新人教版高中数学《函数单调性的应用》导学案
人教版高一数学《函数单调性的运用》教案
人教版高一数学《函数单调性的运用》教案一、教学目标1、知识与技能目标(1)学生能够理解函数单调性的定义,并能准确判断函数的单调性。
(2)学生能够熟练运用函数单调性解决比较函数值大小、解不等式等问题。
2、过程与方法目标(1)通过观察函数图象、分析函数表达式,培养学生的观察能力和逻辑推理能力。
(2)通过解决实际问题,让学生体会函数单调性在数学和实际生活中的应用,提高学生的数学应用意识和解决问题的能力。
3、情感态度与价值观目标(1)让学生在自主探究和合作交流中,感受数学的魅力,激发学生学习数学的兴趣。
(2)通过解决问题的过程,培养学生严谨的治学态度和勇于探索的精神。
二、教学重难点1、教学重点(1)函数单调性的定义和判断方法。
(2)利用函数单调性解决实际问题。
2、教学难点(1)函数单调性的证明。
(2)运用函数单调性解决复杂的不等式问题。
三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课(1)展示函数图象,如一次函数 y = x + 1,二次函数 y = x² 2x + 1 等,引导学生观察函数图象的上升和下降趋势。
(2)提问学生:如何用数学语言来描述函数图象的这种上升和下降趋势?从而引出函数单调性的概念。
2、讲解新课(1)函数单调性的定义设函数 f(x) 的定义域为 I,如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x₁,x₂,当 x₁< x₂时,都有 f(x₁) < f(x₂)(或f(x₁) > f(x₂)),那么就说函数 f(x) 在区间 D 上是增函数(或减函数)。
强调定义中的关键词:定义域、区间、任意、都有。
(2)函数单调性的判断方法①图象法:观察函数的图象,图象上升为增函数,图象下降为减函数。
②定义法:设 x₁,x₂是给定区间上的任意两个自变量,且 x₁<x₂,计算 f(x₂) f(x₁),若 f(x₂) f(x₁) > 0,则函数为增函数;若f(x₂) f(x₁) < 0,则函数为减函数。
函数的单调性(导学案)
§4函数的单调性预习案一、学习目标1,能够根据函数图像找出函数的单调区间。
2,理解并掌握函数的单调性及几何意义,掌握用定义证明函数单调性的步骤。
3,会求函数的单调区间,提高应用知识解决问题的能力。
二.学习重点:进一步掌握函数单调性的定义,证明方法,步骤。
三.学习难点:增函数,减函数形式化定义的形成。
四.知识链接:根据函数图像的变化趋势,我们能够形象的看出函数图像在某个区间内是上升的还是下降的。
自主学习案1.根据教材第36页的思考交流的函数图像(即图2-16),试判断其在哪些区间是上升的,在哪些区间是下降的?2.函数的单调区间与函数的定义域有什么关系?3.单调性的定义:一般地,对于函数)(x f y =的定义域内的一个子集A 如果对于任意两个数A x x ∈21,,当___________时,都有_____________,就称函)(x f y =数在数集A 上是增加的。
当___________时,都有_____________,就称函数)(x f y =在数集A 上是减少的。
如果函数)(x f y =在区间A 上是增加的或是减少的,那么称A 为_____________。
(注意定义中条件和结论的双向使用.)4.利用定义判断和证明函数单调性的一般步骤:取值——_________——变形——定号——下结论5.画出函数x x f 1)(=的图像,说出)(x f 的单调区间,并指明在该区间上的单调性。
思考:如果一个函数在定义域的几个区间上都是增(减)函数,能不能说这个函数在其定义域上是增(减)函数?注意:函数的单调性是一个局部概念,与区间的端点无关.但若此处无定义,区间上不能取此点.如x x f 1)(=在0=x 无定义,其单调区间就不能写成]0,(-∞和[),0+∞,又如函数2x y =,其增区间可以写作[),0+∞或).0(∞+.探究案例1.画出函数23)(+=x x f 的图像,判断其单调性,并加以证明。
高中数学教学课例《函数的单调性与导数》课程思政核心素养教学设计及总结反思
一步熟练导数研究单调性的方法,规范解题格式步骤; 其次,三个导函数题都与二次函数有关,且用到指数函 数的性质,进一步强化二次不等式的解法和指数函数性 质,让学生体会导数问题的综合性.再次,第 3 题中设 置了参数 a,在此不需单独讨论,但在老师的追问下, 有些学生已经意识到有时要对 a 进行讨论,为下面针对 参数的分类讨论埋下伏笔.
解:若函数在上是增函数, 则大于或等于零在上恒成立 恒成立,解得实数的取值范围为[2,4]. 针对变式 4 中学生出现的两种思路,教师再提出问 题:请同学们思考下面这个问题: 变式 5、(1)若函数的单调递减区间为()求实 数的取值范围. (2)若函数的在区间()上单调递减,求实数的 取值范围. 我的思考:“单调递减区间为()”与“在区间() 上单调递减”是两个截然不同的问题情境.设计这个变 式题组,一是让学生辨析这两种不同叙述的含义,二是 对变式 4 两种思路的进一步明晰. 学生独立思考,然后进行生生交流,最后统一答案. (1)解:令导数,即,再讨论的符号, 当>0 时,解得, 所以函数的单调减区间为, 函数的减区间为(),则(), 所以,即; 当 a=0 时,函数的导数恒成立. 所以 a=0 时函数不存在单调减区间; 当时,函数的导数总成立.
高中数学-函数的单调性与导数教学设计学情分析教材分析课后反思
《函数的单调性与导数》教学设汁【教学目标】知识与技能:1.探索函数的单调性与导数的关系2.会利用导数判断函数的单调性并求函数的单调区间过程与方法:i.通过本巧的学习,掌握用导数研究单调性的方法2.在探索过程中培养学生的观察、分析、概括的能力渗透数形结合思想、转化思想、分类讨论思想。
情感态度与价值观:通过在教学过程中让学生多动手、多观察、勤思考、善总结,培养学生的探索精神,引导学生养成自主学习的学习习惯。
【教学的重点和难点】教学重点:探索并应用函数的单调性与导数的关系求单调区间。
教学难点:探索函数的单调性与导数的关系。
性问题.内容讲授例题讲解例1 : 求函数f(x) = x3-3x2的单调区间,并画出函数的大致图像.分析:根据上面结论,我们知道函数的单调性与函数导数的符号有关。
因此,可以通过分析导数的符号求出函数的单调区间.解:引导学生回答问题并同时板书.根据单调性的结论画出函数的图像.学生思考回答思路.学生利用导数知识解决函数的单调性问题.明确利用导数是求函数单调区间的最简单的方法.加深对单调性的理解,体会数形结合的思想.加强学生对利用导数求函数单调性的方法进一步熟练掌握,特别是单调区间满足在定义域内.学生总结并回答问题加深记忆.练习1求函数/(x ) = — lnx 的单调区间.函数的导数值大 于零时,其函数为 单调递增;函数的 导数值小于零时, 其函数为单调递 从函数的单调性 和导数的正负关 系的讨论环节中, 不断的比较了函 数和导函数的图 像,因此设置该 题,从熟悉的函数 到该题,题LI 更容 易解决.1求定义域;2求函数/(X )的导数, 3讨论单调区间,解不等式 广(力>°,解集为增区间;4解不等式广(切<°,解集为减区间.山学生共同回答.例2函数图像如下图,导函数图像可能为哪'一木讨论函数单调性的一般步骤 是什么教师根据一个学 生的作图进行讲 解.学生对所学知识 进一步巩固和熟 练掌握.【板书设计】参与课堂的学生为高二年级理科的学生,学生基础参差不齐,差别较大,而单调性的槪念是在髙一第一学期学过的,因此对于单调性槪念的理解不够准确,同时导数是髙中学生新接触的概念,如何将导数与函数的单调性联系起来是一个难点.在本节课之前学生已经学习了导数的概念、导数的几何意义和导数的四则运算,初步接触了导数在几何中的简单应用,但对导数的应用还仅停留在表而上•本节课应着重让学生通过探究来研究利用导数判左函数的单调性.效果分析本节课教师运用了多种教学手段,创设了丰富的教学情境,成功的激发了学生的学习兴趣:教学目标简明扼要,便于实施,注重数学思想、能力的培养,广度和深度都符合数学课程标准的要求,符合学生的实际情况。
高中《数学》函数的单调性教学设计学情分析教材分析课后反思
《函数的单调性》教学设计一、教学内容解析1. 教材内容及地位本节课是人教版版《数学》(必修1)第二章第3节函数单调性的第一课时,主要学习用符号语言(不等式)刻画函数的变化趋势(上升或下降)及简单应用.它是学习函数概念后研究的第一个、也是最基本的一个性质,为后继学习奠定了理性思维基础.如研究幂函数、指数函数、对数函数和三角函数的性质,包括导函数内容等;在对函数定性分析、求最值和极值、比较大小、解不等式、函数零点的判定以及与其他知识的综合问题上都有重要的应用.因此,它是高中数学核心知识之一,是函数教学的战略要地.2. 教学重点函数单调性的概念,判断和证明简单函数的单调性.3. 教学难点函数单调性概念的生成,证明单调性的代数推理论证.二、学生学情分析1. 教学有利因素学生在初中阶段,通过学习一次函数、二次函数和反比例函数,已经对函数的单调性有了“形”的直观认识,了解用“V随X的增大而增大(减小)”描述函数图象的上升(下降)的趋势.亳州一中实验班的学生基础较好,数学思维活跃,具备一定的观察、辨析、抽象概括和归纳类比等学习能力.2. 教学不利因素本节课的最大障碍是如何用数学符号刻画一种运动变化的现象,从直观到抽象、从有限到无限是个很大的跨度.而高一学生的思维正处在从经验型向理论型跨越的阶段,逻辑思维水平不高,抽象概括能力不强.另外,他们的代数推理论证能力非常薄弱.这些都容易产生思维障碍.三、课堂教学目标1.理解函数单调性的相关概念.掌握证明简单函数单调性的方法.2.通过实例让学生亲历函数单调性从直观感受、定性描述到定量刻画的自然跨越,体会数形结合、分类讨论和类比等思想方法.3.通过探究函数单调性,让学生感悟从具体到抽象、从特殊到一般、从局部到整体、从有限到无限、从感性到理性的认知过程,体验数学的理性精神和力量.4.引导学生参与课堂学习,进一步养成思辨和严谨的思维习惯,锻炼探究、概括和交流的学习能力.四、教学策略分析在学生认识函数单调性的过程中会存在两方面的困难:一是如何把“随x 的增大而增大(减小)”这一描述性语言“翻译”为严格的数学符号化语言,尤其抽象概括出用“任意”刻画“无限”现象;二是用定义证明单调性的代数推理论证.对高一学生而言,作差后的变形和因式符号的判断也有一定的难度.为达成课堂教学目标,突出重点,突破难点,我们主要采取以下形式组织学习材料:1. 指导思想.充分发挥多媒体形象、动态的优势,借助函数图象、表格和几何画板直观演示.在学生已有认知基础上,通过师生对话自然生成.2.在“创设情境”阶段.观察并分析沙漠某天气温变化的趋势,结合初中已学函数的图象,让学生直观感受函数单调性,明确相关概念.3.在“引导探索”阶段.首先创设认知冲突,让学生意识到继续学习的必要性;然后设置递进式“问题串”,借助多媒体引导学生对“随x 的增大而增大”进行探究、辨析、尝试、归纳和总结,并回顾已有知识经验,实现函数单调性从“直观性”到“描述性”再到“严谨性”的跨越.4. 在“学以致用”阶段.首先通过3个判断题帮助学生从正、反两方面辨析,逐步形成对概念正确、全面而深刻的认识.然后教师示范用定义证明函数单调性的方法,一起提炼基本步骤,强化变形的方向和符号判定方法.接着请学生板演实践.五、教学过程(一)通过问题,引入课题分别作出函数y=x+1,y=-x+1,y=x²的图像,并且观察自变量变化时,函数图像有什么变化趋势?y=-x+10 1X1y=x²1问题一问题二如何描述函数图像的上升或下降?图像上升,y 随着x的增大而增大图像上升,y随着x的增大而减小向题三如何用符号化的数学语言来描述y 随着x 的增大而增大呢?(二)引导探究,生成概念探究在函数y=f(x)的给定区间上任取x₁,x₂,当x₁<x₂时,有f(x)<f(x₂),这时我们就说函数y=f(x)在给定区间上是增函数.单调性的定义一般的,设函数f(x) 的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x₁,x₂,当x₁<x₂时,都有_f(x)<f(x₂),那么就说函数f(x) 在区间D上是增函数;如果对于定义域I内某个区间D 上的任意两个自变量的值x₁,x₂,当x₁<x₂时,都有f(x)>f(x),那么就说函数f(x) 在区间D上是减函数;如果函数y=f(x) 在区间D上是增函数或是减函数,就说这个函数在这个区间上具有(严格的)单调性;区间D 叫做函数y=f(x)的单调区间(三)学以致用,理解感悟概念理解( 1 ) 已知,因为f(-1)<f(2), 所以函数f(x)是增函数.(2)能不能说y= (x≠0)定义域(-∝,0)∪(0,+∝)上是单调减函数?(3)对于函数f(x),x∈D,若x,x₂∈D,(x₂-x) [f(x₂)-f(x₁)]>0 ,则函数f(x)在D上是增函数.(4)y=f(x) 在区间D上是减函数,若x,x₂∈D,且x₁<x₂,则f(x)>f(x₂).- 用于比较函数值的大小(5)y=f(x) 在区间D上是减函数,若x,x₂∈D,且f(x₁)>f(x₂),则x₁<x₂…用于比较自变量值的大小概念升华:(1)x,x₂具有任意性;(2)单调性是相对区间而言的,在一点处不具有单调性,单调区间之间用“,”隔开(不可用“U”符号连接)(3)定义的等价变形;(4)“知二推一”的应用典型例题—根据图像,指出函数的单调区间,并指明函数在这些区间上的增减性。
新教材2020-2021学年高中数学人教A版第一册学案:3.2.1 第1课时函数的单调性含解析
新教材2020-2021学年高中数学人教A版必修第一册学案:3.2.1 第1课时函数的单调性含解析3.2函数的基本性质3.2。
1单调性与最大(小)值第1课时函数的单调性[目标]1.记住函数的单调性及其几何意义,会证明简单函数的单调性;2。
会用函数的单调性解答有关问题;3.记住常见函数的单调性.[重点] 函数的单调性定义及其应用;常见函数的单调性及应用;函数单调性的证明.[难点]函数单调性定义的理解及函数单调性的证明.知识点一增函数与减函数的定义[填一填]一般地,设函数f(x)的定义域为I,区间D⊆I:如果∀x1,x2∈D,当x1〈x2时,都有f(x1)〈f(x2),那么就称函数f(x)在区间D上单调递增.特别地,当函数f(x)在它的定义域上单调递增时,我们就称它是增函数.如果∀x1,x2∈D,当x1<x2时,都有f(x1)〉f(x2),那么就称函数f(x)在区间D上单调递减.特别地,当函数f(x)在它的定义域上单调递减时,我们就称它是减函数.[答一答]1.在增函数与减函数的定义中,能否把“∀x1,x2∈D"改为“∃x1,x2∈D”?提示:不能,如图所示:虽然f(-1)〈f(2),但原函数在[-1,2]上不是增函数.2.设x1、x2是f(x)定义域某一个子区间M上的两个变量,如果f(x)满足以下条件,该函数f(x)是否为增函数?(1)对任意x1〈x2,都有f(x1)<f(x2);(2)对任意x1,x2,都有[f(x1)-f(x2)](x1-x2)〉0;(3)对任意x1、x2都有错误!>0.提示:是增函数,它们只不过是增函数的几种等价命题.3.由2推广,能否写出减函数的几个等价命题?提示:减函数(x1,x2∈M)⇔任意x1<x2,都有f(x1)>f(x2)⇔错误! <0⇔[f(x1)-f(x2)]·(x1-x2)〈0.知识点二函数的单调性与单调区间[填一填]如果函数y=f(x)在区间D上单调递增或单调递减,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.[答一答]4.函数的单调区间与其定义域是什么关系?提示:函数的单调性是对函数定义域内的某个子区间而言的,故单调区间是定义域的子集.5.函数f(x)=错误!的单调减区间是(-∞,0)∪(0,+∞)吗?提示:不是.例如:取x1=1,x2=-1,则x1>x2,这时f(x1)=f (1)=1,f(x2)=f(-1)=-1,故有f(x1)〉f(x2).这样与函数f(x)=错误!在(-∞,0)∪(0,+∞)上单调递减矛盾.事实上,f(x)=错误!的单调减区间应为(-∞,0)和(0,+∞).知识点三常见函数的单调性[填一填]1.设一次函数的解析式为y=kx+b(k≠0),当k〉0时,函数y =kx+b在R上是增函数;当k<0时,函数y=kx+b在R上是减函数.2.设二次函数的解析式为y=ax2+bx+c(a≠0).若a>0,则该函数在错误!上是减函数,在错误!上是增函数.若a<0,则该函数在错误!上是增函数,在错误!上是减函数.3.设反比例函数的解析式为y=错误!(k≠0).若k〉0,则函数y=错误!在(-∞,0)上是减函数,在(0,+∞)上也是减函数;若k 〈0,则函数y=错误!在(-∞,0)上是增函数,在(0,+∞)上也是增函数.[答一答]6.函数y=x2-x+2的单调区间如何划分?提示:函数在错误!上是减函数,在错误!上是增函数.类型一判断或证明函数的单调性[例1]证明:函数y=x+错误!在(0,3]上递减.[证明]设0<x1<x2≤3,则有y1-y2=错误!-错误!=(x1-x2)-错误!=(x1-x2)错误!。
新人教版高中数学函数单调性导学案
§2.8函数的单调性(1)【使用说明及学法指导】1.先仔细阅读教材,再思考知识梳理所提问题,有针对性的二次阅读教材,构建知识体系,画出知识树;2.限时30分钟独立、规范完成探究部分,并总结规律方法.【把脉考点】简单函数的单调性的方法重点:简单函数单调性方法及性质;难点:含参函数单调性的判断。
【复习目标】1.了解函数单调性的概念,掌握判断一些简单函数的单调性的方法。
2.独立思考,合作学习,学会判断函数单调性的规律和方法.【构建考点】一、考点梳理:1、(1)增函数、减函数的定义是什么?(2)、函数的单调性的理解:要注意以下三点:①、单调性是与区间紧密相关的概念,一个函数在不同的区间上可以有不同的单调性②、单调性是函数在某个区间上“整体”性质,因此定义中的具有任意性,不能用特殊的值代替,③、单调性存在的前提下,自变量与函数值之间的不等式可以“正逆互推”,于是,增函数的定义等价于:减函数的定义等价于:2、判断函数单调性及求单调区间的常用方法:(1)定义法:(步骤为四步曲)(2)导数法:①如果函数y=)(xf在某个区间内可导,那么若)('xf>0()f x⇒为增函数;若)('xf<0⇒)(xf为减函数.②如果函数y=)(xf在某个区间内可导,若()f x为增函数⇒恒成立;若()f x为减函数⇒恒成立。
(3)复合函数的单调性判断方法:。
(4)运用函数的运算性质:若为(),()f xg x增函数,则①()()f xg x+为;②1()f x为(()0)f x>;为(()0)f x≥;④()f x-为;⑤()f x⋅()g x为(()0,()0)f xg x>>;(5)图像法:(6)奇函数在两个对称的区间上具有的单调性;偶函数在对称的区间上具有的单调性.二、自主体验1.下列函数中,在区间0,(-∞)上是增函数的是( ) (A )842+-=x x y (B ))(log 21x y -= (C )12+-=x y (D )x y -=1 2.已知函数()x f 为R 上的减函数,则满足()11f xf <⎪⎪⎭⎫ ⎝⎛的实数x 的取值范围是( ) A.()1,1- B.()1,0 C.()()1,00,1 - D.()()+∞-∞-,11, 3.若2()2f x x ax =-+与1)(+=x ax g 在区间[1,2]上都是减函数,则a 的值范围是( )A .)1,0()0,1(⋃-B .]1,0()0,1(⋃-C .(0,1)D .]1,0(4. 若函数f(x)=121x +, 则该函数在(-∞,+∞)上是 ( ) (A)单调递减无最小值 (B) 单调递减有最小值 (C)单调递增无最大值 (D) 单调递增有最大值5.定义在R 上的函数f(x)对任意两个不等实数x,y,总有f (x)f (y)<0x y--成立,则必有( )A .函数f(x)在R 上是奇函数B .函数f(x)在R 上是偶函数C .函数f(x)在R 上是增函数D .函数f(x)在R 上是减函数【课内探究】探究一、判断证明函数的单调性例1:证明函数xx y 4+=在区间(2,)+∞单调递增(定义法证明)例2. 已知函数f(x)=a x +12+-x x (a >1),证明:函数f(x)在(-1,+∞)上为增函数.例3. 判断函数f(x)=12-x 在定义域上的单调性.探究二、求函数的单调区间 例4.求下列函数的单调区间:(1)62-+=x x y ; (2))32(log 221+--=x x y ;(3))0(4>+=x x x y ; (4))0()(>>++=b a bx a x x f ;规律方法总结:【总结提升】1.知识方面2.数学思想方法:。
高中数学:专题-函数的单调性与最值导学案
专题 函数的单调性与最值1.函数的单调性 (1)单调函数的定义自左向右看图象是上升的自左向右看图象是下降的单调区间的定义若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间. 2.函数的最值 (1)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( )(2)相同单调性函数的和、差、积、商函数还具有相同的单调性.( )(3)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( ) (4)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.( )(5)对于函数f (x ),x ∈D ,若x 1,x 2∈D ,且(x 1-x 2)[f (x 1)-f (x 2)]>0,则函数f (x )在D 上是增函数.( )(6)函数f (x )=log 5(2x +1)的单调增区间是(0,+∞).( )考点一 求函数的单调性(区间)A .y =x +1B .y =(x -1)2C .y =2-xD .y =log 0.5(x +1)(2)函数f (x )=lg x 2的单调递减区间是________.(3)判断并证明函数f (x )=axx 2-1(其中a >0)在x ∈(-1,1)上的单调性.(二次除以一次的处理; 拓展一次除以一次) [方法引航] 判断函数单调性的方法(1)定义法:取值,作差,变形,定号,下结论. (2)利用复合函数关系:简称“同增异减”.(3)图象法:从左往右看,图象逐渐上升,单调增;图象逐渐下降,单调减. (4)性质法:增函数与减函数的加减问题。
1.下列函数中,定义域是R 且为增函数的是( ) A .y =e -x B .y =x C .y =ln x D .y =|x |2.函数y =|x |(1-x )在区间A 上是增函数,那么区间A 是( ) A .(-∞,0) B.⎣⎢⎡⎦⎥⎤0,12 C .[0,+∞) D.⎝ ⎛⎭⎪⎫12,+∞3.已知a >0,函数f (x )=x +ax (x >0),证明:函数f (x )在(0,a ]上是减函数,在[a ,+∞)上是增函数.(掌握对勾函数;明确对勾函数的特征)考点二 利用函数的单调性求最值[例2] (1)函数f (x )=x +1在[1,2]上的最大值和最小值分别是________. (2)已知函数f (x )=1a -1x (a >0,x >0),若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域为⎣⎢⎡⎦⎥⎤12,2,则a =________.1.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( ) A .-1 B .1 C .6 D .12考点三 函数单调性的应用[例3] (1)已知11122x y⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,则下列不等关系一定成立的是( )A .22x y< B .22log log x y < C .33x y > D .cos cos x y <(2)已知f (x )=⎩⎨⎧(2-a )x +1,x <1,a x ,x ≥1,满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.[方法引航] (1)利用单调性比较大小,首先把不在同一个单调区间上的变量转化为同一个单调区间,再结合单调性进行比较.(2)已知函数的单调性确定参数的值域范围要注意以下两点:①任意子区间上也是单调的;②注意衔接点的取值.1.在本例(2)中,若f (x )不变且a ∈⎣⎢⎡⎭⎪⎫32,2.解不等式f (4a 2-2a -5)<f (a +2).2.定义在R 上的函数()f x =25,1,, 1.x ax x a x x---≤>⎧⎨⎩ 对任意12xx ≠都有,1212()[()()]0x x f x f x -->成立,则实数a 的取值范围是( )A. [-3,-2]B. [-3,0)C.(-∞,-2]D. (-∞,0)[易错警示]定义域的请求——求函数单调区间先求我1.函数的单调区间是定义域的子集,求函数的单调区间必须做到“定义域优先”的原则.[典例1] 函数f (x )=x 2+x -6的单调增区间为________.[警示] 求函数的单调区间,应该先求定义域,在定义域内寻找减区间、增区间;若增区间或减区间是间断的,要分开写,不能用“并集符号”合并联结. 2.利用函数单调性解不等式时也要先求定义域.[典例2] 已知,定义在[-2,3]上的函数f (x )是减函数,则满足f (x )<f (2x -3)的x 的取值范围是________.[警示] 这类不等式应等价于:单调性和定义域构成的不等式组.[高考真题体验]1.下列函数中,在区间(-1,1)上为减函数的是( ) A .y =11-xB .y =cos xC .y =ln(x +1)D .y =2-x2.设函数f (x )=ln(1+x )-ln(1-x ),则f (x )是( )A .奇函数,且在(0,1)上是增函数B .奇函数,且在(0,1)上是减函数C .偶函数,且在(0,1)上是增函数D .偶函数,且在(0,1)上是减函数 3.下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( ) A .f (x )=1x 2 B .f (x )=x 2+1 C .f (x )=x 3 D .f (x )=2-x 4.函数f (x )=xx -1(x ≥2)的最大值为________. 5.已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________.课时规范训练 A 组 基础演练1.函数y =x 2-6x +10在区间(2,4)上是( ) A .递减函数 B .递增函数 C .先递减再递增D .先递增再递减2.已知f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫1x >f (1)的实数x 的取值范围是( )A .(-∞,1)B .(1,+∞)C .(-∞,0)∪(0,1)D .(-∞,0)∪(1,+∞)3.函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( )A .f (x )=1x B .f (x )=(x -1)2 C .f (x )=e x D .f (x )=ln(x +1)4.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( )A .a >-14B .a ≥-14C .-14≤a <0D .-14≤a ≤05.函数y =x -5x -a -2在(-1,+∞)上单调递增,则a 的取值范围是( )A .a =-3B .a <3C .a ≤-3D .a ≥-36.已知f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是________.7.y =-x 2+2|x |+3的单调增区间为________.8.已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值范围是________.9.函数f (x )=x 2-4x -4在闭区间[t ,t +1](t ∈R )上的最小值记为g (t ). (1)试写出g (t )的函数表达式; (2)求g (t )的最小值.10.已知f (x )=xx -a(x ≠a ). (1)若a =-2,试证(判断)f (x )在(-∞,-2)上单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.B 组 能力突破1.设函数f (x )=log a |x |在(-∞,0)上单调递增,则f (a +1)与f (2)的大小关系是( ) A .f (a +1)>f (2) B .f (a +1)<f (2) C .f (a +1)=f (2)D .不能确定2.已知f (x )=⎩⎨⎧x 2-4x +3,x ≤0-x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是( ) A .(-∞,-2) B .(-∞,0) C .(0,2)D .(-2,0)3.函数f (x )=log 5(2x +1)的单调递增区间是________.4.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(函数背景是什么?) (1)求f (1)的值;(2)证明:f(x)为单调递减函数;(3)若f(3)=-1,求f(x)在[2,9]上的最小值.。
高中数学_函数单调性与导数教学设计学情分析教材分析课后反思
1.3.1函数的单调性与导数(第二课时)教学设计【教学目标】1.知识与能力:会利用导数解决函数的单调性及单调区间。
会求单调区间,会讨论含参函数单调性2.过程与方法:通过利用导数研究单调性问题的探索过程,体会从特殊到一般的、数形结合的研究方法。
3.情感态度与价值观:通过导数方法研究单调性问题,体会到不同数学知识间的内在联系,同时通过学生动手、观察、思考、总结,培养学生的探索精神,引导学生养成自主学习的学习习惯。
通过导数研究单调性的步骤的形成和使用,使得学生认识到利用导数解决一些函数(尤其是三次、三次以上的多项式函数)的问题,因而认识到导数的实用价值。
【教学重点和难点】对于本节课学生的认知困难主要体现在:用准确的数学语言描述函数单调性与导数的关系,这种由特殊到一般、数到形、直观到抽象的转变,对学生是比较困难的。
根据以上的分析和新课程标准的要求,我确定了本节课的重点和难点。
教学重点:1.利用导数研究函数的单调性,求函数的单调区间.(重点)2.利用数形结合思想理解导函数与函数单调性之间的关系,及单调性的逆用.(难点)3.含参数的函数讨论单调性(难点)【教学设计思路】现代教学观念要求学生从“学会”向“会学”转变,本节可从单调性与导数的关系的发现到应用都有意识营造一个较为自由的空间,让学生能主动的去观察、猜测、发现、验证,积极的动手、动口、动脑,使学生在学知识同时形成思想、方法。
整个教学过程突出了三个注重:1、注重学生参与知识的形成过程,体验应用数学知识解决简单数学问题的乐趣。
2、注重师生、生生间的互相协作、共同提高。
3、注重知能统一,让学生获得知识同时,掌握方法,灵活应用。
根据新课程标准的要求,本节课的知识目标定位在以下三个方面:一是能探索并应用函数的单调性与导数的关系求单调区间;二是掌握判断函数单调性的方法;三是能由导数信息绘制函数大致图像,会根据单调性求字母范围。
教学过程:(一)复习回顾,温故知新让学生填写导数公式,运算法则,复合函数求导法则(利用选号程序,挑选两名幸运的同学回答,可提升学生注意力)设计意图:通过复习回顾,加深对公式的记忆和理解,尤其是运算法则,复合函数求导公式的理解,有利于本节熟练应用。
函数的单调性导学案(经典)
《函数的单调性》导学案
一、教学目标
(1)知识与技能:使学生理解函数单调性的概念,并能从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和定义判断、证明函数单调性的方法.
(2)过程与方法:从生活实际和已有旧知出发,引导学生探索函数的单调性的概念,通过对函数单调性定义的探究,渗透数形结合的思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.
(3)情感态度价值观:通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程,也培养学生细心观察、归纳、分析的良好习惯和不断探求新知识的精神.
二、教学重难点
教学重点:(1)函数单调性的概念及其应用;
(2)常见函数的单调区间的求法.
教学难点:利用函数图象、单调性的定义判断和证明函数的单调性.
三、课堂导学。
高中数学必修一《函数的单调性》导学案
§1.3.1 函数的单调性【学习目标】1.知识与技能:能从形与数两方面理解函数单调性的概念,掌握判别函数单调性的方法;2.过程与方法:通过实例让学生亲历函数单调性从直观感受、定性描述到定量刻画的自然跨越,体会数形结合、分类讨论和类比等思想方法。
3.情感态度与价值观:通过探究函数单调性,让学生感悟从具体到抽象、从特殊到一般、从局部到整体、从有限到无限、从感性到理性的认知过程,体验数学的理性精神和力量。
【学习重难点】重点:函数单调性的概念;难点:函数单调性概念的形成过程。
【学习探究过程】(一)创设情境,引入课题实例: 请观察江津区四面山某日24小时内的气温变化图,你能说出这一天的气温变化趋势吗?(二)引导探索,生成概念问题1:任意写出一个函数的解析式及定义域(1) 列出一些自变量x 的值,计算相应的y 值;(2) 画出草图,观察图像的上升、下降趋势,并指出y 值随x 的增大如何变化。
问题2:(1)如何用数学符号描述函数图象的“上升”特征,即“y 随x 的增大而增大..”?(2)已知12a x x b <<<,若有12()()()()f a f x f x f b <<<。
能保证函数()y f x =在区间[,]a b 上递增吗?(3)已知123a x x x b <<<<,若有123()()()()()f a f x f x f x f b <<<<,能保证函数()y f x =在区间[,]a b 上递增吗?(4)已知1234a x x x x b <<<<<⋅⋅⋅<,若有1234()()()()()()f a f x f x f x f x f b <<<<<⋅⋅⋅<,能保证函数()y f x =在区间[,]a b 上递增吗?问题3:对于一般的函数()y f x =定义域为I ,在区间D 上,我们应当如何给增函数下定义?问题4:类比增函数的定义,对于一般的函数()y f x =,我们应当如何给减函数下定义?(三) 学以致用,理解感悟例1. 下图是定义在区间[]5,5-上的函数()y f x =,根据函数图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?例2.反比例函数1y x =的单调性x y y=f(x)–1–2–3–4–512345–1–2123O①画出反比例函数1y x=的图象,并说出函数的定义域I 是什么? ②它在定义域I 上的单调性是怎样的?证明你的结论.思考:物理学中的玻意耳定律k p V=(k 为正常数)告诉我们,对于一定量的气体,当其体积V 减小时,压强p 将增大.试用函数的单调性证明之.(四)回顾反思,深化认识课堂小结: 通过本节课的学习,你的主要收获有哪些?(五)布置作业1.基础达标:第39页习题1.3 A 组:1、2;2.思考探究:函数()y f x =定义域内的某个区间D 上任意两个自变量12,x x 的值,当12x x <时,都有()()12120f x f x x x -<-,则函数()y f x =在区间D 上是 .(填“增函数”或“减函数”)。
人教版数学高二函数的单调性与导数 精品导学案
3.3.1函数的单调性与导数课前预习学案一、预习目标了解并掌握函数单调性的定义以及导数与函数单调性的关系,会利用导数求函数的单调区间,会利用导数画出函数的大致图象二、预习内容怎样判断函数的单调性?1、__________2、___________ 例如判断函数y=x 2的单调性:想一想:怎样判断函数y=x 3-3x 的单调性呢?⇒>0)('x f __________________________________________ ⇒<0)('x f ___________________________________________三、提出疑惑课内探究学案一、学习目标1.了解并掌握函数单调性的定义以及导数与函数单调性的关系2.会利用导数求函数的单调区间,会利用导数画出函数的大致图象学习重难点:导数与函数单调性的关系。
二、学习过程(一)知识回顾:怎样判断函数的单调性?1、__________2、___________例如判断函数y=x2的单调性:想一想:怎样判断函数y=x3-3x的单调性呢?)f__________________________________________('x>0⇒('x)f___________________________________________<0⇒(二)探究一:讨论函数单调性,求函数单调区间:1、(选填:“增” ,“减” ,“既不是增函数,也不是减函数”)(1) 函数y=x-3在[-3,5]上为__________函数。
(2) 函数y = x2-3x 在[2,+∞)上为___________函数,在(-∞,1]上为_____________函数,在[1,2]上为___________函数。
2、求函数y = x2-3x的单调区间。
探究二:变式1:求函数y =3 x3-3x2的单调区间。
变式2:求函数y=3e x -3x 的单调区间。
高中数学人教A版(2019)必修第一册3.2.1 函数单调性的应用必修第一册导学案
大儒诚信教育资源大儒诚信教育资源§3.2.1 单调性与最大(小)值(第二课时)一:导学目标:1. 利用函数单调性比较大小.。
2. 利用函数单调性解不等式。
二:温故而知新(1) 利用函数单调性比较大小若()f x 在区间D 上递增且)()(2121x f x f x x >⇔> (1x 2,x D ∈); 若()f x 在区间D 上递减且)()(2121x f x f x x <⇔>.(1x 2,x D ∈). (2)利用函数单调性求解不等式三:课堂活学活用练习1.1练习1.2 练习1.3题型二 利用函数的单调性求解不等式例2:已知函数f(x)是定义在R 上的增函数,且f(x+5)<f(3-x),求x 的取值范围.的大小关系。
上的减函数,试比较是定义在区间已知函数)4(),2(),1(),1[)(g g g x g +∞的大小关系。
时试比较上的增函数,当是定义在区间已知函数)3(),2(0),0()(2+>+∞a f a f a x f 大小关系。
的上是减函数,试比较且在的定义域为已知函数)1(),43(),0(R )(2+-+∞a a f f x f ⇔>)()(D )(21x f x f x f 上递增且在区间若⇔>)()(D )(21x f x f x f 上递减且在区间若;,,2121)(D x x x x ∈>;,,2121)(D x x x x ∈<大儒诚信教育资源- 2 –大儒诚信教育资源练习2.1 已知函数f(x)在(0 ,+∞)上是减函数,且f(x)<f(2x -3),求x 的取值范围练习2.2练习2.3已知f(x)是定义在区间[-2,2]上的增函数,且f(1-m)<f(m),则m 的取值范围为_____的取值范围。
求)上的增函数,且,是定义在(已知x ),43()1-(0-)(+<∞x f x f x f。
高一数学1.3.1《函数的单调性》教案(新人教A版必修1)
⾼⼀数学1.3.1《函数的单调性》教案(新⼈教A版必修1)§1.3.1函数的单调性⼀、三维⽬标1、知识与技能:(1)建⽴增(减)函数的概念通过观察⼀些函数图象的特征,形成增(减)函数的直观认识. 再通过具体函数值的⼤⼩⽐较,认识函数值随⾃变量的增⼤(减⼩)的规律,由此得出增(减)函数单调性的定义 . 掌握⽤定义证明函数单调性的步骤。
(2)函数单调性的研究经历了从直观到抽象,以图识数的过程,在这个过程中,让学⽣通过⾃主探究活动,体验数学概念的形成过程的真谛。
2、过程与⽅法(1)通过已学过的函数特别是⼆次函数,理解函数的单调性及其⼏何意义;(2)学会运⽤函数图象理解和研究函数的性质;(3)能够熟练应⽤定义判断与证明函数在某区间上的单调性.3、情态与价值,使学⽣感到学习函数单调性的必要性与重要性,增强学习函数的紧迫感. ⼆、教学重点与难点重点:函数的单调性及其⼏何意义.难点:利⽤函数的单调性定义判断、证明函数的单调性.三、学法与教学⽤具1、从观察具体函数图象引⼊,直观认识增减函数,利⽤这定义证明函数单调性。
通过练习、交流反馈,巩固从⽽完成本节课的三维⽬标。
2、教学⽤具:投影仪、计算机. 四、教学思路:(⼀)创设情景,揭⽰课题1.观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:○1 随x 的增⼤,y 的值有什么变化?○2 能否看出函数的最⼤、最⼩值?○3 函数图象是否具有某种对称性? 2.画出下列函数的图象,观察其变化规律:(1)f(x) = x○1 从左⾄右图象上升还是下降 ______? ○2 在区间 ____________ 上,随着x 的增⼤,f(x)的值随着 ________ .(2)f(x) = -x+2○1 从左⾄右图象上升还是下降 ______?⼤,f(x)的值随着________ .(3)f(x) = x2○1在区间____________ 上,f(x)的值随着x的增⼤⽽________ .○2在区间____________ 上,f(x)的值随着x的增⼤⽽________ .3、从上⾯的观察分析,能得出什么结论?学⽣回答后教师归纳:从上⾯的观察分析可以看出:不同的函数,其图象的变化趋势不同,同⼀函数在不同区间上变化趋势也不同,函数图象的这种变化规律就是函数性质的反映,这就是我们今天所要研究的函数的⼀个重要性质——函数的单调性(引出课题)。
高中数学《函数的单调性》教学设计 新人教A必修1
《函数的单调性》教学设计一、设计理念:1、重视数学概念、公式的发生、发展过程,在概念的形成过程中培养学生发现问题、研究问题、解决问题的能力2、重视学生的学习过程,在教学中注重培养学生独立思考、相互交流、合作探究的能力3、重视诱思探究的教学理论在课堂教学中的渗透,在课堂教学中要体现“教师为主导、学生为主体”,教师启发诱导,学生自主探究,激发学生的学习兴趣、培养学生良好的思维习惯和思维品质二、设计思路:1、以函数的单调性的概念为主线,贯穿于整个教学过程中对函数单调性概念的深入而准确的认识往往是学生认知过程的难点。
因此在教学中突出对概念的分析一方面是为了分析函数单调性的定义,另一方面让学生掌握如何学会、弄懂一个概念的方法,也为今后对其他数学概念的学习有所帮助。
使用单调性的定义证明具体函数的单调性是教学中的又是一个难点。
使用单调性的定义证明具体函数的单调性是对单调性定义的深层理解,给出“作差、变形、定号”的具体步骤是非常必要的,一方面是有利于学生理解函数单调性的概念;另一方面有利于学生掌握证明方法、形成证明思路。
另外也为今后学习不等式证明中的作差法做一定的铺垫。
2、加强“数”与“形”的结合,由直观到抽象、由特殊到一般的数学思维能力的培养始终贯穿于函数单调性概念教学过程中函数单调性的研究方法很具有典型性,体现了对函数研究的一般方法。
在函数单调性的教学中要引导学生逐步学会“直观感受---定性描述---定量刻画---具体应用”的探究方法,这样一方面为了便于对单调性概念有更好地理解,同时也为今后学习函数的其他概念和性质提供一定的参考方法。
3、在单调性概念的教学与研究中要体现出单调性是函数的一个局部性质函数的单调性是研究“当自变量不断增大时,函数值随着增大还是减小”,即函数图像的升降性,与函数奇偶性不同,函数的奇偶性是研究“当自变量的值互为相反数时,函数值是否也互为相反数”,即函数图像的对称性。
函数的单调性与函数的极值是函数的局部性质,与函数的奇偶性、最大(或小)值有着本质的区别,后者是函数的整体性质,在教学中要体现出函数的单调区间是函数定义域上的一个子集(区间),关注的是函数在这个子集上的增减性。
1.3 1函数单调性与导数 导学案 (教师版)
§1.3导数在研究函数中的应用1.3.1函数的单调性与导数内容要求 1.结合实例,借助几何直观探索并了解函数的单调性与导数的关系.2.能利用导数研究函数的单调性.3.会求不超过三次的多项式函数的单调区间.知识点1函数的单调性与导数的关系(1)在区间(a,b)内函数的导数与单调性有如下关系:导数函数的单调性f′(x)>0单调递增f′(x)<0单调递减f′(x)=0常函数(2)在区间(a,b)函数的单调性导数单调递增f′(x) ≥0单调递减f′(x)≤0常函数f′(x)=0【预习评价】思考在区间(a,b)内,函数f(x)单调递增是f′(x)>0的什么条件?提示必要不充分条件.知识点2利用导数求函数的单调区间求可导函数单调区间的基本步骤:(1)确定定义域;(2)求导数f′(x);(3)解不等式f′(x)>0,解集在定义域内的部分为单调递增区间;(4)解不等式f′(x)<0,解集在定义域内的部分为单调递减区间.【预习评价】函数f(x)=13-x2-3x+2的单调增区间是________.3x解析 f ′(x )=x 2-2x -3,令f ′(x )>0,解得x <-1或x >3,故f (x )的单调增区间是(-∞,-1),(3,+∞). 答案 (-∞,-1),(3,+∞)题型一 利用导数判断(或证明)函数的单调性【例1】 证明:函数f (x )=sin x x 在区间⎝ ⎛⎭⎪⎫π2,π上单调递减.证明 f ′(x )=x cos x -sin x x 2,又x ∈⎝ ⎛⎭⎪⎫π2,π,则cos x <0,∴x cos x -sin x <0, ∴f ′(x )<0,∴f (x )在⎝ ⎛⎭⎪⎫π2,π上单调递减.规律方法 关于利用导数证明函数单调性的问题:(1)首先考虑函数的定义域,所有函数性质的研究必须保证在定义域内这个前提下进行.(2)f ′(x )>0(或<0),则f (x )为单调递增(或递减)函数;但要特别注意,f (x )为单调递增(或递减)函数,则f ′(x )≥0(或≤0).【训练1】 证明:函数f (x )=ln xx 在区间(0,e)上是增函数. 证明 ∵f (x )=ln xx ,∴f ′(x )=x ·1x -ln x x 2=1-ln x x 2.又0<x <e ,∴ln x <ln e =1. ∴f ′(x )=1-ln xx 2>0,故f (x )在区间(0,e)上是增函数.题型二 利用导数求函数的单调区间 【例2】 求下列函数的单调区间:(1)f (x )=2x 3+3x 2-36x +1; (2) f (x )=sin x -x (0<x <π); (3)f (x )=3x 2-2ln x ; (4) f (x )=x 3-3tx .解 (1) f ′(x )=6x 2+6x -36.由f ′(x )>0得6x 2+6x -36>0,解得x <-3或x >2; 由f ′(x )<0解得-3<x <2.故f (x )的增区间是(-∞,-3),(2,+∞);减区间是(-3,2). (2)f ′(x )=cos x -1.因为0<x <π,所以cos x -1<0恒成立, 故函数f (x )的单调递减区间为(0,π). (3)函数的定义域为(0,+∞), f ′(x )=6x -2x =2·3x 2-1x . 令f ′(x )>0,即2·3x 2-1x >0, 解得-33<x <0或x >33. 又∵x >0,∴x >33. 令f ′(x )<0,即2·3x 2-1x <0, 解得x <-33或0<x <33. 又∵x >0,∴0<x <33.∴f (x )的单调递增区间为(33,+∞),单调递减区间为(0,33).(4)f′(x)=3x2-3t.令f′(x) >0,得3x2-3t>0,即x2>t,∴当t≤0时,f′(x)>0恒成立,函数的增区间是(-∞,+∞);当t>0时,由x2>t解得x>t或x<-t;由f′(x)<0解得-t<x<t,函数f(x)的增区间是(-∞,-t)和(t,+∞),减区间是(-t,t).综上,当t≤0时,f(x)的增区间是(-∞,+∞);当t>0时,f(x)的增区间是(-∞,-t),(t,+∞),减区间是(-t,t).规律方法求函数的单调区间的具体步骤:(1)优先确定f(x)的定义域;(2)计算导数f′(x);(3)解f′(x)>0和f′(x)<0;(4)定义域内满足f′(x)>0的区间为增区间,定义域内满足f′(x)<0的区间为减区间.【训练2】求函数f(x)=x3+3x的单调区间.解方法一函数f(x)的定义域为(-∞,0)∪(0,+∞).f′(x)=3x2-3x2=3⎝⎛⎭⎪⎫x2-1x2.由f′(x)>0,解得x<-1或x>1.由f′(x)<0,解得-1<x<1,且x≠0.所以函数f(x)的单调递增区间为(-∞,-1),(1,+∞);单调递减区间为(-1,0),(0,1).方法二函数f(x)的定义域为(-∞,0)∪(0,+∞).f′(x)=3x2-3x2=3(x2-1x2);令f′(x)=0,得x=±1.当x 变化时,f ′(x )与f (x )的变化情况如下表: x (-∞,-1)-1 (-1,0) (0,1) 1 (1,+∞)f ′(x )+0 --0 + f (x ) 单调递增Z -4单调递减] 单调递减]4单调递增Z0),(0,1).方向1 已知函数的单调性求参数的取值范围【例3-1】 已知函数f (x )=x 2+ax (x ≠0,常数a ∈R ).若函数f (x )在x ∈[2,+∞)上是单调递增的,求a 的取值范围.解 f ′(x )=2x -a x 2=2x 3-ax 2.要使f (x )在[2,+∞)上是单调递增的,则f ′(x )≥0在x ∈[2,+∞)时恒成立, 即2x 3-ax 2≥0在x ∈[2,+∞)时恒成立. ∵x 2>0,∴2x 3-a ≥0,∴a ≤2x 3在x ∈[2,+∞)上恒成立. ∴a ≤(2x 3)min .∵x ∈[2,+∞)时,y =2x 3是单调递增的, ∴(2x 3)min =16,∴a ≤16.当a =16时,f ′(x )=2x 3-16x 2≥0(x ∈[2,+∞))有且只有f ′(2)=0,∴a 的取值范围是(-∞,16].方向2利用函数的单调性证明不等式【例3-2】已知a,b为实数,且b>a>e,其中e为自然对数的底,求证:a b>b a.证明当b>a>e时,要证a b>b a,只要证b ln a>a ln b,即只要证ln aa>ln bb.构造函数y=ln xx(x>0),则y′=1-ln xx2.因为当x>e时,y′=1-ln xx2<0,所以函数y=ln xx在(e,+∞)内是减函数.又因为b>a>e,所以ln aa >ln bb.故a b>b a.规律方法(1)已知函数的单调性,求函数解析式中参数的取值范围,可转化为不等式恒成立问题,一般地,函数f(x)在区间I上单调递增(或减),转化为不等式f′(x)≥0(f′(x)≤0)在区间I上恒成立,再用有关方法可求出参数的取值范围.(2)“构造”是一种重要而灵活的思维方式,应用好构造思想解题的关键是:一要有明确的方向,即为什么目的而构造;二是要弄清条件的本质特点,以便重新进行逻辑组合.【训练3】若函数f(x)=x3+x2+mx+1是R上的单调函数,求实数m的取值范围.解f′(x)=3x2+2x+m.因为f(x)是R上的单调函数,所以f′(x)≥0恒成立或f′(x)≤0恒成立.因为二次项系数3>0,所以只能有f′(x)≥0恒成立.因此Δ=4-12m≤0,故m≥13.当m =13时,使f ′(x )=0的点只有一个x =-13,也符合题意.故实数m 的取值范围是⎣⎢⎡⎭⎪⎫13,+∞.课堂达标1.函数f (x )=x +ln x 在(0,6)上是( ) A.增函数 B.减函数C.在⎝ ⎛⎭⎪⎫0,1e 上是减函数,在⎝ ⎛⎭⎪⎫1e ,6上是增函数D.在⎝ ⎛⎭⎪⎫0,1e 上是增函数,在⎝ ⎛⎭⎪⎫1e ,6上是减函数解析 ∵f ′(x )=1+1x >0, ∴函数在(0,6)上单调递增. 答案 A2.f ′(x )是函数y =f (x )的导函数,若y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )解析 由导函数的图象可知,当x <0时,f ′(x )>0,即函数f (x )为增函数;当0<x <2时,f ′(x )<0,即f (x )为减函数;当x >2时,f ′(x )>0,即函数f (x )为增函数.观察选项易知D 正确. 答案 D3.若函数f (x )=x 3-ax 2-x +6在(0,1)内单调递减,则实数a 的取值范围是( )A.[1,+∞)B.a =1C.(-∞,1]D.(0,1)解析 ∵f ′(x )=3x 2-2ax -1,又f (x )在(0,1)内单调递减,∴不等式3x 2-2ax -1≤0在(0,1)内恒成立,∴f ′(0)≤0,且f ′(1)≤0,∴a ≥1. 答案 A4.函数y =x 2-4x +a 的增区间为______,减区间为______. 解析 y ′=2x -4,令y ′>0,得x >2;令y ′<0,得x <2, 所以y =x 2-4x +a 的增区间为(2,+∞),减区间为(-∞,2). 答案 (2,+∞) (-∞,2)5.若函数f (x )=ln x -12ax 2-2x 存在单调递减区间,则实数a 的取值范围是________.解析 f ′(x )=1x -ax -2=-ax 2+2x -1x.因为函数f (x )存在单调递减区间,所以f ′(x )≤0有解.又因为函数f (x )的定义域为(0,+∞),所以ax 2+2x -1≥0在(0,+∞)内有解. ①当a >0时,y =ax 2+2x -1为开口向上的抛物线,ax 2+2x -1≥0在(0,+∞)内恒有解;②当a <0时,y =ax 2+2x -1为开口向下的抛物线, 若ax 2+2x -1≥0在(0,+∞)内恒有解,则⎩⎨⎧Δ=4+4a ≥0,x =-1a >0,解得-1≤a <0, 而当a =-1时,f ′(x )=x 2-2x +1x =(x -1)2x ≥0,不符合题意,故-1<a <0;③当a =0时,显然符合题意.综上所述,a 的取值范围是(-1,+∞). 答案 (-1,+∞)课堂小结1.导数的符号反映了函数在某个区间上的单调性,导数绝对值的大小反映了函数在某个区间或某点附近变化的快慢程度.2.利用导数求函数f (x )的单调区间的一般步骤: (1)确定函数f (x )的定义域; (2)求导数f ′(x );(3)在函数f (x )的定义域内解不等式f ′(x )>0和f ′(x )<0; (4)根据(3)的结果确定函数f (x )的单调区间.基础过关1.函数f (x )=(x -3)e x 的单调递增区间是( ) A.(-∞,2) B.(0,3) C.(1,4)D.(2,+∞)解析 f ′(x )=(x -3)′e x +(x -3)(e x )′=(x -2)e x ,令f ′(x )>0,即(x -2)e x >0,解得x >2,故选D. 答案 D2.y =x ln x 在(0,5)内的单调性是( ) A.单调递增 B.单调递减C.在⎝ ⎛⎭⎪⎫0,1e 内单调递减,在⎝ ⎛⎭⎪⎫1e ,5内单调递增D.在⎝ ⎛⎭⎪⎫0,1e 内单调递增,在⎝ ⎛⎭⎪⎫1e ,5内单调递减解析 函数的定义域为(0,+∞).y ′=ln x +1,令y ′>0,得x >1e ;令y ′<0,得0<x <1e .所以函数y =x ln x 在⎝ ⎛⎭⎪⎫0,1e 内单调递减,在⎝ ⎛⎭⎪⎫1e ,5内单调递增.答案 C3.函数f (x )=x 3+ax 2+bx +c ,其中a ,b ,c 为实数,当a 2-3b <0时,f (x )是( ) A.增函数 B.减函数 C.常数D.既不是增函数也不是减函数解析 求函数的导函数f ′(x )=3x 2+2ax +b ,导函数对应方程f ′(x )=0的Δ=4(a 2-3b )<0,所以f ′(x )>0恒成立,故f (x )是增函数. 答案 A4.函数y =f (x )在其定义域⎝ ⎛⎭⎪⎫-32,3内可导,其图象如图所示,记y =f (x )的导函数为y =f ′(x ),则不等式f ′(x )≤0的解集为________.解析 函数y =f (x )为减函数的区间,反映在图象上图象是下降的. 答案 ⎣⎢⎡⎦⎥⎤-13,1∪[2,3)5.当x >0时,f (x )=x +2x 的单调递减区间是________.解析 f ′(x )=1-2x 2=x 2-2x 2=(x -2)(x +2)x 2.由f ′(x )<0且x >0得0<x < 2. 答案 (0,2)6.已知函数f (x )=x 3+bx 2+cx +d 的图象经过点P (0,2),且在点M (-1,f (-1))处的切线方程为6x -y +7=0. (1)求函数y =f (x )的解析式; (2)求函数y =f (x )的单调区间.解 (1)由y =f (x )的图象经过点P (0,2),知d =2,∴f (x )=x 3+bx 2+cx +2,f ′(x )=3x 2+2bx +c .由在点M (-1,f (-1))处的切线方程为6x -y +7=0,知-6-f (-1)+7=0,即f (-1)=1,f ′(-1)=6.∴⎩⎪⎨⎪⎧3-2b +c =6,-1+b -c +2=1,即⎩⎪⎨⎪⎧2b -c =-3,b -c =0,解得b =c =-3. 故所求的解析式是f (x )=x 3-3x 2-3x +2.(2)f ′(x )=3x 2-6x -3.令f ′(x )>0,得x <1-2或x >1+2;令f ′(x )<0,得1-2<x <1+ 2.故f (x )=x 3-3x 2-3x +2的单调递增区间为(-∞,1-2)和(1+2,+∞),单调递减区间为(1-2,1+2).7.已知向量a =(x 2,x +1),b =(1-x ,t ).若函数f (x )=a ·b 在区间(-1,1)上是增函数,求t 的取值范围.解 由题意得f (x )=x 2(1-x )+t (x +1)=-x 3+x 2+tx +t ,则f ′(x )=-3x 2+2x +t .若f (x )在(-1,1)上是增函数,则在(-1,1)上f ′(x )≥0恒成立.即t ≥3x 2-2x 在区间(-1,1)上恒成立.令函数g (x )=3x 2-2x ,由于g (x )的图象是对称轴为x =13,开口向上的抛物线,故t ≥3x 2-2x 在区间(-1,1)上恒成立⇔t ≥g (-1),即t ≥5.故t的取值范围是[5,+∞).能力提升8.已知函数f(x)在定义域R上为增函数,且f(x)<0,则g(x)=x2f(x)在(-∞,0)内的单调情况一定是()A.单调递减B.单调递增C.先增后减D.先减后增解析因为函数f(x)在定义域R上为增函数,所以f′(x)≥0.又因为g′(x)=2xf(x)+x2f′(x),所以当x∈(-∞,0)时,g′(x)>0恒成立,所以g(x)=x2f(x)在(-∞,0)内单调递增.答案 B9.已知函数y=xf′(x)的图象如图所示,选项中的四个图象中能大致表示y=f(x)的图象的是()解析由题图可知,当x<-1时,xf′(x)<0,所以f′(x)>0,此时原函数为增函数,图象应是上升的;当-1<x <0时,xf ′(x )>0,所以f ′(x )<0,此时原函数为减函数,图象应是下降的;当0<x <1时,xf ′(x )<0,所以f ′(x )<0,此时原函数为减函数,图象应是下降的;当x >1时,xf ′(x )>0,所以f ′(x )>0,此时原函数为增函数,图象应是上升的.由上述分析可知选C.答案 C10.若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是________.解析 由于f ′(x )=k -1x,f (x )=kx -ln x 在区间(1,+∞)上单调递增,故f ′(x )=k -1x ≥0在(1,+∞)上恒成立.由于k ≥1x ,而0<1x <1,故k ≥1,即k 的取值范围是[1,+∞).答案 [1,+∞)11. 已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数,若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.解析 f ′(x )=3x 2-2+e x +1e x ≥3x 2-2+2e x ·1ex =3x 2≥0且f ′(x )不恒为0,所以f (x )为单调递增函数.又f (-x )=(-x )3-2(-x )+e -x -1e -x =-⎝ ⎛⎭⎪⎫x 3-2x +e x -1e x =-f (x ),故f (x )为奇函数.由f (a -1)+f (2a 2)≤0得,f (2a 2)≤-f (a -1)=f (1-a ),所以2a 2≤1-a ,解得-1≤a ≤12,故实数a 的取值范围为⎣⎢⎡⎦⎥⎤-1,12. 答案 ⎣⎢⎡⎦⎥⎤-1,12 12.已知函数f (x )=ln x -f ′(1)x +1-ln 2,试求f (x )的单调区间.解 由f (x )=ln x -f ′(1)x +1-ln 2,x ∈(0,+∞),得f ′(x )=1x -f ′(1).令x =1,则f ′(1)=1-f ′(1),∴f ′(1)=12,f ′(x )=1x -12.由f ′(x )>0,即1x -12>0,得0<x <2;由f ′(x )<0,即1x -12<0,得x >2.故f (x )的单调递增区间为(0,2),单调递减区间为(2,+∞).创新突破13.已知函数f (x )=x 3+ax 2+x +1,a ∈R .(1)讨论函数f (x )的单调区间;(2)设函数f (x )在区间⎝ ⎛⎭⎪⎫-23,-13内是减函数,求a 的取值范围. 解 (1)f ′(x )=3x 2+2ax +1,Δ=4(a 2-3).当Δ>0,即a >3或a <-3时,令f ′(x )>0,即3x 2+2ax +1>0,解得x >-a +a 2-33或x <-a -a 2-33;令f ′(x )<0,即3x 2+2ax +1<0, 解得-a -a 2-33<x <-a +a 2-33. 故函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫-∞,-a -a 2-33,⎝ ⎛⎭⎪⎫-a +a 2-33,+∞; 单调递减区间是⎝ ⎛⎭⎪⎫-a -a 2-33,-a +a 2-33. 当Δ<0,即-3<a <3时,对所有的x ∈R 都有f ′(x )>0,故f (x )在R 上单调递增.当Δ=0,即a =±3时,f ′⎝ ⎛⎭⎪⎫-a 3=0,且对所有的x ≠-a 3都有f ′(x )>0,故f (x )在R 上单调递增.(2)由(1),知只有当a >3或a <-3时,f (x )在⎝ ⎛⎭⎪⎫-a -a 2-33,-a +a 2-33内是减函数, 所以⎩⎪⎨⎪⎧-a -a 2-33≤-23,-a +a 2-33≥-13.解得a ≥2.故a 的取值范围是[2,+∞).。
函数的单调性导学案
函数的单调性导学案编撰人:李斌审定:阜阳四中高一数学组一、【学习目标】(自学引导:这节课我们主要任务就是通过对单调性的研究,然后会运用函数单调性解决题目.这节课的特点是符号较多,希望同学们课下做好预习.)1、理解函数单调性的本质内容和函数单调性的几何意义;2、掌握判断函数单调性的判断方法:定义法和图象法;3、熟练的掌握用定义法证明函数单调性及其步骤.课前引导:函数图象上任意点P(x,y)的坐标有什么意义?二、【自学内容和要求及自学过程】观察教材第27页图1.3-2,阅读教材第27-28页“思考”上面的文字,回答下列问题(自学引导:理解“上升”、“下降”的本质内涵,归纳出增函数的定义)<1>你能描述上面函数的图像特征吗?该怎样理解“上升”、“下降”的含义?<2>对于二次函数y=x2,列出表(1),完成表(1)并体会图象在y轴右侧上升;x …-3 -2 -1 0 1 2 3 4 …f(x)=x2……结论:<1>函数y=x的图象,从左向右看是___(上升、下降)的;函数y=x2的图象在y轴左侧是___的,在y轴右侧是___的;函数y=-x2的图象在y轴左侧是___的,在y轴右侧是___的;按从左向右的方向看函数的图象,意味着图象上点的横坐标逐渐增大即函数的自变量逐渐增大;图象是上升的意味着图象上点的___(横、纵)坐标逐渐变大,也就是对应的函数值随着逐渐增大.也就是说从左向右看图象上升,反映了函数值随着自变量的增大而___;“下降”亦然;<2>在区间(0,+∞)上,任取x1、x2,且x1<x2,那么就有y1__y2(<,>),也就是有f(x1) ___f(x2).这样可以体会用数学符号刻画图象上升.阅读教材第28页“思考”下面的内容,然后回答下列问题(自学引导:同学们要理解增函数的定义,符号比较多,要一一的理解)<3>数学上规定:函数y=x2在区间(0,+∞)上是增函数.请给出增函数定义.<4>增函数的定义中,把“当x1<x2时,都有f(x1)<f(x2)”改为“当x1>x2时,都有f(x1)>f(x2)”,这样行吗?增函数的定义中,“当x1<x2时,都有f(x1)<f(x2)”反映了函数值有什么变化趋势?函数图象有何特点?<5>增函数的几何意义是什么?结论:<3>一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当___时,都有___,那么就说函数f(x)在区间D上是增函数;<4>增函数的定义:由于当x1<x2时,都有f(x1)<f(x2),即都是相同的不等号“<”,也就是说前面是“<”,后面也是“<”,步调一致;“当x1>x2时,都有f(x1)>f(x2)”都是相同的不等号“>”,即前面是“>”,后面也是“>”,步调一致.因此我们可以简称为:步调一致增函数;增函数反映了函数值随自变量的增大而增大;从左向右看,图象是上升的;<5>增函数几何意义是从左向右看,图象是___(上升、下降)的;(自学引导:类比增函数的定义,切实理解减函数的含义.)思考:<1>类比增函数的定义,请你给出减函数的定义;<2>函数y=f(x)在区间D上具有单调性,说明了函数y=f(x)在区间D上的图象有什么变化趋势?结论:<1>一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当___时,都有___,那么就说函数f(x)在区间D上是减函数.简称为:步调不一致减函数.减函数的几何意义:从左向右看,图象是___的.函数值变化趋势:函数值随着自变量的增大而减小;<2>函数y=f(x)在区间D上,函数值的变化趋势是随自变量的增大而增大(减小),几何意义:从左向右看,图象是___(___)(上升、下降)的;阅读教材第29页第一段,然后回答下列问题<7>你能理解“严格的单调性”所包含的含义吗?试述之.三、讲授新课1.引例:观察y=x2的图象,回答下列问题(投影1)问题1:函数y=x2的图象在y轴右侧的部分是上升的,说明什么?⇒随着x的增加,y值在增加。
新人教版高中数学《函数的单调性》导学案
函数的单调性1.通过观察函数图象,从图象上感知函数的单调性,并能利用函数的图象研究函数的单调性.2.结合函数图象理解函数单调性的概念,并会运用单调性的定义判断证明函数在某一区间上的单调性.3.能够运用函数的单调性比较函数值的大小和自变量的大小,能够解抽象不等式,提高分析问题和解决问题的能力.中国传奇女子网球巨星李娜截止到2014年元旦世界排名第3,夺得了7个冠军,制造了中国网球多项纪录,她的打球特点是力量大、速度快、落点准,球在空中划过一道精美的曲线,上图是李娜的一记S球的电脑数据,我们把球在运动时的高度绘制成关于运动时间的函数图象.问题1:依据网球上升和下降的路径变化可以把图象分为部分,总体上看函数图象从左到右的变化是先上升,后下降,再,最后,利用函数的可以研究函数图象上升与下降的变化过程.问题2:(1)①增函数:设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D上的两个自变量的值x1,x2,当时,都有,那么就说f(x)在区间D上是增函数,区间D称为y=f(x)的.②减函数:如果对于定义域I内的某个区间D上的两个自变量的值x,x2,当时,都有,那么就说f(x)在这个区间上是减函1数,区间D称为y=f(x)的.(2)如果函数y=f(x)在某个区间是增函数或减函数,那么我们说函数y=f(x)在这一区间上具有(严格的)单调性,称函数y=f(x)为.问题3:增函数和减函数的图象有什么特征?在单调区间上增函数的图象从左到右是的、减函数的图象从左到右是的.问题4:基本函数的单调性(1)一次函数f(x)=kx+b(k≠0):当k>0时,y=f(x)的单调增区间为,单调减区间;当k<0时,y=f(x)的单调增区间,单调减区间为.(2)二次函数f(x)=ax2+bx+c(a≠0):当a>0时,y=f(x)的单调增区间为,单调减区间为.当a<0时,y=f(x)的单调增区间为,单调减区间为.(3)反比例函数f(x)=(k≠0):当k>0时,y=f(x)的单调增区间,单调减区间为, 上述的单调减区间不能用并集连接,小组讨论原因.当k<0时,y=f(x)的单调增区间为,单调减区间.利用图象研究函数的单调区间画出下列函数的图象,求下列函数的单调区间,并指出每一个单调区间上函数的单调性.(1)y=-5x+2;(2)y=3|x|;(3)y=x2+2x-3.基本函数单调性的应用已知二次函数y=ax2+bx+1的单调递减区间是[-2,+∞),则一次函数y=bx+a 的图象大致是().由函数的单调性求参数的取值范围已知y=f(x)在定义域(-1,1)上是减函数,且f(1-a)<f(2a-1),求a的取值范围.1.已知a,b,c∈R,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1),则().A.a>0,4a+b=0B.a<0,4a+b=0C.a>0,2a+b=0D.a<0,2a+b=0考题变式(我来改编):2.已知函数f(x)=x|m-x|(x∈R),且f(4)=0.(1)求实数m的值;(2)作出函数f(x)的图象并判断其零点个数;(3)根据图象指出f(x)的单调递减区间;(4)根据图象写出不等式f(x)>0的解集;(5)求集合M={m|使方程f(x)=m有三个不相等的实根}.第10课时函数的单调性知识体系梳理问题1:4上升下降单调性问题2:(1)①任意x1<x2f(x1)<f(x2)单调递增区间②任意x1<x2f(x)>f(x2)单调递减区间(2)单调函数1问题3:上升下降问题4:(1)(-∞,+∞)不存在不存在(-∞,+∞)(2)[-,+∞)(-∞,-](-∞,-][-,+∞)(3)不存在(-∞,0),(0,+∞)(-∞,0),(0,+∞)(-∞,0),(0,+∞)不存在重点难点探究探究一:【解析】(1)函数y=-5x+2的图象如图所示,其单调区间为(-∞,+∞),在(-∞,+∞)上为减函数.(2)函数y=3|x|=-其图象如图所示,单调减区间为(-∞,0),单调增区间为[0,+∞).(3)函数y=x2+2x-3=(x+1)2-4的图象开口向上,对称轴为x=-1,图象如图所示,单调减区间为(-∞,-1),单调增区间为[-1,+∞).【小结】(1)由图象的升降可判断函数的单调性;(2)熟练掌握常见函数的单调性:①一次函数y=kx+b的单调性由参数k决定;②二次函数y=ax2+bx+c(a≠0)的单调性与开口方向和对称轴有关.探究二:【解析】依题意可得-=-2,a<0,所以b=4a,a<0,故y=bx+a=4ax+a=4a(x+)的图象大致为D中的图象.【答案】D【小结】掌握基本函数的单调性是解决本题的关键.注意条件:函数的单调减区间为D和函数在区间D上的单调递减是不同的.探究三:【解析】由题意可知----解得0<a<1. ①又f(x)在(-1,1)上是减函数,且f(1-a)<f(2a-1),所以1-a>2a-1,即a<. ②由①②可知,0<a<.故所求a的取值范围是(0,).【小结】解决此类与抽象函数有关的变量的取值范围问题的关键是利用单调性“脱去”函数符号“f”,从而转化为熟悉的不等式.若函数y=f(x)在区间D上是增函数,则对任意x1,x2∈D,且f(x1)<f(x2),有x1<x2;若函数y=f(x)在区间D上是减函数,则对任意x1,x2∈D,且f(x1)<f(x2),有x1>x2,需要注意的是,不要忘记函数的定义域.全新视角拓展1.【解析】由题意可得a>0,结合f(0)=f(4)得c=16a+4b+c,即4a+b=0.【答案】A2.【解析】(1)∵f(4)=0,∴4|m-4|=0,即m=4.(2)∵f(x)=x|m-x|=x|4-x|=---∴函数f(x)的图象如图:由图象知f(x)有两个零点.(3)从图象上观察可知f(x)的单调递减区间为[2,4].(4)从图象上观察可知不等式f(x)>0的解集为{x|0<x<4或x>4}.(5)由图象可知若y=f(x)与y=m的图象有三个不同的交点,则0<m<4,∴集合M={m|0<m<4}.思维导图构建f(x1)<f(x2)f(x1)>f(x2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第11课时函数单调性的应用
1.理解函数单调性的定义,能够根据函数单调性的定义,利用作差法判断或证明函数的单调性.
2.能根据函数的单调性求函数的最值及函数的值域.
3.能够运用函数的单调性比较大小、解不等式,并能够解答实际应用问题.
我们可以根据基本函数的图象判断出其单调性,对于不熟悉函数的单调性的判断,我们只能依据单调性的定义进行判断,那么具体有哪些步骤呢?
问题1:(1)比较两个数a,b的大小可以通过作差来判断,即a-b<0
⇔,a-b=0⇔,a-b>0⇔,形如这样比较大小的方法称为作差比较法.
(2)判断函数f(x)在区间D上的单调性,可以先给出区间D上的任意两个数x
,x2,假设x1<x2,再作差f(x1)-f(x2),通过化简、因式分解(若有分母,则先通分) 1
等方法进行变形,判断出f(x1)-f(x2)的符号,若f(x1)-f(x2)<0恒成立,则f(x)在区间D上是,若f(x1)-f(x2)>0恒成立,则f(x)在区间D上是.
以上通过作差法判断单调性的步骤可以简化为3个环节,即作差→变形→定号.
问题2:函数的最大值与最小值是如何定义的?
(1)设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有;②存在x0∈I,使得.那么,称M是函数y=f(x)的最大值.
(2)设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有;②存在x0∈I,使得,那么,称M是函数y=f(x)的最小值.
问题3:函数最值定义中的不等式反映了函数y=f(x)的函数值具有什么特点?其图象又有什么特征?
f(x)≤M反映了函数y=f(x)的所有函数值不大于实数;这个函数的图象特征是有,并且最高点的是M.
f(x)≥M反映了函数y=f(x)的所有函数值不小于实数;这个函数的图象特征是有,并且最低点的是M.
问题4:函数的值域与最值有何区别?
(1)函数的值域是一个集合,而函数的最值属于这个集合.
(2)函数的值域一定存在,但函数并不一定有最大(小)值.例如,函数y=,x∈(0,+∞)的值域为(0,+∞),它并不存在最大(小) 值.
函数单调性的判断与证明
利用函数单调性的定义,证明函数f(x)=在区间[0,+∞)上是增函数.
利用单调性求函数的值域或最值
求函数y=
在区间[3,7]上的最大值和最小值.
-
实际应用中的最值问题
某旅行团去风景区旅游,对机票费用有如下规定:若每团人数不超过30人,飞机票每张收费900元;若每团人数多于30人,则给予优惠,每多1人,机票每张减少10元.每个团乘飞机,旅行社需付给航空公司包机费15000元,假设一个旅行团体不能超过70人.
(1)写出飞机票的价格关于人数的函数式.
(2)每团人数为多少时,旅行社可获得最大利润?
加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a,b,c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为().
A.3.50分钟
B.3.75分钟
C.4.00分钟
D.4.25分钟
考题变式(我来改编):
第11课时函数单调性的应用
知识体系梳理
问题1:(1)a<b a=b a>b (2)增函数减函数
问题2:(1)f(x)≤M f(x0)=M (2)f(x)≥M f(x0)=M 问题3:M 最高点纵坐标M 最低点纵坐标
重点难点探究
探究一:【解析】任取x1,x2∈[0,+∞),且x1<x2,则
f(x
1
)-f(x2)=-=-=,
∵0≤x
1<x
2
,∴x1-x2<0,+>0.
从而知f(x1)-f(x2)<0,即f(x1)<f(x2).
∴函数f(x)=在区间[0,+∞)上是增函数.
【小结】对于本题,很可能会认为由0≤x1<x2可直接得到0≤<,这种做法在高一初学阶段的理由是不充分的,因为这个结论的得出恰恰是利用了函数f(x)=的单调性,而此点是需要证明的.
探究二:【解析】y=
-=2+
-
,设3≤x1<x2≤7,
则有f(x1)-f(x2)=
--
-
=---
--=-
--
.
∵3≤x
1<x
2
≤7,∴x2-x1>0,(x1-1)(x2-1)>0.
∴f(x
1)>f(x2),即函数y=
-
在区间[3,7]上是减函数.
∴当x=3时,函数y=
-
在区间[3,7]上取得最大值f(3)=3;
当x=7时,函数y=
-
在区间[3,7]上取得最小值f(7)=.
【小结】如果函数在区间[a,b]上是单调函数,则可利用单调性求出该函数在区间[a,b]上的最大(小)值.
探究三:【解析】(1)设旅行团的人数为x,机票价格为y元,
则y=
-
即y=
(2)设旅行社可获得利润为Q元,则
Q=-≤--
即Q=
-≤-
当x∈[1,30]时,Q max=900×30-15000=12000(元),
当x∈(30,70]时,Q=-10(x-60)2+21000,
即当x=60时,Q max=21000(元).
故当每团人数为60时,旅行社可获得最大利润21000元.
【小结】①解实际应用题要弄清题意,从实际出发,引入数学符号,建立数学模型,列出函数关系式,分析函数的性质,从而解决问题,要注意自变量的取值范围.
②实际应用问题中,最大利润、用料最省等问题常转化为求函数最值来解决,本题转化为二次函数求最值,利用配方法和分类讨论思想使问题得到解决.
③对于分段函数的最值,需要分段求解最值,再取其最大(或最小)即可得到答案.
全新视角拓展
【解析】先把三组实验数据代入函数关系式,解方程确定关系式,再由二次函数配方法求函数取最大值时的条件.
根据图表,把(t,p)的三组数据(3,0.7),(4,0.8),(5,0.5)分别代入函数关系式,联立方程组得
消去c化简得解得
所以p=-0.2t2+1.5t-2.0=-(t2-t+)+-2=--+,所以当t==3.75时,p取得最大值,即最佳加工时间为3.75分钟.
【答案】B
思维导图构建
f(b)f(a)f(b)f(a)。