湖北省孝感市2014届高三第二次统一考试文科数学试题(含答案)(高清扫描版)
湖北省孝感市2014届高三第二次统一考试文综试题 Word版含答案
孝感市2013—2014学年度高中三年级第二次统一考试文科综合能力测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
全卷满分300分。
注意事项:1 答题前,请考生务必将自己的姓名、准考证号填涂在试题卷和答题卡上。
2 考生答题时,选择题请用2B铅笔将答题卡上对应题目的答案标号涂黑;非选择题请按照题号顺序在各题的答题区域内作答,超出答题区域书写的答案无效。
3 考试结束,请将本试题卷和答题卡一并上交。
第Ⅰ卷(选择题,共140分)本卷共35小题,每小题4分,共计140分。
在每小题给出的四个选项中,只有一项是最符合题目要求的。
2012年6月16日18时37分,神舟九号飞船在酒泉卫星发射中心发射升空。
搭载着3位航天员的神舟九号飞船,6月18日14时与在轨运行的天宫一号目标飞行器顺利“牵手”,中国大陆首次载人航天器自动交会对接顺利完成。
2012年6月29日10时03分安全返回。
右图为神舟九号与天宫一号顺利“牵手”时的地球局部昼夜分布图(阴影部分表示黑夜),结合图文材料,完成1——2题。
1 a的地理经度是A 90°EB 75°EC 90°WD 75°W2 下列说法正确的是A.甲乙丙三地中丙地最先进入新的一天B.甲位于昏线上,此时地方时为16点,昼长为8小时C.乙地日出时北京时间为12点,天安门前的旗杆日影达一天中最短D.神舟九号飞船在轨期间,我国昼长夜短且昼变长夜变短右图为某区域经纬网,图中线段MN为脊线或槽线(谷线)的一部分,读图回答3——4题。
3 若MN为海平面气压场中槽线且M气压比N高,则A a区域温差大于bB a区域温度高于bC a区域为偏南风、阴雨天气D a区域为偏北风、阴雨天气4 若MN为等高线地形图中的谷线,则下列叙述正确的是A 河流自N流向MB ①可能比②处水流速度快C a处地表径流可能自东南流向西北D b处植被一定比a处茂密黑河发源于祁连山,流经河西走廊,最终注入内蒙古西部额济纳旗的居延海。
2014年湖北省高考数学文科试卷(含解析)
2014年湖北省高考数学文科试卷(含解析)绝密★启用前2014年湖北省高考数学文科试卷(含解析)本试题卷共5页,22题。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1.答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用统一提供的2B铅笔将答题卡上试卷类型A后的方框涂黑。
2.选择题的作答:每小题选出答案后,用统一提供的2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2014•湖北卷]已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁UA=()A.{1,3,5,6}B.{2,3,7}C.{2,4,7}D.{2,5,7}1.C解析]由A={1,3,5,6},U={1,2,3,4,5,6,7},得∁UA={2,4,7}.故选C.2.2014•湖北卷]i为虚数单位,1-i1+i2=()A.1B.-1C.iD.-i2.B解析]1-i1+i2=(1-i)2(1+i)2=-2i2i=-1.故选B. 3.2014•湖北卷]命题“∀x∈R,x2≠x”的否定是()A.∀x∈/R,x2≠xB.∀x∈R,x2=xC.∃x0∈/R,x20≠x0D.∃x0∈R,x20=x03.D解析]特称命题的否定方法是先改变量词,然后否定结论,故命题“∀x∈R,x2≠x”的否定是“∃x0∈R,x20=x0”.故选D.4.2014•湖北卷]若变量x,y满足约束条件x+y≤4,x-y≤2,x≥0,y≥0,则2x+y的最大值是()A.2B.4C.7D.84.C解析]作出约束条件x+y≤4,x-y≤2,x≥0,y≥0表示的可行域如下图阴影部分所示.设z=2x+y,平移直线2x+y=0,易知在直线x+y=4与直线x-y=2的交点A(3,1)处,z=2x+y取得最大值7.故选C.5.2014•湖北卷]随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,则()A.p1<p2<p3B.p2<p1<p3C.p1<p3<p2D.p3<p1<p25.C解析]掷出两枚骰子,它们向上的点数的所有可能情况如下表:123456123456723456783456789456789105678910116789101112则p1=1036,p2=2636,p3=1836.故p16.2014•湖北卷]根据如下样本数据x345678y4.02.5-0.50.5-2.0-3.0得到的回归方程为y^=bx+a,则()A.a>0,b<0B.a>0,b>0C.a<0,b<0D.a<0,b>06.A解析]作出散点图如下:由图像不难得出,回归直线y^=bx+a的斜率b0,所以a>0,b图1-1 7.2014•湖北卷]在如图1-1所示的空间直角坐标系O-xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()图1-2A.①和②B.③和①C.④和③D.④和②7.D解析]由三视图可知,该几何体的正视图显然是一个直角三角形(三个顶点坐标分别是(0,0,2),(0,2,0),(0,2,2))且内有一虚线(一锐角顶点与一直角边中点的连线),故正视图是④;俯视图是一个斜三角形,三个顶点坐标分别是(0,0,0),(2,2,0),(1,2,0),故俯视图是②.故选D.8.、2014•湖北卷]设a,b是关于t的方程t2cosθ+tsinθ=0的两个不等实根,则过A(a,a2),B(b,b2)两点的直线与双曲线x2cos2θ-y2sin2θ=1的公共点的个数为()A.0B.1C.2D.38.A解析]由方程t2cosθ+tsinθ=0,解得t1=0,t2=-tanθ,不妨设点A(0,0),B(-tanθ,tan2θ),则过这两点的直线方程为y=-xtanθ,该直线恰是双曲线x2cos2θ-y2sin2θ=1的一条渐近线,所以该直线与双曲线无公共点.故选A.9.、2014•湖北卷]已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-3x,则函数g(x)=f(x)-x+3的零点的集合为()A.{1,3}B.{-3,-1,1,3}C.{2-7,1,3}D.{-2-7,1,3}9.D解析]设x0,所以f(x)=-f(-x)=-(-x)2-3(-x)]=-x2-3x.求函数g(x)=f(x)-x+3的零点等价于求方程f(x)=-3+x的解.当x≥0时,x2-3x=-3+x,解得x1=3,x2=1;当x10.2014•湖北卷]《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术“置如其周,令相乘也.又以高乘之,三十六成一.”该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈136L2h.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈275L2h相当于将圆锥体积公式中的π近似取为()A.227B.258C.15750D.35511310.B解析]设圆锥的底面圆半径为r,底面积为S,则L=2πr.由题意得136L2h≈13Sh,代入S=πr2化简得π≈3.类比推理,若V≈275L2h时,π≈258.故选B.11.2014•湖北卷]甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.11.1800解析]设乙设备生产的产品总数为n,则80-50n=804800,解得n=1800.12.、2014•湖北卷]若向量OA→=(1,-3),|OA→|=|OB→|,OA→•OB→=0,则|AB→|=________.12.25解析]由题意知,OB→=(3,1)或OB=(-3,-1),所以AB=OB-OA=(2,4)或AB=(-4,2),所以|AB|=22+42=25. 13.2014•湖北卷]在△ABC中,角A,B,C所对的边分别为a,b,c.已知A=π6,a=1,b=3,则B=________.13.π3或2π3解析]由正弦定理得asinA=bsinB,即1sinπ6=3sinB,解得sinB=32.又因为b>a,所以B=π3或2π3.14.2014•湖北卷]阅读如图1-3所示的程序框图,运行相应的程序,若输入n的值为9,则输出S的值为________.图1-314.1067解析]第一次运行时,S=0+21+1,k=1+1;第二次运行时,S=(21+1)+(22+2),k=2+1;……所以框图运算的是S=(21+1)+(22+2)+…+(29+9)=1067. 15.2014•湖北卷]如图1-4所示,函数y=f(x)的图像由两条射线和三条线段组成.若∀x∈R,f(x)>f(x-1),则正实数a的取值范围为________.图1-415.0,16解析]“∀x∈R,f(x)>f(x-1)”等价于“函数y=f(x)的图像恒在函数y=f(x-1)的图像的上方”,函数y=f(x-1)的图像是由函数y=f(x)的图像向右平移一个单位得到的,如图所示.因为a>0,由图知6a16.2014•湖北卷]某项研究表明:在考虑行车安全的情况下,某路段车流量F(单位时间内经过测量点的车辆数,单位:辆/小时)与车流速度v(假设车辆以相同速度v行驶,单位:米/秒)、平均车长l(单位:米)的值有关,其公式为F=76000vv2+18v+20l.(1)如果不限定车型,l=6.05,则最大车流量为________辆/小时;(2)如果限定车型,l=5,则最大车流量比(1)中的最大车流量增加________辆/小时.16.(1)1900(2)100解析](1)依题意知,l>0,v>0,所以当l=6.05时,F=76000vv2+18v+121=76000v+121v+18≤760002v•121v+18=1900,当且仅当v=11时,取等号.(2)当l=5时,F=76000vv2+18v+100=76000v+100v+18≤2000,当且仅当v=10时,取等号,此时比(1)中的最大车流量增加100辆/小时.17.2014•湖北卷]已知圆O:x2+y2=1和点A(-2,0),若定点B(b,0)(b≠-2)和常数λ满足:对圆O上任意一点M,都有|MB|=λ|MA|,则(1)b=________;(2)λ=________.17.(1)-12(2)12解析]设点M(cosθ,sinθ),则由|MB|=λ|MA|得(cosθ-b)2+sin2θ=λ2(cosθ+2)2+sin2θ,即-2bcosθ+b2+1=4λ2cosθ+5λ2对任意的θ都成立,所以-2b=4λ2,b2+1=5λ2.又由|MB|=λ|MA|,得λ>0,且b≠-2,解得b=-12,λ=12.18.、、、2014•湖北卷]某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10-3cosπ12t-sinπ12t,t∈0,24).(1)求实验室这一天上午8时的温度;(2)求实验室这一天的最大温差.18.解:(1)f(8)=10-3cosπ12×8-sinπ12×8=10-3cos2π3-sin2π3=10-3×-12-32=10.故实验室上午8时的温度为10℃.(2)因为f(t)=10-232cosπ12t+12sinπ12t=10-2sinπ12t+π3,又0≤t所以π3≤π12t+π3当t=2时,sinπ12t+π3=1;当t=14时,sinπ12t+π3=-1.于是f(t)在0,24)上取得最大值12,最小值8.故实验室这一天最高温度为12℃,最低温度为8℃,最大温差为4℃. 19.、、2014•湖北卷]已知等差数列{an}满足:a1=2,且a1,a2,a5成等比数列.(1)求数列{an}的通项公式.(2)记Sn为数列{an}的前n项和,是否存在正整数n,使得Sn>60n+800?若存在,求n的最小值;若不存在,说明理由.19.解:(1)设数列{an}的公差为d,依题意知,2,2+d,2+4d成等比数列,故有(2+d)2=2(2+4d),化简得d2-4d=0,解得d=0或d=4,当d=0时,an=2;当d=4时,an=2+(n-1)•4=4n-2,从而得数列{an}的通项公式为an=2或an=4n-2.(2)当an=2时,Sn=2n,显然2n此时不存在正整数n,使得Sn>60n +800成立.当an=4n-2时,Sn=n2+(4n-2)]2=2n2.令2n2>60n+800,即n2-30n-400>0,解得n>40或n此时存在正整数n,使得Sn>60n+800成立,n的最小值为41.综上,当an=2时,不存在满足题意的正整数n;当an=4n-2时,存在满足题意的正整数n,其最小值为41.20.、2014•湖北卷]如图1-5,在正方体ABCD-A1B1C1D1中,E,F,P,Q,M,N分别是棱AB,AD,DD1,BB1,A1B1,A1D1的中点.求证:(1)直线BC1∥平面EFPQ;(2)直线AC1⊥平面PQMN.图1-520.证明:(1)连接AD1,由ABCD-A1B1C1D1是正方体,知AD1∥BC1.因为F,P分别是AD,DD1的中点,所以FP∥AD1.从而BC1∥FP.而FP⊂平面EFPQ,且BC1⊄平面EFPQ,故直线BC1∥平面EFPQ.(2)如图,连接AC,BD,A1C1,则AC⊥BD.由CC1⊥平面ABCD,BD⊂平面ABCD,可得CC1⊥BD.又AC∩CC1=C,所以BD⊥平面ACC1A1.而AC1⊂平面ACC1A1,所以BD⊥AC1.因为M,N分别是A1B1,A1D1的中点,所以MN∥BD,从而MN⊥AC1. 同理可证PN⊥AC1.又PN∩MN=N,所以直线AC1⊥平面PQMN.21.2014•湖北卷]π为圆周率,e=2.71828…为自然对数的底数.(1)求函数f(x)=lnxx的单调区间;(2)求e3,3e,eπ,πe,3π,π3这6个数中的最大数与最小数.21.解:(1)函数f(x)的定义域为(0,+∞).因为f(x)=lnxx,所以f′(x)=1-lnxx2.当f′(x)>0,即0当f′(x)e时,函数f(x)单调递减.故函数f(x)的单调递增区间为(0,e),单调递减区间为(e,+∞).(2)因为e即ln3e于是根据函数y=lnx,y=ex,y=πx在定义域上单调递增可得,3e故这6个数中的最大数在π3与3π之中,最小数在3e与e3之中.由e即lnππ由lnπππ3.由ln33综上,6个数中的最大数是3π,最小数是3e.22.2014•湖北卷]在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1.记点M的轨迹为C.(1)求轨迹C的方程;(2)设斜率为k的直线l过定点P(-2,1),求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时k的相应取值范围.22.解:(1)设点M(x,y),依题意得|MF|=|x|+1,即(x-1)2+y2=|x|+1,化简整理得y2=2(|x|+x).故点M的轨迹C的方程为y2=4x,x≥0,0,x(2)在点M的轨迹C中,记C1:y2=4x(x≥0),C2:y=0(x依题意,可设直线l的方程为y-1=k(x+2).由方程组y-1=k(x+2),y2=4x,可得ky2-4y+4(2k+1)=0.①当k=0时,y=1.把y=1代入轨迹C的方程,得x=14.故此时直线l:y=1与轨迹C恰好有一个公共点14,1.当k≠0时,方程①的判别式Δ=-16(2k2+k-1).②设直线l与x轴的交点为(x0,0),则由y-1=k(x+2),令y=0,得x0=-2k+1k.③(i)若Δ12.即当k∈(-∞,-1)∪12,+∞时,直线l与C1没有公共点,与C2有一个公共点,故此时直线l与轨迹C恰好有一个公共点.(ii)若Δ=0,x00,x0≥0,由②③解得k∈-112或-12≤k即当k∈-1,12时,直线l与C1只有一个公共点,与C2有一个公共点.当k∈-12,0时,直线l与C1有两个公共点,与C2没有公共点.故当k∈-12,0∪-1,12时,直线l与轨迹C恰好有两个公共点.(iii)若Δ>0,x0即当k∈-1,-12∪0,12时,直线l与C1有一个公共点,与C2有一个公共点,故此时直线l与轨迹C恰好有三个公共点.综上所述,当k∈(-∞,-1)∪12,+∞∪{0}时,直线l与轨迹C恰好有一个公共点;当k∈-12,0∪-1,12时,直线l与轨迹C恰好有两个公共点;当k∈-1,-12∪0,12时,直线l与轨迹C恰好有三个公共点.。
湖北省孝感市2014届高三第二次统一考试数学文试题-含答案
孝感市2013—2014学年度高中三年级第二次统一考试数学(文科)本试卷满分150分,考试时间120分钟.注意事项:12照题号顺序在各题的答题区域内作答,超出答题区域书写的答案无效.3一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.,B={x|1-x≥0},则A∩B等于A.{x|x≤1}B.{x|1≤x<2}C.{x|0<x≤1}D.{x|0<x<1}2.的共轭复数是A.B.C.D.3.,,,则|a+b+c|=A.0B.3C.D.4.数据如下:经检验,这组样本数据具有线性相关关系,那么对于加工零件的个数x与加工时间y这两个变量,下列判断正确的是ABCD5.n}的前n项和为Sn,若a4=9,a6=11,则S9等于A.10B.72C.90D.1806.一算法的程序框图如右图所示,若输出的,则输入的x可能为A.-1B.0C.1D.57.ωx+φ)(ω>0,0≤φ≤π)的部分图象,其中A,B两点之间的距离为5,那么f(-1)=A.2B.-2C.1D.-18. 函数的图象可能是9.点P(x,y)为不等式组表示的平面区域上一点,则x+2y取值范围为A.B.C. [ -1,2]D. [ -2,2]10.设双曲线(a>0,b>0)的右焦点为F,过点F作与x轴垂直的直线l交两渐近线于A、B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若(λ,μ∈R),λμ=,则该双曲线的离心率为A. B. C. D二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.某市有A、B、C三所学校共有高三文科学生1500人,且A、B、C三所学校的高三文科学生人数成等差数列,在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取12. 一只蚂蚁在边长为4的正三角形区域内随机爬行,则其恰在离三个顶点的距离都大于1的地方的概率为.13. 如果f′(x)是二次函数,且f′(x)的图象开口向上,顶点坐标为,那么曲线y=f(x)上任一点的切线的倾斜角α的取值范围是.14. 若点(3,1)是抛物线的一条弦的中点,且这条弦所在直线的斜率为2,则p的值是.15.为.16.对于每个非零自然数n,抛物线与x轴交于An、Bn两点,以AnBn表示这两点间的距离,则A1B1+A2B2+…+A2014B2014的值是.(不作近似计算)17.①函数为偶函数;②函数y=1是周期函数;③函数的零点有2个;④函数在(0,+∞)上恰有两个零点x1,x2且x1·x2<1.其中真命题的序号为.三、解答题:(本大题共5小题,满分65分,解答应写出文字说明,证明过程或演算步骤.)18.(本小题满分12分)(本小题满分12分)已知函数,x∈R.(1)求函数f(x)的最小正周期及单调增区间;(2)在△ABC中,角A、B、C所对的边分别是a、b、c,又,b=2,△ABC的面积等于3,求边长a的值.19.已知数列{an}满足Sn=1-an,其中Sn为数列{an}的前n项和.(1)求{an}的通项公式;(2)若数列{bn}满足:,求{bn}的前n项和Tn.20.已知四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1.(1)求证:AB∥平面PCD;(2)求证:BC⊥平面PAC;(3)若M是PC的中点,求三棱锥M-ACD的体积.21.设函数(a,b∈R),若f(x)在点(1,f(1))处的切线斜率为1.(1)用a表示b;(2)设g(x)=lnx-f(x),若g(x)≤-1对定义域内的x恒成立,求实数a的取值范围;22.已知曲线C1:和曲线C2:(0<λ<1).曲线C2的左顶点恰为曲线C1的左焦点.(1)求λ的值;(2)设P(x0,y0)为曲线C2上一点,过点P作直线交曲线C1于A,C两点,直线OP交曲线C1于B,D两点,若P为AC中点.①求证:直线AC的方程为x0x+2y0y=2;②四边形ABCD的面积是否为定值?若是,请求出该定值;若不是,请说明理由.。
2014年高考湖北省孝感市高三年级第二次统一考试
2014年高考(437)湖北省孝感市高三年级第二次统一考试高考模拟2014-03-22 0918湖北省孝感市2014-2014学年度高中三年级第二次统一考试语文试题一、语文基础知识(共15分,共5小题,每小题3分)1.下列各组词语中,加点字的注音全都正确的一组是A.霎(shà)时百舸(gě)角(juã)逐叱咤(zhà)风云B.瘦削(xuē)驯(xùn)熟躯壳(kã)度(duó)长絜大C.笑靥(yâ)熟稔(rěn)罪愆(qiān)敛声屏(bǐng)气D.朔(shuò)漠聒(gǔ)噪蕴藉(jiâ)数(shuò)见不鲜2.下列各组词语中,没有错别字的一组是A.寥廓迫不及待弥谤平心而论B.毗邻相辅相承喋血感恩戴德C.葱茏唇枪舌剑嬉戏既往不究D.销蚀锱铢必较膏粱察言观色3.依次填入下列横线处的词语,最恰当的一组是中国对钓鱼岛的主权要求与资源无关。
是中国的领土,有没有资源,都应属于中国。
日本对此怎么想的,我们,但从过往以来的百余年的历史来看,日本倒是多有侵略别国领土,抢占别国资源的。
霸占台湾,侵略中国,这是公认的事实;连太平洋上的其他国家包括美国地盘,它也想。
二战不就是这样打起来的吗?A.不论不知所以爱好侵吞B.无论不得而知恶好鲸吞C.不管无可奉告癖好攻占D.尽管无庸讳言嗜好霸占4.下列各项中,没有语病的一项是A.建设生态文明,要坚持节约优先、保护优先的方针,着力推进绿色发展、低碳发展、循环发展,形成节约资源和保护环境的空间格局、产业结构、生产方式。
B.一个国家是否体面,不在于它拥有多少高楼大厦,创造了多少经济奇迹,其精英人群生活得多么风光,而在于它如何对待最弱势、最无助的普通劳动者的态度。
C.要加大对公共文化服务的投入,通过实用、高效的公共文化服务网络,实施重大文化工程等多种手段,向全社会提供更多免费或优惠的公共文化产品和服务。
2014年湖北高考文科数学试题含答案(Word版)
绝密★启用前2014年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1,2,3,4,5,6,7}U =,集合{1,3,5,6}A =,则U A =ð A .{1,3,5,6} B .{2,3,7}C .{2,4,7}D . {2,5,7}2.i 为虚数单位,21i ()1i-=+A .1B .1-C .iD . i -3.命题“x ∀∈R ,2x x ≠”的否定是 A .x ∀∉R ,2x x ≠ B .x ∀∈R ,2x x = C .x ∃∉R ,2x x ≠D .x ∃∈R ,2x x =4.若变量x ,y 满足约束条件4,2,0,0,x y x y x y +≤⎧⎪-≤⎨⎪≥≥⎩则2x y +的最大值是A .2B .4C .7D .85.随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为1p ,点数之和大于5的概率记为2 p ,点数之和为偶数的概率记为3p ,则 A .123p p p << B .213p p p << C .132p p p << D .312p p p <<6.根据如下样本数据A .0a >,0b < B .0a >,0b > C .0a <,0b <D .0a <,0b >7.在如图所示的空间直角坐标系O-xyz 中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2). 给出编号为①、②、③、④的四个图,则该四面体的正视图和俯视图分别为A .①和②B .③和①C .④和③D .④和②8.设,a b 是关于t 的方程2cos sin 0t t θθ+=的两个不等实根,则过2(,)A a a ,2(,)B b b 两点的直线与双曲线22221cos sin x y θθ-=的公共点的个数为 A .0B .1C .2D .3图③ 图①图④图② 第7题图9.已知()f x 是定义在R 上的奇函数,当0x ≥时,2()=3f x x x -. 则函数()()+3g x f x x =- 的零点的集合为A. {1,3}B. {3,1,1,3}--C. {23}D. {21,3}-10.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也. 又以高乘之,三十六成一. 该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式2136V L h ≈. 它实际上是将圆锥体积公式中的圆周率π近似取为3. 那么,近似公式2275V L h ≈相当于将圆锥体积公式中的π近似取为 A .227B .258C .15750D .355113二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位置上. 答错位置,书写不清,模棱两可均不得分.11.甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测. 若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为 件. 12.若向量(1,3)OA =-,||||OA OB =,0OA OB ⋅=, 则||AB = .13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 已知π6A =,a =1,b =,则B = . 14.阅读如图所示的程序框图,运行相应的程序,若输入n的值为9,则输出S 的值为 .第14题图15.如图所示,函数()y f x =的图象由两条射线和三条线段组成.若x ∀∈R ,()>(1)f x f x -,则正实数a 的取值范围为 .16.某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/小时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)、平均车长l (单位:米)的值有关,其公式为2760001820vF v v l=++.(Ⅰ)如果不限定车型, 6.05l =,则最大车流量为 辆/小时;(Ⅱ)如果限定车型,5l =, 则最大车流量比(Ⅰ)中的最大车流量增加 辆/小时.17.已知圆22:1O x y +=和点(2,0)A -,若定点(,0)B b (2)b ≠-和常数λ满足:对圆O 上任意一点M ,都有||||MB MA λ=,则(Ⅰ)b= ; (Ⅱ)λ= .三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)某实验室一天的温度(单位:℃)随时间t (单位:h )的变化近似满足函数关系:ππ()10sin 1212f t t t =-,[0,24)t ∈. (Ⅰ)求实验室这一天上午8时的温度; (Ⅱ)求实验室这一天的最大温差.第15题图19.(本小题满分12分)已知等差数列{}n a 满足:12a =,且1a ,2a ,5a 成等比数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得n S 60800n >+?若存在,求n 的最小值;若不存在,说明理由.20.(本小题满分13分)如图,在正方体1111ABCD A B C D -中,E ,F ,P ,Q ,M ,N 分别是棱AB ,AD ,1DD , 1BB ,11A B ,11A D 的中点. 求证:(Ⅰ)直线1BC ∥平面EFPQ ; (Ⅱ)直线1AC ⊥平面PQMN . 21.(本小题满分14分)π为圆周率,e 2.71828=为自然对数的底数.(Ⅰ)求函数ln ()xf x x=的单调区间; (Ⅱ)求3e ,e 3,πe ,e π,π3,3π这6个数中的最大数与最小数. 22.(本小题满分14分)在平面直角坐标系xOy 中,点M 到点(1,0)F 的距离比它到y 轴的距离多1.记点M 的 轨迹为C .(Ⅰ)求轨迹C 的方程;(Ⅱ)设斜率为k 的直线l 过定点(2,1)P -. 求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.绝密★启用前2014年普通高等学校招生全国统一考试(湖北卷)数学(文史类)试题参考答案一、选择题:1.C 2.B 3.D 4.C 5.C 6.A 7.D 8.A 9.D 10.B 二、填空题:11.1800 12. 13.π3或2π314.1067 15.1(0)6, 16.(Ⅰ)1900;(Ⅱ)100 17.(Ⅰ)12-;(Ⅱ)12三、解答题:第20题图18.(Ⅰ)ππ(8)108sin 81212f =⨯-⨯()()2π2π10sin33=-110()102=--=.故实验室上午8时的温度为10℃.(Ⅱ)因为π1πππ()10sin )=102sin()12212123f t t t t =-+-+, 又024t ≤<,所以πππ7π31233t ≤+<,ππ1sin()1123t -≤+≤. 当2t =时,ππsin()1123t +=;当14t =时,ππsin()1123t +=-. 于是()f t 在[0,24)上取得最大值12,取得最小值8.故实验室这一天最高温度为12℃,最低温度为8℃,最大温差为4℃.19.(Ⅰ)设数列{}n a 的公差为d ,依题意,2,2d +,24d +成等比数列,故有2(2)2(24)d d +=+,化简得240d d -=,解得0d =或d =4. 当0d =时,2n a =;当d =4时,2(1)442n a n n =+-⋅=-,从而得数列{}n a 的通项公式为2n a =或42n a n =-.(Ⅱ)当2n a =时,2n S n =. 显然260800n n <+,此时不存在正整数n ,使得60800n S n >+成立. 当42n a n =-时,2[2(42)]22n n n S n +-==.令2260800n n >+,即2304000n n -->, 解得40n >或10n <-(舍去),此时存在正整数n ,使得60800n S n >+成立,n 的最小值为41. 综上,当2n a =时,不存在满足题意的n ;当42n a n =-时,存在满足题意的n ,其最小值为41.20.证明:(Ⅰ)连接AD 1,由1111ABCD A B C D -是正方体,知AD 1∥BC 1,因为F ,P 分别是AD ,1DD 的中点,所以FP ∥AD 1. 从而BC 1∥FP .而FP ⊂平面EFPQ ,且1BC ⊄平面EFPQ ,故直线1BC ∥平面EFPQ .(Ⅱ)如图,连接AC ,BD ,则AC BD ⊥.由1CC ⊥平面ABCD ,BD ⊂平面ABCD ,可得1CC BD ⊥.又1AC CC C =,所以BD ⊥平面1ACC .QMN 1C P而1AC ⊂平面1ACC ,所以1BD AC ⊥. 因为M ,N 分别是11A B ,11A D 的中点,所以MN ∥BD ,从而1MN AC ⊥. 同理可证1PN AC ⊥. 又PNMN N =,所以直线1AC ⊥平面PQMN .21.(Ⅰ)函数()f x 的定义域为()∞0,+.因为ln ()x f x x =,所以21ln ()xf x x -'=. 当()0f x '>,即0e x <<时,函数()f x 单调递增; 当()0f x '<,即e x >时,函数()f x 单调递减.故函数()f x 的单调递增区间为(0,e),单调递减区间为(e,)+∞. (Ⅱ)因为e 3π<<,所以eln3eln π<,πlne πln3<,即e e ln3ln π<,ππln e ln3<.于是根据函数ln y x =,e x y =,πx y =在定义域上单调递增,可得 e e 33ππ<<,3ππe e 3<<.故这6个数的最大数在3π与π3之中,最小数在e 3与3e 之中. 由e 3π<<及(Ⅰ)的结论,得(π)(3)(e)f f f <<,即ln πln3lneπ3e<<. 由ln πln3π3<,得3πln πln3<,所以π33π>; 由ln3ln e3e<,得e 3ln3lne <,所以e 33e <. 综上,6个数中的最大数是π3,最小数是e 3.22.(Ⅰ)设点(,)M x y ,依题意得||||1MF x =+||1x =+,化简整理得22(||)y x x =+.故点M 的轨迹C 的方程为24,0,0,0.x x y x ≥⎧=⎨<⎩(Ⅱ)在点M 的轨迹C 中,记1:C 24y x =,2:C 0(0)y x =<.依题意,可设直线l 的方程为1(2).y k x -=+由方程组21(2),4,y k x y x -=+⎧⎨=⎩ 可得244(21)0.ky y k -++= ①(1)当0k =时,此时 1.y = 把1y =代入轨迹C 的方程,得14x =. 故此时直线:1l y =与轨迹C 恰好有一个公共点1(,1)4.(2)当0k ≠时,方程①的判别式为216(21)k k ∆=-+-. ②设直线l 与x 轴的交点为0(,0)x ,则 由1(2)y k x -=+,令0y =,得021k x k+=-. ③ (ⅰ)若00,0,x ∆<⎧⎨<⎩ 由②③解得1k <-,或12k >.即当1(,1)(,)2k ∈-∞-+∞时,直线l 与1C 没有公共点,与2C 有一个公共点, 故此时直线l 与轨迹C 恰好有一个公共点.(ⅱ)若00,0,x ∆=⎧⎨<⎩ 或00,0,x ∆>⎧⎨≥⎩ 由②③解得1{1,}2k ∈-,或102k -≤<.即当1{1,}2k ∈-时,直线l 与1C 只有一个公共点,与2C 有一个公共点.当1[,0)2k ∈-时,直线l 与1C 有两个公共点,与2C 没有公共点.故当11[,0){1,}22k ∈--时,直线l 与轨迹C 恰好有两个公共点.(ⅲ)若00,0,x ∆>⎧⎨<⎩ 由②③解得112k -<<-,或102k <<.即当11(1,)(0,)22k ∈--时,直线l 与1C 有两个公共点,与2C 有一个公共点, 故此时直线l 与轨迹C 恰好有三个公共点. 综合(1)(2)可知,当1(,1)(,){0}2k ∈-∞-+∞时,直线l 与轨迹C 恰好有一个公共点;当11[,0){1,}22k ∈--时,直线l 与轨迹C 恰好有两个公共点;当11(1,)(0,)22k ∈--时,直线l 与轨迹C 恰好有三个公共点.。
2014年湖北高考(文数)试卷
湖北省教育考试院 保留版权 数学(文史类) 第1页(共5页)绝密★启用前2014年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)本试题卷共5页,22题。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1.答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用统一提供的2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1,2,3,4,5,6,7}U =,集合{1,3,5,6}A =,则U A =ð A .{1,3,5,6} B .{2,3,7}C .{2,4,7}D . {2,5,7}2.i 为虚数单位,21i ()1i -=+A .1B .1-C .iD . i -3.命题“x ∀∈R ,2x x ≠”的否定是 A .x ∀∉R ,2x x ≠ B .x ∀∈R ,2x x = C .x ∃∉R ,2x x ≠D .x ∃∈R ,2x x =4.若变量x ,y 满足约束条件4,2,0,0,x y x y x y +≤⎧⎪-≤⎨⎪≥≥⎩则2x y +的最大值是A .2B .4C .7D .8数学(文史类) 第2页(共5页)5.随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为1p ,点数之和大于5的概率记为2 p ,点数之和为偶数的概率记为3p ,则 A .123p p p << B .213p p p << C .132p p p << D .312p p p <<6.根据如下样本数据得到的回归方程为ˆybx a =+,则 A .0a >,0b < B.0a >,0b > C .0a <,0b <D .0a <,0b >7.在如图所示的空间直角坐标系O-xyz 中,一个四面体的顶点坐标分别是(0,0,2), (2,2,0),(1,2,1),(2,2,2). 给出编号为①、②、③、④的四个图,则该四面体的正视图和俯视图分别为A .①和②B .③和①C .④和③D .④和②8.设,a b 是关于t 的方程2cos sin 0t tθθ+=的两个不等实根,则过2(,)A a a ,2(,)B b b 两点的直线与双曲线22221cos sin x y θθ-=的公共点的个数为A .0B .1C .2D .3图③ 图①图④图② 第7题图数学(文史类) 第3页(共5页)9.已知()f x 是定义在R 上的奇函数,当0x ≥时,2()=3f x x x -. 则函数()()+3g x f x x =- 的零点的集合为A. {1,3}B. {3,1,1,3}--C. {23}D. {21,3}-10.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也. 又以高乘之,三十六成一. 该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式2136V L h ≈. 它实际上是将圆锥体积公式中的圆周率π近似取为3. 那么,近似公式2275V L h ≈相当于将圆锥体积公式中的π近似取为 A .227B .258C .15750D .355113二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位 置上. 答错位置,书写不清,模棱两可均不得分.11.甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测. 若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为 件.12.若向量(1,3)OA =-,||||OA OB =,0OA OB ⋅=, 则||AB = .13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 已知π6A =,a =1,b B = . 14.阅读如图所示的程序框图,运行相应的程序,若输入n的值为9,则输出S 的值为 .第14题图数学(文史类) 第4页(共5页)15.如图所示,函数()y f x =的图象由两条射线和三条线段组成.若x ∀∈R ,()>(1)f x f x -,则正实数a 的取值范围为 .16.某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的 车辆数,单位:辆/小时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)、 平均车长l (单位:米)的值有关,其公式为2760001820vF v v l=++. (Ⅰ)如果不限定车型, 6.05l =,则最大车流量为 辆/小时;(Ⅱ)如果限定车型,5l =, 则最大车流量比(Ⅰ)中的最大车流量增加 辆/小时. 17.已知圆22:1O x y +=和点(2,0)A -,若定点(,0)B b (2)b ≠-和常数λ满足:对圆O 上任意一点M ,都有||||MB MA λ=,则 (Ⅰ)b = ; (Ⅱ)λ=.三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)某实验室一天的温度(单位:℃)随时间t (单位:h )的变化近似满足函数关系:ππ()10sin 1212f t t t =-,[0,24)t ∈. (Ⅰ)求实验室这一天上午8时的温度; (Ⅱ)求实验室这一天的最大温差.第15题图数学(文史类) 第5页(共5页)19.(本小题满分12分)已知等差数列{}n a 满足:12a =,且1a ,2a ,5a 成等比数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得n S 60800n >+?若存在,求n 的最小值;若不存在,说明理由.20.(本小题满分13分)如图,在正方体1111ABCD A B C D -中,E ,F ,P ,Q ,M ,N 分别是棱AB ,AD ,1DD , 1BB ,11A B ,11A D 的中点. 求证:(Ⅰ)直线1BC ∥平面EFPQ ; (Ⅱ)直线1AC ⊥平面PQMN .21.(本小题满分14分)π为圆周率,e 2.71828=为自然对数的底数.(Ⅰ)求函数ln ()xf x x=的单调区间; (Ⅱ)求3e ,e 3,πe ,e π,π3,3π这6个数中的最大数与最小数.22.(本小题满分14分)在平面直角坐标系xOy 中,点M 到点(1,0)F 的距离比它到y 轴的距离多1.记点M 的 轨迹为C .(Ⅰ)求轨迹C 的方程;(Ⅱ)设斜率为k 的直线l 过定点(2,1)P -. 求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.第20题图。
湖北省部分重点中学2014届高三第二次联考文数
参考答案及评分标准一、选择题:1.C 2.B 3.A 4.A 5.C 6.A 7.D 8.B 9.A 10.A二、填空题:11.725 12.(]1,0- 13.1 14.0 15.31 16.20 17.∈;12,23⎛⎤ ⎥⎝⎦三、解答题:18、(1)2()sin (2cos 1)cos sin sin cos cos sin 2f x x x x x ϕϕϕϕ=-+=+sin()x ϕ=+Q x π=处取得最小值,322x k πϕπ∴+=+,22k πϕπ∴=+ 又()0,ϕπ∈Q ,2πϕ∴= ..........................................(6分)(2)Q 33()cos ,(),cos 22f x x f A A ===,由于()0,A π∈,所以6A π= 在ABC ∆中由正弦定理得sin sin a b A B =,即120.5sin B =,2sin 2B ∴=,.......(9分) ()0,B π∈Q ,4B π∴= 或34B π=,当4B π=时,712C π=;当34B π=时,12C π=∴7,12C π=或12C π= ...........................................(12分)19、(1)1B O ⊥Q 平面ABCD ,CD ⊂平面ABCD ,∴1B O CD ⊥,又CD ⊥AD ,AD I 1B O =O∴CD ⊥平面1AB D ,又1AB ⊂平面1AB D∴1A B C D ⊥,又11AB B C ⊥,且1B C CD C =I1AB ∴⊥平面1B CD ,又1AB ⊂平面1ABC∴ 平面1ABC ⊥平面1B CD ................................(7分)(2)由于1AB ⊥平面1B CD ,1B D ⊂平面ABCD ,所以11AB B D ⊥在1Rt AB D ∆中,22112B D AD AB =-=,又由111B O AD AB B D⋅=⋅得111AB B D B O AD ⋅=63=,所以11111621333236B ABC ABC V S B O -∆=⋅=⨯⨯⨯⨯=....................................................(13分)20、(1)由1123n n n a a -+⋅=⋅ (1) 对一切正整数n 都成立,得212,23n n n n a a --≥⋅=⋅ (2)(1)除以(2)得2n ≥,13n na a += .............................(6分) (2)由(1)中的结论知{}n a 的奇数项和偶数项分别从小到大构成公比为3的等比数列,其中1121213,23n n n n a a ---=⋅=⋅由已知有,21121322log 1,23n a n n n n b n b a ---==-==⋅∴{}n b 的前2n 项和21321242()()n n n S b b b b b b -=++⋅⋅⋅++++⋅⋅⋅+ =01132213n n n +--⨯+⋅-(1)312n n n -=+- ...............................(13分) 21、(1)2()22f x x x a '=++,由题意知方程2220x x a ++=在()1,0-上有两不等实根,设2()22g x x x a =++,其图象的对称轴为直线12x =-,故有(1)0(0)011()(1)022g a g a g a ⎧⎪-=>⎪=>⎨⎪⎪-=+-+<⎩,解得102a <<...............................(6分) (222a x x =-- 构造2()22g x x x =--利用图象解照样给分) (2)由题意知2x 是方程2220x x a ++=的大根,从而21,02x ⎛⎫∈- ⎪⎝⎭且有222220x x a ++=,即22222a x x =--,这样3222222()13f x x x ax =+++32232222222224(22)1133x x x x x x x =++--+=--+ 设324()13x x x ϕ=--+,2()42x x x ϕ'=--=0,解得121,02x x =-=,由1,2x ⎛⎫∈-∞- ⎪⎝⎭,()0x ϕ'<;1,02x ⎛⎫∈- ⎪⎝⎭,()0x ϕ'>;()0,x ∈+∞,()0x ϕ'<知,324()13x x x ϕ=--+在1(,0)2-单调递增,又Q 2102x -<<,从而2111()()212x ϕϕ>-=, 即211()12f x >成立。
2014年湖北省高考数学试卷(文科)参考答案与试题解析
2014年湖北省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.2.(5分)(2014•湖北)i为虚数单位,()2=())==2=x4.(5分)(2014•湖北)若变量x,y满足约束条件,则2x+y的最大值是()的可解:满足约束条件5.(5分)(2014•湖北)随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于==得到回归方程为=bx+a,则()=5.5,,﹣7.(5分)(2014•湖北)在如图所示的空间直角坐标系O﹣xyz中,一个四面体的顶点坐标分别为(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出的编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为8.(5分)(2014•湖北)设a,b是关于t的方程t2cosθ+tsinθ=0的两个不等实根,则过A(a,a2),B(b,b2)两点的直线与双曲线﹣=1的公共点的个数为()x﹣x∵双曲线x)两点的直线与双曲线﹣9.(5分)(2014•湖北)已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2﹣3x,则函数g(x)=f(x)﹣,﹣,10.(5分)(2014•湖北)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为().C D.L=.二、填空题:本大题共7小题,每小题5分,共35分.11.(5分)(2014•湖北)甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测,若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为1800件.,∴抽取的比例为=12.(5分)(2014•湖北)若向量=(1,﹣3),||=||,•=0,则||=.=,∵向量=||=||•,解得或=故答案为:13.(5分)(2014•湖北)在△ABC中,角A,B,C所对的边分别为a,b,c,已知A=,a=1,b=,则B=或.A=,=得:=,B=.故答案为:或14.(5分)(2014•湖北)阅读如图所示的程序框图,运行相应的程序,若输入n的值为9,则输出的S的值为1067.+90=×15.(5分)(2014•湖北)如图所示,函数y=f(x)的图象由两条射线和三条线段组成,若∀x∈R,f(x)>f(x﹣1),则正实数a的取值范围为(0,).则,)),是解答的关键.16.(5分)(2014•湖北)某项研究表明:在考虑行车安全的情况下,某路段车流量F(单位时间内经过测量点的车辆数,单位:辆/小时)与车流速度v(假设车辆以相同速度v行驶,单位:米/秒)、平均车长l(单位:米)的值有关,其公式为F=.(Ⅰ)如果不限定车型,l=6.05,则最大车流量为1900辆/小时;(Ⅱ)如果限定车型,l=5,则最大车流量比(Ⅰ)中的最大车流量增加100辆/小时.F==≥F==≥17.(5分)(2014•湖北)已知圆O:x2+y2=1和点A(﹣2,0),若定点B(b,0)(b≠﹣2)和常数λ满足:对圆O 上任意一点M,都有|MB|=λ|MA|,则:(Ⅰ)b=﹣;(Ⅱ)λ=.,..,.三、解答题18.(12分)(2014•湖北)某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10﹣cos t﹣sin t,t∈[0,24).(Ⅰ)求实验室这一天上午8时的温度;(Ⅱ)求实验室这一天的最大温差.(tcos t sin t﹣cos﹣sin)﹣=10cos sin(t<+,故当+t=+t=,即19.(12分)(2014•湖北)已知等差数列{a n}满足:a1=2,且a1,a2,a5成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)记S n为数列{a n}的前n项和,是否存在正整数n,使得S n>60n+800?若存在,求n的最小值;若不存在,说明理由.=20.(13分)(2014•湖北)如图,在正方体ABCD﹣A1B1C1D1中,E、F、P、Q、M、N分别是棱AB、AD、DD1、BB1、A1B1、A1D1的中点,求证:(Ⅰ)直线BC1∥平面EFPQ;(Ⅱ)直线AC1⊥平面PQMN.21.(14分)(2014•湖北)π为圆周率,e=2.71828…为自然对数的底数.(Ⅰ)求函数f(x)=的单调区间;(Ⅱ)求e3,3e,eπ,πe,3π,π3这6个数中的最大数与最小数.)得=∴22.(14分)(2014•湖北)在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1,记点M 的轨迹为C.(Ⅰ)求轨迹C的方程;(Ⅱ)设斜率为k的直线l过定点P(﹣2,1),求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时k的相应取值范围.得到,即的方程为由方程组的方程,得恰好有一个公共点(,解得.∈或时,直线或,解得﹣<﹣.或时,直线,时,直线。
(完整版)2014年高考湖北文科数学试题及答案(word解析版),推荐文档
2014年普通高等学校招生全国统一考试(湖北卷)数学(文科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2014年湖北,文1,5分】已知全集{1,2,3,4,5,6,7}U =,集合{1,3,5,6}A =,则U A =ð( ) (A ){1,3,5,6} (B ){2,3,7} (C ){2,4,7} (D ){2,5,7} 【答案】C【解析】∵全集{}1,2,3,4,5,6,7U =,集合{}1,3,5,6A =,∴{}2,4,7U A =ð,故选C .【点评】此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.(2)【2014年湖北,文2,5分】i 为虚数单位,21i ()1i-=+( )(A )1 (B )1- (C )i (D )i - 【答案】B【解析】因为21i 2i 11i 2i --⎛⎫==- ⎪+⎝⎭,故选B . 【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i 的幂运算性质,属于基础题. (3)【2014年湖北,文3,5分】命题“x ∀∈R ,2x x ≠”的否定是( )(A )x ∀∉R ,2x x ≠ (B )x ∀∈R ,2x x = (C )x ∃∉R ,2x x ≠ (D )x ∃∈R ,2x x =【答案】D【解析】根据全称命题的否定是特称命题,∴命题的否定是:0x ∃∈R ,200x x =,故选D .【点评】本题考查了全称命题的否定,要注意命题的否定与命题的否命题是两个完全不同的命题,全称命题的否定是特称命题.(4)【2014年湖北,文4,5分】若变量x ,y 满足约束条件420,0x y x y x y +≤⎧⎪-≤⎨⎪≥≥⎩,则2x y +的最大值是( )(A )2 (B )4 (C )7 (D )8 【答案】C【解析】满足约束条件4,2,0,0,x y x y x y +≤⎧⎪-≤⎨⎪≥≥⎩的可行域如下图中阴影部分所示:∵目标函数2Z x y =+,∴0O Z =,4A Z =,7B Z =,4C Z =,故2x y +的最大值是7,故选C .【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.(5)【2014年湖北,文5,5分】随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为1p ,点数之和大于5的概率记为2 p ,点数之和为偶数的概率记为3p ,则( ) (A )123p p p << (B )213p p p << (C )132p p p << (D )312p p p <<【答案】C【解析】列表得:(1,6) (2,6) (3,6) (4,6) (5,6)(6,6) (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) (1,1) (2,1) (3,1) (4,1)(5,1) (6,1)∴一共有36种等可能的结果,∴两个骰子点数之和不超过5的有10种情况,点数之和大于5的有26种情况,点数之和为偶数的有18种情况,∴向上的点数之和不超过5的概率记为11053618p ==,点数之和大于5的概率记为226133618p ==,点数之和为偶数的概率记为3181362p ==,∴132p p p <<,故选C .【点评】本题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.(6)【2014年湖北,文6,x 3 4 5 6 7 8 y 4.0 2.5 -0.5 0.5 -2.0 -3.0 得到的回归方程为ˆy=(A )0a >,0b < (B )0a >,0b > (C )0a <,0b < (D )0a <,0b > 【答案】A【解析】样本平均数 5.5x =,0.25y =,∴()()6124.5i i i x x y y =--=-∑,()26117.5i i x x=-=∑,∴24.51.417.5b =-=-,∴()0.25 1.4 5.57.95a =--⋅=,故选A .【点评】本题考查线性回归方程的求法,考查最小二乘法,属于基础题. (7)【2014年湖北,文7,5分】在如图所示的空间直角坐标系O xyz -中,一个四面体的顶点坐标分别是()0,0,2,()2,2,0,()1,2,1,()2,2,2,给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )(A )①和②(B )③和①(C )④和③(D )④和② 【答案】D【解析】在坐标系中标出已知的四个点,根据三视图的画图规则判断三棱锥的正视图为④与俯视图为②,故选D .【点评】本题考查三视图的画法,做到心中有图形,考查空间想象能力,是基础题. (8)【2014年湖北,文8,5分】设是关于t 的方程2cos sin 0t t θθ+=的两个不等实根,则过,两点的直线与双曲线的公共点的个数为( )(A )0 (B )1 (C )2 (D )3 【答案】A【解析】∵a ,b 是关于t 的方程2cos sin 0t t θθ+=的两个不等实根,∴sin cos a b θθ+=-,0ab =,过()2,A a a ,()2,B b b 两点的直线为()222b a y a x a b a --=--,即()y b a x ab =+-,即sin cos y x θθ=-, ∵双曲线22221cos sin x y θθ-=的一条渐近线方程为sin cos y x θθ=-,∴过()2,A a a ,()2,B b b 两点的直线与双 曲线22221cos sin x y θθ-=的公共点的个数为0,故选A .【点评】本题考查双曲线的方程与性质,考查直线与双曲线的位置关系,考查学生的计算能力,属于中档题. (9)【2014年湖北,文9,5分】已知()f x 是定义在R 上的奇函数,当0x ≥时,2()=3f x x x -.则函数()()+3g x f x x =-的零点的集合为( ) (A ){1,3} (B ){3,1,1,3}-- (C ){27,1,3}- (D ){27,1,3}-- 【答案】D【解析】∵()f x 是定义在R 上的奇函数,当0x ≥时,2()=3f x x x -,令0x <,则0x ->,∴()()23f x x x f x -=+=-,∴2()=3f x x x --,∴()223030x x x f x x x x ⎧-≥⎪=⎨--<⎪⎩,∵()()3g x f x x =-+,,a b 2(,)A a a 2(,)B b b 22221cos sin x y θθ-=∴()22430430x x x g x x x x ⎧-+≥⎪=⎨--+<⎪⎩,令()0g x =,当0x ≥时,2430x x -+=,解得1x =,或3x =,当0x <时,2430x x --+=,解得2x =-∴函数()()3g x f x x =-+的零点的集合为{21,3}-,故选D . 【点评】本题考查函数的奇偶性及其应用,考查函数的零点,函数方程思想.(10)【2014年湖北,文10,5分】《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了有圆锥的底面周长L 与高h ,计算其体积V 的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为3.那么近似公式2275v L h ≈相当于将圆锥体积公式中的π近似取为( )(A )227 (B )258 (C )15750 (D )355113【答案】B【解析】设圆锥底面圆的半径为r ,高为h ,依题意,()22L r π=,()22122375r h r h ππ=,所以218375ππ=,即π的近似值为258,故选B .【点评】本题考查圆锥体积公式,考查学生的阅读理解能力,属于基础题.二、填空题:共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位置上....答错位置,书写不清,模棱两可均不得分.(11)【2014年湖北,文11,5分】甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测. 若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为 件. 【答案】1800【解析】∵样本容量为80,∴抽取的比例为801480060=,又样本中有50件产品由甲设备生产,∴样本中30件产品由乙设备生产,∴乙设备生产的产品总数为30×60=1800.【点评】本题考查了分层抽样方法,熟练掌握分层抽样方法的特征是解题的关键.(12)【2014年湖北,文12,5分】若向量(1,3)OA =-u u u r ,||||OA OB =u u u r u u u r ,0OA OB ⋅=u u u r u u u r,则||AB =u u u r .【答案】【解析】设(),OB x y =u u u r ,∵向量()1,3OA =-u u u r ,||||OA OB =u u u r u u u r ,0OA OB ⋅=u u u r u u u r,∴30x y -=⎪⎩,解得31x y =⎧⎨=⎩ 或31x y =-⎧⎨=-⎩.∴()3,1OB =u u u r ,()3,1--.∴()2,4AB OB OA =-=u u u r u u u r u u u r 或()4,2-.∴||AB =u u u r 【点评】本题考查了向量模的计算公式、向量垂直与数量积的关系,属于基础题.(13)【2014年湖北,文13,5分】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 已知π6A =,a =1,b =则B = . 【答案】3π或23π【解析】∵在ABC ∆中,6A π=,1a=,b =sin sin a b A B=得:1sin 2sin 1b A B a ===, ∵a b <,∴A B <,∴3B π=或23π.【点评】此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键. (14)【2014年湖北,文14,5分】阅读如图所示的程序框图,运行相应的程序,若输入n 的值为9,则输出S 的值为_________. 【答案】1067【解析】由程序框图知:算法的功能是求1222212k S k =+++++++L L 的值,∵输入n 的值为9,∴跳出循环的k 值为10,∴输出()91291021219222129922451067122S -+=+++++++=+⨯=-+=-L L . 【点评】本题考查了当型循环结构的程序框图,根据框图的流程判断是否的功能是解题的关键. (15)【2014年湖北,文15,5分】如图所示,函数()y f x =的图象由两条射线和三条线段组成.若x ∀∈R ,()>(1)f x f x -,则正实数a 的取值范围为 . 【答案】10,6⎛⎫⎪⎝⎭【解析】由已知可得:0a >,且()4f a a =,()4f a a -=-,若x ∀∈R ,()>(1)f x f x -,则()()421241a a a a ⎧-->⎪⎨=->⎪⎩,解得16a >,故正实数a 的取值范围为:10,6⎛⎫ ⎪⎝⎭. 【点评】本题考查的知识点是函数的图象,其中根据已知分析出()()421241a a a a ⎧-->⎪⎨=->⎪⎩是解答的关键.(16)【2014年湖北,文16,5分】某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/小时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)、 平均车长l (单位:米)的值有关,其公式为2760001820vF v v l=++.(1)如果不限定车型, 6.05l =,则最大车流量为 辆/小时;(2)如果限定车型,5l =, 则最大车流量比(1)中的最大车流量增加 辆/小时. 【答案】(1)1900;(2)100【解析】(1)2760007600020182018v F l v v lv v==++++,∵121212122v v +≥=,当11v =时取最小值,∴7600019002018F l v v=≤++, 故最大车流量为:1900辆/小时. (2)22760007600076000100182********v v F v v l v v v v===++++++,∵100210020v v +≥=,∴2000F ≤, 2000﹣1900=100(辆/小时),故最大车流量比(1)中的最大车流量增加100辆/小时.【点评】本题主要考查了基本不等式的性质.基本不等式应用时,注意“一正,二定,三相等”必须满足. (17)【2014年湖北,文17,5分】已知圆22:1O x y +=和点,若定点(,0)B b (2)b ≠-和常数λ满足:对圆O 上任意一点,都有||||MB MA λ=,则(1) ;(2) .【答案】(1)12-;(2)12【解析】(1)设(),M x y ,则∵||||MB MA λ=,∴()()2222222x b y x y λλ-+=++,由题意,取()1,0、()1,0-分别代入可得()()222112b λ-=+,()()222112b λ--=-+,∴12b =-,12λ=. (2)由(1)知12λ=. 【点评】本题考查圆的方程,考查赋值法的运用,考查学生的计算能力,属于基础题. 三、解答题:共5题,共65分.解答应写出文字说明,演算步骤或证明过程. (18)【2014年湖北,文18,12分】某实验室一天的温度(单位:℃)随时间t (单位:h )的变化近似满足函数关系:ππ()103cos sin 1212f t t t =--,[0,24)t ∈(1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.(2,0)A -M b =λ=解:(1)ππ(8)103cos 8sin 81212f =-⨯-⨯()()2π2π103cos sin 33=--13103()102=-⨯--=.故实验室上午8时的温度为10 ℃.(2)因为3π1πππ()102(cos sin )=102sin()12212123f t t t t =-+-+, 又024t ≤<,所以πππ7π31233t ≤+<,ππ1sin()1123t -≤+≤.当2t =时,ππsin()1123t +=;当14t =时,ππsin()1123t +=-.于是()f t 在[0,24)上取得最大值12,取得最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.【点评】本题主要考查函数()sin y A x ωϕ=+的图象特征,正弦函数的值域,属于中档题.(19)【2014年湖北,文19,12分】已知等差数列{}n a 满足:12a =,且123,,a a a 成等比数列.(1)求数列{}n a 的通项公式;(2)记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得n S 60800n >+?若存在,求n 的最小值;若不存在,说明理由.解:(1)设数列{}n a 的公差为d ,依题意,2,2,24d d ++成等比数列,故有2(2)2(24)d d +=+,化简得240d d -=, 解得0d =或4d =,当0d =时,2n a =;当4d =时,2(1)442n a n n =+-⋅=-,从而得数列{}n a 的通项 公式为2n a =或42n a n =-.(2)当2n a =时,2n S n =,显然260800n n <+,此时不存在正整数n ,使得60800S n >+成立,当42n a n =-时,2[2(42)]22n n n S n +-==,令2260800n n >+,即2304000n n -->,解得40n >或10n <-(舍去),此时存在正整数n ,使得60800n S n >+成立,n 的最小值为41 综上,当2n a =时,不存在满足题意的n ;当42n a n =-时,存在满足题意的n ,其最小值为41.【点评】本题主要考查了等差数列和等比数列的性质.要求学生对等差数列和等比数列的通项公式,求和公式熟练记忆.(20)【2014年湖北,文20,13分】如图,在正方体1111ABCD A B C D -中,E ,F ,P ,Q ,M ,N 分别是棱AB ,AD ,1DD ,1BB ,11A B ,11A D 的中点.求证: (1)直线1BC ∥平面EFPQ ; (2)直线1AC ⊥平面PQMN .解:(1)连接AD 1,由1111ABCD A B C D -是正方体,知AD 1∥BC 1,因为F ,P 分别是AD ,1DD的中点,所以FP ∥AD 1.从而BC 1∥FP .而FP ⊂平面EFPQ ,且1BC ⊄平面EFPQ , 故直线1BC ∥平面EFPQ .(2)如图,连接AC ,BD ,则AC BD ⊥.由1CC ⊥平面ABCD ,BD ⊂平面ABCD ,可得1CC BD ⊥.又1AC CC C =I ,所以BD ⊥平面1ACC .而1AC ⊂平面1ACC ,所以1BD AC ⊥.因为M ,N 分别是11A B ,11A D 的中点,所以MN ∥BD ,从而1MN AC ⊥.同理可证1PN AC ⊥. 又PN MN N =I ,所以直线1AC ⊥平面PQMN . 【点评】本题考查了证明空间中的线面平行与线面垂直的问题,解题时应明确空间中的线面平行、线面垂直的判定方法是什么,也考查了逻辑思维能力与空间想象能力,是基础题.(21)【2014年湖北,文21,14分】π为圆周率,e 2.71828=L 为自然对数的底数.(1)求函数ln ()xf x x=的单调区间;(2)求3e ,e 3,πe ,e π,π3,3π这6个数中的最大数与最小数.解:(1)函数()f x 的定义域为(0,)+∞,因为ln ()x f x x =,所以21ln ()xf x x -'=,当()0f x '>,即0x e <<时,函数()f x 单调递增;当()0f x '<,即x e >时,函数()f x 单调递减.故函数()f x 的单调递增区间为(0,)e , 单调递减区间为(,)e +∞. (2)因为3e π<<,所以ln33ln ,ln ln3e e πππ<<,即ln3ln ,ln ln3e e e πππ<<,于是根据函数ln ,x y x y e ==,x y π=在定义域上单调递增,可得333,3e e e e ππππ<<<<,故这6个数的最大数在3π与3π之中,最小数在3e 与3e 之中.由3e π<<及(1)的结论,得()(3)()f f f e π<<,即ln ln3ln 3eeππ<<. 由ln ln33ππ<,得3ln ln3ππ<,所以33ππ>;由ln3ln 3ee<,得3ln3ln e e <,所以33e e >. 综上,6个数中最大数是3π,最小数是3e.【点评】1、求单调区间时,先写出函数的定义域,为后面取区间时作参考.2、利用指数函数、对数函数的单调性比较数的大小时,应注意以下几个要点: (1)寻找同底的指数式或对数式;(2)分清是递增还是递减;(3)把自变量的值放到同一个单调区间上.(22)【2014年湖北,文22,14分】在平面直角坐标系xOy 中,点M 到点(1,0)F 的距离比它到y 轴的距离多1.记点M 的轨迹为C . (1)求轨迹C 的方程;(2)设斜率为k 的直线l 过定点(2,1)P -. 求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.解:(1)设点(,)M x y ,依题意得||||1MF x =+||1x =+,化简整理得22(||)y x x =+, 故点M 的轨迹C 的方程为24,00,0x x y x ≥⎧=⎨<⎩.(2)在点M 的轨迹C 中,记212:4,:0(0)C y x C y x ==<,依题意,可设直线l 的方程为1(2)y k x -=+,由方程组21(2)4y k x y x-=+⎧⎨=⎩,可得244(21)0ky y k -++= ①1)当0k =时,此时1y =,把1y =代入轨迹C 的方程,得14x =,故此时直线:1l y =与轨迹C 恰好有一个公共点1(,1)42)当0k ≠时,方程①的判别式为216(21)k k ∆=-+- ②设直线l 与x 轴的交点为0(,0)x ,则由1(2)y k x -=+,令0y =,得021k x k+=-③ (ⅰ)若000x ∆<⎧⎨<⎩由②③解得1k <-,或12k >,即当1(,1)(,)2k ∈-∞-⋃+∞时,直线l 与1C 没有公共点,与2C 有一个公共点,故此时直线l 与轨迹C 恰好有一个公共点. (ⅱ)若000x ∆=⎧⎨<⎩或000x ∆>⎧⎨≥⎩,由②③解得1{1,}2k ∈-,或102k -≤<,即当1{1,}2k ∈-时,直线l 与1C只有一个公共点,与2C 有一个公共点,当1[,0)2k ∈-时,直线l 与1C 有两个公共点,与2C 没有公共点,故当11[,0){1,}22k ∈--U 时,直线l 与轨迹C 恰好有两个公共点.(ⅲ)若000x ∆>⎧⎨<⎩由②③解得112k -<<-,或102k <<,即当11(1,)(0,)22k ∈--⋃时,直线l 与1C 有两个公共点,与2C 有一个公共点,故此时直线l 与轨迹C 恰好有三个公共点. 综合1)2)可知,当1(,1)(,){0}2k ∈-∞-⋃+∞⋃时,直线l 与轨迹C 恰好有一个公共点;当11[,0){1,}22k ∈--U 时,直线l 与轨迹C 恰好有两个公共点;当11(1,)(0,)22k ∈--U 时,直线l 与轨迹C恰好有三个公共点.【点评】本题考查轨迹方程,考查了直线与圆锥曲线的关系,体现了分类讨论的数学思想方法,重点是做到正确分类,是中档题.。