分式方程及其应用(二)
2021年九年级数学中考复习——方程专题:分式方程实际应用(二)
2021年九年级数学中考复习——方程专题:分式方程实际应用(二)1.在数学课上,老师出了这样一道题:甲、乙两地相距1200千米,乘高铁列车从甲地到乙地比乘特快列车少用8小时,已知高铁列车的平均行驶速度是特快列车的3倍,求特快列车从甲地到乙地的时间.2.今年6月25日是我国的传统节日端午节,人们素有吃粽子的习俗.某商场在端午节来临之际用3000元购进A,B两种粽子1100个,购买A种粽子与购买B种粽子的费用相同.已知A种粽子的单价是B种粽子单价的1.2倍.求A,B两种粽子的单价各是多少?3.某市为治理污水,需要铺设一段全长3000米的污水输送管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天的工作量比原计划增加25%,结果提前10天完成了任务,实际每天铺设多长管道?4.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前了30天完成了这一任务.(1)用含x的代数式填表(结果不需要化简)工作效率(万平方米/天)工作时间(天)总任务量(万平方米)原计划x60实际60(2)求(1)的表格中的x的值.5.某商场准备购进甲、乙两种商品进行销售,若每个甲商品的进价比每个乙商品的进价少2元,且用80元购进甲商品的数量与用100元购进乙商品的数量相同.(1)求每个甲、乙两种商品的进价分别是多少元?(2)若该商场购进甲商品的数量比乙商品的数量的3倍还少5个,且购进甲、乙两种商品的总数量不超过95个,则商场最多购进乙商品多少个?(3)在(2)的条件下,如果甲、乙两种商品的售价分别是12元/个和15元/个,且将购进的甲、乙两种商品全部售出后,可使销售两种商品的总利润超过380元,那么该商场购进甲、乙两种商品有哪几种方案?6.为了防控新冠病毒肺炎,某校积极进行校园环境消毒,第一次购买甲、乙两种消毒液分别用了240元和540元,每瓶乙种消毒液的价格是每瓶甲种消毒液价格的倍,购买的乙种消毒液比甲种消毒液多20瓶.(1)求甲、乙两种消毒液每瓶多少元?(2)该校准备再次购买这两种消毒液,使再次购买的乙种消毒液瓶数是甲种消毒液瓶数的一半,且再次购买的费用不多于1050元,求甲种消毒液最多能再购买多少瓶?7.甲、乙两地相距60km,A骑自行车从甲地到乙地,出发2小时40分钟后,B骑摩托车也从甲地去乙地.已知B的速度是A的速度的3倍,结果两人同时到达乙地.求A,B两人的速度.8.甲、乙两支工程队修建二级公路,已知甲队每天修路的长度是乙队的2倍,如果两队各自修建公路500m,甲队比乙队少用5天.(1)求甲,乙两支工程队每天各修路多少米?(2)我市计划修建长度为3600m的二级公路,因工程需要,须由甲、乙两支工程队来完成.若甲队每天所需费用为1.2万元,乙队每天所需费用为0.5万元,求在总费用不超过40万元的情况下,至少安排乙队施工多少天?9.大浮杨梅是我市特色水果,古称“吴越佳果”.某水果店第一次用540元购进一批大浮杨梅,由于销售状况良好,该店又用1710元购进一批大浮杨梅,所购数量是第一次购进数量的3倍,但进货价每千克多了1元.(1)第一次所购大浮杨梅的进货价是每千克多少元?(2)该店以每千克30元销售这些大浮杨梅,在销售中,第一次购进的大浮杨梅有10%的损耗,第二次购进的大浮杨梅有15%的损耗.问:该水果店售完这两批杨梅共可获利多少元?10.疫情期间,某商场购进甲,乙两种消毒液,甲种消毒液用了1000元,乙种消毒液用了1200元,已知乙种消毒液每件进价比甲种消毒液每件进价多5元,且购进的甲、乙两种消毒液件数相同.(1)求甲、乙两种消毒液每件的进价;(2)该商场将购进的甲、乙两种消毒液进行销售,甲种消毒液的销售单价为50元,乙种消毒液的销售价为60元.销售过程中发现甲种消毒液销量不好,商场决定:甲种消毒液在销售一定数量后按原销售单价的七折销售;乙种消毒液销售单价保持不变.要使两种消毒液全部售完后获利不少于1900元,问甲种消毒液按原销售单价至少销售多少件?参考答案1.解法1:解:设高铁列车从甲地到乙地的时间为yh,则特快列车从甲地到乙地的时间为(y+8)h,根据题意得,解这个方程得y=4.经检验,y=4是原分式方程的根,则y+8=12.答:特快列车从甲地到乙地的时间为12h.解法2:解:设特快列车的平均速度为x km/h,则高铁列车的平均速度为3x km/h,根据题意得,解这个方程得x=100.经检验,x=100是原分式方程的根,则.答:特快列车从甲地到乙地的时间为12h.2.解:设B种粽子单价为x元/个,则A种粽子单价为1.2x元/个,根据题意,得:+=1100,解得:x=2.5,经检验,x=2.5是原方程的解,且符合题意,∴1.2x=3.答:A种粽子单价为3元/个,B种粽子单价为2.5元/个.3.解:设原计划每天铺设x米,依题意得:﹣=10,解得:x=60米,经检验x=60是原方程式的根,实际每天铺设1.25x=1.25×60=75(米).答:实际每天铺设75米长管道.4.解:(1)设原计划每天绿化x万平方米,则实际每天绿化(1+25%)x万平方米,原计划需要天完成任务,实际天完成任务.故答案为:(1+25%)x;;.(2)依题意,得:﹣=30,解得:x=,经检验,x=是原方程的解,且符合题意.答:(1)的表格中的x的值为.5.解:(1)设每件乙种商品的进价为x元,则每件甲种商品的进价为(x﹣2)元,根据题意,得=,解得:x=10,经检验,x=10是原方程的根,每件甲种商品的进价为:10﹣2=8.答:每件甲种商品的进价为8元,每件乙种商品件的进价为10元.(2)设购进乙种商品y个,则购进甲种商品(3y﹣5)个.由题意得:3y﹣5+y≤95.解得y≤25.答:商场最多购进乙商品25个;(3)由(2)知,(12﹣8)(3y﹣5)+(15﹣10)y>380,解得:y>23.∵y为整数,y≤25,∴y=24或25.∴共有2种方案.方案一:购进甲种商品67个,乙商品件24个;方案二:购进甲种商品70个,乙种商品25个.6.解:(1)设甲种消毒液每瓶x元,乙种消毒液每瓶x元,根据题意得,=﹣20,解得:x=6,经检验:x=6是原方程的解,×6=9,答:甲种消毒液每瓶6元,乙种消毒液每瓶9元;(2)设甲种消毒液再购买m瓶,根据题意得,6m+9×m≤1050,解答:m≤100,答:甲种消毒液最多能再购买100瓶.7.解:设A的速度为xkm/h,则B的速度为3xkm/h,依题意,得:﹣=2,解得:x=15,经检验,x=15是原方程的解,且符合题意,∴3x=45.答:A的速度为15km/h,B的速度为45km/h.8.解:(1)设乙工程队每天修路x米,则甲工程队每天修路2x米,依题意,得:﹣=5,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴2x=100.答:甲工程队每天修路100米,乙工程队每天修路50米.(2)设安排乙工程队施工m天,则安排甲工程队施工=(36﹣0.5m)天,依题意,得:0.5m+1.2(36﹣0.5m)≤40,解得:m≥32.答:至少安排乙工程队施工32天.9.解:(1)设第一次所购大浮杨梅的进货价是每千克x元,由题意得:×3=,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,答:第一次所购大浮杨梅的进货价是每千克18元;(2)540÷18=30,30×3=90,30×(30×90%+90×85%)﹣540﹣1710=855(元),答:该水果店售完这两批杨梅共可获利855元.10.解:(1)设甲种消毒液每件的进价为x元,则乙种消毒液每件的进价为(x+5)元,依题意,得:=,解得:x=25,经检验,x=25是原方程的解,且符合题意,∴x+5=30.答:甲种消毒液每件的进价为25元,乙种消毒液每件的进价为30元.(2)甲种消毒液购进的数量为1000÷25=40(件),则乙种消毒液购进的数量也为40件.设甲种消毒液按原销售单价销售了m件,依题意,得:(50﹣25)m+(50×0.7﹣25)(40﹣m)+(60﹣30)×40≥1900,解得:m≥20.答:甲种消毒液按原销售单价至少销售20件.。
分式方程的解法与应用
分式方程的解法与应用分式方程是指含有分数形式的方程,其中包含了分数的加减乘除运算。
解决分式方程需要运用一些特定的解法和技巧,以及理解分式方程在实际生活中的应用。
本文将介绍分式方程的解法和应用,并讨论其在数学和日常生活中的重要性。
一、分式方程的解法分式方程的解法有多种方法,以下是其中常见的几种:1. 清除分母法:当分式方程中存在分母时,可以通过乘以适当的整数或者多项式的方法,将方程的分母消除,从而转化为含有整数或多项式的方程。
通过进行这样的清除分母操作,可以简化方程的求解过程。
2. 相同分母法:当分式方程中存在多个分式且分母相同的情况时,可以通过将这些分式相加或相减,生成一个分子相加或相减的新分式,从而将分式方程转化为一个更简单的方程。
然后,可以继续使用其他解方程的方法求解。
3. 倒数法:当分式方程的分子或分母中含有复杂的表达式时,可以通过倒数的方式,将方程进行转化。
将方程的分母转化为分子,分子转化为分母,然后利用等式的性质进行化简,最后得到一个更为简单的方程。
二、分式方程的应用分式方程在实际生活中有着广泛的应用。
以下是一些常见的应用场景:1. 比例问题:比例问题是分式方程的常见应用之一。
在计算比例时,常常需要解决分式方程。
例如,在商业领域中,计算销售增长率、成本与利润的关系等问题,都需要运用分式方程进行计算。
2. 涉及面积和体积的问题:分式方程在计算面积和体积相关问题时也很有用。
例如,计算不规则形状的面积、计算容器中液体的体积等都可能涉及到分式方程的应用。
3. 财务问题:在处理财务问题时,分式方程同样发挥着重要的作用。
例如,在计算股票交易、利息计算以及贷款还款等问题时,常常需要解决分式方程来进行计算。
总结:分式方程是一种特殊的方程类型,运用特定的解法和技巧可以解决。
掌握分式方程的解法不仅在数学学科中重要,也在实际生活中具有广泛的应用。
通过应用不同的解法,我们能够更好地理解和解决涉及分数运算的各类问题,提高解决实际问题的能力。
2021年九年级数学中考复习——方程专题:分式方程实际应用(二)
2021年九年级数学中考复习——方程专题:分式方程实际应用(二)1.两个小组同时开始登一座450m高的山,第一组的速度是第二组的1.2倍,他们比第二组早15min到达顶峰.两个小组的速度各是多少?如果山高为hm,第一组的攀登速度是第二组的a倍,并比第二组早tmin达到顶峰,则两组的攀登速度各是多少?2.一台收割机的工作效率相当于一个农民工作效率的150倍,用这台机器收割10公顷小麦比100个农民人工收割这些小麦要少用1小时.这台收割机每小时收割多少公顷小麦?3.某服装店用960元购进一批服装,并以每件46元的价格全部售完,由于服装畅销,服装店又用2220元,再次以比第一次进价多5元的价格购进服装,数量是第一次购进服装的2倍,仍以每件46元的价格出售,卖了部分后,为了加快资金周转,服装店将剩余的20件以售价的九折全部出售.问:(1)该服装店第一次购买了此种服装多少件?(2)两次出售服装共盈利多少元?4.宜鲜水果店某种纽荷尔1月份的销售总额为600元,2月份与1月份相比,销量不变,但每斤的售价比1月份减少4元,因此销售总额比1月份减少了40%.(1)求2月份这种纽荷尔每斤的售价;(2)2月价该店计划新进一批这种纽荷尔和沃柑共45斤,已知纽荷尔进货价格是每斤3元;沃柑进货价格是每斤7元,销售价格是每斤20元.要求沃柑进货数量不超过纽荷尔数量的两倍,应如何进货才能使这批水果获得最大利润,并求出最大利润.5.越野自行车是中学生喜爱的交通工具,市场巨大,竞争也激烈.某品牌经销商经营的A 型车去年销售总额为5万元,今年每辆售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)设今年A型车每辆销售价为x元,求x的值.(2)该品牌经销商计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,请问应如何安排两种型号车的进货数量,才能使这批售出后获利最多?A、B两种型号车今年的进货和销售价格表A型车B型车进货价1100元/辆1400元/辆销售价x元/辆2000元/辆6.某汽车销售公司销售某品牌A款汽车,随着汽车的普及,其价格也不断下降,今年12月份比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年12月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万且不少于100万元的资金购进这两款汽车共15辆,有几种进货方案?哪种方案更省钱?7.“一带一路”的战略构想为国内许多企业的发展带来了新的机遇,其中华为企业凭信自身实力在国际上得到快速发展,华为手机也越来越受到国际消费者的喜爱:重庆某手机专卖店经销华为P10和Mate30两款手机,两款手机售价如表:售价型号去年国庆假期售价(元/部)今年元旦假期售价(元/部)华为P3043003800华为Mate3050004500假设两款手机的进价始终保持不变.若今年元旦假期和去年国庆假期卖出的华为P30手机数量相同,且去年国庆假期利润为4.5万元,今年元旦假期利润为2.25万元.(1)求每部华为P30手机进价为多少元?(2)若每台Mate30的进价比P30的进价多400元,专卖店考虑到即将到来的今年1月24号大年初一“春节假期活动”,预计用不少于32万元且不多于32.1万元的资金购进这两款手机共90部,请问有哪几种进货方案?(3)“重外少年,爱心少年”.重外学生积极为偏远地区的孩子募集资金购买保暖冬装,得到该手机专卖店的大力支持,他们决定,每卖出一部P30捐出50元,每卖出一部Mate30捐出80元,在(2)向的前提下,当专卖店销售完这90部手机后,他们最多能为孩子们捐出多少资金?8.A、B两种新型智能仓储机器人都被用来搬运货箱,A型机器人比B型机器人每次多搬运3箱,A型机器人搬运300箱所用次数与B型机器人搬运240箱所用次数相同,两种机器人每次分别搬运多少货箱?9.随着《广州市深化生活垃圾分类处理三年行动计划(2019﹣2021)》的正式印发,广州市全面开启城乡生活垃圾分类全覆盖.为推进垃圾分类行动,某工厂购进甲、乙两种型号智能机器人用来进行垃圾分类,用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两种型号机器人的单价和为140万元,求甲、乙两种型号机器人每台各多少万元?10.斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度,如图,某路口的斑马线路段A﹣B﹣C横穿双向行驶车道,其中AB=BC=15米,在绿灯亮时,小明共用11秒通过AC.其中通过BC段的速度是通过AB段速度的1.2倍,求小明通过AB段时的速度.参考答案1.解:设第二组的速度为xm/min,则第一组的速度是1.2xm/min,由题意得﹣=15,解得:x=5,经检验:x=5是原分式方程的解,且符合题意,则1.2x=6.答:第一组的攀登速度6m/min,第二组的攀登速度5m/min.设第二组的速度为ym/min,则第一组的速度是aym/min,由题意得﹣=t,解得:y=,经检验:y=是原分式方程的解,且符合题意,则ay=.答:第一组的攀登速度是m/min,第二组的攀登速度m/min.2.解:设一个农民每小时收割小麦x公顷,则一台收割机每小时收割150x公顷,由题意,得+1,解得:x=,经检验,x=是原方程的根.∴收割机每小时收割小麦:=5公顷,答:这台收割机每小时收割5公顷小麦.3.解:(1)设第一次购买了此种服装x件,那么第二次购进2x件,依题意得,解之得x=30,经检验x=30是方程的解,答:第一次购买了此种服装30件;(2)∵第一次购买了此种服装30件,盈利46×30﹣960=420元;∴第二次购买了此种服装60件,46×(60﹣20)+46×0.9×20﹣2220=448元;∴两次出售服装共盈利420+448=868元.4.解:(1)设2月份这种纽荷尔每斤的售价为x元,则1月份这种纽荷尔每斤的售价为(x+4)元,由题意得:=,解得:x=6,答:2月份这种纽荷尔每斤的售价为6元;(2)设纽荷尔进货数量为a斤,总利润为w元,则w=(6﹣3)a+(20﹣7)(45﹣a)=﹣10a+585,由题意得:45﹣a≤2a,解得:a≥15,∵w=﹣10a+585,﹣10<0,∴w随a的增大而减小,∴a=15时,w=﹣10×15+585=435(元),最大则45﹣a=30,即纽荷尔进货15斤,沃柑进货30斤,才能使这批水果获得最大利润,最大利润为435元.5.解:(1)由题意得:=,解得:x=1600,经检验,x=1600是方程的解,∴x=1600;(2)设经销商新进A型车a辆,则B型车为(60﹣a)辆,获利y元.由题意得:y=(1600﹣1100)a+(2000﹣1400)(60﹣a),即y=﹣100a+36000,∵B型车的进货数量不超过A型车数量的2倍,∴60﹣a≤2a,∴a≥20,由y与a的关系式可知,﹣100<0,y的值随a的值增大而减小.∴a=20时,y的值最大,∴60﹣a=60﹣20=40(辆),∴当经销商新进A型车20辆,B型车40辆时,这批车获利最多.6.解:(1)设今年12月份A款汽车每辆售价m万元,则去年同期A款汽车每辆售价(m+1)万元,由题意得:=,解得:m=9,答:今年12月份A款汽车每辆售价9万元;(2)设购进A款汽车x辆,则购进B款汽车(15﹣x)辆,由题意得:100≤7.5x+6(15﹣x)≤105,解得:≤x≤10,∵x的正整数解为:7,8,9,10,∴共有4种进货方案:方案一,购进A款汽车7辆、B款汽车8辆,资金为:7.5×7+6×8=100.5(万元);方案二,购进A款汽车8辆、B款汽车7辆,资金为:7.5×8+6×7=102(万元);方案三,购进A款汽车9辆、B款汽车6辆,资金为:7.5×9+6×6=103.5(万元);方案四,购进A款汽车10辆、B款汽车5辆,资金为:7.5×10+6×5=105(万元);∴购进A款汽车7辆、B款汽车8辆的方案更省钱.7.解:(1)设每部华为P30手机进价为x元,依题意得:=,解得:x=3300,经检验,x=3300是原方程的解,且符合题意.答:每部华为P30手机进价为3300元.(2)每台Mate30手机的进价为3300+400=3700(元).设购进华为P30手机m部,则购进Mate30手机(90﹣m)部,依题意得:,解得:30≤m≤32,又∵m为正整数,∴m可以为30,31,32,∴共有3种进货方案,方案1:购进30部华为P30手机,60部Mate30手机;方案2:购进31部华为P30手机,59部Mate30手机;方案3:购进32部华为P30手机,58部Mate30手机.(3)设捐出的资金为w元,则w=50m+80(90﹣m)=﹣30m+7200,∵﹣30<0,∴w随m的增大而减小,∴当m=30时,w取得最大值,最大值=﹣30×30+7200=6300(元).答:当专卖店销售完这90部手机后,他们最多能为孩子们捐出6300元资金.8.解:设B型机器人每小时搬运x货箱,则A型机器人每小时搬运(x+3)货箱,根据题意得:=,解得:x=12,经检验,x=12是分式方程的解,∴x+3=15.答:B型机器人每小时搬运12货箱,A型机器人每小时搬运15货箱.9.解:设甲型机器人每台x万元,则乙型机器人每台(140﹣x)万元,根据题意得:=,解得:x=60,经检验,x=60是原方程的解,且符合题意,则140﹣x=80,答:甲型机器人每台60万元,乙型机器人每台80万元.10.解:设通过AB段的速度是xm/s,则通过BC段的速度是1.2xm/s,由题意得:,解得:x=2.5,经检验:x=2.5是原方程的解,且符合题意,答:通过AB时的速度是2.5m/s.。
第5章 《分式与分式方程》 实际应用专项(二) 2020—2021学年北师大版数学八年级下期末备考
八年级下册期末备考:《分式与分式方程》实际应用专项(二)1.有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超过79000元,则两工程队最多可以合作施工多少天?2.在我市雨污分流工程中,甲、乙两个工程队共同承担茅洲河某段720米河道的清淤任务,已知甲队每天能完成的长度是乙队每天能完成长度的2倍,且甲工程队清理300米河道所用的时间比乙工程队清理200米河道所用的时间少5天.(1)甲、乙两工程队每天各能完成多少米的清淤任务;(2)若甲队每天清淤费用为2万元,乙队每天清淤费用为0.8万元,要使这次清淤的总费用不超过60万元,则至少应安排乙工程队清淤多少天?3.在抗击新冠肺炎疫情期间,市场上防护口罩出现热销.某药店用3000元购进甲,乙两种不同型号的口罩共1100个进行销售,已知购进甲种口罩与乙种口罩的费用相同,购进甲种口罩单价是乙种口罩单价的1.2倍.(1)求购进的甲,乙两种口罩的单价各是多少?(2)若甲,乙两种口罩的进价不变,该药店计划用不超过7000元的资金再次购进甲,乙两种口罩共2600个,求甲种口罩最多能购进多少个?4.城镇老旧小区改造是重大民生工程和发展工程;安定区积极响应党的号召,全面推进城区老旧小区改造工作.现计划对城区某小区的居民自来水管道进行改造;该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为3500元,乙队每天的施工费用为2500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成.则该工程施工费用是多少?5.列方程解应用题:初二(1)班组织同学乘大巴车前往爱国教育基地开展活动,基地离学校有60公里,队伍12:00从学校出发,张老师因有事情,12:15从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地,问:(1)大巴与小车的平均速度各是多少?(2)张老师追上大巴的地点到基地的路程有多远?6.我市计划对城区居民供暖管道进行改造,该工程若由甲队单独施工,则恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的1.5倍,如果由甲乙两队先合作15天,那么余下的工程由甲队单独完成还需要5天.(1)这项工程的规定天数是多少天?(2)已知甲队每天的施工费用是6500元,乙队每天的施工费用是3500元.为了缩短工期,工程指挥部最终决定该工程由甲、乙两队合作,则该工程的施工费用是多少?7.2020年初,一场突如其来的新型冠状病毒肺炎疫情,打破了我们宁静的生活,为了预防新型冠状病毒肺炎,人们已经习惯出门戴口罩.某口罩生产企业在若干天内加工120万个口罩(每天生产数量相同),在实际生产时,由于提高了生产技术水平,每天加工的个数是原来的1.5倍,从而提前2天完成任务,问该企业原计划每天生产多少万个口罩?8.“你怎么样,中国便是怎么样;你若光明,中国便不黑暗”.2019年,一场新冠肺炎疫情牵扯着人们的心灵,各界人士齐心协力,众志成城.针对资源急需问题,某医疗设备公司紧急复工,但受疫情影响,医用防护服生产车间仍有7人不能到厂生产.为了应对疫情,已复产的工人加班生产,由原来每天工作8小时增加到10小时,每小时完成的工作量不变.原来每天能生产防护服800套,现在每天能生产防护服650套.(1)求原来生产防护服的工人有多少人?(2)复工10天后,未到的工人同时到岗加入生产,每天生产时间仍然为10小时.公司决定将复工后生产的防护服14500套捐献给某地,则至少还需要生产多少天才能完成任务?9.甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.10.某商店计划今年的圣诞节购进A、B两种纪念品若干件.若花费480元购进的A种纪念品的数量是花费480元购进B种纪念品的数量的,已知每件A种纪念品比每件B种纪念品多4元.(1)求购买一件A种纪念品、一件B种纪念品各需多少元?(2)若商店一次性购买A、B纪念品共200件,要使总费用不超过3000元,最少要购买多少件B种纪念品?11.某商店第一次用600元购进一款中性笔若干支,第二次又用750元购进该款中性笔,但这次每支中性笔的进价比第一次多1元,所购进的中性笔数量与第一次相同.(1)求第一次每支中性笔的进价是多少元?(2)若要求这两次购进的中性笔按同一价格全部销售完毕后获利不低于450元,求每支中性笔售价至少是多少元?12.某中学九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.13.甲乙两名工人各承包了一段500米的道路施工工程,已知甲每天可完成的工程比乙多5米.两人同时开始施工,当乙还有100米没有完成时,甲已经完成全部工程.(1)求甲、乙每天各可完成多少米道路施工工程?(2)后来两人又承包了新的道路施工工程,施工速度均不变,乙承包了500米,甲比乙多承包了100米,乙想:这次我们一定能同时完工了!请通过计算说明乙的想法正确吗?若正确,求出两人的施工时间;若不正确,则应该如何调整其中一人的施工速度才能使两人同时完工,请通过计算给出调整方案.14.A、B两地相距18千米,甲工程队要在A、B两地间铺设一条输送天然气的管道,乙工程队要在A、B两地间铺设一条输油管道,已知甲工程队每天比乙工程队少铺设1千米.(1)若两队同时开工,甲工程队每天铺设3千米,求乙工程队比甲工程队提前几天完成?(2)若甲工程队提前3天开工,结果两队同时完成任务,求甲、乙两队每天各铺设管道多少千米?15.为了加强疫情防控,某学校购进了部分N95口罩和一次性医用口罩,已知购买N95口罩共花费2000元,购买一次性医用口罩共花费1000元,购买一次性医用口罩数量是购买N95口罩数量的2.5倍,且购买一个N95口罩比购买一个一次性医用口罩多花4元.(1)求购买一个N95口罩、一个一次性医用口罩各需多少元?(2)该单位决定再次购买N95口罩和一次性医用口罩共3000个,恰逢该商场对两种口罩的售价进行调整,N95口罩售价比第一次购买时降低了20%,一次性医用口罩售价比第一次购买时降低了50%,如果此次购买N95口罩和一次性医用口罩的总费用不超过3250元,那么该单位至少可购买多少个一次性医所口罩?参考答案1.解:(1)设乙工程队每天完成x米,则甲工程队每天完成2x米,依题意,得:﹣=10,解得:x=300,经检验,x=300是原方程的解,且符合题意,∴2x=600.答:甲工程队每天完成600米,乙工程队每天完成300米.(2)设甲队先单独工作y天,则甲乙两工程队还需合作=(﹣y)天,依题意,得:7000(y+﹣y)+5000(﹣y)≤79000,解得:y≥1,∴﹣y≤﹣=6.答:两工程队最多可以合作施工6天.2.解:(1)设乙工程队每天能完成x米的清淤任务,则甲工程队每天能完成2x米的清淤任务,依题意,得:﹣=5,解得:x=10,经检验,x=10是原方程的解,且符合题意,∴2x=20.答:甲工程队每天能完成20米的清淤任务,乙工程队每天能完成10米的清淤任务.(2)设应安排乙工程队清淤m天,则安排甲工程队清淤天,依题意,得:0.8m+2×≤60,解得:m≥60.答:至少应安排乙工程队清淤60天.3.解:(1)3000÷2=1500(元).设乙种口罩的单价为x元,则甲种口罩的单价为1.2x元,依题意,得:,解得:x=2.5,经检验,x=2.5是原方程的解,且符合题意,∴1.2x=3.答:甲种口罩的单价为3元,乙种口罩的单价为2.5元.(2)设该药店购进甲种口罩a只,则购进乙种口罩(2600﹣a)只,依题意,得:3a+2.5(2600﹣a)≤7000,解得:a≤1000.答:甲种口罩最多购进1000只.4.解:(1)设该项工程的规定时间是x天,由题意得:,解得:x=30.经检验x=30是原分式方程的解.答:该项工程的规定时间是30天.(2)甲、乙队合做完成所需的天数为:.则该工程施工费用是:18×(3500+2500)=108000(元).答:该工程施工费用为108000元.5.解:(1)设大巴的平均速度是x公里/小时,则小车的平均速度是1.5x公里/小时,根据题意得:=++,解得:x=40,经检验:x=40是原方程的解,1.5x=1.5×40=60.答:大巴的平均速度是40公里/小时,小车的平均速度是60公里/小时;(2)设张老师追上大巴的地点到基地的路程有y公里,根据题意得:+=,解得:y=30,答:张老师追上大巴的地点到基地的路程有30公里.6.解:(1)设这项工程规定x天完成,15+5=20(天),根据题意得:,解得:x=30,经检验:x=30是原方程的解,且符合题意,答:这项工程规定30天完成.(2)总施工费用:(元),答:该工程的施工费用是180000元.7.解:设该企业原计划每天生产x万个口罩,则在实际生产时每天生产1.5x万个口罩,由题意得:﹣=2,解得:x=20,经检验:x=20是原分式方程的解,且符合题意,答:该企业原计划每天生产20万个口罩.8.解:(1)设原来生产防护服的工人有x人,由题意得,=,解得:x=20.经检验,x=20是原方程的解.答:原来生产防护服的工人有20人;(2)设还需要生产y天才能完成任务.=5(套),即每人每小时生产5套防护服.由题意得,10×650+20×5×10y≥14500,解得y≥8.答:至少还需要生产8天才能完成任务.9.解:设乙每小时做x个零件,甲每小时做(x+6)个零件,根据题意得:=,解得:x=12,经检验,x=12是原方程的解,且符合题意,答:乙每小时做12个零件.10.解:(1)设购买一件B种纪念品需x元,则购买一件A种纪念品需(x+4)元,依题意,得:=×,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴x+4=16.答:购买一件A种纪念品需16元,购买一件B种纪念品需12元.(2)设购买m件B种纪念品,则购买(200﹣m)件A种纪念品,依题意,得:16(200﹣m)+12m≤3000,解得:m≥50.答:最少要购买50件B种纪念品.11.解:(1)设第一次每支中性笔的进价是x元,则第二次每支中性笔的进价是(x+1)元,依题意得:=,解得:x=4,经检验,x=4是原方程的解且符合题意.答:第一次每支中性笔的进价是4元.(2)第一次购进中性笔的数量为600÷4=150(支),∴第二次购进中性笔150支.设每支中性笔售价为y元,依题意得:(150+150)y﹣600﹣750≥450,解得:y≥6.答:每支中性笔售价至少是6元.12.解:设骑车学生的速度为xkm/h,由题意得,﹣=,解得:x=15.经检验:x=15是原方程的解.答:骑车学生的速度为15km/h.13.解:(1)设乙每天施工x米,则甲每天施工(x+5)米,根据题意可得:解得:x=20,检验:当x=20时,x(x+5)≠0,∴x=20是原方程的解,则x+5=25(米)答:甲、乙每天各可完成25米,20米道路施工;(2)∵甲完成600米,需要天,乙完成500米,需要天,∴甲乙不能同时完工;方案一:将甲施工速度减少a千米/天,根据题意可得:解得:a=1,经检验:a=1是原方程的解,方案二:将乙施工速度增加b千米/天,根据题意可得:解得:b=,经检验:b=是原方程的解,综上所述:将甲施工速度减少1千米/天,将乙施工速度增加千米/天,14.解:(1)甲工程队完成任务所需时间为18÷3=6(天),乙工程队完成任务所需时间为18÷(3+1)=4.5(天).6﹣4.5=1.5(天).答:乙工程队比甲工程队提前1.5天完成.(2)设甲工程队每天铺设管道x千米,则乙工程队每天铺设管道(x+1)千米,依题意得:﹣=3,整理得:x2+x﹣6=0,解得:x1=﹣3,x2=2,经检验,x1=﹣3,x2=2是原方程的解,x1=﹣3不符合题意舍去,x2=2符合题意,∴x+1=3(千米).答:甲工程队每天铺设管道2千米,乙工程队每天铺设管道3千米.15.解:(1)设购买一个一次性医用口罩需x元,则购买一个N95口罩需(x+4)元.列方程:×2.5=,解得:x=1.经检验x=1是原方程的解,∴x+4=5.答:购买一个普通口罩需1元,购买一个N95口罩需5元.(2)设购买一次性医用口罩y个.则购买N95口罩(3000﹣y)个,依题意得:1×(1﹣50%)y+5×(1﹣20%)(3000﹣y)≤3250.解得:y≥2500.∴该单位至少可购买2500个一次性医所口罩.。
初中数学精品教案:分式方程的应用(2))
0507分式方程的应用(2)微设计教学目标:1.学会解等量关系较难寻找的分式方程;2.会解既有分式方程又有其他方程的综合性问题.重点:学会分析等量关系列分式方程.难点:例2的解法.教学过程:一、探索发现问题:某工地调来72人挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调配劳动力才使挖掘出来的土能及时运走,且不窝工,解决此问题,若设派X 人挖土,其它人运土,可列方程为________________.探究:1.这个问题中给出了哪些信息?等量关系是什么?2.由题意,你将列出怎样的方程?分析:根据题意,问题中的等量关系为:“安排挖土的人数:运土的人数=3:1”,可以列出方程:372=-xx . 列分式方程解应用题时,有时需要挖掘题中所隐含的等量关系才能正确地列出方程.下面,我们一起研究等量关系较难寻找的分式方程应用题,以及与其他方程相关的综合性问题.二、例题解析例1.宁波火车站北广场将于2015年底投入使用,计划在广场内种植A 、B 两种花木共6600棵,若A 花木数量是B 花木数量的2倍少600棵.(1)A 、B 两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A 花木60棵或B 花木40棵,应分别安排多少人种植A 花木和B 花木,才能确保同时完成各自的任务?分析:第(1)题中设B 种花木的数量是x 棵,则A 种花木的数量是,等量关系为“种植A 种花木+B 两种花木=6600棵”,容易列出方程;第(2)题中设安排y 人种植A 种花木,则安排)26(y -人种植B 种花木,题中隐含了等量关系“种植A 花木所用时间=种植B 花木所用时间”,根据等量关系可以列出方程求解.解答:(1)设B 种花木的数量是x 棵,则A 种花木的数量是)6002(-x 棵.由题意,得6600)602(=-+x x ,解得2400=x ,6002-x =4200.答:A 种花木的数量是4200棵,B 种花木的数量是2400棵.(2)设安排y 人种植A 种花木,则安排)26(y -人种植B 种花木.由题意,得)26(402400604200y y -=,解得14=y . 经检验,14=y 是原方程的根,且符合题意. 1226=-y .答:安排14人种植A 种花木,安排12人种植B 种花木,才能确保同时完成各自的任务.小结:列分式方程解应用题最关键的是:仔细审题,寻找题中隐含的等量关系列方程求解. 例2.某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数.(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.分析:(1)设原计划每天生产零件x 个,根据等量关系:“原计划生产24000个零件所用时间=实际生产(24000+300)个零件所用的时间”,可列方程:303002400024000++=x x . (2)设原计划安排的工人人数为y 人,根据等量关系:“(5组机器人生产流水线每天生产的零件个数+原计划每天生产的零件个数)×(规定天数-2)=零件总数24000个”,可列方程: . 解答:(1)设原计划每天生产零件x 个,由题意,得303002400024000++=x x .解得x=2400. 经检验,x=2400是原方程的根,且符合题意.∴规定的天数为24000÷2400=10(天).答:原计划每天生产零件2400个,规定的天数是10天.(2)设原计划安排的工人人数为y 人,由题意,得. 解得y=480.经检验,y=480是原方程的根,且符合题意.答:原计划安排的工人人数为480人.小结:列分式方程解应用题,最为关键的是寻找题中的等量关系,当数量关系错综复杂时,应逐步挖掘题中隐含的等量关系.练习.某服装店购进一批甲、乙两种款型时尚T 恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.24000)210(24002400%)201(205=-⨯⎥⎦⎤⎢⎣⎡+⨯+⨯⨯y 24000)210(24002400%)201(205=-⨯⎥⎦⎤⎢⎣⎡+⨯+⨯⨯y(1)甲、乙两种款型的T 恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T 恤衫商店共获利多少元?分析:(1)若设乙种款型的T 恤衫购进x 件,等量关系为“甲种款型每件的进价比乙种款型每件的进价少30元”,由此可列出方程:.6400305.17800xx =+ (2)可以先求出甲款型的利润,乙款型前面销售一半的利润,后面销售一半的亏损,再相加即可求解.解答:(1)设乙种款型的T 恤衫购进x 件,由题意,得.6400305.17800x x =+解得x=40.经检验,x=40是原方程的根,且符合题意.1.5x=60.答:甲种款型的T 恤衫购进60件,乙种款型的T 恤衫购进40件.(2),1606400=x160﹣30=130(元),130×60%×60+160×60%×(40÷2) -160×[1-(1+60%)×0.5] ×(40÷2)=4680+1920-640=5960(元)答:售完这批T 恤衫商店共获利5960元.三、感悟提升本节课我们重点研究了研究等量关系较难寻找的分式方程,以及与其他方程相关的综合性问题.列分式方程解应用题时,首先需要仔细审题,再设好未知数,列出方程,接着求出方程,最后检验作答.对于等量关系错综复杂的应用题,可以先划出反映等量关系的语句,再逐步挖掘题中隐含的等量关系,这是列出方程的关键步骤.。
第3课时 分式方程的应用(2)
方案一:请甲队单独施工完成此工程;
方案二:请乙队单独施工完成此工程;
方案三:甲、乙两队合作完成此工程.以上三种方案哪一种 Nhomakorabea用最少?
解:(2)方案一,费用为2 000×20=40 000(元);
方案二,费用为1 400×30=42 000(元);
方案三,费用为(2 000+1 400)×12=40 800(元).
A.
C.
+
=4
B.
=4
D.
+
-
+
-
+
=200
-
-
=200
3.A,B 两地相距 180 km,新修的跨海大桥开通后,在 A,B 两地间行驶的长途客车平均车速提高了 50%,
而从 A 地到 B 地的时间缩短了 1 h,若设原来的平均车速为 x km/h,则根据题意可列方程为
根据题意,得 + = .解这个方程,得 x=30.
经检验,x=30 是所列方程的根. x= ×30=20.
∴甲队单独完成此工程所需时间为 20 天,乙队单独完成此工程所需的时间为 30 天.
(2)若请甲队施工,公司每日需付费用2 000元;若请乙队施工,公司每日需付费用1 400元.在规定时
他步行到学校少用20 min,且骑电瓶车的平均速度是步行速度的5倍,李老师到家开门、取手机、启
动电瓶车等共用4 min.
(1)求李老师步行的平均速度;
解:(1)设李老师步行的平均速度为 x m/min,则他骑电瓶车的平均速度为 5x m/min.
分式方程的解法和应用
分式方程的解法和应用分式方程,又称有理方程,是指包含了分数的方程。
解决分式方程问题可以在数学中发挥很大的作用,因为它们可以用来描述实际问题,特别是在科学和工程领域中。
本文将介绍一些常见的分式方程的解法以及它们在实际应用中的应用。
一、一次分式方程的解法一次分式方程是指分式的分子和分母的次数均为1的方程。
例如,2/x + 3 = 1/2。
解决这类问题的一种常见方法是通过消去分母,使方程转化为线性方程。
在这种情况下,可以通过以下步骤来解决方程:1. 将分数转化为一个等于0的分式形式,例如将2/x转化为2/x - 1/2。
2. 通过求公倍数来消去分母,例如通过乘以2来消去分母。
3. 合并同类项并将方程转化为一元一次方程,例如2 - x = 1/2。
4. 将方程解题得到x的值,检查解的合法性。
二、二次分式方程的解法二次分式方程是指分式的分子或者分母的次数为2的方程。
例如,1/x^2 + 1/x = 2。
解决这类问题的一种常见方法是通过将方程转化为二次方程,然后使用二次方程的解决方法来求解。
在这种情况下,可以通过以下步骤来解决方程:1. 将分数转化为一个等于0的分式形式,例如将1/x^2转化为1/x^2 - 2。
2. 将方程中的分数转化为一个多项式方程,例如通过乘以x^2来消去分母。
3. 合并同类项并将方程转化为二次方程,例如x^2 - 2x + 1 = 0。
4. 使用求解二次方程的方法,例如配方法、因式分解法或者公式法,得到x的值。
5. 检查解的合法性。
三、分式方程的应用分式方程在实际应用中有广泛的用途,常见的应用包括以下几个方面:1. 比例问题:比例问题可以通过设置分式方程来解决。
例如,一个图书馆中有1000本书,其中有3/10是故事书,那么故事书的数目可以表示为(3/10)*1000=300本。
2. 涉及速度、距离和时间的问题:速度、距离和时间之间有一定的关系,可以通过设置分式方程来解决相关问题。
例如,一个人以每小时60公里的速度行驶,问他行驶1小时可以行驶多远,可以通过设置方程60/1=x/1解决。
分式方程的应用2篇
分式方程的应用分式方程的应用第一篇分式方程是以分式形式表示的方程,它在数学和实际生活中有着广泛的应用。
在本文中,我将介绍一些分式方程的常见应用,并探讨它们在实际问题中的解决方法。
一、分式方程在财务问题中的应用分式方程在财务问题中的应用非常广泛。
例如,我们可以用分式方程来计算不同投资方案的回报率。
假设我们有两个投资方案,一个是投资A,收益为x元,投资B,收益为y元。
我们可以用以下的分式方程来表示两个投资方案的回报率:$\frac{x}{A}=\frac{y}{B}$通过求解这个分式方程,我们可以找到一个平衡点,即当投资A和投资B的回报率相等时,我们可以选择哪个投资方案。
二、分式方程在科学实验中的应用分式方程也被广泛用于科学实验中。
例如,在物理实验中,我们经常使用分式方程来表达各种物理定律。
例如,弗洛伊德定律可以用以下分式方程表示:$\frac{F}{A}=\frac{P}{A}$其中,F表示物体的受力,A表示物体的面积,P表示物体受到的压力。
通过解这个分式方程,我们可以计算出物体的受力和压力之间的关系。
三、分式方程在化学计算中的应用化学计算中也广泛应用了分式方程。
例如,当我们需要计算反应物和生成物之间的化学计量比例时,我们可以利用分式方程来解决这个问题。
例如,当我们需要计算酸碱中的pH值时,可以使用以下分式方程:$\frac{[H^+]}{[OH^-]}=10^{-pH}$通过解这个分式方程,我们可以计算出酸碱溶液中氢离子浓度和氢氧根离子浓度之间的关系,从而得到溶液的pH值。
总结起来,分式方程在财务、科学实验和化学计算等领域中都有广泛的应用。
通过解分式方程,我们可以计算出各种物理、化学和经济指标之间的关系,从而帮助我们解决实际问题。
在解决分式方程时,我们可以使用各种方法,如消元法、通分法和配方法等。
通过不断学习和实践,我们可以提高解决分式方程的能力,为实际问题提供更准确、有效的解决方案。
第二篇分式方程的应用分式方程是一种以分数形式表示的方程,它在数学和实际生活中都有广泛的应用。
分式方程的解法与应用
分式方程的解法与应用分式方程是数学中的一种常见形式,它包含有分数的方程。
解决分式方程的过程需要运用一些特定的方法和技巧,同时,分式方程在实际生活中也有着广泛的应用。
本文将介绍分式方程的解法以及其在实际问题中的应用。
一、分式方程的解法解决分式方程的关键是将其转化为简单的等式,然后求解。
下面将介绍几种常用的分式方程解法。
1. 通分法当分式方程中含有多个分母时,可以使用通分法来简化方程。
首先找到方程中所有分母的最小公倍数,然后将方程两边同时乘以最小公倍数,将分母消去,得到一个简化的等式。
最后,通过移项和化简,求得方程的解。
2. 倒数法倒数法是解决分式方程中含有倒数的情况。
首先将方程中的倒数部分转化为分数形式,然后通过移项和化简,求得方程的解。
3. 分解法对于一些特殊的分式方程,可以使用分解法来解决。
例如,对于形如$\frac{1}{x}+\frac{1}{y}=1$的方程,可以将其分解为$\frac{x+y}{xy}=1$,然后通过移项和化简,求得方程的解。
二、分式方程的应用分式方程在实际生活中有着广泛的应用。
下面将介绍几个典型的应用案例。
1. 比例问题比例问题是分式方程的一种常见应用。
例如,某商品原价为$x$元,现在打折后的价格为原价的$\frac{2}{3}$,求打折后的价格。
通过建立方程$\frac{2}{3}x=x-\frac{1}{3}x$,可以求得打折后的价格为$\frac{1}{3}x$。
2. 浓度问题浓度问题也是分式方程的一种常见应用。
例如,某种饮料中含有$30\%$的果汁,现在要制作$1$升含有$20\%$果汁的饮料,需要加入多少升的纯果汁?通过建立方程$\frac{x}{1+x}=0.2$,可以求得需要加入的纯果汁的升数。
3. 财务问题财务问题中也常常涉及到分式方程的应用。
例如,某人的年收入为$x$元,他的生活开销占年收入的$\frac{1}{4}$,求他的生活开销。
通过建立方程$\frac{1}{4}x=x-\frac{3}{4}x$,可以求得他的生活开销为$\frac{3}{4}x$。
【导学案】3 分式方程的应用(2)导学案及答案
4 分式方程第3课时分式方程的应用(二)【学习目标】1.能将实际问题中的相等关系用分式方程表示,并进行方法总结.2.通过日常生活中的情境创设,经历探索分式方程应用的过程,提高学生运用方程思想解决问题的能力和思维水平.3.在活动中培养学生乐于探究、合作学习的习惯,引导学生努力寻找解决问题的方法,体会数学的应用价值.【学习策略】让学生经历从实际问题抽象、概括分式方程这一“数学化”的过程,体会分式方程的模型作用,关键是引导学生寻找问题中的等量关系,发展学生分析问题、解决问题的能力。
【学习过程】一、情境导入:1.列一元一次方程解应用题的一般步骤分哪几步?2.问题:自从上次龟兔赛跑乌龟大胜兔子以后,它就成了动物界的体育明星,可是偏偏有一只蚂蚁不服气,于是它给乌龟下了一封挑战书.比赛结束后,蚂蚁并没有取胜,已知乌龟的速度是蚂蚁的1.2倍,提前1分钟跑到终点.请你算算它们各自的速度.二.新课学习:例1. 某列车现平均速度v千米/时,用相同的时间,列车提速前行驶s千米,提速后比提速前多行驶50千米,提速前列车的平均速度为多少?例2. 轮船顺水航行40千米所用的时间与逆水航行30千米所用的时间相同,若水流的速度为3千米/时求轮船在静水中的速度?三.尝试应用:1.抗洪抢险时,需要在一定时间内筑起拦洪大坝,甲队单独做正好按期完成,而乙队由于人少,单独做则超期3个小时才能完成.现甲、乙两队合做2个小时后,甲队又有新任务,余下的由乙队单独做,刚好按期完成.求甲、乙两队单独完成全部工程各需多少小时?2.从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.3.甲、乙两人练习骑自行车,已知甲每小时比乙多走6千米,甲骑90千米所用的时间和乙骑60千米所用时间相等,求甲、乙每小时各骑多少千米?四、课堂小结列分式方程解应用题的一般步骤1).审:分析题意,找出研究对象,建立等量关系.2).设:选择恰当的未知数,注意单位.3).列:根据等量关系正确列出方程.4).解:认真仔细.5).验:有三种方法检验.6).答:不要忘记写答.五.达标测试一.选择题(共3小题)1. 农机厂职工到距工厂15千米的某地检修农机,一部分人骑自行车先走半小时后,其余人乘汽车出发,结果他们同时到达,已知汽车速度为自行车速度的3倍,若设自行车的速度为x 千米/时,则所列方程为 ( )A .2115315+=x xB .x x 1521315=-C .2115315-=x xD .2115315⨯=x x 2父子两人沿周长为a 的圆周骑自行车匀速行驶.同向行驶时父亲不时超过儿子,而反向行驶时相遇的频率增大为11倍.已知儿子的速度为v ,则父亲的速度为( )A .1.1vB .1.2vC .1.3vD .1.4v3.全民健身活动中,组委会组织了长跑队和自行车进行宣传,全程共10千米,自行车队速度是长跑队的速度的2.5倍,自行车队出发半小时后,长跑队才出发,结果长跑队比自行车车队晚到了2小时候,如果设长跑队跑步的速度为x 千米/时,那么根据题意可列方程为 ( )A.215.210210+=+x xB.5.02105.210-=-xx C.5.025.21010-=-x x D.5.025.21010+=-x x 二.填空题(共3小题)4.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务.设甲计划完成此项工作的天数是x ,则x 的值是 .5. 某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为 .6.A 、B 两地的距离是80公里,一辆公共汽车从A 地驶出3小时后,一辆小汽车也从A 地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B 地,求两车的速度.根据题意,可列方程 .三.解答题(共3小题)7.甲、乙两座城市的中心火车站A ,B 两站相距360km .一列动车与一列特快列车分别从A ,B 两站同时出发相向而行,动车的平均速度比特快列车快54km /h ,当动车到达B 站时,特快列车恰好到达距离A 站135km 处的C 站.求动车和特快列车的平均速度各是多少?8.吉首城区某中学组织学生到距学校20km 的德夯苗寨参加社会实践活动,一部分学生沿“谷韵绿道”骑自行车先走,半小时后,其余学生沿319国道乘汽车前往,结果他们同时到达(两条道路路程相同),已知汽车速度是自行车速度的2倍,求骑自行车学生的速度.9.甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l 起跑,绕过P 点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?参考答案4 分式方程第3课时尝试应用:1.解:设甲队单独完成全部工程需x 小时,则乙队单独完成全部工程需(x+3)小时,根据题意,得: 13232x 2=+-+++x x x 解得:x=6,经检验得:x =6是这个分式方程的解.x+3=9答:甲队单独完成全部工程需6小时,则乙队单独完成全部工程需9小时.2.解:(1)400×1.3=520(千米)(2)设普通列车平均速度为x 千米/时,则高铁的平均速度为2.5x 千米/时,由题意,得:35.2400520=-xx 解得:x=120,经检验得:x =120是这个分式方程的解.2.5x=300答:高铁的平均速度为300千米/时.3.甲、乙两人练习骑自行车,已知甲每小时比乙多走6千米,甲骑90千米所用的时间和乙骑60千米所用时间相等,求甲、乙每小时各骑多少千米?解:设乙每小时骑x 千米,则甲每小时骑(x+6)千米,根据题意得x606x 90=+ 解得:x=12,经检验得:x =12是这个分式方程的解.x+6=18答:乙每小时骑12千米,甲每小时骑18千米.达标测试答案:一、选择题1.C2.【解析】:选B .设父亲的速度为x ,根据题意得出:=,解得:x=1.2V .3.C二.填空题(共3小题) 4.6 解析: 根据题意,得到甲、乙的工效都是 1x.根据结果提前两天完成任务,知:整个过程中,甲做了(x-2) 天,乙做了(x-4)天.再根据甲、乙做的工作量等于1,列方程求解.5.22402240220x x-=- 解析: 求的是原计划的工效,工作总量题中已有,那么一定是根据工作时间来列的等量关系.本题的等量关系为:原计划时间-实际用时=2. 6.x 38060203x 80=+- 三.解析题(共3小题)7.解:设特快列车的平均速度为xkm /h ,则动车的速度为(x +54)km /h , 由题意,得:=,解得:x =90, 经检验得:x =90是这个分式方程的解. x +54=144.答:设特快列车的平均速度为90km /h ,则动车的速度为144km /h .8. 【解析】:设骑自行车学生的速度是x 千米/时,由题意得:9. ﹣=,解得:x=20,经检验:x=20是原分式方程的解,答:骑自行车学生的速度是20千米/时.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,注意分式方程要进行检验,这是同学们最容易出错的地方.9. 【解析】:设乙同学的速度为x 米/秒,则甲同学的速度为1.2x 米/秒,根据题意,得,解得x=2.5.经检验,x=2.5是方程的解,且符合题意.∴甲同学所用的时间为:(秒),乙同学所用的时间为:(秒).∵26>24,∴乙同学获胜.答:乙同学获胜.【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题涉及的公式是:路程=速度×时间.。
分式方程的应用.2[工程问题]
1
工作时间
2
工作效率
1 20
1 x 1 20
对应的工作量
1 20 4
第1阶段
第2阶段
甲单独工作 4 天 甲乙合作 (20-4-10)=6天
(
1 x
1 20
) 6
例3.工作总量看成单位 1 的类型
玉树地震后,有一段公路急需抢修.此项工程原计划由甲 工程队独立完成,需要20天.在甲工程队施工4天后,为了加 快工程进度,又调来乙工程队与甲工程队共同施工,结果比原 计划提前10天,为抗震救灾赢得了宝贵时间. 求乙工程队独立完成这项工程需要多少天.
3 则实际上(a-5)天完成了任务 a 5
30
同步练习.1
1.某厂计划生产1800吨纯净水支援灾区人民,为尽快把纯 净水发往灾区,工人把每天的工作效率提高到原计划的1.5倍, 结果比原计划提前3天完成了生产任务. 1.求实际上多少天完成生产任务?
工作时间 工作效率 工作总量 解:设实际上x天完成生产任务,则原计划需要 (x+3)天
列出方程即可
解:设甲队单独完成这项工程需要x天
1 x 2+ 1 x2 3= 1
同步练习.7
7.在社会主义新农村建设中,某乡镇决定对一段 公路进行改造.已知这项工程由甲工程队单独做需 要40天完成;如果由乙工程队先单独做10天,那么 剩下的工程还需要两队合做20天才能完成. (1)求乙工程队单独完成这项工程所需的天数; (2)求两队合做完成这项工程所需的天数.
1 a
,即甲队的工效为
1 a
乙工程队单独完成需要b天,则两队合作多少天可以完成? 乙队的工效为
1 b
,两队合作的工效之和为 (
第六讲浙教版七年级下册分式方程应用题汇总(二)
18.A、B两地间的路程为150千米,甲、乙两车分别从A、B两地同时出发,相向而行,2小时相遇;相遇后,各以原来速度继续行驶,甲车到达B地立即原路返回,返回时的速度是原来的2倍,结果甲、乙两车同时到达A地,求甲车的原速度和乙车的速度.
(2)如果甲车间的生产费用为每天6500元,乙车间的生产费用为每天4500元,有以下三种方案可供选择:
方案一:由甲车间单独生产这批产品;
方案二:由乙车间单独生产这批产品;
方案三:甲乙两车间同时合作生产这批产品.
如从节约生产费用的角度考虑,工厂应选择哪个方案?请说明理由.
7.某校初三年级学生参加赈灾义演活动,甲班捐款200元,乙班30名同学捐款200元,这样,两班人均捐款比甲班人均捐款多1元,甲班有多名学生参加这次赈灾活动?(规定班级人数不超过60人)
3.甲、乙两公司各为“希望工程”捐款20000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数比甲公司的人数少20%.问甲、乙两公司人均捐款各为多少元?
4.甲乙二人周末到惠州红花湖环湖旅行,同时从起点(0公理处)出发,环湖步行18千米后回到起点处,甲比乙每小时多走1千米,结果比乙早到36分钟.问二人每小时各走几千米?
5、甲容器中有15%的盐水30升,乙容器中有18%的盐水20升,如果向两个容器各加入等量的水,使它们的浓度相等,那么加入的水是多少升?
6、某市为治理污水,需要铺设一段全长位3000m的污水输送管道,为了尽量减少施工队城市交通所造成的影响,实际施工时每天的工效比原计划提高25%,结果提前30天完成任务。若设原计划每天铺设xm,则依题意可列方程
1222初二【数学(人教版)】分式方程的应用(第二课时)+练习题
பைடு நூலகம்课例编号
2020QJ08SXRJ077
学科
数学
年级
八年级
学期
秋季
课题
分式方程的应用(第二课时)
教科书
书名:义务教育教科书数学八年级上册
出版社:人民教育出版社出版日期:2013年6月
学生信息
姓名
学校
班级
学号
课后练习
列方程解决实际问题:
1.农机厂到距工厂15千米的向阳村检修农机,一部分人骑自行车先走,过了40分钟,其余人乘汽车去,结果他们同时到达,已知汽车的速度是自行车的3倍,求汽车的速度.
2.甲、乙两人分别从距离目的地6㎞和10㎞的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前20min到达目的地,求甲、乙的速度.
第2讲 分式方程及其应用
☆课堂精炼
☆课后巩固
☆知识详图
☆考点精讲
☆课堂精炼
☆课后巩固
☆知识详图
☆考点精讲
☆课堂精炼
☆课后巩固
☆知识详图
☆考点精讲
☆课堂精炼
☆课后巩固
☆知识详图
☆考点精讲
☆课堂精炼
☆课后巩固
☆知识详图
☆考点精讲
☆课堂精炼
☆课后巩固
☆课后巩固
☆知识详图
☆考点精讲
☆课堂精炼
☆课后巩固
☆知识详图
☆考点精讲
☆课堂精炼
☆课后巩固
☆知识详图
☆考点精讲
☆课堂精炼
☆课后巩固
☆知识详图
☆考点精讲
☆课堂精炼
☆课后巩固
☆知识详图
☆考点精讲
☆课堂精炼
☆课后巩固
☆知识详图
☆考点精讲
☆课堂精炼
☆课后巩固
☆知识详图
☆考点精讲
☆课堂精炼
☆课后巩固
☆考点精讲
☆课堂精炼
☆课后巩固
☆知识详图
☆考点精讲
☆课堂精炼
☆课后巩固
☆知识详图
☆考点精讲
☆课堂精炼
☆课后巩固
☆知识详图
☆考点精讲
☆课堂精炼
☆课后巩固
☆知识详图
☆考点精讲
☆课堂精炼
☆课后巩固
☆知识详图
☆考点精讲
☆课堂精炼
☆课后巩固
☆知识详图
☆考点精讲
☆课堂精炼
☆课后巩固
☆知识详图
☆考点精讲
☆知识详图
☆考点精讲
☆课堂精炼
☆课后巩固
☆知识详图
☆考点精讲
☆课堂精炼
分式方程的解法与应用
分式方程的解法与应用分式方程是指方程中含有分式的方程,通常形式为分子中含有未知数的方程。
解决分式方程问题的关键是找到其中的未知数的值,使等式成立。
本文将介绍常见的分式方程解法以及其在实际问题中的应用。
一、基本解法1. 消去分母将分数方程中的分母通过乘以最小公倍数或通分的方法消去,从而得到一个等式。
然后继续将未知数移到方程的一边,常数移到另一边,最终求得未知数的值。
2. 通分并整理将分式方程的分子进行通分,并整理为一个等式。
然后通过移项和整理,将未知数移到一边,常数移到另一边,继而求解未知数的值。
3. 求最小公倍数对于一些特殊的分式方程,我们可以先求出方程中分母的最小公倍数,然后将方程中的所有分式统一化。
接着,将分母消去,得到一个整式方程,进而解决。
二、分式方程的应用1. 比例问题分式方程经常用于解决比例相关的问题。
比如,A车和B车以不同的速度驶向一个目的地,已知A车比B车快1小时到达目的地,而A 车比B车慢1小时赶上B车。
求A车和B车单独行驶到达目的地所需的时间。
通过建立分式方程可得到两车的速度比,从而解决问题。
2. 涉及水池、容器等物理问题假设有一个水池,一根管子可以独立进行排水,另一根管子可以独立进行注水。
已知两根管子独立工作时分别需要6小时和8小时将水池排干或注满。
求填满一半的水池所需的时间。
通过建立分式方程可得到两根管子的工作效率,进而解决问题。
3. 财务问题分式方程在解决财务问题时也具有重要应用。
例如,某人通过两种不同的投资方式投资了一笔钱,两种方式的年利率分别为4%和6%。
已知一年后获得的总收益为800元。
求该人分别投资了多少钱。
通过建立分式方程可得到两种投资的金额比例,从而解决问题。
4. 混合液体问题当涉及到两种不同浓度的液体混合时,我们可以利用分式方程解决问题。
例如,混合含有30%盐的溶液和50%盐的溶液,已知混合后的溶液含有40%盐。
求两种溶液的混合比例。
通过建立分式方程可得到两种溶液的体积比例,进而解决问题。
2第二节 分式方程及其应用
第二节分式方程及其应用分式方程的概念及解法1.分式方程的概念分母中含有的方程,叫做分式方程.2.解分式方程的一般步骤(1),化为整式方程;(2);(3);(4)确定原方程的根.3.分式方程的增根问题(1)增根的产生:分式方程本身隐含着分母不为零的条件,当把分式方程转化为整式方程后,方程中未知数的取值范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为零,那么就会出现不适合原方程的根,即增根.(2)验根:因为解分式方程可能出现增根,所以解分式方程必须验根.(3)验根的方法:方法一:利用方程程的定义,直接代入原方程检验.方法二:把整式方程的解代入最简公分母,看计算结果是否为0.分式方程的应用1.应用问题常用的数量关系及题型(1)行程问题:涉及的量是时间、速度、路程,它们之间的关系是:时间=路程速度.(2)工程问题:涉及的量是工作时间、工作总量和工作效率,它们之间的关系是:工作时间=工作总量工作效率.(3)商品销售与利润问题:涉及的量是进价、利润和利润率,它们之间的关系是:利润率=商品利润进价×100%.2.列分式方程解应用题的步骤列分式方程解应用题与列一次方程(组)解应用题的步骤基本相同:审题、设未知数、找等量关系、列方程、解方程、验根、作答.1.列分式方程解应用题是用分式表示数量之间的等量关系;2.列分式方程解应用题的验根,既要符合所列的分式方程,又要符合实际问题.解分式方程解分式方程应注意以下四点:(1)去分母时,方程中的常数项要乘最简公分母;(2)去分母时,分子是多项式则需加括号;(3)约分时,不能约去含未知数的整式;(4)去分母后所得整式方程的解有可能使原分式方程中的分母为0,一定要检验.(2019·合肥三十八中一模)解分式方程:2x+1+3x-1=6x2-1.分式方程的应用在列方程之前,应先弄清问题中的已知量与未知量,以及它们之间的数量关系,用含未知数的式子表示相关量,再用题中的主要相等关系列出方程.求出解后,必须进行检验,既要检验是否为所列分式方程的解,又要检验是否符合题意.(2019·合肥瑶海二模)甲打字员计划用若干小时完成文稿的电脑输入工作,两个小时后,乙打字员协助此项工作,且乙打字员文稿电脑输入的速度是甲的1.5倍,结果提前6小时完成任务,则甲打字员原计划完成此项工作的时间是()A.17小时B.14小时C.12小时D.10小时解分式方程时不检验结果导致出错解方程:1x -2+2=1-x 2-x .解分式方程去分母时容易漏乘项导致出错解方程:x x +2+1x=1.分式方程的增根与无解并非同一个概念,分式方程无解,可能是解为增根,也可能是去分母后的整式方程无解,而分式方程的增根是去分母后的整式方程的根,也是使分式方程的分母为0的根.1.(2019·建平期末)定义:如果一个关于x 的分式方程a x =b 的解等于1a -b,我们就说这个方程叫差解方程.比如:2x =43就是个差解方程.如果关于x 的分式方程m x=m -2是一个差解方程,那么m 的值是()A .2 B.12C .-12D .-22.(2019·铜仁模拟)对于实数a ,b ,定义新运算“⊙”:a ⊙b =1a -b 2,例如:2⊙3=12-32,则方程x ⊙(-2)=24-x -1的解是.3.(2019·荆州一模)数学家们在研究15,12,10这三个数的倒数时发现:112-115=110-112,就将具有这样性质的三个数称之为“调和数”,如6,3,2也是一组调和数.现有一组调和数:x -1,5,3(x >6),则x 的值是.解分式方程(2019年安徽淮南市中考模拟12-5分)当m =____________时,解分式方程533x m x x-=--会出现增根.(2018年安徽阜阳市中考模拟14-5分)若关于x 的分式方程2322x m m x x++=--的解为正实数,则实数m 的取值范围是.(2017年安徽合肥中考模拟7-4分)若关于x 的分式方程2213m x x x+-=-无解,则m 的值为()A.-32 B.1 C.32或2D-12或-32(2016年安徽5-4分)方程2x +1x -1=3的解是()A.-45 B.45 C.-4 D.4(2014年安徽13-5分)方程4x -12x -2=3的解是x =________.分式方程的应用(2019年安徽合肥市中考模拟20-10分)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.(2019年安徽六安市中考模拟20-10分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?(2017年安徽阜阳市中考模拟19-10分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B 型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?(2013年安徽20-10分)某校为了进一步开展“阳光体育”活动,购买了一批乒乓球拍和羽毛球拍,已知一副羽毛球拍比一副乒乓球拍贵20元,购买羽毛球拍的费用比购买乒乓球拍的2000元要多,多出的部分能购买25副乒乓球拍.(1)若每副乒乓球拍的价格为x元,请你用含x的代数式表示该校购买这批乒乓球拍和羽毛球拍的总费用;(2)若购买的两种球拍数一样,求x.(2005年安徽19-10分)2004年12月28日,我国第一条城际铁路——合宁铁路(合肥至南京)正式开工建设.建成后,合肥至南京的铁路运行里程将由目前的312km缩短至154km,设计时速是现行时速的2.5倍,旅客列车运行时间将因此缩短约3.13h.求合宁铁路的设计时速.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式方程及其应用(二)
一、知识点回顾:
(一):解分式方程
解分式方程的一般步骤是通过去分母化为 ,去分母的方法是方程各项同时乘以 .验根是解分式方程必不可少的步骤,这是因为 .
例1:分式方程1
31x
x x x +=--的解为( )
A .1
B .-1
C .-2
D .-3
例2:(2009 北京)解分式方程:
6122x x x +=-+
同步测试:
1.分式方程
2131=-x 的解是( ) 21
=x B .2=x C .31-
=x D . 31=x [来 2.解分式方程:
14143=-+--x x x
(二):分式方程解的讨论
增根:在方程变形时,有可能产生不适合原方程的根,这种根叫做方程的_______. 例3若关于x 的分式方程
311x a x x --=-无解,则a = .
同步测试: 已知关于x 的方程
322=-+x m x 的解是正数,则m 的取值范围为________.
(三):分式方程的应用
例4 在达成铁路复线工程中,某路段需要铺轨.先由甲工程队独做2天后,再由乙工程队独做3天刚好完成这项任务.已知乙工程队单独完成这项任务比甲工程队单独完成这项任务多用2天,求甲、乙工程队单独完成这项任务各需要多少
同步测试:
1.某工厂准备加工600个零件,在加工了100个零件后,采取了新技术,使每天的工作效率是原来的2倍,结果共用7天完成了任务,求该厂原来每天加工多少个零件?
2.在我市某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.
(1)乙队单独完成这项工程需要多少天?
(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?
二、随堂检测:
1. 分式方程
1223x x =+的解是_____________.
2. 请你给x 选择一个合适的值,使方程
2112x x =--成立,你选择的x =____________.
3. 关于x 的方程
211x a x +=-的解是正数,则a 的取值范围是 A .a >-1
B .a >-1且a ≠0
C .a <-1
D .a <-1且a ≠-2
4. 在课外活动跳绳时,相同时间内小林跳了90下,小群跳了120下.已知小群每分钟比小林多跳20下,设小林每分钟跳x 下,则可列关于x 的方程为 .
5. 如图,点A ,B 在数轴上,它们所对应的数分别是4-,
2235x x +-,且点A 、B 到原点的距离相等,求x 的值.
6. 解分式方程:
163104245--+=--x x x x
7. 解方程:12111x x x -
=--.
8. 25.去年5月12日,四川省汶川县发生了里氏8.0级大地震,兰州某中学师生自愿捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?人均捐款多少元?
9.由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工程所需时间比是3︰2,两队合做6天可以完成.
(1)求两队单独完成此项工程各需多少天?
(2)此项工程由甲、乙两队合做6天完成任务后,学校付给他们20000元报酬,若
按各自完成的工程量分配这笔钱,问甲、乙两队各得到多少元?。