图形的最值问题
图形中最大值最小值问题
∵AB= 3,AC=2,
∴S△ABC= 3
∴S▱ABCD=2S△ABC=2 3
最大值最小值问题
线段的长度表示以及最大值、最小值问题。
①线段长度:函数中线段长度表示概括为坐标“大减小” ②最大值问题:转化思想(利用相等、全等等特殊关系
转化为可应用) 1.化为二次函数顶点式的极值问题。 2.抓住“不变”寻求变化量的极值。(转化) ③最小值问题: 1、将军饮马问题。 2、点到直线距离最短。(难度高的问题需要转化应用) 3、二次函数极值。
一、如图,边长为6的等边三角形ABC中,E是对称轴AD 上的一个动点,连接EC,将线段EC绕点C逆时针旋转 60°得到FC,连接DF.则在点E运动过程中,DF的最 小值是________.
已知点P是半径为1的⊙A上一点,延长AP到C,使PC=AP,以AC
为对角线作▱ABCD.若AB= 3 ,则▱ABCD面积的最大值为
中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)
中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)一、基本图形最值问题在几何图形中分两大类:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。
由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。
举例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。
已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。
证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP ≤d+r,AP最小时点P在B处,最大时点P在C处。
即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。
(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。
上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。
二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。
类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。
(一)直接包含基本图形例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。
简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。
(二)动点路径待确定例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。
几何图形中的最值问题
几何图形中的最值问题引言:最值问题可以分为最大值和最小值。
在初中包含三个方面的问题:1.函数:①二次函数有最大值和最小值;②一次函数中有取值范围时有最大值和最小值。
2.不等式: ①如x ≤7,最大值是7;②如x ≥5,最小值是5.3.几何图形: ①两点之间线段线段最短。
②直线外一点向直线上任一点连线中垂线段最短,③在三角形中,两边之和大于第三边,两边之差小于第三边。
一、最小值问题例1. 如图4,已知正方形的边长是8,M 在DC 上,且DM=2,N 为线段AC 上的一动点,求DN+MN 的最小值。
解: 作点D 关于AC 的对称点D /,则点D /与点B 重合,连BM,交AC 于N ,连DN ,则DN+MN 最短,且DN+MN=BM 。
∵CD=BC=8,DM=2, ∴MC=6, 在Rt △BCM 中,BM=6822 =10,∴DN+MN 的最小值是10。
例2,已知,MN 是⊙O 直径上,MN=2,点A 在⊙O 上,∠AMN=300,B 是弧AN 的中点,P 是MN 上的一动点,则PA+PB 的最小值是解:作A 点关于MN 的对称点A /,连A /B,交MN 于P ,则PA+PB 最短。
连OB ,OA /,∵∠AMN=300,B 是弧AN 的中点, ∴∠BOA /=300, 根据对称性可知 ∴∠NOA /=600, ∴∠MOA /=900, 在Rt △A /BO 中,OA /=OB=1, ∴A /B=2 即PA+PB=2图4CDMNMMNB例3. 如图6,已知两点D(1,-3),E(-1,-4),试在直线y=x 上确定一点P ,使点P 到D 、E 两点的距离之和最小,并求出最小值。
解:作点E 关于直线y=x 的对称点M , 连MD 交直线y=x 于P ,连PE , 则PE+PD 最短;即PE+PD=MD 。
∵E(-1,-4), ∴M(-4,-1),过M 作MN ∥x 轴的直线交过D 作DN ∥y 轴的直线于N , 则MN ⊥ND, 又∵D(1,-3),则N(1,-1),在Rt △MND 中,MN=5,ND=2, ∴MD=2522+=29。
初中几何最值问题常用解法
初中几何最值问题常用解法初中几何最值问题一直是学生们的难点,但通过一些常用的解法,我们可以轻松解决这些问题。
以下将介绍9种常用的解法,帮助您更好地理解和学习。
一、轴对称法轴对称法是一种常用的解决最值问题的方法。
通过将图形进行轴对称变换,可以将问题转化为相对简单的问题,从而找到最值。
二、垂线段法垂线段法是指在几何图形中,利用垂线段的性质来求取最值。
例如,在矩形中,要使矩形的周长最小,可以将矩形的一条边固定,然后通过调整其他边的长度,使得矩形的周长最小。
三、两点之间线段最短两点之间线段最短是几何学中的基本原理。
在解决最值问题时,我们可以利用这个原理,找到两个点之间的最短距离。
四、利用三角形三边关系三角形三边关系是指在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边。
利用这个关系,可以解决一些与三角形相关的最值问题。
五、利用余弦定理求最值余弦定理是三角学中的基本定理,它可以用来解决一些与角度和边长相关的问题。
通过余弦定理,我们可以找到一个角的最大或最小余弦值,从而求得最值。
六、利用基本不等式求最值基本不等式是指在一个数列中,平均值总是小于等于几何平均值。
利用这个不等式,可以解决一些与数列相关的最值问题。
七、代数运算求最值代数运算是一种基本的数学运算方法,它可以用来解决一些与代数式相关的最值问题。
例如,通过求导数或微分的方法,可以找到一个函数的最大或最小值。
八、代数方程求最值代数方程是一种基本的数学方程形式,它可以用来解决一些与代数方程相关的最值问题。
例如,通过解二次方程或不等式的方法,可以找到一个表达式的最大或最小值。
九、几何变换求最值几何变换是指在几何图形中,通过平移、旋转、对称等方式改变图形的形状和大小。
利用几何变换的方法,可以解决一些与图形变换相关的最值问题。
例如,在矩形中,要使矩形的面积最大。
立体几何的最值问题
立体几何最值问题立体几何是数学中的一个重要分支,它研究的是空间图形的性质和数量关系。
在立体几何中,我们经常遇到最值问题,即寻找某个量的最大值或最小值。
本文将介绍立体几何中最值问题的几个方面:1.立体几何位置关系立体几何中的位置关系是指空间中点、线、面之间的相对位置。
解决位置关系问题需要运用空间想象和逻辑推理。
在立体几何中最值问题中,位置关系往往与距离、角度等问题交织在一起,需要综合考虑多种因素。
2.立体几何中的距离立体几何中的距离是指空间中两点之间的直线距离,或者是点与线、线与面之间的距离。
在解决最值问题时,我们需要考虑如何利用距离公式来计算最短路径、最大距离等。
3.立体几何中的体积立体几何中的体积是指空间中封闭图形的体积,或者是两个平面图形之间的距离。
计算体积需要运用体积公式,而解决最大或最小面积问题则需要考虑如何调整图形的形状和大小。
4.立体几何中的最短路径立体几何中的最短路径问题是指寻找空间中两点之间的最短距离。
解决这类问题需要运用距离公式和几何定理,有时还需要借助对称、旋转等技巧。
5.立体几何中的最大/最小面积立体几何中的最大/最小面积问题通常涉及到平面图形在空间中的展开和折叠。
解决这类问题需要运用面积公式和平面几何定理,同时要注意图形的对称性和边长之间的关系。
6.立体几何中的角度问题立体几何中的角度问题是指空间中两条直线或两个平面之间的夹角。
解决这类问题需要运用角度公式和空间向量,同时要注意图形的对称性和边长之间的关系。
7.立体几何中的轨迹问题立体几何中的轨迹问题是指一个点或一条线在空间中按照一定规律移动所形成的轨迹。
解决这类问题需要运用轨迹方程和运动学原理,同时要注意轨迹的形状和大小随时间的变化情况。
初中几何最值问题类型
初中几何最值问题类型
初中几何中的最值问题类型有以下几种:
1.最大值最小值问题:
求某个几何图形的最大面积或最小周长,如矩形、三角形等。
求抛物线的最高点或最低点,即顶点的坐标。
2.极值问题:
求函数图像与坐标轴的交点。
求函数在某个区间内的最大值或最小值,如求二次函数的最
值等。
3.最优化问题:
求物体从一个点到另一个点的路径问题,如两点之间的最短
路径、最快速度等。
4.最长边最短边问题:
求三角形的最长边或最短边,如用三根木棍构成三角形,求
最长边的长度。
5.相等问题:
求两个几何形状中的某个参数,使得它们的某个关系成立,
如求两个相似三角形的边长比、两个等腰三角形的底角角度等。
这些问题类型都需要通过合理的分析和运用相关的几何定理
来解决。
对于初中学生来说,熟练掌握基本的几何概念和定理,灵活运用数学思维和方法,可以较好地解决这些最值问题。
通
过多做练习和思考,培养几何思维和解决问题的能力。
初中几何最值问题解题技巧
初中几何最值问题解题技巧初中几何最值问题是一个比较常见的问题,通常涉及到线段、角度、面积等几何元素的最小值或最大值的求解。
下面将详细讲解一些常见的解题技巧:1.利用轴对称性转化:对于一些具有轴对称性的几何图形,可以利用轴对称性将问题转化为更简单的问题。
例如,对于一个关于直线对称的图形,可以找到对称轴,然后将问题转化为求解对称轴上的点到原图形的最短距离或最大距离。
2.利用三角形不等式:三角形不等式是解决几何最值问题的重要工具。
例如,对于一个三角形,任意两边之和大于第三边,任意两边之差小于第三边。
利用这些不等式,可以推导出一些关于几何元素的最值关系。
3.利用特殊位置和极端位置:在解决几何最值问题时,可以考虑特殊位置或极端位置的情况。
例如,对于一个矩形,当它的一条对角线与矩形的一条边垂直时,该对角线的长度达到最小值。
对于一个三角形,当它的一条边与另一条边的延长线垂直时,该三角形的面积达到最小值。
4.利用几何定理:几何定理是解决几何最值问题的有力工具。
例如,对于一个三角形,当它的一条边与另一条边的中线重合时,该三角形的周长达到最小值。
对于一个四边形,当它的一条对角线与另一条对角线的中线重合时,该四边形的面积达到最小值。
5.利用数形结合:数形结合是解决几何最值问题的常用方法。
通过将几何问题转化为代数问题,可以更容易地找到问题的解。
例如,对于一个圆上的点到圆心的距离的最大值和最小值,可以通过将问题转化为求解圆的半径的平方的最大值和最小值来解决。
以上是一些常见的初中几何最值问题的解题技巧,希望能够帮助你更好地解决这类问题。
《实际问题与二次函数》(几何图形最值)
2023-11-08CATALOGUE目录•引言•二次函数基本概念•几何图形与二次函数•二次函数最值概念•几何图形最值问题求解•实际问题最值应用案例01引言几何图形最值问题是数学中的一个经典问题,它涉及到图形的形状、大小和位置的最优化。
在实际生活中,几何图形最值问题也有广泛的应用,例如建筑设计、城市规划、物理研究等。
课程背景介绍1课程目标23理解几何图形最值的基本概念和解决方法。
学习如何运用数学方法和计算机技术求解几何图形最值问题。
掌握常见的几何图形最值问题的建模和求解技巧。
课程大纲1. 几何图形最值的基本概念最值的定义和性质几何图形的参数化课程大纲2. 求解方法与技术问题的数学建模微积分方法课程大纲010203线性代数方法数值计算方法计算机模拟技术3. 常见的几何图形最值问题直线段的最短长度圆形的最大面积课程大纲课程大纲椭圆形的最小周长立体图形的最大体积 4. 应用案例分析010302课程大纲02城市规划中的最值问题03物理研究中的最值问题02二次函数基本概念当轴动区间定时,二次函数的最值出现在对称轴上。
具体地,如果对称轴为x=-b/2a,那么当x=-b/2a时,二次函数取得最小值y=c-b^2/4a。
当轴定区间动时,二次函数的最值出现在区间的端点或对称轴上。
具体地,如果对称轴为x=-b/2a,那么当x=-b/2a时,二次函数取得最小值y=c-b^2/4a;当x取区间端点时,二次函数取得最大值。
当轴动区间动时,二次函数的最值出现在区间的端点、对称轴或二者重合处。
具体地,如果对称轴为x=-b/2a,那么当x=-b/2a时,二次函数取得最小值y=c-b^2/4a;当x取区间端点时,二次函数取得最大值。
03几何图形与二次函数矩形与二次函数在几何图形中最值问题中有着密切的联系。
详细描述在矩形中,长和宽可以看作是二次函数图像的两个根,而面积则可看作是二次函数的顶点。
因此,矩形的最值问题可以通过二次函数来求解。
旋转中的最值问题方法
旋转中的最值问题方法一、三角形旋转中的最值问题。
题目1:在等腰直角三角形ABC中,∠ ACB = 90^∘,AC = BC=√(2),将ABC绕点C逆时针旋转角α(0^∘<α<90^∘)得到A'B'C,连接A'B。
求A'B的最小值。
解析:1. 因为ABC绕点C旋转得到A'B'C,所以CA = CA'=√(2)。
2. 在A'CB中,根据余弦定理:A'B^2=A'C^2+BC^2- 2A'C· BC·cos(∠ A'CB)。
3. 由于∠ A'CB=∠ ACB+α = 90^∘+α,A'C = AC=√(2),BC=√(2)。
4. 则A'B^2=2 + 2-2×√(2)×√(2)cos(90^∘+α)=4 + 4sinα。
5. 因为0^∘<α<90^∘,当sinα = 0(即α = 0^∘)时,A'B^2取得最小值4,所以A'B的最小值为2。
题目2:已知等边三角形ABC的边长为2,点D是边BC的中点,将ABD绕点A逆时针旋转得到ACE。
求线段DE的最大值。
解析:1. 因为ABD绕点A逆时针旋转得到ACE,所以AD = AE,∠ DAE=∠ BAC = 60^∘,所以ADE是等边三角形。
2. 点D是边BC的中点,在等边三角形ABC中,AD⊥ BC,根据勾股定理可得AD=√(3)。
3. 因为ADE是等边三角形,所以DE = AD=√(3),DE的最大值就是√(3)。
题目3:在ABC中,AB = 3,AC = 4,∠ BAC = 60^∘,将ABC绕点A旋转,得到AB'C'。
求BC'的最大值。
解析:1. 由余弦定理可得BC=√(AB^2)+AC^{2-2AB· AC·cos∠ BAC}- 把AB = 3,AC = 4,∠ BAC = 60^∘代入可得:BC=√(9 + 16-2×3×4×frac{1){2}}=√(13)。
中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)
中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)一、基本图形所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。
由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。
余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。
已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。
证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。
即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。
(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。
上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。
二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。
类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。
(一)直接包含基本图形例 1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。
(二)动点路径待确定例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B 重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。
(三)动线(定点)位置需变换线段变换的方法:(1)等值变换:翻折、平移;(2)比例变换:三角、相似。
初中几何最值问题的常用解法
初中几何最值问题的常用解法
初中几何最值问题的常用解法有以下几种:
1. 利用图形的性质和特点:根据所给的几何图形,利用其性质和特点推导出最值问题的解答。
例如,利用等腰三角形的性质,可以求解最短路径问题;利用圆的性质,可以求出最大面积问题等。
2. 利用相似三角形:当给定的几何图形不易直接求解时,可以通过构建相似三角形来求解最值问题。
通过建立相似三角形的比较关系,可以求得所需的未知数,并得到最值问题的解答。
3. 利用变量法:将所给的几何图形进行变量代换,将问题转化为代数问题。
通过对新的代数表达式进行求导或求极值的方法,可以求解最值问题。
4. 利用平面几何基本定理:平面几何基本定理是初中几何学中的核心理论,其中包括了如角等分线定理、平行线性质定理、正弦定理、余弦定理等。
利用这些定理,可以有效地解决几何最值问题。
总之,初中几何最值问题的解决方法需要深入理解几何图形的性质和运用几何定理,同时也需要灵活运用代数方法和应用数学思维来解决问题。
初中几何最值问题归纳
初中几何中的最值问题主要涉及到求解图形的最大值或最小值,以下是一些常见的几何最值问题的归纳:
1.矩形最大面积:给定一定的周长,求解能够构成的矩形中面积最大的情况。
这个
问题可以通过对矩形的边长关系进行分析和求导来解决。
2.三角形最大面积:给定一条固定的边长和该边对应的高,求解能够构成的三角形
中面积最大的情况。
通常使用面积公式和高度相关的关系进行求解。
3.圆内接多边形最大面积:给定一个圆,求解能够内接于该圆的正多边形中面积最
大的情况。
通过分析正多边形的边长和面积的关系,可以求解最值。
4.直线与曲线的最短距离:给定一条直线和一条曲线,求解离直线最近的曲线上的
点。
这个问题可以通过计算点到直线的距离并求最小值来解决。
5.圆与线段的最大面积:给定一条线段,求解能够与该线段构成的圆中面积最大的
情况。
这个问题可以通过计算圆的面积与半径的关系进行求解。
这些是初中几何中常见的最值问题的归纳,每个问题都有不同的解题方法和技巧。
在解决这些问题时,需要灵活运用几何知识和数学推理,结合具体的题目条件进行分析和求解。
初中几何中的最值问题
初中几何中的最值问题初中几何中的最值问题是指在几何图形中寻找某个量的最大值或最小值的问题。
这些问题通常涉及到面积、周长、角度等几何量。
一般来说,解决初中几何中的最值问题需要掌握以下基本方法:1. 利用代数方法求解有时候,我们可以将几何图形转换为代数式,然后通过求导或者求平方等方法来求解。
例如,在矩形中,当周长一定时,面积最大;当面积一定时,周长最小。
我们可以设矩形的长为x,宽为y,则周长为2(x+y),面积为xy。
当周长一定时,即2(x+y)=k(k为常数)时,可以将y表示成x的函数:y=k/2-x,则面积S=x(k/2-x)=kx/2-x^2。
对S求导得到S'=k/2-2x=0,则x=k/4。
因此,在周长一定时,矩形的长和宽相等时面积最大。
2. 利用平均值不等式平均值不等式是一个重要的不等式,在初中几何中也经常被使用。
该不等式表明对于任意两个正实数a和b,有(a+b)/2>=sqrt(ab)。
例如,在三角形ABC中,如果要求最小的边长,则可以利用平均值不等式:设三角形边长分别为a、b、c,则有a+b>c,b+c>a,c+a>b。
将这三个不等式相加得到2(a+b+c)>a+b+c,则a+b+c>0。
因此,(a+b+c)/3>=sqrt(abc),即(a+b+c)>=3sqrt(abc)。
因此,当三角形的面积一定时,其边长之和最小。
3. 利用相似性质有时候,在几何图形中,我们可以利用相似性质来求解最值问题。
例如,在等腰三角形ABC中,如果要求最大的高,则可以利用相似三角形的性质:设高线AD与BC交于点E,则有AE/ED=BE/EC=AB/BC=2/1。
因此,AE=2ED,BE=2EC。
又因为AD是等腰三角形的高线,所以BD=DC。
则DE=BD-BE=(1/3)BC。
因此,在等腰三角形ABC中,高线对应底边的比值为2:1时,高线最大。
综上所述,在初中几何中解决最值问题需要掌握代数方法、平均值不等式和相似性质等基本方法,并且需要在实际问题中灵活应用这些方法来求解各种复杂的问题。
动点产生的几何最值问题大全
动点产生的几何最值问题大全
动点产生的几何最值问题是数学中一类比较有挑战性的问题,通常涉及到几何图形中的动点以及与之相关的最值情况。
以下是一些常见的动点产生的几何最值问题类型:
1. 最短路径问题:在给定的几何图形中,寻找动点到某个点或线段的最短路径。
这可以涉及到直线、圆、多边形等图形。
2. 最大面积问题:确定动点在几何图形中移动时,如何使形成的图形面积最大。
例如,求动点构成的三角形、矩形等的最大面积。
3. 最长线段问题:找到在特定条件下,动点所形成的最长线段。
4. 最短时间问题:考虑动点在移动过程中,如何以最短时间到达目标点。
5. 最优位置问题:确定动点在几何图形中的最优位置,使得某个目标函数达到最大或最小值。
6. 角度最值问题:探究动点在运动过程中,相关角度的最大或最小值。
7. 对称问题:利用对称性质来解决与动点相关的最值问题。
这些只是一些常见的类型,实际问题可能更加复杂和多样化。
解决动点产生的几何最值问题通常需要结合几何学的知识、定理和方法,以及对运动轨迹和约束条件的分析。
具体的解决方法会根据问题的具体情况而有所不同。
高三数学立体几何中的最值问题四则
立体几何中的最值问题四则1. 用配方法求距离的最值例1. 如图1,正方形ABCD 、ABEF 边长都是1,且平面ABCD 、ABEF 互相垂直,点M 在AC 上移动,点N 在BF 上移动,若CM BN a a ==<<()02。
试求当a 为何值时,MN 的值最小。
图1分析:此题的解题关键是想用含a 的代数式表示距离,再用配方法求最值。
解:过M 作MH AB ⊥,垂足为H ,连结NH ,如图1所示。
在正方形ABCD 中,AB CB ⊥, 所以BC MH //,因为平面AC ⊥平面AE ,所以MH ⊥平面AE ,即MH NH ⊥。
因为CM BN a AB CB BE =====,1,所以AC BF ==2 即AM a =-2, MH AH a BH a ==-=12222,, 由余弦定理求得NH a =22。
所以MN MH NH =+22=-+=-+=-+<<()()()()12222212212022222a a a a a a当a =22时,MN =22,即M 、N 分别移到AC 、BF 的中点时,MN 的值最小,最小值为222. 结合实际找最值位置例2. 在一X 硬纸上,抠去一个半径为3的圆洞,然后把此洞套在一个底面边长为4,高为6的正三棱锥A —BCD 上,并使纸面与锥面平行,则能穿过这X 纸面的棱锥的高的最大值是________。
图2解:如图2所示,假设硬纸上的圆洞刚好卡在B'C'D'处。
设正三棱锥A BCD -的顶点A 在平面BCD 上的射影为A',在平面B'C'D'上的射影为O 。
连结BA'、B'O 并延长分别交CD 、C'D'于E 、E'点,则平面B C D '''//平面BCD ,所以B E BE BC BC''''=, B E B O BE BA ''''==3232,, 即B O BA B C BC ''''=。
解析几何最值问题
对于旋转体等特殊图形,可利用相应公式和不等式求解; 对于一般图形,可通过变量替换和不等式等方法转化为更 易处理的问题。
条件面积(体积)最值
在给定条件下求平面图形或空间图形的面积(体积)最值, 常结合不等式和等式约束条件进行求解。
05
典型案例分析
平面曲线最值问题案例
案例一
01
求点到直线的最短距离
案例二
02
求两圆之间的最短距离
案例三
03
求椭圆上一点到直线的最大距离
空间曲线最值问题案例
案例一
求空间一点到直线的最短距离
案例二
求空间一点到平面的最短距离
案例三
求空间两异面直线之间的最短距离
曲面最值问题案例
案例一
求曲面上一点到平面的最短距离
案例二
求曲面上两点之间的最短距离
案例三
求曲面上的最值点坐标
06
总结与展望
研究成果总结
解析几何最值问题的基本理论和 方法的梳理和归纳,包括最值问 题的定义、性质、求解方法等。
针对不同类型的解析几何最值问 题,提出了相应的求解策略和方 法,如线性规划、二次规划、动
态规划等。
通过实例分析和数值计算,验证 了所提方法的有效性和实用性, 为解决实际问题提供了有力支持。
THANKS
感谢观看
04
解析几何在最值问题中的应用
曲线与曲面的最值问题
曲线上的最值点
通过求导找到曲线的极值点,比 较各极值点和端点的函数值来确
定最值。
曲面的最值点
对于二元函数表示的曲面,分别 求偏导数并令其为零,解方程组 得到可能的极值点,进一步判断
最值。
条件极值
在给定条件下求曲线或曲面的最 值,常用拉格朗日乘数法。
抛物线中的阿基米德三角形最值问题
抛物线中的阿基米德三角形最值问题抛物线中的阿基米德三角形最值问题,说实话,这听起来像是个超级复杂的数学题,简直让人头大。
不过别急,听我慢慢讲,咱们一个个搞懂它!阿基米德三角形是什么玩意儿?别看名字那么高大上,其实它只是一个从抛物线中截取出来的三角形。
你想,抛物线就像个大嘴巴,吃东西的速度快慢不一,三角形就是我们从它的嘴巴里拿到的一块“菜”,它的面积、形状、大小等等这些,就成了我们关注的重点。
你可能会好奇,抛物线和阿基米德三角形有什么神奇的联系?好吧,抛物线,大家应该不陌生吧!想象一下,抛物线就像是一个神奇的抛石头轨迹,飞起来的物体刚好落下来,形成了一个弯弯的形状。
那阿基米德三角形呢?其实就是抛物线上的某一点、某一段截成的一个三角形,而我们要做的事,就是研究这个三角形的面积,看看它怎么变化,什么时候达到最大或者最小值。
简单来说,我们就在问:“在哪个点,三角形的面积最合适,最‘美’?”我们做题就像是在寻宝,翻来覆去找那颗闪闪发光的宝石。
比如说,咱们得找出这个三角形的最值问题,搞清楚当三角形的面积达到最大或最小时,它的“姿态”是什么样的。
有人可能会说,啥叫“最值”?这不就意味着最大值和最小值嘛!对呀,没错,最值问题其实就是在讲,这个三角形在抛物线的影响下,最可能“优雅地站在舞台”的时刻——既不太小,也不太大,而是恰到好处。
再说说怎么解决这个问题。
哦,这里其实有点像我们生活中的那些小技巧。
比如你做饭的时候,总是希望菜做得刚好——不焦不生。
做数学题也一样,关键就在于“平衡”。
你要通过一些公式,找出这个三角形的面积表达式,然后让它“去最大化”或者“去最小化”,就像一场数学界的拔河比赛。
最终,你会发现,某个特定的位置上,三角形的面积会达到顶峰或者谷底,而这一点,正是我们要寻找的“宝贵时刻”。
我们可以从几何图形入手,也可以通过代数手段来求解。
别担心,虽然听上去复杂,其实一步一步来,仔细琢磨,就能慢慢找出规律。
很多时候,做题就像解谜一样,不是一下子就能知道答案,而是要一步步摸索、推理,直到那个“Ahha!”的时刻出现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2014贵港)如图,在Rt△ABC中,∠ACB=90°,AC=6, BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的 动点,则PC+PQ的最小值是( )
如图,在锐角三角形ABC中,AB=4√2,∠BAC=45度,∠BAC的平分 线交BC于点D,M`N分别是AD和AB上的动点,则BM+MN的最小值是 ______.
如图,正方形ABCD的边长为4,∠DAC的平分线交DC 于点E,若点Q分别是AD和AE上的动点,则 DQ+PQ的最小值是______.
(2014年锦州模拟)如图,已知△ABC在平面直角坐标系中,其中点 A、B、C 三点的坐标分别为(1,2√3),(-1,0),(3,0),点D为 BC中 点,P是AC上的一个动点(P与点A、C不重合),连接PB、PD, 则△PBD周长的最小值是( )
如图,菱形ABCD中,对角线AC=6,BD=8,M、N分别 是BC、CD的中点,P是线段BD上的一个动点 ,则 PM+PN的最小值是______.