高中数学人教A版必修三 第三章《概率》 单元检测 B卷

合集下载

高中数学人教A版必修三 第三章 概率 章末综合测评及答案

高中数学人教A版必修三 第三章 概率 章末综合测评及答案

会,估计运动会期间不.下.雨.的概率. 【解】 (1)在容量为 30 的样本中,不下雨的天数是 26,以频率
估计概率,4 月份任选一天,西安市不下雨的概率为 2360=1153. (2)称相邻的两个日期为“互邻日期对”(如,1 日与 2 日,2 日与 3
日等).这样,在 4 月份中,前一天为晴天的互邻日期对有 16 个,其中 后一天不下雨的有 14 个,所以晴天的次日不下雨的频率为 78.
(2)该班成绩在[60,100]内的概率是 P(A∪B∪C∪D)=P(A)+P(B)
+P(C)+P(D)=0.17+0.36+0.25+0.15=0.93.
19.(本小题满分 12 分)小王、小李两位同学玩掷骰子(骰子质地均 匀)游戏,规则:小王先掷一枚骰子,向上的点数记为 x;小李后掷一 枚骰子,向上的点数记为 y.
【答案】 C
二、填空题(本大题共 4 小题,每小题 5 分,共 20 分,把答案填在
题中横线上).
13.一个袋子中有 5 个红球,3 个白球,4 个绿球,8 个黑球,如
果随机地摸出一个球,记 A={摸出黑球},B={摸出白球},C={摸出
绿球},D={摸出红球},则 P(A)=________;P(B)=________;P(C∪D)
A,B,C 和 3 名女同学 X,Y,Z,其年级情况如下表:
一年级 二年级 三年级
男同学 A
=________.
【解析】 由古典概型的算法可得 P(A)=280=25,P(B)=230,P(C∪D)
=P(C)+P(D)=240+250=290.
【答案】
2 5
3 20
9 20
14.在区间(0,1)内任取一个数 a,能使方程 x2+2ax+12=0 有两

高中数学人教A版必修三 第三章 概率 学业分层测评19 Word版含答案

高中数学人教A版必修三 第三章 概率 学业分层测评19 Word版含答案

(整数值)随机数(random numbers)的产生一、选择题1.袋子中有四个小球分别写有“幸”“福”“快”“乐”四个字有放回地从中任取一个小球取到“快”就停止用随机模拟的方法估计直到第二次停止的概率:先由计算器产生1到4之间取整数值的随机数且用1234表示取出小球上分别写有“幸”“福”“快”“乐”四个字以每两个随机数为一组代表两次的结果经随机模拟产生了20组随机数:13 24 12 32 43 14 24 32 31 2123 13 32 21 24 42 13 32 21 34据此估计直到第二次就停止的概率为( )A 15B .14C 13D .12【解析】 由随机模拟产生的随机数可知直到第二次停止的有1343231313共5个基本事件故所求的概率为P =520=14【答案】 B2.某班准备到郊外野营为此向商店订了帐蓬如果下雨与不下雨是等可能的能否准时收到帐篷也是等可能的只要帐篷如期运到他们就不会淋雨则下列说法正确的是( )A .一定不会淋雨B .淋雨机会为34C .淋雨机会为12D .淋雨机会为14【解析】 用A 、B 分别表示下雨和不下雨用a 、b 表示帐篷运到和运不到则所有可能情形为(Aa )(Ab )(Ba )(Bb )则当(Ab )发生时就会被雨淋到∴淋雨的概率为P =14【答案】 D3.已知某运动员每次投篮命中的概率为40%现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数指定1234表示命中567890表示没有命中;再以每三个随机数为一组代表三次投篮的结果.经随机模拟产生了20组随机数:907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989据此估计该运动员三次投篮恰有两次命中的概率为( )【28750061】A .035B .025C .020D .015【解析】 恰有两次命中的有191271932812393共有5组则该运动员三次投篮恰有两次命中的概率近似为520=025【答案】 B二、填空题6.抛掷两枚相同的骰子用随机模拟方法估计向上面的点数和是6的倍数的概率时用123456分别表示向上的面的点数用计算器或计算机分别产生1到6的两组整数随机数各60个每组第i 个数组成一组共组成60组数其中有一组是16这组数表示的结果是否满足向上面的点数和是6的倍数:________.(填“是”或“否”)【解析】 16表示第一枚骰子向上的点数是1第二枚骰子向上的点数是6则向上的面的点数和是1+6=7不表示和是6的倍数.【答案】 否7.某汽车站每天均有3辆开往省城的分为上、中、下等级的客车某天袁先生准备在该汽车站乘车前往省城办事但他不知道客车的车况也不知道发车顺序.为了尽可能乘上上等车他采取如下策略:先放过一辆如果第二辆比第一辆好则上第二辆否则上第三辆.则他乘上上等车的概率为________.【解析】 共有6种发车顺序:①上、中、下;②上、下、中;③中、上、下;④中、下、上;⑤下、中、上;⑥下、上、中(其中画横线的表示袁先生所乘的车)所以他乘坐上等车的概率为36=12【答案】 128.甲、乙两支篮球队进行一局比赛甲获胜的概率为06若采用三局两胜制举行一次比赛现采用随机模拟的方法估计乙获胜的概率.先利用计算器或计算机生成0到9之间取整数值的随机数用012345表示甲获胜;6789表示乙获胜这样能体现甲获胜的概率为06因为采用三局两胜制所以每3个随机数作为一组.例如产生30组随机数.034743738636964736614698637162332 616804560111410959774246762428114572 042533237322707360751据此估计乙获胜的概率为________.【解析】就相当于做了30次试验.如果6789中恰有2个或3个数出现就表示乙获胜它们分别是738636964736698637616959774762707共11个.所以采用三局两胜制乙获胜的概率约为1130≈0367【答案】0367三、解答题9.一个袋中有7个大小、形状相同的小球6个白球1个红球.现任取1个若为红球就停止若为白球就放回搅拌均匀后再接着取.试设计一个模拟试验计算恰好第三次摸到红球的概率.【解】用123456表示白球7表示红球利用计算器或计算机产生1到7之间取整数值的随机数因为要求恰好第三次摸到红球的概率所以每三个随机数作为一组.例如产生20组随机数.666743671464571561156567732375716116614445117573552274114622就相当于做了20次试验在这组数中前两个数字不是7第三个数字恰好是7就表示第一次、第二次摸的是白球第三次恰好是红球它们分别是567和117共两组因此恰好第三次摸到红球的概率约为220=01 10.一个学生在一次竞赛中要回答8道题是这样产生的:从15道物理题中随机抽取3道;从20道化学题中随机抽取3道;从12道生物题中随机抽取2道.使用合适的方法确定这个学生所要回答的三门学科的题的序号(物理题的编号为1~15化学题的编号为16~35生物题的编号为36~47【解】利用计算器的随机函数RANDI(115)产生3个不同的1~15之间的整数随机数(如果有一个重复则重新产生一个);再利用计算器的随机函数RANDI(1635)产生3个不同的16~35之间的整数随机数(如果有一个重复则重新产生一个);再用计算器的随机函数RANDI(3647)产生2个不同的36~47之间的整数随机数(如果有一个重复则重新产生一个)这样就得到8道题的序号.[能力提升]1.已知某射击运动员每次击中目标的概率都是08现采用随机模拟的方法估计该运动员射击4次至多击中1次的概率:先由计算器产生0到9之间取整数值的随机数指定01表示没有击中目标23456789表示击中目标;因为射击4次故以每4个随机数为一组代表射击4次的结果.经随机模拟产生了20组随机数:5 7270 2937 1409 8570 3474 373 8 636 9 647 1 417 4 6980 371 6 233 2 616 8 045 6 0113 661 9 597 7 424 6 710 4 281据此估计该射击运动员射击4次至多击中1次的概率为( )A .095B .01 C015 D .005【解析】 该射击运动员射击4次至多击中1次故看这20组数据中含有0和1的个数多少含有3个或3个以上的有:6011故所求概率为120=005【答案】 D2.在一个袋子中装有分别标注数字12345的五个小球这些小球除标注的数字外完全相同.现从中随机取出两个小球则取出的小球标注的数字之和为3或6的概率是( )A 310B .15C 110D .112 【解析】 随机取出两个小球有(12)(13)(14)(15)(23)(24)(25)(34)(35)(45)共10种情况和为3只有1种情况(12)和为6可以是(15)(24)共2种情况.所以P =310【答案】 A3.在利用整数随机数进行随机模拟试验中整数a 到整数b 之间的每个整数出现的可能性是________.【解析】[ab]中共有b-a+1个整数每个整数出现的可能性相等所以每个整数出现的可能性是1b-a+1【答案】1b-a+14.一份测试题包括6道选择题每题只有一个选项是正确的.如果一个学生对每一道题都随机猜一个答案用随机模拟方法估计该学生至少答对3道题的概率.【解】我们通过设计模拟试验的方法来解决问题.利用计算机或计算器可以产生0到3之间取整数值的随机数.我们用0表示猜的选项正确123表示猜的选项错误这样可以体现猜对的概率是25%因为共猜6道题所以每6个随机数作为一组.例如产生25组随机数:330130302220133020022011313121222330231022001003213322030032100211022210231330321202031210232111210010212020230331112000102330200313303321012033321230就相当于做了25次试验在每组数中如果恰有3个或3个以上的数是0则表示至少答对3道题它们分别是001003030032210010112000即共有4组数我们得到该同学6道选择题至少答对3道题的概率近似为425=016。

人教版2020年高中数学第三章概率章末检测新人教A版必修3

人教版2020年高中数学第三章概率章末检测新人教A版必修3

第三章概率章末检测时间:120分钟满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某人在打靶中连续射击两次,与事件“至少有一次中靶”互斥的事件是( )A.至多有一次中靶B.两次都中靶C.两次都不中靶D.只有一次中靶解析:连续射击两次,事件“至少有一次中靶”的互斥事件是“两次都不中靶”.答案:C2.先后抛掷两颗骰子,所得点数之和为7,则基本事件共有( )A.5个B.6个C.7个D.8个解析:所得点数之和为7的基本事件为(1,6),(6,1),(2,5),(5,2),(3,4),(4,3),共6个.答案:B3.奥林匹克会旗中央有5个互相套连的圆环,颜色自左至右,上方依次为蓝、黑、红,下方依次为黄、绿,象征着五大洲.在手工课上,老师将这5个环分发给甲、乙、丙、丁、戊五位同学制作,每人分得1个,则事件“甲分得红色”与“乙分得红色”是( )A.对立事件B.不可能事件C.互斥但不对立事件D.既不互斥又不对立事件解析:甲、乙不能同时得到红色,因而这两个事件是互斥事件;又甲、乙可能都得不到红色,即“甲或乙分得红色”的事件不是必然事件,故这两个事件不是对立事件.答案:C4.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的产品不是一等品”的概率为( )A.0.7 B.0.65C.0.35 D.0.3解析:事件“抽到的产品不是一等品”与事件A是对立事件,由于P(A)=0.65,所以由对立事件的概率公式得“抽到的产品不是一等品”的概率为P=1-P(A)=1-0.65=0.35.答案:C5.在长为12 cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20 cm 2的概率为( ) A.16 B.13 C.23D.45解析:设线段AC 的长为x cm ,则线段CB 的长为(12-x ) cm ,那么矩形的面积为x (12-x ) cm 2, 由x (12-x )>20,解得2<x <10.又0<x <12,所以该矩形面积大于20 cm 2的概率为23.答案:C6.从一批羽毛球产品中任取一个,其质量小于4.8 g 的概率为0.3,质量小于4.85 g 的概率为0.32,那么质量在[4.8,4.85]内的概率是( ) A .0.62 B .0.38 C .0.02D .0.068解析:由图知,质量x 在[4.8,4.85]的概率P (4.8≤x ≤4.85)=P (x < 4.85)-P (x <4.8)=0.32-0.3=0.02,故选C. 答案:C7.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A.13 B.12 C.23D.56解析:从红、黄、白、紫4种颜色的花中任取2种有6种取法,分别为红与黄,红与白,红与紫,黄与白,黄与紫,白与紫,共6种,其中红色与紫色不在同一花坛有4种情况,故红色与紫色不在同一花坛的概率P =46=23.答案:C8.在区间[-1,1]上任取两数x 和y ,组成有序实数对(x ,y ),记事件A 为“x 2+y 2<1”,则P (A )等于( ) A.π4 B.π2C .πD .2π解析:如图,集合S ={(x ,y )|-1≤x ≤1,-1≤y ≤1},则S 中每个元素与随机事件的结果一一对应.而事件A 所对应的事件(x ,y )与圆面x 2+y 2<1的点一一对应,∴P (A )=π4.答案:A9.将一枚骰子抛掷两次,若先后出现的点数分别为b ,c ,则方程x 2+bx +c =0有实根的概率为( ) A.13 B.12 C.1936D.25解析:将一枚骰子抛掷两次共有6×6=36种结果.方程x 2+bx +c =0有实根,则Δ=b2-4c ≥0,即b ≥2c ,其包含的结果有:(2,1),(3,1),(4,1),(5,1),(6,1),(3,2),(4,2),(5,2),(6,2),(4,3),(5,3),(6,3),(4,4),(5,4),(6,4),(5,5),(6,5),(5,6),(6,6),共19种,由古典概型的概率计算公式可得P =1936.故选C.答案:C10.节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒以内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( ) A.14 B.12 C.34D.78解析:设第一串彩灯亮的时刻为x ,第二串彩灯亮的时刻为y ,则⎩⎪⎨⎪⎧0≤x ≤4,0≤y ≤4,要使两串彩灯亮的时刻相差不超过2秒, 则⎩⎪⎨⎪⎧ 0≤x ≤4,0≤y ≤4,-2≤x -y ≤2,如图,不等式组⎩⎪⎨⎪⎧0≤x ≤4,0≤y ≤4所表示的图形面积为16,不等式组⎩⎪⎨⎪⎧0≤x ≤4,0≤y ≤4,-2≤x -y ≤2所表示的六边形OABCDE 的面积为16-4=12,由几何概型的公式可得P=1216=34.答案:C11.已知5件产品中有2件次品,其余为合格品,现从这5件产品中任取2件,恰有一件次品的概率为( ) A .0.4 B .0.6 C .0.8D .1解析:首先对5件产品编号为1,2,3,4,5.其中1,2两件为次品,3,4,5为正品,从5件产品中任取2件产品,基本事件为:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个.其中恰有一件为次品的事件为:(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),共6个. ∴恰有一件次品的概率P =610=35=0.6,选B. 答案:B12.袋子中装有大小相同的5个小球,分别有2个红球、3个白球.现从中随机抽取2个小球,则这2个小球中既有红球也有白球的概率为( ) A.34 B.710C.45D.35解析:设2个红球分别为a ,b,3个白球分别为A ,B ,C ,从中随机抽取2个,则有(a ,b ),(a ,A )(a ,B ),(a ,C ),(b ,A )(b ,B ),(b ,C ),(A ,B ),(A ,C ),(B ,C ),共10个基本事件,其中既有红球也有白球的基本事件有6个,则所求概率为P =610=35.答案:D二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中的横线上) 13.地面上有三个同心圆(如图),其半径分别为3、2、1.若向图中最大的圆内投点且投到图中阴影区域的概率为715,则两直线所夹锐角的弧度数为________.解析:设两直线所夹锐角弧度为α,则有:715=S 阴S=απ×π+1-απ×3π+απ×5π9π,解得:α=2π5.故答案为2π5.答案:2π514.从2本不同的数学书和2本不同的语文书中任意抽出2本书(每本书被抽中的机会相等),则抽出的书是同一学科的概率等于________.解析:从2本不同的数学书和2本不同的语文书中任意抽出2本书共有6种不同的取法,其中抽出的书是同一学科的取法共有2种,因此所求的概率等于26=13.答案:1315.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________.解析:∵去看电影的概率P 1=π×12-π×⎝ ⎛⎭⎪⎫122π×12=34, 去打篮球的概率P 2=π×⎝ ⎛⎭⎪⎫142π×12=116, ∴不在家看书的概率为P =34+116=1316.答案:131616.如图所示,靶子由一个中心圆面Ⅰ和两个同心圆环Ⅱ、Ⅲ构成,射手命中Ⅰ、Ⅱ、Ⅲ的概率分别为0.15,0.20,0.45,则不中靶的概率是________.解析:设射手“命中圆面Ⅰ”为事件A ,“命中圆环Ⅱ”为事件B ,“命中圆环Ⅲ”为事件C ,“不中靶”为事件D ,则A ,B ,C 互斥,故射手中靶概率为P (A ∪B ∪C )=P (A )+P (B )+P(C )=0.15+0.20+0.45=0.80.因为中靶和不中靶是对立事件,故不中靶的概率为P (D )=1-P (A ∪B ∪C )=1-0.80=0.20. 答案:0.20三、解答题(本大题共有6小题,共74分,解答应写出文字说明、证明过程或演算步骤) 17.(12分)某人去开会,他乘火车、轮船、汽车、飞机去的概率分别是0.3,0.2,0.1,0.4. (1)求他乘火车或飞机去的概率; (2)求他不乘飞机去的概率.解析:设“乘火车”“乘轮船”“乘汽车”“乘飞机”分别为事件A ,B ,C ,D ,则P (A )=0.3,P (B )=0.2,P (C )=0.1,P (D )=0.4. (1)P (A ∪D )=P (A )+P (D )=0.3+0.4=0.7. (2)设“不乘飞机”为事件E , 则P (E )=1-P (D )=1-0.4=0.6.18.(12分)甲、乙两人做出猜拳游戏(锤子,剪刀,布). 求:(1)平局的概率;(2)甲赢的概率;(3)乙赢的概率.解析:设平局为事件A ,甲赢为事件B ,乙赢为事件C .容易得到如图所示的图形.平局含3个基本事件(图中的△),P (A )=39=13.(2)甲赢含3个基本事件(图中的⊙),P (B )=39=13.(3)乙赢含3个基本事件(图中的※),P (C )=39=13.19.(12分)袋中有红、黄、白三种颜色的球各3只,从中每次任取1只,有放回地抽取3次,求:(1)3只全是红球的概率;(2)3只颜色全相同概率; (3)3只颜色不全相同的概率; (4)3只颜色全不相同的概率.解析:从袋中有放回地抽取3次,全部的基本事件用树状图表示为:(1)记“3只球全是红球”为 事件A ,则P (A )=127.(2)记“3只球颜色相同”为事件B ,则P (B )=127+127+127=19.(3)记“3只球颜色不全相同”为事件C ,则有24种情况,故P (C )=2427=89.(4)要使3只球颜色全不相同,只可能是红、黄、白球各出现一次,记“3只颜色全不相同”为事件D ,则P (D )=627=29.20.(12分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球A 1,A 2和1个白球B 的甲箱与装有2个红球a 1,a 2和2个白球b 1,b 2的乙箱中,各随机摸出1个球.若摸出的2个球都是红球则中奖,否则不中奖. (1)用球的标号列出所有可能的摸出结果;(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率.你认为正确吗?请说明理由.解析:(1)所有可能的摸出结果是{A 1,a 1},{A 1,a 2}, {A 1,b 1},{A 1,b 2},{A 2,a 1},{A 2,a 2},{A 2,b 1},{A 2,b 2},{B ,a 1},{B ,a 2},{B ,b 1}, {B ,b 2}. (2)不正确.理由如下:由(1)知,所有可能的摸出结果共12种,其中摸出的2个球都是红球的结果为{A 1,a 1},{A 1,a 2},{A 2,a 1},{A 2,a 2},共4种,所以中奖的概率为412=13,不中奖的概率为1-13=23>13,故这种说法不正确.21.(13分)某校高三学生体检后,为了解高三学生的视力情况,该校从高三六个班的300名学生中以班为单位(每班学生50人),每班按随机抽样方法抽取了8名学生的视力数据.其中高三(1)班抽取的8名学生的视力数据与人数见下表:(2)已知其余五个班学生视力的平均值分别为 4.3,4.4,4.5,4.6,4.8.若从这六个班中任意抽取两个班学生视力的平均值作比较,求抽取的两个班学生视力的平均值之差的绝对值不小于0.2的概率.解析:(1)高三(1)班学生视力的平均值为 4.4×2+4.6×2+4.8×2+4.9+5.18=4.7,故估计高三(1)班学生视力的平均值为4.7.(2)从这六个班中任意抽取两个班学生视力的平均值作比较,所有的取法共有15种,而满足抽取的两个班学生视力的平均值之差的绝对值不小于0.2的取法有:(4.3,4.5),(4.3,4.6),(4.3,4.7),(4.3,4.8),(4.4,4.6),(4.4,4.7),(4.4,4.8),(4.5,4.7),(4.5,4.8),(4.6,4.8),共有10种,故抽取的两个班学生视力的平均值之差的绝对值不小于0.2的概率为P =1015=23.22.(13分)某校高三共有900名学生,高三模拟考试之后,为了了解学生学习情况,用分层抽样方法从中抽出若干学生此次数学成绩,按成绩分组,并制成如下的频率分布表.(1)确定表中a ,b ,c (2)为了了解数学成绩在120分以上的学生的心理状态,现决定在第六、七、八组中用分层抽样方法抽取6名学生,在这6名学生中又再随机抽取2名与心理老师面谈,求第七组中至少有一名学生被抽到与心理老师面谈的概率; (3)估计该校本次考试的数学平均分. 解析:(1)因为频率和为1,所以b =0.18, 因为频率=频数/样本容量,所以c =100,a =15.(2)第六、七、八组共有30个样本,用分层抽样方法抽取6名学生,第六、七、八组被抽取的样本数分别为3,2,1,将第六组、第八组被抽取的样本分别用A ,B ,C ,D 表示,第七组抽出的样本用E ,F 表示.从这6名学生中随机抽取2个的方法有AB ,AC ,AD ,AE ,AF ,BC ,BD ,BE ,BF ,CD ,CE ,CF ,DE ,DF ,EF ,共15种.其中至少含E 或F 的取法有9种,则所求概率为35.(3)估计平均分为75×0.06+85×0.04+95×0.22+105×0.2+115×0.18+125×0.15+135×0.1+145×0.05=110.。

人教A版高中数学必修三试卷概率练习题 (2)

人教A版高中数学必修三试卷概率练习题  (2)

概率练习题(2)一、选择题1、下列正确的说法是()(A)互斥事件是独立事件(B)独立事件是互斥事件(C)两个非不可能事件不能同时互斥与独立(D)若事件A与事件B互斥,则A与B独立2、一个口袋中装有3个白球和3个黑球,独立事件是()(A)第一次摸出的是白球与第一次摸出的是黑球(B)摸出后不放回.第一次摸出的是白球,第二次摸出的是黑球(C)摸出后放回,第一次摸出的是白球,第二次摸出的是黑球(D)一次摸两个球,第一次摸出颜色相同的球与第一次摸出颜色不同的球3、一个均匀的正四面体,第一面是红色,第二面是白色,第三面是黑色,而第四面同时有红、白、黑三种颜色,P、Q、R表示投掷一次四面体接触桌面为红、白、黑颜色事件.则下列结论正确的是()(A)P、Q、R不相互独立(B)P、Q、R两两独立(C)P、Q、R不会同时发生(D)P、Q、R的概率是314、甲、乙两人独立答题,甲能解出的概率为p,乙能解出的概率为q,那么两人都能解出此题的概率是()(A)pq(B)p(1-q)(C)(1-p)(1-q)(D)1-(1-p)(1-q)5、推毁敌人一个工事,要命中三发炮弹才行,我炮兵射击的命中率是0.8.为了有95%的把握摧毁工事,需要发射炮弹的个数是()(A)6(B)5(C)4 (D)36、三个人独立地破译一个密码,他们能单独译出的概率分别为15,31,14,假设他们破译密码是彼此独立的,则此密码被译出的概率为()(A)35(B)25(C)160(D)不确定7、有一道竞赛试题,甲生解出它的概率为12,乙生解出它的概率为13,丙生解出它的概率为14,则甲、乙、丙三人独立解答此题,只有1人解出的概率为() (A )124(B )1124(C )1724(D )1 8、10个正四面体的小木块表面上,每一个侧面都分别标有数字1,2,3,4,如果把这10个小木块全部掷出,则恰有3个小木块上标的4因贴在平面上看不见的概率计算式是() (A )3101C (B )3371013()()44C (C )3731013()()44C (D )3101A 9、一射手对同一目标独立地进行四次射击,已知至少命中一次的概率为8081,则此射手的命中率为() (A )13(B )14(C )23(D )2510、假设每一架飞机的引擎在飞行中出现故障率为1-p ,且各引擎是否有故障是独立的,如有至少50%的引擎能正常运行,飞机就可成功飞行.若使4引擎飞机比2引擎飞机更为安 全,则p 的取值范围是 ()(A )(1,13)(B )(0,23)(C )(23,1)(D )(0,14)二、填空题11、两雷达独立工作,它们发现飞行目标的概率分别是0.9和0.8,则有且仅有1名雷达发现飞行物的概率为 .12、甲、乙两人同时报考某一大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否录取互不影响,则甲、乙两人都被录取的概率是 .13、今有三门高射炮,同时射击一架敌人的侦察机,若每一门高射炮的命中率都是0.60,则至少有一门高射炮击中敌机的概率是 .14、盒中有7个白球和3个黑球,从中连取两次,每次取一球,且第一次取出球后又放回盒中,则两个球都是白球的概率为 .15、一个工人看管三台车床,在一小时内车床不需要工人照管的概率;第一台等于0.9,第二台等于0.8,第三台等于0.7,求在一小时内至少有一台车床需要工人照管的概率为 . 三、解答题16、在人寿保险业中,要重视某一年龄的投保人的死亡率,经过随机抽样统计,得到某城市一个投保人能活到75岁的概率为0.60,试问: (1)3个投保人都能活到75岁的概率;(2)3个投保人中只有1人能活到75岁的概率; (3)3个投保人中至少有1人能活到75岁的概率.(结果精确到0.01)17、某种电路开关闭合后,会出现红灯或绿灯闪动,已知开关第一次闭合后,出现红灯和出现绿灯的概率都是21.从开关第二次闭合起,若前次出现红灯,则下一次出现红灯的概率是31,出现绿灯的概率是32;若前次出现绿灯,则下一次出现红灯的概率是53,出现绿灯的概率是52.试问:(1)第二次闭合后出现红灯的概率是多少;(2)三次发光中,出现一次红灯、两次绿灯的概率是多少.18、证明“五局三胜”制(即比赛五局,先胜三局者为优胜者)是公平的比赛制度,即如果比赛双方赢得每局是等可能的,各局比赛是独立进行的,则双方获胜的概率相同.19、有10台同样的机器,每台机器的故障率为0.03,各台机器独立工作,今配有2名维修工人,一般情况下,一台机器故障1个人维修即可,问机器故障无人修的概率是多少?20、有甲、乙、丙三批罐头,每100个,其中各1个是不合格的,从三批罐头中各抽出1个,计算:(1)3个中恰有一个不合格的概率; (2)3个中至少有1个不合格的概率.21、张华同学骑自行车上学途中要经过4个交叉路口,在各交叉路口遇到红灯的概率都是1 5(假设各交叉路口遇到红灯的事件是相互独立的).(1)求张华同学某次上学途中恰好遇到3次红灯的概率;(2)求张华同学某次上学时,在途中首次遇到红灯前已经过2个交叉路口的概率.22、如图:用A、B、C、D四类不同的元件连接成系统N,当元件A正常工作且元件B、C都正常工作,或当元件A正常工作且元件D正常工作时,系统N正常工作.已知元件A、B、C、D正常工作的概率依次为2334 ,,, 3445.(1)求元件A不正常工作的概率;(2)求元件A、B、C都正常工作的概率;(3)求系统N正常工作的概率.参考答案11、0.2612、0.4213、0.93614、0.4915、0.496 三、解答题16、(1)22.0)6.0()3(33≈=P ;(2)29.016.06.03)6.01(6.0)1(2133≈⨯⨯=-⨯⨯=C P ;(3)94.0064.01)6.01(13≈-=--=P .17、解(1)如果第一次出现红灯,则接着又出现红灯的概率是3121⨯;如果第一次出现绿灯,则接着出现红灯的概率为5321⨯.综上,第二次出现红灯的概率为3121⨯+1575321=⨯.(2)由题意,三次发光中,出现一次红灯、两次绿灯的情况共有如下三种方式:① 当出现绿、绿、红时的概率为535221⨯⨯;②当出现绿、红、绿时的概率为325321⨯⨯;③当出现红、绿、绿时的概率为523221⨯⨯;所以三次发光中,出现一次红灯、两次绿灯的概率为535221⨯⨯+325321⨯⨯+523221⨯⨯=.753418、证明:将每一局比赛看作一次试验,考察一方,如甲方胜或负(即乙方负或胜),问题归结为n =5的贝努里试验.设A 表示一局比赛中“甲获胜”事件,由题意,P(A)=21,记B k 为“五局比赛中甲胜k 局”事件,k =0、1、2、3、4、5.则P(“甲获胜”)=P(B 3∪B 4∪B 5).则利用概率的加法公式,注意到C 5k =C 55-k即得 P(“甲获胜”)=P(B 3)+P(B 4)+P(B 5)=C 53(21)5+C 54(21)5+C 55(21)5=21. 而P(“乙获胜”)=P(“甲获胜”)=1-21=21.19、解:A 表示机器故障无人修的事件,A 表示机器故障多不超过2,则P(A )=C 100(0.97)10+C 101(0.97)9(0.03)+C 103(0.97)8(0.03)2=0.9972, P(A)=1-P(A )=0.0028.20、解:(1)P 1=P(A ·B ·C)+P(A ·B ·C)+P(A ·B ·C )=P(A )·P(B)·P(C)+P(A)·P(B )·P(C)+P(A)·P(B)·P(C )=3×(0.01×0.992)≈0.03或者P 1=C 31×0.01×(1-0.01)2=3×0.01×0.992≈0.03.(2)1-0.993≈0.03 21、(1)经过各交叉路口遇到红灯,相当于独立重复试验,所以恰好遇到3次红灯的概率为.62516)511()51()3(3344=-=C P(2)记“经过交叉路口遇到红灯”事件A .张华在第1、2个交叉路口末遇到红灯,在第3个交叉路口遇到红灯的概率为)()()()(A P A P A P A A A P P ⋅⋅=⋅⋅==.1251651)511()511(=⨯-⨯-22、(1)元件A 正常工作的概率P (A )=32,它不正常工作的概率)(1)(A P A P -==;31(2)元件A 、B 、C 都正常工作的概率P(A ·B ·C)=P (A )P (B )P (C )2333;3448=⋅⋅=(3)系统N 正常工作可分为A 、B 、C 都正常工作和A 、D 正常工作但B 、C 不都正常工作两种情况,前者概率83,后者的概率为=⋅⋅⋅+⋅⋅⋅+⋅⋅⋅)()()(D C B A P D C B A P D C B A P544141325441433254434132⋅⋅⋅+⋅⋅⋅+⋅⋅⋅730=. 所以系统N 正常工作的概率是3773830120+=.。

新教材高中数学章末综合检测三成对数据的统计分析新人教A版选择性必修第三册

新教材高中数学章末综合检测三成对数据的统计分析新人教A版选择性必修第三册

章末综合检测(三) 成对数据的统计分析A 卷——基本知能盘查卷一、单项选择题1.可用来分析身高与体重有关系的是( ) A .残差分析 B .线性回归模型 C .等高堆积条形图D .独立检验解析:选B 因为身高与体重是两个具有相关关系的变量,所以要用线性回归模型来解决.2.两个变量y 与x 的经验回归模型中,分别选择了四个不同模型来拟合y 与x 之间的关系,它们的相关指数R 2如下,其中拟合效果最好的模型是( )A .模型1 C .模型3D .模型4解析:选A 两个变量y 与x 的经验回归模型中,它们的相关指数R 2越接近于1,这个模型的拟合效果越好,所给出的四个选项中0.98是相关指数最大的值,所以拟合效果最好的模型是模型1.3.已知一组观测值(x 1,y 1),(x 2,y 2),…,(x n ,y n )满足y i =a +bx i +e i (i =1,2,…,n ),若e i 恒为0,则R 2=( )A .0B .0.5C .0.9D .1选D4.如果有95%的把握说事件A 和B 有关系,那么具体计算出的数据为( ) A .χ2>3.841 B .χ2<3.841 C .χ2>6.635D .χ2<6.635解析:选A 由独立性判断的方法可知,如果有95%的把握,即小概率值α=0.05,则χ2>3.841.5.观察两个变量(存在线性相关关系)得如下数据:A.y ^=12x +1B.y ^=xC.y ^=2x +13D.y ^=x +1解析:选 B 根据表中数据得x -=18×(-10-6.99-5.01-2.98+3.98+5+7.99+8.01)=0,y -=18×(-9-7-5-3+4.01+4.99+7+8)=0,所以两变量x ,y 的经验回归方程过样本点的中心(0,0),可以排除A 、C 、D 选项,故选B.6.2020年初,新型冠状病毒(COVID ­19)引起的肺炎疫情爆发以来,各地医疗机构采取了各种针对性的治疗方法,取得了不错的成效,某地开始使用中西医结合方法后,每周治愈的患者人数如下表所示:周数(x ) 1 2 3 4 5 治愈人数(y )2173693142由表格可得y 关于x 的二次回归方程为y ^=6x 2+a ,则此回归模型第4周的残差(实际值与预报值之差)为( )A .5B .4C .1D .0解析:选A 设t =x 2,则t -=15(1+4+9+16+25)=11,y -=15(2+17+36+93+142)=58,a =58-6×11=-8,所以y ^=6x 2-8.令x =4,得e 4=y 4-y ^4=93-6×42+8=5.7.通过随机询问100名性别不同的高二学生是否爱吃零食,得到如下的列联表:喜爱程度 性别合计 男(Y =0) 女(Y =1) 爱好(X =0) 10 40 50 不爱好(X =1)20 30 50 合计3070100参考数据及公式:P (χ2≥x α)0.10 0.05 0.01 x α2.7063.8416.635其中χ2=n ad -bc 2a +bc +d a +cb +d,n =a +b +c +d .则下列结论正确的是( )A .根据小概率值α=0.05的独立性检验,认为爱吃零食与性别有关B .根据小概率值α=0.05的独立性检验,认为爱吃零食与性别无关C .根据小概率值α=0.01的独立性检验,认为爱吃零食与性别有关D .根据小概率值α=0.1的独立性检验,认为爱吃零食与性别无关 解析:选A 零假设为H 0:是否爱吃零食与性别相互独立,即是否爱吃零食与性别无关.根据列联表中的数据,经计算得到 χ2=100×10×30-40×20250×50×30×70≈4.762>3.841=x 0.05,所以依据小概率值α=0.05的独立性检验,推断H 0不成立,即认为是否爱吃零食与性别有关.同理可得,根据小概率值α=0.01的独立性检验,认为爱吃零食与性别无关;根据小概率值α=0.1的独立性检验,认为爱吃零食与性别有关.8.某考察团对全国10大城市进行职工人均工资水平x (千元)与居民人均消费水平y (千元)统计调查,y 与x 具有相关关系,回归方程为y ^=0.66x +1.562.若某城市居民人均消费水平为7.675千元,估计该城市人均消费额占人均工资收入的百分比约为( )A .83%B .72%C .67%D .66%解析:选A 将y ^=7.675代入回归方程,可计算得x ≈9.262,所以该城市人均消费额占人均工资收入的百分比约为7.675÷9.262≈0.83,即约为83%.二、多项选择题9.下列说法正确的是( )A .自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系B .在线性经验回归模型中,相关系数r 的值越大,变量间的相关性越强C .在残差图中,残差点分布的水平带状区域的宽度越狭窄,其模型拟合的精度越高D .在经验回归模型中,R 2为0.98的模型比R 2为0.80的模型拟合的效果好解析:选ACD 由于线性相关系数|r |≤1,且当|r |越大,线性相关性越强,故r <0时,选项B 不正确,A 、C 、D 均正确.10.四名同学根据各自的样本数据研究变量x ,y 之间的相关关系,并求得回归直线方程,则下列结论正确的是( )A .y 与x 负相关且y ^=2.347x -6.423 B .y 与x 负相关且y ^=-3.476x +5.648 C .y 与x 正相关且y ^=5.437x +8.493 D .y 与x 正相关且y ^=-4.326x -4.578解析:选BC 正相关指的是y 随x 的增大而增大,负相关指的是y 随x 的增大而减小,故正确的为B 、C.11.以下关于线性经验回归的判断中,正确的选项为( )A .若散点图中所有点都在一条直线附近,则这条直线为经验回归直线B .散点图中的绝大多数都线性相关,个别特殊点不影响线性回归,如图中的A ,B ,C 点C .已知线性经验回归方程为y ^=0.50x -0.81,则x =25时,y 的估计值为11.69 D .线性经验回归方程的意义是它反映了样本整体的变化趋势解析:选BCD 能使所有数据点都在它附近的直线不止一条,而据回归直线的定义知,只有按最小二乘法求得回归系数a ^,b ^得到的直线y ^=b ^x +a ^才是回归直线,所以A 错误;B 正确;将x =25代入y ^=0.50x -0.81,得y ^=11.69,所以C 正确;D 正确.12.有两个分类变量X 与Y ,其2×2列联表如下表所示:X Y 合计 Y =0 Y =1X =0 a20-a 20 X =115-a 30+a 45 合计155065其中a,15-a 均为大于5的整数,根据小概率值α=0.05的独立性检验,认为X 与Y 之间有关,则a 等于( )A .7B .8C .9D .6解析:选BC 根据小概率值α=0.05的独立性检验,认为X 与Y 之间有关,需要χ2的值大于或等于3.841,由χ2=65×[a 30+a -20-a15-a ]220×45×15×50=1313a -6025 400≥3.841,解得a ≥7.69或a ≤1.54.而a >5且15-a >5,a ∈Z , 所以a =8或a =9. 三、填空题13.为了研究男子的年龄与吸烟的关系,抽查了100个男子,按年龄超过和不超过40岁,吸烟量每天多于和不多于20支进行分组,如下表:吸烟量年龄合计不超过40岁 (Y =0)超过40岁 (Y =1) 不多于20支/天(X =0) 50 1565多于20支/天 (X =1) 10 25 35 合计6040100则χ2=________(保留到小数点后两位有效数字). 解析:由列联表知χ2=100×10×15-50×25260×40×65×35≈22.16.答案:22.1614.某高校“统计初步”课程的教师随机调查了选该课程的一些学生情况,具体数据如下表:性别专业非统计专业 (Y =0)统计专业 (Y =1) 男(X =0) 13 10 女(X =1)720为了判断主修统计专业是否与性别有关系,根据表中数据,得到χ2=50×13×20-10×7223×27×20×30≈4.844>3.841,所以能根据小概率值α=________,我们断定主修统计专业与性别有关系.解析:因为P (χ2≥3.841)=0.05,所以小概率值α=0.05. 答案:0.0515.下表是降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对应数据,根据表中提供的数据,求出y 关于x 的线性经验回归方程y ^=0.7x +0.35,那么表中m 的值为________.x3 4 5 6y2.5 m 4 4.5解析:根据所给的表格可以求出x -=3+4+5+64=4.5,y -=2.5+m +4+4.54=11+m 4,因为这组数据的样本点的中心在线性经验回归直线上, 所以11+m4=0.7×4.5+0.35,所以m =3.答案:3 四、解答题16.(12分)为做好2022年北京冬季奥运会的宣传工作,组委会计划从某大学选取若干名大学生志愿者,某记者在该大学随机调查了1 000名大学生,以了解他们是否愿意做志愿者工作,得到的数据如表所示:性别 是否愿意做志愿者 合计 愿意(Y =0)不愿意(Y =1)男(X =0)610 女(X =1)90 合计800(1)根据题意完成表格.(2)依据小概率值α=0.05的独立性检验,分析愿意做志愿者工作与性别是否有关? 参考公式及数据:χ2=n ad -bc 2a +bc +d a +cb +d,其中n =a +b +c +d .P (χ2≥x α)0.10 0.05 0.01 x α2.7063.8416.635解:(1)性别 是否愿意做志愿者 合计 愿意(Y =0)不愿意(Y =1)男(X =0) 500 110 610 女(X =1) 300 90 390 合计8002001 000(2)零假设为H 0:愿意做志愿者工作与性别是相互独立,即愿意做志愿者工作与性别是无关的.根据列联表中的数据,经计算得到 χ2=1 000×500×90-110×3002610×390×800×200=3 000793≈3.783<3.841=x 0.05, 所以依据小概率值α=0.05的独立性检验,没有充分证据推断H 0不成立,即愿意做志愿者工作与性别是无关的.17.(12分)自从高中生通过高校自主招生可获得加分进入高校的政策出台后,自主招生越来越受到高中生家长的重视.某机构为了调查A 城市和B 城市的高中家长对于自主招生的关注程度,在这两个城市中抽取了100名高中生家长进行了调查,得到下表:城市高中家长是否关注合计关注(Y =0)不关注(Y =1)A 城高中家长(X =0)2050B 城高中家长(X =1) 20 合计100(1)完成上面的列联表;(2)根据上面列联表的数据,能否根据小概率值α=0.05的独立性检验,判断家长对自主招生关注与否与所处城市有关系;(3)为了进一步研究家长对自主招生的看法,该机构从关注的学生家长里面,按照分层随机抽样方法抽取了5人,并再从这5人里面抽取2人进行采访,求所抽取的2人恰好A ,B 两城市各一人的概率.参考公式:χ2=n ad -bc 2a +bc +d a +cb +d(其中n =a +b +c +d ).附表:P (χ2≥x α)0.10 0.05 0.010 x α2.7063.8416.635解:(1)列联表如下: 城市高中家长是否关注合计关注(Y =0) 不关注(Y =1)A 城高中家长(X =0)203050B 城高中家长(X =1) 30 20 50 合计 5050100(2)零假设为H 0:家长对自主招生关注与否与所处城市相互独立,即家长对自主招生关注与否与所处城市无关.根据列联表中的数据,经计算得到 χ2=100×20×20-30×30250×50×50×50=4>3.841.所以根据小概率值α=0.05的独立性检验,我们推断H 0不成立,即认为家长对自主招生的关注与否与所处城市是有关的.(3)关注的人共有50人,按照分层随机抽样的方法,A 城市2人,B 城市3人,从5人中抽取2人有C 25=10种不同的方法,A ,B 两城市各取一人有C 12C 13=2×3=6种不同的方法,故所抽取的2人恰好A ,B 两城市各一人的概率为C 13C 12C 25=610=0.6.B 卷——高考能力达标卷一、单项选择题1.下列属于相关关系的是( ) A .利息与利率 B .居民收入与储蓄存款 C .电视机产量与苹果产量 D .某种商品的销售额与销售价格解析:选B A 与D 是函数关系,C 中两变量没有关系,B 中居民收入与储蓄存款是相关的,但不具有函数关系.2.已知一个经验回归方程为y ^=1.5x +45,其中x 的取值依次为1,7,5,13,19,则y -=( )A .58.5B .46.5C .60D .75解析:选A x -=1+7+5+13+195=9,因为经验回归直线必过样本点的中心(x -,y -), 所以y -=1.5×9+45=13.5+45=58.5.3.已知每一吨铸铁成本y (元)与铸件废品率x %建立的经验回归方程y ^=56+8x ,则下列说法正确的是( )A .废品率每增加1%,成本每吨增加64元B .废品率每增加1%,成本每吨增加8%C .废品率每增加1%,成本每吨增加8元D .如果废品率增加1%,则每吨成本为56元解析:选C 根据经验回归方程知y 是关于x 的单调增函数,并且由系数知x 每增加一个单位,y 平均增加8个单位.4.某商品销售量y (件)与销售价格x (元/件)负相关,则其经验回归方程可能是( ) A .y =-10x +200 B .y =10x +200 C .y =-10x -200D .y =10x -200解析:选A 由于销售量y 与销售价格x 成负相关,故排除B 、D.又当x =10时,A 中y =100,而C 中y =-300,C 不符合题意.5.设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的经验回归方程为y ^=0.85x -85.71,则下列说法错误的是( )A .y 与x 具有正的线性相关关系B .经验回归直线过样本点的中心C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg解析:选D 选项中,若该大学某女生身高为170 cm ,则可断定其体重约为0.85×170-85.71=58.79(kg).故D 选项错误.6.如图所示的是调查某地区男、女中学生喜欢理科的等高堆积条形图,阴影部分表示喜欢理科的百分比,从图中可以看出( )A .性别与喜欢理科无关B .女生中喜欢理科的比例约为80%C .男生比女生喜欢理科的可能性大些D .男生中不喜欢理科的比例约为60%解析:选C 由题图可知女生中喜欢理科的比例约为20%,男生中喜欢理科的比例约为60%,因此男生比女生喜欢理科的可能性大些.7.如图,5个(x ,y )数据,去掉D (3,10)后,下列说法错误的是( )A .相关系数r 变大B .残差平方和变大C .相关指数R 2变大D .解释变量x 与预报变量y 的相关性变强解析:选B 由散点图知,去掉D 后,x 与y 的相关性变强,且为正相关,所以r 变大,R 2变大,残差平方和变小.8.为考察数学成绩与物理成绩的关系,某老师在高二随机抽取了300名学生,得到下面的列联表:物理成绩数学成绩合计85~100分 (Y =0)85分以下 (Y =1) 85~100分(X =0) 37 85 122 85分以下(X =1)35 143 178 合计72228300 根据表中数据,分析数学成绩与物理成绩有关联的出错率不超过( ) A .0.5% B .1% C .0.1%D .5%解析:选D 由表中数据代入公式得 χ2=300×37×143-85×352122×178×72×228≈4.514>3.841=x 0.05,所以判断的出错率不超过5%. 二、多项选择题9.给出下列实际问题,其中用独立性检验可以解决的问题有( ) A .一种药物对某种病的治愈率 B .两种药物治疗同一种病是否有区别 C .吸烟得肺病的概率 D .吸烟与性别是否有关系答案:BD10.对于经验回归方程y ^=b ^x +a ^,下列说法正确的是( ) A .直线必经过点(x -,y -)B .x 增加1个单位时,y 平均增加b ^个单位 C .样本数据中x =0时,可能有y =a ^D .样本数据中x =0时,一定有y =a ^解析:选ABC 经验回归方程是根据样本数据得到的一个近似曲线,故由它得到的值也是一个近似值.11.下列说法中正确的有( ) A .若r >0,则x 增大时,y 也相应增大 B .若r <0,则x 增大时,y 也相应增大C .若r =1或r =-1,则x 与y 的关系完全对应(有函数关系),在散点图上各个散点均在一条直线上D .|r |越接近1,相关关系越强解析:选ACD 若r >0,表示两个相关变量正相关,x 增大时,y 也相应增大,故A 正确.r <0,表示两个变量负相关,x 增大时,y 相应减小,故B 错误.|r |越接近1,表示两个变量相关性越高,|r |=1表示两个变量有确定的关系(即函数关系),故C 正确,D 正确.12.根据如下样本数据:得到的经验回归方程为y =b x +a ,则( ) A.a ^>0 B.a ^<0 C.b ^>0D.b ^<0解析:选AD 根据题意,画出散点图(图略).根据散点图,知两个变量为负相关,且经验回归直线与y 轴的交点在y 轴正半轴,所以a ^>0,b ^<0.三、填空题13.期中考试后,某校高三(9)班对全班65名学生的成绩进行分析,得到数学成绩y 对总成绩x 的回归直线方程为y ^=6+0.4x .由此可以估计:若两名同学的总成绩相差50分,则他们的数学成绩大约相差________分.解析:令两人的总成绩分别为x 1,x 2.则对应的数学成绩估计为y ^1=6+0.4x 1,y ^2=6+0.4x 2,所以|y ^1-y ^2|=|0.4(x 1-x 2)|=0.4×50=20. 答案:2014.为了判断高三年级学生选修文科是否与性别有关,现随机抽取70名学生,得到如图所示2×2列联表:已知P (≈4.667,则在犯错误的概率不大于________的前提下认为选修文科与性别有关.解析:由题意知, χ2≈4.667,因为6.635>4.667>3.841,所以在犯错误的概率不大于0.05的前提下认为选修文科与性别有关.答案:0.0515.已知x ,y 之间的一组数据如下表,对于表中数据,甲、乙两同学给出的拟合直线分别为l 1:y =13x +1与l 2:y =12x +12,利用最小二乘法判断拟合程度更好的直线是______________.解析:用y =13x +1作为拟合直线时,所得y 的实际值与y 的估计值的差的平方和为:S 1=⎝⎛⎭⎪⎫1-432+(2-2)2+(3-3)2+⎝⎛⎭⎪⎫4-1032+⎝⎛⎭⎪⎫5-1132=73.用y =12x +12作为拟合直线时,所得y 的实际值与y 的估计值的差的平方和为:S 2=(1-1)2+(2-2)2+⎝⎛⎭⎪⎫3-722+(4-4)2+⎝⎛⎭⎪⎫5-922=12. 因为S 2<S 1,故用直线l 2:y =12x +12拟合程度更好.答案:y =12x +12四、解答题16.(12分)微信是现代生活进行信息交流的重要工具,某公司200名员工中90%的人使用微信,其中每天使用微信时间在一小时以内的有60人,其余的员工每天使用微信的时间在一小时以上.若将员工分成青年(年龄小于40岁)和中年(年龄不小于40岁)两个阶段,则使用微信的人中75%是青年人.如果规定每天使用微信时间在一小时以上为经常使用微信,那么经常使用微信的员工中,中年人有40人.(1)若要调查该公司使用微信的员工经常使用微信与年龄的关系,请完成下面的2×2列联表;使用微信 年龄合计青年人(Y =0)中年人(Y =1)经常使用微信 (X =0)不经常使用微信(X =1) 合 计(2)根据列联表中的数据,依据小概率值α=0.001的独立性检验分析该公司经常使用微信的员工与年龄的关系.解:(1)由已知可得,该公司员工中使用微信的有200×90%=180(人). 经常使用微信的有180-60=120(人), 使用微信的人中青年人有180×75%=135(人), 故2×2列联表如下:使用微信 年龄合计青年人(Y =0)中年人(Y =1)经常使用微信 (X =0) 8040120不经常使用微信(X =1) 55 5 60 合 计 13545180(2)零假设为H 0:该公司经常使用微信的员工与年龄相互独立,即该公司经常使用微信的员工与年龄无关.将列联表中的数据代入公式可得, χ2=180×80×5-40×552135×45×120×60≈13.333>10.828=x 0.001,所以根据小概率值α=0.001的独立性检验,我们推断H 0不成立,即认为该公司经常使用微信的员工与年龄有关.17.(12分)淘宝网卖家在某商品的所有买家中,随机选择男女买家各50位进行调查,他们的评分等级如下:评分等级 [0,1] (1,2] (2,3] (3,4] (4,5] 女/人 2 7 9 20 12 男/人 3918128(1)从评分等级为(4,5]的人中随机选取2人,求恰有1人是男性的概率;(2)规定:评分等级在[0,3]为不满意该商品,在(3,5]为满意该商品.完成下面列联表,并根据小概率值α=0.05的独立性检验,分析性别与对商品满意度是否有关.性别评分等级合计满意该商品 (Y =0)不满意该商品(Y =1)女(X =0) 男(X =1) 合计解:(1)因为从评分等级(4,5]的20人中随机选取2人,共有C 220=190种选法,其中恰有1人为男性的共有C 112C 18=96种选法,所以所求概率P =96190=4895.(2)列联表如下:性别评分等级合计满意该商品 (Y =0)不满意该商品(Y =1) 女(X =0) 32 18 50 男(X =1) 20 30 50 合计5248100 零假设为H 0:性别与对商品满意度相互独立,即性别与对商品满意度无关.由公式得χ2=100×32×30-20×18250×50×52×48≈5.769>3.841=x 0.05,所以根据小概率值α=0.05的独立性检验,我们推断H 0不成立,即可以认为性别与对商品满意度有关.。

人教版高中数学必修三第三章概率选修2-3概率-高考题(3)

人教版高中数学必修三第三章概率选修2-3概率-高考题(3)

选修2-3概率-高考题 (3)一、选择题1.下列说法中,正确的是A .不可能事件发生的概率为B .随机事件发生的概率为21C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【答案】A【逐步提示】本题考查了概率的意义和事件发生的概率,根据概率的意义和事件发生的概率,依次判断各个选项是否正确.【详细解答】解: A.不可能事件发生的概率为0,所以A 选项正确;B.随机事件发生的概率在0与1之间,所以B 选项错误;C.概率很小的事件不是不可能发生,而是发生的机会较小,所以C 选项错误;D.投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D 选项错误,故选择 A. 【解后反思】概率的意义:一般地,在大量重复实验中,如果事件A 发生的频率会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率,记为P (A )=p ;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率P (A )=1;不可能发生事件的概率P (A )=0.【关键词】不可能事件;随机事件;概率的意义;2.(2016甘肃省天水市,3,4分)下列事件中,必然事件是()A .抛掷1枚骰子,出现6点向上B .两条直线被第三条直线所截,同位角相等C .366人中至少有2个人的生日相同D .实数的绝对值是非负数【答案】D【逐步提示】本题考查事件的分类,解题的关键是认识到在一定条件下,有些事件必然会发生,这样的事件称为必然事件;在一定条件下,可能发生也可能不发生的事件称为随机事件,只有分清各种事件才能做出正确的判断.【详细解答】解:抛掷1枚骰子,可能出现6点向上,也可能出现其它点数向上,所以A 中事件是随机事件.只有两条平行直线被第三条直线所截,同位角才一定相等,所以B 中事件是随机事件.由于闰年有366天,有可能出现这366人的生日一人占一天的情况,所以C 中事件不是必然事件.对于D ,由于正实数的绝对值是正数,0的绝对值是0,负实数的绝对值是正数,所以实数的绝对值一定是非负数,属于必然事件.故选择D .【解后反思】对于B 中事件,由于阅读不细致、认真,易受思维定势的影响误认为是两条平行直线被第三条直线所截,从而认定同位角必定相等而错误地判断为必然事件.另外,本题难点在于对C 中事件的认识,可以按照“一个萝卜一个坑”的现实原理加强理解.【关键词】必然事件;随机事件.3.(2016广东省广州市,4,3分)某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码锁的概率是()A .101B .91C .31D .21【答案】A【逐步提示】所设密码最后那个数字是0-9这十个数字中的一个,即共有10种可能,密码数字只有1种,据此可根据概率的计算公式求解结果.【详细解答】解:根据题意可知,密码锁所设密码的最后那个数字是0-9这十个数字中的一个,因此,一次就能打开该密码锁的概率是101,故选择A .【解后反思】(1)一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性相等,事件A包含其中的m 种结果,那么事件A 发生的概率nm A P )(.(2)求较复杂随机事件的概率时,常用画树状图或列表法不重不漏地列出所有等可能结果.【关键词】概率的计算公式4.(2016广东茂名,4,3分)下列事件中,是必然事件的是()A.两条线段可以组成一个三角形B.400人中有两个人的生日在同一天C.早上的太阳从西方升起D.打开电视机,它正在播放动画片【答案】B【逐步提示】本题考查了必然事件的概念,解题的关键是正确区分必然事件与不可能事件、随机事件.事先能肯定它一定会发生的事件称为必然事件.事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.而不确定事件(即随机事件)是在一定条件下,可能发生也可能不发生的事件.【详细解答】解:三角形是由三条不在同一直线上的线段首尾顺次相接组成的,两条线段不能组成一个三角形,选项A中的事件属于不可能事件;一年有365天或366天,由于400>365,400>366,因此400人中必有两个人的生日在同一天,选项B中的事件属于必然事件;根据自然规律,早上的太阳从东方升起,选项C中的事件属于不可能事件;打开电视机,它不一定正在播放动画片,选项D中的事件属于随机事件. 故选择 B .【解后反思】事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,其中,①必然事件发生的概率为1,即P(必然事件)=1;②不可能事件发生的概率为0,即P(不可能事件)=0;③如果A为不确定事件(随机事件),那么0<P(A)<1.【关键词】不可能事件;必然事件;随机事件5.(2016湖北宜昌,6,3分)在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法来估算正面朝上的概率,其实验次数分别为10次,50次,100次,200次,其中实验相对科学的是()A.甲组B.乙组C.丙组D.丁组【答案】D【逐步提示】本题考查了用频率估计概率,解题的关键是根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详细解答】解:甲组实验了10次,乙组实验了50次,丙组实验了100次,丁组实验了200次,实验次数多的频率往往接近事件发生的概率,故选择 D .【解后反思】在一次试验中,若共有n次等可能的结果,其中事件A包含m个等可能的结果,则事件A的概率为P(A)=mn.随机事件的频率,指此事件发生的次数与试验总次数的比值,当试验次数很多时,它具有一定的稳定性,即稳定在某一常数附近,而偏离的它可能性很小.为了说明这种规律,我们把这个常数称为这个随机事件的概率.它从数量上反映了随机事件发生的可能性的大小,而频率在大量重复试验的前提下可近似地作为这个事件的概率.【关键词】概率公式;用频率估计概率6(2016湖南常德,5,3分)下列说法正确的是A.袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机取出一个球,一定是红球.B.天气预报“明天降水概率10%”,是指明天有10%的时间会下雨.C.某地发行一种福利彩票,中奖概率是千分之一.那么,买这种彩票1000张,一定会中奖.D.连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上.【答案】D【逐步提示】本题考查的是概率的含义.概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能.【详细解答】解:选项A、“取到红球”是随机事件,且可能性较大,但不是必然事件,所以从中随机取出一个球,不一定是红球,所以A选项错误;选项B、“明天降水概率10%”,是指下雨的可能性为10%,而不是10%的时间会下雨,所以B选项错误;选项C、“中奖概率是千分之一”是指这批彩票总体平均每1000张有一张中奖,而不是买这种彩票1000张,一定会中奖,所以C选项错误;选项D、“投掷一枚质地均匀的硬币正面朝上”是随机事件,所以第六次仍然可能正面朝上,所以D选项正确.故选D.【解后反思】事件分为确定事件和不确定事件,确定事件分为必然事件和不可能事件;也就是说一定发生的事件是必然事件,一定不会发生的事件是不可能事件;可能发生,也可能不发生的事件是不确定事件;必然事件发生的概率是1,不可能发生的事件发生的概率是0,不确定事件发生的概率大于零小于1,偶然事件0到1之间【关键词】概率的含义;随机事件;7.(2016湖南湘西,15,4分)在一个不透明的口袋中装有6个红球,2个绿球,这些球除颜色外无其它差别,从这个袋子中随机摸出一个球,摸到红球的概率为A .43B .41C .21D .1【答案】A【逐步提示】本题考查了概率的定义,熟悉定义是解题的关键.口袋中共8个球,其中有6个红球,根据概率定义解题即可.【详细解答】解:P(摸到红球)=86=43,故答案为43.故选择 A .【解后反思】一般地,在试验中,如果各种结果发生的可能性都相同,那么一个事件A 发生的概率计算公式为P(A)=A 事件可能发生的结果数所有等可能结果的总数.【关键词】摸球;简单事件的概率二、填空题1.(2016福建福州,15,4分)已知四个点的坐标分别是(-1,1),(2,2),(32,23),(-5,-51),从中随机选取一个点,在反比例函数y =x1图象上的概率是.【答案】12【逐步提示】本题考查了概率的计算和反比例函数的性质,解题的关键是掌握等可能事件概率的计算公式.先判断四个点的坐标是否在反比例函数y =x1图象上,再用在反比例函数y =x1图象上点的个数除以点的总数即为在反比例函数y =x1图象上的概率.【详细解答】解:∵﹣1×1=﹣1,2×2=4,×=1,(﹣5)×(﹣)=1,∴2个点的坐标在反比例函数y =x1图象上,∴在反比例函数y =x1图象上的概率是2÷4=12,故答案为12.【解后反思】此类问题容易出错的地方是不能正确判断所关注事件可能出现的结果数,以及所有等可能出现的结果数.等可能性事件的概率的计算公式:P(A)=n m,其中m 是总的结果数,n 是该事件成立包含的结果数.【关键词】反比函数的图像;概率的计算公式;2.(2016贵州省毕节市,18,5分)掷两枚质地均匀的骰子,其点数之和大于10的概率为_________.【答案】112【逐步提示】本题考查了求简单随机事件的概率,解题的关键掌握用列表法或画树状图的方法进行计算.本题用列表法更方便,表中也可只用两种符号来表示点数之和大于10和不大于10,这样能一目了然,不易出错.【详细解答】解:设点数之和小于或等于10用○表示,大于10用√表示不,列表如下:1 2 3 4 5 6 1 ○○○○○○2 ○○○○○○3 ○○○○○○4 ○○○○○○5 ○○○○○√6○○○○√√由表可知,掷两枚骰子,共有36种等可能的情况出现,其中点数之和大于10的结果共有3种,所以P (点数之和大于10)=336=112,故答案为112.【解后反思】此类问题的易错点是没有列表或画树状图,只凭想象列举出所有可能的结果,造成丢掉一些情况,如把(1,2)和(2,1)当作一种情况,从而致错.【关键词】求概率的方法;3.(2016河南省,12,3分)在“阳光体育”活动期间,班主任将全班同学随机分成了4组进行活动,则该班小明和小亮被分在同一组的概率是_________.【答案】41【逐步提示】本题考查的是用列表法或画树状图法求概率,解题的关键是合理选择方法求概率.思路:选择树状图或列表法解题,通过分析看出,小明和小亮任意分在各组的可能情况为16种,两次抽出卡片所标数字不同占4种,则利用公式可求出事件的概率.【详细解答】解:列表得:设分A 、B 、C 、D 四个组AB C D A (A ,A )(A ,B )(A ,C )(A ,D )B (B ,A )(B ,B )(B ,C )(B ,D )C (C ,A )(C ,B )(C ,C )(C ,D )D(D ,A )(D ,B )(D ,C )(D ,D )所有等可能的情况有16种,其中小明和小亮分在同一组的情况有4种,则P=41164,故答案为41.【解后反思】此类问题容易出错的地方是抽象不出基本概型,事件发生的可能情况列举不出来.一般方法规律是用数值来刻画事件发生的可能性大小,这个数值就是概率.一般地,如果一个实验有n 个等可能的结果,而事件A 包含其中m 个结果,我们可计算概率P(A)=m n=A 事件包含的可能结果数所有可能结果数.运用列举法(包括列表、画树状图)计算简单事件发生的概率的能力,有利于提高学生的数学意识、应用数学的能力和数学素养.【关键词】求概率方法——树状图法和列表法4.(2016湖南省郴州市,13,3分)同时掷两枚均匀的硬币,则两枚都出现反面朝上的概率是.【答案】14【逐步提示】本题考查的是概率问题,解题的关键是弄清事件发生的所有可能的情况,然后看事件发生的概率.抛两枚硬币有四种情况:即(正正)(正反)(反反)(反正),然后判断两个反面朝上的概率就可以了.【详细解答】解:设两枚硬币分别为甲、乙:共有四种结果:(正正)(正反)(反正)(反反)∴14P 两个反面朝上=.反面硬币甲硬币乙开始正面反面正面正面反面【解后反思】此类问题容易出错的地方是列举所有可能性事件时重复或遗漏.(1)运用公式P(A)=nm 求简单事件发生的概率,在确定各种事件等可能性的基础上,关键是求事件所有可能的结果种数n 和使事件A 发生的结果种数m.(2)求简单随机事件的概率有两种方法.①在做了大量试验的基础上,可以用频率的近似地估计概率;②可以用列表或画树状图,列举出所有可能事件,再求概率.(3)列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.【关键词】概率;树状图;.6(2016湖南省怀化市,14,4分)一个不透明的袋子,装了除颜色不同,其它没有任何区别的红色球3个,绿色球4个,黑色球7个,黄色球2个,从袋子中随机摸出一个球,摸到黑色球的概率是______________.【答案】716【逐步提示】在等可能的条件下,袋共有球3+4+7+2=16个,其中黑色球7个,从袋子中随机摸出一个球,摸到黑色球的概率是黑色球数:总球数.【详细解答】解:P黑色球=73472=716,故答案为716.【解后反思】此题考查概率,难度不大,解题的关键是掌握概率的计算公式.【关键词】概率的计算公式7.(2016湖南省湘潭市,12,3分)从2015年12月26日起,一艘载满湘潭历史和文化的“航船——湘潭市规划展示馆、博物馆和党史馆(以下简称‘三馆’)”正式起航,市民可以免费到三馆参观.听说这个好消息,小张同学准备星期天去参观其中一个馆,假设参观者选择每一个馆参观的机会均等,则小张同学选择参观博物馆的概率为.【答案】13【逐步提示】本题考查了概率的计算,解题的关键是知道某事件发生的概率等于该事件出现的可能次数与所有可能次数之间的比.因此先确定参观博物馆的可能次数和参观三个馆总数,再根据概率公式计算即可.【详细解答】解:∵共有3个馆,参观博物馆的可能性为1,∴小张同学选择参观博物馆的概率为13,故答案为13.【解后反思】掌握此类问题,需熟练掌握以下知识:(1)公式法:P(A)=nm,其中n 为所有事件的总数,m 为事件A 发生的总次数;(2)列举(列表或画树状图)法的一般步骤为:①判断使用列表或画树状图方法:列表法一般适用于两步计算;画树状图法适合于两步及两步以上求概率;②不重不漏的列举出所有事件出现的可能结果,并判定每种事件发生的可能性是否相等;③确定所有可能出现的结果数n 及所求事件A 出现的结果m ;④用公式P(A)=nm ,求事件A 发生的概率.【关键词】概率初步8.(2016年湖南省湘潭市,12,3分)从2015年12月26日起,一艘载满湘潭历史和文化的“航船——湘潭市规划展示馆、博物馆和党史馆(以下简称‘三馆’)”正式起航,市民可以免费到三馆参观。

高中数学人教A版必修三 第三章 概率 学业分层测评15 Word版含答案

高中数学人教A版必修三 第三章 概率 学业分层测评15 Word版含答案

随机事件的概率一、选择题1.一个家庭中先后有两个小孩,则他(她)们的性别情况可能为( )A .男女、男男、女女B .男女、女男C .男男、男女、女男、女女D .男男、女女【解析】 用列举法知C 正确. 【答案】 C2.从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:卡片号码12 3 4 5 6 7 8 9 10 取到的次数 101188610189119则取到号码为奇数的频率是( ) A .053 B .05 C .047D .037【解析】 取到号码为奇数的频率是10+8+6+18+11100=053 【答案】 A3.给出下列三种说法:①设有一大批产品,已知其次品率为01,则从中任取100件,必有10件是次品;②作7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是n m =37;③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数是( )A .0B .1C .2D .3【解析】 由频率与概率之间的联系与区别知①②③均不正确. 【答案】 A 二、填空题6.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A ,则事件A 出现的频数为________,事件A 出现的频率为________ 【28750049】【解析】 100次试验中有48次正面朝上,则52次反面朝上,则频率=频数试验次数=52100=052【答案】 52 0527.已知随机事件A 发生的频率是002,事件A 出现了10次,那么共进行了________次试验.【解析】 设进行了n 次试验,则有10n =002,得n =500,故进行了500次试验.【答案】 5008.从100个同类产品中(其中有2个次品)任取3个.①三个正品;②两个正品,一个次品;③一个正品,两个次品;④三个次品;⑤至少一个次品;⑥至少一个正品.其中必然事件是________,不可能事件是________,随机事件是________.【解析】从100个产品(其中2个次品)中取3个可能结果是:“三个全是正品”,“两个正品,一个次品”,“一个正品,两个次品”.【答案】⑥④①②③⑤三、解答题9.(1)从甲、乙、丙、丁四名同学中选2名代表学校参加一项活动,可能的选法有哪些?(2)试写出从集合A={a,b,c,d}中任取3个元素构成集合.【解】(1)可能的选法为:(甲,乙),(甲,丙),(甲,丁),(乙,丙),(乙,丁),(丙,丁).(2)可能的集合为{a,b,c},{a,b,d},{a,c,d},{b,c,d}.10.一个地区从某年起几年之内的新生婴儿数及其中的男婴数如下:(1)计算男婴出生的频率;(保留4位小数)(2)这一地区男婴出生的频率是否稳定在一个常数上?【解】(1)男婴出生的频率依次是:0520 0,0517 3,0517 3,0517 3(2)各个频率均稳定在常数0517 3上.[能力提升]1.掷一枚硬币,反面向上的概率是12,若连续抛掷同一枚硬币10次,则有( )A .一定有5次反面向上B .一定有6次反面向上C .一定有4次反面向上D .可能有5次反面向上【解析】 掷一枚硬币,“正面向上”和“反面向上”的概率为12,连掷10次,并不一定有5次反面向上,可能有5次反面向上.【答案】 D2.总数为10万张的彩票,中奖率是11 000,对于下列说法正确的是( )A .买1张一定不中奖B .买1 000张一定中奖C .买2 000张不一定中奖D .买20 000张不中奖【解析】 由题意,彩票中奖属于随机事件, ∴买一张也可能中奖,买2 000张也不一定中奖. 【答案】 C3.一袋中装有10个红球,8个白球,7个黑球,现在把球随机地一个一个摸出来,为了保证在第k 次或第k 次之前能首次摸出红球,则k 的最小值为________.【解析】 至少需摸完黑球和白球共15个. 【答案】 164.某教授为了测试贫困地区和发达地区的同龄儿童的智力,出了10个智力题,每个题10分.然后作了统计,下表是统计结果.贫困地区:发达地区:(1)利用计算器计算两地区参加测试的儿童中得60分以上的频率;(2)求两个地区参加测试的儿童得60分以上的概率;(3)分析贫富差距为什么会带来人的智力的差别?【解】(1)贫困地区依次填:0533,0540,0520,0.520,0512,0503发达地区依次填:0567,0580,0560,0555,0552,0550(2)贫困地区和发达地区参加测试的儿童得60分以上的频率逐渐趋于05和055,故概率分别为05和055(3)经济上的贫困导致贫困地区生活水平落后,儿童的健康和发育会受到一定的影响;另外经济落后也会使教育事业发展落后,导致智力出现差别.。

新版高中数学人教A版必修3习题:第三章概率 3.1.2(1)

新版高中数学人教A版必修3习题:第三章概率 3.1.2(1)

3.1.2概率的意义课时过关·能力提升一、基础巩固1.概率是指()A.事件发生的可能性大小B.事件发生的频率C.事件发生的次数D.无任何意义2.若某篮球运动员的投篮命中率为98%,则估计该运动员投篮1 000次命中的次数为()A.20B.98C.980D.9981000次命中的次数约为1000×98%=980.3.天气预报中预报某地明天降雨的概率为90%,则()A.降雨的可能性是90%B.90%太大,一定降雨C.该地有90%的区域降雨D.降雨概率为90%没有什么意义90%说明明天降雨的可能性是90%.4.已知某学校有教职工400名,从中选举40名教职工组成教职工代表大会,每名教职工当选的概率是110,则下列说法正确的是()A.10名教职工中,必有1人当选B.每名教职工当选的可能性是1 10C.数学教研组共有50人,该组当选教工代表的人数一定是5D.以上说法都不正确5.从一批准备出厂的电视机中随机抽取10台进行质量检查,其中有1台是次品.若用C表示抽到次品这一事件,则下列说法正确的是()A.事件C发生的概率为1 10B.事件C发生的频率为1 10C.事件C发生的概率接近1 10D.每抽10台电视机,必有1台次品6.某医院治疗一种疾病的治愈率为15,若前4位病人都未治愈,则第5位病人的治愈率为()A.1B.4 5C.15D.015,表明每位病人被治愈的可能性均为15,并不是5人中必有1人治愈.故选C.7.在乒乓球、足球等比赛中,裁判员经常用掷硬币或抽签法决定谁先发球,这种方法.(填“公平”或“不公平”),这两种方法都是公平的.因为采用掷硬币得正面、反面的概率相等;采用抽签法,抽到某一签的概率相等.8.某市运动会前夕,质检部门对这次运动会所用的某种产品进行抽检,得知其合格率为99%.若该运动会所需该产品共20 000件,则其中的不合格产品约有件.1-99%=1%,则不合格产品约有20000×1%=200(件).9.某射击教练评价一名运动员时说:“你射中的概率是90%.”则下面两个解释中能代表教练的观点的为.①该射击运动员射击了100次,恰有90次击中目标②该射击运动员射击一次,中靶的机会是90%90%说明中靶的可能性是90%,所以①不正确,②正确.10.为了估计水库中鱼的尾数,使用以下的方法:先从水库中捕出2 000尾鱼,给每尾鱼做上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中的其他鱼充分混合,再从水库中捕出500尾,查看其中有记号的鱼,有40尾.试根据上述数据,估计水库中鱼的尾数.n(n∈N*),每尾鱼被捕到的可能性相等,给2000尾鱼做上记号后,从水库中任捕一尾鱼,带记号的概率为2000n.又从水库中捕500尾鱼,有40尾带记号,于是带记号的频率为40500.则有2000n≈40500,解得n≈25000.所以估计水库中有25000尾鱼.二、能力提升1.在给病人动手术之前,外科医生会告知病人或家属一些情况,其中有一项是说这种手术的成功率大约是99%.下列解释正确的是()A.100个手术有99个手术成功,有1个手术失败B.这个手术一定成功C.99%的医生能做这个手术,另外1%的医生不能做这个手术D.这个手术成功的可能性是99%99%,说明手术成功的可能性是99%.2.根据山东省教育研究机构的统计资料,今在校学生近视率约为37.4%.某眼镜商要到一中学给学生配眼镜,若已知该校学生总数为600人,则该眼镜商应带眼镜的数目为()A.374副B.224.4副C.不少于225副D.不多于225副,该校近视生人数约为37.4%×600=224.4,结合实际情况,眼镜商应带眼镜数不少于225副.3.某套数学试题中,有12道选择题,每道选择题有4个选项,其中只有1个选项是正确的,则随机选择其中一个选项正确的概率是14.某家长说:“要是都不会做,每题都随机选择其中一个选项,则一定有3道题答对.”这句话() A.正确 B.错误C.不一定D.无法解释,答对的概率是14说明了对的可能性大小是14.做12道选择题,即进行了12次试验,每个结果都是随机的,那么答对3道题的可能性较大,但是并不一定答对3道题.也可能都选错,或有1,2,4,…,甚至12个题都选择正确.4.玲玲和倩倩下象棋,为了确定谁先走第一步,玲玲对倩倩说:“拿一个飞镖射向如图所示的靶中,若射中区域所标的数字大于3,则我先走第一步,否则你先走第一步”.你认为这个游戏规则公平吗?.(填“公平”或“不公平”),所标的数字大于3的区域有5个,而小于或等于3的区域只有3个,所以玲玲先走的概率是58,倩倩先走的概率是38.所以不公平.★5.某地区牛患某种病的概率为0.25,且每头牛患病与否是互不影响的,今研制一种新的预防药,任选12头牛做试验,结果这12头牛服用这种药后均未患病,则此药.(填“有效”或“无效”)头牛都在服药后未患病,由极大似然法,可得此药有效.6.试解释下列情况的概率的意义:(1)某商场为促进销售,实行有奖销售活动,凡购买其商品的顾客中奖率是0.20;(2)一生产厂家称:我们厂生产的产品合格率是0.98.解::(1)“中奖率是0.20”是指购买其商品的顾客中奖的可能性是20%.(2)“产品的合格率是0.98”是指该厂生产的产品合格的可能性是98%.★7.某种彩票的抽奖是从写在36个球上的36个号码中随机摇出7个.有人统计了过去中特等奖的号码,声称某一号码在历次特等奖中出现的次数最多,它是一个幸运号码,人们应该买这一号码;也有人说,若一个号码在历次特等奖中出现的次数最少,由于每个号码出现的机会相等,则应该买这一号码.你认为他们的说法对吗?36个号码的36个球大小、质量是一致的,严格地说,为了保证公平,每次用的36个球, ,除非能保证用过一次后,球没有磨损、变形.因此,当把这36个球看成每次抽奖中只用了一次时,不难看出,以前抽奖的结果对今后抽奖的结果没有任何影响,他们的说法都是错误的.。

人教A版高中数学必修三试卷3.1.3概率的基本性质

人教A版高中数学必修三试卷3.1.3概率的基本性质

高中数学学习材料金戈铁骑整理制作3.1.3概率的基本性质A 组一、选择题1.下列说法正确的是( )A .互斥事件一定是对立事件,对立事件不一定是互斥事件B .互斥事件不一定是对立事件,对立事件一定是互斥事件C .事件B A 、中至少有一个发生的概率一定比B A 、中恰有一个发生的概率大D .事件B A 、同时发生的概率一定比B A 、中恰有一个发生的概率小2.从装有2个红球和2个黒球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A.至少有一个黒球与都是红球B.至少有一个黒球与都是黒球C.至少有一个黒球与至少有1个红球D.恰有1个黒球与恰有2个黒球3.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽验一只是正品(甲级)的概率为( )A .0.95B .0.97C .0.92D .0.084.把红,黄,蓝,白4张纸牌随机地分发给甲,乙,丙,丁四个人,每人一张,则事件"甲分得红牌"与事件"丁分得红牌"是( )A .不可能事件B .互斥但不对立事件C .对立事件D .以上答案都不对5.从集合{}543,21,,,中随机取出一个数,设事件A 为“取出的数是偶数”, 事件B 为“取出的数是奇数”,则事件A 与B ( )A .是互斥且是对立事件B .是互斥且不对立事件C .不是互斥事件D .不是对立事件6.从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论正确的是( )A. A 与C 互斥B. B 与C 互斥C. 任何两个均互斥D. 任何两个均不互斥7.一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是( )A.至多有一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶8.掷两颗相同的均匀骰子(各个面分别标有1,2,3,4,5,6),记录朝上一面的两个数,那么互斥而不对立的两个事件是()A. “至少有一个奇数”与“都是奇数”B. “至少有一个奇数”与“至少有一个偶数”C.“至少有一个奇数”与“都是偶数”D.“恰好有一个奇数”与“恰好有两个奇数”9.出下列命题,其中正确命题的个数有()①有一大批产品,已知次品率为010,从中任取100件,必有10件次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是37;③某事件发生的概率是随着试验次数的变化而变化的;④若()()()1P A B P A P B=+=,则,A B是对立事件。

人教版高中数学必修三 3.1.1《随机事件的概率》要点梳理+跟踪检测

人教版高中数学必修三 3.1.1《随机事件的概率》要点梳理+跟踪检测

人教版高中数学必修三第三章统计3.1.1《随机事件的概率》要点梳理【学习目标】在具体情境中,了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.【要点梳理·夯实知识基础】12.频数与频率在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中______________为事件A出现的频数,称______________________为事件A 出现的频率.[答案]事件A出现的次数nA 事件A出现的比例fn(A)=nAn3.概率(1)含义:概率是度量随机事件发生的________的量.(2)与频率联系:对于给定的随机事件A,事件A发生的频率fn(A)随着试验次数的增加稳定于________,因此可以用__________来估计概率P(A).[答案](1)可能性(2)概率P(A) 频率fn(A)【考点探究·突破重点难点】考点一:事件类型的判断1.下列事件:①明天下雨;②3>2;③航天飞机发射成功;④x∈R,x2+2<0;⑤某艘商船遭遇索马里海盗;⑥任给x0∈R,x0+2=0.其中随机事件的个数为()A.1B.2C.3D.4答案:D2.下列说法正确的是()A.某人购买福利彩票一注,中奖500万元,是不可能事件B.三角形的两边之和大于第三边,是随机事件C.没有空气和水,人类可以生存下去,是不可能事件D.科学技术达到一定水平后,不需任何能量的“永动机”将会出现,是必然事件答案:C3.从一副牌中抽出5张红桃、4张梅花、3张黑桃放在一起洗匀后,从中一次随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这件事情()A.可能发生B.不可能发生C.很可能发生D.必然发生答案:D解析:∵若这10张牌中抽出了全部的红桃与梅花共9张,一定还有1张黑桃;若抽出了全部的梅花与黑桃共7张,则还会有3张红桃;若抽出了全部的红桃与黑桃共8张,则还会有2张梅花;∴这个事件一定发生,是必然事件.考点而:试验的结果分析4.下列命题中正确的个数是()①先后抛掷两枚质地均匀的硬币的结果为正面,正面;正面,反面;反面,反面,共计3种.②从12个同类产品(其中10个是正品,2个次品)中,任意抽取3个产品的每一个结果中一定含有正品.③某地举行运动会,从来自A学校的a,b志愿者中选一人,从来自B学校的c,d,e志愿者中选一人共2人为体操馆服务,则有ac,ad,ae,bc,bd,be,共6种选法. A.0 B.1 C.2 D.3答案:C解析:①中应该有4个结果,即正面,正面;正面,反面;反面,正面;反面,反面.故①不正确.②③正确.5.先后投掷2枚均匀的一分、二分的硬币,观察落地后硬币的正反面情况,则包含3个试验结果的是()A.至少一枚硬币正面向上B.只有一枚硬币正面向上C.两枚硬币都是正面向上D.两枚硬币一枚正面向上,另一枚反面向上答案:A解析:“至少一枚硬币正面向上”包括“一分正面向上,二分正面向上”,“一分正面向上,二分正面向下”,“一分正面向下,二分正面向上”3种试验结果.6.同时转动如图所示的两个转盘,记转盘①得到的数为x,转盘②得到的数为y,结果为(x,y).(1)写出这个试验的所有结果.(2)“x+y=5”包含的结果有哪些?“x<3且y>1”呢? (3)“xy=4”包含的结果有哪些?“x=y ”呢?解:(1)结果为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).(2)“x+y=5”包含的结果为(1,4),(2,3),(3,2),(4,1).“x<3且y>1” 包含的结果为(1,2),(1,3),(1,4),(2,2),(2,3),(2,4). (3)“xy=4”包含的结果为(1,4),(2,2),(4,1). “x=y ”包含的结果为(1,1),(2,2),(3,3),(4,4). 考点三:随机事件的频率与概率7.下列说法:①频率反映的是事件发生的频繁程度.概率反映的是事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率nm就是事件A 的概率;③频率是不能脱离具体的n 次的试验值,而概率是确定性的,不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值.其中正确说法的序号是 . 答案:①③④解析:由频率及概率的定义可知①是正确的.在②中,nm是事件A 发生的频率,虽然概率是与频率接近的一个常数,但是概率不一定等于频率,故②是错误的.由概率的定义知③④是正确的.8.在抛掷骰子的游戏中,将一枚质地均匀的骰子抛掷6次,对于点数4的出现有下列说法:①一定会出现;②出现的频率为61;③出现的概率是61;④出现的频率是32.其中正确的是 . 答案:③9.李老师在某大学连续3年主讲经济学院的高等数学,下表是李老师这门课3年来学生的考试成绩分布:经济学院一年级的学生王小慧下学期将修李老师的高等数学课,用已有的信息估计她得以下分数的概率(结果保留到小数点后三位):(1)90分以上;(2)60~69分;(3)60分以下.解:由题意知总人数为40+200+400+100+40+20=800.则选修李老师高等数学的学生考试成绩在90分以上,60~69分,60分以下的频率分别为80040=201;800100=81;80060=403.用以上信息估计王小慧得分的概率情况如下:(1)“得90分以上”的概率为201,(2)“得60~69分”的概率为81,(3)“得60分以下”的概率为403.[3.1.1《随机事件的概率》跟踪检测一、选择题1.给出下列3种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是m n =73; ③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数 是( ) A.0B.1C.2D.32.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3.其中是不可能事件的是( ) A.① B.② C.③ D.④ 3.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( ) A.必然事件B.随机事件C.不可能事件D.无法确定4.已知下列事件:①向区间(0,2)内投点,点落在(0,2)区间;②将一根长为a 的铁丝随意截成三段,构成一个三角形;③函数y=a x (a>0,且a ≠1)在R 上为增函数;④解方程x 2-1=0的根为2.其中是随机事件的个数是( ) A .1 B .2 C .3 D .45.下列事件中,不可能事件为( ) A.三角形内角和为180°B.三角形中大边对大角,大角对大边C.锐角三角形中两个内角和小于90°D.三角形中任意两边的和大于第三边6.袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( ) A.49B.51C.0.49D.0.517.某班计划从A ,B ,C ,D ,E 这五名班干部中选两人代表班级参加一次活动,则可能的结果有( ) A .5种 B .10种 C .15种 D .20种 8.经过市场抽检,质检部门得知市场上食用油合格率为80%,经调查,某市市场上的食用油大约有80个品牌,则不合格的食用油品牌大约有 ( ) A.64个B.640个C.16个D.160个9.给出下列三个命题,其中正确命题的个数是( )①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. A.0 B.1 C.2 D.3 10.一个家庭有两个小孩儿,则可能的结果为( ) A.{(男,女),(男,男),(女,女)} B.{(男,女),(女,男)}C.{(男,男),(男,女),(女,男),(女,女)}D.{(男,男),(女,女)}11.从一批即将出厂的螺丝中抽查了100颗,仅有2颗是次品.下列说法正确的是( )A .从这批螺丝中随机抽取1颗,恰为次品的概率一定是2%B .从这批螺丝中随机抽取1颗,一定不是次品C .从这批螺丝中随机抽取100颗,必有2颗是次品D .从这批螺丝中随机抽取1颗,恰为次品的概率约是2%12.每道选择题有4个选项,其中只有1个选项是正确的.某次考试共有12道选择题,某人说:“每个选项正确的概率是41,我每题都选择第一个选项,则一定有3个题选择结果正确”这句话( ) A.正确B.错误C.不一定D.无法解释二、填空题13.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一位同学,估计该同学的身高在155.5~170.5 cm 范围内的概率为 (用分数表示).14.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A,则事件A 出现的频数为 ,事件A 出现的频率为 .15.设集合A={x|x 2≤4,x ∈Z },a ,b ∈A ,设直线3x+4y=0与圆(x-a )2+(y-b )2=1相切为事件M ,用(a ,b )表示每一个基本事件,则事件M 所包含的结果为 . 16.则a= ,b= ,c= .据此可估计若掷硬币一次,正面向上的概率为.17.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:则落在桌面的数字不小于4的频率为 .18.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是 .三、解答题19.从含有两个正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有可能结果.(2)设A为“取出两件产品中恰有一件次品”,写出事件A对应的结果.20.对一批U盘进行抽检,结果如下表:(1)计算表中各个次品频率.(2)从这批U盘中任抽一个是次品的概率是多少?(3)为保证买到次品的顾客能够及时更换,则销售2 000个U盘,至少需进货多少个U盘?21.:(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.22.为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.3.1.1《随机事件的概率》跟踪检测解答一、选择题1.给出下列3种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是m n =73; ③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数 是( ) A.0B.1C.2D.3答案:A2.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3.其中是不可能事件的是( ) A.① B.② C.③ D.④ 答案:D解析:三角形的三条边必须满足两边之和大于第三边.3.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( ) A.必然事件B.随机事件C.不可能事件D.无法确定答案:B4.已知下列事件:①向区间(0,2)内投点,点落在(0,2)区间;②将一根长为a 的铁丝随意截成三段,构成一个三角形;③函数y=a x (a>0,且a ≠1)在R 上为增函数;④解方程x 2-1=0的根为2.其中是随机事件的个数是( ) A .1 B .2 C .3 D .4 答案:B解析:①为必然事件;④为不可能事件. 5.下列事件中,不可能事件为( ) A.三角形内角和为180°B.三角形中大边对大角,大角对大边C.锐角三角形中两个内角和小于90°D.三角形中任意两边的和大于第三边 答案: C6.袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( ) A.49B.51C.0.49D.0.51答案:B7.某班计划从A ,B ,C ,D ,E 这五名班干部中选两人代表班级参加一次活动,则可能的结果有( ) A .5种 B .10种 C .15种 D .20种 答案:B解析:从A ,B ,C ,D ,E 五人中选2人,不同的选法有:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E )共10种.8.经过市场抽检,质检部门得知市场上食用油合格率为80%,经调查,某市市场上的食用油大约有80个品牌,则不合格的食用油品牌大约有 ( ) A.64个B.640个C.16个D.160个答案: C9.给出下列三个命题,其中正确命题的个数是( )①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. A.0 B.1 C.2 D.3 答案:A解析:①错误;②出现正面的概率为21,故错误;③频率与概率不是一回事,故错误. 10.一个家庭有两个小孩儿,则可能的结果为( ) A.{(男,女),(男,男),(女,女)} B.{(男,女),(女,男)}C.{(男,男),(男,女),(女,男),(女,女)}D.{(男,男),(女,女)}答案: C11.从一批即将出厂的螺丝中抽查了100颗,仅有2颗是次品.下列说法正确的是( )A .从这批螺丝中随机抽取1颗,恰为次品的概率一定是2%B .从这批螺丝中随机抽取1颗,一定不是次品C .从这批螺丝中随机抽取100颗,必有2颗是次品D .从这批螺丝中随机抽取1颗,恰为次品的概率约是2% 答案: D解析:抽取出次品的频率是1002=2%,用频率估计概率,抽出次品的概率大约是2%. 12.每道选择题有4个选项,其中只有1个选项是正确的.某次考试共有12道选择题,某人说:“每个选项正确的概率是41,我每题都选择第一个选项,则一定有3个题选择结果正确”这句话( ) A.正确 B.错误 C.不一定D.无法解释答案: B 二、填空题13.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一位同学,估计该同学的身高在155.5~170.5 cm 范围内的概率为 (用分数表示).答案:52解析:数据在155.5~170.5之间有8名学生,则身高在此范围内的频率为208=52,所以概率约为52.14.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A,则事件A 出现的频数为 ,事件A 出现的频率为 .答案: 52 0.5215.设集合A={x|x 2≤4,x ∈Z },a ,b ∈A ,设直线3x+4y=0与圆(x-a )2+(y-b )2=1相切为事件M ,用(a ,b )表示每一个基本事件,则事件M 所包含的结果为 . 答案:(-1,2),(1,-2) 解析:由直线与圆相切知,543b a +=1,所以3a+4b=±5,依次取a=-2,-1,0,1,2,验证知,只有⎩⎨⎧=-=21b a ,⎩⎨⎧==2-1b a 满足等式.16.则a= ,b= ,c= .据此可估计若掷硬币一次,正面向上的概率为 . 答案: 0.51 241 800 0.5解析:a=200102=0.51,b=500×0.482=241;c=505.0404=800. 易知正面向上的频率在0.5附近,所以若掷硬币一次,正面向上的概率应为0.5.17.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:则落在桌面的数字不小于4的频率为 . 答案: 0.3518.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是 . 答案: 0.03 三、解答题19.从含有两个正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有可能结果.(2)设A 为“取出两件产品中恰有一件次品”,写出事件A 对应的结果. [解析](1)试验所有结果:a 1,a 2;a 1,b 1;a 2,b 1;a 2,a 1;b 1,a 1;b 1,a 2.共6种. (2)事件A 对应的结果为:a 1,b 1;a 2,b 1;b 1,a 1;b 1,a 2. 20.对一批U 盘进行抽检,结果如下表:(1)计算表中各个次品频率.(2)从这批U 盘中任抽一个是次品的概率是多少?(3)为保证买到次品的顾客能够及时更换,则销售2 000个U 盘,至少需进货多少个U 盘?[解析](1)表中各个次品频率分别为0.06,0.04,0.025,0.017,0.02,0.018. (2)当抽取件数a 越来越大时,出现次品的频率在0.02附近摆动,所以从这批U 盘中任抽一个是次品的概率是0.02.(3)设需要进货x 个U 盘,为保证其中有2 000个正品U 盘,则x(1-0.02)≥2 000,因为x 是正整数,所以x ≥2 041,即至少需进货2 041个U 盘.21.:(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.解:(1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为1513.(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为87.以频率估计概率,运动会期间不下雨的概率为87.22.为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.[解析] 设水库中鱼的尾数为n,从水库中任捕一尾,每尾鱼被捕的频率(代替概率)为n2000,第二次从水库中捕出500尾,带有记号的鱼有40尾,则带记号的鱼被捕 的频率(代替概率)为50040,由n 2000=50040,得n=25 000.所以水库中约有25 000尾.。

人教A版高中数学必修三试卷第三章 概率阶段测试.docx

人教A版高中数学必修三试卷第三章  概率阶段测试.docx

第三章 概率阶段测试一.选择题1.下课以后,教室里最后还剩下2位男同学,2位女同学.如果没有2位同学一块儿走,则第2位走的是男同学的概率是( ) A. 12 B. 13 C. 14 D. 152.盒中有10只螺丝钉,其中有3只是不合格的,现从盒中随机地抽取4个,那么恰有两只不合格的概率是( )A .130B .310C . 13 D .123.取一根长度为5米的绳子,拉直后在任意位置剪断,则剪得两段的长度都不小于1米,且以剪得的两段绳为两边的矩形的面积都不大于6平方米的概率为( ) A.31 B.41 C.52 D.534.有3个相识的人某天各自乘火车外出,假设火车有10节车厢,那么至少有2人在同一车厢内相遇的概率为( ) A.29200 B.725 C.29144 D.7185.甲乙两人一起去游“2010上海世博会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是( )A.136B.19C.536D.166.一个盒子内部有如图所示的六个小格子,现有桔子、苹果和香蕉各两个,将这六个水果随机放在这六个格子里,每个格子放一个,放好之后每行每列的水果种类各不相同的概率( )A. 215B. 29C. 15D. 137.若连续抛掷两次骰子得到的点数分别为m ,n ,则点P(m ,n)在直线x +y =4上的概率是( ) A. 13 B. 14 C. 16 D. 1128.一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( )A. 481π B . 81481π- C.127 D. 8279.向等腰直角三角形()ABC AC BC =其中内任意投一点M , 则AM 小于AC 的概率为( ) A .22 B .212- C . 8π D .4π 10.某农科院在3×3的9块试验田中选出3块种植某品种水稻进行试验,则每行每列都有一块试验田种植水稻的概率为( )A .156 B .114 C .17 D .314二.填空题11.甲、乙等五名社区志愿者被随机分配到D C B A 、、、四个不同岗位服务,每个岗位至少有一名志愿者,则甲、乙两人同时参加岗位A 服务的概率是_________.12.在区间(0,1)中随机地取出两个数,则两数之和小于65的概率是_________.13.在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等.求取出的两个球上标号为相邻整数的概率_________.14.某旅游公司有甲、乙、丙三种特色产品,其数量分别为,,a b c (单位:件),且,,a b c成等差数列。

2020_2021学年高中数学模块复习课第三章第3课时概率习题含解析新人教A版必修320201230

2020_2021学年高中数学模块复习课第三章第3课时概率习题含解析新人教A版必修320201230

第3课时概率课后篇巩固提升基础巩固1.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,那么互斥不对立的两个事件是()A.恰有1名男生与恰有2名女生B.至少有1名男生与全是男生C.至少有1名男生与至少有1名女生1名男生与全是女生中的两个事件互斥且不对立符合要求;B中的两个事件之间是包含关系,不符合要求;C 中的两个事件都包含了一名男生一名女生这个事件,故不互斥;D中的两个事件是对立的,不符合要求.故选A.2.《易经》是我国古代预测未来的著作,其中同时抛掷三枚古钱币观察正反面进行预测未知,则抛掷一次时出现两枚正面、一枚反面的概率为()A.18B.14C.38D.12:正正正,正正反,正反正,反正正,正反反,反正反,反反正,反反反,共8种,其中出现两正一反的共有3种,故所求概率为38.故选C.3.把一枚质地均匀的骰子连续掷两次,已知在第一次抛出的是奇数点的情况下,第二次抛出的也是奇数点的概率为()A.16B.14C.13D.12(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6), (5,1),(5,2),(5,3),(5,4),(5,5),(5,6),共18个.而“在第一次抛出的是奇数点的情况下,第二次抛出的也是奇数点”包含的基本事件有(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5),共9个.∴在第一次抛出的是奇数点的情况下,第二次抛出的也是奇数点的概率为918=12.故选D.4.如图,在正方形围栏内均匀撒米粒,一只小鸡在其中随意啄食,此刻小鸡正在正方形的内切圆中的概率是()A.14B.π4C.13D.π3A表示小鸡正在正方形的内切圆中,则事件A的几何区域为内切圆的面积S=πR2(2R 为正方形的边长),全体基本事件的几何区域为正方形的面积,由几何概型的概率公式可得P(A)=πR2(2R)2=π4,即小鸡正在正方形的内切圆中的概率为π4.5.记一个两位数的个位数字与十位数字的和为A.若A是不超过5的奇数,则从这些两位数中任取一个,其个位数为1的概率为.5的两位数有:10,12,14,21,23,30,32,41,50,共9个,其中个位是1的有21,41,共2个,因此所求的概率为29.6.如图,在直角坐标系内,射线OT落在30°角的终边上,任作一条射线OA,则射线OA落在∠yOT 内的概率为.,因为射线OA在坐标系内是等可能分布的,所以OA落在∠yOT内的概率为60360=16.7.古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木、木克土、土克水、水克火、火克金.”从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率,有(金,木)、(金,水)、(金,火)、(金,土)、(木,水)、(木,火)、(木,土)、(水,火)、(水,土)、(火,土),共10种等可能发生的结果.其中金克木,木克土,土克水,水克火,火克金,即相克的有5种,则不相克的也是5种,所以抽取的两种物质不相克的概率为12.8.某集团公司为了加强企业管理,树立企业形象,考虑在公司内部对迟到现象进行处罚.现在员工中随机抽取200人进行调查,当不处罚时,有80人会迟到,得到如下数据:表中数据所得频率视为概率.(1)当处罚金额定为100元时,员工迟到的概率比不进行处罚时降低多少?(2)将选取的200人中会迟到的员工分为A,B两类:A类员工在罚金不超过100元时就会改正行为;B类是其他员工.现对A类和B类员工按分层抽样的方法抽取4人依次进行深度问卷调查,则前两位均为B类员工的概率是多少?设“当处罚金额定为100元时,迟到的员工改正行为”为事件A,则P(A)=80-40200=15,故当处罚金额定为100元时,员工迟到的概率比不进行处罚时降低15.(2)由题可知,A类员工和B类员工各有40人,故分别从A类员工和B类员工中抽出2人.设从A类员工中抽出的2人分别为A1,A2,从B类员工中抽出的2人分别为B1,B2.设“对A类与B类员工按分层抽样的方法抽取4人依次进行深度问卷调查”为事件M,则事件M中首先抽出A1的事件有(A1,A2,B1,B2),(A1,A2,B2,B1),(A1,B1,A2,B2),(A1,B1,B2,A2),(A1,B2,A2,B1),(A1,B2,B1,A2),共6种,同理首先抽出A2,B1,B2的事件也各有6种.故事件M共有4×6=24(种).设“抽取4人中前两位均为B类员工”为事件N,则事件N有(B1,B2,A1,A2),(B1,B2,A2,A1),(B2,B1,A1,A2),(B2,B1,A2,A1),共4种.所以P(N)=424=16,故抽取的4人中前两位均为B类员工的概率是16.9.空气污染,又称为大气污染,是指由于人类活动或自然过程引起某些物质进入大气中,呈现出足够的浓度,达到足够的时间,并因此危害了人体的舒适、健康和福利或环境的现象.全世界也越来越关注环境保护问题.当空气污染指数(单位:μg/m3)为0~50时,空气质量级别为一级,空气质量状况属于优;当空气污染指数为50~100时,空气质量级别为二级,空气质量状况属于良;当空气污染指数为100~150时,空气质量级别为三级,空气质量状况属于轻度污染;当空气污染指数为150~200时,空气质量级别为四级,空气质量状况属于中度污染;当空气污染指数为200~300时,空气质量级别为五级,空气质量状况属于重度污染;当空气污染指数为300以上时,空气质量级别为六级,空气质量状况属于严重污染.2017年8月18日某省x个监测点数据统计如下:(1)根据所给统计表和频率分布直方图中的信息求出x,y的值,并完成频率分布直方图;(2)在空气污染指数分别为50~100和150~200的监测点中,用分层抽样的方法抽取5个监测点,从中任意选取2个监测点,事件A“两个都为良”发生的概率是多少?∵0.003×50=15x ,∴x=100. ∵15+40+y+10=100,∴y=35.40100×50=0.008,35100×50=0.007,10100×50=0.002.频率分布直方图如图所示.(2)在空气污染指数为50~100和150~200的监测点中分别抽取4个和1个监测点,设空气污染指数为50~100的4个监测点分别记为a,b,c,d;空气污染指数为150~200的1个监测点记为E,从中任取2个的基本事件分别为(a,b),(a,c),(a,d),(a,E),(b,c),(b,d),(b,E),(c,d),(c,E),(d,E)共10种,其中事件A “两个都为良”包含的基本事件为(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)共6种,所以事件A “两个都为良”发生的概率是P (A )=610=35. 能力提升1.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A.910B.45C.12D.25,得从五位大学毕业生中录用三人,所有不同的可能结果有(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊),共10种,其中“甲或乙被录用”的所有不同的可能结果有9种,所求概率为910.2.从2名男生和2名女生中任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为( )A.13B.512C.12D.7122名男生记为A 1,A 2,2名女生记为B 1,B 2,任意选择两人在星期六、星期日参加某公益活动,共有(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(B 1,B 2),(A 2,A 1),(B 1,A 1),(B 2,A 1),(B 1,A 2),(B 2,A 2),(B 2,B 1)12种情况,而星期六安排一名男生、星期日安排一名女生共有(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2)4种情况,则发生的概率为412=13,故选A .3.甲乙两个竞赛队都参加了6场比赛,比赛得分情况的茎叶图如图所示(单位:分),其中乙队的一个得分数字被污损,那么估计乙队的平均得分大于甲队的平均得分的概率为( )A.15B.310C.25D.12。

湖北省宜昌市高中数学 第三章 概率教材习题本新人教A版必修3

湖北省宜昌市高中数学 第三章 概率教材习题本新人教A版必修3

第三章概率P1121.做同时掷两枚硬币的试验,观察试验结果。

(1)试验可能出现的结果有几种?分别把它们表示出来。

(2)做100次试验,每种结果出现的频数、频率各是多少?与其他几名同学的试验结果汇总,你会发现什么?你能估计每种结果出现的概率吗?2.(1)给出一个概率很小的随机事件的例子;(2)给出一个概率很大的随机事件的例子。

P1183.在乒乓球、排球等比赛中,裁判员还用哪些方法决定谁先发球?这些方法公平吗?4.“一个骰子掷一次得到2的概率是1/6,这说明一个骰子掷6次会出现一次2”,这种说法对吗?说说你的理由。

P1211.如果某人在某种比赛(这种比赛不会出现“和”的情况)中获胜的概率是0.3,那么他输的概率是多少?4. 一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是()A . 至多有一次中靶。

B . 两次都中靶。

C . 只有一次中靶。

D . 两次都不中靶。

5. 把红、蓝、黑、白4张纸牌随机分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与事件“乙分得红牌”是()A . 对立事件。

B . 互斥但不对立事件。

C . 不可能事件。

D . 以上都不对。

P1231. 若A、B为互斥事件,则()A . P(A)+P(B)<1。

B . P(A)+P(B)>1。

C . P(A)+P(B)=1。

D . P(A)+P(B)≤1。

5. 某人捡到不规则形状的五面体石块,他在每个面上作了记号,投掷了100次,并且记录了每个面落在桌面上的次数(如下表)。

如果再投掷一次,请估计石块的第4面落在桌面上的概率是多少?6.在一个袋子中放了9个白球,1个红球,摇匀后随机摸球:(1)每次摸出球后记下球的颜色然后放回袋中;(2)每次摸出球后不放回袋中。

在两种情况下分别做10次试验,求每种情况下第4次摸到红球的频率,两个频率相差得远吗?两个事件的概率一样吗?第4次摸到红球的频率与第1次摸到红球的频率相差得远吗?请说明原因。

2020_2021学年新教材高中数学模块质量检测含解析新人教A版选择性必修第三册

2020_2021学年新教材高中数学模块质量检测含解析新人教A版选择性必修第三册

模块质量检测一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知变量x 与y 满足关系y =0.8x +9.6,变量y 与z 负相关.下列结论正确的是()A .变量x 与y 正相关,变量x 与z 正相关B .变量x 与y 正相关,变量x 与z 负相关C .变量x 与y 负相关,变量x 与z 正相关D .变量x 与y 负相关,变量x 与z 负相关2.甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件A 为“三个人去的景点不相同”,B 为“甲独自去一个景点”,则概率P(A|B)等于()A .49B .29C .12D .133.某校高二期末考试学生的数学成绩ξ(满分150分)服从正态分布N(75,σ2),且P(60<ξ<90)=0.8,则P(ξ≥90)=()A .0.4B .0.3C .0.2bD .0.14.二项式⎝⎛⎭⎪⎫x -13x 8展开式中的常数项为()A .28B .-28C .56D .-565.已知离散型随机变量X 的分布列为:则随机变量X 的期望为() A .134B .114C .136D .1166.参加完某项活动的6名成员合影留念,前排和后排各3人,不同排法的种数为()A .360B .720C .2160D .43207.为考察某种药物预防疾病的效果,进行动物试验,得到如下列联表:患病 未患病 合计 服用药 10 45 55 没服用药 20 30 50 合计3075105附表及公式:α 0.10 0.05 0.025 0.010 0.005 0.001 x α2.7063.8415.0246.6357.87910.828参考公式:χ2=2(a +b )(c +d )(a +c )(b +d )A .0.025B .0.010C .0.005D .0.0018.如图是一块高尔顿板示意图:在一块木板上钉着若干排互相平行但相互错开的圆柱形小木块,小木块之间留有适当的空隙作为通道,小球从上方的通道口落下后,将与层层小木块碰撞,最后掉入下方的某一个球槽内.若小球下落过程中向左、向右落下的机会均等,则小球最终落入④号球槽的概率为()A .332B .1564C .532D .516二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列说法正确的是()A .在残差图中,残差点分布的水平带状区域越窄,说明模型的拟合效果越好B .经验回归直线y ^=b ^x +a ^至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个C.若D(X)=1,Y=2X-1,则D(Y)=4D.设随机变量X~N(μ,7),若P(X<2)=P(X>4),则μ=310.研究变量x,y得到一组样本数据,进行回归分析,以下说法正确的是()A.残差平方和越小的模型,拟合的效果越好B.用相关指数R2来刻画回归效果,R2越小说明拟合效果越好C.在经验回归方程y^=0.2x+0.8中,当解释变量x每增加1个单位时,响应变量y^平均增加0.2个单位D.若变量y和x之间的相关系数为r=-0.9462,则变量y和x之间的负相关很强11.一组数据2x1+1,2x2+1,2x3+1,…,2x n+1的平均值为7,方差为4,记3x1+2,3x2+2,3x3+2,…,3x n+2的平均值为a,方差为b,则()A.a=7B.a=11C.b=12D.b=912.2020年3月,为促进疫情后复工复产期间安全生产,某医院派出甲、乙、丙、丁4名医生到A,B,C三家企业开展“新冠肺炎”防护排查工作,每名医生只能到一家企业工作,则下列结论正确的是()A.若C企业最多派1名医生,则所有不同分派方案共48种B.若每家企业至少分派1名医生,则所有不同分派方案共36种C.若每家企业至少分派1名医生,且医生甲必须到A企业,则所有不同分派方案共12种D.所有不同分派方案共43种三、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知随机变量X~N(1,σ2),若P(X>2)=0.2,则P(X>0)=________.14.若随机变量X的分布列如下表,且E(X)=2,则D(2X-3)的值为________.15.某种品牌汽车的销量y()之间具有线性相关关系,样本数据如表所示:经计算得经验回归方程y=b x+a的斜率为0.7,若投入宣传费用为8万元,则该品牌汽车销量的预报值为________万辆.16.已知(ax-1)2020=a0+a1x+a2x2+…+a2020x2020(a>0),得a0=________.若(a0+a2+…+a2020)2-(a1+a3+…+a2019)2=1,则a=________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知⎝⎛⎭⎪⎫x 2+1x n 的展开式中的所有二项式系数之和为32. (1)求n 的值;(2)求展开式中x 4的系数.18.(本小题满分12分)生男生女都一样,女儿也是传后人,由于某些地区仍然存在封建传统思想,头胎的男女情况可能会影响生二孩的意愿,现随机抽取某地200户家庭进行调查统计.这200户家庭中,头胎为女孩的频率为0.5,生二孩的频率为0.525,其中头胎生女孩且生二孩的家庭数为60.(1)完成下列2×2列联表:(2)附:χ2=n2(a+b)(c+d)(a+c)(b+d)(其中n=a+b+c+d).19.(本小题满分12分)据某县水资源管理部门估计,该县10%的乡村饮用水井中含有杂质A.为了弄清该估计值是否正确,需要进一步验证.由于对所有的水井进行检测花费太大,所以决定从全部饮用水井中随机抽取5口水井检测.(1)假设估计值是正确的,求抽取5口水井中至少有1口水井含有杂质A的概率;(2)在概率中,我们把发生概率非常小(一般以小于0.05为标准)的事件称为小概率事件,意思是说,在随机试验中,如果某事件发生的概率非常小,那么它在一次试验中几乎是不可能发生的.假设在随机抽取的5口水井中有3口水井含有杂质A,试判断“该县10%的乡村饮用水井中含有杂质A”的估计是否正确,并说明理由.参考数据:93=729,94=6561,95=59049.20.(本小题满分12分)在全国科技创新大会上,主席指出为建设世界科技强国而奋斗.某科技公司响应号召基于领先技术的支持,不断创新完善,业内预测月纯利润在短期内逐月攀升.该公司在第1个月至第9个月的月纯利润y(单位:万元)关于月份x 的数据如表:(2)请预测第12个月的纯利润. 附:经验回归的方程是:y ^=b ^x +a ^,其中b ^=∑i =1nx i y i -n x -y -i =1n(x i -x -)2,a ^=y --b ^x -.参考数据:∑i =19x i y i =1002,i =19(x i -x -)2=60.21.(本小题满分12分)1933年7月11日,中华苏维埃某某国临时中央政府根据中央革命军事委员会6月30日的建议,决定8月1日为中国工农红军成立纪念日,中华人民某某国成立后,将此纪念日改称为中国人民解放军建军节,为庆祝建军节,某校举行“强国强军”知识竞赛,该校某班经过层层筛选,还有最后一个参赛名额要在A ,B 两名学生中间产生,该班委设计了一个测试方案:A ,B 两名学生各自从6个问题中随机抽取3个问题作答,已知这6个问题中,学生A 能正确回答其中的4个问题,而学生B 能正确回答每个问题的概率均为23,A ,B 两名学生对每个问题回答正确与否都是相互独立、互不影响的.(1)求A 恰好答对两个问题的概率; (2)求B 恰好答对两个问题的概率;(3)设A 答对题数为X ,B 答对题数为Y ,若让你投票决定参赛选手,你会选择哪名学生?请说明理由.22.(本小题满分12分)某汽车公司拟对“东方红”款高端汽车发动机进行科技改造,根据市场调研与模拟,得到科技改造投入x(亿元)与科技改造直接收益y(亿元)的数据统计如下:模型①:y ^=4.1x +11.8;模型②:y ^=21.3x -14.4;当x>16时,确定y 与x 满足的经验回归方程为:y ^=-0.7x +a.(1)根据下列表格中的数据,比较当0<x ≤16时模型①、②的相关指数R 2,并选择拟合精度更高、更可靠的模型,预测对“东方红”款汽车发动机科技改造的投入为16亿元时的直接收益.(附:刻画回归效果的相关指数R 2=1-i =1n(y i -y ^i )2i =1n(y i -y -)2.)(2)为鼓励科技创新,当科技改造的投入不少于20亿元时,国家给予公司补贴收益10亿元,以回归方程为预测依据,比较科技改造投入16亿元与20亿元时公司实际收益的大小.(附:用最小二乘法求经验回归方程y ^=b ^x +a ^的系数公式b ^=∑i =1nx i y i -n x -·y -∑i =1n x 2i -n x -2=i =1n(x i -x -)(y i -y -)i =1n(x i -x -)2;a ^=y --b ^x -)(3)科技改造后,“东方红”款汽车发动机的热效率X 大幅提高,X 服从正态分布N(0.52,0.012),公司对科技改造团队的奖励方案如下:若发动机的热效率不超过50%,不予鼓励;若发动机的热效率超过50%但不超过53%,每台发动机奖励2万元;若发动机的热效率超过53%,每台发动机奖励4万元.求每台发动机获得奖励的分布列和数学期望.(附:随机变量ξ服从正态分布N(μ,σ2),则 P(μ-σ<ξ<μ+σ)=0.6827, P(μ-2σ<ξ<μ+2σ)=0.9545.)模块质量检测1.解析:根据变量x 与y 满足关系y =0.8x +9.6可知,变量x 与y 正相关;再由变量y 与z 负相关知,变量x 与z 负相关.故选B .答案:B2.解析:甲独自去一个景点有3种,乙、丙有2×2=4种,则B “甲独自去一个景点”,共有3×4=12种,A “三个人去的景点不相同”,共有3×2×1=6种,概率P(A|B)=612 =12 .故选C .答案:C3.解析:∵数学成绩ξ服从正态分布N(75,σ2),则正态分布曲线的对称轴方程为x =75,又P(60<ξ<90)=0.8,∴P(ξ≥90)=12 [1-P(60<ξ<90)]=12(1-0.8)=0.1.故选D .答案:D4.解析:二项式⎝⎛⎭⎪⎫x -13x 8展开式的通项公式为T r +1=C r 8 x8-r ⎝ ⎛⎭⎪⎫-13x r=(-1)r C r 8 x 8-4r3,令8-4r 3=0,解得r =6,∴二项式⎝ ⎛⎭⎪⎫x -13x 8展开式中的常数项为(-1)6C 68=28.故选A .答案:A5.解析:由分布列的概率的和为1,可得:缺失数据:1-13 -16 =12.所以随机变量X 的期望为:1×13 +2×16 +3×12 =136 .故选C .答案:C6.解析:根据题意,分2步进行分析:①在6人中任选3人,安排在第一排,有C 36 A 33 =120种排法;②将剩下的3人全排列,安排在第二排,有A 33 =6种排法; 则有120×6=720种不同的排法;故选B . 答案:B7.解析:χ2=105(10×30-20×45)255×50×30×75 ≈6.109∈(5.024,6.635)所以这种推断犯错误的概率不超过0.025,故选A . 答案:A8.解析:设这个球落入④号球槽为时间A ,落入④号球槽要经过两次向左,三次向右,所以P(A)=C 35⎝ ⎛⎭⎪⎫12 3 ⎝ ⎛⎭⎪⎫12 2 =516 .故选D .答案:D9.解析:对于A ,在残差图中,残差点比较均匀的分布在水平带状区域中,带状区域越窄,说明模型的拟合效果越好,选项正确;对于B ,经验回归直线不一定经过样本数据中的一个点,它是最能体现这组数据的变化趋势的直线,选项错误;对于C ,D(Y)=D(2X -1)=22D(X)=4×1=4,选项正确;对于D ,随机变量X ~N(μ,7),若P(X<2)=P(X>4),则μ=2+42=3,选项正确;综上可得,正确的选项为A ,C ,D ,故选ACD . 答案:ACD10.解析:A 可用残差平方和判断模型的拟合效果,残差平方和越小,模型的拟合效果越好,故A 正确;B 用相关指数R 2来刻画回归效果,R 2越大说明拟合效果越好,故B 错误;C 在经验回归方程y ^ =0.2x +0.8中,当解释变量x 每增加1个单位时,响应变量y ^平均增加0.2个单位,故C 正确;D 若变量y 和x 之间的相关系数为r =-0.946 2,r 的绝对值趋向于1,则变量y 和x 之间的负相关很强,故D 正确.故选ACD .答案:ACD11.解析:设X =(x 1,x 2,x 3,…,x n ),数据2x 1+1,2x 2+1,2x 3+1,…,2x n +1的平均值为7,方差为4, 即E(2X +1)=7,D(2X +1)=4, 由离散型随机变量均值公式可得E(2X +1)=2E(X)+1=7,所以E(X)=3,因而3x 1+2,3x 2+2,3x 3+2,…,3x n +2的平均值为a =E(3X +2)=3E(X)+2=3×3+2=11;由离散型随机变量的方差公式可得 D(2X +1)=4D(X)=4,所以D(X)=1,因而3x 1+2,3x 2+2,3x 3+2,…,3x n +2的方差为b =D(3X +2)=9D(X)=9,故选BD .答案:BD12.解析:对于选项A :若C 企业没有派医生去,每名医生有2种选择,则共有24=16种,若C 企业派1名医生则有C 14 ·23=32种,所以共有16+32=48种.对于选项B :若每家企业至少分派1名医生,则有C 24 C 12 C 11A 22·A 33 =36种.对于选项C :若每家企业至少分派1名医生,且医生甲必须到A 企业,若甲企业分2人,则有A 33 =6种;若甲企业分1人,则有C 23 C 11 A 22 =6种,所以共有6+6=12种.对于选项D :所有不同分派方案共有34种.故选ABC .答案:ABC13.解析:因为随机变量X ~N(1,σ2),P(X>2)=0.2,所以P(X<0)=P(X>2)=0.2,因此P(X>0)=1-P(X ≤0)=1-0.2=0.8.答案:0.814.解析:由题意可得:16 +p +13 =1,解得p =12 ,因为E(X)=2,所以:0×16 +2×12 +a ×13=2,解得a =3. D(X)=(0-2)2×16+(2-2)2×12+(3-2)2×13=1. D(2X -3)=4D(X)=4. 答案:415.解析:由题意可得x - =3+4+5+64 =4.5;y - =2.5+3+4+4.54=3.5;经验回归方程y ^ =b ^ x +a ^ 的斜率为0.7,可得y ^ =0.7x +a ^,所以3.5=0.7×4.5+a ^ ,可得a ^ =0.35,经验回归方程为:y ^=0.7x +0.35,投入宣传费用为8万元,则该品牌汽车销量的预报值为:0.7×8+0.35=5.95(万辆). 答案:5.9516.解析:已知(ax -1)2 020=a 0+a 1x +a 2x 2+…+a 2 020x 2 020(a>0), 令x =0,可得a 0=1.令x =1得,(a -1)2 020=a 0+a 1+a 2+…+a 2 020,令x =-1得,(-a -1)2 020=a 0-a 1+a 2-a 3+…+a 2 020,而(a 0+a 2+…+a 2 020)2-(a 1+a 3+…+a 2 019)2=(a 0+a 1+a 2+…+a 2 020)(a 0-a 1+a 2-a 3+…+a 2 020)=(a -1)2 020(-a -1)2 020=[(a -1)(-a -1)]2 020=(a 2-1)2 020=1,解得a =2 (负值和0舍).答案:1217.解析:(1)由题意可得,2n =32,解得n =5;(2)⎝ ⎛⎭⎪⎫x 2+1x n =⎝⎛⎭⎪⎫x 2+1x 5 , 二项展开式的通项为T r +1=C r5(x 2)5-r ⎝ ⎛⎭⎪⎫1x r=C r 5 x10-3r . 由10-3r =4,得r =2. ∴展开式中x 4的系数为C 25 =10.18.解析:(1)因为头胎为女孩的频率为0.5,所以头胎为女孩的总户数为200×0.5=100.因为生二孩的概率为0.525,所以生二孩的总户数为200×0.525=105. 2×2列联表如下:(2)由2×2列联表得:χ2=200(60×55-45×40)2105×95×100×100 =600133≈4.511>3.841=x 0.05故在犯错误的概率不超过0.05的前提下能认为是否生二孩与头胎的男女情况有关. 19.解析:(1)假设估计值是正确的,即随机抽一口水井,含有杂质A 的概率p =0.1.抽取5口水井中至少有1口水井含有杂质A 的概率P =1-(1-0.1)5=0.409 51;(2)在随机抽取的5口水井中有3口水井含有杂质A 的概率为C 35 ·(0.1)3·(0.9)2=0.0081<0.05.说明在随机抽取的5口水井中有3口水井含有杂质A 是小概率事件,它在一次试验中几乎是不可能发生的,说明“该县10%的乡村饮用水井中含有杂质A ”的估计是错误的.20.解析:(1)x -=19 (1+2+3+4+5+6+7+8+9)=5,y - =19(13+14+17+18+19+23+24+25+27)=20.b ^ =∑i =19x i y i -9x - y-∑i =19(x i -x -)2=1 002-9×5×2060=1.7.a ^=y --b ^x -=20-1.7×5=11.5.∴y 关于x 的经验回归方程为y =1.7x +11.5; (2)由y =1.7x +11.5,取x =12, 得y =1.7×12+11.5=31.9(万元). 故预测第12个月的纯利润为31.9万元.21.解析:(1)A ,B 两名学生各自从6个问题中随机抽取3个问题作答.这6个问题中,学生A 能正确回答其中的4个问题,而学生B 能正确回答每个问题的概率均为23,A ,B 两名学生对每个问题回答正确与否都是相互独立、互不影响的. A 恰好答对两个问题的概率为:P 1=C 24 C 12C 36=35.(2)B 恰好答对两个问题的概率为C 23⎝ ⎛⎭⎪⎫232·13=49. (3)X 所有可能的取值为1,2,3.P (X =1)=C 14 C 22 C 36 =15;P (X =2)=C 24 C 12 C 36 =35;P (X =3)=C 34 C 02 C 36=15.所以E (X )=1×15+2×35+3×15=2.由题意,随机变量Y ~B ⎝ ⎛⎭⎪⎫3,23,所以E (Y )=3×23=2.D (X )=(1-2)2×15+(2-2)2×35+(3-2)2×15=25.D (Y )=3×23×13=23.因为E (X )=E (Y ),D (X )<D (Y ),可见,A 与B 的平均水平相当,但A 比B 的成绩更稳定, 所以选择投票给学生A .22.解析:(1)由表格中的数据,有182.4>79.2,即182.4∑i =17(y i -y -)2>79.2∑i =17(y i -y -)2,所以模型①的R 2小于模型②,说明回归模型②刻画的拟合效果更好. 所以当x =16亿元时,科技改造直接收益的预测值为: y ^=21.3×16 -14.4=70.8(亿元).(2)由已知可得:x --20=1+2+3+4+55=3,∴x - =23,y --60=8.5+8+7.5+6+65 =7.2,∴y -=67.2,∴a =y - +0.7x -=67.2+0.7×23=83.3, ∴当x>16亿元时,y 与x 满足的经验回归方程为: y ^=-0.7x +83.3,∴当x =20亿元时,科技改造直接收益的预测值 y ^=-0.7×20+83.3=69.3,∴当x =20亿元时,实际收益的预测值为 69.3+10=79.3亿元>70.8亿元,∴科技改造投入20亿元时,公司的实际收益更大. (3)∵P(0.52-0.02<X<0.52+0.02)=0.954 5, P(X>0.50)=1+0.954 52 =0.977 25,P(X ≤0.5)=1-0.954 52 =0.022 75,∵P(0.52-0.1<X<0.52+0.1)=0.682 7, ∴P(X>0.53)=1-0.682 72=0.158 65,∴P(0.50<X ≤0.53)=0.977 25-0.158 65=0.818 6, 设每台发动机获得的奖励为Y(万元),则Y 的分布列为:∴每台发动机获得奖励的数学期望E(Y)=0×0.022 75+2×0.818 6+4×0.158 65=2.271 8(万元).。

高中数学 第三章 概率 31 随机事件的概率练习 新人教A版必修3 试题

高中数学 第三章 概率 31 随机事件的概率练习 新人教A版必修3 试题

3.1随机事件的概率3.1.1随机事件的概率一、选择题1.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3;其中是随机事件的是( )A.①②B.①③C.②③D.③④2.在25件同类产品中,有2件次品,从中任取3件产品,其中不可能事件为( )A.3件都是正品B.至少有1件次品C.3件都是次品D.至少有1件正品3.某人将一枚硬币连续抛掷了10次,正面朝上的情形出现了6次,则( )A.正面朝上的概率为0.6B.正面朝上的频率为0.6C.正面朝上的频率为6D.正面朝上的概率接近于0.64.给出下列三个命题,其中正确命题的个数是( )①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是0.3;③随机事件发生的频率就是这个随机事件发生的概率.A.0B.1C.2D.35.一个家庭有两个小孩,则这两个小孩所有情况有( )A.2种B.3种C.4种D.5种6.先从一副扑克牌中抽取5张红桃,4张梅花,3张黑桃,再从抽取的12张牌中随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这种事情( )A.可能发生B.不可能发生C.必然发生D.无法判断7.下列事件:①如果a>b,那么a-b>0.②任取一实数a(a>0且a≠1),函数y=logax是增函数.③某人射击一次,命中靶心.④从盛有一红、二白共三个球的袋子中,摸出一球观察结果是黄球.其中是随机事件的为( )A.①②B.③④ C.①④D.②③8.下列说法中,不正确的是( )A.某人射击10次,击中靶心8次,则他击中靶心的频率是0.8B.某人射击10次,击中靶心7次,则他击不中靶心的频率是0.7C.某人射击10次,击中靶心的频率是12,则他应击中靶心5次D.某人射击10次,击中靶心的频率是0.6,则他击不中靶心的次数应为4二、填空题9.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是.10.已知随机事件A发生的频率是0.02,事件A出现了10次,那么共进行了________次试验.11.在200件产品中,有192件一级品,8件二级品,则事件(1)“在这200件产品中任意选出9件,全部是一级品”;(2)“在这200件产品中任意选出9件,全部是二级品”(3)“在这200件产品中任意选出9件,不全是一级品”;(4)“在这200件产品中任意选出9件,其中不是一级品的件数小于10”.是必然事件; 是不可能事件; 是随机事件.12.根据某社区医院的调查,该地区居民血型的分布为:O型50%,A型15%,B型30%,AB型5%,现有一血液为A型的病人需要输血,若在该地区任选一人,那么能为该病人输血的概率是.三、解答题13.设集合M={1,2,3,4},a∈M,b∈M,(a,b)是一个基本事件.(1)“a+b=5”这一事件包含哪几个基本事件?“a<3且b>1”呢?(2)“ab=4”这一事件包含哪几个基本事件?“a=b”呢?(3)“直线ax+by=0的斜率k>-1”这一事件包含哪几个基本事件?14.从含有两件正品a1,a2和一件次品b的三件产品中每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有结果;(2)设A为“取出两件产品中恰有一件次品”,写出事件A;(3)把“每次取出后不放回”这一条件换成“每次取出后放回”,其余不变,请你回答上述两个问题.15.某批乒乓球产品质量检查结果如下表所示:(1)计算表中乒乓球优等品的频率;(2)从这批乒乓球产品中任取一个,质量检查为优等品的概率是多少?(结果保留到小数点后三位)附加题16.(1)从甲、乙、丙、丁四人中选出两人,分别在星期六和星期天两天值班,写出该试验的所有可能的结果;(2)从甲、乙、丙、丁四人中选出3人去旅游,写出所有可能的结果.3.1.2概率的意义一、选择题1.“某彩票的中奖概率为11000”意味着( )A.买1000张彩票就一定能中奖B.买1000张彩票中一次奖C.买1000张彩票一次奖也不中D.购买彩票中奖的可能性是2.某学校有教职工400名,从中选出40名教职工组成教工代表大会,每位教职工当选的概率是110,其中正确的是( )A.10个教职工中,必有1人当选B.每位教职工当选的可能性是110C.数学教研组共有50人,该组当选教工代表的人数一定是5D.以上说法都不正确3.向上抛掷100枚质地均匀的硬币,下列哪种情况最有可能发生( )A.50枚正面朝上, 50枚正面朝下B.全都是正面朝上C.有10枚左右的硬币正面朝上D.大约有20枚硬币正面朝上4.同时向上抛100个质地均匀的铜板,落地时100个铜板朝上的面都相同,你认为对这100个铜板下面情况最有可能正确的是( )A.这100个铜板的两面是一样的B.这100个铜板的两面是不同的C.这100个铜板中有50个两面是一样的,另外50个两面是不相同的D.这100个铜板中有20个两面是一样的,另外80个两面是不相同的5.抛掷一枚质地均匀的正方体骰子(六个面上分别写有1,2,3,4,5,6),若前3次连续抛到“6点朝上”,则对于第4次抛掷结果的预测,下列说法中正确的是( )A.一定出现“6点朝上”B.出现“6点朝上”的概率大于16C.出现“6点朝上”的概率等于16D.无法预测“6点朝上”的概率6.甲、乙两人做游戏,下列游戏中不公平的是( )A.抛掷一枚骰子,向上的点数为奇数则甲获胜,向上的点数为偶数则乙获胜B.同时抛掷两枚硬币,恰有一枚正面向上则甲获胜,两枚都正面向上则乙获胜C.从一副不含大小王的扑克牌中抽一张,扑克牌是红色的则甲获胜,扑克牌是黑色的则乙获胜D.甲、乙两人各写一个数字1或2,如果两人写的数字相同甲获胜,否则乙获胜7.根据某医疗所的调查,某地区居民血型的分布为:O型50%,A型15%,AB型5%,B型30%.现有一血型为O型的病人需要输血,若在该地区任选一人,那么能为病人输血的概率为( ) A.50% B.15%C.45% D.65%8.下列命题中的真命题有( )①做9次抛掷一枚均匀硬币的试验,结果有5次出现正面,因此,出现正面的概率是59;②盒子中装有大小均匀的3个红球,3个黑球,2个白球,那么每种颜色的球被摸到的可能性相同;③从-4,-3,-2,-1,0,1,2中任取一个数,取得的数小于0和不小于0的可能性相同;④分别从2名男生,3名女生中各选一名作为代表,那么每名学生被选中的可能性相同.A.0个B.1个C.2个D.3个二、填空题9.设某厂产品的次品率为2%,估算该厂8000件产品中合格品的件数可能为件.10.如果掷一枚质地均匀的硬币,连续5次正面向上,则下次出现反面向上的概率为.11.玲玲和倩倩是一对好朋友,她俩都想去观看周杰伦的演唱会,可手里只有一张票,怎么办呢?玲玲对倩倩说:“我向空中抛2枚同样的一元硬币,如果落地后一正一反,就是我去;如果落地后两面一样,就是你去!”你认为这个游戏公平吗? .12.在一次考试中,某班有80%的同学及格,80%是________.(选“概率”或“频率”填空)13.某射击教练评价一名运动员时说:“你射中的概率是90%.”你认为下面两个解释中能代表教练的观点的为________.①该射击运动员射击了100次,恰有90次击中目标②该射击运动员射击一次,中靶的机会是90%三、解答题14.试解释下列情况下概率的意义:(1)某商场为促进销售,实行有奖销售活动,凡购买其商品的顾客中奖率是0.20;(2)一生产厂家称:我们厂生产的产品合格率是0.98.15.某水产试验厂实行某种鱼的人工孵化,10000个鱼卵能孵化8513尾鱼苗,根据概率的统计定义解答下列问题:(1)这种鱼卵的孵化概率(孵化率)是多少?(2)30000个鱼卵大约能孵化多少尾鱼苗?(3)要孵化5000尾鱼苗,大概需备多少个鱼卵?(精确到百位)3.1.3 概率的性质一、选择题1.已知P(A)=0.1,P(B)=0.2,则P(A∪B)等于( D )A.0.3B.0.2C.0.1D.不确定2.抽查10件产品,记事件A为“至少有2件次品”,则A的对立事件为(B )A.至多有2件次品B.至多有1件次品C.至多有2件正品D.至少有2件正品3.给出事件A与B的关系图,如图所示,则( )A.A⊆B B.A⊇BC.A与B互斥D.A与B互为对立事件4.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一弹击中飞机},D={至少有一弹击中飞机},下列关系不正确的是( ) A.A⊆D B.B∩D=∅C.A∪C=D D.A∪B=B∪D5.从1,2,…,9中任取两个数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个是奇数和两个都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.在上述几对事件中是对立事件的是( )A.①B.②④C.③D.①③6.下列四种说法:①对立事件一定是互斥事件;②若A,B为两个事件,则P(A∪B)=P(A)+P(B);③若事件A,B,C彼此互斥,则P(A)+P(B)+P(C)=1;④若事件A,B满足P(A)+P(B)=1,则A,B是对立事件.其中错误的个数是( )A.0 B.1 C.2 D.37.从一批羽毛球产品中任取一个,其质量小于4.8 g的概率为0.3,质量小于4.85 g的概率为0.32,那么质量在[4.8,4.85]g范围内的概率是( )A.0.62B.0.38C.0.02 D.0.688.现有语文、数学、英语、物理和化学共5本书,从中任取1本,取出的是理科书的概率为( )A.15B.25C.35D.45二、填空题9.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,则摸出黑球的概率是________.10.甲、乙两队进行足球比赛,若两队战平的概率是14,乙队胜的概率是13,则甲队胜的概率是________.11.同时抛掷两枚骰子,没有5点或6点的概率为49,则至少有一个5点或6点的概率是________.12.从4名男生和2名女生中任选3人参加演讲比赛,所选3人中至少有1名女生的概率为三、解答题13.某射手射击一次射中10环,9环,8环,7环的概率分别是0.24,0.28,0.19,0.16,计算这名射手射击一次.(1)射中10环或9环的概率;(2)至少射中7环的概率.1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______ 10_____ 11_____14.某家庭电话在家中有人时,打进的电话响第一声时被接的概率为0.1,响第二声时被接的概率为0.3,响第三声时被接的概率为0.4,响第四声时被接的概率为0.1,那么电话在响前四声内被接的概率是多少?15.某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别为0.3、0.2、0.1、0.4.(1)求他乘火车或乘飞机去的概率;(2)求他不乘轮船去的概率;(3)如果他乘某种交通工具的概率为0.5,请问他有可能乘哪种交通工具?附加题16.在某一时期内,一条河流某处的年最高水位计算在同一时期内,河流这一处的年最高水位在下列范围内的概率:(1)[10,16)(m);(2)[8,12)(m);(3)水位不低于12 m.3.1.1随机事件的概率1-8 ACBA CCDB9. P==0.0310.50011. (4) (2) (1)(3)12. 65%13. 这个试验的基本事件构成集合Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}.(1)“a+b=5”包含以下4个基本事件:(1,4),(2,3),(3,2),(4,1).“a<3且b>1”包含以下6个基本事件:(1,2),(1,3),(1,4),(2,2),(2,3),(2,4).(2)“ab =4”这一事件包含以下3个基本事件:(1,4),(2,2),(4,1); “a =b ”这一事件包含以下4个基本事件:(1,1),(2,2),(3,3),(4,4). (3)直线ax +by =0的斜率k =-ab>-1,∴a<b ,∴包含以下6个基本事件:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).14.(1)这个试验的所有可能结果Ω={(a1,a2),(a1,b),(a2,b),(a2,a1),(b ,a1),(b ,a2)}. (2)A ={(a1,b),(a2,b),(b ,a1),(b ,a2)}.(3)①这个试验的所有可能结果Ω={(a1,a1),(a1,a2),(a1,b),(a2,a1),(a2,a2),(a2,b),(b ,a1),(b ,a2),(b ,b)}.②A ={(a1,b),(a2,b),(b ,a1),(b ,a2)}.15. 解:(1)依据公式可算出表中乒乓球优等品的频率依次为0.900,0.920,0.970,0.940,0.954,0.951.(2)由(1)知,抽取的球数n 不同,计算得到的频率值虽然不同,但却都在常数0.950的附近摆动,所以抽取一个乒乓球检测时,质量检查为优等品的概率为0.950.16. 解:(1)由题意知选出两人,分别在星期六和星期天值班,故可能的结果为:甲乙;乙甲;甲丙;丙甲;甲丁;丁甲;乙丙;丙乙;乙丁;丁乙;丙丁;丁丙. 共12种可能的结果.(2)有四种结果{甲,乙,丙}{甲,乙,丁}{甲,丙,丁}{乙,丙,丁}. 3.1.2概率的意义 1-8 DBAA CBAA 9. 7840 10. 0.5 11.公平 12.频率 13. ②14. 解:(1)“中奖率是0.20”是指购买其商品的顾客中奖的可能性是20%.(2)“产品的合格率是0.98”是指该厂生产的产品合格的可能性是98%. 15. 解:(1)这种鱼卵的孵化概率P==0. 8513.(2)30000个鱼卵大约能孵化30000×=25539(尾)鱼苗. (3)设大概需备x 个鱼卵,由题意知, ∴x=≈5900(个). ∴大概需备5900个鱼卵.3.1.3 概率的性质1-8 DBCD CDCC 9. 0.3010. 512 11. 5912. 4/513.解 设“射中10环”,“射中9环”,“射中8环”,“射中7环”的事件分别为A 、B 、C 、D ,则A 、B 、C 、D 是互斥事件,(1)P(A∪B)=P(A)+P(B)=0.24+0.28 =0.52;(2)P(A∪B∪C∪D)=P(A)+P(B)+P(C)+P(D)=0.24+0.28+0.19+0.16=0.87. 答 射中10环或9环的概率是0.52,至少射中7环的概率为0.87.14.解 记“响第1声时被接”为事件A ,“响第2声时被接”为事件B ,“响第3声时被接”为事件C ,“响第4声时被接”为事件D.“响前4声内被接”为事件E ,则易知A 、 B 、C 、D 互斥,且E =A∪B∪C∪D,所以由互斥事件的概率的加法公式得P(E)=P(A∪B∪C∪D) =P(A)+P(B)+P(C)+P(D) =0.1+0.3+0.4+0.1=0.9.15.解 (1)记“他乘火车去”为事件A 1,“他乘轮船去”为事件A 2,“他乘汽车去”为事件A 3,“他乘飞机去”为事件A 4,这四个事件不可能同时发生,故它们彼此互斥.故P(A 1∪A 4)=P(A 1)+P(A 4)=0.3+0.4=0.7. 所以他乘火车或乘飞机去的概率为0.7. (2)设他不乘轮船去的概率为P , 则P =1-P(A 2)=1-0.2=0.8, 所以他不乘轮船去的概率为0.8. (3)由于P(A)+P(B)=0.3+0.2=0.5,P(C)+P(D)=0.1+0.4=0.5,故他可能乘火车或乘轮船去,也有可能乘汽车或乘飞机去.16.解设水位在[a,b)范围的概率为P([a,b)).由于水位在各范围内对应的事件是互斥的,由概率加法公式得:(1)P([10,16))=P([10,12))+P([12,14))+P([14,16))=0.28+0.38+0.16=0.82.(2)P([8,12))=P([8,10))+P([10,12))=0.1+0.28=0.38.(3)记“水位不低于12 m”为事件A,P(A)=1-P([8,12))=1-0.38=0.62.。

高中数学人教A版必修三习题第三章-概率的基本性质含答案

高中数学人教A版必修三习题第三章-概率的基本性质含答案

第三章 概率3.1 随机事件的概率3.1.3 概率的基本性质A 级 基础巩固一、选择题1.下列各组事件中,不是互斥事件的是( )A .一个射手进行一次射击,命中环数大于8与命中环数小于6B .统计一个班级数学期中考试成绩,平均分数低于90分与平均分数高于90分C .播种菜籽100粒,发芽90粒与至少发芽80粒D .检查某种产品,合格率高于70%与合格率为70%答案:C2.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,已知事件“2张全是移动卡”的概率是,那么概率是的事件是( ) 310710A .至多有一张移动卡B .恰有一张移动卡C .都不是移动卡D .至少有一张移动卡解析:结合对立事件可知所求事件是“2张全是移动卡”的对立事件,即至多有一张移动卡.答案:A3.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙两人下成和棋的概率为( )A .60%B .30%C .10%D .50%解析:甲不输棋包含甲获胜或甲、乙两人下成和棋,则甲、乙两人下成和棋的概率为90%-40%=50%.答案:D4.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A ={两次都击中飞机},B ={两次都没击中飞机},C ={恰有一弹击中飞机},D ={至少有一弹击中飞机},下列关系不正确的是( )A .A ⊆DB .B ∩D =∅C .A ∪C =D D .A ∪C =B ∪D解析:“恰有一弹击中飞机”指第一枚击中第二枚没中或第一枚没中第二枚击中,A ∪C =D =(至少有一弹击中飞机),不是必然事件;“至少有一弹击中”包含两种情况:一种是恰有一弹击中,一种是两弹都击中,B ∪D 为必然事件,所以A ∪C ≠B ∪D .答案:D5.现有语文、数学、英语、物理和化学共5本书,从中任取1本,取出的是理科书的概率为( )A. B. C. D. 15253545解析:记“取到语文、数学、英语、物理、化学书”分别为事件A 、B 、C 、D 、E ,则A 、B 、C 、D 、E 彼此互斥,取到理科书的概率为事件B 、D 、E 概率的和.所以P (B ∪D ∪E )=P (B )+P (D )+P (E )=++=. 15151535答案:C二、填空题6.在掷骰子的游戏中,向上的点数为5或6的概率为______.解析:记事件A 为“向上的点数为5”,事件B 为“向上的点数为6”,则A 与B 互斥.所以P (A ∪B )=P (A )+P (B )=×2=. 1613答案: 137.从4名男生和2名女生中任选3人去参加演讲比赛,所选3人中至少有1名女生的概率为,那么所选3人中都是男生的概率为________. 45解析:设A ={3人中至少有1名女生},B ={3人都为男生},则A ,B 为对立事件,所以P (B )=1-P (A )=. 15答案: 158.如图所示,靶子由一个中心圆面Ⅰ和两个同心圆环Ⅱ、Ⅲ构成,射手命中Ⅰ、Ⅱ、Ⅲ的概率分别为0.35、0.30、0.25,则不命中靶的概率是________.解析:“射手命中圆面Ⅰ”为事件A ,“命中圆环Ⅱ”为事件B ,“命中圆环Ⅲ”为事件C ,“不中靶”为事件D ,则A 、B 、C 彼此互斥,故射手中靶的概率为P (A ∪B ∪C )=P (A )+P (B )+P (C )=0.35+0.30+0.25=0.90.因为中靶和不中靶是对立事件,故不命中靶的概率为P (D )=1-P (A ∪B ∪C )=1-0.90=0.10.答案:0.10三、解答题9.某医院一天派出医生下乡医疗,派出医生人数及其概率如下表所示. 医生人数0 1 2 3 4 ≥5 概率 0.1 0.16 x y 0.2 z(1)若派出医生不超过2人的概率为0.56,求x 的值;(2)若派出医生最多4人的概率为0.96,至少3人的概率为0.44,求y ,z 的值. 解:(1)由派出医生不超过2人的概率为0.56,得0.1+0.16+x =0.56,所以x =0.3.(2)由派出医生最多4人的概率为0.96,得0.96+z =1,所以z =0.04.由派出医生至少3人的概率为0.44, 得y +0.2+z =0.44,所以y =0.44-0.2-0.04=0.2.10.如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A )的概率是,取到方块(事件B )的概率是,问: 1414(1)取到红色牌(事件C )的概率是多少?(2)取到黑色牌(事件D )的概率是多少?解:(1)因为C =A ∪B ,且A 与B 不会同时发生,所以事件A 与事件B 互斥,根据概率的加法公式得P (C )=P (A )+P (B )=.12(2)事件C 与事件D 互斥,且C ∪D 为必然事件,因此事件C 与事件D 是对立事件,P (D )=1-P (C )=. 12B 级 能力提升1.从1,2,…,9中任取两数:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个数都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.在上述事件中,是对立事件的是( )A .①B .②④C .③D .①③ 解析:从1,2,…,9中任取两数,有以下三种情况:(1)两个奇数;(2)两个偶数;(3)一个奇数和一个偶数.至少有一个奇数是(1)和(3),其对立事件显然是(2).答案:C2.事件A ,B 互斥,它们都不发生的概率为,且P (A )=2P (B ),则P ()=________. 25A -解析:P (A )+P (B )=1-=, 2535又P (A )=2P (B ),所以P (A )=,P (B )=. 2515所以P ()=1-P (A )=. A -35答案: 353.三个臭皮匠顶上一个诸葛亮,能顶得上吗?在一次有关“三国演义”的知识竞赛中,三个臭皮匠A 、B 、C 能答对题目的概率分别为P (A )=,P (B )=,P (C )=,诸葛亮D 能答131415对题目的概率为P (D )=,如果将三个臭皮匠A 、B 、C 组成一组与诸葛亮D 比赛,答对题目23多者为胜方,问哪方胜?解:如果三个臭皮匠A 、B 、C 能答对的题目彼此互斥(他们能答对的题目不重复),则P (A +B +C )=P (A )+P (B )+P (C )=>P (D )=,故三个臭皮匠方为胜方,即三个臭皮匠能顶上476023一个诸葛亮;如果三个臭皮匠A 、B 、C 能答对的题目不互斥,则三个臭皮匠未必能顶上一个诸葛亮.。

高中数学(人教版A版必修三)配套课时作业:第三章 概率 3.2.2 Word版含答案

高中数学(人教版A版必修三)配套课时作业:第三章 概率 3.2.2 Word版含答案

3.2.2 (整数值)随机数(random numbers)的产生课时目标 1.了解随机数的意义.2.会用模拟方法(包括计算器产生随机数进行模拟)估计概率.3.理解用模拟方法估计概率的实质.1.随机数要产生1~n(n ∈N *)之间的随机整数,把n 个____________相同的小球分别标上1,2,3,…,n ,放入一个袋中,把它们__________,然后从中摸出一个,这个球上的数就称为随机数. 2.伪随机数计算机或计算器产生的随机数是依照__________产生的数,具有________(________很长),它们具有类似________的性质.因此,计算机或计算器产生的并不是______,我们称它们为伪随机数.3.利用计算器产生随机数的操作方法:用计算器的随机函数RANDI(a ,b )或计算机的随机函数RANDBETWEEN(a ,b )可以产生从整数a 到整数b 的取整数值的随机数. 4.利用计算机产生随机数的操作程序每个具有统计功能的软件都有随机函数,以Excel 软件为例,打开Excel 软件,执行下面的步骤:(1)选定A1格,键入“=RANDBETWEEN(0,1)”,按Enter 键,则在此格中的数是随机产生的0或1.(2)选定A1格,按Ctrl +C 快捷键,然后选定要随机产生0,1的格,比如A2至A100,按Ctrl +V 快捷键,则在A2至A100的数均为随机产生的0或1,这样相当于做了100次随机试验.(3)选定C1格,键入频数函数“=FREQUENCY(A1∶A100,0.5)”,按Enter 键,则此格中的数是统计A1至A100中,比0.5小的数的个数,即0出现的频数.(4)选定D1格,键入“=1-C1/100”按Enter 键,在此格中的数是这100次试验中出现1的频率.一、选择题1.从含有3个元素的集合的所有子集中任取一个,所取的子集是含有2个元素的集合的概率是( ) A.310 B.112 C.4564 D.38 2.用计算机随机模拟掷骰子的试验,估计出现2点的概率,下列步骤中不正确的是( ) A .用计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生6个不同的1到6之间的取整数值的随机数x ,如果x =2,我们认为出现2点 B .我们通常用计算器n 记录做了多少次掷骰子试验,用计数器m 记录其中有多少次出现2点,置n =0,m =0C .出现2点,则m 的值加1,即m =m +1;否则m 的值保持不变D .程序结束,出现2点的频率mn作为概率的近似值3.假定某运动员每次投掷飞镖正中靶心的概率为40%,现采用随机模拟的方法估计该运动员两次投掷飞镖恰有一次命中靶心的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中靶心,5,6,7,8,9,0表示未命中靶心;再以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数: 93 28 12 45 85 69 68 34 31 2573 93 02 75 56 48 87 30 11 35据此估计,该运动员两次掷镖恰有一次正中靶心的概率为( ) A .0.50 B .0.45 C .0.40 D .0.354.从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b >a 的概率是( ) A.45 B.35 C.25 D.155.从1,2,3,…,30这30个数中任意选一个数,则事件“是偶数或能被5整除的数”的概率是( ) A.710 B.35 C.45 D.1106.任取一个三位正整数N ,对数log 2N 是一个正整数的概率为( ) A.1225 B.3899 C.1300 D.14507.对一部四卷文集,按任意顺序排放在书架的同一层上,则各卷自左到右或由右到左卷号恰为1,2,3,4顺序的概率等于________.8.盒子里共有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,则它们颜色不同的概率是________.9.通过模拟试验,产生了20组随机数:6830 3013 7055 7430 7740 4422 7884 2604 3346 0952 6807 9706 5774 5725 6576 5929 9768 6071 9138 6754如果恰有三个数在1,2,3,4,5,6中,则表示恰有三次击中目标,问四次射击中恰有三次击中目标的概率约为________. 三、解答题10.掷三枚骰子,利用Excel 软件进行随机模拟,试验20次,计算出现点数之和是9的概率.11.某篮球爱好者做投篮练习,假设其每次投篮命中的概率是60%,那么在连续三次投篮中,三次都投中的概率是多少?能力提升12.从4名同学中选出3人参加物理竞赛,其中甲被选中的概率为( ) A.14 B.12 C.34D .以上都不对 13.甲、乙两支篮球队进行一局比赛,甲获胜的概率为0.6,若采用三局两胜制举行一次比赛,试用随机模拟的方法求乙获胜的概率.1.(1)常用的随机数的产生方法主要有抽签法,利用计算器或计算机.(2)利用摸球或抽签得到的数是真正意义上的随机数,用计算器或计算机得到的是伪随机数.2.用整数随机模拟试验时,首先要确定随机数的范围,利用哪个数字代表哪个试验结果: (1)试验的基本结果等可能时,基本事件总数即为产生随机数的范围,每个随机数代表一个基本事件;(2)研究等可能事件的概率时,用按比例分配的方法确定表示各个结果的数字个数及范围.答案:3.2.2 (整数值)随机数(random numbers )的产生知识梳理1.大小、形状 充分搅拌 2.确定算法 周期性 周期 随机数 真正的随机数 作业设计1.D [所有子集共8个,∅,{a},{b},{c},{a ,b},{a ,c},{b ,c},{a ,b ,c},含两个元素的子集共3个,故所求概率为38.]2.A [计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生的是1到7之间的整数,包括7,共7个整数.]3.A [两次掷镖恰有一次正中靶心表示随机数中有且只有一个数为1,2,3,4中的之一.它们分别是93,28,45,25,73,93,02,48,30,35共10个,因此所求的概率为1020=0.5.]4.D [由题意知基本事件为从两个集合中各取一个数,因此基本事件总数为5×3=15. 满足b>a 的基本事件有(1,2),(1,3),(2,3)共3个,∴所求概率P =315=15.]5.B6.C [N 取[100,999]中任意一个共900种可能,当N =27,28,29时,log 2N 为正整数,∴P=1300.] 7.112解析 用树形图可以列举基本事件的总数. ①②③④ ②①③④ ③①②④ ④①②③ ①②④③ ②①④③ ③①④② ④①③② ①③②④ ②③①④ ③②①④ ④②③① ①③④② ②③④① ③②④① ④②①③ ①④②③ ②④①③ ③④①② ④③①② ①④③② ②④③① ③④②① ④③②①总共有24种基本事件,故其概率为P =224=112.8.12解析 给3只白球分别编号为a ,b ,c,1只黑球编号为d ,基本事件为ab ,ac ,ad ,bc ,bd ,cd 共6个,颜色不同包括事件ad ,bd ,cd 共3个,因此所求概率为36=12.9.14解析 由题意四次射击中恰有三次击中对应的随机数有3个数字在1,2,3,4,5,6中,这样的随机数有3013,2604,5725,6576,6754共5个,所求的概率约为520=14.10.解 操作步骤:(1)打开Excel 软件,在表格中选择一格比如A 1,在菜单下的“=”后键入“=RANDBETWEEN(1,6)”,按Enter 键,则在此格中的数是随机产生的1~6中的数. (2)选定A 1这个格,按Ctrl +C 快捷键,然后选定要随机产生1~6的格,如A 1∶T 3,按Ctrl +V 快捷键,则在A 1∶T 3的数均为随机产生的1~6的数. (3)对产生随机数的各列求和,填入A 4∶T 4中. (4)统计和为9的个数S ;最后,计算概率S /20.11.解我们通过设计模拟试验的方法来解决问题,利用计算机或计算器可以产生0到9之间的取整数值的随机数.我们用1,2,3,4,5,6表示投中,用7,8,9,0表示未投中,这样可以体现投中的概率是60%.因为是投篮三次,所以每三个随机数作为一组.例如,产生20组随机数:812932569683271989730537925 834907113966191432256393027556755这就相当于做了20次试验,在这组数中,如果3个数均在1,2,3,4,5,6中,则表示三次都投中,它们分别是113,432,256,556,即共有4个数,我们得到了三次投篮都投中的概率近似为4=20%.2012.C[4名同学选3名的事件数等价于4名同学淘汰1名的事件数,即4种情况,甲被选中的情况共3种,∴P=34.]13.解利用计算器或计算机生成0到9之间取整数值的随机数,用0,1,2,3,4,5表示甲获胜;6,7,8,9表示乙获胜,这样能体现甲获胜的概率为0.6.因为采用三局两胜制,所以每3个随机数作为一组.例如,产生30组随机数(可借助教材103页的随机数表).034743738636964736614698637162 332 616 804 560 111 410 959 774246 762 428 114 572 042 533 237 322707 360 751就相当于做了30次试验.如果恰有2个或3个数在6,7,8,9中,就表示乙获胜,它们分别是738,636,964,736,698,637,616,959,774,762,707.共11个.所以采用三局两胜制,乙获胜的概率约为1130≈0.367.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 概 率(B) (时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.从一批产品(其中正品、次品都多于2件)中任取2件,观察正品件数和次品件数,下列事件是互斥事件的是( )①恰好有1件次品和恰好有两件次品; ②至少有1件次品和全是次品;③至少有1件正品和至少有1件次品; ④至少1件次品和全是正品.A .①②B .①③C .③④D .①④ 2.平面上有一组平行线,且相邻平行线间的距离为3 cm ,把一枚半径为1 cm 的硬币任意抛掷在这个平面上,则硬币不与任何一条平行线相碰的概率是( ) A.14 B.13 C.12 D.233.某班有50名学生,其中男、女各25名,若这个班的一个学生甲在街上碰到一位同班同学,假定每两名学生碰面的概率相等,那么甲碰到异性同学的概率大还是碰到同性同学的概率大( )A .异性B .同性C .同样大D .无法确定4.在区间⎣⎡⎦⎤-π2,π2上随机取一个数x ,cos x 的值介于0到12之间的概率为( ) A.13 B.2π C.12 D.23 5.已知某运动员每次投篮命中的概率低于40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数: 907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为( )A .0.35B .0.25C .0.20D .0.15 6.12本相同的书中,有10本语文书,2本英语书,从中任意抽取3本的必然事件是( )A .3本都是语文书B .至少有一本是英语书C .3本都是英语书D .至少有一本是语文书7.某人射击4枪,命中3枪,3枪中有且只有2枪连中的概率是( ) A.34 B.14 C.13 D.128.从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,则这个两位数大于40的概率为( )A.15B.25C.35D.459.已知集合A ={-9,-7,-5,-3,-1,0,2,4,6,8},从集合A 中选取不相同的两个数,构成平面直角坐标系上的点,观察点的位置,则事件A ={点落在x 轴上}与事件B ={点落在y 轴上}的概率关系为( )A .P (A )>P (B ) B .P (A )<P (B )C .P (A )=P (B )D .P (A )、P (B )大小不确定10.如图所示,△ABC 为圆O 的内接三角形,AC =BC ,AB 为圆O 的直径,向该圆内随机投一点,则该点落在△ABC 内的概率是( ) A.1π B.2π C.4π D.12π11.若以连续两次掷骰子分别得到的点数m ,n 作为点P 的坐标(m ,n ),则点P 在圆x 2+y 2=25外的概率是( ) A.536 B.712 C.512 D.13 12.如图所示,两个圆盘都是六等分,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( )A.4B.2C.2D.1二、填空题(本大题共4小题,每小题5分,共20分)13.已知半径为a 的球内有一内接正方体,若球内任取一点,则该点在正方体内的概率为________.14.在平面直角坐标系xOy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中的概率为________.15.在半径为1的圆的一条直径上任取一点,过这个点作垂直于直径的弦,则弦长超过圆内接等边三角形边长的概率是________.16.在体积为V 的三棱锥S -ABC 的棱AB 上任取一点P ,则三棱锥S -APC 的体积大于V3的概率是________.三、解答题(本大题共6小题,共70分)17.(10分)已知函数f(x)=-x2+ax-b.若a,b都是从0,1,2,3,4五个数中任取的一个数,求上述函数有零点的概率.18.(12分)假设向三个相邻的军火库投掷一个炸弹,炸中第一个军火库的概率为0.025,其余两个各为0.1,只要炸中一个,另两个也发生爆炸,求军火库发生爆炸的概率.19.(12分)如右图所示,OA=1,在以O为圆心,OA为半径的半圆弧上任取一点B,求使△AOB的面积大于等于14的概率.20.(12分)甲、乙二人用4张扑克牌(分别是红桃2、红桃3、红桃4、方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.(1)设(i,j)分别表示甲、乙抽到的牌的牌面数字,写出甲、乙二人抽到的牌的所有情况;(2)若甲抽到红桃3,则乙抽到的牌面数字比3大的概率是多少?(3)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜.你认为此游戏是否公平,说明你的理由.21.(12分)现有8名奥运会志愿者,其中志愿者A1、A2、A3通晓日语,B1、B2、B3通晓俄语,C1、C2通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(1)求A1被选中的概率;(2)求B1和C1不全被选中的概率.22.(12分)已知实数a,b∈{-2,-1,1,2}.(1)求直线y=ax+b不经过第四象限的概率;(2)求直线y=ax+b与圆x2+y2=1有公共点的概率.第三章 概 率(B)1.D 2.B3.A [记“甲碰到同性同学”为事件A ,“甲碰到异性同学”为事件B ,则P (A )=2449,P (B )=2549,故P (A )<P (B ),即学生甲碰到异性同学的概率大.]4.A [在区间[-π2,π2],0<cos x <12⇔x ∈⎝⎛⎭⎫-π2,-π3∪⎝⎛⎭⎫π3,π2,其区间长度为π3,又已知区间⎣⎡⎦⎤-π2,π2的长度为π,由几何概型知P =π3π=13] 5.B [由题意知在20组随机数中表示三次投篮恰有两次命中的有:191、271、932、812、393,共5组随机数,故所求概率为520=14=0.25.]6.D [由于只有2本英语书,从中任意抽取3本,其中至少有一本是语文书.] 7.D [4枪命中3枪共有4种可能,其中有且只有2枪连中有2种可能,所以P =24=12] 8.B [可能构成的两位数的总数为5×4=20(种),因为是“任取”两个数,所以每个数被取到的概率相同,可以采用古典概型公式求解,其中大于40的两位数有以4开头的:41,42,43,45共4种;以5开头的:51,52,53,54共4种,所以P =820=25.]9.C [横坐标与纵坐标为0的可能性是一样的.]10.A [连接OC ,设圆O 的半径为R ,记“所投点落在△ABC 内”为事件A ,则P (A )=12·AB ·OC πR 2=1π.] 11.B [本题中涉及两个变量的平方和,类似于两个变量的和或积的情况,可以用列表法,使x 2+y 2>25的次数与总试验次数的比就近似为本题结果.即2136=712.]12.A [可求得同时落在奇数所在区域的情况有4×4=16(种),而总的情况有6×6=36(种),于是由古典概型概率公式,得P =1636=49.]13.233π解析 因为球半径为a ,则正方体的对角线长为2a ,设正方体的边长为x ,则2a =3x ,∴x =2a 3,由几何概型知,所求的概率P =V 正方体V 球=x 343πa 3=233π.14. π16解析 如图所示,区域D 表示边长为4的正方形的内部(含边界),区域E 表示单位圆及其内部,因此P =π×124×4=π16.15.12 解析记“弦长超过圆内接等边三角形的边长”为事件A ,如图所示,不妨在过等边三角形BCD 的顶点B 的直径BE 上任取一点F 作垂直于直径的弦,当弦为CD 时,就是等边三角形的边长,弦长大于CD 的充要条件是圆心O 到弦的距离小于OF ,由几何概型的概率公式得P (A )=12×22=12.16.23解析 由题意可知V S -APC V S -ABC >13,如图所示,三棱锥S -ABC 与三棱锥S -APC 的高相同,因此V S -APC V S -ABC =S △APC S △ABC =PM BN >13(PM ,BN 为其高线),又PM BN =AP AB ,故AP AB >13,故所求概率为23(长度之比).17.解 a ,b 都是从0,1,2,3,4五个数中任取的一个数的基本事件总数为N =5×5=25个.函数有零点的条件为Δ=a 2-4b ≥0,即a 2≥4b .因为事件“a 2≥4b ”包含(0,0),(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),(4,0),(4,1),(4,2),(4,3),(4,4),共12个.所以事件“a 2≥4b ”的概率为P =1225.18.解 设A 、B 、C 分别表示炸中第一、第二、第三军火库这三个事件. 则P (A )=0.025,P (B )=P (C )=0.1, 设D 表示军火库爆炸这个事件,则有D =A ∪B ∪C ,其中A 、B 、C 是互斥事件,∴P (D )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=0.025+0.1+0.1=0.225.19.解 如下图所示,作OC ⊥OA ,C 在半圆弧上,过OC 中点D 作OA 的平行线交半圆弧于E 、F ,所以在EF 上取一点B ,则S △AOB ≥14.连结OE 、OF ,因为OD =12OC =12OF ,OC ⊥EF ,所以∠DOF =60°,所以∠EOF =120°,所以l EF=120180π·1=23π. 所以P =l EF π·1=23ππ=23.20.解 (1)甲、乙二人抽到的牌的所有情况(方片4用4′表示,其他用相应的数字表示)为(2,3),(2,4),(2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),(4,4′),(4′,2),(4′,3),(4′,4),共12种不同情况.(2)甲抽到红桃3,乙抽到的牌的牌面数字只能是2,4,4′,因此乙抽到的牌的牌面数字比3大的概率为23.(3)甲抽到的牌的牌面数字比乙大的情况有(3,2),(4,2),(4,3),(4′,2),(4′,3),共5种,故甲胜的概率P 1=512,同理乙胜的概率P 2=512.因为P 1=P 2,所以此游戏公平.21.解 (1)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件为(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2,B 2,C 1),(A 2,B 2,C 2),(A 2,B 3,C 1),(A 2,B 3,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2),(A 3,B 3,C 1),(A 3,B 3,C 2),共18个基本事件.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.用M 表示“A 1恰被选中”这一事件,则M ={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2)},事件M 由6个基本事件组成,因而P (M )=618=13.(2)用N 表示“B 1、C 1不全被选中”这一事件,则其对立事件N 表示“B 1、C 1全被选中”这一事件,由于N ={(A 1,B 1,C 1),(A 2,B 1,C 1),(A 3,B 1,C 1)},事件N 由3个基本事件组成,所以P (N )=318=16,由对立事件的概率公式得:P (N )=1-P (N )=1-16=56.22.解 由于实数对(a ,b )的所有取值为:(-2,-2),(-2,-1),(-2,1),(-2,2),(-1,-2),(-1,-1),(-1,1),(-1,2),(1,-2),(1,-1),(1,1),(1,2),(2,-2),(2,-1),(2,1),(2,2),共16种.设“直线y =ax +b 不经过第四象限”为事件A ,“直线y =ax +b 与圆x 2+y 2=1有公共点”为事件B .(1)若直线y =ax +b 不经过第四象限,则必须满足⎩⎪⎨⎪⎧a ≥0,b ≥0,即满足条件的实数对(a ,b )有(1,1),(1,2),(2,1),(2,2),共4种.∴P (A )=416=14.故直线y =ax +b 不经过第四象限的概率为14.(2)若直线y =ax +b 与圆x 2+y 2=1有公共点,则必须满足|b |a 2+1≤1,即b 2≤a 2+1.若a =-2,则b =-2,-1,1,2符合要求,此时实数对(a ,b )有4种不同取值; 若a =-1,则b =-1,1符合要求,此时实数对(a ,b )有2种不同取值; 若a =1,则b =-1,1符合要求,此时实数对(a ,b )有2种不同取值,若a =2,则b =-2,-1,1,2符合要求,此时实数对(a ,b )有4种不同取值.∴满足条件的实数对(a ,b )共有12种不同取值.∴P (B )=1216=34.3故直线y=ax+b与圆x2+y2=1有公共点的概率为4.。

相关文档
最新文档