之间的长度;3. 平移前后两图形是全等的。
平移的特征:平移不改变图形和,只改变了图形的位置;经过平移,对应点所连的线段(或) 且相等;对应线段(或)且相等,对应角。
二、1、旋转:在平面内,将一个图形绕一个沿某个方向转动一定,这样的图形运动称为旋转。
这个定点称为,转动的角称为。
任意一对对应点与旋转中心的连线所成的角都是.注意:1. 旋转中心在旋转过程中保持不动;2. 图形的旋转是由,和所决定的;3. 作平移图与旋转图。
(确定关键点,将关键点沿一定的方向移动相同的距离,连接关键点)旋转的特征:图形中每一点都绕着旋转中心按同一旋转方向旋转了同样大小的;对应点到旋转中心的距离;对应线段,对应角;图形的形状与大小都没有发生变化。
图形的变换包括、和旋转,这三种图形变换的共同点是:只改变图的,不改变图形的和。
2、旋转对称图形:在平面内,一个图形绕一个定点旋转一定的角度后能与自身,这样的图形称为旋转对称图形。
3、中心对称图形:在平面内,一个图形绕某个点旋转角度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形。
这个点叫做对称中心。
中心对称图形是旋转角度为°的特殊旋转对称图形,但旋转对称图形不一定是中心对称图形。
4、成中心对称:把一个图形绕着某一点旋转180o,如果它能够和另一个图形重合,就称这两个图形成中心对称。
这个点叫做对称中心;这两个图形中的对应点,叫做关于中心的。
在成称的形称过 ,并且被对 称中心。
数学解析初中几何中的平移与旋转性质总结与归纳
数学解析初中几何中的平移与旋转性质总结与归纳在初中数学中,几何是一个重要的部分,而平移与旋转是几何中两个基本的变换方式。
平移与旋转性质对于初中几何的学习与理解起着重要的作用。
本文将对初中几何中的平移与旋转性质进行总结与归纳。
一、平移性质平移是指在平面内,保持图形形状不变的前提下,将图形沿着指定的方向平行移动一定的距离。
平移可以有以下性质:1. 平移是一个向量加法:对于任意的平移向量a,b和图形A,B,平移后的图形A',B'满足A'B' = AB + a + b。
2. 平移保持图形的形状和大小不变:在平移变换下,图形的边长、角度、面积等性质保持不变。
3. 平移可以改变图形的位置:在平移变换下,图形整体移动,但形状不变。
二、旋转性质旋转是指将图形围绕一个中心点按照一定的角度旋转,保持图形的形状不变。
旋转可以有以下性质:1. 旋转是一个圆周运动:对于任意的旋转中心O和图形A,B,旋转后的图形A',B'满足OA' = OA,∠A'OA = ∠AOA'。
2. 旋转保持图形的形状和大小不变:在旋转变换下,图形的边长、角度、面积等性质保持不变。
3. 旋转可以改变图形的方向:旋转变换可以使图形从顺时针方向变为逆时针方向,或者反之。
三、平移与旋转的关系平移和旋转是两种常见的几何变换方式,在实际问题中常常会同时出现。
它们之间存在如下关系:1. 平移与旋转可以相互交换:对于给定的图形A,平移后旋转与旋转后平移所得到的图形相同。
2. 平移和旋转的次序可以交换:对于给定的图形A,先平移后旋转与先旋转后平移所得到的图形相同。
四、应用举例1. 平移的应用:平移变换常用于解决图形重叠、图形移动等问题。
例如,在求解图形对称性时,可以通过平移变换将图形移动到另一个位置,以便观察其是否与原图形重合。
2. 旋转的应用:旋转变换常用于解决图形旋转、图形定位等问题。
例如,在求解几何中的旋转对称性时,可以通过旋转变换将图形旋转一定角度,以便观察其与原图形的关系。
初中数学旋转、平移、对称知识点总结
2021年初中数学旋转、平移、对称知识点总结1.旋转:把一个平面图形绕着平面内某一点O转动一个角度,叫做图形的旋转,这个定点叫做旋转中心,转动的角度叫做旋转角。
〔旋转角小于0°,大于360°〕。
2.旋转三要素:旋转中心、旋转方向、旋转角。
旋转中心可在图形上,也可以在图形外部或内部,始终保持不动的那个点就是旋转中心,旋转中心就是两组对应点连线的垂直平分线的交点。
3.旋转中心确实定方法:〔1〕首先找出旋转前后两个图形上的两组对应点;〔2〕然后分别连接这两组对应点得到两条线段;〔3〕分别作这两条线段的垂直平分线,这两条垂直平分线的交点即为旋转中心。
4.旋转的性质〔1〕对应点到旋转中心的距离相等。
〔2〕对应点与旋转中心所连线段的夹角等于旋转角。
即图形上每一点都绕转中心按相同的方向和角度旋转。
〔3〕旋转前后的图形全等:对应边相等、对应角相等、图形的形状大小不改变。
如下列图所示:5.旋转作图的具体步骤:找转截连写〔1〕找:找准图形中的关键点,并将每个关键点与旋转中心连结;〔2〕转:把连线围绕定点转过一定角度〔画旋转角的另一边〕〔3〕截:在旋转角的另一边上截取与关键点到旋转中心的距离相等的线段,得到各关键点的对应点;〔4〕连:连结所得到的各对应点;〔5〕写:写出结论,说明作出的图形;即先找出关键点,然后连接关键点与旋转中心,将这些线段按同一方向旋转同一角度,标出对应点,连接对应点。
6.平移:在平面内,将一个图形整体沿某一方向由一个位置平移到另一个位置,图形的这种移动,叫做平移变换,简称平移。
7.平移三要素:图形的原来位置、平移的方向、平移的距离。
8. 平移的性质〔1〕对应点的连线平行(或共线)且相等〔2〕对应线段平行(或共线)且相等;〔3〕对应角相等,对应角两边分别平行,且方向一致。
9.平移作图的步骤和方法:平行线法、对应点连线法、全等图形法〔1〕找关键点;〔2〕过每个关键点作平移方向的平行线,截取与之相等的距离,标出对应点〔3〕连接对应点。
(完整版)图形的平移与旋转知识点
第三章图形的平移与旋转复习要点专点一:图形的平移1.平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
平移是由移动的方向和距离决定的。
2.平移的性质:(1)平移不改变图形的形状和大小:即平移前后的线段相等,平移前后的三角形或多边形全等。
(2)平移后的图形与原来图形的对应线段平行且相等,对应角相等。
(3)平移后两图形的对应点所连的线段平行且相等。
专点二:图形的旋转1.旋转的定义:在平面内,将一个图形绕着一个定点沿着某个方向(顺时针或逆时针)旋转一定的角度,这样的图形运动成为旋转,这个定点称为旋转中心,旋转的角度称为旋转角。
2.旋转的性质:(1)旋转不改变图形的形状和大小:即旋转前后的图形是一组全等形。
(2)旋转后的图形与原来的图形的对应线段相等,对应角相等。
(3)经过旋转,图形上的每一点都绕着旋转中心沿相同的方向转动了相同的角度。
(4)任意一对对应点与旋转中心的距离相等。
考点三、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4、中心对称图形把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
考点四、坐标系中对称点的特征1、关于原点对称的点的特征:两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)2、关于x轴对称的点的特征:两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)3、关于y轴对称的点的特征:两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)专点五:利用轴对称、旋转和平移作图1.平移作图的一般步骤:(1)确定平移的方向和距离;(2)确定构成图形的关键点(线段两个端点,三角形三个顶点,n边形n 个顶点);(3)按照平移的方向和距离平移各个关键点;(4)顺次连接各个关键点的对应点,所得的图形就是平移后的图形。
初中数学图形的平移与旋转知识点归纳
初中数学图形的平移与旋转知识点归纳在初中数学中,图形的平移和旋转是涉及到几何图形的基本操作。
通过平移和旋转,我们可以改变图形的位置和朝向,从而建立几何图形之间的联系和性质。
本文将对初中数学中与图形的平移和旋转相关的知识点进行归纳和总结。
一、图形的平移平移是指将一个图形沿着指定的方向和距离移动,而不改变该图形的大小、形状和方向。
图形的平移可以通过向左、向右、向上或向下平移来完成。
以下是与图形的平移相关的知识点:1. 平移向量:平移向量表示平移的方向和距离,可以用箭头表示。
平移向量的长度表示平移的距离,箭头的方向表示平移的方向。
2. 平行平移:平行平移是指图形沿着平行于给定方向的线段移动。
在平行平移过程中,图形的各个点保持相对位置不变。
3. 坐标平移:坐标平移是指根据给定的平移向量,将图形上每个点的坐标分别增加或减少相应的数值。
例如,对于二维平面上的点A(x, y),进行平移向量为(3, 4)的平移,那么新的点A'(x+3, y+4)就是平移后的坐标。
二、图形的旋转旋转是指将一个图形按照一定的角度围绕某个固定点旋转,使得图形绕着该点旋转后,图形上的各个点的位置发生相应的变化。
以下是与图形的旋转相关的知识点:1. 旋转中心:旋转中心是围绕其进行旋转的点,也称为旋转的原点。
2. 旋转角度:旋转角度是指旋转的角度大小,可以是正数、负数或零。
正数表示顺时针旋转,负数表示逆时针旋转。
3. 旋转方向:旋转方向可以根据旋转角度的正负来确定,正数表示顺时针旋转,负数表示逆时针旋转。
4. 中心旋转:中心旋转是指图形围绕一个给定的点旋转。
在中心旋转中,图形上的各个点以旋转中心为中心点,按照给定的旋转角度进行旋转。
5. 角度旋转:角度旋转是指图形围绕一个给定的角度进行旋转。
在角度旋转中,旋转中心通常是坐标原点,图形上的各个点按给定的旋转角度进行旋转。
三、图形的平移与旋转的性质和应用图形的平移和旋转不仅是数学中的重要概念,也在实际生活中广泛应用。
七年级数学平移和旋转的变换复习知识点总结
平移和旋转都是二维的几何变换,是数学中重要的内容之一、它们在生活和科学中有着广泛的应用,比如地图的绘制、机器人的运动轨迹规划等。
在初中数学中,我们将学习平移和旋转的基本概念、性质以及应用。
一、平移的概念和性质1.平移的定义:平移是指将一个点或者图形沿着同一方向和距离移动,移动后仍保持原来的大小、形状和朝向。
2.平移的性质:(1)平移是保形变换,即平移前后图形的形状保持不变。
(2)平移是保角变换,即平移前后图形的角度保持不变。
(3)平移是可逆变换,即平移后再反向平移能够还原原来的图形。
(4)平移可以通过向量来描述,平移向量的大小和方向与移动的距离和方向一致。
二、旋转的概念和性质1.旋转的定义:旋转是指将一个点或者图形绕着一些点旋转一定的角度,旋转之后保持原来的大小和形状。
2.旋转的性质:(1)旋转是保形变换,即旋转前后图形的形状保持不变。
(2)旋转不改变图形的大小。
(3)旋转是可逆变换,即旋转后再反向旋转能够还原原来的图形。
(4)旋转可以通过角度来描述,顺时针和逆时针旋转用正负号表示。
1.平移的变换公式:对于平移向量为(a,b),将点P(x,y)平移得到点P'(x',y'),变换公式为:x'=x+ay'=y+b2.旋转的变换公式:对于以点O为中心逆时针旋转角度θ,将点P 到点P',变换公式为:x' = x*cosθ - y*sinθy' = x*sinθ + y*cosθ四、平移和旋转的性质和作用1.平移的性质和作用:(1)平移不改变图形的形状和大小,只改变了图形的位置。
(2)平移可以用来解决位置和位置之间的关系问题,比如寻找相对位置、计算坐标等。
2.旋转的性质和作用:(1)旋转不改变图形的形状和大小,只改变了图形的方向和朝向。
(2)旋转可以用来解决角度和角度之间的关系问题,比如确定旋转中心、计算旋转角度等。
(3)旋转也可以用来解决图形的对称性问题,比如寻找对称图形、判断对称轴等。
初中图形的平移和旋转知识点
一、知识回顾 1.平移的概念 2.平移的性质 二、新知要点1.平移图形的规律,作图的顺序;2.平行线的作法及对应点的连结;3.平移三要素:原图形位置,平移方向,平移距离。
例1:观察理解平移后的图形。
例2: 把图中的三角形ABC (可记为△ABC )向右平移8个格子,画出所得的△'''C B A 。
度量△ABC 与△'''C B A 的边,角的大小,你发现什么呢?解:(1)、经过平移的图形与原来的图形的对应线段 ,对应角 ,图形的形状和大小都 。
(2)、平移的对应点所连线段 。
(3)、其中BC 与B ′C ′的关系是 (位置关系和数量关系)。
线段AB 与A ′B ′的关系是 (位置关系和数量关系)。
若AC=5,则A ′C ′= ,若∠BAC=60°,则∠B ′A ′C ′= 。
若△ABC 周长为30,则△A ′B ′C ′周长为 。
BCA若△ABC面积为S,则△A′B′C′面积为。
例3:画出平移后的图形。
通过操作我们发现:1.在方格纸上平移图形时,把一个图形向某个方向平移几格,不是指原图形和平移后得到的新图形两个图形之间的空格有几格,而是指原图形的每个顶点都向这一方向平移了几格。
2.在方格纸上平移图形时,可以把这个图形的各个顶点按指定的方向平移到新位置,先分别描出各点,再把各点按原来的顺序连接起来,成为按要求平移后得到的新图形。
3.用平移的方式画一排或一列图形时,可以在第一个图形的底部或左右画一条横线或竖线,以这条横线或竖线为基准,画出的图形就是平移得到的。
4.平移图形或物体时,可以一次平移,也可以两次平移,物体的方向都不会改变。
例4:如图,经过平移,△ABC的顶点A移到了点D,请作出平移后的三角形。
分析:因为A与D是对应点,而平移的对应点的连线段平行且相等所以平移方向——射线AD,平移距离——线段AD的长,作法:1.分别过点B、C沿AD方向作线段BE、CF,使它们与AD平行且相等2.顺次连结D、E、F则△DEF即为所求。
旋转和平移知识点总结
旋转和平移知识点总结一、旋转1.1 定义在数学中,旋转是指以某一点为中心,按一定的角度和方向将图形绕该点旋转的过程。
常见的旋转包括顺时针旋转和逆时针旋转,以及以原点为中心的旋转和以其他点为中心的旋转。
1.2 性质(1)旋转是等距变换,旋转前后图形的每个点到中心的距离保持不变。
(2)旋转是保角变换,旋转前后图形上的两个点和中心组成的角度保持不变。
(3)根据旋转的不同角度和方向,可以将图形旋转成不同的位置和姿态。
1.3 公式以原点为中心的逆时针旋转公式:x' = x * cosθ - y * sinθy' = x * sinθ + y * cosθ以任意点(a,b)为中心的逆时针旋转公式:x' = (x-a) * cosθ - (y-b) * sinθ + ay' = (x-a) * sinθ + (y-b) * cosθ + b1.4 实际应用旋转在计算机图形学、几何建模、航空航天、地理信息系统等领域都有广泛的应用。
例如,在计算机图形学中,旋转可以用来实现图形的变换和动画效果;在航空航天领域,旋转可以用来控制飞机和卫星的姿态;在地理信息系统中,旋转可以用来实现地图的旋转和放大缩小等功能。
二、平移2.1 定义平移是指保持图形大小、形状和方向不变的情况下,将图形沿着某一方向移动一定的距离的过程。
平移可以分为水平平移和垂直平移,分别是在x轴和y轴方向上进行平移。
2.2 性质(1)平移是等距变换,平移前后图形上的任意两点之间的距离保持不变。
(2)平移不改变图形的大小和形状,只改变图形的位置。
2.3 公式水平平移公式:x' = x + ay' = y垂直平移公式:x' = xy' = y + b2.4 实际应用平移在地图导航、工程设计、计算机图形学等领域都有广泛的应用。
例如,地图软件中的平移功能可以让用户在地图上任意移动视角;在工程设计中,平移可以用来调整建筑物或设备的位置;在计算机图形学中,平移可以用来实现图形的移动和拼接。
初中数学知识归纳平移旋转对称
初中数学知识归纳平移旋转对称平移、旋转和对称是初中数学中常见的几何变换,它们在解决几何问题和实际应用中起着重要的作用。
本文将对平移、旋转和对称进行归纳总结。
1. 平移:平移是指将图形沿着直线方向上的某个距离移动。
在平移过程中,图形的形状和大小保持不变,只是位置发生变化。
平移可以表示为向量形式,其中平移向量表示了图形沿着横坐标和纵坐标方向上的移动距离。
平移的性质:(1)平移不改变图形的大小和形状。
(2)平移保持图形的所有内角大小和相对位置不变。
(3)平移是可逆的,即可以通过相反方向的平移将图形还原到原来的位置。
2. 旋转:旋转是指将图形绕一个点或一个轴进行转动,旋转的中心点称为旋转中心。
旋转可以是顺时针或逆时针方向,旋转的角度可以为正数或负数。
旋转的性质:(1)旋转不改变图形的大小。
(2)旋转保持图形的所有内角大小和相对位置不变。
(3)旋转是可逆的,即可以通过逆向旋转将图形还原到原来的位置。
3. 对称:对称是指图形相对于某个轴、点或中心呈现镜像关系。
对称分为对称轴对称和中心对称两种类型。
对称的性质:(1)轴对称:图形相对于对称轴对称,对称轴上的任意一点与其相对称点距离对称轴的距离相等。
(2)中心对称:图形相对于中心对称,中心对称点是图形的中心,对称图形的任意一点与其相对称点之间的距离相等。
4. 平移、旋转和对称的应用:(1)平移:平移常用于几何问题的解决和图形的构造,如将一个图形精确移动到另一个位置。
(2)旋转:旋转常用于解决图形的排列、对称和判断两个图形是否相似等问题。
(3)对称:对称广泛应用于图案的设计、建筑设计等领域,通过对称可以使图案更具美感和平衡感。
在初中数学学习中,平移、旋转和对称是重要的数学概念和技巧。
通过学习和掌握这些几何变换的性质和应用,可以提高图形思维能力,解决几何问题,并在日常生活中运用数学的知识。
因此,初中数学学习中的平移、旋转和对称对培养学生的几何直观和创造力起着重要的作用。
中考考点形的平移旋转和对称的性质与应用
中考考点形的平移旋转和对称的性质与应用中考考点:形的平移、旋转和对称的性质与应用形的平移、旋转和对称是中学数学中的重要内容,也是中考数学考试中的常见考点。
掌握形的平移、旋转和对称的性质,能够运用它们解决各类几何题目,提高数学解题的能力。
本文将分别介绍形的平移、旋转和对称的概念及性质,并通过几个具体例子展示它们在数学中的应用。
一、形的平移形的平移是指将一幅图形按照一定的方向和距离移动,使图形的每一点按照相同的方向和距离移动到另一个位置,这个过程称为形的平移。
平移是一种保持图形大小、形状和方向不变的变换。
平移的性质:1. 平移是保持图形的大小、形状和方向的,所以平移之后的图形与原图形完全相同。
2. 平移是一种等距变换,即平移之前和平移之后,图形中两点的距离保持不变。
3. 平移是可逆的,即平移之后再进行逆向平移,可以还原回原来的图形。
4. 平移可以作用于任意图形,不仅仅局限于平面图形。
形的平移在中考数学中的应用:几何题中常常会给出一幅图形进行平移,要求求出平移后的图形的一些性质。
掌握形的平移的性质,可以通过几何分析求解这类题目。
例题1:如图,在平面直角坐标系中,顶点为A(2,2),B(4,2),C(5,4)的三角形ABC向右平移5个单位,分别标记出平移后三角形的顶点。
解:根据平移的性质,将原来的三角形ABC中的每个顶点都向右平移5个单位,可以得到平移后的三角形A'B'C',如图所示。
(图略)例题2:如图,矩形ABCD的对角线AC及平移后的矩形A'B'C'D'的对角线A'C'相交于点E。
已知AC=8cm,A'C'=10cm,求矩形ABCD 的面积。
解:由于平移是保持图形形状和大小的,所以可以得知矩形ABCD 和平移后的矩形A'B'C'D'面积相等。
设矩形ABCD的长和宽分别为a和b,则矩形ABCD的面积为S=ab。
图形的平移与旋转知识讲解
图形的平移及旋转--知识讲解【学习目标】1、理解平移的概念,掌握图形的平移所具有的对应点的连线的特征,理解平移前后对应边角的关系,能按要求作出简单的平面图形平移后的图形;2、掌握旋转的概念,探索它的基本性质,能够按要求作出简单平面图形旋转后的图形;3、掌握旋转对称图形、中心对称图形和中心对称的概念,理解他们的区别和联系,并会判别给出的图形是旋转对称图形还是中心对称图形;4、会画出给定条件的旋转对称图形或中心对称图形以及会画已知图形关于已知点成中心对称的图形.【要点梳理】要点一、平移的概念及性质平移的概念将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移.如图:平移三角形ABC就可以得到三角形A′B′C′,点A和点A′,点B和B′,点C和点C′是对应点,线段AB和AB′,BC和B′C′,AC和A′C′是对应线段,∠A及∠A′,∠B及∠B′∠C及∠C′是对应角.平移的性质Array图形平移后,对应点之间的距离、对应线段的长度、对应角的大小相等.图形平移后,图形的大小、形状都不变.要点诠释:1、平移后各对应点之间的距离叫做图形平移的距离.2、平移的两个要素:平移的方向和平移的距离.要点二、旋转的概念及性质旋转的概念在平面内,将一个图形上的所有点绕一个定点按照某个方向转动一个角度,这样的运动叫做图形的旋转.这个定点叫做旋转中心(如点O),转动的角度叫做旋转角(如∠AO A′).如图:三角形A′B′C′是三角形ABC绕点O旋转所得,则点A和点A′,点B和B′,点C和点C′是对应点,线段AB和ArrayAB′,BC和B′C′,AC和A′C′是对应线段,∠AOA′,∠BOB′,∠COC′是旋转角.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.旋转的性质(1)对应点到旋转中心的距离相等(OA= OA′);(2)对应线段的长度相等(AB=AB′);(3)对应点及旋转中心所连线段的夹角等于旋转角(∠AOA′);要点诠释:1、图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.2、旋转前后图形的大小和形状没有改变.要点三、旋转的作图在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点及旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.要点四、旋转对称图形及中心对称图形旋转对称图形:把一个图形绕着一个定点旋转一个角度后,及初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.(旋转角 0°< <360°). 中心对称图形:如果把一个图形绕着一个定点旋转180°后,及初始图形重合,那么这个图形叫做中心对称图形,这个点叫做对称中心. 要点诠释:中心对称图形是特殊的旋转对称图形,特殊在旋转角是180°,也就是说当旋转角是180°时的旋转对称图形就是中心对称图形.要点五、中心对称 中心对称:把一个图形绕着某一个点旋转180°后,和另一个图形重合,那么叫做这两个图形关于这个点对称也叫做这两个图形中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点. 要点诠释:1、中心对称是旋转角为180°的旋转对称;2、寻找对称中心,只需分别联结两对对应点,所得两条直线的交点就是对称中心;3、对称点所连线段经过对称中心,而且被对称中心平分.A CBC ′B ′′ O联系如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形.如果把中心对称图形对称的部分看成是两个图形,那么它们又是关于中心对称.【典型例题】类型一、平移的概念及性质1.如图,将方格上的图形向右平移4格,再向上平移3格,画出平移后的图形.【答案及解析】将图形中五边形的各关键点先向右平移4格,再向上平移3格,然后顺次连接各关键点,即可得到平移后的五边形,然后以A为圆心,单位1为半径作圆弧即可.【总结升华】画平移图形的关键是找到图形中的各个关键点按要求平移,然后把平移后的各点连结起来即可.【变式】下面所说的“平移”,是指只沿方格的格线(即上下或左右)运动,将图中的任一条线段平移1格称为“1步”.要通过平移,使图中的3条线段首尾相接组成一个三角形,最少需要移动()A.7步 B.8步 C.9步 D.10步【答案】A【解析】其中移动方案为:AB向下移动2格,EF向右1格再向上2格,CD 向左2格,共应7格.类型二:旋转的概念及性质2.如图,把四边形AOBC绕点O旋转得到四边形DOEF.在这个旋转过程中:(1)旋转中心是谁?(2)旋转方向如何?(3)经过旋转,点A、B的对应点分别是谁?(4)图中哪个角是旋转角?(5)四边形AOBC及四边形DOEF的形状、大小有何关系?(6)AO及DO的长度有什么关系?BO及EO呢?(7)∠AOD及∠BOE的大小有什么关系?【答案及解析】(1)旋转中心是点O;(2)旋转方向是逆时针方向;(3)点A的对应点是点D,点B的对应点是点E;(4)∠AOD和∠BOE;(5) 四边形AOBC及四边形DOEF形状一致,大小相等;(6)AO=DO,BO=EO;(7)∠AOD=∠BOE.【总结升华】通过具体实例认识旋转,了解旋转的概念和性质.举一反三【变式】如图所示:O为正三角形ABC的中心.你能用旋转的方法将△ABC 分成面积相等的三部分吗?如果能,设计出分割方案,并画出示意图.【答案】下面给出几种解法:解法一:连接OA、OB、OC即可.如图甲所示;解法二:在AB边上任取一点D,将D分别绕点O旋转120°和240°得到D1、D2,连接OD、OD1、OD2即得,如图乙所示.解法三:在解法二中,用相同的曲线连结OD、OD1、OD2即得如图丙所示类型三、旋转的作图3.如图,在正方形网格中,每个小正方形的边长均为1个单位.将向下平移4个单位,得到,再把绕点顺时针旋转,得到,请你画出和(不要求写画法).【答案及解析】【总结升华】注意平移和旋转中关键点移动规律的不同.举一反三【变式】如图,画出ABC∆绕点O逆时针旋转100︒所得到的图形.【答案】(∠AOA′=∠BOB′=∠COC′=100°)类型四、旋转对称图形及中心对称图形4.若一个图形绕着一个定点旋转一个角α(0°<α≤180°)后能够及原来的图形重合,那么这个图形叫做旋转对称图形.例如:等边三角形绕着它的中心旋转120°(如图),能够及原来的等边三角形重合,因而等边三角形是旋转对称图形.显然,中心对称图形都是旋转对称图形,但旋转对称图形不一定是中心对称图形.下面四个图形中,旋转对称图形个数有()A.1 B.2 C.3 D.4【答案及解析】图1绕中心旋转60°后能够及原来的图形重合,所以这个图形是旋转对称图形;图2中,无论怎么样旋转都无法重合,除非旋转360度,但超出条件范围,故图2不是旋转对称图形;图3绕中心旋转120°后能够及原来的图形重合,所以这个图形是旋转对称图形;图4绕中心旋转72°后能够及原来的图形重合,所以这个图形是旋转对称图形.【总结升华】根据旋转对称图形的定义:若一个图形绕着一个定点旋转一个角α(0°<α≤180°)后能够及原来的图形重合,那么这个图形叫做旋转对称图形.5.下列图形是中心对称图形吗?如果是中心对称图形,在图中用点O标出对称中心.【答案及解析】这些图形中:图形1,图形3,图形4,图形5,图形8为中心对称图形,其对称中心为图形中的点O.【总结升华】识别中心对称图形,就看这个图形绕着一个定点旋转180°后,能否及初始图形重合,而对称中心往往是图形本身的内部的一点.【变式】如图,将图(1)中的正方形图案绕中心旋转180°后,得到的图案是( )【答案】C.【解析】抓住图形特征,观察图中的每个小的图形绕中心点旋转180°后能否及自身重合.【总结升华】在解题的过程中,可看出如果选取的基本图形不同,可得到不同的形成过程,甚至所选取的基本图形相同,也有不同的形成过程,因此分析图案的形成过程旨在了解图形的变化规律,而不必强求分析的一致性.类型五、中心对称6.画出四边形ABCD关于点O的中心对称图形.【答案及解析】【总结升华】作中心对称图形关键是找到各点关于对称中心的对应点.【变式】(1)如图(1)选择点O为对称中心,画出线段AB关于点O的对称线段A′B′.(2)如图(2)选择△ABC内一点P为对称中心,画出△ABC关于点P的对称△A′B′C′.图形的平移与旋转--知识讲解11 /11【答案】。
平移旋转知识点总结
平移旋转知识点总结一、平移的基本概念1、平移的定义平移是指图形沿着一条直线方向移动,移动的距离和方向保持一致。
在平移过程中,图形的大小和形状都不发生变化,只是位置发生了改变。
可以将平移看作是图形的每个点都按照同一个方向和距离进行移动,从而得到了一个新的位置。
2、平移的表示平移可以用向量来表示,假设有一个向量V(u,v),其中u和v表示平移的水平和垂直方向上的距离。
对于一个点P(x,y),通过向量表示的平移操作可以表示为P'=(x+u, y+v)。
这表示点P经过向量V的平移操作后得到了新的点P'(x+u, y+v)。
3、平移的性质平移具有以下几个重要的性质:(1)平移是保形变换,即平移前后的图形形状相同;(2)平移不改变图形的大小;(3)平移不改变图形的角度;(4)平移保持了图形内的任意两点间的距离关系。
二、旋转的基本概念1、旋转的定义旋转是指图形以一个固定的点为中心,按照一定的角度转动。
在旋转过程中,图形的大小和形状都不发生变化,只是方向发生了改变。
可以将旋转看作是图形的每个点都按照同一个中心和角度进行转动,从而得到了一个新的方向。
2、旋转的表示旋转可以用矩阵来表示,假设有一个点P(x,y),以原点为中心,顺时针旋转角度为θ的旋转操作可以表示为P'=(x*cosθ-y*sinθ, x*sinθ+y*cosθ)。
这表示点P经过矩阵表示的旋转操作后得到了新的点P'(x',y')。
3、旋转的性质旋转具有以下几个重要的性质:(1)旋转是保形变换,旋转前后的图形形状相同;(2)旋转不改变图形的大小;(3)旋转保持了图形内的任意两点间的距禿;(4)旋转不改变图形的中心;(5)对任意两个点A和B,它们的连线在旋转前后的夹角不变。
三、平移和旋转的混合变换在实际问题中,往往需要对图形进行平移和旋转的组合变换。
对于平移和旋转的组合变换,其实际操作可以分为两步:首先进行平移,然后进行旋转。
初中数学图形的平移与旋转知识点总结
Some people appear just to open our eyes.勤学乐施积极进取(页眉可删)初中数学图形的平移与旋转知识点总结总结是指对某一阶段的工作、学习或思想中的经验或情况进行分析研究,做出带有规律性结论的书面材料,它是增长才干的一种好办法,为此我们要做好回顾,写好总结。
那么你知道总结如何写吗?下面是为大家收集的初中数学图形的平移与旋转知识点总结,欢迎大家分享。
一、平移变换:1、概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。
2、性质:(1)平移前后图形全等;(2)对应点连线平行或在同一直线上且相等。
3、平移的作图步骤和方法:(1)分清题目要求,确定平移的方向和平移的距离;(2)分析所作的图形,找出构成图形的关健点;(3)沿一定的方向,按一定的距离平移各个关健点;(4)连接所作的各个关键点,并标上相应的字母;(5)写出结论。
二、旋转变换:1、概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。
说明:(1)图形的旋转是由旋转中心和旋转的角度所决定的;(2)旋转过程中旋转中心始终保持不动。
(3)旋转过程中旋转的方向是相同的。
(4)旋转过程静止时,图形上一个点的旋转角度是一样的。
(5)旋转不改变图形的.大小和形状。
2、性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等。
3、旋转作图的步骤和方法:(1)确定旋转中心及旋转方向、旋转角;(2)找出图形的关键点;(3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角度数,得到这些关键点的对应点;(4)按原图形顺次连接这些对应点,所得到的图形就是旋转后的图形。
说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角。
常见考法:(1)把平移旋转结合起来证明三角形全等;(2)利用平移变换与旋转变换的性质,设计一些题目。