2017-2018学年下学期期末复习备考之精准复习模拟题八年级数学(C卷)(苏科版)(原卷版)

合集下载

【期末复习卷】2017-2018学年 八年级数学下册 期末单元复习卷汇编4套(含答案)

【期末复习卷】2017-2018学年 八年级数学下册 期末单元复习卷汇编4套(含答案)

目录2017-2018学年八年级数学下册二次根式期末单元复习卷(含答案)2017-2018学年八年级数学下册勾股定理期末单元复习卷(含答案)2017-2018学年八年级数学下册平行四边形期末单元复习卷(含答案)2017-2018学年八年级数学下册一次函数期末单元复习卷(含答案)一、选择题:1、下列二次根式是最简二次根式的是()A. B. C. D.2、函数y=中,自变量x的取值范围是()A.x>﹣2B.x≥﹣2C.x≠2D.x≤﹣23、下列计算正确的是()B.A.D. (≥0,≥0)4、下列各式计算正确的是()A.+=B.2﹣=C.=×D.÷=5、下列各式中,与是同类二次根式的是()A. B. C. D.6、下列各式计算正确的是()A.+=B.3+=3C.3﹣=2D.=﹣7、把根号外面的因式移到根号内得()A. B. C. D.-18、若式子-+1有意义,则x的取值范围是()A.x≥0.5B.x ≤0.5C.x=0.5D.以上答案都不对9、如果=2﹣a,那么()A.a<2B.a≤2C.a>2D.a≥210、估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间11、已知1<x≤2,则|x﹣3|+的值为()A.2x﹣5B.﹣2C.5﹣2xD.212、若,则化简的结果是()A. B. C.3 D.-3二、填空题:13、函数的自变量的取值范围是 .14、(﹣)= .15、若x<2,则.16、如果,那么= .17、若,则代数式的值是 .18、设,,,则,,从小到大的顺序是_________.三、计算题:19、20、21、. 22、(2﹣1)2﹣( +)(﹣).四、解答题:23、已知=,,分别求下列各式的值.(1)(2)24、观察下列各式:;;……,请你猜想:(1)_______,.(2)计算(请写出推导过程):(3)请你将猜想到的规律用含有自然数n(n≥1)的代数式表达出来:_______________________________________________________25、已知x=,求x2-x+的值.26、先化简,再求值:,其中27、已知a=,求-的值.参考答案1、C2、B.3、D4、B.5、B.6、C.7、A8、C9、B 10、C. 11、C. 12、C13、答案为:x ≥-1且x ≠0 14、答案为:3.15、答案为:2-x 16、答案为:-1; 17、答案为:2017 18、答案为:a <c <b 19、原式=20、原式==(;21、原式=﹣4.22、原式=11﹣4.23、24、(1);。

2017-2018年第二学期八年级数学期末试卷(参考答案)

2017-2018年第二学期八年级数学期末试卷(参考答案)

∴ BC AC 2 AB 2 32 42 5 ……8 分
作 AH⊥BC
则 1 BC AH 1 AC AB
2
2
∴5AH=3×4
八年级数学 第 3 页(共 8 页)
∴AH= 12 ……9 分 5
∴ S菱形ADCF

DC AH

5 12 25
6
答:菱形 ADCF 的面积是 6.……10 分
∴点 D’在直线 y=x-3 上运动,当 OD’⊥直线 y=x-3 时,OD’最小,此时∆OBD’是等腰直
角三角形,……9 分
作 D’H⊥x 轴,垂足为 H,则 OH=HD’=HB= 3 ……10 分 2
∴4-m= 3 , m 5 ……11 分
2
2
∴D 点坐标( 5 , 1 )……12 分 22
∵四边形 ABCD 是正方形,
∴∠ABK=∠ABC=∠ADC=∠BAD=90°,AB=AD
在∆AKB 和∆AFD 中
BE
C
图2
AB AD ABK ADF KB DF
∴∆AKB≌∆AFD……1 分 ∴AK=AF,∠KAB=∠FAD ∵2∠EAF=∠ADC=90° ∴∠EAF=45° ∴∠BAK+∠BAE=∠DAF+∠BAE=45° 即∠KAE=∠FAE 在∆AKE 和∆AFE 中
说明:此题可用平行线等积变换,即△ABF 的面积与△ACF 的面积相等,或连接 DF 等。
五.解答题(本题共 3 小题,其中 24 题 11 分,25、26 题各 12 分,共 35 分)
24.(1)1,16;……2 分
(2)∵四边形 ABCD 是正方形
D
C
∴AB=AD,∠ADB=∠ABD=45°

2017-2018学年初二数学第二学期期末模拟试卷及答案(共五套)

2017-2018学年初二数学第二学期期末模拟试卷及答案(共五套)

2017-2018学年初二数学第二学期期末模拟试卷及答案(共五套)2017-2018学年初二数学第二学期期末模拟试卷及答案(一)一、选择题(本题共12个小题,每小题4分,共48分)1.实数﹣3,3,0,中最大的数是()A.﹣3 B.3 C.0 D.2.下列图形中,是轴对称图形的是()A.B.C.D.3.把多项式a2﹣9a分解因式,结果正确的是()A.a(a﹣9)B.a(a+3)(a﹣3)C.(a+3)(a﹣3)D.(a﹣3)2﹣9 4.三本相同的书本叠成如图所示的几何体,它的主视图是()A. B.C.D.5.在函数y=﹣中,自变量x的取值范围是()A.x≠2 B.x≤﹣2 C.x≠﹣2 D.x≥﹣26.如果两个相似三角形相似比是1:4,那么它们的对应角平分线之比是()A.1:4 B.1:8 C.1:16 D.1:27.若关于x的一元二次方程ax2+bx+6=0的一个根为x=﹣2,则代数式6a﹣3b+6的值为()A.9 B.3 C.0 D.﹣38.一次函数y=kx+k(k≠0)和反比例函数在同一直角坐标系中的图象大致是()A. B. C. D.9.2016特步欢乐跑中国(重庆站)10公里锦标赛于5月8日上午在重庆巴南区巴滨路圆满举行,若专业队员甲的速度是业余队员乙的速度的 2.5倍,比赛开始后甲先出发5分钟,到达终点50分钟后乙才到.若设乙的速度为x千米/小时,则根据题意列得方程为()A.﹣50=﹣5 B. +=﹣C. +=+D.﹣=﹣10.如图,在?ABCD中,G为CD延长线上一点,连接BG交AD、AC于点E、F,若S△AEF=1,S△AFB=3,则S△GDE的值为()A.4 B.8 C.16 D.3211.如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…,则第⑧个图案中“●”的个数为()A.73 B.87 C.91 D.10312.如图,Rt△ABC在平面直角坐标系中,顶点A在x轴上,∠ACB=90°,CB∥x轴,双曲线y=经过点C及AB的三等分点D(即BD=2AD),S△BCD=12,则k的值为()A.﹣3 B.﹣4 C.﹣5 D.﹣6二、填空题13.如果=,那么= .14.若P为AB的黄金分割点,且AP>PB,AB=12cm,则AP= cm.15.关于x的方程2x2+3x+m=0有两个相等的实数根,则m的值为.16.小明用自制的直角三角形纸DEF测量树AB的高度,测量时,使使直角边DF保持水平状态,DF延长线交AB于点G;使斜边DE与点A在同一条直线上.测得边DF离地面的高度为1.8m,点D到AB的距离等于9m(如图所示).已知DF=45cm,EF=30cm,那么树AB的高度等于m.17.在不透明的盒子里装有5个分别写有数字0,1,2,3,4的小球,它们除数字不同外其余全部相同,现从盒子里随机取出一个小球,将该小球上的数字作为点P的横坐标,然后在剩下的小球中随机再取出一个,将小球上的数字作为点P的纵坐标,则点P落在双曲线y=与直线y=﹣x+5所围成的封闭区域(含边界)的概率是.18.已知正方形ABCD中,AC、BD交于点O, =,连AE,将△ADE沿AD翻折,得△ADE′,点F是AE的中点,连CF、DF、E′F.若DE=2,则四边形CDE′F的面积是.三、计算题(其中19题共10分,每小题10分,20题8分,共计18分)解答时每小题必须给出必要的演算过程或推理步骤.19.解方程(1)2(x﹣1)2﹣8=0(2)﹣2=.20.先化简,再求值:﹣÷(﹣),其中x满足x2﹣2x+4=0.四、解答题(本大题共6个小题,21题8分,22题8分,23题10分,24题10分,25题12分,26题12分,共60分)21.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2).(1)画出△ABC关于y轴对称的图形△A1B1C1,并直接写出C1点坐标;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点坐标;(3)如果点D(a,b)在线段AB上,请直接写出经过(2)的变化后点D的对应点D2的坐标.22.如图,已知反比例函数y1=的图象与一次函数y2=k2x+b的图象交于A、B两点,A (2,n),B(﹣1,﹣4).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式y1>y2的解集.23.把一个自然数所有数位上的数字先平方再求和得到一个新数,叫做第一次运算,再把所得新数所有数位上的数字先平方再求和又将得到一个新数,叫做第二次运算,…如此重复下去,若最终结果为1,我们把具有这种特征的自然数称为“快乐数”,例如:23→22+32=13→12+32=10→12+02=191→92+12=82→82+22=68→62+82=100→12+02+02=1.所以23和91都是“快乐数”.(1)13 (填“是”或“不是”)“快乐数”;最小的三位“快乐数”是;(2)若一个两位“快乐数”经过两次运算后结果为1,求出这个“快乐数”;(3)请证明任意一个“快乐数”经过若干次运算后都不可能得到16.24.某省为推广新能源汽车,计划连续五年给予财政补贴.补贴开始时间为2017年度,截止时间为2021年度.补贴期间后一年度的补贴额均在前一年度补贴额基础上递增.计划前三年,每年度按固定额度a亿元递增;后两年均在上一年的基础上按相同增长率递增.已知2018年度计划补贴额为19.8亿元.(1)若2019年度计划补贴额比2018年度至少增加15%,求a的取值范围;(2)若预计2017﹣2021这五年补贴总额比2018年度补贴额的 5.31倍还多2.31a亿元,求后两年财政补贴的增长率.25.如图1,菱形ABCD中,对角线AC、BD交于点O,AE⊥BC于点E,连结OE.(1)若OE=2,OB=4,求AE的长;(2)如图2,若∠ABC=45°,∠AEB的角平分线EF交BD于点F,求证:BF=OE;(3)如图3,若∠ABC=45°,AE与BD交于点H,连接CH并延长交AB于点G,连EG,直接写出的值.26.如图,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,点C在y轴上,∠ACB=90°,AC、BC的长分别是一元二次方程x2﹣14x+48=0的两个根(AC<BC).动点M从点A出发,以每秒1个单位长度的速度沿AB向点B匀速运动;同时,动点N从点B出发,以每秒3个单位长度的速度沿BA向点A匀速运动.过线段MN的中点G作边AB的垂线,垂足为点G,交△ABC的另一边于点P,连接PM、PN,当点N运动到点A时,M、N两点同时停止运动,设运动时间为t秒.(1)直接写出点C的坐标,C(,);当t 秒时,动点M、N相遇;(2)若点E在坐标轴上,平面内是否存在点F,使以点B、C、E、F为顶点的四边形是矩形?若存在,请直接写出点F的坐标若不存在,请说明理由.(3)设△PMN的面积为S,求S与t之间的函数关系式以及自变量范围.参考答案与试题解析一、选择题(本题共12个小题,每小题4分,共48分)1.实数﹣3,3,0,中最大的数是()A.﹣3 B.3 C.0 D.【考点】实数大小比较.【专题】计算题;实数.【分析】根据正数大于0,0大于负数,比较即可.【解答】解:根据题意得:3>>0>﹣3,则实数﹣3,3,0,中最大的数是3,故选B【点评】此题考查了实数大小比较,熟练掌握两个实数比较大小方法是解本题的关键.2.下列图形中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解即可.【解答】解:A、是轴对称图形,本选项正确;B、不是轴对称图形,本选项错误;C、不是轴对称图形,本选项错误;D、不是轴对称图形,本选项错误.故选A.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.把多项式a2﹣9a分解因式,结果正确的是()A.a(a﹣9)B.a(a+3)(a﹣3)C.(a+3)(a﹣3)D.(a﹣3)2﹣9 【考点】因式分解-提公因式法.【分析】先确定出多项式的公因式,然后提取公因式即可.【解答】解:原式=a(a﹣9).故选:A.【点评】本题主要考查的是因式分解,找出多项式中的公因式是解题的关键.4.三本相同的书本叠成如图所示的几何体,它的主视图是()A. B.C.D.【考点】简单组合体的三视图.【分析】主视图是分别从物体正面看,所得到的图形.【解答】解:观察图形可知,三本相同的书本叠成如图所示的几何体,它的主视图是.故选:B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.5.在函数y=﹣中,自变量x的取值范围是()A.x≠2 B.x≤﹣2 C.x≠﹣2 D.x≥﹣2【考点】函数自变量的取值范围;分式有意义的条件.【专题】计算题.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不等于0.【解答】解:根据题意得:x+2≠0解得:x≠﹣2;故选C.【点评】当函数表达式是分式时,要注意考虑分式的分母不能为0.6.如果两个相似三角形相似比是1:4,那么它们的对应角平分线之比是()A.1:4 B.1:8 C.1:16 D.1:2【考点】相似三角形的性质.【分析】直接根据相似三角形的性质即可得出结论.【解答】解:∵两个相似三角形的相似比是1:4,∴它们对应的角平分线之比是1:4.故选A.【点评】本题考查的是相似三角形的性质,熟知相似三角形对应角平分线的比等于相似比是解答此题的关键.7.若关于x的一元二次方程ax2+bx+6=0的一个根为x=﹣2,则代数式6a﹣3b+6的值为()A.9 B.3 C.0 D.﹣3【考点】一元二次方程的解.【专题】探究型.【分析】根据关于x的一元二次方程ax2+bx+6=0的一个根为x=﹣2,可以求得2a﹣b的值,从而可以求得6a﹣3b+6的值.【解答】解:∵关于x的一元二次方程ax2+bx+6=0的一个根为x=﹣2,∴a×(﹣2)2+b×(﹣2)+6=0,化简,得2a﹣b+3=0,∴2a﹣b=﹣3,∴6a﹣3b=﹣9,∴6a﹣3b+6=﹣9+6=﹣3,故答案为:D.【点评】本题考查一元二次方程的解,解题的关键是明确题意,灵活变化,建立所求式子与已知方程之间的关系.8.一次函数y=kx+k(k≠0)和反比例函数在同一直角坐标系中的图象大致是()A. B. C. D.【考点】反比例函数的图象;一次函数的图象.【专题】探究型.【分析】分别根据反比例函数及一次函数图象的特点对各选项进行逐一分析即可.【解答】解:A、由反比例函数的图象在一、三象限可知k>0,由一次函数的图象过二、四象限可知k<0,两结论相矛盾,故本选项错误;B、由反比例函数的图象在二、四象限可知k<0,由一次函数的图象与y轴交点在y轴的正半轴可知k>0,两结论相矛盾,故本选项错误;C、由反比例函数的图象在二、四象限可知k<0,由一次函数的图象过二、三、四象限可知k<0,两结论一致,故本选项正确;D、由反比例函数的图象在一、三象限可知k>0,由一次函数的图象与y轴交点在y轴的负半轴可知k<0,两结论相矛盾,故本选项错误.故选C.【点评】本题考查的是一次函数与反比例函数图象的特点,熟知一次函数与反比例函数的性质是解答此题的关键.9.2016特步欢乐跑?中国(重庆站)10公里锦标赛于5月8日上午在重庆巴南区巴滨路圆满举行,若专业队员甲的速度是业余队员乙的速度的 2.5倍,比赛开始后甲先出发5分钟,到达终点50分钟后乙才到.若设乙的速度为x千米/小时,则根据题意列得方程为()A.﹣50=﹣5 B. +=﹣C. +=+D.﹣=﹣【考点】由实际问题抽象出分式方程.【分析】首先根据题意可得甲的速度是 2.5x千米/时,再根据题意可得等量关系:甲跑10公里的时间﹣=乙跑10公里的时间﹣,根据等量关系列出方程即可.【解答】解:设乙的速度为x千米/小时,则甲的速度是 2.5x千米/时,由题意得﹣=﹣,故选D.【点评】此题主要考查了由实际问题抽象出分式方程,解决问题的关键是分析题意找出相等关系.10.如图,在?ABCD中,G为CD延长线上一点,连接BG交AD、AC于点E、F,若S△AEF=1,S△AFB=3,则S△GDE的值为()A.4 B.8 C.16 D.32【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由已知条件得到EF:BF=1:3,S△ABE=4,根据平行四边形的性质得到AE∥BC,由平行线分线段成比例定理得到=,根据相似三角形的性质得到=,于是得到结论.【解答】解:∵S△AEF=1,S△AFB=3,∴EF:BF=1:3,S△ABE=4,∵四边形ABCD是平行四边形,∴AE∥BC,∴=,∵AB∥CG,∴△ABF∽△CGF,∴=,∵AB=CD,∴=,∵DG∥AB,∴△ABE∽△DGE,∴=()2=,∴S△GDE=16,故选C.【点评】此题考查了相似三角形的判定与性质,以及平行四边形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.11.如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…,则第⑧个图案中“●”的个数为()A.73 B.87 C.91 D.103【考点】规律型:图形的变化类.【分析】根据第①个图案中“●”有:1+3×(0+2)个,第②个图案中“●”有:1+4×(1+2)个,第③个图案中“●”有:1+5×(2+2)个,第④个图案中“●”有:1+6×(3+2)个,据此可得第⑧个图案中“●”的个数.【解答】解:∵第①个图案中“●”有:1+3×(0+2)=7个,第②个图案中“●”有:1+4×(1+2)=13个,第③个图案中“●”有:1+5×(2+2)=21个,第④个图案中“●”有:1+6×(3+2)=31个,…∴第⑧个图案中“●”有:1+10×(7+2)=91个.故选:C.【点评】本题考查规律型:图形的变化,解题的关键是将原图形中的点进行无重叠的划分来计数.12.如图,Rt△ABC在平面直角坐标系中,顶点A在x轴上,∠ACB=90°,CB∥x轴,双曲线y=经过点C及AB的三等分点D(即BD=2AD),S△BCD=12,则k的值为()A.﹣3 B.﹣4 C.﹣5 D.﹣6【考点】反比例函数系数k的几何意义.【分析】由BD=2AD以及△BCD的面积可得出△ABC的面积,设点C的坐标为(a,)(a<0),由△ABC的面积结合直角三角形的性质即可得出A(a,0),B(a﹣,),再根据BD=2AD找出点D的坐标,利用反比例函数图象上点的坐标特征即可得出关于k 的一元一次方程,解方程即可得出k值.【解答】解:∵BD=2AD,S△BCD=12,∴S△ABC=18.设点C的坐标为(a,)(a<0),则A(a,0),B(a﹣,),∵BD=2AD,∴D(a﹣,).∵双曲线y=经过点D,∴k=(a﹣)?=﹣4,解得:k=﹣6.故选D.【点评】本题考查了三角形的面积公式以及反比例函数图象上点的坐标特征,解题的关键是表示出C、D两点的坐标.本题属于中档题,难度不大,解决该题型题目时,根据点的坐标,利用反比例函数图象上点的坐标特征求出反比例函数解析式是关键.二、填空题13.如果=,那么= .【考点】比例的性质.【分析】根据分比性质,可得答案.【解答】解: =,由分比性质,得=.故答案为:.【点评】本题考查了比例的性质,利用了分比性质: =?=.14.若P为AB的黄金分割点,且AP>PB,AB=12cm,则AP= 6﹣6 cm.【考点】黄金分割.【分析】利用黄金比值是进行计算即可.【解答】解:∵P为AB的黄金分割点,且AP>PB,∴AP=AB=(6﹣6)cm,故答案为:6﹣6.【点评】本题考查的是黄金分割的概念,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点,AC=AB.15.关于x的方程2x2+3x+m=0有两个相等的实数根,则m的值为.【考点】根的判别式.【分析】根据方程有两个相等的实数根得出△=0,求出m的值即可.【解答】解:∵关于x的方程2x2+3x+m=0有两个相等的实数根,∴△=0,即9﹣8m=0,解得m=.故答案为:.【点评】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac的关系是解答此题的关键.16.小明用自制的直角三角形纸DEF测量树AB的高度,测量时,使使直角边DF保持水平状态,DF延长线交AB于点G;使斜边DE与点A在同一条直线上.测得边DF离地面的高度为1.8m,点D到AB的距离等于9m(如图所示).已知DF=45cm,EF=30cm,那么树AB的高度等于7.8 m.【考点】相似三角形的应用.【分析】根据题意从实际问题中抽象出相似三角形后,利用相似三角形的性质求解即可.【解答】解:根据题意得:DG=9m,∵EF∥AG∴△DEF∽△DAG∴=,即: =,解得:AG=6,米,∴AB=AG+GB=AG+DC=6+1.8=7.8故答案为:7.8.【点评】本题考查了相似三角形的应用,解题的关键是从实际问题中抽象出纯数学问题,然后利用相似三角形求解.17.在不透明的盒子里装有5个分别写有数字0,1,2,3,4的小球,它们除数字不同外其余全部相同,现从盒子里随机取出一个小球,将该小球上的数字作为点P的横坐标,然后在剩下的小球中随机再取出一个,将小球上的数字作为点P的纵坐标,则点P落在双曲线y=与直线y=﹣x+5所围成的封闭区域(含边界)的概率是.【考点】列表法与树状图法;一次函数的性质;反比例函数的性质.【分析】首先根据题意列出表格,然后由表格求得所有等可能的结果和点P落在双曲线y=与直线y=﹣x+5所围成的封闭区域(含边界)的情况数目,再利用概率公式求解即可求得答案.【解答】解:列表得:0 4 1 2 30 ﹣4,2 1,0 2,0 3,04 0,4 ﹣1,4 2,4 3,41 0,1 4,1 ﹣2,1 3,12 0,2 4,2 1,2 ﹣3,23 0,3 4,3 1,3 2,3 ﹣则共有20种等可能的结果,∵双曲线y=与直线y=﹣x+5所围成的封闭区域(含边界)x的取值范围是1<x<4,∴共有8种,∴点P落在双曲线y=与直线y=﹣x+5所围成的封闭区域(含边界)的概率==,故答案为.【点评】此题考查的是用列表法或树状图法求概率与一次函数的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.18.已知正方形ABCD中,AC、BD交于点O, =,连AE,将△ADE沿AD翻折,得△ADE′,点F是AE的中点,连CF、DF、E′F.若DE=2,则四边形CDE′F的面积是17 .【考点】翻折变换(折叠问题);三角形的角平分线、中线和高;等腰直角三角形;正方形的性质.【专题】压轴题;平移、旋转与对称.【分析】先连接EC、EE′,设EE′交AD于N,根据正方形的性质以及折叠的性质,求出NE、ND的长,以及正方形ABCD的对角线长和边长,再根据CF是△ACE的中线,求出△ACF的面积,根据E′F是△AE′E的中线,求出△AE′F的面积,最后根据四边形CDE′F的面积=S梯形ACDE′﹣S△ACF﹣S△AE′F进行计算,即可解决问题.【解答】解:连接EE′,交AD于N,连接CE,在正方形ABCD中,∠EDN=45°,由折叠得,AD垂直平分EE′,且∠EDN=∠E′DN=45°,DE=DE′,∴△DEE′、△DEN、△DE′N均为等腰直角三角形,∵DE=2, =,∴OE=,DN=EN=E′N=2,DO=3,DE′=2,∴AC=6,AD=6,∵EO⊥AC,∴S△ACE=×6×=6,又∵点F是AE的中点,∴S△ACF=×S△ACE=3,∵AN⊥EE′,AN=AD﹣DN=6﹣2=4,∴S△AE′E=×4×4=8,又∵点F是AE的中点,∴S△AE′F=×S△AE′E=4,∵∠E′DO=∠AOD=90°,∴DE′∥AC,∴S梯形ACDE′===24,∴四边形CDE′F的面积=S梯形ACDE′﹣S△ACF﹣S△AE′F=24﹣3﹣4=17.故答案为:17【点评】本题以折叠问题为背景,主要考查了正方形的性质、等腰直角三角形的性质以及中线的性质的综合运用,难度较大.折叠是一种轴对称变换,折叠前后图形的形状和大小不变,对应边相等,对应角相等.解题的关键是添加辅助线,运用割补法求四边形的面积.三、计算题(其中19题共10分,每小题10分,20题8分,共计18分)解答时每小题必须给出必要的演算过程或推理步骤.19.解方程(1)2(x﹣1)2﹣8=0(2)﹣2=.【考点】解一元二次方程-直接开平方法;解分式方程.【分析】(1)先移项,再把方程左边化为完全平方式的形式,利用直接开方法求出x 的值即可;(2)先把分式方程化为整式方程求出x的值,再代入分母进行检验即可.【解答】解:(1)移项得,2(x﹣1)2=8,系数化为1得,(x﹣1)2=4,两边开方得,x﹣1=±2,故x1=3,x2=﹣1;(2)去分母得,4x﹣2(x+2)=3,解得x=,经检验x=符合题意,故方程的解为x=.【点评】本题考查的是解二元一次方程,熟知利用直接开方法求二元一次方程的解是解答此题的关键.20.先化简,再求值:﹣÷(﹣),其中x满足x2﹣2x+4=0.【考点】分式的化简求值.【专题】计算题;分式.【分析】原式括号中第两项中括号第二项变形后,利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,通分并利用同分母分式的减法法则计算得到最简结果,求出x的值代入计算即可求出值.【解答】解:原式=﹣=﹣=,由x2﹣2x+4=0,得到x2﹣2x=﹣4,则原式=﹣.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.四、解答题(本大题共6个小题,21题8分,22题8分,23题10分,24题10分,25题12分,26题12分,共60分)21.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2).(1)画出△ABC关于y轴对称的图形△A1B1C1,并直接写出C1点坐标;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点坐标;(3)如果点D(a,b)在线段AB上,请直接写出经过(2)的变化后点D的对应点D2的坐标.【考点】作图-位似变换;作图-轴对称变换.【专题】作图题.【分析】(1)利用关于y轴对称点的性质得出各对应点位置,进而得出答案;(2)利用位似变换的性质得出对应点位置,进而得出答案;(3)利用位似图形的性质得出D点坐标变化规律即可.【解答】解:(1)如图所示:△A1B1C1,即为所求,C1点坐标为:(3,2);(2)如图所示:△A2B2C2,即为所求,C2点坐标为:(﹣6,4);(3)如果点D(a,b)在线段AB上,经过(2)的变化后D的对应点D2的坐标为:(2a,2b).【点评】此题主要考查了轴对称变换以及位似变换以及位似图形的性质,利用位似图形的性质得出对应点变化规律是解题关键.22.如图,已知反比例函数y1=的图象与一次函数y2=k2x+b的图象交于A、B两点,A (2,n),B(﹣1,﹣4).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式y1>y2的解集.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据反比例函数图象上点的坐标特点可得k1=(﹣1)×(﹣4)=4,进而可得反比例函数解析式,然后可得到A点坐标,再把A、B两点坐标代入一次函数y2=k2x+b 可得关于k、b的方程组,解方程组可得k、b的值,进而可得一次函数解析式;(2)利用一次函数解析式计算出点C的坐标,进而可得OC的长,然后再计算出△BOC 和△AOC的面积,求和即可得到△AOB的面积;(3)利用函数图象可直接写出答案.【解答】解:(1)∵y1=的图象过B(﹣1,﹣4),∴k1=(﹣1)×(﹣4)=4,∴反比例函数解析式为y1=,∵A(2,n)在反比例函数y1=的图象上,∴2n=4,∴n=2,∴A(2,2)∵一次函数y2=k2x+b的图象过A、B两点,∴,解得:,∴一次函数的解析式为y2=2x﹣2;(2)设一次函数y2=2x﹣2与y轴交于点C,当x=0时,y2=﹣2,∴CO=2,∴△AOB的面积为:×1+2×4=5;(3)当y1>y2时,0<x<2或x<﹣1.【点评】此题主要考查了反比例函数与一次函数交点问题,关键是掌握凡是函数图象经过的点必能满足解析式.23.把一个自然数所有数位上的数字先平方再求和得到一个新数,叫做第一次运算,再把所得新数所有数位上的数字先平方再求和又将得到一个新数,叫做第二次运算,…如此重复下去,若最终结果为1,我们把具有这种特征的自然数称为“快乐数”,例如:23→22+32=13→12+32=10→12+02=191→92+12=82→82+22=68→62+82=100→12+02+02=1.所以23和91都是“快乐数”.(1)13 是(填“是”或“不是”)“快乐数”;最小的三位“快乐数”是100 ;(2)若一个两位“快乐数”经过两次运算后结果为1,求出这个“快乐数”;(3)请证明任意一个“快乐数”经过若干次运算后都不可能得到16.【考点】因式分解的应用.【分析】(1)由13经过两次运算后结果为1可得出13是“快乐数”,再由100经过一次运算后结果为1结合100为最小的三位数即可得出最小的三位“快乐数”是100;(2)由一个两位“快乐数”经过两次运算后结果为1可得出该“快乐数”经过一次运算后结果为10或100,将10和100拆分成两个平方数相加的格式即可得出结论;(3)通过运算可找出16不是“快乐数”,结合“快乐数”在经过若干次运算后仍为“快乐数”即可证出结论.【解答】解:(1)∵13→12+32=10→12+02=1,∴13是“快乐数”.∵100→12+02+02=1,且100是最小的三位数,∴最小的三位“快乐数”是100.故答案为:是;100.(2)∵一个两位“快乐数”经过两次运算后结果为1,∴该两位数经过一次运算为10或100,∵10=1+9=12+32,100=64+36=82+62,∴这个“快乐数”为13、31、68或86.(3)∵16→12+62=37→32+72=58→52+82=89→82+92=145→12+42+52=42→42+22=20→22+02=4→42=16,∴16不是“快乐数”.∵任意一个“快乐数”经过若干次运算后得到的数都是“快乐数”,∴任意一个“快乐数”经过若干次运算后都不可能得到16.【点评】本题考查了因式分解的应用,读懂题意弄清“快乐数”的判定是解题的关键.24.某省为推广新能源汽车,计划连续五年给予财政补贴.补贴开始时间为2017年度,截止时间为2021年度.补贴期间后一年度的补贴额均在前一年度补贴额基础上递增.计划前三年,每年度按固定额度a亿元递增;后两年均在上一年的基础上按相同增长率递增.已知2018年度计划补贴额为19.8亿元.(1)若2019年度计划补贴额比2018年度至少增加15%,求a的取值范围;(2)若预计2017﹣2021这五年补贴总额比2018年度补贴额的 5.31倍还多2.31a亿元,求后两年财政补贴的增长率.【考点】一元二次方程的应用.【分析】1)根据2019年度计划补贴额比2018年度至少增加15%列式:2018年度计划补贴额×15%≤a;(2)根据题意列一元二次方程求解即可,注意利用整体的方法求解.【解答】解:(1)根据已知得:19.8×15%≤a,解得:2.97≤a,答:a的取值范围为a≥2.97.(2)设后两年财政补贴的增长率为x,根据题意得:19.8﹣a+19.8+19.8+a+(19.8+a)×(1+x)+(19.8+a)×(1+x)2=19.8×5.31+2.31a,(19.8+a)m2+3(19.8+a)m﹣0.31(19.8+a)=0,m2+3m﹣0.31=0,(m﹣0.1)(m+3.1)=0,m1=0.1=10%,x2=﹣3.1(舍),答:后两年财政补贴的增长率为10%.【点评】本题考查了一元二次方程的应用,正确读懂题目,解方程是本题的关键,注意理解前三年是按固定额度a亿元递增;后两年是按相同增长率递增.25.(12分)如图1,菱形ABCD中,对角线AC、BD交于点O,AE⊥BC于点E,连结OE.(1)若OE=2,OB=4,求AE的长;(2)如图2,若∠ABC=45°,∠AEB的角平分线EF交BD于点F,求证:BF=OE;(3)如图3,若∠ABC=45°,AE与BD交于点H,连接CH并延长交AB于点G,连EG,直接写出的值.【考点】四边形综合题.【分析】(1)根据直角三角形斜边中线等于斜边一半求出AC,理由勾股定理求出BC,根据×BD×AC=BC×AE,即可解决问题.(2)如图2中,连接AF,只要证明BF=AF,△AOF是等腰直角三角形即可解决问题.(3)先证明△BHG≌△CAG,推出BH=AC,再证明GE∥AC,得到===即可解决问题.【解答】解:(1)如图1中,∵四边形ABCD是菱形,∴OA=OC,OB=OD,BD⊥AC,∵AE⊥BC,∴∠AEC=90°,∴AC=2OE=4,OA=OC=2,BC===2,∵×BD×AC=BC×AE,∴×8×4=2×AE,∴AE=.(2)如图2中,连接AF.∵四边形ABCD是菱形,∴BF平分∠ABC,∵∠ABC=45°∴∠ABF=22.5°,∵EF平分∠AEB,∴AF平分∠BAE,∴∠BAF=22.5°,∴∠FBA=∠FAB,∴BF=AF,∠AFO=∠FBA+∠FAB=45°,∴△AOF是等腰直角三角形,∴AF=OA,∵OA=OE,∴BF=OE.(3)结论: =.理由:如图3中,∵BO⊥AC,AE⊥BC,∴CG⊥AB,∵∠ABC=45°,∴∠CBG=∠BCG=45°,∴BG=CG,∵∠HBG+∠BHG=90°,∠ACG+∠CHO=90°,∵∠BHG=∠CHO,∴∠HBG=∠ACG,在△BHG和△CAG中,,∴△BHG≌△CAG,∴BH=AC,∵×AB×CG=×BC×AE,AB=CB,∴AE=CG,∵BE=AE,BG=CG,∴BG=BE,∴=,∴EG∥AC,∴===,∴==.【点评】本题考查四边形综合题、全等三角形的判定和性质、菱形的性质、三角形的角平分线的性质,三角形的高的性质等知识,解题的关键是灵活应用这些知识解决问题,学会利用面积求有关线段,属于中考压轴题.26.如图,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,点C在y轴上,∠ACB=90°,AC、BC的长分别是一元二次方程x2﹣14x+48=0的两个根(AC<BC).动点M从点A出发,以每秒1个单位长度的速度沿AB向点B匀速运动;同时,动点N从点B出发,以每秒3个单位长度的速度沿BA向点A匀速运动.过线段MN的中点G作边AB的垂线,垂足为点G,交△ABC的另一边于点P,连接PM、PN,当点N运动到点A时,M、N两点同时停止运动,设运动时间为t秒.(1)直接写出点C的坐标,C(0 , 4.8 );当t =2.5 秒时,动点M、N相遇;(2)若点E在坐标轴上,平面内是否存在点F,使以点B、C、E、F为顶点的四边形是矩形?若存在,请直接写出点F的坐标若不存在,请说明理由.(3)设△PMN的面积为S,求S与t之间的函数关系式以及自变量范围.【考点】四边形综合题.【分析】(1)先求出AC、BC、AB、再根据?AC?BC=?CO?AB求出OC即可角问题.(2)存在,如图1中,分两种情形讨论①当BC为对角线时,∵②当BC为边时,点E′在x轴上时或点E″在y轴上时,分别求出点F坐标即可.(3)分三种情况求函数解析式,①0<t≤,②<t<③<t≤先表示出MN,用相似借助OC,用时间表示出PG,面积即可确定.【解答】解:(1)∵AC、BC的长分别是一元二次方程x2﹣14x+48=0的两个根(AC<BC).∴AC=6,BC=8,∵∠ACB=90°,∴AB===10.∵?AC?BC=?CO?AB,∴CO=4.8,∴点C坐标(0,4.8),设t秒后相遇,由题意(1+3)t=10,∴t=2.5.。

2017-2018学年下学期人教版初二数学下册期末测试题及答案.doc

2017-2018学年下学期人教版初二数学下册期末测试题及答案.doc

八年级期末数学模拟考试试题一、选择题(每小题3分,共30分)1、在函数y=1x-3 中,自变量x 的取值范围是 ( )A .3x ≠B .0x ≠C .3x >D .3x =2、下列计算正确的是 ( )A .623x x x =B .()248139x x --= C.111362a a a --= D.()021x +=3、下列说法中错误的是 ( ) A .两条对角线互相平分的四边形是平行四边形; B .两条对角线相等的四边形是矩形;C .两条对角线互相垂直的矩形是正方形;D .两条对角线相等的菱形是正方形4、刘翔为了迎战2008年北京奥运会刻苦进行110米拦训练,教练对他的10次训练成绩进行统计分析,若要判断他的成绩是否稳定,则教练需要知道刘翔这10次成绩的 ( )A .平均数B .中位数C .众数D .方差5、点P (3,2)关于x 轴的对称点'P 的坐标是 ( ) A .(3,-2) B .(-3,2) C .(-3,-2) D .(3,2)6、下列运算中正确的是 ( )A .1y x x y +=B .2233x y x y +=+C .221x y x y x y +=--D . 22x y x y x y +=++7、如图,已知P 、Q 是△ABC 的BC 边上的两点,且BP=PQ=QC=AP=AQ,则∠BAC 的大小为 ( )A .120°B .110°C .100°D .90°8、如图,在□ABCD 的面积是12,点E ,F 在AC 上,且AE =EF =FC ,则△BEF 的面积为 ( )A. 6B. 4C. 3D. 29、小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了骑车的速度继续匀速行驶,下面是行使路程s (米)关于时间t (分)的函数图象,那么符合这个同学行驶情况的图像大致是CQ P B AE CBD Ay xoyxoyxoy xo( )A .B .C .D .10、如图是用若干个全等的等腰梯形拼成的图形,下列说法错误的是( ) A.梯形的下底是上底的两倍 B.梯形最大角是120° C.梯形的腰与上底相等 D.梯形的底角是60° 二、填空题(每小题3分,共30分)11、若分式x2-4x2-x-2的值为零,则x 的值是 .12、已知1纳米=1109 米,一个纳米粒子的直径是35纳米,这一直径可用科学计数法表示为米.13、如图,已知OA=OB ,点C 在OA 上,点D 在OB 上,OC=OD ,AD 与BC 相交于点E ,那么图中全等的三角形共有 对.14、如图,ACB DFE BC EF ==∠∠,,要使ABC DEF △≌△,则需要补充一个条件,这个条件可以是 .15、已知y 与x-3成正比例,当x=4时,y=-1;那么当x=-4时,y= 。

2017---2018学年度第二学期末考试八年级数学试卷(答案)

2017---2018学年度第二学期末考试八年级数学试卷(答案)

2017~2018学年度第二学期期末考试八年级数学答案1.B 2. D 3. D 4. C 5. C 6.D 7 .A 8.B 9.B 10.A11.x≥512.26 13.5, 18 14.3 215.216.y x a=-,-3≤a≤117.解:(1)设一次函数的解析式y=kx+b, ……………………………………………………………1分∵经过点(1,3)与(﹣1,﹣1),∴31k bk b+=⎧⎨-+=-⎩……………………………………………………………3分∴解得:k=2;b=1……5分∴直线的解析式为y=2x+1……………6分(2)∵在y=2x+1中,当x=12-时,y=0 ∴一次函数的图象是经过点12-(,)…8分18. 证明:∵□ABCD,∴AD=CB,AD∥CB ∴∠ADE=∠CBF又∵AE⊥BD,CF⊥BD ∴∠AED=∠CFB=90°∴△AED≌△CFB(AAS)……………………………………………………………………………5分∴AE=CF∵AE⊥BD,CF⊥BD ∴∠AEF=∠CFE=90°AE∥CF∴四边形AFCE是平行四边形…………………………………………………………………………8分19.解:(1)方式一:y=0.3x+30方式二:y=0.4x………………………………………………………………………………………4分(2) ∵0.3x+30=0.4x ∴x=300答:通话300分钟时,两种计费方式费用相等…………………………………………………………8分20. (1) 12 图略(2) 72°(3) 中位数是2 ……………………………………………………6分(4) (1102203124652)50 2.4⨯+⨯+⨯+⨯+⨯÷=…………………………………………8分21.解:(1)∵80x+60(100-x)≤7500 ∴x≤75……………………………….……………………………2分y=40x+30(100-x)=10x+3000 (65≤x≤75)……………………….……………………………………5分(2)∵y =(40-a)x+30(100-x)=(10-a)x+3000 ……………………….…………………………………………………….…………6分方案1:当0<a<10时,10-a>0,y随x的增大而增大所以当x=75时,y有最大值,则购进甲种服装75件,乙种服装25件;方案2:当a=10时,所有方案获利相同,所以按哪种方案进货都可以;方案3:当10<a<20时,10-a<0,w随x的增大而减小所以当x=65时,y有最大值,则购进甲种服装65件,乙种服装35件..……………………….….….8分22.解:(1)B (2,0),A (0,4) …………….……………………………………………….3分 (2)∵直线y =2x ﹣2k 经过A (0,4) ∴k=﹣2………….…………………………………………………………4分 作CF ⊥x 轴于点F, 证△AOB ≌△BFC(AAS) ………….………………………………………………………5分 CF=BO=2, BF=AO=4,∴OF=6 ,∴OF=6 ∴C (6,2)………………………………………………6分 ∵DC ∥AB ,设DC :y =﹣2x +b ∵直线y =﹣2x +b 经过C (6,2) ∴b=14∴直线DC 的解析式为y =﹣2x +14………….………………………………………………………………………7分 (3) ﹣3<x <0或x >3 …….……………………………………………………………………………………10分23.(1)∵正方形ABCD 中 BA=AD=CD, ∠BAE =D=90° 又DE=CF ∴AE=DF∴△BAE ≌△ADF(SAS) …………………………….………………………………………………………………1分 ∴BE=AF …………………………….………………………………………………………………2分 ∠1=∠2∴∠1+∠BAG=∠2+∠BAG=90° ∴∠BGA=90°即BE ⊥AF……………………………………………………………………………………………………………3分 (2)过点D 作DN ⊥AF 于N,DM ⊥BE 交BE 延长线于M 在Rt △ADF 中,∵1122ADF S AD FD AF DN =⋅=⋅△∴DN =分 ∵△BAE ≌△ADF(已证)∴BAE S △=ADF S △ ,BE=AF ∴AG=DN又∵△AEG ≌△DEM(AAS) ∴AG=DM……………………………………………………………………………5分 ∴DN=DM ∴GD 平分∠MGN ∴∠DGN=12∠MGN=45°…………………………………………………………………………………………6分 ∴有等腰直角△DGNGD==…………………………………………………………………………………………………7分 (3)FQ 分24. (1)令x=0,则 y=6,∴A (0,6)………………………………………….…………………………1分令y=0,则3064x =-+,解得x=8, ∴D (8,0)………………………………………………2分∴AC=AO=6,OD=8=10 ∴CD=AD-AC=4设BC=BO=x ,则BD=8-x,CD=4 在Rt △BCD 中,222BC CD BD += ∴2224(8x)x +=-,解得x=3∴点B 的坐标为(3,0) ……………………………………………………………………………4分(2)设直线AB 的解析式为y=kx+6 ∵点B 的坐标为(3,0) ∴0=3k+6 解得:k= -2∴直线AB 的解析式为y=-2x+6……………………………………………………………………5分 过点G 、F 作GM ⊥x 轴于M ,FN ⊥x 轴于N ∵△DFG 为等腰直角三角形∴DG=FD ∠1=∠2, ∠DMG =∠FND,∴△DMG ≌△FND (AAS )………………………………………………………………………6分 ∴设GM=DN=m ,DM=FN=n 求出G(8-n , m), F(8-m , -n) ∵点G 、F 在直线AB 上 ∴2(8n)62(8)6m n m =--+⎧⎨-=--+⎩ 解得 m=2,n=6∴点G 的坐标为(2,2) ……………………………………8分(3)如图, 设点3(,6)4Q a a -+,∵PQ ∥x 轴,且点P 在直线26y x =-+上∴点P 坐标为33(,6)84P a a -+…………………………………9分∴PQ=58a = DQ作QH ⊥x 轴于点H,∴DH=a -8, QH=364a -∴34QH DH = 由勾股定理可知 QH :DH :DQ= 3:4:5 …………………………………………10分 ∴QH=35DQ =38a即38a = 364a -,解得a=16∴点Q 、P 的坐标为 (16,6)Q - (6,6)P -∵ED ∥PQ ,ED=PQ D(8,0)∴E(2,0)-…………………………………………………………………………………………12分。

人教版八年级2017-2018学年度(下)数学期末模拟试卷(含答案) 2

人教版八年级2017-2018学年度(下)数学期末模拟试卷(含答案) 2

人教版八年级2017-2018学年度(下)数学期末模拟试卷(含答案)2(时间:100分钟满分:120分)一、选择题(本题共10小题,满分共30分)1)个.A.1B.2 C.3 D.42.已知:ΔABC中,AB=5,AC=6,BC=11,则ΔABC的面积是( ).A.15 B.113C D.1143.不能够判定四边形是平行四边形的为().A.两组对边分别相等的四边形B.一组对边平行且相等的四边形C.对角线互相平分的四边形D.一组对边相等一组对角相等的四边形4.如图,在菱形ABCD中,对角线AC=8,BD=6,点P是AC上的一个动点,PE⊥BC,垂足为点E,连接PB,则PE+PB最小值为().A.56B.512C.524D.5485.a的值一定是().A.无意义B.整数C.正整数D.正数6.在同一直角坐标系中,画出一次函数y mx n=-与正比例函数ny xm=(m、n是常数)的图象,其中正确的是()7.已知2a=-,则直线y ax b=+的图象不经过( ).A.第一象限 B.第二象限 C.第三象限 D.第四象限8.一位同学计算多边形内角和时,由于匆忙少算了一个内角,结果得到内角之和为2230°,则漏掉的内角的度数为( ).A.100°B.105°C.110°D.120°第4题图9.若一组数据1x ,2x ,L ,n x 的平均数是2,方差是15,则154x -,254x -,L ,54n x - 的平均数和方差 分别是 ( ) .A .6,5B .6,25C .2,15D .2,5 10.如图,将矩形纸片ABCD 沿其对角线AC 折叠,使点B 落到点B '的位置,AB '与CD 交于点E .P 为射线AC 上任意一点,PG 垂直于AE 的延长线于G ,PH 垂直于DC 的延长线于H , 若AB =16,DE =6,则PG PH -的值为( ). A . 4 B .8 C . 12 D .16二、填空题(本题共10小题,满分共30分)1153x -有意义,则x 的取值范围为____________.12.一组数据2,3,4,5,5,1,4,a 有唯一的众数是a , 这组数据的中位数是 ,平均数____________.13.如图,已知一条直线经过点A (3,0)、点B (0,-4),将这条直线向左平移与x 轴、y 轴分别交与点C 、点D .若AB =AC ,则直线CD 的函数解析式为 .14.直角三角形有一条直角边的长为5,另外两边的长也是正整数,则此三角形的周长____________. 15.甲,乙两个石榴推广小组各有五块实验田平均单位面积产量如下(单位:千克/亩):经计算,x 甲乙 16.如图,已知点E 、F 分别是△ABC 的中点,AD ⊥BC 于D ,若△EDF 的周长为6,则△ABC 的周长是____________.17.如图,在等腰三角形ABC 中,∠ACB =90°,D 为AC 边上中点,点E 是边AC 边动点,由A 向C 运动(不与A 、C 重合),点F 是边CB 边动点,由C 向B 运动(不与C 、B 重合),在运动过程中∠EDF =90°, 点M 是EF 的中点,若AC =BC =8,则CM 的最小值是____________.18.平行四边形ABCD 的周长为40cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大4cm ,则CD = cm.第16题图第10题图第13题图19.如图大正方形中有两个小正方形,若两个小正方形的面积分别为1S ,2S ,则1S 与2S 的大小关系为1S ___2S (用“>”、“<”、“=”连接).20.如图,在面积为1的菱形ABCD 中,∠DAB =60°.连结对角线AC ,以AC 为边作第二个菱形ACEF ,使∠F AC =60°.连结AE ,再以AE 为边作第三个菱形AEGH 使∠HAE =60°,…,按此规律所作的第n 个菱形的面积是 .三.解答题:(本题共7小题,满分共30分) 21. (本题满分7分)36)123(32127)32(02-------+22. (本题满分6分)已知Rt △ABC的周长为4求这个三角形的面积.23. (本题满分8分)如图,在△ABC 中,AD 是边BC 上中线,E 、F 分别是边AB 、AC的中点. (1)求证:AD 与EF 互相平分; (2)当∠BAC =90°时,试证AD 与EF 互相平分且相等; (3)当AB =AC 时,AD 与EF ,且 (不需要证明). (4)当AB =AC ,∠BAC =90°时,AD 与EF ,且 , 且 (不需要证明).第20题图第19题图第17题图第23题图第22题图24. (本题满分9分)某街道根据市级文明村评选标准经过初步评比后,决定从王楼居、赵庄居、三河居这 三个居中推荐一个居为市级文明村,现对这三个居进行综合素质考评,下表是它们六项素质考评的得 (1)请问各班五项考评分的平均数、中位数和方差中哪个统计量不能反映三个居的考评结果的差异?并从中选择一个能反映差异的统计量将其分值进行排序。

【最新】2017-2018学年北师大版八年级数学下学期期末模拟考试试卷及答案

【最新】2017-2018学年北师大版八年级数学下学期期末模拟考试试卷及答案

2017-2018学年度八年级(下)期末数学模拟试卷一、选择题(每小题3分,共30分)1.已知?ABCD的周长为32,AB=4,则BC=()A.4B.12 C.24 D.282.分式的值为0,则()A.x=﹣3 B.x=±3 C.x=3 D.x=03.下列从左到右的变形中,是因式分解的是()A.x2﹣6x+9=x(x﹣6﹣9)B.(a+2)(a﹣2)=a2﹣4C.2a(b﹣c)=2ab﹣2bc D.y2﹣4y+4=(y﹣2)24.下列说法中,错误的是()A.不等式x<3有两个正整数解B.﹣2是不等式2x﹣1<0的一个解C.不等式﹣3x>9的解集是x>﹣3D.不等式x<10的整数解有无数个5.如图,△ABC与△A1B1C1关于点O成中心对称,下列说法:①∠BAC=∠B1A1C1;②AC=A1C1;③OA=OA1;④△ABC与△A1B1C1的面积相等,其中正确的有()A.1个B.2个C.3个D.4个6.如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB,下列确定P点的方法正确的是()A.P是∠A与∠B两角平分线的交点B.P为∠A的角平分线与AB的垂直平分线的交点C.P为AC、AB两边上的高的交点D.P为AC、AB两边的垂直平分线的交点7.下列变形正确的是()A.B.C.D.8.如图,平行四形ABCD中,∠A=100°,则∠B+∠D的度数是()A.80°B.100°C.160°D.180°9.若关于x的方程=有增根,则m的值为()A.3B.2C.1D.﹣110.如图,在?ABCD中,BC=7,CD=5,∠D=50°,BE平分∠ABC,则下列结论中不正确的是()A.∠C=130°B.A E=5 C.E D=2 D.∠BED=130°二、填空题(每小题3分,共24分)11.使式子1+有意义的x的取值范围是.12.若9x 2+kx+16是一个完全平方式,则k的值是或.13.如果一个多边形的内角和是其外角和的一半,那么这个多边形是边形.14.如图方格纸中△ABC绕着点A逆时针旋转度,再向右平移格可得到△DEF.15.不等式组的整数解是.16.如图,已知△ABC中,AB=AC=8cm,AD平分∠BAC,点E为AC的中点,则DE=.17.如图,?ABCD的对角线相交于O,且AB=6,△OCD的周长为23,?ABCD的两条对角线的和是.18.观察下列按顺序排列的等式:a1=1﹣,a2=,a3=,a4=…试猜想第n 个等式(n为正整数)a n=,其化简后的结果为.三、解答题19.把下列各式分解因式:(1)x2﹣9y2(2)ab2﹣4ab+4a.20.化简求值:(),其中a=3,b=.21.解不等式组:,并把解集在数轴上表示出来.15.不等式组的整数解是.16.如图,已知△ABC中,AB=AC=8cm,AD平分∠BAC,点E为AC的中点,则DE=.17.如图,?ABCD的对角线相交于O,且AB=6,△OCD的周长为23,?ABCD的两条对角线的和是.18.观察下列按顺序排列的等式:a1=1﹣,a2=,a3=,a4=…试猜想第n 个等式(n为正整数)a n=,其化简后的结果为.三、解答题19.把下列各式分解因式:(1)x2﹣9y2(2)ab2﹣4ab+4a.20.化简求值:(),其中a=3,b=.21.解不等式组:,并把解集在数轴上表示出来.15.不等式组的整数解是.16.如图,已知△ABC中,AB=AC=8cm,AD平分∠BAC,点E为AC的中点,则DE=.17.如图,?ABCD的对角线相交于O,且AB=6,△OCD的周长为23,?ABCD的两条对角线的和是.18.观察下列按顺序排列的等式:a1=1﹣,a2=,a3=,a4=…试猜想第n 个等式(n为正整数)a n=,其化简后的结果为.三、解答题19.把下列各式分解因式:(1)x2﹣9y2(2)ab2﹣4ab+4a.20.化简求值:(),其中a=3,b=.21.解不等式组:,并把解集在数轴上表示出来.15.不等式组的整数解是.16.如图,已知△ABC中,AB=AC=8cm,AD平分∠BAC,点E为AC的中点,则DE=.17.如图,?ABCD的对角线相交于O,且AB=6,△OCD的周长为23,?ABCD的两条对角线的和是.18.观察下列按顺序排列的等式:a1=1﹣,a2=,a3=,a4=…试猜想第n 个等式(n为正整数)a n=,其化简后的结果为.三、解答题19.把下列各式分解因式:(1)x2﹣9y2(2)ab2﹣4ab+4a.20.化简求值:(),其中a=3,b=.21.解不等式组:,并把解集在数轴上表示出来.15.不等式组的整数解是.16.如图,已知△ABC中,AB=AC=8cm,AD平分∠BAC,点E为AC的中点,则DE=.17.如图,?ABCD的对角线相交于O,且AB=6,△OCD的周长为23,?ABCD的两条对角线的和是.18.观察下列按顺序排列的等式:a1=1﹣,a2=,a3=,a4=…试猜想第n 个等式(n为正整数)a n=,其化简后的结果为.三、解答题19.把下列各式分解因式:(1)x2﹣9y2(2)ab2﹣4ab+4a.20.化简求值:(),其中a=3,b=.21.解不等式组:,并把解集在数轴上表示出来.15.不等式组的整数解是.16.如图,已知△ABC中,AB=AC=8cm,AD平分∠BAC,点E为AC的中点,则DE=.17.如图,?ABCD的对角线相交于O,且AB=6,△OCD的周长为23,?ABCD的两条对角线的和是.18.观察下列按顺序排列的等式:a1=1﹣,a2=,a3=,a4=…试猜想第n 个等式(n为正整数)a n=,其化简后的结果为.三、解答题19.把下列各式分解因式:(1)x2﹣9y2(2)ab2﹣4ab+4a.20.化简求值:(),其中a=3,b=.21.解不等式组:,并把解集在数轴上表示出来.15.不等式组的整数解是.16.如图,已知△ABC中,AB=AC=8cm,AD平分∠BAC,点E为AC的中点,则DE=.17.如图,?ABCD的对角线相交于O,且AB=6,△OCD的周长为23,?ABCD的两条对角线的和是.18.观察下列按顺序排列的等式:a1=1﹣,a2=,a3=,a4=…试猜想第n 个等式(n为正整数)a n=,其化简后的结果为.三、解答题19.把下列各式分解因式:(1)x2﹣9y2(2)ab2﹣4ab+4a.20.化简求值:(),其中a=3,b=.21.解不等式组:,并把解集在数轴上表示出来.15.不等式组的整数解是.16.如图,已知△ABC中,AB=AC=8cm,AD平分∠BAC,点E为AC的中点,则DE=.17.如图,?ABCD的对角线相交于O,且AB=6,△OCD的周长为23,?ABCD的两条对角线的和是.18.观察下列按顺序排列的等式:a1=1﹣,a2=,a3=,a4=…试猜想第n 个等式(n为正整数)a n=,其化简后的结果为.三、解答题19.把下列各式分解因式:(1)x2﹣9y2(2)ab2﹣4ab+4a.20.化简求值:(),其中a=3,b=.21.解不等式组:,并把解集在数轴上表示出来.15.不等式组的整数解是.16.如图,已知△ABC中,AB=AC=8cm,AD平分∠BAC,点E为AC的中点,则DE=.17.如图,?ABCD的对角线相交于O,且AB=6,△OCD的周长为23,?ABCD的两条对角线的和是.18.观察下列按顺序排列的等式:a1=1﹣,a2=,a3=,a4=…试猜想第n 个等式(n为正整数)a n=,其化简后的结果为.三、解答题19.把下列各式分解因式:(1)x2﹣9y2(2)ab2﹣4ab+4a.20.化简求值:(),其中a=3,b=.21.解不等式组:,并把解集在数轴上表示出来.15.不等式组的整数解是.16.如图,已知△ABC中,AB=AC=8cm,AD平分∠BAC,点E为AC的中点,则DE=.17.如图,?ABCD的对角线相交于O,且AB=6,△OCD的周长为23,?ABCD的两条对角线的和是.18.观察下列按顺序排列的等式:a1=1﹣,a2=,a3=,a4=…试猜想第n 个等式(n为正整数)a n=,其化简后的结果为.三、解答题19.把下列各式分解因式:(1)x2﹣9y2(2)ab2﹣4ab+4a.20.化简求值:(),其中a=3,b=.21.解不等式组:,并把解集在数轴上表示出来.15.不等式组的整数解是.16.如图,已知△ABC中,AB=AC=8cm,AD平分∠BAC,点E为AC的中点,则DE=.17.如图,?ABCD的对角线相交于O,且AB=6,△OCD的周长为23,?ABCD的两条对角线的和是.18.观察下列按顺序排列的等式:a1=1﹣,a2=,a3=,a4=…试猜想第n 个等式(n为正整数)a n=,其化简后的结果为.三、解答题19.把下列各式分解因式:(1)x2﹣9y2(2)ab2﹣4ab+4a.20.化简求值:(),其中a=3,b=.21.解不等式组:,并把解集在数轴上表示出来.15.不等式组的整数解是.16.如图,已知△ABC中,AB=AC=8cm,AD平分∠BAC,点E为AC的中点,则DE=.17.如图,?ABCD的对角线相交于O,且AB=6,△OCD的周长为23,?ABCD的两条对角线的和是.18.观察下列按顺序排列的等式:a1=1﹣,a2=,a3=,a4=…试猜想第n 个等式(n为正整数)a n=,其化简后的结果为.三、解答题19.把下列各式分解因式:(1)x2﹣9y2(2)ab2﹣4ab+4a.20.化简求值:(),其中a=3,b=.21.解不等式组:,并把解集在数轴上表示出来.15.不等式组的整数解是.16.如图,已知△ABC中,AB=AC=8cm,AD平分∠BAC,点E为AC的中点,则DE=.17.如图,?ABCD的对角线相交于O,且AB=6,△OCD的周长为23,?ABCD的两条对角线的和是.18.观察下列按顺序排列的等式:a1=1﹣,a2=,a3=,a4=…试猜想第n 个等式(n为正整数)a n=,其化简后的结果为.三、解答题19.把下列各式分解因式:(1)x2﹣9y2(2)ab2﹣4ab+4a.20.化简求值:(),其中a=3,b=.21.解不等式组:,并把解集在数轴上表示出来.15.不等式组的整数解是.16.如图,已知△ABC中,AB=AC=8cm,AD平分∠BAC,点E为AC的中点,则DE=.17.如图,?ABCD的对角线相交于O,且AB=6,△OCD的周长为23,?ABCD的两条对角线的和是.18.观察下列按顺序排列的等式:a1=1﹣,a2=,a3=,a4=…试猜想第n 个等式(n为正整数)a n=,其化简后的结果为.三、解答题19.把下列各式分解因式:(1)x2﹣9y2(2)ab2﹣4ab+4a.20.化简求值:(),其中a=3,b=.21.解不等式组:,并把解集在数轴上表示出来.15.不等式组的整数解是.16.如图,已知△ABC中,AB=AC=8cm,AD平分∠BAC,点E为AC的中点,则DE=.17.如图,?ABCD的对角线相交于O,且AB=6,△OCD的周长为23,?ABCD的两条对角线的和是.18.观察下列按顺序排列的等式:a1=1﹣,a2=,a3=,a4=…试猜想第n 个等式(n为正整数)a n=,其化简后的结果为.三、解答题19.把下列各式分解因式:(1)x2﹣9y2(2)ab2﹣4ab+4a.20.化简求值:(),其中a=3,b=.21.解不等式组:,并把解集在数轴上表示出来.15.不等式组的整数解是.16.如图,已知△ABC中,AB=AC=8cm,AD平分∠BAC,点E为AC的中点,则DE=.17.如图,?ABCD的对角线相交于O,且AB=6,△OCD的周长为23,?ABCD的两条对角线的和是.18.观察下列按顺序排列的等式:a1=1﹣,a2=,a3=,a4=…试猜想第n 个等式(n为正整数)a n=,其化简后的结果为.三、解答题19.把下列各式分解因式:(1)x2﹣9y2(2)ab2﹣4ab+4a.20.化简求值:(),其中a=3,b=.21.解不等式组:,并把解集在数轴上表示出来.。

2017-2018学年(新课标)最新湘教版八年级数学下册期末考试模拟试题及答案解析

2017-2018学年(新课标)最新湘教版八年级数学下册期末考试模拟试题及答案解析

湘教版2017—2018学年八年级数学下学期 期末复习试卷与解答 一.选择题(共10小题) 1.如图,BD 平分∠ABC ,CD ⊥BD ,D 为垂足,∠C=55°,则∠ABC 的度数是( ) A .35° B .55° C .60° D .70°2. Rt △ABC 中,∠C=90°,锐角为30°,最短边长为5cm ,则最长边上的中线是()A .5cmB .15cmC .10cmD .2.5cm3.下列图形中,不是中心对称图形但是轴对称图形的是( )A .B .C .D .第1题图 第4题图第5题图4.如图,平行四边形ABCD中,P是形内任意一点,△ABP,△BCP,△CDP,△ADP的面积分别为S1,S2,S3,S4,则一定成立的是()A.S1+S2=S3+S4 B.S1+S2>S3+S4C.S1+S3=S2+S4 D.S1+S2<S3+S45.如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2 B.3 C.4 D.56.在平面直角坐标系中,点P(1,2)关于原点对称的点的坐标是()A.(﹣1,﹣2) B.(﹣1,2)C.(1,﹣2)D.(2,1)7.一次函数y=x﹣1的图象向上平移2个单位后,不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.平行四边形的周长为240,两邻边长为x、y,则y与x之间的关系是()A.y=120﹣x(0<x<120)B.y=120﹣x(0≤x≤120)C.y=240﹣x(0<x<240)D.y=240﹣x(0≤x≤240)9.某校测量了初三(1)班学生的身高(精确到1cm),按10cm为一段进行分组,得到如图频数分布直方图,则下列说法正确的是()A .该班人数最多的身高段的学生数为7人B .该班身高最高段的学生数为7人C .该班身高最高段的学生数为20人D .该班身高低于160.5cm 的学生数为15人10.如图,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4,…,△A n B n A n+1都是等腰直角三角形,其中点A 1,A 2,…,A n 在x 轴上,点B 1,B 2,…,B n 在直线y=x 上.已知OA 1=1,则点B 2016的横坐标为( )A .2016B .20152C .22016D .22015二.填空题(共8小题)11.如图,AC ⊥BC ,AD ⊥DB ,要使△ABC ≌△BAD ,还需添加条件 .(只需写出符合条件一种情况)第10题图12.已知△ABC的三边长a、b、c满足,则△ABC一定是三角形.13.顺次连接矩形四边中点所形成的四边形是.学校的一块菱形花园两对角线的长分别是6m和8m,则这个花园的面积为.14.一个四边形的四个内角的度数之比是3:3:2:1,求这个四边形的最小内角是.15.已知点P(2﹣a,2a﹣7)(其中a为整数)位于第三象限,则点P坐标为.16.点A(0,﹣3),点B(0,﹣4),点C在x轴上,如果△ABC的面积为15,则点C 的坐标是.17.一次函数y=kx+b的图象如图所示,当x 时,y>2.18.2016年扬州体育中考现场考试内容有两项,50米跑为必考项目,另在立定跳远、坐位体前屈、实心球和一分钟跳绳中选一项测试.王老师对参加体育中考的九(1)班40名学生的一项选测科目作了统计,列出如图所示的统计表,则本班参加坐位体前屈的人数是人.组别立定跳远坐位体前屈实心球一分钟跳绳频率0.4 0.35 0.1 0.15三.解答题(共6小题)19.如图,AD是△ABC的BC边上的高,AE平分∠BAC,若∠B=42°,∠C=70°,求∠AEC 和∠DAE的度数.20.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(,)、B′(,)、C′(,).(3)△ABC的面积为.21.已知函数y=(2m+1)x+m﹣3,(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.22.如图,平行四边形ABCD中,点E、F、G、H分别在AB、BC、CD、AD边上且AE=CG,AH=CF.(1)求证:四边形EFGH是平行四边形;(2)如果AB=AD,且AH=AE,求证:四边形EFGH是矩形.23.如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.24.某农机租赁公司共有50台收割机,其中甲型20台、乙型30台,现将这50台联合收割机派往A、B两地区收割水稻,其中30台派往A地区,20台派往B地区,两地区与该农机公司商定的每天租赁价格如下表:每台甲型收割机的租金每台乙型收割机的租金A地区1800元1600元B地区1600元1200元(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y 元,求y关于x的函数关系式;(2)若使农机租赁公司这50台收割机一天所获租金不低于79600元,试写出满足条件的所有分派方案;(3)农机租赁公司拟出一个分派方案,使该公司50台收割机每天获得租金最高,并说明理由.试题解析参考一.选择题(共10小题)1.如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是()A.35°B.55°C.60°D.70°解:∵CD⊥BD,∠C=55°,∴∠CBD=90°﹣55°=35°,∵BD平分∠ABC,∴∠ABC=2∠CBD=2×35°=70°.故选D.2.Rt△ABC中,∠C=90°,锐角为30°,最短边长为5cm,则最长边上的中线是()A.5cm B.15cm C.10cm D.2.5cm解:∵∠C=90°,∠B=30°,∴AB=2AC=10cm,∵CD是AB的中线,∴CD=1AB=5cm.2故选A.3.下列图形中,不是中心对称图形但是轴对称图形的是()A.B.C.D.解:A、是轴对称图形,不是中心对称图形.故正确;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故错误.故选A.4.如图,平行四边形ABCD中,P是形内任意一点,△ABP,△BCP,△CDP,△ADP的面积分别为S1,S2,S3,S4,则一定成立的是()A.S1+S2=S3+S4 B.S1+S2>S3+S4C.S1+S3=S2+S4 D.S1+S2<S3+S4解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∴S1+S3=1平行四边形ABCD的面积,2S2+S4=1平行四边形ABCD的面积,2∴S1+S3=S2+S4,故选:C.5.如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2 B.3 C.4 D.5解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵点E、F分别是BD、CD的中点,∴EF=12BC=12×8=4.故选C.6.在平面直角坐标系中,点P(1,2)关于原点对称的点的坐标是()A.(﹣1,﹣2) B.(﹣1,2)C.(1,﹣2)D.(2,1)解:∵P(1,2),∴点P关于原点对称的点的坐标是:(﹣1,﹣2),故选:A.7.一次函数y=x﹣1的图象向上平移2个单位后,不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限解:因为一次函数y=x﹣1的图象向上平移2个单位后的解析式为:y=x+1,所以图象不经过四象限,8.平行四边形的周长为240,两邻边长为x、y,则y与x之间的关系是()A.y=120﹣x(0<x<120)B.y=120﹣x(0≤x≤120)C.y=240﹣x(0<x<240)D.y=240﹣x(0≤x≤240)解:∵平行四边形的周长为240,两邻边长为x、y,∴2(x+y)=240,则y=120﹣x(0<x<120).故选:A.9.某校测量了初三(1)班学生的身高(精确到1cm),按10cm为一段进行分组,得到如图频数分布直方图,则下列说法正确的是()A.该班人数最多的身高段的学生数为7人B.该班身高最高段的学生数为7人C.该班身高最高段的学生数为20人D.该班身高低于160.5cm的学生数为15人解:由频数直方图可以看出:该班人数最多的身高段的学生数为20人;该班身高低于160.5cm的学生数为20人;该班身高最高段的学生数为7人;10.如图,△A1B1A2,△A2B2A3,△A3B3A4,…,△A n B n A n+1都是等腰直角三角形,其中点A1,A2,…,A n在x轴上,点B1,B2,…,B n在直线y=x上.已知OA1=1,则点B2016的横坐标为()A.2016 B.20152 C.22016D.22015解:因为OA1=1,∴OA2=2,OA3=4,OA4=8,由此得出OA n=2n﹣1,所以OA2016=22015,所以点B2016的横坐标为=22015故选D二.填空题(共8小题)11.如图,AC⊥BC,AD⊥DB,要使△ABC≌△BAD,还需添加条件AC=BD或BC=AD 或∠DAB=∠CBA或∠CAB=∠DBA .(只需写出符合条件一种情况)解:∵AC⊥BC,AD⊥DB,∴∠C=∠D=90°∵AB为公共边,要使△ABC≌△BAD∴添加AC=BD或BC=AD或∠DAB=∠CBA或∠CAB=∠DBA后可分别根据HL、HL、AAS、AAS判定△ABC≌△BAD.12.(2015秋•扬州校级期末)已知△ABC的三边长a、b、c满足,则△ABC一定是等腰直角三角形.解:∵△ABC的三边长a、b、c满足,∴a﹣1=0,b﹣1=0,c﹣2=0,∴a=1,b=1,c=2.∵a2+b2=c2,∴△ABC一定是等腰直角三角形.13.顺次连接矩形四边中点所形成的四边形是菱形.学校的一块菱形花园两对角线的长分别是6m和8m,则这个花园的面积为24m2.解:连接AC、BD,在△ABD中,∵AH=HD,AE=EB∴EH=12BD,同理FG=12BD,HG=12AC,EF=12AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形;这个花园的面积是12×6m×8m=24m2,故答案为:菱形,24m2.14.一个四边形的四个内角的度数之比是3:3:2:1,求这个四边形的最小内角是20°.解:设四边形4个内角的度数分别是3x,3x,2x,x,所以3x+3x+2x+x=360°,解得x=20°.则最小内角为20×1=20°.故答案为:20°.15.已知点P(2﹣a,2a﹣7)(其中a为整数)位于第三象限,则点P坐标为(﹣1,﹣1).解:∵点P(2﹣a,2a﹣7)(其中a为整数)位于第三象限,∴20 270 -aa<⎧⎨-<⎩,解得:2<a<3.5,故a=3,则点P坐标为:(﹣1,﹣1).故答案为:(﹣1,﹣1).16.点A(0,﹣3),点B(0,﹣4),点C在x轴上,如果△ABC的面积为15,则点C 的坐标是(30,0)或(﹣30,0).解:∵点A(0,﹣3),点B(0,﹣4),∴AB=1∵点C在x轴上,设C(x,0),∵△ABC的面积为15,∴12×AB×|x|=15,即:12×1×|x|=15解得:x=±30∴点C坐标是:(30,0),(﹣30,0).故答案为:(30,0),(﹣30,0).17.一次函数y=kx+b的图象如图所示,当x <0 时,y>2.解:由图形可知,该函数过点(0,2),(3,0),设解析式为y kx b=+,将A、B两点代人2003k bk b=⨯+⎧⎨=⨯+⎩,所以232kb⎧=-⎪⎨⎪=⎩所以解析式为223y x=-+,令y>2,即223x-+>2,解之得:x<0.18.2016年扬州体育中考现场考试内容有两项,50米跑为必考项目,另在立定跳远、坐位体前屈、实心球和一分钟跳绳中选一项测试.王老师对参加体育中考的九(1)班40名学生的一项选测科目作了统计,列出如图所示的统计表,则本班参加坐位体前屈的人数是14 人.组别立定跳远坐位体前屈实心球一分钟跳绳频率0.4 0.35 0.1 0.15解:∵频率=,∴频数=频率×总数=0.35×40=14人.故答案为14.三.解答题(共6小题)19.如图,AD是△ABC的BC边上的高,AE平分∠BAC,若∠B=42°,∠C=70°,求∠AEC 和∠DAE的度数.解:∵∠B=42°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=68°,∵AE是角平分线,∴∠EAC=1∠BAC=34°.2∵AD是高,∠C=70°,∴∠DAC=90°﹣∠C=20°,∴∠EAD=∠EAC﹣∠DAC=34°﹣20°=14°,∠AEC=90°﹣14°=76°.20.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A( 2 ,﹣1 )、B( 4 , 3 )(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(0 ,0 )、B′( 2 , 4 )、C′(﹣1 ,3 ).(3)△ABC的面积为 5 .解:(1)写出点A、B的坐标:A(2,﹣1)、B(4,3)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(0,0)、B′(2,4)、C′(﹣1,3).(3)△ABC的面积=3×4﹣2×12×1×3﹣12×2×4=5.21.已知函数y=(2m+1)x+m﹣3,(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.解:(1)把(0,0)代入,得:m﹣3=0,m=3;(2)根据y随x的增大而减小说明k<0.即2m+1<0.解得:m<.22.如图,平行四边形ABCD中,点E、F、G、H分别在AB、BC、CD、AD边上且AE=CG,AH=CF.(1)求证:四边形EFGH是平行四边形;(2)如果AB=AD,且AH=AE,求证:四边形EFGH是矩形.证明:(1)在平行四边形ABCD中,∠A=∠C,又∵AE=CG,AH=CF,∴△AEH≌△CGF.∴EH=GF.在平行四边形ABCD中,AB=CD,AD=BC,∴AB﹣AE=CD﹣CG,AD﹣AH=BC﹣CF,即BE=DG,DH=BF.又∵在平行四边形ABCD中,∠B=∠D,∴△BEF≌△DGH.∴GH=EF.∴四边形EFGH是平行四边形.(2)解:在平行四边形ABCD中,AB∥CD,AB=CD.设∠A=α,则∠D=180°﹣α.∵AE=AH,∴∠AHE=∠AEH=.∵AD=AB=CD,AH=AE=CG,∴AD﹣AH=CD﹣CG,即DH=DG.∴∠DHG=∠DGH=.∴∠EHG=180°﹣∠DHG﹣∠AHE=90°.又∵四边形EFGH是平行四边形,∴四边形EFGH是矩形.23.如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.解:(1)∵B(﹣3,3),将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,∴﹣3+1=﹣2,3﹣2=1,∴C的坐标为(﹣2,1),设直线l1的解析式为y=kx+c,∵点B、C在直线l1上,∴代入得:解得:k=﹣2,c=﹣3,∴直线l1的解析式为y=﹣2x﹣3;(2)∵将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,C(﹣2,1),∴﹣2﹣3=﹣5,1+6=7,∴D的坐标为(﹣5,7),代入y=﹣2x﹣3时,左边=右边,即点D在直线l1上;(3)把B的坐标代入y=x+b得:3=﹣3+b,解得:b=6,∴y=x+6,∴E的坐标为(0,6),∵直线y=﹣2x﹣3与y轴交于A点,∴A的坐标为(0,﹣3),∴AE=6+3=9,∵B(﹣3,3),×9×|﹣3|=13.5.∴△ABE的面积为1224.某农机租赁公司共有50台收割机,其中甲型20台、乙型30台,现将这50台联合收割机派往A、B两地区收割水稻,其中30台派往A地区,20台派往B地区,两地区与该农机公司商定的每天租赁价格如下表:每台甲型收割机的租金每台乙型收割机的租金A地区1800元1600元B地区1600元1200元(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y 元,求y关于x的函数关系式;(2)若使农机租赁公司这50台收割机一天所获租金不低于79600元,试写出满足条件的所有分派方案;(3)农机租赁公司拟出一个分派方案,使该公司50台收割机每天获得租金最高,并说明理由.解:(1)由于派往A地的乙型收割机x台,则派往B地的乙型收割机为(30﹣x)台,派往A、B地区的甲型收割机分别为(30﹣x)台和(x﹣10)台.∴y=1600x+1200(30﹣x)+1800(30﹣x)+1600(x﹣10)=200x+74000(10≤x≤30)(2)由题意,得200x+74000≥79600,解得x≥28,∵28≤x≤30,x是正整数∴x=28、29、30∴有3种不同分派方案:①当x=28时,派往A地区的甲型收割机2台,乙型收割机28台,余者全部派往B地区;②当x=29时,派往A地区的甲型收割机1台,乙型收割机29台,余者全部派往B地区;③当x=30时,即30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区;(3)∵y=200x+74000中y随x的增大而增大,∴当x=30时,y取得最大值,此时,y=200×30+74000=80000,建议农机租赁公司将30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区,这样公司每天获得租金最高,最高租金为80000元.。

2017-2018学年下学期期末复习备考之精准复习模拟题八年级数学(C卷)(人教版)(解析版)

2017-2018学年下学期期末复习备考之精准复习模拟题八年级数学(C卷)(人教版)(解析版)

绝密★启用前2017—2018学年第二学期期末教学质量检测试题八年级数学(C卷)2018年6月注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),共6页,满分120分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试卷和答题卡规定的位置.考试结束后,将本试卷和答题卡一并交回.2.答题注意事项见答题卡,答在本试卷上不得分.第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列计算中,正确的是()= B. (28== D. =2【答案】C【点睛】本题考查了二次根式的性质与化简,二次根式的乘除法,熟练掌握二次根式的性质、乘除法的运算法则是解题的关键.2.在暑假到来之前,某机构向八年级学生推荐了A,B,C三条游学线路,现对全级学生喜欢哪一条游学线路作调查,以决定最终的游学线路,下面的统计量中最值得关注的是()A. 方差B. 平均数C. 中位数D. 众数【答案】D【解析】由于众数是数据中出现次数最多的数,故全级学生喜欢的游学线路最值得关注的应该是统计调查数据的众数,故选D.3.以下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A. 2,3,, C. 1, 2 D. 7,8,9【答案】C【解析】A、22+32≠42,故不是直角三角形,A不符合题意;B、2+2)2,故不是直角三角形,B不符合题意;C、12+(2=22,故是直角三角形,C符合题意;D、72+82≠92,故不是直角三角形,D不符合题意;故选C.4.如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连结AC,作AC的垂直平分线MN分别交AD、AC、BC于M、O、N,连结AN、CM,则四边形ANCM是菱形.乙:分别作∠A,∠B的平分线AE、BF,分别交BC、AD于E、F,连结EF,则四边形ABEF是菱形.根据两人的作法可判断()A. 甲正确,乙错误B. 乙正确,甲错误C. 甲、乙均正确D. 甲、乙均错误【答案】C∴△AOM≌△CON(ASA),∴MO=NO,∴四边形ANCM是平行四边形,∵AC⊥MN,∴四边形ANCM是菱形;乙的作法正确;∵AD∥BC,∴∠1=∠2,∠6=∠7,∵BF平分∠ABC,AE平分∠BAD,∴∠2=∠3,∠5=∠6,∴∠1=∠3,∠5=∠7,∴AB=AF,AB=BE,∴AF=BE∵AF∥BE,且AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴平行四边形ABEF是菱形;故选:C.考点:菱形的判定.5.已知平面上四点A(0,0),B(10,0),C(12,6),D(2,6),直线y=mx﹣3m+6将四边形ABCD分成面积相等的两部分,则m的值为()A. 13B. ﹣1C. 2D.12【答案】B又点C、D的纵坐标相同,∴AB∥CD且AB=CD,∴四边形ABCD是平行四边形,∵12÷2=6,6÷2=3,∴对角线交点P的坐标是(6,3),∵直线y=mx﹣3m+6将四边形ABCD分成面积相等的两部分,∴直线y=mx﹣3m+6经过点P,∴6m﹣3m+6=3,解得m=﹣1.故选B.【点睛】本题考查了平行四边形的判定以及平行四边形中心对称的性质,也就是过对角线交点的直线把平行四边形分成的两个部分的面积相等.6.如图.在Rt△ABC中,∠ABC=90°,点D是斜边上的中点,点P在AB上,PE⊥BD于E,PF⊥AC于F,若AB=6,BC=3,则PE+PF=()A. B. C. D. 【答案】A∴BD=AD=DC,=∵12•AB•BC=12•AC•BM,∴BM=∴S△ABD=S△ADP+S△BDP,∴12•AD•BM=12•AD•PF+12•BD•PE,∴PE+PF=BM=.故选A.7.若一次函数y=x+4的图象上有两点A(﹣,y1)、B(1,y2),则下列说法正确的是()A. y1>y2 B. y1≥y2 C. y1<y2 D. y1≤y2【答案】C【解析】试题分析:∵k=1>0,∴y随x的增大而增大,∵-<1,∴y1<y2.故选C.考点:一次函数的性质.8.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC为对角线的所有▱ADCE中,DE最小的值是()A. 2B. 3C. 4D. 5【答案】B∴当OD取最小值时,DE线段最短,此时OD⊥BC.∴OD∥AB.又点O是AC的中点,∴OD是△ABC的中位线,∴OD=AB=1.5,∴ED=2OD=3.故选B.点评:本题考查了平行四边形的性质,以及垂线段最短.解答该题时,利用了“平行四边形的对角线互相平分”的性质.9.现有一只蜗牛和一只乌龟从同一点分别沿正东和正南方向爬行,蜗牛的速度为14厘米/分钟,乌龟的速度为48厘米/分钟,5分钟后,蜗牛和乌龟的直线距离为()A. 300厘米B. 250厘米C. 200厘米D. 150厘米【答案】B【解析】如图所示,∵蜗牛的速度为14厘米/分钟,乌龟的速度为48厘米/分钟,∴OA=14×5=70(厘米),OB=48×5=240(厘米),==(厘米).∴250所以蜗牛和乌龟的直线距离为250厘米.故选B.10.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为()A. 90B. 100C. 110D. 121【答案】C【解析】试题解析:如图,延长AB交KF于点O,延长AC交GM于点P,所以四边形AOLP是正方形,边长AO=AB+AC=3+4=7,所以KL=3+7=10,LM=4+7=11, 因此矩形KLMJ 的面积为10×11=110. 故选C .考点:勾股定理的证明.第Ⅱ卷(非选择题 共90分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在答题卡规定的区域内,在试卷上答题不得分. 二、填空题(本大题共8小题,每小题3分,共24分)11.已知a 2+,b 2-,则ab =__________. 【答案】112.一次函数y =kx +b (k ≠0)中,x 与y 的部分对应值如下表:那么,一元一次方程kx +b =0的解是x =________. 【答案】1【解析】根据表中的数据值可知,当y=0时,x=1, 即一元一次方程kx+b=0的解是x=1, 故答案是:1.13.如图是一次函数y =mx +n 的图象,则关于x 的不等式mx +n >2的解集是________.【答案】x>0【点睛】本题考查了一次函数与一元一次不等式,关键是掌握用数形结合的方法解题.14.考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端垂直滑下6个单位时,请问其下端离开墙角有多远?”,这个问题的答案是:其下端离开墙角________个单位.【答案】18【解析】∵PC=AB=30,PA=6,∴AC=24,==18,∴下端离开墙角18个单位,故答案为:18.15.若一次函数y=(a+3)x+a﹣3不经过第二象限,则a的取值范围是________.【答案】﹣3<a≤3【解析】∵一次函数y=(a+3)x+a﹣3的图象不经过第二象限,∴a+3<0,a-3≤0解得a<-3, a≤3.所以a<-3.故答案是:a≤-3.16.某校九年级甲、乙两班举行电脑汉字输入速度比赛,两个班参加比赛的学生每分钟输入汉字的个数,经统计和计算后结果如下表:有一位同学根据上表得出如下结论:①甲、乙两班学生的平均水平相同;②乙班优秀的人数比甲班优秀的人数多(每分钟输入汉字达150个以上为优秀);③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.上述结论正确的是________.(填序号)【答案】①②③②乙班优秀的人数比甲班优秀的人数多(每分钟输入汉字达150个以上为优秀),说法正确;③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大,说法正确;故答案为①②③.考点:方差;算术平均数;中位数.17.如图所示,▱ABCD的周长是10+6,AB的长是5,DE⊥AB于E,DF⊥CB交CB的延长线于点F,DE的长是3,则DF的长为.【答案】【解析】=AB×DE=BC×DF,∵S▱ABCD即5×3=3×DF,∴DF=;故答案为:.18.如图1,正方形纸片ABCD的边长为2,翻折∠B、∠D,使得两个直角的顶点重合于对角线BD上一点P,EF、GH分别是折痕(如图2).设AE=x(0<x<2),给出下列判断:①当x=1时,点P是正方形ABCD的中心;②当x=时,EF+GH>AC;③当0<x<2时,六边形AEFCHG面积的最大值是;④当0<x<2时,六边形AEFCHG周长的值不变.其中正确的是________(填序号).【答案】①④.【解析】试题分析:①正方形纸片ABCD,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P,∴△BEF和△DGH是等腰直角三角形,∴当AE=1时,重合点P是BD的中点,∴点P是正方形ABCD的中心;故①结论正确;②正方形纸片ABCD,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P,∴△BEF∽△BAC ,∵x=12,∴BE=2-12=32,∴BE EF AB AC =,即322EF AC =,∴EF=34AC ,同理,GH=14AC ,∴EF+GH=AC ,故②结论错误;③六边形AEFCHG 面积=正方形ABCD 的面积-△EBF 的面积-△GDH 的面积.∵AE=x ,∴六边形AEFCHG 面积=2122-BE•BF -12GD•HD=4-12×(2-x )•(2-x )-12x•x=222x x -++=213x --+(),∴六边形AEFCHG 面积的最大值是3,故③结论错误;④当0<x <2时,∵EF+GH=AC ,六边形AEFCHG 周长=AE+EF+FC+CH+HG+AG=(AE+CH )+(FC+AG )+(EF+GH ),故六边形AEFCHG 周长的值不变,故④结论正确.考点:几何变换综合题.三、解答题(本大题共7小题,共66分)19.(8分)(1)(﹣)﹣(+2); (2)(2﹣)2+(+). 【答案】(1) -34解:(1)原式=-34(2)原式20.如图,在△ABC 中,AD ⊥BC ,AB =5,BD =4,CD.(1)求AD 的长.(2)求△ABC 的周长.【答案】(1)3;(2)9+.【解析】试题分析:(1)在Rt△ABD中,依据勾股定理可求得AD的长;(2)在Rt△ACD中,依据勾股定理可求得AC的长,然后再依据三角形的周长等于三边长度之和求解即可.试题解析:(1)在Rt△ABD中,==3;(2)在Rt△ACD中,==,则△ABC的周长21.6月5日是世界环境日,某校组织了一次环保知识竞赛,每班选25名同学参加比赛,成绩分别为A、B、C、D四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将某年级的一班和二班的成绩整理并绘制成如下统计图:根据以上提供的信息解答下列问题:(1)把一班竞赛成绩统计图补充完整;(2)写出下表中a,b,c的值:(3)请从以下给出的三个方面对这次竞赛成绩的结果进行分析:①从平均数和中位数方面比较一班和二班的成绩;②从平均数和众数方面比较一班和二班的成绩;③从B级以上(包括B级)的人数方面来比较一班和二班的成绩.【答案】(1)2(2)a=87.6,b=90,c=100(3)①从平均数和中位数的角度,一班成绩好于二班;②从平均数和众数的角度,二班成绩好于一班;③从B级以上(包括B级)的人数的角度,一班成绩好于二班【解析】试题分析:(1)计算出C级的人数即可补全统计图;(2)分别利用平均数、众数及中位数的计算方法即可求得a、b、c的值;(3)①两个班的平均数相等,一班的中位数大;②两个班的平均数相等,二班的众数大;③一班B级以上(包括B级)的人数为18人,二班B级以上(包括B级)的人数为12人.试题解析:(1)一班中C级的有25﹣6﹣12﹣5=2人;统计图为:;(2)a=(6×100+12×90+2×80+70×5)÷25=87.6;b=90;c=100;考点:1.条形统计图2.扇形统计图3.加权平均数4.中位数5.众数.22.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.【答案】见解析【解析】试题分析:(1)首先Rt△ABC中,由∠BAC=30°可以得到AB=2BC,又因为△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,然后即可证明△AFE≌△BCA,再根据全等三角形的性质即可证明AC=EF;(2)根据(1)知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF∴AF=BC,在Rt△AFE和Rt△BCA中,,∴△AFE≌△BCA(HL),∴AC=EF;23.2016年下半年开始,不同品牌的共享单车出现在城市的大街小巷.现已知A品牌共享单车计费方式为:初始骑行单价为1元/半小时,不足半小时按半小时计算.内设邀请机制,每邀请一位好友注册认证并充值押金成功,双方骑行单价均降价0.1元/半小时,骑行单价最低可降至0.1元/半小时(比如,某用户邀请了3位好友,则骑行单价为0.7元/半小时).B品牌共享单车计费方式为:0.5元/半小时,不足半小时按半小时计算.(1)某用户准备选择A品牌共享单车使用,设该用户邀请好友x名(x为整数,x≥0),该用户的骑行单价为y元/半小时.请写出y关于x的函数解析式.(2)若有A,B两种品牌的共享单车各一辆供某用户一人选择使用,请你根据该用户已邀请好友的人数,给出经济实惠的选择建议.【答案】(1)()()10.109{0.110x x xyx x-≤≤=≥,且为正整数,且为正整数;(2)答案见解析.试题解析:(1)由题意可得,当0≤x≤9且x为正整数时,y=1﹣0.1x,当x≥10且x为正整数时,y=0.1,即y关于x的函数解析式是()()10.109{0.110x x xyx x-≤≤=≥,且为正整数,且为正整数;(2)由题意可得,当0≤x≤9时,1﹣0.1x>0.5,可得,x<5,则当x≤x<5且x为正整数时,选择B品牌的共享单车;当0≤x≤9时,1﹣0.1x=0.5,得x=5,则x=5时,选择A或B品牌的共享单车消费一样;当0≤x≤9时,1﹣0.1x<0.5,得x>5,则x>5且x为正整数,选择A品牌的共享单车;当x≥10且x为正整数时,0.1<0.5,故答案为:项A品牌的共享单车.24.下面我们做一次折叠活动:第一步,在一张宽为2的矩形纸片的一端,利用图(1)的方法折出一个正方形,然后把纸片展平,折痕为MC;第二步,如图(2),把这个正方形折成两个相等的矩形,再把纸片展平,折痕为FA;第三步,折出内侧矩形FACB的对角线AB,并将AB折到图(3)中所示的AD处,折痕为AQ.根据以上的操作过程,完成下列问题:(1)求CD的长.(2)请判断四边形ABQD的形状,并说明你的理由.【答案】(11;(2)四边形ABQD是菱形.试题解析:(1)∵∠M=∠N=∠MBC=90°,∴四边形MNCB是矩形,∵MB=MN=2,∴矩形MNCB是正方形,∴NC=CB=2,由折叠得:AN=AC=12NC=1,Rt△ACB中,由勾股定理得:∴CD=AD﹣1;(2)四边形ABQD是菱形,理由是:由折叠得:AB=AD,∠BAQ=∠QAD,∵BQ∥AD,∴∠BQA=∠QAD,∴∠BAQ=∠BQA,∴AB=BQ,∴BQ=AD,BQ∥AD,∴四边形ABQD是平行四边形,∵AB=AD,∴四边形ABQD是菱形.25.赛龙舟是端午节的主要习俗,某市甲乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A驶向终点B,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题:(1)起点A与终点B之间相距多远?(2)哪支龙舟队先出发?哪支龙舟队先到达终点?(3)分别求甲、乙两支龙舟队的y与x函数关系式;(4)甲龙舟队出发多长时间时两支龙舟队相距200米?【答案】(1)3000;(2)甲龙舟队先出发,乙龙舟队先到达终点;(3)甲:y=120x(0≤x≤25);乙:y=200x﹣1000(5≤x≤20);(4)甲龙舟队出发53或10或15或703分钟时,两支龙舟队相距200米.(4)分四种情况进行讨论,根据两支龙舟队相距200米分别列方程求解即可.试题解析:解:(1)由图可得,起点A与终点B之间相距3000米;(2)由图可得,甲龙舟队先出发,乙龙舟队先到达终点;(3)设甲龙舟队的y与x函数关系式为y=kx,把(25,3000)代入,可得3000=25k,解得k=120,∴甲龙舟队的y与x函数关系式为y=120x(0≤x≤25),设乙龙舟队的y与x函数关系式为y=ax+b,把(5,0),(20,3000)代入,可得:05{300020a ba b=+=+,解得:200{1000ab==-,∴乙龙舟队的y与x函数关系式为y=200x﹣1000(5≤x≤20);(4)令120x=200x﹣1000,可得x=12.5,即当x=12.5时,两龙舟队相遇,当x<5时,令120x=200,则x=53(符合题意);点睛:本题主要考查了一次函数的应用,解决问题的关键是掌握待定系数法求函数解析式的方法,解题时注意数形结合思想以及分类思想的运用.26.提出问题:如图1,将三角板放在正方形ABCD上,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交边DC与点E,求证:PB=PE分析问题:学生甲:如图1,过点P作PM⊥BC,PN⊥CD,垂足分别为M,N通过证明两三角形全等,进而证明两条线段相等.学生乙:连接DP,如图2,很容易证明PD=PB,然后再通过“等角对等边”证明PE=PD,就可以证明PB=PE 了.解决问题:请你选择上述一种方法给予证明.问题延伸:如图3,移动三角板,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交DC的延长线于点E,PB=PE还成立吗?若成立,请证明;若不成立,请说明理由.【答案】解决问题:证明见解析;问题延伸:成立,证明见解析.【解析】试题分析:对于图1,根据正方形的性质得∠BCD=90°,AC平分∠BCD,而PM⊥BC,PN⊥CD,则四边PMCN为矩形,根据角平分线性质得PM=PN,根据四边形内角和得到∠PBC+∠CEP=180°,再利用等角的补角相等得到∠PBM=∠PEN,然后根据“AAS”证明△PBM≌△PEN,则PB=PE;对于图2,连结PD,根据正方形的性质得CB=CD,CA平分∠BCD,根据角平分线的性质得∠BCP=∠DCP,再根据“SAS”证明△CBP≌△CDP,则PB=PD,∠CBP=∠CDP,根据四边形内角和得到∠PBC+∠CEP=180°,再利用等角的补角相等得到∠PBC=∠PED,则∠PED=∠PDE,所以PD=PE,于是得到PB=PD;对于图3,过点P作PM⊥BC,PN⊥CD,垂足分别为M,N,根据正方形的性质得∠BCD=90°,AC平分∠BCD,而PM⊥BC,PN⊥CD,得到四边PMCN为矩形,PM=PN,则∠MPN=90°,利用等角的余角相等得到∠BPM=∠EPN,然后根据“AAS”证明△PBM≌△PEN,所以PB=PE.∵∠BPE=90°,∠BCD=90°,∴∠PBC+∠CEP=180°,而∠CEP+∠PEN=180°,∴∠PBM=∠PEN,在△PBM和△PEN中{PMB PNE PBM PENPM PN∠=∠∠=∠=∴△PBM≌△PEN(AAS),∴PB=PE;如图2,连结PD,∵四边形ABCD为正方形,∴CB=CD,CA平分∠BCD,∴∠BCP=∠DCP,在△CBP和△CDP中{CB CD BCP DCP CP CP=∠=∠=,∴△CBP≌△CDP(SAS),∴PB=PD,∠CBP=∠CDP,∵∠BPE=90°,∠BCD=90°,∴∠PBC+∠CEP=180°,而∠CEP+∠PEN=180°,∴∠PBC=∠PED,∴∠PED=∠PDE,∴PD=PE,∴PB=PD;如图3,PB=PE还成立.理由如下:过点P作PM⊥BC,PN⊥CD,垂足分别为M,N,∵四边形ABCD为正方形,∴∠BCD=90°,AC平分∠BCD,∵PM⊥BC,PN⊥CD,∴四边PMCN为矩形,PM=PN,∴∠MPN=90°,∵∠BPE=90°,∠BCD=90°,∴∠BPM+∠MPE=90°,而∠MEP+∠EPN=90°,∴∠BPM=∠EPN,在△PBM和△PEN中{PMB PNE BPM EPNPM PN∠=∠∠=∠=,∴△PBM≌△PEN(AAS),∴PB=PE.考点:四边形综合题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前
2017—2018学年第二学期期末教学质量检测试题
八年级数学(C 卷)(苏科版)
2018年6月
注意事项:
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题),满分120分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将本试卷和答题卡一并交回.
第Ⅰ卷(选择题 共30分)
一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.
1.把分式)0(≠+xy y
x x 中的分子、分母的x 、y 同时扩大2倍,那么分式的值( ) A .扩大2倍 B .缩小2倍 C .改变为原来的
41 D .不变
2的结果为( )
C. 3.函数y =x 和x y 2-
=在同一直角坐标系中的图象大致是( )
4.已知点P (x 1,﹣2)、Q (x 2,2)、R (x 3,3)三点都在反比例函数y=21a x
+的图象上,则下列关系正确的是( ).
A .x 1<x 3<x 2
B .x <1x 2<x 3
C .x 3<x 2<x 1
D .x 2<x 3<x 1
5.当x 分别取﹣2015、﹣2014、﹣2013、…、﹣2、﹣1、0、1、1
2、1
3、…、12013、1201
4、12015
时,计算分式
2
2
1
1
x
x
-
+
的值,再将所得结果相加,其和等于()
A. ﹣1
B. 1
C. 0
D. 2015
6.当≤x≤2时,函数y=-2x+b 的图象上到少有一个点在函数的图象下方,则b的取值范围为()
A. b ≥
B. b <
C. b<3
D. <b <
7.下列说法正确的是().
A. 一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001次一定掷出5点
B. 某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖
C. 天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨
D. 抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等
8.若关于x的分式方程41
2
a
x x
-
=
-
的解为正整数,且关于x的不等式组
128
2
{63
x
x
a x
-
+
-≤

有解且最多有6
个整数解,则满足条件的所有整数a的值之和是()
A. 4
B. 0
C. -1
D. -3
9.如图,菱形ABCD的边长为4,过点A、C作对角线AC的垂线,分别交CB和AD的延长线于点E、F,AE=3,则四边形AECF的周长为().
A.22 B.18 C.14 D.11
10.如图:在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD 于点F,连接DE交BF于点O,有下列结论:①∠AED=∠CED;②OE=OD;③△BEH≌△HDF;④BC﹣CF=2EH;
⑤AB=FH.其中正确的结论有()
A. 5个
B. 4个
C. 3个
D. 2个
第Ⅱ卷(非选择题共90分)
注意事项:1.第Ⅱ卷分填空题和解答题.
2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在规定的区域内.
二、填空题(本大题共8小题,每小题3分,共24分)
11.若x<0的结果是.
12.在一个不透明的口袋中装有若干个质地相同而颜色可能不全相同的球,如果口袋中装有3个黄球,且
摸出黄球的概率为1
3
,那么袋中共有个球.
13.已知,则的值是_____________.
14.对于任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,.现对72进行如下操作:72
]=8 ]=2 ]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是________.
15.在四边形ABCD中,对角线AC⊥BD且AC=6、BD=8,E、F分别是边AB、CD的中点,则EF= .
16.如图.两双曲线y=k
x
与y=﹣
6
x
分别位于第一、第四象限,A是y轴上任意一点,B是y=﹣
6
x
上的点,
C是y=k
x
上的点,线段BC⊥x轴于点D,且3BD=2CD,则△ABC的面积为.
17.如图,正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示的方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线b kx y += (k >0)和x 轴上,已知点B 1(1,1),B 2(3,2),则B n 的坐标是 .
18.如图,在正方形纸片ABCD 中,对角线AC ,BD 交于点O ,折叠正方形纸片 ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,折痕DE 分别交AB , AC 于点E ,G ,若AB =2,则AG 的长为______.
三、解答题(本大题共10小题,共66分)
19.(1)计算; (2)解方程: 31144x x x
-+=--.
20.先化简2111122
a a a a ⎛⎫-÷
⎪-+-⎝⎭,然后从1、﹣1中选取一个你认为合适的数作为a 的值代入求值. 21.已知如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,DE∥AC,AE∥BD.
(Ⅰ)求证:四边形AODE 是矩形;
(Ⅱ)若AB=6,∠BCD=120°,求四边形AODE 的面积.
22.如图,点B(3,3)在双曲线y=k
x
(x>0)上,点D在双曲线y=﹣
4
x
(x<0)上,点A和点C分别在
x轴、y轴的正半轴上,且点A、B、C构成的四边形为正方形.
(1)求k的值;
(2)求点A的坐标.
23.在一个布口袋里装着白、红、黑三种颜色的小球,它们除颜色之外没有任何其它区别,其中有白球3只、红球2只、黑球1只.袋中的球已经搅匀.
(1)闭上眼睛随机地从袋中取出1只球,求取出的球是黑球的概率;
(2)若取出的第1只球是红球,将它放在桌上,闭上眼睛从袋中余下的球中再随机地取出1只球,这时取出的球还是红球的概率是多少?
(3)若取出一只球,将它放回袋中,闭上眼睛从袋中再随机地取出1只球,两次取出的球都是白球概率是多少?(用列表法或树状图法计算)
24.全国两会民生话题成为社会焦点.合肥市记者为了了解百姓“两会民生话题”的聚焦点,随机调查了合肥市部分市民,并对调查结果进行整理.绘制了如图所示的不完整的统计图表.
请根据图表中提供的信息解答下列问题:
(1)填空:m= ,n= .扇形统计图中E组所占的百分比为 %;
(2)合肥市人口现有750万人,请你估计其中关注D组话题的市民人数;
(3)若在这次接受调查的市民中,随机抽查一人,则此人关注C组话题的概率是多少?
25.宜兴紧靠太湖,所产百合有“太湖人参”之美誉,今年百合上市后,甲、乙两超市分别用12000元以相同的进价购进质量相同的百合,甲超市销售方案是:将百合按分类包装销售,其中挑出优质的百合400千克,以进价的2倍价格销售,剩下的百合以高于进价10%销售.乙超市的销售方案是:不将百合分类,直接包装销售,价格按甲超市分类销售的两种百合售价的平均数定价.若两超市将百合全部售完,其中甲超市获利8400元(其它成本不计).问:
(1)百合进价为每千克多少元?
(2)乙超市获利多少元?并比较哪种销售方式更合算.
26.如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.
(1)求证:BE=DF
(2)连接AC交EF于点D,延长OC至点M,使OM=OA,连结EM、FM,试证明四边形AEMF是菱形.
27.已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F,点O为AC的中点.
(1)当点P与点O重合时如图1,易证OE=OF(不需证明)
(2)直线BP绕点B逆时针方向旋转,当∠OFE=30°时,如图2、图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.
28.(10分)如图,已知直线y=2x分别与双曲线y=8
x
,y=
k
x
(x>0)交于P、Q两点,且OP=2OQ,点A是
双曲线y=8
x
上的动点,过A作AB∥x轴,AC∥y轴,分别交双曲线y=
k
x
(x>0)于点B、C.连接BC.
(1)求k的值;
(2)随着点A的运动,△ABC的面积是否发生变化?若不变,求出△ABC的面积,若改变,请说明理由.(3)直线y=2x上是否存在点D,使得点A、B、C、D为顶点的四边平行四边形?若能,求出相应点A的坐标;若不能,请说明理由.。

相关文档
最新文档