新教材 人教A版高中数学必修第二册全册各章节知识点考点汇总及解题规律方法提炼

合集下载

新教材人教A版高中数学必修第二册第十章概率知识点汇总及解题规律方法提炼

新教材人教A版高中数学必修第二册第十章概率知识点汇总及解题规律方法提炼

新教材人教A版高中数学必修第二册第十章概率知识点汇总及解题规律方法提炼第十章概率10.1.1有限样本空间与随机事件10.1.2事件的关系和运算1.随机试验(1)定义:把对随机现象的实现和对它的观察称为随机试验.(2)特点:①试验可以在相同条件下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些可能结果中的一个,但事先不能确定出现哪一个结果.2.样本点和样本空间(1)定义:我们把随机试验E的每个可能的基本结果称为样本点,全体样本点的集合称为试验E的样本空间.(2)表示:一般地,我们用Ω表示样本空间,用ω表示样本点.如果一个随机试验有n个可能结果ω1,ω2,…,ωn,则称样本空间Ω={ω1,ω2,…,ωn}为有限样本空间.3.事件的分类(1)随机事件:①我们将样本空间Ω的子集称为随机事件,简称事件,并把只包含一个样本点的事件称为基本事件.②随机事件一般用大写字母A,B,C,…表示.③在每次试验中,当且仅当A中某个样本点出现时,称为事件A 发生.(2)必然事件:Ω作为自身的子集,包含了所有的样本点,在每次试验中总有一个样本点发生,所以Ω总会发生,我们称Ω为必然事件.(3)不可能事件:空集?不包含任何样本点,在每次试验中都不会发生,我们称?为不可能事件.■名师点拨必然事件和不可能事件不具有随机性,它是随机事件的两个极端情况.4.事件的关系或运算的含义及符号表示(1)如果事件B包含事件A,事件A也包含事件B,即B?A且A?B,则称事件A与事件B相等,记作A=B.(2)类似地,可以定义多个事件的和事件以及积事件.例如,对于三个事件A,B,C,A∪B∪C(或A+B+C)发生当且仅当A,B,C中至少一个发生,A∩B∩C(或ABC)发生当且仅当A,B,C同时发生.典型应用1事件类型的判断指出下列事件是必然事件、不可能事件还是随机事件.(1)中国体操运动员将在下届奥运会上获得全能冠军.(2)出租车司机小李驾车通过几个十字路口都将遇到绿灯.(3)若x∈R,则x2+1≥1.(4)抛一枚骰子两次,朝上面的数字之和小于2.【解】由题意知(1)(2)中事件可能发生,也可能不发生,所以是随机事件;(3)中事件一定会发生,是必然事件;由于骰子朝上面的数字最小是1,两次朝上面的数字之和最小是2,不可能小于2,所以(4)中事件不可能发生,是不可能事件.判断事件类型的思路要判定事件是何种事件,首先要看清条件,因为三种事件都是相对于一定条件而言的,第二步再看它是一定发生,还是不一定发生,还是一定不发生,一定发生的是必然事件,不一定发生的是随机事件,一定不发生的是不可能事件.典型应用2样本点与样本空间同时转动如图所示的两个转盘,记转盘①得到的数为x,转盘②得到的数为y,结果为(x,y).(1)写出这个试验的样本空间;(2)求这个试验的样本点的总数;(3)“x+y=5”这一事件包含哪几个样本点?“x<3且y>1”呢?(4)“xy=4”这一事件包含哪几个样本点?“x=y”呢?【解】(1)Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}.(2)样本点的总数为16.(3)“x+y=5”包含以下4个样本点:(1,4),(2,3),(3,2),(1,4);“x<3且y>1”包含以下6个样本点:(1,2),(1,3),(1,4),(2,2),(2,3),(2,4).(4)“xy=4”包含以下3个样本点:(1,4),(2,2),(4,1);“x =y”包含以下4个样本点:(1,1),(2,2),(3,3),(4,4).确定样本空间的方法(1)必须明确事件发生的条件;(2)根据题意,按一定的次序列出问题的答案.特别要注意结果出现的机会是均等的,按规律去写,要做到既不重复也不遗漏.典型应用3事件的运算盒子里有6个红球,4个白球,现从中任取3个球,设事件A={3个球中有1个红球2个白球},事件B={3个球中有2个红球1个白球},事件C={3个球中至少有1个红球},事件D={3个球中既有红球又有白球}.求:(1)事件D与A、B是什么样的运算关系?(2)事件C与A的交事件是什么事件?【解】(1)对于事件D,可能的结果为1个红球,2个白球或2个红球,1个白球,故D=A∪B.(2)对于事件C,可能的结果为1个红球,2个白球或2个红球,1个白球或3个均为红球,故C∩A=A.[变条件、变问法]在本例中,设事件E={3个红球},事件F={3个球中至少有一个白球},那么事件C与A、B、E是什么运算关系?C与F的交事件是什么?解:由事件C包括的可能结果有1个红球2个白球,2个红球1个白球,3个红球三种情况,故A?C,B?C,E?C,所以C=A∪B∪C,而事件F包括的可能结果有1个白球2个红球,2个白球1个红球,3个白球,所以C∩F={1个红球2个白球,2个红球1个白球}=D.(1)利用事件间运算的定义.列出同一条件下的试验所有可能出现的结果,分析并利用这些结果进行事件间的运算.(2)利用Venn图.借助集合间运算的思想,分析同一条件下的试验所有可能出现的结果,把这些结果在图中列出,进行运算.典型应用4互斥事件与对立事件的判定某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,判断下列每对事件是不是互斥事件,如果是,再判别它们是不是对立事件.(1)恰有1名男生与恰有2名男生;(2)至少有1名男生与全是男生;(3)至少有1名男生与全是女生;(4)至少有1名男生与至少有1名女生.【解】判别两个事件是否互斥,就要考察它们是否能同时发生;判别两个互斥事件是否对立,就要考察它们是否必有一个发生.(1)因为“恰有1名男生”与“恰有2名男生”不可能同时发生,所以它们是互斥事件;当恰有2名女生时它们都不发生,所以它们不是对立事件.(2)因为恰有2名男生时“至少有1名男生”与“全是男生”同时发生,所以它们不是互斥事件.(3)因为“至少有1名男生”与“全是女生”不可能同时发生,所以它们互斥;由于它们必有一个发生,所以它们是对立事件.(4)由于选出的是1名男生1名女生时“至少有1名男生”与“至少有1名女生”同时发生,所以它们不是互斥事件.(1)包含关系、相等关系的判定①事件的包含关系与集合的包含关系相似;②两事件相等的实质为相同事件,即同时发生或同时不发生.(2)判断事件是否互斥的两个步骤第一步,确定每个事件包含的结果;第二步,确定是否有一个结果发生会意味着两个事件都发生,若是,则两个事件不互斥,否则就是互斥的.(3)判断事件是否对立的两个步骤第一步,判断是互斥事件;第二步,确定两个事件必然有一个发生,否则只有互斥,但不对立.10.1.3古典概型1.古典概型具有以下特征的试验叫做古典概型试验,其数学模型称为古典概率模型,简称古典概型.(1)有限性:样本空间的样本点只有有限个;(2)等可能性:每个样本点发生的可能性相等.■名师点拨古典概型的判断一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特点:有限性和等可能性.并不是所有的试验都是古典概型.下列三类试验都不是古典概型:①样本点个数有限,但非等可能.②样本点个数无限,但等可能.③样本点个数无限,也不等可能.2.古典概型的概率公式一般地,设试验E是古典概型,样本空间Ω包含n个样本点,事件A包含其中的k个样本点,则定义事件A的概率P(A)=kn=n(A)n(Ω).其中,n(A)和n(Ω)分别表示事件A和样本空间Ω包含的样本点个数.典型应用1样本点的列举一只口袋内装有5个大小相同的球,白球3个,黑球2个,从中一次摸出2个球.(1)共有多少个样本点?(2)“2个都是白球”包含几个样本点?【解】(1)法一:采用列举法.分别记白球为1,2,3号,黑球为4,5号,则样本点如下:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10个(其中(1,2)表示摸到1号,2号球).法二:采用列表法.设5个球的编号分别为a,b,c,d,e,其中a,b,c为白球,d,e为黑球.列表如下:事件,故共有10个样本点.(2)法一中“2个都是白球”包括(1,2),(1,3),(2,3),共3个样本点,法二中“2个都是白球”包括(a,b),(b,c),(a,c),共3个样本点.。

新教材 人教A版高中数学必修第二册 第八章 立体几何初步 知识点汇总及解题规律方法提炼

新教材 人教A版高中数学必修第二册 第八章 立体几何初步 知识点汇总及解题规律方法提炼

第八章立体几何初步8.1基本立体图形第1课时棱柱、棱锥、棱台的结构特征1.空间几何体的定义及分类(1)定义:如果只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.(2)分类:常见的空间几何体有多面体与旋转体两类.2.空间几何体记作棱柱ABCDEF­A′B′C′D′E′F′记作棱锥S­ABCD按底面多边形的边数分为三棱锥、记作棱台ABCD­A′B′C′D′得的棱台分别为三棱台、四棱台、(1)棱柱、棱锥、棱台的关系在运动变化的观点下,棱柱、棱锥、棱台之间的关系可以用下图表示出来(以三棱柱、三棱锥、三棱台为例).(2)各种棱柱之间的关系①棱柱的分类棱柱⎩⎨⎧直棱柱⎩⎨⎧正棱柱(底面为正多边形)一般的直棱柱斜棱柱②常见的几种四棱柱之间的转化关系典型应用1棱柱的结构特征下列关于棱柱的说法:①所有的面都是平行四边形;②每一个面都不会是三角形;③两底面平行,并且各侧棱也平行;④被平面截成的两部分可以都是棱柱.其中正确说法的序号是__________.【解析】①错误,棱柱的底面不一定是平行四边形;②错误,棱柱的底面可以是三角形;③正确,由棱柱的定义易知;④正确,棱柱可以被平行于底面的平面截成两个棱柱,所以正确说法的序号是③④.【答案】③④棱柱结构特征的辨析技巧(1)扣定义:判定一个几何体是否是棱柱的关键是棱柱的定义.①看“面”,即观察这个多面体是否有两个互相平行的面,其余各面都是四边形;②看“线”,即观察每相邻两个四边形的公共边是否平行.(2)举反例:通过举反例,如与常见几何体或实物模型、图片等不吻合,给予排除.典型应用2棱锥、棱台的结构特征下列关于棱锥、棱台的说法:①用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;②棱台的侧面一定不会是平行四边形;③棱锥的侧面只能是三角形;④由四个面围成的封闭图形只能是三棱锥;⑤棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________.【解析】①错误,若平面不与棱锥底面平行,用这个平面去截棱锥,棱锥底面和截面之间的部分不是棱台.②正确,棱台的侧面一定是梯形,而不是平行四边形.③正确,由棱锥的定义知棱锥的侧面只能是三角形.④正确,由四个面围成的封闭图形只能是三棱锥.⑤错误,如图所示四棱锥被平面截成的两部分都是棱锥.所以正确说法的序号为②③④.【答案】②③④判断棱锥、棱台形状的两种方法(1)举反例法结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点空间几何体的平面展开图(1)水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的平面展开图(图中数字写在正方体的外表面上),若图中的“2”在正方体的上面,则这个正方体的下面是()A.1 B.9C.快D.乐(2)如图是三个几何体的侧面展开图,请问各是什么几何体?【解】(1)选B.由题意,将正方体的展开图还原成正方体,“1”与“乐”相对,“2”与“9”相对,“0”与“快”相对,所以下面是“9”.(2)题图①中,有5个平行四边形,而且还有两个全等的五边形,符合棱柱的特点;题图②中,有5个三角形,且具有共同的顶点,还有一个五边形,符合棱锥的特点;题图③中,有3个梯形,且其腰的延长线交于一点,还有两个相似的三角形,符合棱台的特点,把侧面展开图还原为原几何体,如图所示:所以①为五棱柱,②为五棱锥,③为三棱台.多面体展开图问题的解题策略(1)绘制展开图:绘制多面体的平面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其平面展开图.(2)由展开图复原几何体:若是给出多面体的平面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推,同一个几何体的平面展开图可能是不一样的,也就是说,一个多面体可有多个平面展开图.圆柱、圆锥、圆台、球、简单组合体的结构特征1.圆柱、圆锥、圆台和球的结构特征(1)圆柱的结构特征(1)圆柱有无数条母线,它们平行且相等.(2)平行于底面的截面是与底面大小相同的圆,如图1所示.(3)过轴的截面(轴截面)都是全等的矩形,如图2所示.(4)过任意两条母线的截面是矩形,如图3所示.(2)圆锥的结构特征(1)圆锥有无数条母线,它们有公共点即圆锥的顶点,且长度相等.(2)平行于底面的截面都是圆,如图1所示.(3)过轴的截面是全等的等腰三角形,如图2所示.(4)过任意两条母线的截面是等腰三角形,如图3所示.(3)圆台的结构特征(1)圆台有无数条母线,且长度相等,延长后相交于一点.(2)平行于底面的截面是圆,如图1所示.(3)过轴的截面是全等的等腰梯形,如图2所示.(4)过任意两条母线的截面是等腰梯形,如图3所示.(4)球的结构特征(1)球心和截面圆心的连线垂直于截面.(2)球心到截面的距离d与球的半径R及截面圆的半径r有如下关系:r=R2-d2.2.简单组合体(1)概念由简单几何体组合而成的几何体叫做简单组合体.(2)两种构成形式①由简单几何体拼接而成;②由简单几何体截去或挖去一部分而成.典型应用1圆柱、圆锥、圆台、球的概念(1)给出下列说法:①圆柱的底面是圆面;②经过圆柱任意两条母线的截面是一个矩形面;③圆台的任意两条母线的延长线可能相交,也可能不相交;④夹在圆柱的两个截面间的几何体还是一个旋转体.其中说法正确的是________.(2)给出以下说法:①球的半径是球面上任意一点与球心所连线段的长;②球的直径是球面上任意两点间所连线段的长;③用一个平面截一个球,得到的截面可以是一个正方形;④过圆柱轴的平面截圆柱所得截面形状是矩形.其中正确说法的序号是________.【解析】(1)①正确,圆柱的底面是圆面;②正确,如图所示,经过圆柱任意两条母线的截面是一个矩形面;③不正确,圆台的母线延长相交于一点;④不正确,圆柱夹在两个平行于底面的截面间的几何体才是旋转体.(2)根据球的定义知,①正确;②不正确,因为球的直径必过球心;③不正确,因为球的任何截面都是圆面;④正确.【答案】(1)①②(2)①④(1)判断简单旋转体结构特征的方法①明确由哪个平面图形旋转而成;②明确旋转轴是哪条直线.(2)简单旋转体的轴截面及其应用①简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量;②在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.典型应用2简单组合体的结构特征如图所示的几何体是由下面哪一个平面图形旋转而形成的()【解析】该几何体自上而下由圆锥、圆台、圆台、圆柱组合而成,故应选A.【答案】A[变条件、变问法]若将本例选项B中的平面图形旋转一周,试说出它形成的几何体的结构特征.解:①是直角三角形,旋转后形成圆锥;②是直角梯形,旋转后形成圆台;③是矩形,旋转后形成圆柱,所以旋转后形成的几何体如图所示.通过观察可知,该几何体是由一个圆锥、一个圆台和一个圆柱自上而下拼接而成的.不规则平面图形旋转形成几何体的结构特征的分析策略(1)分割:首先要对原平面图形适当分割,一般分割成矩形、梯形、三角形或圆(半圆或四分之一圆)等基本图形.(2)定形:然后结合圆柱、圆锥、圆台、球的形成过程进行分析.典型应用3旋转体中的计算问题如图所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm,求圆台O′O的母线长.【解】设圆台的母线长为l cm,由截得的圆台上、下底面面积之比为1∶16,可设截得的圆台的上、下底面的半径分别为r cm,4r cm.过轴SO作截面,如图所示,则△SO′A′∽△SOA,SA′=3 cm.所以SA′SA=O′A′OA,所以33+l=r4r=14.解得l=9,即圆台O′O的母线长为9 cm.解决旋转体中计算问题的方法用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,列出相关几何变量的方程(组)而解得.[注意]在研究与截面有关的问题时,要注意截面与物体的相对位置的变化.由于相对位置的改变,截面的形状也会随之发生变化.8.2立体图形的直观图1.用斜二测画法画水平放置的平面图形的直观图的步骤(1)建系:在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x′轴与y′轴,两轴交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.(2)平行不变:已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴或y′轴的线段.(3)长度规则:已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度为原来的一半.2.空间几何体直观图的画法(1)与平面图形的直观图画法相比多了一个z轴,直观图中与之对应的是z′轴.(2)直观图中平面x′O′y′表示水平平面,平面y′O′z′和x′O′z′表示竖直平面.(3)已知图形中平行于z轴(或在z轴上)的线段,在其直观图中平行性和长度都不变.(4)成图后,去掉辅助线,将被遮挡的部分改为虚线.■名师点拨(1)画水平放置的平面图形的直观图,关键是确定多边形顶点的位置,借助于平面直角坐标系确定顶点后,只需把这些顶点顺次连接即可.(2)用斜二测画法画直观图要掌握水平长不变,垂线长减半,直角画45°(或135°).典型应用1画水平放置的平面图形的直观图画水平放置的直角梯形的直观图,如图所示.【解】(1)在已知的直角梯形OBCD中,以底边OB所在直线为x轴,垂直于OB的腰OD所在直线为y轴建立平面直角坐标系.如图①所示.(2)画相应的x′轴和y′轴,使∠x′O′y′=45°,在x′轴上截取O′B′=OB,在y′轴上截取O′D′=12OD,过点D′作x′轴的平行线l,在l上沿x′轴正方向取点C′使得D′C′=DC.连接B′C′,如图②.(3)所得四边形O′B′C′D′就是直角梯形OBCD的直观图.如图③.画水平放置的平面图形的直观图的关键及注意事项(1)在画水平放置的平面图形的直观图时,选取适当的直角坐标系是关键,一般要使平面多边形尽可能多的顶点在坐标轴上或边与坐标轴平行,以便于画图.(2)画图时要注意原图和直观图中线段的长度的关系是否发生变化.典型应用2画简单几何体的直观图已知一个正四棱台的上底面边长为2,下底面边长为6,高为4,用斜二测画法画出此正四棱台的直观图.【解】(1)画轴.如图①,画x轴、y轴、z轴,三轴相交于点O,使∠xOy =45°,∠xOz=90°.(2)画下底面.以O为中点,在x轴上取线段EF,使得EF=6,在y轴上取线段GH,使得GH=3,再过G,H分别作AB綊EF,CD綊EF,且使得AB的中点为G,CD的中点为H,连接AD,BC,这样就得到了正四棱台的下底面ABCD 的直观图.(3)画上底面.在z轴上截取线段OO1=4,过O1作O1x′∥Ox,O1y′∥Oy,使∠x′O1y′=45°,建立坐标系x′O1y′,在x′O1y′中仿照(2)的步骤画出上底面A1B1C1D1的直观图.(4)连接AA1、BB1、CC1、DD1,擦去辅助线,得到的图形就是所求的正四棱台的直观图(如图②).画空间图形的直观图的原则(1)用斜二测画法画空间图形的直观图时,图形中平行于x 轴、y 轴、z 轴的线段在直观图中应分别画成平行于x ′轴、y ′轴、z ′轴的线段.(2)平行于x 轴、z 轴的线段在直观图中长度保持不变,平行于y 轴的线段长度变为原来的12.典型应用3直观图的还原与计算如图所示,梯形A 1B 1C 1D 1是一平面图形ABCD 的直观图.若A 1D 1∥O ′y ′,A 1B 1∥C 1D 1,A 1B 1=23C 1D 1=2,A 1D 1=O ′D 1=1.试画出原四边形,并求原图形的面积.【解】 如图,建立直角坐标系xOy ,在x 轴上截取OD =O ′D 1=1,OC =O ′C 1=2.在过点D 与y 轴平行的直线上截取DA =2D 1A 1=2.在过点A 与x 轴平行的直线上截取AB =A 1B 1=2.连接BC ,便得到了原图形(如图).由作法可知,原四边形ABCD 是直角梯形,上、下底长度分别为AB =2,CD =3,直角腰长度为AD =2.所以面积为S =2+32×2=5.(1)直观图的还原技巧由直观图还原为平面图的关键是找与x ′轴、y ′轴平行的直线或线段,且平行于x ′轴的线段还原时长度不变,平行于y ′轴的线段还原时放大为直观图中相应线段长的2倍,由此确定图形的各个顶点,顺次连接即可.(2)直观图与原图面积之间的关系若一个平面多边形的面积为S ,其直观图的面积为S ′,则有S ′=24S 或S =22S ′.利用这一公式可由原图形面积求其直观图面积或由直观图面积求原图形面积.柱、锥、台的表面积和体积1.棱柱、棱锥、棱台的表面积多面体的表面积就是围成多面体各个面的面积的和.棱柱、棱锥、棱台的表面积就是围成它们的各个面的面积的和.2.棱柱、棱锥、棱台的体积(1)V棱柱=Sh;(2)V棱锥=13Sh;V棱台3S′,S分别是棱台的上、下底面面积,h为棱台的高.3.圆柱、圆锥、圆台的表面积和体积1.柱体、锥体、台体的体积(1)柱体:柱体的底面面积为S ,高为h ,则V =Sh . (2)锥体:锥体的底面面积为S ,高为h ,则V =13Sh .(3)台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V =13()S ′+SS ′+S h .2.圆柱、圆锥、圆台的侧面积公式之间的关系 S 圆柱侧=2πrl ――→r ′=r S 圆台侧=π(r ′+r )l ――→r ′=0S 圆锥侧=πrl . 3.柱体、锥体、台体的体积公式之间的关系V 柱体=Sh ――→S ′=S V 台体=13(S ′+S ′S +S )h ――→S ′=0V 锥体=13Sh . 典型应用1柱、锥、台的表面积(1)若圆锥的正视图是正三角形,则它的侧面积是底面积的( ) A.2倍 B .3 倍 C .2 倍D .5 倍(2)已知正方体的 8 个顶点中,有 4 个为侧面是等边三角形的三棱锥的顶点,则这个三棱锥与正方体的表面积之比为( )A .1∶ 2B .1∶3C .2∶ 2D .3∶6(3)已知某圆台的一个底面周长是另一个底面周长的 3 倍,母线长为 3 ,圆台的侧面积为 84π,则该圆台较小底面的半径为( )A .7B .6C .5D .3【解析】 (1)设圆锥的底面半径为 r ,母线长为 l ,则由题意可知,l =2r ,于是 S 侧=πr ·2r =2πr 2,S 底=πr 2,可知选 C.(2)棱锥 B ′­ACD ′为适合条件的棱锥,四个面为全等的等边三角形,设正方体的棱长为 1,则 B ′C =2,S △B ′AC =32.三棱锥的表面积 S 锥=4×32=23,又正方体的表面积S正=6.因此S锥∶S正=23∶6=1∶ 3.(3)设圆台较小底面的半径为r,则另一底面的半径为3r.由S侧=3π(r+3r)=84π,解得r=7.【答案】(1)C (2)B (3)A空间几何体表面积的求法技巧(1)多面体的表面积是各个面的面积之和.(2)组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展开为平面图形计算,而表面积是侧面积与底面圆的面积之和.典型应用2柱、锥、台的体积如图所示,正方体ABCD­A1B1C1D1的棱长为a,过顶点B,D,A1截下一个三棱锥.(1)求剩余部分的体积;(2)求三棱锥A­A1BD的体积及高.【解】(1)V三棱锥A1­ABD=13S△ABD·A1A=13×12·AB·AD·A1A=16a3.故剩余部分的体积V=V正方体-V三棱锥A1­ABD=a3-16a3=56a3.(2)V三棱锥A­A1BD=V三棱锥A1­ABD=1 6a 3.设三棱锥A­A1BD的高为h,则V三棱锥A­A1BD=13·S△A1BD·h=13×12×32(2a)2h=36a2h,故36a2h=16a3,解得h=3 3a.求几何体体积的常用方法(1)公式法:直接代入公式求解.(2)等积法:例如四面体的任何一个面都可以作为底面,只需选用底面积和高都易求的形式即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,棱台补成棱锥等.(4)分割法:将几何体分割成易求解的几部分,分别求体积.[提醒]求几何体的体积时,要注意利用好几何体的轴截面(尤其为圆柱、圆锥时),准确求出几何体的高和底面积.典型应用3组合体的表面积和体积如图在底面半径为2,母线长为 4 的圆锥中内接一个高为3的圆柱,求圆柱的表面积.【解】设圆锥的底面半径为R,圆柱的底面半径为r,表面积为S.则R=OC=2,AC=4,AO=42-22=2 3.如图所示,易知△AEB∽△AOC,所以AEAO=EBOC,即323=r2,所以r=1,S 底=2πr 2=2π,S 侧=2πr ·h =23π. 所以 S =S 底+S 侧=2π+23π =(2+23)π.1.[变问法]本例中的条件不变,求圆柱的体积与圆锥的体积之比. 解:由例题解析可知:圆柱的底面半径为 r =1,高 h =3,所以圆柱的体积 V 1=πr 2h =π×12×3=3π.圆锥的体积 V 2=13π×22×23=833π. 所以圆柱与圆锥的体积比为 3∶8.2.[变问法]本例中的条件不变,求图中圆台的表面积与体积.解:由例题解析可知:圆台的上底面半径 r =1,下底面半径 R =2,高 h =3,母线 l =2,所以圆台的表面积 S =π(r 2+R 2+r ·l +Rl )=π(12+22+1×2+2×2)=11π.圆台的体积 V =13π(r 2+rR +R 2)h =13π(12+2+22)×3=733π.3.[变条件、变问法]本例中的“高为3”改为“高为 h ”,试求圆柱侧面积的最大值.解:设圆锥的底面半径为 R ,圆柱的底面半径为 r , 则 R =OC =2,AC =4, AO =42-22=2 3.如图所示易知△AEB ∽△AOC , 所以AE AO =EB OC , 即23-h 23=r2, 所以 h =23-3r ,S 圆柱侧=2πrh =2πr (23-3r ) =-23πr 2+43πr ,所以当 r =1,h =3时,圆柱的侧面积最大,其最大值为 23π.求组合体的表面积与体积的步骤(1)分析结构特征:弄清组合体的组成形式,找准有关简单几何体的关键量.(2)设计计算方法:根据组成形式,设计计算方法,特别要注意“拼接面”面积的处理,利用“切割”“补形”的方法求体积.(3)计算求值:根据设计的计算方法求值.球的体积和表面积1.球的表面积设球的半径为R,则球的表面积S=4πR2.2.球的体积设球的半径为R,则球的体积V=43πR3.■名师点拨对球的体积和表面积的几点认识(1)从公式看,球的表面积和体积的大小,只与球的半径相关,给定R都有唯一确定的S和V与之对应,故表面积和体积是关于R的函数.(2)由于球的表面不能展开成平面,所以,球的表面积公式的推导与前面所学的多面体与旋转体的表面积公式的推导方法是不一样的.(3)球的表面积恰好是球的大圆(过球心的平面截球面所得的圆)面积的4倍.典型应用1球的表面积与体积(1)已知球的体积是32π3,则此球的表面积是()A.12πB.16πC.16π3 D.64π3(2)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径,若该几何体的体积是28π3,则它的表面积是()A.17πB.18πC.20πD.28π【解析】(1)设球的半径为R,则由已知得V=43πR3=32π3,解得R=2.所以球的表面积S=4πR2=16π.(2)由三视图可得此几何体为一个球切割掉18后剩下的几何体,设球的半径为r,故78×43πr3=283π,所以r=2,表面积S=78×4πr2+34πr2=17π,选A.【答案】(1)B(2)A球的体积与表面积的求法及注意事项(1)要求球的体积或表面积,必须知道半径R或者通过条件能求出半径R,然后代入体积或表面积公式求解.(2)半径和球心是球的最关键要素,把握住了这两点,计算球的表面积或体积的相关题目也就易如反掌了.典型应用2球的截面问题如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器厚度,则球的体积为()A.500π3cm3 B.866π3cm3C.1 372π3cm 3D.2 048π3cm 3【解析】 如图,作出球的一个截面,则MC =8-6=2(cm), BM =12AB =12×8=4(cm). 设球的半径为R cm ,则 R 2=OM 2+MB 2 =(R -2)2+42, 所以R =5,所以V 球=43π×53=5003π (cm 3). 【答案】 A球的截面问题的解题技巧(1)有关球的截面问题,常画出过球心的截面圆,将问题转化为平面中圆的问题.(2)解题时要注意借助球半径R ,截面圆半径r ,球心到截面的距离d 构成的直角三角形,即R 2=d 2+r 2.典型应用3与球有关的切、接问题 角度一 球的外切正方体问题将棱长为 2 的正方体木块削成一个体积最大的球,则该球的体积为( )A.4π3B.2π3C.3π2D.π6【解析】 由题意知,此球是正方体的内切球,根据其几何特征知,此球的直径与正方体的棱长是相等的,故可得球的直径为 2,故半径为 1,其体积是43×π×13=4π3.【答案】 A角度二球的内接长方体问题一个长方体的各个顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为________.【解析】长方体外接球直径长等于长方体体对角线长,即2R=12+22+32=14,所以球的表面积S=4πR2=14π.【答案】14π角度三球的内接正四面体问题若棱长为a的正四面体的各个顶点都在半径为R的球面上,求球的表面积.【解】把正四面体放在正方体中,设正方体棱长为x,则a=2x,由题意2R=3x=3×2a2=62a,所以S球=4πR2=32πa2.角度四球的内接圆锥问题球的一个内接圆锥满足:球心到该圆锥底面的距离是球半径的一半,则该圆锥的体积和此球体积的比值为________.【解析】①当圆锥顶点与底面在球心两侧时,如图所示,设球半径为r,则球心到该圆锥底面的距离是r2,于是圆锥的底面半径为r2-⎝⎛⎭⎪⎫r22=3r2,高为3r 2.该圆锥的体积为13×π×⎝⎛⎭⎪⎫3r22×3r2=38πr3,球体积为43πr3,所以该圆锥的体积和此球体积的比值为38πr343πr3=932.②同理,当圆锥顶点与底面在球心同侧时,该圆锥的体积和此球体积的比值为332.【答案】 932或332角度五 球的内接直棱柱问题设三棱柱的侧棱垂直于底面,所有棱的长都为 a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2 B.73πa 2 C.113πa 2D .5πa 2【解析】 由题意知,该三棱柱为正三棱柱,且侧棱与底面边长相等,均为 a .如图,P 为三棱柱上底面的中心,O 为球心,易知 AP =23×32a =33a ,OP =12a ,所以球的半径 R = OA 满足R 2=⎝ ⎛⎭⎪⎫33a 2+⎝ ⎛⎭⎪⎫12a 2=712a 2,故 S 球=4πR 2=73πa 2.【答案】 B(1)正方体的内切球球与正方体的六个面都相切,称球为正方体的内切球,此时球的半径为 r 1=a2,过在一个平面上的四个切点作截面如图(1).(2)长方体的外接球长方体的八个顶点都在球面上,称球为长方体的外接球,根据球的定义可知,长方体的体对角线是球的直径,若长方体过同一顶点的三条棱长为 a ,b ,c ,过球心作长方体的对角线,则球的半径为 r 2=12a 2+b 2+c 2,如图(2).(3)正四面体的外接球正四面体的棱长a与外接球半径R的关系为:2R=6 2a.8.4.1平面1.平面(1)平面的概念几何里所说的“平面”,是从课桌面、黑板面、海面这样的一些物体中抽象出来的.平面是向四周无限延展的.(2)平面的画法我们常用矩形的直观图,即平行四边形表示平面.当水平放置时,常把平行四边形的一边画成横向;当平面竖直放置时,常把平行四边形的一边画成竖向.(3)平面的表示方法我们常用希腊字母α,β,γ等表示平面,如平面α、平面β、平面γ等,并将它写在代表平面的平行四边形的一个角内;也可以用代表平面的平行四边形的四个顶点,或者相对的两个顶点的大写英文字母作为这个平面的名称.如图中的平面α,也可以表示为平面ABCD、平面AC或者平面BD.■名师点拨(1)平面和点、直线一样,是只描述而不加定义的原始概念,不能进行度量.(2)平面无厚薄、无大小,是无限延展的.2.点、线、面之间的关系及符号表示A是点,l,m是直线,α,β是平面.从集合的角度理解点、线、面之间的关系(1)直线可以看成无数个点组成的集合,故点与直线的关系是元素与集合的关系,用“∈”或“∉”表示.(2)平面也可以看成点集,故点与平面的关系也是元素与集合的关系,用“∈”或“∉”表示.(3)直线与平面都是点集,它们之间的关系可看成集合与集合的关系,故用“⊂”或“⊄”表示.3.平面的性质在画两个相交平面时,如果其中一个平面的一部分被另一个平面挡住,通常把被挡住的部分画成虚线或不画,这样可使画出的图形立体感更强一些.如下图①,图②所示:4.平面性质的三个推论推论1经过一条直线和这条直线外一点,有且只有一个平面.如图(1).推论2经过两条相交直线,有且只有一个平面.如图(2).推论3经过两条平行直线,有且只有一个平面.如图(3).典型应用1图形、文字、符号语言的相互转化(1)用符号语言表示下面的语句,并画出图形.平面ABD与平面BDC交于BD,平面ABC与平面ADC交于AC.(2)将下面用符号语言表示的关系用文字语言予以叙述,并用图形语言予以表示.α∩β=l,A∈l,AB⊂α,AC⊂β.【解】(1)符号语言表示:平面ABD∩平面BDC=BD,平面ABC∩平面ADC=AC.用图形表示如图①所示.(2)文字语言叙述为:点A在平面α与平面β的交线l上,直线AB,AC分别在平面α,β内,图形语言表示如图②所示.。

新课标人教A版高中数学必修2知识点总结(完整版)

新课标人教A版高中数学必修2知识点总结(完整版)

高中数学必修2知识点总结第一章 空间几何体1.1柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱'''''E D C B A ABCDE -或用对角线的端点字母,如五棱柱'AD几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥'''''E D C B A P -几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台'''''E D C B A P -几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

新教材 人教A版高中数学必修第二册 第十章 概率 知识点汇总及解题规律方法提炼

新教材 人教A版高中数学必修第二册 第十章 概率 知识点汇总及解题规律方法提炼

第十章概率10.1.1有限样本空间与随机事件10.1.2事件的关系和运算1.随机试验(1)定义:把对随机现象的实现和对它的观察称为随机试验.(2)特点:①试验可以在相同条件下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些可能结果中的一个,但事先不能确定出现哪一个结果.2.样本点和样本空间(1)定义:我们把随机试验E的每个可能的基本结果称为样本点,全体样本点的集合称为试验E的样本空间.(2)表示:一般地,我们用Ω表示样本空间,用ω表示样本点.如果一个随机试验有n个可能结果ω1,ω2,…,ωn,则称样本空间Ω={ω1,ω2,…,ωn}为有限样本空间.3.事件的分类(1)随机事件:①我们将样本空间Ω的子集称为随机事件,简称事件,并把只包含一个样本点的事件称为基本事件.②随机事件一般用大写字母A,B,C,…表示.③在每次试验中,当且仅当A中某个样本点出现时,称为事件A发生.(2)必然事件:Ω作为自身的子集,包含了所有的样本点,在每次试验中总有一个样本点发生,所以Ω总会发生,我们称Ω为必然事件.(3)不可能事件:空集∅不包含任何样本点,在每次试验中都不会发生,我们称∅为不可能事件.■名师点拨必然事件和不可能事件不具有随机性,它是随机事件的两个极端情况.4.事件的关系或运算的含义及符号表示(1)如果事件B包含事件A,事件A也包含事件B,即B⊇A且A⊇B,则称事件A与事件B相等,记作A=B.(2)类似地,可以定义多个事件的和事件以及积事件.例如,对于三个事件A,B,C,A∪B∪C(或A+B+C)发生当且仅当A,B,C中至少一个发生,A∩B∩C(或ABC)发生当且仅当A,B,C同时发生.典型应用1事件类型的判断指出下列事件是必然事件、不可能事件还是随机事件.(1)中国体操运动员将在下届奥运会上获得全能冠军.(2)出租车司机小李驾车通过几个十字路口都将遇到绿灯.(3)若x∈R,则x2+1≥1.(4)抛一枚骰子两次,朝上面的数字之和小于2.【解】由题意知(1)(2)中事件可能发生,也可能不发生,所以是随机事件;(3)中事件一定会发生,是必然事件;由于骰子朝上面的数字最小是1,两次朝上面的数字之和最小是2,不可能小于2,所以(4)中事件不可能发生,是不可能事件.判断事件类型的思路要判定事件是何种事件,首先要看清条件,因为三种事件都是相对于一定条件而言的,第二步再看它是一定发生,还是不一定发生,还是一定不发生,一定发生的是必然事件,不一定发生的是随机事件,一定不发生的是不可能事件.典型应用2样本点与样本空间同时转动如图所示的两个转盘,记转盘①得到的数为x,转盘②得到的数为y,结果为(x,y).(1)写出这个试验的样本空间;(2)求这个试验的样本点的总数;(3)“x+y=5”这一事件包含哪几个样本点?“x<3且y>1”呢?(4)“xy=4”这一事件包含哪几个样本点?“x=y”呢?【解】(1)Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}.(2)样本点的总数为16.(3)“x+y=5”包含以下4个样本点:(1,4),(2,3),(3,2),(1,4);“x<3且y>1”包含以下6个样本点:(1,2),(1,3),(1,4),(2,2),(2,3),(2,4).(4)“xy=4”包含以下3个样本点:(1,4),(2,2),(4,1);“x=y”包含以下4个样本点:(1,1),(2,2),(3,3),(4,4).确定样本空间的方法(1)必须明确事件发生的条件;(2)根据题意,按一定的次序列出问题的答案.特别要注意结果出现的机会是均等的,按规律去写,要做到既不重复也不遗漏.典型应用3事件的运算盒子里有6个红球,4个白球,现从中任取3个球,设事件A={3个球中有1个红球2个白球},事件B={3个球中有2个红球1个白球},事件C={3个球中至少有1个红球},事件D={3个球中既有红球又有白球}.求:(1)事件D与A、B是什么样的运算关系?(2)事件C与A的交事件是什么事件?【解】(1)对于事件D,可能的结果为1个红球,2个白球或2个红球,1个白球,故D=A∪B.(2)对于事件C,可能的结果为1个红球,2个白球或2个红球,1个白球或3个均为红球,故C∩A=A.[变条件、变问法]在本例中,设事件E={3个红球},事件F={3个球中至少有一个白球},那么事件C与A、B、E是什么运算关系?C与F的交事件是什么?解:由事件C包括的可能结果有1个红球2个白球,2个红球1个白球,3个红球三种情况,故A⊆C,B⊆C,E⊆C,所以C=A∪B∪C,而事件F包括的可能结果有1个白球2个红球,2个白球1个红球,3个白球,所以C∩F={1个红球2个白球,2个红球1个白球}=D.(1)利用事件间运算的定义.列出同一条件下的试验所有可能出现的结果,分析并利用这些结果进行事件间的运算.(2)利用Venn图.借助集合间运算的思想,分析同一条件下的试验所有可能出现的结果,把这些结果在图中列出,进行运算.典型应用4互斥事件与对立事件的判定某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,判断下列每对事件是不是互斥事件,如果是,再判别它们是不是对立事件.(1)恰有1名男生与恰有2名男生;(2)至少有1名男生与全是男生;(3)至少有1名男生与全是女生;(4)至少有1名男生与至少有1名女生.【解】判别两个事件是否互斥,就要考察它们是否能同时发生;判别两个互斥事件是否对立,就要考察它们是否必有一个发生.(1)因为“恰有1名男生”与“恰有2名男生”不可能同时发生,所以它们是互斥事件;当恰有2名女生时它们都不发生,所以它们不是对立事件.(2)因为恰有2名男生时“至少有1名男生”与“全是男生”同时发生,所以它们不是互斥事件.(3)因为“至少有1名男生”与“全是女生”不可能同时发生,所以它们互斥;由于它们必有一个发生,所以它们是对立事件.(4)由于选出的是1名男生1名女生时“至少有1名男生”与“至少有1名女生”同时发生,所以它们不是互斥事件.(1)包含关系、相等关系的判定①事件的包含关系与集合的包含关系相似;②两事件相等的实质为相同事件,即同时发生或同时不发生.(2)判断事件是否互斥的两个步骤第一步,确定每个事件包含的结果;第二步,确定是否有一个结果发生会意味着两个事件都发生,若是,则两个事件不互斥,否则就是互斥的.(3)判断事件是否对立的两个步骤第一步,判断是互斥事件;第二步,确定两个事件必然有一个发生,否则只有互斥,但不对立.10.1.3古典概型1.古典概型具有以下特征的试验叫做古典概型试验,其数学模型称为古典概率模型,简称古典概型.(1)有限性:样本空间的样本点只有有限个;(2)等可能性:每个样本点发生的可能性相等.■名师点拨古典概型的判断一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特点:有限性和等可能性.并不是所有的试验都是古典概型.下列三类试验都不是古典概型:①样本点个数有限,但非等可能.②样本点个数无限,但等可能.③样本点个数无限,也不等可能.2.古典概型的概率公式一般地,设试验E是古典概型,样本空间Ω包含n个样本点,事件A包含其中的k个样本点,则定义事件A的概率P(A)=kn=n(A)n(Ω).其中,n(A)和n(Ω)分别表示事件A和样本空间Ω包含的样本点个数.典型应用1样本点的列举一只口袋内装有5个大小相同的球,白球3个,黑球2个,从中一次摸出2个球.(1)共有多少个样本点?(2)“2个都是白球”包含几个样本点?【解】(1)法一:采用列举法.分别记白球为1,2,3号,黑球为4,5号,则样本点如下:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10个(其中(1,2)表示摸到1号,2号球).法二:采用列表法.设5个球的编号分别为a,b,c,d,e,其中a,b,c为白球,d,e为黑球.列表如下:事件,故共有10个样本点.(2)法一中“2个都是白球”包括(1,2),(1,3),(2,3),共3个样本点,法二中“2个都是白球”包括(a,b),(b,c),(a,c),共3个样本点.。

新课标人教A版高中数学必修2知识点总结

新课标人教A版高中数学必修2知识点总结

高中数学必修2知识点总结第一章 空间几何体1.1柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱'''''E D C B A ABCDE -或用对角线的端点字母,如五棱柱'AD几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥'''''E D C B A P -几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台'''''E D C B A P -几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形. (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

新教材 人教A版高中数学必修第二册 第九章 统计 知识点汇总及解题规律方法提炼

新教材 人教A版高中数学必修第二册 第九章 统计 知识点汇总及解题规律方法提炼

第九章统计9.1随机抽样1.全面调查与抽样调查(1)对每一个调查对象都进行调查的方法,称为全面调查,又称普查W.(2)在一个调查中,我们把调查对象的全体称为总体,组成总体的每一个调查对象称为个体W.(3)根据一定的目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和推断的调查方法,称为抽样调查W.(4)把从总体中抽取的那部分个体称为样本W.(5)样本中包含的个体数称为样本量W.(6)调查样本获得的变量值称为样本的观测数据,简称样本数据.2.简单随机抽样(1)有放回简单随机抽样一般地,设一个总体含有N(N为正整数)个个体,从中逐个抽取n(1≤n<N)个个体作为样本,如果抽取是放回的,且每次抽取时总体内的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做放回简单随机抽样.(2)不放回简单随机抽样如果抽取是不放回的,且每次抽取时总体内未进入样本的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做不放回简单随机抽样.(3)简单随机抽样放回简单随机抽样和不放回简单随机抽样统称为简单随机抽样.(4)简单随机样本通过简单随机抽样获得的样本称为简单随机样本.(5)简单随机抽样的常用方法实现简单随机抽样的方法很多,抽签法和随机数法是比较常用的两种方法.■名师点拨(1)从总体中,逐个不放回地随机抽取n个个体作为样本,一次性批量随机抽取n个个体作为样本,两种方法是等价的.(2)简单随机抽样中各个个体被抽到的机会都相等,从而保证了抽样的公平性.3.总体平均数与样本平均数 (1)总体平均数①一般地,总体中有N 个个体,它们的变量值分别为Y 1,Y 2,…,Y N ,则称Y -=Y 1+Y 2+…+Y N N=1N ∑N i =1Y i 为总体均值,又称总体平均数. ②如果总体的N 个变量值中,不同的值共有k (k ≤N )个,不妨记为Y 1,Y 2,…,Y k ,其中Y i 出现的频数f i (i =1,2,…,k ),则总体均值还可以写成加权平均数的形式Y -=1N ∑k i =1f i Y iW. (2)样本平均数如果从总体中抽取一个容量为n 的样本,它们的变量值分别为y 1,y 2,…,y n ,则称y -=y 1+y 2+…+y n n =1n ∑n i =1y i 为样本均值,又称样本平均数.在简单随机抽样中,我们常用样本平均数y -去估计总体平均数Y -.4.分层随机抽样 (1)分层随机抽样一般地,按一个或多个变量把总体划分成若干个子总体,每个个体属于且仅属于一个子总体,在每个子总体中独立地进行简单随机抽样,再把所有子总体中抽取的样本合在一起作为总样本,这样的抽样方法称为分层随机抽样,每一个子总体称为层W.(2)比例分配在分层随机抽样中,如果每层样本量都与层的大小成比例,那么称这种样本量的分配方式为比例分配.5.分层随机抽样中的总体平均数与样本平均数(1)在分层随机抽样中,如果层数分为2层,第1层和第2层包含的个体数分别为M 和N ,抽取的样本量分别为m 和n .我们用X 1,X 2,…,X M 表示第1层各个个体的变量值,用x 1,x 2,…,x m 表示第1层样本的各个个体的变量值;用Y 1,Y 2,…,Y N 表示第2层各个个体的变量值,用y 1,y 2,…,y n 表示第2层样本的各个个体的变量值,则:①第1层的总体平均数和样本平均数分别为X -=X 1+X 2+…+X M M =1M ∑M i =1X i ,x -=x 1+x 2+…+x m m=1m ∑mi =1x i . ②第2层的总体平均数和样本平均数分别为Y -=Y 1+Y 2+…+Y N N =1N ∑N i =1Y i,y -=y 1+y 2+…+y n n=1n ∑ni =1y i . ③总体平均数和样本平均数分别为W -=∑Mi =1X i +∑Ni =1Y i M +N ,w -=∑mi =1x i +∑ni =1y i m +n W.(2)由于用第1层的样本平均数x -可以估计第1层的总体平均数X -,用第2层的样本平均数y -可以估计第2层的总体平均数Y -.因此我们可以用M ×x -+N ×y -M +N =M M +N x -+N M +Ny -估计总体平均数W -.(3)在比例分配的分层随机抽样中,m M =n N =m +n M +N ,可得M M +N x -+N M +N y-=m m +n x -+n m +n y -=w -.因此,在比例分配的分层随机抽样中,我们可以直接用样本平均数w -估计总体平均数W -.6.获取数据的途径获取数据的基本途径有:(1)通过调查获取数据;(2)通过试验获取数据;(3)通过观察获取数据;(4)通过查询获取数据典型应用1总体、样本等概念辨析题为了调查参加运动会的1 000名运动员的平均年龄,从中抽取了100名运动员进行调查,下面说法正确的是( )A.1 000名运动员是总体B.每个运动员是个体C.抽取的100名运动员是样本D.样本量是100【解析】 根据调查的目的可知,总体是这1 000名运动员的年龄,个体是每个运动员的年龄,样本是抽取的100名运动员的年龄,样本量为100.故答案为D.【答案】D此类题目要正确理解总体与个体的概念,要弄明白概念的实质,并注意样本与样本容量的不同,其中样本量为数目,无单位.典型应用2简单随机抽样的概念下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取50个个体作为样本;(2)仓库中有1万支奥运火炬,从中一次抽取100支火炬进行质量检查;(3)某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴灾区开展救灾工作.【解】(1)不是简单随机抽样.因为简单随机抽样要求被抽取的样本总体的个数是有限的.(2)不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.(3)不是简单随机抽样.因为这50名官兵是从中挑选出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.要判断所给的抽样方法是否为简单随机抽样,关键是看它们是否符合简单随机抽样的定义,即简单随机抽样的四个特点.典型应用3抽签法及随机数法的应用某班有50名学生,要从中随机地抽出6人参加一项活动,请分别写出利用抽签法和随机数法抽取该样本的过程.【解】(1)利用抽签法步骤如下:第一步:将这50名学生编号,编号为01,02,03, (50)第二步:将50个号码分别写在纸条上,并揉成团,制成号签.第三步:将得到的号签放在一个不透明的容器中,搅拌均匀.第四步:从容器中逐一抽取6个号签,并记录上面的号码.对应上面6个号码的学生就是参加该项活动的学生.(2)利用随机数法步骤如下:第一步:将这50名学生编号,编号为1,2,3, (50)第二步:用随机数工具产生1~50范围内的整数随机数,把产生的随机数作为抽中的编号,使与编号对应的学生进入样本.第三步:重复第二步的过程,直到抽足样本所需人数.对应上面6个号码的学生就是参加该项活动的学生.(1)利用抽签法抽取样本时应注意以下问题:①编号时,如果已有编号(如学号、标号等)可不必重新编号.(例如该题中50名同学,可以直接利用学号)②号签要求大小、形状完全相同.③号签要搅拌均匀.④抽取号签时要逐一、不放回抽取.(2)利用随机数法抽取样本时应注意的问题:如果生成的随机数有重复,即同一编号被多次抽到,应剔除重复的编号并重新产生随机数,直到产生的不同编号个数等于样本所需的人数.典型应用4分层随机抽样中的有关计算(1)某单位共有老、中、青年职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍,为了解职工身体状况,现采用分层随机抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工的人数为W.(2)某高中学校为了促进学生个体的全面发展,针对学生发展要求,开设了富有地方特色的“泥塑”与“剪纸”两个社团,已知报名参加这两个社团的学生共有800人,按照要求每人只能参加一个社团,各年级参加社团的人数情况如下表:其中x∶y∶z=5∶3∶2,且“泥塑”社团的人数占两个社团总人数的35,为了了解学生对两个社团活动的满意程度,从中抽取一个50人的样本进行调查,则从高二年级“剪纸”社团的学生中应抽取人.【解析】(1)设该单位老年职工人数为x,由题意得3x=430-160,解得x=90.则样本中的老年职工人数为90×32160=18.(2)法一:因为“泥塑”社团的人数占总人数的3 5,故“剪纸”社团的人数占总人数的2 5,所以“剪纸”社团的人数为800×25=320;因为“剪纸”社团中高二年级人数比例为yx+y+z=32+3+5=310,所以“剪纸”社团中高二年级人数为320×310=96.由题意知,抽样比为50800=116,所以从高二年级“剪纸”社团中抽取的人数为96×116=6.法二:因为“泥塑”社团的人数占总人数的3 5,故“剪纸”社团的人数占总人数的2 5,所以抽取的50人的样本中,“剪纸”社团中的人数为50×25=20.又“剪纸”社团中高二年级人数比例为yx+y+z=32+3+5=310,所以从高二年级“剪纸”社团中抽取的人数为20×310=6.【答案】(1)18(2)6分层随机抽样中有关计算的方法(1)抽样比=该层样本量n总样本量N=该层抽取的个体数该层的个体数.(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.对于分层抽样中求某层个体数,或某层要抽取的样本个体数,都可以通过上面两个等量关系求解.典型应用5样本平均数的求法(1)甲在本次飞镖游戏中的成绩为8,6,7,7,8,10,9,8,7,8.求甲在本次游戏中的平均成绩.(2)在了解全校学生每年平均阅读多少本文学经典名著时,甲同学抽取了一个容量为10的样本,并算得样本的平均数为5;乙同学抽取了一个容量为8的样本,并算得样本的平均数为6.已知甲、乙两同学抽取的样本合在一起组成一个容量为18的样本,求合在一起后的样本均值.【解】(1)甲在本次游戏中的平均成绩为6+3×7+4×8+9+1010=7.8.(2)合在一起后的样本均值为10×5+8×610+8=50+4818=499.在分层随机抽样中,如果第一层的样本量为m,平均值为x;第二层的样本量为n,平均值为y,则样本的平均值为mx+ny m+n.9.2用样本估计总体1.频率分布表、频率分布直方图的制作步骤及意义2.百分位数(1)定义:一般地,一组数据的第p百分位数是这样一个值,它使得这组数据中至少有p%的数据小于或等于这个值,且至少有(100-p)%的数据大于或等于这个值.(2)计算步骤:计算一组n个数据的第p百分位数的步骤:第1步,按从小到大排列原始数据.第2步,计算i=n×p%.第3步,若i不是整数,而大于i的比邻整数为j,则第p百分位数为第j项数据;若i是整数,则第p百分位数为第i项与第(i+1)项数据的平均数.典型应用1频率分布表、频率分布直方图、频率分布折线图的绘制角度一频率分布表、频率分布直方图的绘制为考查某校高二男生的体重,随机抽取44名高二男生,实测体重数据(单位:kg)如下:57,61,57,57,58,57,61,54,68,51,49,64,50,48,65,52,56,46,54,49,51,47,55,55,54,42,51,56,55,51,54,51,60,62,43,55,56,61,52,69,64,46,54,48将数据进行适当的分组,并画出相应的频率分布直方图和频率分布折线图.【解】以4为组距,列表如下:频率分布直方图和频率分布折线图如图所示.(1)在列频率分布表时,极差、组距、组数有如下关系:①若极差组距为整数,则极差组距=组数;②若极差组距不为整数,则极差组距的整数部分+1=组数.(2)组距和组数的确定没有固定的标准,将数据分组时,组数力求合适,纵使数据的分布规律能较清楚地呈现出来,组数太多或太少,都会影响我们了解数据的分布情况,若样本容量不超过100,按照数据的多少常分为5~12组,一般样本量越大,所分组数越多.角度二频率分布直方图的应用为了了解高一年级学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组的频数为12.(1)第二小组的频率是多少?样本量是多少?(2)若次数在110以上(含110次)为达标,则该校全体高一年级学生的达标率是多少?(3)样本中不达标的学生人数是多少?(4)第三组的频数是多少?【解】(1)频率分布直方图以面积的形式反映数据落在各小组内的频率大小,因此第二小组的频率为42+4+17+15+9+3=0.08.又因为第二小组的频率=第二小组的频数样本量,所以样本容量=第二小组的频数第二小组的频率=120.08=150.(2)由直方图可估计该校高一年级学生的达标率为17+15+9+32+4+17+15+9+3×100%=88%.(3)由(1)(2)知达标率为88%,样本量为150,不达标的学生频率为1-0.88=0.12.所以样本中不达标的学生人数为150×0.12=18(人).(4)第三小组的频率为172+4+17+15+9+3=0.34.又因为样本量为150,所以第三组的频数为150×0.34=51.频率分布直方图的应用中的计算问题(1)小长方形的面积=组距×频率组距=频率;(2)各小长方形的面积之和等于1;(3)频数样本量=频率,此关系式的变形为频数频率=样本量,样本量×频率=频数. 典型应用2条形统计图为了丰富校园文化生活,某校计划在午间校园广播台播放“百家讲坛”的部分内容.为了了解学生的喜好,抽取若干名学生进行问卷调查(每人只选一项内容),整理调查结果,绘制统计图如图所示.请根据统计图提供的信息回答以下问题:(1)求抽取的学生数;(2)若该校有3 000名学生,估计喜欢收听易中天《品三国》的学生人数;(3)估计该校喜欢收听刘心武评《红楼梦》的女学生人数约占全校学生人数的百分比.【解】 (1)从统计图上可以看出,喜欢收听于丹析《庄子》的男生有20人,女生有10人;喜欢收听《故宫博物院》的男生有30人,女生有15人;喜欢收听于丹析《论语》的男生有30人,女生有38人;喜欢收听易中天《品三国》的男生有64人,女生有42人;喜欢收听刘心武评《红楼梦》的男生有6人,女生有45人.所以抽取的学生数为20+10+30+15+30+38+64+42+6+45=300(人).(2)喜欢收听易中天《品三国》的男生有64人,女生有42人,共有106人,占所抽取总人数的比例为106300,由于该校有3 000名学生,因此可以估计喜欢收听易中天《品三国》的学生有106300×3 000=1 060(人).(3)该校喜欢收听刘心武评《红楼梦》的女学生人数约占全校学生人数的比例为45300×100%=15%.(1)绘制条形统计图时,第一步确定坐标系中横轴和纵轴上坐标的意义,第二步确定横轴上各部分的间距及位置,第三步根据统计结果绘制条形图.实际问题中,我们需根据需要进行分组,横轴上的分组越细,对数据的刻画(描述)就越精确.(2)在条形统计图中,各个矩形图的宽度没有严格要求,但高度必须以数据为准,它直观反映了各部分在总体中所占比重的大小.典型应用3折线统计图小明同学因发热而住院,下图是根据护士为他测量的体温所绘制的体温折线图.根据图中的信息,回答以下问题:(1)护士每隔几小时给小明测量一次体温?(2)近三天来,小明的最高体温、最低体温分别是多少?(3)从体温看,小明的病情是在恶化还是在好转?(4)如果连续36小时体温不超过37.2摄氏度的话,可认为基本康复,那么小明最快什么出院?【解】(1)根据横轴表示的意义,可知护士每隔6小时给小明测量一次体温.(2)从折线统计图中的最高点和最低点对应的纵轴意义,可知最高体温是39.5摄氏度,最低体温是36.8摄氏度.(3)从图中可知小明的体温已经下降,并趋于稳定,因此病情在好转.(4)9月8日18时小明的体温是37摄氏度.其后的体温未超过37.2摄氏度,自9月8日18时起计算,连续36小时后对应的时间为9月10日凌晨6时.因此小明最快可以在9月10凌晨6时出院.(1)绘制折线统计图时,第一步,确定直角坐标系中横、纵坐标表示的意义;第二步,确定一个单位长度表示一定的数量,根据数量的多少描出各点;第三步,用直线段顺次连接即可.(2)在折线统计图中,从折线的上升、下降可分析统计数量的增减变化情况,从陡峭程度上,可分析数据间相对增长、下降的幅度.典型应用4扇形统计图下图是A ,B 两所学校艺术节期间收到的各类艺术作品的情况的统计图:(1)从图中能否看出哪所学校收到的水粉画作品数量多?为什么?(2)已知A 学校收到的剪纸作品比B 学校的多20件,收到的书法作品比B 学校的少100件,请问这两所学校收到艺术作品的总数分别是多少件?【解】 (1)不能.因为两所学校收到艺术作品的总数不知道.(2)设A 学校收到艺术作品的总数为x 件,B 学校收到艺术作品的总数为y 件,则⎩⎨⎧10%x -5%y =20,50%y -40%x =100,解得⎩⎨⎧x =500,y =600,即A 学校收到艺术作品的总数为500件,B 学校收到艺术作品的总数为600件.(1)绘制扇形统计图时,第一步计算各部分所占百分比以及对应圆心角的度数;第二步在圆中按照上述圆心角画出各个扇形并恰当标注.(2)扇形统计图表示总体的各部分之间的百分比关系,但不同总量下的扇形统计图,其不同的百分比不可以作为比较的依据.典型应用5百分位数的计算现有甲、乙两组数据如下表所示.序11111111112【解】因为数据个数为20,而且20×25%=5,20×75%=15.因此,甲组数的25%分位数为x5+x62=2+32=2.5;甲组数的75%分位数为x15+x162=9+102=9.5.乙组数的25%分位数为x5+x62=1+12=1,乙组的75%分位数为x15+x162=10+142=12.求百分位数时,一定要将数据按照从小到大的顺序排列.9.3统计案例公司员工的肥胖情况调查分析1.平均数和中位数的特点(1)样本平均数与每一个样本数据有关,样本中的任何一个数据的改变都会引起平均数的改变.(2)中位数只利用了样本数据中间位置的一个或两个值,并未利用其他数据,所以不是任何一个样本数据的改变都会引起中位数的改变.(3)与中位数相比较,平均数反映出样本数据中的更多信息,对样本中的极端值更加敏感.2.中位数、平均数与频率分布直方图的关系一般来说,对一个单峰的频率分布直方图来说,如果直方图的形状是对称的(图(1)),那么平均数和中位数应该大体上差不多;如果直方图在右边“拖尾”(图(2)),那么平均数大于中位数;如果直方图在左边“拖尾”(图(3)),那么平均数小于中位数.也就是说,和中位数相比,平均数总是在“长尾巴”那边.3.众数的特点众数只利用了出现次数最多的那个值的信息.众数只能告诉我们它比其他值出现的次数多,但并未告诉我们它比别的数值多的程度.因此,众数只能传递数据中的信息的很少一部分,对极端值也不敏感.■名师点拨一般地,对数值型数据(如用水量、身高、收入、产量等)集中趋势的描述,可以用平均数、中位数;而对分类型数据(如校服规格、性别、产品质量等级等)集中趋势的描述,可以用众数.4.总体方差与总体标准差如果总体中所有个体的变量值分别为Y 1,Y 2,…,Y N ,总体平均数为Y -,则称S 2=1N ∑N i =1__(Y i -Y -)2为总体方差,S 体方差也可以写成加权的形式.如果总体的N 个变量值中,不同的值共有k (k ≤N )个,不妨记为Y 1,Y 2,…,Y k ,其中Y i 出现的频数为f i (i =1,2,…,k ),则总体方差为S 2=1N ∑k i =1f i (Y i -Y -)2. 5.样本方差与样本标准差如果一个样本中个体的变量值分别为y 1,y 2,…y n ,样本平均数为y -,则称s 2=1n ∑n i =1 (y i -y -)2为样本方差,s =s 2为样本标准差. ■名师点拨(1)若x 1,x 2,x 3,…,x n 的平均数为x -,方差为s 2那么ax 1+b ,ax 2+b ,ax 3+b ,…,ax n +b 的平均数为x -′=a x -+b ;方差s ′2=a 2s 2.(2)标准差刻画了数据的离散程度或波动幅度,标准差越大,数据的离散程度越大;标准差越小,数据的离散程度越小.显然,在刻画数据的分散程度上,方差和标准差是一样的.但在解决实际问题中,一般多采用标准差.典型应用1众数、中位数、平均数的计算及应用某工厂人员及月工资构成如下:(2)这个表格中,平均数能客观地反映该工厂的月工资水平吗?为什么?【解】 (1)由表格可知,众数为2 000元.把23个数据按从小到大(或从大到小)的顺序排列,排在中间的数应是第12个数,其值为2 200,故中位数为2 200元.平均数为(22 000+15 000+11 000+20 000+1 000)÷23=69 000÷23=3 000(元).(2)虽然平均数为3 000元/月,但由表格中所列出的数据可见,只有经理在平均数以上,其余的人都在平均数以下,故用平均数不能客观真实地反映该工厂的工资水平.(1)如果样本平均数大于样本中位数,说明数据中存在较大的极端值.在实际应用中,如果同时知道样本中位数和样本平均数,可以使我们了解样本数据中的极端数据信息,帮助我们作出决策.(2)众数、中位数、平均数三者比较,平均数更能体现每个数据的特征,它是各个数据的重心.典型应用2利用频率分布直方图求众数、中位数、平均数从高三抽出50名学生参加数学竞赛,由成绩得到如下的频率分布直方图.由于一些数据丢失,试利用频率分布直方图求:(1)这50名学生成绩的众数与中位数;(2)这50名学生的平均成绩.【解】(1)由众数的概念可知,众数是出现次数最多的数.在直方图中高度最高的小长方形的底边中点的横坐标即为所求,所以众数应为75.由于中位数是所有数据中的中间值,故在频率分布直方图中体现的是中位数的左右两边频数应相等,即频率也相等,从而就是小矩形的面积和相等.因此在频率分布直方图中将所有小矩形的面积一分为二的垂直于横轴的直线与横轴交点的横坐标所对应的成绩即为所求.因为0.004×10+0.006×10+0.02×10=0.04+0.06+0.2=0.3,所以前三个小矩形面积的和为0.3.而第四个小矩形面积为0.03×10=0.3,0.3+0.3>0.5,所以中位数应位于第四个小矩形内.设其底边为x,高为0.03,所以令0.03x=0.2,得x≈6.7,故中位数应约为70+6.7=76.7.(2)样本平均值应是频率分布直方图的“重心”,即所有数据的平均值,即每个小矩形底边的中点的横坐标乘以每个小矩形的面积求和即可.所以平均成绩为45×(0.004×10)+55×(0.006×10)+65×(0.02×10)+75×(0.03×10)+85×(0.024×10)+95×(0.016×10)=76.2.频率分布直方图的数字特征(1)众数:众数一般用频率分布表中频率最高的一组的组中值来显示,即在样本数据的频率分布直方图中,最高矩形的底边中点的横坐标;(2)中位数:在频率分布直方图中,中位数左边和右边的直方图的面积应该相等;(3)平均数:平均数在频率分布表中等于组中值与对应频率之积的和. 典型应用3标准差、方差的计算及应用甲、乙两机床同时加工直径为100 cm 的零件,为检验质量,从中抽取6件测量数据为:甲:99 100 98 100 100 103乙:99 100 102 99 100 100(1)分别计算两组数据的平均数及方差;(2)根据计算说明哪台机床加工零件的质量更稳定.【解】 (1)x -甲=16×(99+100+98+100+100+103)=100,x -乙=16×(99+100+102+99+100+100)=100,s 2甲=16×[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73, s 2乙=16×[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1.(2)由(1)知x -甲=x -乙,比较它们的方差,因为s 2甲>s 2乙,故乙机床加工零件的质量更稳定.用样本的标准差、方差估计总体的方法(1)用样本估计总体时,样本的平均数、标准差只是总体的平均数、标准差的近似.实际应用中,当所得数据的平均数不相等时,需先分析平均水平,再计算标准差(方差)分析稳定情况.(2)标准差、方差的取值范围是[0,+∞).(3)因为标准差与原始数据的单位相同,且平方后可能夸大了偏差的程度,所以虽然方差与标准差在刻画样本数据的离散程度上是一样的,但在解决实际问题时,一般多采用标准差.。

高中数学人教A版(2019)必修第二册知识点总结

高中数学人教A版(2019)必修第二册知识点总结

高中数学必修2第六章 平面向量设为所在平面上一点,角所对边长分别为,则(1)为的外心. (2)为的重心.(3)为的垂心. (4)为的内心.【6.1】平面向量的概念1、向量的定义及表示(向量无特定的位置,因此向量可以作任意的平移) (1)定义:既有大小又有方向的量叫做向量.(2)表示:①有向线段:带有方向的线段,它包含三个要素:起点、方向、长度;①向量的表示:2、向量的有关概念:相等向量是平行(共线)向量,但平行(共线)向量不一定是相等向量 向量名称 定义零向量 长度为0的向量,记作0 单位向量 长度等于1个单位长度的向量平行向量 (共线向量) 方向相同或相反的非零向量,向量a ,b 平行,记作a ①b , 规定:零向量与任一向量平行相等向量长度相等且方向相同的向量;向量a ,b 相等,记作a =b【6.2】平面向量的运算1、向量的加法(1)定义:求两个向量和的运算. (2)运算法则: 向量求和的法则 图示几何意义三角形法则使用三角形法则时要注意“首尾相接”的条件,而向量加法的平行四边法则应用的前提是共起点已知非零向量a ,b ,在平面内任取一点A ,作AB ⃗⃗⃗⃗⃗ =a ,BC ⃗⃗⃗⃗⃗ =b ,则向量AC ⃗⃗⃗⃗⃗ 叫做a 与b 的和,记作a +b ,即a +b =AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ 平行四边形法则以同一点O 为起点的两个已知向量a ,b ,以OA ,OB 为邻边作①OACB ,则以O 为起点的向量OC ⃗⃗⃗⃗⃗ (OC 是①OACB 的对角线)就是向量a 与b 的和(3)规定:对于零向量与任意向量a ,规定a +0=0+a =a .(4)位移的合成可以看作向量加法三角形法则的物理模型;力的合成可以看作向量加法平行四边形法则的物理模型.ABC ∆,,A B C ,,a b c O ABC ∆222OA OB OC ⇔==O ABC ∆0OA OB OC ⇔++=O ABC ∆OA OB OB OC OC OA ⇔⋅=⋅=⋅O ABC ∆0aOA bOB cOC ⇔++=(5)一般地我们有|a +b |≤|a |+|b |,当且仅当a ,b 方向相同时等号成立. (6)向量加法的运算律与实数加法的运算律相同 2、向量的减法(1)相反向量(利用相反向量的定义,-AB ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ 就可以把减法转化为加法) 定义:我们规定,与向量a 长度相等,方向相反的向量,叫做a 的相反向量性质:①对于相反向量有:a +(-a )=0;①若a ,b 互为相反向量,则a =-b ,a +b =0;①零向量的相反向量仍是零向量(2)向量减法运算(向量的减法是向量加法的一种逆运算) 定义:求两个向量差的运算叫做向量的减法.a -b =a +(-b ),减去一个向量就等于加上这个向量的相反向量.几何意义:a -b 表示为从向量b 的终点指向向量a 的终点的向量.3、向量的数乘运算(实数与向量可以进行数乘运算,但不能进行加减运算)(1)定义:规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作:λa ,它的长度和方向规定如下:①|λa |=|λ||a |;①当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反. ①由①可知,当λ=0时,λa =0;由①①知,(-1)a =-a .(2)运算律:设λ,μ为任意实数,则有:①λ(μa )=(λμ)a ;①(λ+μ)a =λa +μa ;①λ(a +b )=λa +λb ;特别地,有(-λ)a =-(λa )=λ(-a );λ(a -b )=λa -λb .(3)向量的加、减、数乘运算统称为向量的线性运算,向量的线性运算结果仍是向 量.对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1 a ±μ2b )=λμ1 a ±λμ2 b .(4)共线向量定理:向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa .也就是说,位于同一直线上的向量可以由位于这条直线上的一个非零向量表示. 4、向量的数量积(1)向量的夹角:两向量的夹角与两直线的夹角的范围不同,向量夹角范围是[0,π],而两直线夹角的范围为[0,π2](2)向量的夹角的定义:已知两个非零向量a ,b ,O 是平面上的任意一点,作向量OA ⃗⃗⃗⃗⃗ =a ,OB ⃗⃗⃗⃗⃗ =b ,则①a O b =θ(0≤θ≤π)叫做向量a 与b 的夹角. 当θ=0时,a 与b 同向;当θ=π时,a 与b 反向. 如果a 与b 的夹角是π2,我们说a 与b 垂直,记作a ①b .(3)向量的数量积及其几何意义:向量的数量积是一个实数,不是向量,它的值可正可负可为0 (4)向量的数量积的定义:已知两个非零向量a 与b ,它们的夹角为θ,我们把数量|a ||b |cosθ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cosθ.规定:零向量与任一向量的数量积为0.(5)投影:如图,设a ,b 是两个非零向量,AB ⃗⃗⃗⃗⃗ =a ,CD ⃗⃗⃗⃗⃗ =b ,我们考虑如下变换:过AB ⃗⃗⃗⃗⃗ 的起点a 和终点b ,分别作CD ⃗⃗⃗⃗⃗ 所在直线的垂线,垂足分别为A 1,B 1得到A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,我们称上述变换为向量a 向向量b 投影,A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ 叫做向量a 在向量b 上的投影向量.(6)向量数量积的性质设a ,b 是非零向量,它们的夹角是θ,e 是与b 方向相同的单位向量,则①a ·e =e ·a =|a |cosθ①a ①b ①a ·b =0①当a 与b 同向时,a ·b =|a ||b |;当a 与b 反向时,a ·b =-|a ||b |,特别地,a ·a =|a |2或|a |=√a ·a .在求解向量的模时一般转化为模的平方,但不要忘记开方①|a ·b |≤|a |·|b |. (7)运算律:①a ·b =b ·a ;①(a +b )·c =a ·c +b ·c (8)运算性质:类比多项式的乘法公式【6.3】平面向量基本定理及坐标表示1、平面向量基本定理(定理中要特别注意向量e 1与向量e 2是两个不共线的向量) 条件:e 1,e 2是同一平面内的两个不共线向量结论:对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1 e 1+λ2 e 2 基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底 2、平面向量的坐标表示(1)基底:在平面直角坐标系中,设与x 轴、y 轴方向相同的两个单位向量分别为i ,j ,取{i ,j }作为基底.(2)坐标:对于平面内的一个向量a ,由平面向量基本定理可知,有且仅有一对实数x ,y ,使得a =x i +y j ,则有序数对(x ,y )叫做向量a 的坐标. (3)坐标表示:a =(x ,y ).(4)特殊向量的坐标:i =(1,0),j =(0,1),0=(0,0). (5)平面向量的加减法坐标运算(可类比实数的加减运算法则进行记忆) 设向量a =(x 1,y 1),b =(x 2,y 2),λ①R ,则有下表:设向量a =(x ,y ),则有λa =(λx ,λy ),这就是说实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.(7)平面向量共线的坐标表示:设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.向量a ,b (b≠0)共线的充要条件是x 1 y 2-x 2 y 1=0.(8)中点坐标公式:若P 1,P 2的坐标分别是(x 1,y 1),(x 2,y 2),线段P 1P 2的中点P 的坐标为(x ,y ),则x =x 1+x 22y =y 1+y 22.此公式为线段P 1 P 2的中点坐标公式.(9)两向量的数量积与两向量垂直的坐标表示已知两个非零向量,向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ. 数量积:两个向量的数量积等于它们对应坐标的乘积的和,即:a ·b =x 1 x 2+y 1 y 2 向量垂直:a ①b ①x 1 x 2+y 1 y 2=0(10)与向量的模、夹角相关的三个重要公式 ①向量的模:设a =(x ,y ),则|a |=√x 2+y 2.①两点间的距离公式:若A (x 1,y 1),B (x 2,y 2),则|AB ⃗⃗⃗⃗⃗ |=√(x 1-x 2)2+(y 1-y 2)2. ①向量的夹角公式:设两非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ,则θ=a ·b |a||b|=x x +y y √x 12+y 12√x 22+y 22【6.4】平面向量的应用1、平面几何中的向量方法用向量方法解决平面几何问题的“三步曲”(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系;(3)把运算结果“翻译”成几何关系. 2、向量在物理中的应用举例(1)向量与力:向量是既有大小,又有方向的量,它们可以有共同的起点,也可以没有共同的起点.而力是既有大小和方向,又有作用点的量.用向量知识解决力的问题时,往往把向量平移到同一作用点上.(2)向量与速度、加速度、位移:速度、加速度、位移的合成与分解,实质上就是向量的加、减运算.用向量解决速度、加速度、位移等问题,用的知识主要是向量的线性运算,有时也借助于坐标来运算.(3)向量与功、动量:力所做的功是力在物体前进方向上的分力与物体位移的乘积,它的实质是力和位移两个向量的数量积,即W =F ·s =|F ||s |cosθ(θ为F 和s 的夹角).动量m ν实际上是数乘向量. 3、余弦定理、正弦定理(1)余弦定理的表示及其推论(SAS 、SSS 、SSA )文字语言:三角形中任何一边的平方,等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.符号语言:;;.在①ABC 中,有2222cos a b c bc =+-A ,推论:222cos 2b c a bc+-A =(2)解三角形:一般地,三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形. (3)正弦定理的表示(AAS 、SSA )文字语言:在一个三角形中,各边和它所对角的正弦的比相等,该比值为该三角形外接圆的直径. 符号语言:在①ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则2sin sin sin a b cR C===A B (R 为①ABC 的外接圆的半径)(4)正弦定理的变形形式变形形式是在三角形中实现边角互化的重要公式 设三角形的三边长分别为a ,b ,c ,外接圆半径为R ,正弦定理有如下变形: ①2sin a R =A ,2sin b R =B ,2sin c R C =;①sin 2a R A =,sin 2bR B =,sin 2c C R=;①::sin :sin :sin a b c C =A B ; (5)三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B . (6)相关术语①仰角和俯角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角,如图所示.2222cos a b c bc A =+-2222cos b c a ca B =+-2222cos c a b ab C =+-①方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图1所示).①方位角的其他表示——方向角正南方向:指从原点O出发的经过目标的射线与正南的方向线重合,即目标在正南的方向线上.依此可类推正北方向、正东方向和正西方向.东南方向:指经过目标的射线是正东和正南的夹角平分线(如图2所示).(7)解三角形应用题解题思路:基本步骤:运用正弦定理、余弦定理解决实际问题的基本步骤如下:①分析:理解题意,弄清已知与未知,画出示意图(一个或几个三角形);①建模:根据已知条件与求解目标,把已知量与待求量尽可能地集中在有关三角形中,建立一个解三角形的数学模型.①求解:利用正弦定理、余弦定理解三角形,求得数学模型的解.①检验:检验所求的解是否符合实际问题,从而得出实际问题的解.第七章 复数 【7.1】复数的概念1、数系的扩充和复数的概念(1)复数的定义:形如a +bi (a ,b ①R )的数叫做复数,其中i 叫做虚数单位,全体复数所构成的集合C ={a +bi |a ,b ①R }叫做复数集.(2)复数通常用字母z 表示,代数形式为z =a +bi (a ,b ①R ),其中a 与b 分别叫做复数z 的实部与虚部.(3)复数相等:在复数集C ={a +bi |a ,b ①R }中任取两个数a +bi ,c +di (a ,b ,c ,d ①R ),我们规定:a +bi 与c +di 相等当且仅当a =c 且b =d . (4)复数的分类①对于复数a +bi (a ,b ①R ),当且仅当b =0时,它是实数;当且仅当a =b =0时,它是实数0;当b ≠0时,叫做虚数;当a =0且b ≠0时,叫做纯虚数.这样,复数z =a +bi (a ,b ①R )可以分类如下: 复数{实数(b =0)虚数(b ≠0)(当a =0时为纯虚数),①集合表示:2、复数的几何意义(1)复平面(复平面中点的横坐标表示复数的实部,点的纵坐标表示复数的虚部)(2)复数的几何意义①复数z =a +bi (a ,b ①R )一一对应↔ 复平面内的点z (a ,b ). ①复数z =a +bi (a ,b ①R )一一对应↔ 平面向量OZ⃗⃗⃗⃗⃗ . (3)复平面上的两点间的距离公式:,).(4)复数的模①定义:向量OZ⃗⃗⃗⃗⃗ 的模叫做复数z =a +bi (a ,b ①R )的模或绝对值. ①记法:复数z =a +bi 的模记为|z |或|a +bi |. ①公式:|z |=|a +bi |=√a 2+b 2(a ,b ①R ).如果b =0,那么z =a +bi 是一个实数,它的模就等于|a |(a 的绝对值).(5)共轭复数:一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数,虚部不等于0的两个共轭复数也叫做共轭虚数.复数z 的共轭复数用z̅表示,即如果z =a +bi ,那么z̅=a -bi .(6)两个实数可以比较大小,但两个复数如果不全是实数就不能比较大小。

高二人教a版必修二数学知识点总结

高二人教a版必修二数学知识点总结

高二人教a版必修二数学知识点总结在高中数学的学习过程中,高二是一个重要的时期。

在这个时期,学生们开始接触到更加深入的数学知识,包括代数、函数、几何等各个方面。

在本文中,将对高二人教A版必修二的数学知识点进行总结。

一、代数部分1. 数列与数列的通项公式数列是由一系列数字按照一定规律排列而成的序列。

学习数列的关键是找到数列的通项公式,可以通过观察数列的前几项来推断通项公式,并利用递推关系式进行验证。

2. 函数及其性质函数是一种特殊的关系,其中每一个自变量对应一个唯一的因变量。

高二数学中,我们学习了一次函数、二次函数、指数函数、对数函数等各种类型的函数,并研究了它们的图像、性质和应用。

3. 不等式不等式是描述数值关系的一种数学表达式,包括一元不等式和二元不等式。

学习不等式的解集表示法,并掌握不等式的加减乘除运算规则以及不等式的解集性质。

4. 二次函数与一元二次方程二次函数是一种含有二次项的一元多次函数,而一元二次方程则是一个以未知数的二次幂为最高次项的等式。

学习如何求解一元二次方程,并结合二次函数的图像进行分析与应用。

二、几何部分1. 平面向量平面向量是具有大小和方向的量,用有向线段表示。

学习向量的定义、运算、数量积与向量积,并了解向量在几何中的应用。

2. 平面解析几何平面解析几何是通过坐标系来描述平面上的图形及其性质。

学习如何根据几何条件建立直线方程和圆方程,并利用解析方法解决几何问题。

3. 空间几何空间几何是在三维空间中研究点、线、面及其性质与关系的数学分支。

学习空间直线与平面的方程表示、空间几何体的表面积与体积计算方法。

4. 三角函数与解三角形三角函数是描述直角三角形各边比值的函数,包括正弦函数、余弦函数、正切函数等。

学习三角函数的性质与运算,并应用三角函数解决实际问题。

同时,还需要了解三角形的基本概念、性质以及解决三角形问题的方法。

三、概率与统计部分1. 随机事件与概率随机事件是指在一定条件下结果具有不确定性的事件。

新教材 人教A版高中数学必修第二册 第九章 统计 知识点汇总及解题规律方法提炼

新教材 人教A版高中数学必修第二册 第九章 统计 知识点汇总及解题规律方法提炼

第九章统计9.1随机抽样1.全面调查与抽样调查(1)对每一个调查对象都进行调查的方法,称为全面调查,又称普查W.(2)在一个调查中,我们把调查对象的全体称为总体,组成总体的每一个调查对象称为个体W.(3)根据一定的目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和推断的调查方法,称为抽样调查W.(4)把从总体中抽取的那部分个体称为样本W.(5)样本中包含的个体数称为样本量W.(6)调查样本获得的变量值称为样本的观测数据,简称样本数据.2.简单随机抽样(1)有放回简单随机抽样一般地,设一个总体含有N(N为正整数)个个体,从中逐个抽取n(1≤n<N)个个体作为样本,如果抽取是放回的,且每次抽取时总体内的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做放回简单随机抽样.(2)不放回简单随机抽样如果抽取是不放回的,且每次抽取时总体内未进入样本的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做不放回简单随机抽样.(3)简单随机抽样放回简单随机抽样和不放回简单随机抽样统称为简单随机抽样.(4)简单随机样本通过简单随机抽样获得的样本称为简单随机样本.(5)简单随机抽样的常用方法实现简单随机抽样的方法很多,抽签法和随机数法是比较常用的两种方法.■名师点拨(1)从总体中,逐个不放回地随机抽取n个个体作为样本,一次性批量随机抽取n个个体作为样本,两种方法是等价的.(2)简单随机抽样中各个个体被抽到的机会都相等,从而保证了抽样的公平性.3.总体平均数与样本平均数(1)总体平均数①一般地,总体中有N 个个体,它们的变量值分别为Y 1,Y 2,…,Y N ,则称Y -=Y 1+Y 2+…+Y N N=1N ∑N i =1Y i 为总体均值,又称总体平均数. ②如果总体的N 个变量值中,不同的值共有k (k ≤N )个,不妨记为Y 1,Y 2,…,Y k ,其中Y i 出现的频数f i (i =1,2,…,k ),则总体均值还可以写成加权平均数的形式Y -=1N ∑k i =1f i Y iW. (2)样本平均数如果从总体中抽取一个容量为n 的样本,它们的变量值分别为y 1,y 2,…,y n ,则称y -=y 1+y 2+…+y n n=1n ∑n i =1y i 为样本均值,又称样本平均数.在简单随机抽样中,我们常用样本平均数y -去估计总体平均数Y -.4.分层随机抽样(1)分层随机抽样一般地,按一个或多个变量把总体划分成若干个子总体,每个个体属于且仅属于一个子总体,在每个子总体中独立地进行简单随机抽样,再把所有子总体中抽取的样本合在一起作为总样本,这样的抽样方法称为分层随机抽样,每一个子总体称为层W.(2)比例分配在分层随机抽样中,如果每层样本量都与层的大小成比例,那么称这种样本量的分配方式为比例分配.5.分层随机抽样中的总体平均数与样本平均数(1)在分层随机抽样中,如果层数分为2层,第1层和第2层包含的个体数分别为M 和N ,抽取的样本量分别为m 和n .我们用X 1,X 2,…,X M 表示第1层各个个体的变量值,用x 1,x 2,…,x m 表示第1层样本的各个个体的变量值;用Y 1,Y 2,…,Y N 表示第2层各个个体的变量值,用y 1,y 2,…,y n 表示第2层样本的各个个体的变量值,则:①第1层的总体平均数和样本平均数分别为X -=X 1+X 2+…+X M M =1M ∑M i =1X i ,x -=x 1+x 2+…+x m m=1m ∑m i =1x i . ②第2层的总体平均数和样本平均数分别为Y -=Y 1+Y 2+…+Y N N =1N ∑N i =1Y i ,y -=y 1+y 2+…+y n n=1n ∑n i =1y i . ③总体平均数和样本平均数分别为W -=∑M i =1X i +∑N i =1Y i M +N ,w -=∑m i =1x i +∑ni =1y i m +nW. (2)由于用第1层的样本平均数x -可以估计第1层的总体平均数X -,用第2层的样本平均数y -可以估计第2层的总体平均数Y -.因此我们可以用M ×x -+N ×y -M +N =M M +N x -+N M +Ny -估计总体平均数W -. (3)在比例分配的分层随机抽样中,m M =n N =m +n M +N ,可得M M +N x -+N M +Ny -=m m +n x -+n m +ny -=w -.因此,在比例分配的分层随机抽样中,我们可以直接用样本平均数w -估计总体平均数W -.6.获取数据的途径获取数据的基本途径有:(1)通过调查获取数据;(2)通过试验获取数据;(3)通过观察获取数据;(4)通过查询获取数据典型应用1总体、样本等概念辨析题为了调查参加运动会的1 000名运动员的平均年龄,从中抽取了100名运动员进行调查,下面说法正确的是( )A.1 000名运动员是总体B.每个运动员是个体C.抽取的100名运动员是样本D.样本量是100【解析】 根据调查的目的可知,总体是这1 000名运动员的年龄,个体是每个运动员的年龄,样本是抽取的100名运动员的年龄,样本量为100.故答案为D.【答案】D此类题目要正确理解总体与个体的概念,要弄明白概念的实质,并注意样本与样本容量的不同,其中样本量为数目,无单位.典型应用2简单随机抽样的概念下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取50个个体作为样本;(2)仓库中有1万支奥运火炬,从中一次抽取100支火炬进行质量检查;(3)某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴灾区开展救灾工作.【解】(1)不是简单随机抽样.因为简单随机抽样要求被抽取的样本总体的个数是有限的.(2)不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.(3)不是简单随机抽样.因为这50名官兵是从中挑选出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.要判断所给的抽样方法是否为简单随机抽样,关键是看它们是否符合简单随机抽样的定义,即简单随机抽样的四个特点.典型应用3抽签法及随机数法的应用某班有50名学生,要从中随机地抽出6人参加一项活动,请分别写出利用抽签法和随机数法抽取该样本的过程.【解】(1)利用抽签法步骤如下:第一步:将这50名学生编号,编号为01,02,03, (50)第二步:将50个号码分别写在纸条上,并揉成团,制成号签.第三步:将得到的号签放在一个不透明的容器中,搅拌均匀.第四步:从容器中逐一抽取6个号签,并记录上面的号码.对应上面6个号码的学生就是参加该项活动的学生.(2)利用随机数法步骤如下:第一步:将这50名学生编号,编号为1,2,3, (50)第二步:用随机数工具产生1~50范围内的整数随机数,把产生的随机数作为抽中的编号,使与编号对应的学生进入样本.第三步:重复第二步的过程,直到抽足样本所需人数.对应上面6个号码的学生就是参加该项活动的学生.(1)利用抽签法抽取样本时应注意以下问题:①编号时,如果已有编号(如学号、标号等)可不必重新编号.(例如该题中50名同学,可以直接利用学号)②号签要求大小、形状完全相同.③号签要搅拌均匀.④抽取号签时要逐一、不放回抽取.(2)利用随机数法抽取样本时应注意的问题:如果生成的随机数有重复,即同一编号被多次抽到,应剔除重复的编号并重新产生随机数,直到产生的不同编号个数等于样本所需的人数.典型应用4分层随机抽样中的有关计算(1)某单位共有老、中、青年职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍,为了解职工身体状况,现采用分层随机抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工的人数为W.(2)某高中学校为了促进学生个体的全面发展,针对学生发展要求,开设了富有地方特色的“泥塑”与“剪纸”两个社团,已知报名参加这两个社团的学生共有800人,按照要求每人只能参加一个社团,各年级参加社团的人数情况如下表:其中x∶y∶z=5∶3∶2,且“泥塑”社团的人数占两个社团总人数的35,为了了解学生对两个社团活动的满意程度,从中抽取一个50人的样本进行调查,则从高二年级“剪纸”社团的学生中应抽取人.【解析】(1)设该单位老年职工人数为x,由题意得3x=430-160,解得x=90.则样本中的老年职工人数为90×32160=18.(2)法一:因为“泥塑”社团的人数占总人数的3 5,故“剪纸”社团的人数占总人数的2 5,所以“剪纸”社团的人数为800×25=320;因为“剪纸”社团中高二年级人数比例为yx+y+z=32+3+5=310,所以“剪纸”社团中高二年级人数为320×310=96.由题意知,抽样比为50800=116,所以从高二年级“剪纸”社团中抽取的人数为96×116=6.法二:因为“泥塑”社团的人数占总人数的3 5,故“剪纸”社团的人数占总人数的2 5,所以抽取的50人的样本中,“剪纸”社团中的人数为50×25=20.又“剪纸”社团中高二年级人数比例为yx+y+z=32+3+5=310,所以从高二年级“剪纸”社团中抽取的人数为20×310=6.【答案】(1)18(2)6分层随机抽样中有关计算的方法(1)抽样比=该层样本量n总样本量N=该层抽取的个体数该层的个体数.。

高中数学-人教A版-必修2-第二章知识点总结

高中数学-人教A版-必修2-第二章知识点总结

年级高一学科数学版本人教新课标A版课程标题必修2 第二章第1节空间点、直线、平面之间的位置关系编稿老师一校二校审核一、学习目标:1. 掌握平面的表示法及水平放置的直观图;掌握平面的基本性质、作用及公理1-3;2. 了解空间中两条直线的位置关系;理解异面直线的概念、画法,理解并掌握公理4;理解并掌握等角定理;异面直线所成角的定义、范围及应用.3. 了解空间中直线与平面的位置关系;了解空间中平面与平面的位置关系。

二、重点、难点:重点:平面的概念及表示;平面的基本性质,公理1-3中的图形语言及符号语言;异面直线的概念;公理4及等角定理;空间直线与平面、平面与平面之间的位置关系.难点:平面基本性质的掌握与运用;异面直线所成角的计算;用图形表达直线与平面、平面与平面的位置关系.三、考点分析:考纲对这部分知识的要求是:理解空间点、直线和平面的位置关系,掌握平面的基本特性,直线与直线、直线与平面、平面与平面的位置关系。

在考试中对点、线、面位置关系的考查经常出现在选择题中,求异面直线所成的角经常出现在选择题和解答题中。

1. 平面的含义、画法及表示2. 点和面的位置关系点A在平面α内,记作:A∈α点B在平面α外,记作:B α3. 公理1—3(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号语言表示为:A lB l l A B ααα∈⎫⎪∈⎪⇒⊂⎬∈⎪⎪∈⎭lαBA公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面.符号语言表示为:A 、B 、C 三点不共线⇒有且只有一个平面α,使A ∈α、B ∈α、C ∈α.公理2作用:确定一个平面的依据.推论1:过一条直线和直线外一点,有且只有一个平面。

推论2:过两条相交直线,有且只有一个平面。

推论3:过两条平行直线,有且只有一个平面。

(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.符号语言表示为:P ∈α∩β⇒α∩β=l 且P ∈l 公理3作用:判定两个平面是否相交的依据 4. 空间中的两条直线的位置关系异面直线:不同在任何一个平面内,没有公共点. 5. 公理4:平行于同一条直线的两条直线互相平行. 符号表示为:设a 、b 、c 是三条直线c ab c b a //////⇒⎭⎬⎫公理4作用:判断空间两条直线平行的依据. 6. 异面直线所成的角(1)已知异面直线a 、b ,经过空间中任一点O 作直线a'∥a 、b'∥b ,我们把a'与b'所成的锐角(或直角)叫异面直线a 与b 所成的角(夹角).(2)注意:① a'与b'所成的角的大小只由a 、b 的相互位置关系来确定,与O 点的选择无关,为了简便,点O 一般取在两直线中的一条上;② 两条异面直线所成的角θ∈(0,2π]③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角. 7. 直线与平面的位置关系(1)直线在平面内 —— 有无数个公共点 (2)直线与平面相交 —— 有且只有一个公共点 (3)直线与平面平行 —— 没有公共点直线与平面相交或平行的情况统称为直线在平面外,可用α⊄a 来表示a α⊂ a∩α=A a ∥α8. 两个平面的位置关系(1)两个平面平行——没有公共点(2)两个平面相交——有且只有一条公共直线用类比的方法,可使学生快速地理解与掌握新内容,这两种位置关系用图形语言表示为βααβlα∥β α∩β=l知识点一:确定平面例1. 空间四点可以确定几个平面?三条直线两两相交可确定几个平面?空间四条平行直线可以确定几个平面?一条直线和直线外不在同一条直线上的三点可确定多少个平面?思路分析:利用公理2可以解决确定平面的问题 解答过程:1. 空间四点可以确定0个、1个、4个平面。

人教版高中数学(必修二)(全册知识点考点梳理、重点题型分类巩固练习)(基础版)(家教、补习、复习用)

人教版高中数学(必修二)(全册知识点考点梳理、重点题型分类巩固练习)(基础版)(家教、补习、复习用)

新人教版高中数学(必修二)重难点突破知识点梳理及重点题型巩固练习空间几何体的结构【学习目标】1.利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球的结构特征;2.认识由柱、锥、台、球组成的几何组合体的结构特征;3.能用上述结构特征描绘现实生活中简单物体的结构.【要点梳理】【空间几何体的结构394899 棱柱的结构特征】要点一:棱柱的结构特征1、定义:一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.在棱柱中,两个相互平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱.侧面与底的公共顶点叫做棱柱的顶点.棱柱中不在同一平面上的两个顶点的连线叫做棱柱的对角线.过不相邻的两条侧棱所形成的面叫做棱柱的对角面.2、棱柱的分类:底面是三角形、四边形、五边形、……的棱柱分别叫做三棱柱、四棱柱、五棱柱……3、棱柱的表示方法:①用表示底面的各顶点的字母表示棱柱,如下图,四棱柱、五棱柱、六棱柱可分别表示为1111ABCD A B C D -、11111ABCDE A B C D E -、111111ABCDEF A B C D E F -;②用棱柱的对角线表示棱柱,如上图,四棱柱可以表示为棱柱1A C 或棱柱1D B 等;五棱柱可表示为棱柱1AC 、棱柱1AD 等;六棱柱可表示为棱柱1AC 、棱柱1AD 、棱柱1AE 等.4、棱柱的性质:棱柱的侧棱相互平行.要点诠释:有两个面互相平行,其余各个面都是平行四边形,这些面围成的几何体不一定是棱柱.如下图所示的几何体满足“有两个面互相平行,其余各个面都是平行四边形”这一条件,但它不是棱柱.判定一个几何体是否是棱柱时,除了看它是否满足:“有两个面互相平行,其余各个面都是平行四边形”这两个条件外,还要看其余平行四边形中“每两个相邻的四边形的公共边都互相平行”即“侧棱互相平行”这一条件,不具备这一条件的几何体不是棱柱.【空间几何体的结构394899 棱锥的结构特征】要点二:棱锥的结构特征1、定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.这个多边形面叫做棱锥的底面.有公共顶点的各个三角形叫做棱锥的侧面.各侧面的公共顶点叫做棱锥的顶点.相邻侧面的公共边叫做棱锥的侧棱;2、棱锥的分类:按底面多边形的边数,可以分为三棱锥、四棱锥、五棱锥 ……;3、棱锥的表示方法:用表示顶点和底面的字母表示,如四棱锥S ABCD .要点诠释:棱锥有两个本质特征:(1)有一个面是多边形;(2)其余各面是有一个公共顶点的三角形,二者缺一不可.【空间几何体的结构394899 旋转体的结构特征】要点三:圆柱的结构特征1、定义:以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体叫做圆柱.旋转轴叫做圆柱的轴.垂直于轴的边旋转而成的曲面叫做圆柱的底面.平行于轴的边旋转而成的曲面叫做圆柱的侧面.无论旋转到什么位置不垂直于轴的边都叫做圆柱的母线.2、圆柱的表示方法:用表示它的轴的字母表示,如圆柱/OO .要点诠释:(1)用一个平行于圆柱底面的平面截圆柱,截面是一个与底面全等的圆面.(2)经过圆柱的轴的截面是一个矩形,其两条邻边分别是圆柱的母线和底面直径,经过圆柱的轴的截面通常叫做轴截面.(3)圆柱的任何一条母线都平行于圆柱的轴.要点四:圆锥的结构特征1、定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥.旋转轴叫做圆锥的轴.垂直于轴的边旋转而成的曲面叫做圆锥的底面.不垂直于轴的边旋转而成的曲面叫做圆锥的侧面.无论旋转到什么位置不垂直于轴的边都叫做圆锥的母线.2、圆锥的表示方法:用表示它的轴的字母表示,如圆锥SO .要点诠释:(1)用一个平行于圆锥底面的平面去截圆锥,截面是一个比底面小的圆面.(2)经过圆锥的轴的截面是一个等腰三角形,其底边是圆锥底面的直径,两腰是圆锥侧面的两条母线.(3)圆锥底面圆周上任意一点与圆锥顶点的连线都是圆锥侧面的母线.【空间几何体的结构394899 棱台的结构特征】要点五:棱台和圆台的结构特征1、定义:用一个平行于棱锥(圆锥)底面的平面去截棱锥(圆锥),底面和截面之间的部分叫做棱台(圆台);原棱锥(圆锥)的底面和截面分别叫做棱台(圆台)的下底面和上底面;原棱锥(圆锥)的侧面被截去后剩余的曲面叫做棱台(圆台)的侧面;原棱锥的侧棱被平面截去后剩余的部分叫做棱台的侧棱;原圆锥的母线被平面截去后剩余的部分叫做圆台的母线;棱台的侧面与底面的公共顶点叫做棱台的顶点;圆台可以看做由直角梯形绕直角边旋转而成,因此旋转的轴叫做圆台的轴.2、棱台的表示方法:用各顶点表示,如四棱台1111ABCD A B C D -;3、圆台的表示方法:用表示轴的字母表示,如圆台OO ';要点诠释:(1)棱台必须是由棱锥用平行于底面的平面截得的几何体.所以,棱台可还原为棱锥,即延长棱台的所有侧棱,它们必相交于同一点.(2)棱台的上、下底面是相似的多边形,它们的面积之比等于截去的小棱锥的高与原棱锥的高之比的平方.(3)圆台可以看做由圆锥截得,也可以看做是由直角梯形绕其直角边旋转而成.(4)圆台的上、下底面的面积比等于截去的小圆锥的高与原圆锥的高之比的平方.要点六:球的结构特征1、定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称球.半圆的半径叫做球的半径.半圆的圆心叫做球心.半圆的直径叫做球的直径.2、球的表示方法:用表示球心的字母表示,如球O.要点诠释:(1)用一个平面去截一个球,截面是一个圆面.如果截面经过球心,则截面圆的半径等于球的半径;如果截面不经过球心,则截面圆的半径小于球的半径.(2)若半径为R 的球的一个截面圆半径为r ,球心与截面圆的圆心的距离为d ,则有d =要点七:特殊的棱柱、棱锥、棱台特殊的棱柱:侧棱不垂直于底面的棱柱称为斜棱柱;垂直于底面的棱柱称为直棱柱;底面是正多边形的直棱柱是正棱柱;底面是矩形的直棱柱叫做长方体;棱长都相等的长方体叫做正方体;特殊的棱锥:如果棱锥的底面是正多边形,且各侧面是全等的等腰三角形,那么这样的棱锥称为正棱锥;侧棱长等于底面边长的正三棱锥又称为正四面体;特殊的棱台:由正棱锥截得的棱台叫做正棱台;注:简单几何体的分类如下表:要点八:简单组合体的结构特征1、组合体的基本形式:①由简单几何体拼接而成的简单组合体;②由简单几何体截去或挖去一部分而成的几何体;2、常见的组合体有三种:①多面体与多面体的组合;②多面体与旋转体的组合;③旋转体与旋转体的组合.①多面体与多面体的组合体由两个或两个以上的多面体组成的几何体称为多面体与多面体的组合体.如下图(1)是一个四棱柱与一个三棱柱的组合体;如图(2)是一个四棱柱与一个四棱锥的组合体;如图(3)是一个三棱柱与一个三棱台的组合体.②多面体与旋转体的组合体由一个多面体与一个旋转体组合而成的几何体称为多面体与旋转体的组合体如图(1)是一个三棱柱与一个圆柱组合而成的;如图(2)是一个圆锥与一个四棱柱组合而成的;而图(3)是一个球与一个三棱锥组合而成的.③旋转体与旋转体的组合体由两个或两个以上的旋转体组合而成的几何体称为旋转体与旋转体的组合体.如图(1)是由一个球体和一个圆柱体组合而成的;如图(2)是由一个圆台和两个圆柱组合而成的;如图(3)是由一个圆台、一个圆柱和一个圆锥组合而成的.要点九:几何体中的计算问题几何体的有关计算中要注意下列方法与技巧:(1)在正棱锥中,要掌握正棱锥的高、侧面、等腰三角形中的斜高及高与侧棱所构成的两个直角三角形,有关证明及运算往往与两者相关.(2)正四棱台中要掌握其对角面与侧面两个等腰梯形中关于上、下底及梯形高的计算,有关问题往往要转化到这两个等腰梯形中.另外要能够将正四棱台、正三棱台中的高与其斜高、侧棱在合适的平面图形中联系起来.(3)研究圆柱、圆锥、圆台等问题的主要方法是研究它们的轴截面,这是因为在轴截面中,易找到所需有关元素之间的位置、数量关系.(4)圆柱、圆锥、圆台的侧面展开是把立体几何问题转化为平面几何问题处理的重要手段之一.(5)圆台问题有时需要还原为圆锥问题来解决.(6)关于球的问题中的计算,常作球的一个大圆,化“球”为“圆”,应用平面几何的有关知识解决;关于球与多面体的切接问题,要恰当地选取截面,化“空间”为平面.【经典例题】类型一:简单几何体的结构特征例1.判断下列说法是否正确.(1)棱柱的各个侧面都是平行四边形;(2)一个n(n≥3)棱柱共有2n个顶点;(3)棱柱的两个底面是全等的多边形;(4)如果棱柱有一个侧面是矩形,则其余各侧面也都是矩形.【答案】(1)(2)(3)正确,(4)不正确.【解析】(1)由棱柱的定义可知,棱柱的各侧棱互相平行,同一个侧面内两条底边也互相平行,所以各侧面都是平行四边形.(2)一个n棱柱的底面是一个n边形,因此每个底面都有n个项点,两个底面的顶点数之和即为棱柱的顶点数,即2n个.(3)因为棱柱同一个侧面内的两条底边平行且相等,所以棱柱的两个底面的对应边平行且相等,故棱柱的两个底面全等.(4)如果棱柱有一个侧面是矩形,只能保证侧棱垂直于该侧面的底边,但其余侧面的侧棱与相应底边不一定垂直,因此其余侧面不一定是矩形.故(1)(2)(3)正确,(4)不正确.【总结升华】解决这类与棱柱、棱锥、棱台有关的命题真假判定的问题,其关键在于准确把握它们的结构特征,也就是要以棱柱、棱锥、棱台概念的本质内涵为依据,以具体实物和图形为模型来进行判定.举一反三:【变式1】如下图中所示几何体中是棱柱有()A.1 B.2个C.3个D.4个【答案】C【空间几何体的结构394899 同步练习】【变式2】有两个面互相平行,其余各面都是平行四边形的几何体是棱吗?【答案】不一定例2.有下面五个命题:(1)侧面都是全等的等腰三角形的棱锥是正棱锥;(2)侧棱都相等的棱锥是正棱锥;(3)底面是正方形的棱锥是正四棱锥;(4)正四面体就是正四棱锥;(5)顶点在底面上的射影既是底面多边形的内心,又是底面多边形的外心的棱锥必是正棱锥.其中正确命题的个数是().A.1个B.2个C.3个D.4个【答案】 A【解析】本题主要考查正棱锥的概念,关键看是否满足定义中的两个条件.命题(1)中的“各侧面都是全等的等腰三角形”并不能保证底面是正多边形,也不能保证顶点在底面上的射影是底面的中心,故不是正棱锥,如下图(1)中的三棱锥S-ABC,可令SA=SB=BC=Ac=3,SC=AB=1,则此三棱锥的各侧面都是全等的等腰三角形,但它不是正三棱锥;命题(2)中的“侧棱都相等”并不能保证底面==EF=1,三条侧棱都相等,是正多边形,如下图(2)中的三棱锥P-DEF,可令PD=PE=PF=1,DE DF但它不是正三棱锥;命题(3)中的“底面是正方形的棱锥”,其顶点在底面上的射影不一定是底面的中心,如下图(3),从正方体中截取一个四棱锥D1-ABCD,底面是正方形,但它不是正四棱锥;命题(4)中的“正四面体”是正三棱锥.三棱锥中共有4个面,所以三棱锥也叫四面体.四个面都是全等的正三角形的正三棱锥也叫正四面体;命题(5)中的“顶点在底面上的射影既是底面多边形的内心,又是外心”,说明了底面是一个正多边形,符合正棱锥的定义.【变式1】如果一个面是多边形,其余各面都是三角形的几何体一定是棱锥.这种说法是否正确?如果正确说明理由;如果不正确,举出反例.【答案】不正确.【解析】如图所示的几何体由两个底面相等的四棱锥组合而成,它有一个面是四边形,其余各面都是三角形,但是该几何体不是棱锥.例3.判断下图所示的几何体是不是台体?为什么?【解析】三个图都不是台体.(1)AA 1,DD 1交于一点,而BB 1,CC 1交于另一点,此图不能还原成锥体,故不是台体:(2)中面ABCD 与面A 1B 1C 1D 1不平行,故也不是台体;(3)中应⊙O 与⊙O 1不平行,故也不是台体.【总结升华】判断一个几何体是否为台体,必须紧扣台体的两个本质特征:(1)由锥体截得的;(2)截面平行于锥体的底面.即棱台的两底面平行,且侧棱必须相交于同一点;圆台的两底面平行,且两底面圆心的连线与两底面垂直.举一反三:【变式1】判断如下图所示的几何体是不是台体?为什么?【答案】 ①②③都不是台体.【解析】因为①和③都不是由棱锥所截得的,故①③都不是台体;虽然②是由棱锥所截,但截面不和底面平行,故不是台体.只有用平行于锥体底面的平面去截锥体,底面与截面之间的部分才是台体.④是一个台体,因为它是用平行于圆锥SO 底面的平面截圆锥SO 而得的.类型二:几何体中的基本计算例4.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392 cm 2,母线与轴的夹角是45°,求这个圆台的高、母线长和底面半径.【答案】14 cm ,,7 cm 和21 cm .【解析】圆台的轴截面如图所示,设圆台上、下底面半径分别为x cm和3x cm ,延长1AA 交1OO 的延长线于点S .在Rt △SOA 中,∠ASO =45°,则∠SAO =45°. ∴SO =AO =3x cm ,12OO x cm =.∴ 1(62)2392x x x +⋅=,解得x =7,∴圆台的高114OO cm =,母线长1l cm ==,底面半径分别为7 cm 和21 cm . 【总结升华】对于这类旋转体的有关计算问题,其关键在于作出它们的轴截面(即过旋转铀的截面),再把它们转化为平面几何问题即可.【变式1】已知圆台的上、下底面积之比为1:9,圆台的高为10,求截得圆台的圆锥的高.【解析】设圆锥的高为h,上、下底半径为,r R.则1013r hR h-==,解得15h=.类型三、简单几何体的组合体例5.指出下图中的图形是由哪些简单几何体构成的.【解析】分割原图,使它们的每一部分构成简单几何体.(1)是一个三棱柱和一个四棱柱组合而成的;(2)是一个圆锥和一个四棱柱组合而成的.【总结升华】判定实物图是由哪些简单几何体所组成的图形问题,首先要熟练掌握简单几何体的结构特征,其次要善于将复杂的组合体“分割”成几个简单的几何体.会识别较复杂的图形是学好立体几何的第一步,因此我们应注意观察周围的物体,然后将它们“分拆”成几个简单的几何体,进而培养我们的空间想象能力和识图能力.举一反三:【变式1】如下图,观察下列几何体,分析它们是由哪些基本几何体组成的,并说出它们的主要结构特征.【答案】图(1)是由一个四棱柱在它的上、下底面上向内挖去一个三棱柱组成的几何体,它有9个面,14个顶点,21条棱,具有四棱柱和三棱柱的结构特征.图(2)是一个四棱柱和一个底面与该四棱柱上底面重合的四棱锥组成的几何体,它有9个面,9个顶点,16条棱,具有四棱柱和四棱锥的结构特征.图(3)是由一个三棱柱和一个底面与该三棱柱的上底面重合的三棱台组成的几何体,它有9个顶点,8个面,15条棱,具有三棱柱和三棱台的结构特征.【变式2】如下图(1)是由图(2)中的平面图形()旋转得到的.【答案】A【总结升华】要作出一个平面图形绕某一条直线旋转一周所形成的几何体,一般是先作出这个平面图形的各顶点(如果是半圆形,则取垂直于这条直线的半径的端点)关于这条直线的对称点,再把这些相互对称的两点用圆弧连接起来,也就得出相应的几何体,进而便可判定其是由哪些简单的几何体所组成的几何体.类型四、简单几何体的表面展开与折叠问题例6.请画出下图所示的几何体的表面展开图.【解析】将立体图形沿着某些棱剪开,然后伸展到平面上.表面展开图如下图所示.【总结升华】要画一个多面体的表面展开图,可以先用硬纸做一个相应的多面体的实物模型,然后沿着某些棱把它剪开,并铺成平面图形,进而画出相应的平面图形.将多面体的表面展开成平面图形,有利于我们解决与多面体表面有关的计算问题.例7.根据下图所给的平面图形,画出立体图形.【解析】将各平面图形折起后形成的空间图形如下图所示.【总结升华】平面图形的折叠问题实质上是多面体的表面展开问题的逆向问题(即逆向过程).这两类问题都是立体几何中的基本问题,我们必须熟练掌握折叠与展开这两个基本功,并能准确地画出折叠和展开前后的平面图形和立体图形,找到这两个图形之间的构成关系.举一反三:【变式1】(2016 广东雷州市月考)如图,正方形ABCD中,E、F分别为CD、BC的中点,沿AE、AF、EF将其折成一个多面体,则此多面体是________.【思路点拨】根据折叠前、后的图形情况,结合线面垂直的判定定理,得出该多面体是直三棱锥.【答案】直三棱锥【解析】在正方形ABCD中,AB⊥BF,AD⊥DE,折叠后的图形B,C,D三点重合,∴三棱锥A—CEF中,AC⊥CE,AC⊥CF,CF∩CF=C,∴AC⊥平面CEF,三棱锥A—CEF是直三棱锥.故答案为:直三棱锥.【巩固练习】1.一个正方形沿不平行于正方形所在平面的方向平移一段距离一定可以形成().A.棱锥B.四棱柱C.正四棱柱D.长方体E F G(不与顶点重合),过此三点作长方体的截面,那么2.从长方体的一个顶点出发的三条棱上各取一点,,这个截面的形状是().A.锐角三角形B.钝角三角形C.直角三角形D.以上都有可能3.下列说法正确的是()A.直线绕定直线旋转形成柱面B.半圆绕定直线旋转形成球体C.有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台D.圆柱的任意两条母线所在的直线是相互平行的4.下列图形不是正方体表面展开图的是().5.下列命题:①圆柱的轴截面是过母线的截面中最大的一个;②用任意一个平面去截球体得到的截嘶一定是一个圆面;③用任意一个平面去截圆锥得到的截断一定是一个圆面.其中正确的个数是().A.0 B.1 C.2 D.36.一个直角梯形以较长底为轴进行旋转,得到的几何体是()A.一个圆台B.一个圆锥C.由两个圆锥组成的组合体D.由一个圆锥一个圆柱组成的组合体7.(2016春河北石家庄期末)一个无盖的正方体盒子展开后的平面图如图所示,A、B、C是展开图上的三点,则在正方体盒子中,∠ABC的度数是()A.45°B.30°C.60°D.90°8.由若干个平面图形围成的几何体称为多面体,多面体最少有________个面.9.,A B 为球面上相异两点,则通过,A B 两点可作的球大圆有 个.10.(2016春 安徽宿松县月考)一个长、宽、高分别为a 、b 、c 长方体的体积是8 cm 2,它的全面积是32 cm 2,且满足2b ac =,求这个长方体所有棱长之和.11.已知三棱锥的底面是边长为a 的正三角形,求过各侧棱中点的截面面积.12.一个四棱台的上、下底面均为正方形,且面积分别为1S 、2S ,侧面是全等的等腰梯形,棱台的高为h ,求此棱台的侧棱长和斜高(侧面等腰梯形的高).【答案与解析】1.【答案】B【解析】由棱柱定义可知,选B .2.【答案】A【解析】 连结,,E F G 三点,用余弦定理证明知,这个三角形是锐角三角形.3.【答案】D【解析】两直线平行时,直线绕定直线旋转才形成柱面,故A 错误.半圆以直径所在直线为轴旋转形成球体,故B 不正确,C 不符合棱台的定义,所以应选D .4.【答案】C【解析】 由展开图折回去形不成正方体可知选C .5.【答案】C【解析】 ①②正确,③中截面也可以是一个三角形或椭圆等.6.【答案】D【解析】由圆柱和圆锥的定义可知,该图形是一个圆锥和圆柱.7.【答案】C【解析】一个无盖的正方体盒子展开后的平面图如图所示,A 、B 、C 是展开图上的三点,组成立体图形后,可得△ABC 的各边均为正方形的对角线长,△ABC 为等边三角形,∴∠ABC 的度数为60°.故选C .8.【答案】49.【答案】一个或无穷多个10.【答案】32cm【解析】∵长、宽、高分别为a 、b 、c 长方体的体积是8 cm 2,∴abc =8,∵它的全面得32 cm 2,∴2(ab +bc +ca )=32,∵2b ac =,∴b =2,ac =4,a +c =6,∴这个长方体所有棱长之和为4(a +b +c )=32(cm ).11.2【解析】如右图,△A 'B 'C '为所求的截面图形,由三角形中位线性质定理,得△A 'B 'C '∽△ABC ,且对应边长之比为1∶2.【答案】 ∴2''1124A B C ABC S S ∆∆⎛⎫== ⎪⎝⎭.又∵2ABC S a ∆=,∴22'''14A B C S a ∆==.12.,此棱台对角面、过两相对斜高的截面都是等腰梯形,则侧棱长为l ==斜高为h ==空间几何体的三视图和直观图【学习目标】1.了解平行投影与中心投影,了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点,了解空间图形的不同表现形式;2. 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱的简易组合体)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测画法画出它们的直观图.【要点梳理】【空间几何体的三视图与直观图 395059中心投影与平行投影】要点一、中心投影与平行投影1.投影、投影线和投影面由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.其中的光线叫做投影线,留下物体影子的屏幕叫做投影面.2.中心投影我们把光由一点向外散射形成的投影叫做中心投影.中心投影的投影线交于一点,它的实质是一个点光源把一个物体射到一个平面上,这个物体的影子就是它在这个平面上的中心投影.3.中心投影的性质(1)中心投影的投影线交于一点;(2)点光源距离物体越近,投影形成的影子越大.4.平行投影我们把在一束平行光线照射下形成的投影叫做平行投影.投影线正对着投影面时,叫做正投影,否则叫做斜投影.5.平行投影的性质(1)平行投影的投影线互相平行.(2)在平行投影之下,与投影面平行的平面图形留下的影子与这个平面图形的形状和大小完全相同.6.中心投影与平行投影的区别与联系(1)平行投影包括斜二测画法和三视图.中心投影后的图形与原图形相比虽然改变较多,但直观性强,看起来与人的视觉效果一致,最像原来的物体.(2)画实际效果图时,一般用中心投影法,画立体几何中的图形时,一般用平行投影法.要点二、空间几何体的三视图【空间几何体的三视图与直观图395059 三视图】1.三视图的概念把一个空间几何体投影到一个平面上,可以获得一个平面图形,但是只有一个平面图形很难把握几何体的全貌,因此我们需要从多个角度进行投影,这样才能较好地把握几何体的形状和大小.通常,我们总是选择三种投影.(1)光线从几何体的前面向后面正投影,得到的投影图叫做几何体的正视图;(2)光线从几何体的左面向右面正投影,得到的投影图叫做几何体的侧视图;(3)光线从几何体的上面向下面正投影,得到的投影图叫做几何体的俯视图.几何体的正视图、侧视图和俯视图统称为几何体的三视图.2.三视图的画法规则画三视图时,以正视图为准,俯视图在正视图的正下方,侧视图在正视图的正右方,正、俯、侧三个视图之间必须互相对齐,不能错位.正视图反映物体的长度和高度,俯视图反映物体的长度和宽度,侧视图反映物体的宽度和高度,由此,每两个视图之间有一定的对应关系,根据这种对应关系得到三视图的画法规则:(1)正、俯视图都反映物体的长度——“长对正”;(2)正、侧视图都反映物体的高度——“高平齐”;(3)俯、侧视图都反映物体的宽度——“宽相等”.【空间几何体的三视图与直观图395059 斜二测画法及典型例题1】要点三、斜二测画法在立体几何中,空间几何体的直观图通常是在平行投影下画出的空间图形.要画空间几何体的直观图,首先要学会水平放置的平面图形的直观图画法.对于平面多边形,我们常用斜二测画法画它们的直观图,斜二测画法是一种特殊的平行投影画法.斜二测画法的步骤:(1)在已知图形中取互相垂直的z轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x'轴与y'轴,两轴交于点O',且使∠x'O'y'=45°(或135°),它们确定的平面表示水平面.(2)已知图形中,平行于x轴、y轴的线段,在直观图中分别画成平行于x'轴、y'轴的线段,并使它们和所画坐标轴的位置关系与已知图形中相应线段和原坐标轴的位置关系相同.(3)已知图形中,平行于x轴或z轴的线段,在直观图中保持长度不变,平行于y轴的线段,长度变为原来的一半.画图完成后,擦去作为辅助线的坐标轴,就得到了平面图形的直观图.要点诠释:用斜二测画法画图的关键是在原图中找到决定图形位置与形状的点并在直观图中画出.一般情况下,这些点的位置都要通过其所在的平行于x、y轴的线段来确定,当原图中无需线段时,需要作辅助线段.要点四、立体图形的直观图(1)用斜二测画法画空间几何体的步骤①在已知图形中,取互相垂直的x轴和y轴,再取z轴,使∠xOz=90°,且∠yOz=90°;②画直观图时,把它们画成对应的轴x′,y′,z′,使∠x′O′y′=45°(或135°),∠x′O′z′=90°,x′O′y′所确定的。

新教材 人教A版高中数学选择性必修第二册 第四章 数列 知识点考点解题方法提炼汇总

新教材 人教A版高中数学选择性必修第二册 第四章 数列 知识点考点解题方法提炼汇总

第四章数列4.1数列的概念 .................................................................................................................... - 1 -第1课时数列的概念及简单表示法.......................................................................... - 1 - 第2课时数列的递推公式与a n和S n的关系............................................................ - 7 -4.2等差数列 ...................................................................................................................... - 15 -4.2.1等差数列的概念................................................................................................ - 15 -4.2.2等差数列的前n项和公式................................................................................ - 26 -4.3等比数列 ...................................................................................................................... - 38 -4.3.1等比数列的概念................................................................................................ - 38 -4.3.2等比数列的前n项和公式................................................................................ - 48 -4.4*数学归纳法 ................................................................................................................ - 59 - 4.1数列的概念第1课时数列的概念及简单表示法1.数列的概念及一般形式(2)数列1,2,3,4,5和数列5,3,2,4,1为两个不同的数列,因为二者的元素顺序不同,而集合{1,2,3,4,5}与这两个数列也不相同,一方面形式上不一致,另一方面,集合中的元素具有无序性.2.数列的分类类别含义按项的个数有穷数列项数有限的数列无穷数列项数无限的数列按项的变化趋势递增数列从第2项起,每一项都大于它的前一项的数列递减数列从第2项起,每一项都小于它的前一项的数列常数列各项都相等的数列摆动数列从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列如果数列{a n}的第n项a n与它的序号n之间的对应关系可以用一个式子来表示,那么这个式子叫做这个数列的通项公式.4.数列与函数的关系从函数的观点看,数列可以看作是特殊的函数,关系如下表:定义域正整数集N*(或它的有限子集{1,2,3,…,n})解析式数列的通项公式值域自变量从1开始,按照从小到大的顺序依次取值时,对应的一列函数值构成表示方法(1)通项公式(解析法);(2)列表法;(3)图象法数列的概念与分类A.1,12,13,14,…B.sin π7,sin2π7,sin3π7,…C.-1,-12,-14,-18,…D.1,2,3,…,21(2)(一题多空)已知下列数列:①2 013,2 014,2 015,2 016,2 017,2 018,2019,2 020;②1,12,14,…,12n-1,…;③1,-23,35,…,-1n-1·n2n-1,…;④1,0,-1,…,sin nπ2,…;⑤2,4,8,16,32,…;⑥-1,-1,-1,-1.其中,有穷数列是________,无穷数列是________,递增数列是________,递减数列是________,常数列是________,摆动数列是________(填序号).(1)C[ABC为无穷数列,其中A是递减数列,B是摆动数列,C是递增数列,故选C.](2)①⑥②③④⑤①⑤②⑥③④[①为有穷数列且为递增数列;②为无穷、递减数列;③为无穷、摆动数列;④是摆动数列,也是无穷数列;⑤为递增数列,也是无穷数列;⑥为有穷数列,也是常数列.]1.有穷数列与无穷数列:判断给出的数列是有穷数列还是无穷数列,只需观察数列是有限项还是无限项.若数列是有限项,则是有穷数列,否则为无穷数列.2.数列{a n}的单调性:若满足a n<a n+1,则{a n}是递增数列;若满足a n>a n+1,则{a n}是递减数列;若满足a n=a n+1,则{a n}是常数列;若a n与a n+1的大小不确定,则{a n}是摆动数列.由数列的前几项求通项公式(1)1,3,7,15,31,…;(2)4,44,444,4 444,…;(3)-114,329,-5316,7425,-9536,…;(4)2,-45,12,-411,27,-417,…;(5)1,2,1,2,1,2,….[思路探究]观察数列前后项之间的规律,规律不明显的需将个别项进行调整,再看是否与对应的序号有规律的联系.[解](1)观察发现各项分别加上1后,数列变为2,4,8,16,32,…,新数列的通项为2n,故原数列的通项公式为a n=2n-1.(2)各项乘94,变为9,99,999,…,各项加上1后,数列变为10,100,1 000,…,新数列的通项为10n,故原数列的通项公式为a n=49(10n-1).(3)所给数列有这样几个特点:①符号正、负相间;②整数部分构成奇数列;③分数部分的分母为从2开始的自然数的平方;④分数部分的分子依次大1.综合这些特点写出表达式,再化简即可.由所给的几项可得数列的通项公式为a n =(-1)n⎣⎢⎡⎦⎥⎤2n-1+nn+12,所以a n=(-1)n 2n3+3n2+n-1n+12.(4)数列的符号规律是正、负相间,使各项分子为4,数列变为42,-45,48,-4 11,…,再把各分母分别加上1,数列又变为43,-46,49,-412,…,所以a n=4×-1n+13n-1.(5)法一:可写成分段函数形式:a n =⎩⎨⎧1,n为奇数,n∈N*,2,n为偶数,n∈N*.法二:a n=1+2+-1n+11-22=3+-1n+1-12即a n=32+-1n2.1.常见数列的通项公式归纳(1)数列1,2,3,4,…的一个通项公式为a n=n;(2)数列1,3,5,7,…的一个通项公式为a n=2n-1;(3)数列2,4,6,8,…的一个通项公式为a n=2n;(4)数列1,2,4,8,…的一个通项公式为a n=2n-1;(5)数列1,4,9,16,…的一个通项公式为a n=n2;(6)数列-1,1,-1,1,…的一个通项公式为a n=(-1)n;(7)数列1,12,13,14,…的一个通项公式为a n=1n.2.复杂数列的通项公式的归纳方法①考察各项的结构;②观察各项中的“变”与“不变”;③观察“变”的规律是什么;④每项符号的变化规律如何;⑤得出通项公式.通项公式的应用1.根据通项公式如何求数列中的第几项?怎么确定某项是否是数列的项?若是,是第几项?[提示]根据a n,求第几项,采用的是代入法,如第5项就是令n=5,求a5.判断某项是否是数列中的项,就是解方程.令a n等于该项,解得n∈N*即是,否则不是.2.已知数列{a n}的通项公式为a n=-n2+2n+1,该数列的图象有何特点?试利用图象说明该数列的单调性及所有的正数项.[提示]由数列与函数的关系可知,数列{a n}的图象是分布在二次函数y=-x2+2x+1图象上的离散的点,如图所示,从图象上可以看出该数列是一个递减数列,且前两项为正数项,从第3项往后各项为负数项.【例3】已知数列{a n}的通项公式为a n=3n2-28n.(1)写出此数列的第4项和第6项;(2)-49是否是该数列的一项?如果是,应是哪一项?68是否是该数列的一项呢?[思路探究](1)将n=4,n=6分别代入a n求出数值即可;(2)令3n2-28n=-49和3n2-28n=68,求得n是否为正整数并判断.[解](1)a4=3×42-28×4=-64,a6=3×62-28×6=-60.(2) 令3n2-28n=-49,解得n=7或n=73(舍去),所以-49是该数列的第7项;令3n2-28n=68,解得n=-2或n=343,均不合题意,所以68不是该数列的项.1.(变结论)若本例中的条件不变,(1)试写出该数列的第3项和第8项;(2)20是不是该数列的一项?若是,是哪一项?[解](1)因为a n=3n2-28n,所以a3=3×32-28×3=-57,a8=3×82-28×8=-32.(2)令3n2-28n=20,解得n=10或n=-23(舍去),所以20是该数列的第10项.2.(变条件,变结论)若将例题中的“a n=3n2-28n”变为“a n=n2+2n-5”,试判断数列{a n}的单调性.[解]∵a n=n2+2n-5,∴a n+1-a n=(n+1)2+2(n+1)-5-(n2+2n-5)=n2+2n+1+2n+2-5-n2-2n+5=2n+3.∵n∈N*,∴2n+3>0,∴a n+1>a n.∴数列{a n}是递增数列.1.由通项公式写出数列的指定项,主要是对n进行取值,然后代入通项公式,相当于函数中,已知函数解析式和自变量的值求函数值.2.判断一个数是否为该数列中的项,其方法是可由通项公式等于这个数求方程的根,根据方程有无正整数根便可确定这个数是否为数列中的项.3.在用函数的有关知识解决数列问题时,要注意它的定义域是N*(或它的有限子集{1,2,3,…,n})这一约束条件.第2课时数列的递推公式与a n和S n的关系1.数列的递推公式(1)两个条件:①已知数列的第1项(或前几项);②从第2项(或某一项)开始的任一项a n与它的前一项a n-1(或前几项)间的关系可以用一个公式来表示.(2)结论:具备以上两个条件的公式叫做这个数列的递推公式.2.数列递推公式与通项公式的关系递推公式通项公式区别表示a n与它的前一项a n-1(或前几项)之表示a n与n之间的关系间的关系联系(1)都是表示数列的一种方法;(2)由递推公式求出前几项可归纳猜想出通项公式3.数列{a n}的前n项和(1)数列{a n}从第1项起到第n项止的各项之和称为数列{a n}的前n项和,记作S n,即S n=a1+a2+…+a n.(2)如果数列{a n}的前n项和S n与它的序号n之间的对应关系可以用一个式子来表示,那么这个式子叫做这个数列的前n项和公式.(3)数列{a n}的通项a n与前n项和S n之间的关系为a n =⎩⎨⎧S1,n=1,Sn-S n-1,n≥2.由递推公式求数列中的项n12n n-1n-2给出.(1)写出此数列的前5项;(2)通过公式b n=anan+1构造一个新的数列{b n},写出数列{b n}的前4项.[解](1)∵a n=a n-1+a n-2(n≥3),且a1=1,a2=2,∴a3=a2+a1=3,a4=a3+a2=3+2=5,a5=a4+a3=5+3=8.故数列{a n}的前5项依次为a1=1,a2=2,a3=3,a4=5,a5=8.(2)∵b n=anan+1,且a1=1,a2=2,a3=3,a4=5,a5=8,∴b1=a1a2=12,b2=a2a3=23,b3=a3a4=35,b4=a4a5=58.故{b n}的前4项依次为b1=12,b2=23,b3=35,b4=58.由递推公式写出数列的项的方法 1根据递推公式写出数列的前几项,首先要弄清楚公式中各部分的关系,依次代入计算即可.2若知道的是末项,通常将所给公式整理成用后面的项表示前面的项的形式,如a n =2a n +1+1.3若知道的是首项,通常将所给公式整理成用前面的项表示后面的项的形式,如a n +1=a n -12.数列的单调性【例2】 已知数列{a n }的通项公式是a n =(n +2)×⎝ ⎛⎭⎪⎫78n(n ∈N *),试问数列{a n }是否有最大项?若有,求出最大项;若没有,说明理由.[思路探究] 判断数列的单调性,寻求数列最大项,或假设a n 是数列的最大项,解不等式.[解] 法一:作差比较a n +1与a n 的大小,判断{a n }的单调性. a n +1-a n =(n +3)×⎝ ⎛⎭⎪⎫78n +1-(n +2)×⎝ ⎛⎭⎪⎫78n =⎝ ⎛⎭⎪⎫78n×5-n8.当n <5时,a n +1-a n >0,即a n +1>a n ; 当n =5时,a n +1-a n =0,即a n +1=a n ; 当n >5时,a n +1-a n <0,即a n +1<a n . 故a 1<a 2<a 3<a 4<a 5=a 6>a 7>a 8>…,所以数列{a n }有最大项,且最大项为a 5或a 6,且a 5=a 6=7685.法二:作商比较a n +1与a n 的大小,判断{a n }的单调性.a n +1a n =n +3×⎝ ⎛⎭⎪⎫78n +1n +2×⎝ ⎛⎭⎪⎫78n=7n +38n +2. 又a n >0,令an+1an>1,解得n<5;令an +1an=1,解得n=5;令an+1an<1,解得n>5.故a1<a2<a3<a4<a5=a6>a7>…,所以数列{a n}有最大项,且最大项为a5或a6,且a5=a6=7685.法三:假设{a n}中有最大项,且最大项为第n项,则⎩⎨⎧a n≥a n-1,an≥a n+1,即⎩⎨⎧n+2×⎝⎛⎭⎪⎫78n≥n+1×⎝⎛⎭⎪⎫78n-1,n+2×⎝⎛⎭⎪⎫78n≥n+3×⎝⎛⎭⎪⎫78n+1,解得⎩⎨⎧n≤6,n≥5,即5≤n≤6.故数列{a n}有最大项a5或a6,且a5=a6=7685.求数列{a n}的最大小项的方法一是利用判断函数增减性的方法,先判断数列的增减情况,再求数列的最大项或最小项;如本题利用差值比较法来探讨数列的单调性,以此求解最大项.二是设a k是最大项,则有⎩⎨⎧a k≥a k-1,ak≥a k+1,对任意的k∈N*且k≥2都成立,解不等式组即可.利用a n=⎩⎨⎧S1,n=1,Sn-S n-1,n≥2求通项n n(1)S n=2n2-n+1;(2)S n=2·3n-2.[思路探究]先写出n≥2时,a n=S n-S n-1表达式,再求出n=1时a1=S1,验证是否适合n≥2时表达式.如果适合则a n=S n-S n-1(n∈N*),否则a n=⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2.[解] (1)由S n =2n 2-n +1, 当n ≥2时,a n =S n -S n -1=(2n 2-n +1)-[2(n -1)2-(n -1)+1] =4n -3.当n =1时,a 1=S 1=2≠4×1-3. ∴a n =⎩⎨⎧2,n =1,4n -3,n ≥2.(2)由S n =2·3n -2, 当n ≥2时,a n =S n -S n -1=2·3n -2-(2·3n -1-2) =4·3n -1.当n =1时,a 1=S 1=2×31-2=4=4·31-1, ∴a n =4·3n -1(n ∈N *).用a n 与S n 的关系求a n 的步骤 1先确定n ≥2时a n =S n -S n -1的表达式; 2再利用S n 求出a 1a 1=S 1;3验证a 1的值是否适合a n =S n -S n -1的表达式; 4写出数列的通项公式.根据递推公式求通项1.某剧场有30排座位,从第一排起,往后各排的座位数构成一个数列{a n },满足a 1=20,a n +1=a n +2,你能归纳出数列{a n }的通项公式吗?[提示] 由a 1=20,a n +1=a n +2得a 2=a 1+2=22,a 3=a 2+2=24,a 4=a 3+2=26,a 5=a 4+2=28,…,由以上各项归纳可知a n =20+(n -1)·2=2n +18. 即a n =2n +18(n ∈N *,n ≤30).2.对于任意数列{a n },等式a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a n 都成立吗?若数列{a n }满足:a 1=1,a n +1-a n =2,你能求出它的通项a n 吗?[提示] 等式a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a n 成立,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+=1+2(n -1)=2n -1.3.若数列{a n }中的各项均不为0,等式a 1·a 2a 1·a 3a 2·…·a na n -1=a n成立吗?若数列{a n }满足:a 1=3,a n +1a n=2,则它的通项a n 是什么?[提示] 等式a 1·a 2a 1·a 3a 2·…·a na n -1=a n成立.按照a n +1a n =2可得a 2a 1=2,a 3a 2=2,a 4a 3=2,…,a na n -1=2(n ≥2),将这些式子两边分别相乘可得a 2a 1·a 3a 2·a 4a 3·…·a na n -1=2·2·…·2.则a n a 1=2n -1,所以a n =3·2n -1(n ∈N *). 【例4】 (1)已知数列{a n }满足a 1=-1,a n +1=a n +1nn +1,n ∈N *,求通项公式a n ;(2)设数列{a n }中,a 1=1,a n =⎝ ⎛⎭⎪⎫1-1n a n -1(n ≥2),求通项公式a n .[思路探究] (1)先将a n +1=a n +1nn +1变形为a n +1-a n =1nn +1,照此递推关系写出前n 项中任意相邻两项间的关系,这些式子两边分别相加即可求解.(2)先将a n =⎝ ⎛⎭⎪⎫1-1n a n -1(n ≥2)变形为a n a n -1=n -1n ,按此递推关系,写出所有前后两项满足的关系,两边分别相乘即可求解.[解] (1)∵a n +1-a n =1nn +1,∴a 2-a 1=11×2; a 3-a 2=12×3; a 4-a 3=13×4; …a n -a n -1=1n -1n.以上各式累加得,a n -a 1=11×2+12×3+…+1n -1n=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝⎛⎭⎪⎫1n -1-1n =1-1n . ∴a n +1=1-1n,∴a n =-1n(n ≥2).又∵n =1时,a 1=-1,符合上式, ∴a n =-1n(n ∈N *).(2)∵a 1=1,a n =⎝⎛⎭⎪⎫1-1n a n -1(n ≥2),∴a n a n -1=n -1n ,a n =a n a n -1×a n -1a n -2×a n -2a n -3×…×a 3a 2×a 2a 1×a 1=n -1n ×n -2n -1×n -3n -2×…×23×12×1=1n.又∵n =1时,a 1=1,符合上式,∴a n =1n(n ∈N *).1.(变条件)将例题(1)中的条件“a 1=-1,a n +1=a n +1nn +1,n ∈N *”变为“a 1=12,a n a n -1=a n -1-a n (n ≥2)”,求数列{a n }的通项公式.[解] ∵a n a n -1=a n -1-a n ,∴1a n -1a n -1=1.∴1a n =1a 1+⎝ ⎛⎭⎪⎫1a 2-1a 1+⎝ ⎛⎭⎪⎫1a 3-1a 2+…+⎝ ⎛⎭⎪⎫1a n -1a n -1 =2+=n +1.∴1a n =n +1,∴a n =1n +1(n ≥2).又∵n =1时,a 1=12,符合上式,∴a n =1n +1(n ∈N *).2.(变条件)将例题(2)中的条件“a 1=1,a n =⎝⎛⎭⎪⎫1-1n a n -1(n ≥2)”变为“a 1=2,a n +1=3a n (n ∈N *)”写出数列的前5项,猜想a n 并加以证明.[解] 由a 1=2,a n +1=3a n ,得:a 2=3a 1=3×2,a 3=3a 2=3×3×2=32×2, a 4=3a 3=3×32×2=33×2, a 5=3a 4=3×33×2=34×2, …,猜想:a n =2×3n -1, 证明如下:由a n +1=3a n 得a n +1a n=3. 因此可得a 2a 1=3,a 3a 2=3,a 4a 3=3,…,a na n -1=3. 将上面的n -1个式子相乘可得a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=3n -1. 即a na 1=3n -1,所以a n =a 1·3n -1,又a 1=2,故a n =2·3n -1.由数列的递推公式求通项公式时,若递推关系为a n +1=a n +fn 或a n +1=g n ·a n ,则可以分别通过累加或累乘法求得通项公式,即:1累加法:当a n =a n -1+fn 时,常用a n =a n -a n -1+a n -1-a n -2+…+a2-a 1+a1求通项公式;2累乘法:a na n-1当=g n时,常用a n=anan-1·an-1an-2·…·a2a1·a1求通项公式.4.2等差数列4.2.1等差数列的概念第1课时等差数列的概念及简单表示1.等差数列的概念文字语言如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示符号语言a n+1-a n=d(d为常数,n∈N*)(1)条件:如果a,A,b成等差数列.(2)结论:那么A叫做a与b的等差中项.(3)满足的关系式是a+b=2A.3.等差数列的通项公式以a1为首项,d为公差的等差数列{a n}的通项公式a n=a1+(n-1)d.4.从函数角度认识等差数列{a n}若数列{a n}是等差数列,首项为a1,公差为d,则a n=f (n)=a1+(n-1)d=nd+(a1-d).(1)点(n,a n)落在直线y=dx+(a1-d)上;(2)这些点的横坐标每增加1,函数值增加d.等差数列的通项公式n156075[解] 法一:设等差数列{a n }的首项为a 1,公差为d ,则由题意得⎩⎨⎧a 1+14d =8,a 1+59d =20,解得⎩⎪⎨⎪⎧a 1=6415,d =415.故a 75=a 1+74d =6415+74×415=24. 法二:∵a 60=a 15+(60-15)d ,∴d =20-860-15=415,∴a 75=a 60+(75-60)d =20+15×415=24.法三:已知数列{a n }是等差数列,可设a n =kn +b .由a 15=8,a 60=20得⎩⎨⎧15k +b =8,60k +b =20,解得⎩⎨⎧k =415,b =4.∴a 75=75×415+4=24.等差数列通项公式的妙用 1等差数列{a n }的通项公式a n =a 1+n -1d 中含有四个量,即a n ,a 1,n ,d ,如果知道了其中的任意三个量,就可以由通项公式求出第四个量,这一求未知量的过程我们通常称之为“知三求一”.2从函数的角度看等差数列的通项公式.由等差数列的通项公式a n =a 1+n -1d 可得a n =dn +a 1-d ,当d ≠0时,a n 是关于n 的一次函数.3由两点确定一条直线的性质可以得出,等差数列的任意两项可以确定这个等差数列.若已知等差数列的通项公式,可以写出数列中的任意一项.等差中项的应用和n 的等差中项是________.(2)已知1a ,1b ,1c 是等差数列,求证:b +c a ,a +c b ,a +bc也是等差数列.[思路探究] (1)列方程组―→求解m ,n ―→求m ,n 的等差中项 (2)(1)6 [由题意得⎩⎨⎧m +2n =8×2=16,2m +n =10×2=20,∴3(m +n )=20+16=36,∴m +n =12,∴m +n 2=6.](2)[证明] ∵1a ,1b ,1c成等差数列,∴2b =1a +1c,即2ac =b (a +c ).∵b +c a +a +b c =c b +c +a a +b ac =a 2+c 2+b a +c ac =a 2+c 2+2ac ac =2a +c2b a +c=2a +cb, ∴b +c a ,a +c b ,a +bc成等差数列.等差中项应用策略 1求两个数x ,y 的等差中项,即根据等差中项的定义得A =x +y 2.2证三项成等差数列,只需证中间一项为两边两项的等差中项即可,即若a ,b ,c 成等差数列,则有a +c =2b ;反之,若a +c =2b ,则a ,b ,c 成等差数列.等差数列的判定与证明[探究问题]1.在数列{a n }中,若a n -a n -1=d (常数)(n ≥2且n ∈N *),则{a n }是等差数列吗?为什么?[提示] 由等差数列的定义可知满足a n -a n -1=d (常数)(n ≥2)是等差数列. 2.在数列{a n }中,若有2a n =a n -1+a n +1(n ≥2,n ∈N *)成立,则{a n }是等差数列吗?为什么?[提示] 是,由等差中项的定义可知.3.若{a n }是公差为d 的等差数列,那么{a n +a n +2}是等差数列吗?若是,公差是多少?[提示] ∵(a n +1+a n +3)-(a n +a n +2)=(a n +1-a n )+(a n +3-a n +2)=d +d =2d . ∴{a n +a n +2}是公差为2d 的等差数列.【例3】 已知数列{a n }满足a 1=2,a n +1=2a n a n +2.(1)数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是否为等差数列?说明理由; (2)求a n . [解](1)数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是等差数列,理由如下:∵a 1=2,a n +1=2a n a n +2,∴1a n +1=a n +22a n =12+1a n, ∴1a n +1-1a n =12, 即⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是首项为1a 1=12,公差为d =12的等差数列.(2)由(1)可知1a n =1a 1+(n -1)d =n 2,∴a n =2n.1.(变条件,变结论)将例题中的条件“a 1=2,a n +1=2a na n +2”换为“a 1=4,a n=4-4a n -1(n >1),记b n =1a n -2”.(1)试证明数列{b n }为等差数列;(2)求数列{a n }的通项公式. [解] (1)证明:b n +1-b n =1a n +1-2-1a n -2=1⎝⎛⎭⎪⎫4-4a n -2-1a n -2=a n 2a n -2-1a n -2=a n -22a n -2=12.又b 1=1a 1-2=12, ∴数列{b n }是首项为12,公差为12的等差数列.(2)由(1)知b n =12+(n -1)×12=12n .∵b n =1a n -2, ∴a n =1b n +2=2n+2.∴数列{a n }的通项公式为a n =2n+2.2.(变条件)将本例中条件“a 1=2,a n +1=2a n a n +2”换成“a 1=15,n ≥2时有a n -1a n=2a n -1+11-2a n(n >1,n ∈N *)”,结论如何?[解] (1)证法一:a n -1a n =2a n -1+11-2a n(n >1,n ∈N *) ∴a n -1(1-2a n )=a n (2a n -1+1)(n >1,n ∈N *), 即a n -1=a n (4a n -1+1)(n >1,n ∈N *), ∴a n =a n -14a n -1+1(n >1,n ∈N *),∴1a n =4a n -1+1a n -1=4+1a n -1(n >1,n ∈N *),∴1a n -1a n -1=4(n >1,n ∈N *),∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是等差数列且公差为4,首项为5.证法二:当n >1,n ∈N *时,a n -1a n =2a n -1+11-2a n ⇔1-2a n a n =2a n -1+1a n -1⇔1a n -2=2+1a n -1⇔1a n -1a n -1=4,且1a 1=5.∴⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是等差数列,且公差为4,首项为5.(2)由(1)及等差数列的通项公式得 1a n=5+(n -1)×4=4n +1,∴a n =14n +1.等差数列的三种判定方法 1定义法:a n +1-a n =d常数n ∈N *⇔{a n }为等差数列; 2等差中项法:2a n +1=a n +a n +2n ∈N *⇔{a n }为等差数列;3通项公式法:a n =an +ba ,b 是常数,n ∈N *⇔{a n }为等差数列.但如果要证明一个数列是等差数列,则必须用定义法或等差中项法.第2课时 等差数列的性质1.等差数列的图象等差数列的通项公式a n =a 1+(n -1)d ,当d =0时,a n 是一个固定常数;当d ≠0时,a n 相应的函数是一次函数;点(n ,a n )分布在以d 为斜率的直线上,是这条直线上的一列孤立的点.2.等差数列的性质(1){a n }是公差为d 的等差数列,若正整数m ,n ,p ,q 满足m +n =p +q ,则a m +a n =a p +a q .①特别地,当m +n =2k (m ,n ,k ∈N *)时,a m +a n =2a k .②对有穷等差数列,与首末两项“等距离”的两项之和等于首末两项的和,即a 1+a n =a 2+a n -1=…=a k +a n -k +1=….(2)从等差数列中,每隔一定的距离抽取一项,组成的数列仍为等差数列.(3)若{a n }是公差为d 的等差数列,则①{c +a n }(c 为任一常数)是公差为d 的等差数列; ②{ca n }(c 为任一常数)是公差为cd 的等差数列; ③{a n +a n +k }(k 为常数,k ∈N *)是公差为2d 的等差数列.(4)若{a n },{b n }分别是公差为d 1,d 2的等差数列,则数列{pa n +qb n }(p ,q 是常数)是公差为pd 1+qd 2的等差数列.(5){a n }的公差为d ,则d >0⇔{a n }为递增数列;d <0⇔{a n }为递减数列;d =0⇔{a n }为常数列.灵活设元解等差数列n 数列的通项公式,并判断-34是否为该数列的项.[思路探究] 前三项可以设为a -d ,a ,a +d ,也可以直接用“通法”解决. [解] 法一:设该等差数列的前三项为a -d ,a ,a +d , 则(a -d )+a +(a +d )=3a =18. 解得a =6.又前三项的乘积为66. ∴6×(6+d )(6-d )=66, 解得d =±5.由于该数列单调递减,所以d =-5,且首项为11,所以通项公式为a n =11+(n -1)×(-5)=-5n +16.令-5n +16=-34,解得n =10. ∴-34是数列{a n }的第10项. 法二:依题意得⎩⎨⎧a 1+a 2+a 3=18,a 1·a 2·a 3=66,∴⎩⎨⎧3a 1+3d =18,a 1·a 1+d ·a 1+2d =66,解得⎩⎨⎧a 1=11,d =-5,或⎩⎨⎧a 1=1,d =5.∵数列{a n }是递减等差数列,∴d<0.故a1=11,d=-5.∴a n=11+(n-1)×(-5)=-5n+16,即等差数列{a n}的通项公式为a n=-5n+16.令a n=-34,即-5n+16=-34,得n=10.∴-34是数列{a n}的第10项.等差数列的设项方法与技巧1当已知条件中出现与首项、公差有关的内容时,可直接设首项为a1,公差为d,利用已知条件建立方程求出a1和d,即可确定数列.2当已知数列有2n项时,可设为a-2n-1d,…,a-3d,a-d,a +d,a+3d,…,a+2n-1d,此时公差为2d.3当已知数列有2n+1项时,可设为a-nd,a-n-1d,…,a-d,a,a+d,…,a+n-1d,a+nd,此时公差为d.等差数列的实际应用预计其利润每年比上一年减少20万元,按照这一规律,如果该公司不研发新产品,也不调整经营策略,试计算从哪一年起,该公司生产这一产品将出现亏损?[思路探究]根据条件可以构造等差数列,由条件可知首项和公差都已知,利用等差数列解决该问题.[解]记2017年为第1年,由题设可知第1年获利200万元,第2年获利180万元,第3年获利160万元,……则该公司每年获得的利润构成等差数列{a n},且当a n<0时,该公司生产此产品将出现亏损.设第n年的利润为a n,因为a1=200,公差d=-20,所以a n=a1+(n-1)d=220-20n.由题意知数列{a n}为递减数列,令a n<0,即220-20n<0,解得n>11,即从第12年起,也就是从2028年开始,该公司生产此产品将出现亏损.解决等差数列实际问题的基本步骤1将已知条件翻译成数学数列问题;2构造等差数列模型明确首项和公差;3利用通项公式解决等差数列问题;4将所求出的结果回归为实际问题.等差数列的性质1.在等差数列{a n}中,若a n=3n+1,那么a1+a5=a2+a4吗?a2+a5=a3+a4成立吗?由此你能得到什么结论?该结论对任意等差数列都适用吗?为什么?[提示]由a n=3n+1可知a1+a5=a2+a4与a2+a5=a3+a4均成立,由此有若m,n,p,q∈N*且m+n=p+q,则a+a n=a p+a q.m对于任意等差数列{a n},设其公差为d.则a m+a n=a1+(m-1)d+a1+(n-1)d=2a1+(m+n-2)d,a+a q=a1+(p-1)d+a1+(q-1)dp=2a1+(p+q-2)d,因为m+n=p+q,故a m+a n=a p+a q对任意等差数列都适用.2.在等差数列{a n}中,如果m+n=2r,那么a m+a n=2a r是否成立?反过来呢?[提示]若m+n=2r(m,n,r∈N*),则a m+a n=a1+(m-1)d+a1+(n-1)d =2a1+(m+n-2)d=2a1+(2r-2)·d=2[a1+(r-1)d]=2a r,显然成立;在等差数列{a n}中,若a m+a n=2a r,不一定有m+n=2r,如常数列.3.已知一个无穷等差数列{a n}的首项为a1,公差为d,则:(1)若将数列中的前m项去掉,其余各项组成一个新数列,这个新数列还是等差数列吗?(2)取出数列中的所有奇数项,组成一个新的数列,这个新数列还是等差数列吗?(3)如果取出数列中所有序号为7的倍数的项,组成一个新的数列,这个新数列还是等差数列吗?[提示](1)、(2)、(3)中所得到的数列都还是等差数列,其中(1)中的公差为d,(2)中的公差为2d,(3)中的公差为7d.【例3】 (1)已知等差数列{a n }中,a 3+a 6=8,则5a 4+a 7=( ) A .32 B .27 C .24 D .16(2)若关于x 的方程x 2-2x +m =0和x 2-2x +n =0(m ≠n )的四个根可组成首项为14的等差数列,则|m -n |的值是________. [思路探究] (1)运用“m +n =p +q 则a m +a n =a p +a q ”求解.(2)考虑两个方程都具备特点“两根之和是2”,结合根与系数的关系求解. (1)C (2)12 [(1)法一:设等差数列{a n }公差d ,则a 3+a 6=2a 1+7d =8,所以5a 4+a 7=6a 1+21d =3(2a 1+7d )=24.法二:在等差数列中,m +n =p +q ,则a m +a n =a p +a q . ∴a 2+a 6=a 3+a 5=2a 4,∴5a 4+a 7=a 2+a 3+a 4+a 5+a 6+a 7. 又a 2+a 7=a 3+a 6=a 4+a 5. ∴5a 4+a 7=3(a 3+a 6)=3×8=24.(2)设a ,b 为方程x 2-2x +m =0的两根,则a +b =2,c ,d 为方程x 2-2x +n =0的两根,则c +d =2,而四个根可组成一个首项为14的等差数列,现假定a =14,则b =2-14=74.根据等差数列的四项中,第一项与第四项的和等于第二项与第三项的和, ∴这个等差数列的顺序为14,c ,d ,74.则c =34,d =54.∴m =ab =716,n =cd =1516. ∴|m -n |=⎪⎪⎪⎪⎪⎪716-1516=12.]1.(变条件,变结论)本例(1)中条件变为“在等差数列{a n }中,若a 5=8,a 10=20”,求a 15.[解]法一:因为a5,a10,a15成等差数列,所以a5+a15=2a10.所以a15=2a10-a5=2×20-8=32.法二:因为{a n}为等差数列,设其公差为d,所以a10=a5+5d,所以20=8+5d,所以d=12 5.所以a15=a10+5d=20+5×125=32.2.(变条件,变结论)本例(1)中条件变为“在等差数列{a n}中,a3+a4+a5+a6+a7=450”,求a2+a8.[解]法一:∵在等差数列{a n}中a3+a7=a4+a6=2a5,∴(a3+a7)+(a4+a6)+a5=5a5=450.解得a5=90.∴a2+a8=2a5=180.法二:设等差数列{a n}的首项为a1,公差为d.根据a n=a1+(n-1)d,∴a3+a4+a5+a6+a7=5a1+20d=5(a1+4d)=450.∴a1+4d=90.而a2+a8=2a1+8d=2(a1+4d)=2×90=180.等差数列性质的应用技巧已知等差数列的两项和,求其余几项和或者求其中某项,对于这样的问题,在解题过程中通常就要注意考虑利用等差数列的下列性质:1若m+n=p+q m,n,p,q∈N*,则a m+a n=a p+a q其中a m,a n,a p,aq是数列中的项.该性质可推广为:若m+n+z=p+q+k m,n,z,p,q,k∈N*,则a m+a n+a z=a p+a q+a k.2若m+n=2p m,n,p∈N*,则a m+a n=2a p.4.2.2 等差数列的前n 项和公式第1课时 等差数列的前n 项和公式1.等差数列前n 项和公式是用倒序相加法推导的. 2.等差数列的前n 项和公式 已知量 首项、末项与项数首项、公差与项数求和公式S n =n a 1+a n2S n =na 1+n n -12dn (1)若a 1<0,d >0,则数列的前面若干项为负数项(或0),所以将这些项相加即得{S n }的最小值.(2)若a 1>0,d <0,则数列的前面若干项为正数项(或0),所以将这些项相加即得{S n }的最大值.特别地,若a 1>0,d >0,则S 1是{S n }的最小值;若a 1<0,d <0,则S 1是{S n }的最大值.等差数列前n 项和的有关计算n (1)已知a 6=10,S 5=5,求a 8; (2)已知a 2+a 4=485,求S 5. [思路探究] (1)由于有两个已知条件,所以可以通过列方程组求出基本量a 1,d 来解决问题,也可以运用等差数列前n 项和公式求解;(2)由于只有一个已知条件,需要结合等差数列的通项公式和前n 项和公式求解,也可以利用等差数列的性质和前n 项和公式求解.[解] (1)法一:∵a 6=10,S 5=5, ∴⎩⎨⎧a 1+5d =10,5a 1+10d =5,解得⎩⎨⎧a 1=-5,d =3.∴a 8=a 6+2d =16. 法二:∵S 6=S 5+a 6=15,∴15=6a1+a62,即3(a1+10)=15.∴a1=-5,d=a6-a15=3.∴a8=a6+2d=16.(2)法一:∵a2+a4=a1+d+a1+3d=485,∴a1+2d=245.∴S5=5a1+10d=5(a1+2d)=5×245=24.法二:∵a2+a4=a1+a5,∴a1+a5=48 5,∴S5=5a1+a52=52×485=24.求数列的基本量的基本方法求数列的基本量的基本方法是构建方程或方程组或运用数列的有关性质进行处理,1“知三求一”:a1,d,n称为等差数列的三个基本量,在通项公式和前n项和公式中,都含有四个量,已知其中的三个可求出第四个.2“知三求二”:五个量a1,d,n,a n,S n中可知三求二,一般列方程组求解.等差数列前n项和公式的实际应用指挥部决定在洪峰到来之前临时筑一道堤坝作为第二道防线.经计算,除现有的参战军民连续奋战外,还需调用20台同型号翻斗车,平均每辆车工作24小时.从各地紧急抽调的同型号翻斗车目前只有一辆投入使用,每隔20分钟能有一辆翻斗车到达,一共可调集25辆,那么在24小时内能否构筑成第二道防线?[思路探究]因为每隔20分钟到达一辆车,所以每辆车的工作量构成一个等差数列.工作量的总和若大于欲完成的工作量,则说明24小时内可完成第二道防线工程.[解]从第一辆车投入工作算起,各车工作时间(单位:小时)依次设为a1,a 2,…,a 25.由题意可知,此数列为等差数列,且a 1=24,公差d =-13.25辆翻斗车完成的工作量为:a 1+a 2+…+a 25=25×24+25×12×⎝ ⎛⎭⎪⎫-13=500,而需要完成的工作量为24×20=480.∵500>480,∴在24小时内能构筑成第二道防线.遇到与正整数有关的应用题时,可以考虑与数列知识联系,建立数列模型,具体解决要注意以下两点:1抓住实际问题的特征,明确是什么类型的数列模型.2深入分析题意,确定是求通项公式a n ,或是求前n 项和S n ,还是求项数n .等差数列前n 项和S n 的函数特征1.S n =An 2+Bn 的函数特征怎样?[提示] (1)当A =0,B =0时(此时a 1=0,d =0),S n =0,此时S n 是关于n 的常数函数;(2)当A =0,B ≠0时⎝ ⎛⎭⎪⎫此时a 1≠d 2,d =0,S n =Bn ,此时S n 是关于n 的一次函数(正比例函数);(3)当A ≠0,B =0时⎝ ⎛⎭⎪⎫此时a 1=d 2,d ≠0,S n =An 2,此时S n 是关于n 的二次函数;(4)当A ≠0,B ≠0时⎝ ⎛⎭⎪⎫此时a 1≠d 2,d ≠0,S n =An 2+Bn ,此时S n 是关于n 的二次函数.2.已知一个数列{a n }的前n 项和为S n =n 2-5n ,试画出S n 关于n 的函数图象.你能说明数列{a n }的单调性吗?该数列前n 项和有最值吗?[提示] S n =n 2-5n =⎝⎛⎭⎪⎫n -522-254,它的图象是分布在函数y =x 2-5x 的图象上的离散的点,由图象的开口方向可知该数列是递增数列,图象开始下降说明了{a n }前n 项为负数.由S n 的图象可知,S n 有最小值且当n =2或3时,S n 最小,最小值为-6,即数列{a n }前2项或前3项和最小.【例3】 数列{a n }的前n 项和S n =33n -n 2, (1)求{a n }的通项公式; (2)则{a n }的前多少项和最大?[思路探究] (1)利用S n 与a n 的关系求通项,也可由S n 的结构特征求a 1,d ,从而求出通项.(2)利用S n 的函数特征求最值,也可以用通项公式找到通项的变号点求解. [解] (1)法一:(公式法)当n ≥2时,a n =S n -S n -1=34-2n , 又当n =1时,a 1=S 1=32=34-2×1,满足a n =34-2n . 故{a n }的通项公式为a n =34-2n .法二:(结构特征法)由S n =-n 2+33n 知S n 是关于n 的缺常数项的二次型函数,所以{a n}是等差数列,由S n的结构特征知⎩⎪⎨⎪⎧d2=-1,a 1-d 2=33,解得a 1=32,d =-2,所以a n =34-2n .(2)法一:(公式法)令a n ≥0,得34-2n ≥0,所以n ≤17, 故数列{a n }的前17项大于或等于零.又a 17=0,故数列{a n }的前16项或前17项的和最大. 法二:(函数性质法)由y =-x 2+33x 的对称轴为x =332,距离332最近的整数为16,17.由S n =-n 2+33n 的 图象可知:当n ≤17时,a n ≥0,当n ≥18时,a n <0, 故数列{a n }的前16项或前17项的和最大.1.(变条件)将例题中的条件“S n =33n -n 2”变为“在等差数列{a n }中,a 1=25,S 17=S 9”,求其前n 项和S n 的最大值.[解] 法一:∵S 9=S 17,a 1=25, ∴9×25+99-12d =17×25+1717-12d ,解得d =-2. ∴S n =25n +n n -12×(-2)=-n 2+26n=-(n -13)2+169.∴当n =13时,S n 有最大值169. 法二:同法一,求出公差d =-2. ∴a n =25+(n -1)×(-2)=-2n +27. ∵a 1=25>0,由⎩⎨⎧a n =-2n +27≥0,a n +1=-2n +1+27≤0,得⎩⎪⎨⎪⎧n ≤1312,n ≥1212,又∵n ∈N *,∴当n =13时,S n 有最大值169. 法三:∵S 9=S 17, ∴a 10+a 11+…+a 17=0.由等差数列的性质得a 13+a 14=0. ∵a 1>0,∴d <0.∴a 13>0,a 14<0.∴当n =13时,S n 有最大值169. 法四:设S n =An 2+Bn .∵S 9=S 17, ∴二次函数对称轴为x =9+172=13,且开口方向向下, ∴当n =13时,S n 取得最大值169.2.(变结论)本例中条件不变,令b n =|a n |,求数列{b n }的前n 项和T n . [解] 由数列{a n }的通项公式a n =34-2n 知,当n ≤17时,a n ≥0; 当n ≥18时,a n <0.所以当n ≤17时,T n =b 1+b 2+…+b n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a n =S n =33n -n 2. 当n ≥18时,T n =|a 1|+|a 2|+…+|a 17|+|a 18|+…+|a n | =a 1+a 2+…+a 17-(a 18+a 19+…+a n ) =S 17-(S n -S 17)=2S 17-S n =n 2-33n +544.故T n =⎩⎨⎧33n -n 2n ≤17,n 2-33n +544n ≥18.1.在等差数列中,求S n 的最小(大)值的方法(1)利用通项公式寻求正、负项的分界点,则从第一项起到分界点该项的各项和为最大(小)值.(2)借助二次函数的图象及性质求最值. 2.寻求正、负项分界点的方法(1)寻找正、负项的分界点,可利用等差数列的性质或利用⎩⎨⎧a n ≥0,a n +1≤0或⎩⎨⎧a n ≤0,a n +1≥0来寻找.(2)利用到y =ax 2+bx (a ≠0)图象的对称轴距离最近的一侧的一个整数或离对称轴最近且关于对称轴对称的两个整数对应项即为正、负项的分界点.3.求解数列{|a n |}的前n 项和,应先判断{a n }的各项的正负,然后去掉绝对值号,转化为等差数列的求和问题.第2课时 等差数列前n 项和的性质等差数列前n 项和的性质(1)等差数列{a n }中,其前n 项和为S n ,则{a n }中连续的n 项和构成的数列S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n ,…构成等差数列.(2)数列{a n }是等差数列⇔S n =an 2+bn (a ,b 为常数).(3)在等差数列{a n }中,a 1+a 2,a 2+a 3,a 3+a 4,…也成等差数列,a 1+a 2+a 3,a 2+a 3+a 4,a 3+a 4+a 5,…也成等差数列.(4)在等差数列{a n }中,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫S n n 为等差数列.“片段和”的性质【例1】 在等差数列{a n }中,S 10=100,S 100=10.求S 110. [思路探究] (1)可利用方程(组)思想求解.(2)可利用性质求解,如看作{a n }中,依次取10项的和所得新数列前11项的和求解.[解] 法一:设等差数列{a n }的首项为a 1,公差为d , 则⎩⎪⎨⎪⎧10a 1+10×10-12d =100,100a 1+100×100-12d =10.解得⎩⎪⎨⎪⎧a 1=1 099100,d =-1150.∴S 110=110a 1+110×110-12d。

新教材 人教A版高中数学必修第二册 第七章 复数 知识点汇总及解题规律方法提炼

新教材 人教A版高中数学必修第二册 第七章 复数 知识点汇总及解题规律方法提炼

第七章 复数7.1.1 数系的扩充和复数的概念1.复数的有关概念 (1)复数的定义形如a +b i(a ,b ∈R )的数叫做复数,其中i 叫做虚数单位,满足i 2=-1. (2)复数集全体复数所构成的集合C ={a +b i|a ,b ∈R }叫做复数集. (3)复数的表示方法复数通常用字母z 表示,即z =a +b i(a ,b ∈R ),其中a 叫做复数z 的实部,b 叫做复数z 的虚部.■名师点拨对复数概念的三点说明(1)复数集是最大的数集,任何一个数都可以写成a +b i(a ,b ∈R )的形式,其中0=0+0i.(2)复数的虚部是实数b 而非b i.(3)复数z =a +b i 只有在a ,b ∈R 时才是复数的代数形式,否则不是代数形式.2.复数相等的充要条件在复数集C ={a +b i|a ,b ∈R }中任取两个数a +b i ,c +d i(a ,b ,c ,d ∈R ),我们规定:a +b i 与c +d i 相等当且仅当a =c 且b =d .3.复数的分类(1)复数z =a +b i(a ,b ∈R )⎩⎨⎧实数(b =0),虚数(b ≠0)⎩⎨⎧纯虚数a =0,非纯虚数a ≠0W.(2)复数集、实数集、虚数集、纯虚数集之间的关系■名师点拨复数b i(b ∈R )不一定是纯虚数,只有当b ≠0时,复数b i(b ∈R )才是纯虚数.典型应用1 复数的概念下列命题:①若a ∈R ,则(a +1)i 是纯虚数; ②若a ,b ∈R ,且a >b ,则a +i>b +i ;③若(x 2-4)+(x 2+3x +2)i 是纯虚数,则实数x =±2; ④实数集是复数集的真子集. 其中正确的命题是( ) A .① B .② C .③D .④【解析】 对于复数a +b i(a ,b ∈R ),当a =0且b ≠0时,为纯虚数.对于①,若a =-1,则(a +1)i 不是纯虚数,即①错误;两个虚数不能比较大小,则②错误;对于③,若x =-2,则x 2-4=0,x 2+3x +2=0,此时(x 2-4)+(x 2+3x +2)i =0不是纯虚数,则③错误;显然,④正确.故选D.【答案】 D判断与复数有关的命题是否正确的方法(1)举反例:判断一个命题为假命题,只要举一个反例即可,所以解答这种类型的题时,可按照“先特殊,后一般,先否定,后肯定”的方法进行解答.(2)化代数形式:对于复数实部、虚部的确定,不但要把复数化为a +b i 的形式,更要注意这里a ,b 均为实数时,才能确定复数的实部、虚部.[提醒] 解答复数概念题,一定要紧扣复数的定义,牢记i 的性质. 典型应用2 复数的分类当实数m 为何值时,复数z =m 2+m -6m+(m 2-2m )i :(1)为实数?(2)为虚数?(3)为纯虚数?【解】 (1)当⎩⎨⎧m 2-2m =0,m ≠0,即m =2时,复数z 是实数.(2)当m 2-2m ≠0且m ≠0,即m ≠0且m ≠2时,复数z 是虚数.(3)当⎩⎪⎨⎪⎧m ≠0,m 2+m -6m =0,m 2-2m ≠0,即m =-3时,复数z 是纯虚数.解决复数分类问题的方法与步骤(1)化标准式:解题时一定要先看复数是否为a +b i(a ,b ∈R )的形式,以确定实部和虚部.(2)定条件:复数的分类问题可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)即可.(3)下结论:设所给复数为z =a +b i(a ,b ∈R ), ①z 为实数⇔b =0; ②z 为虚数⇔b ≠0;③z 为纯虚数⇔a =0且b ≠0. 典型应用3 复数相等(1)(2019·浙江杭州期末考试)若z 1=-3-4i ,z 2=(n 2-3m -1)+(n 2-m -6)i(m ,n ∈R ),且z 1=z 2,则m +n =( )A .4或0B .-4或0C .2或0D .-2或0(2)若log 2(x 2-3x -2)+ilog 2(x 2+2x +1)>1,则实数x 的值是________. 【解析】 (1)由z 1=z 2,得n 2-3m -1=-3且n 2-m -6=-4,解得m =2,n =±2,所以m +n =4或0,故选A.(2)因为log 2(x 2-3x -2)+ilog 2(x 2+2x +1)>1,所以⎩⎨⎧log 2(x 2-3x -2)>1,log 2(x 2+2x +1)=0,即⎩⎨⎧x 2-3x -2>2,x 2+2x +1=1,解得x =-2. 【答案】 (1)A (2)-2复数相等的充要条件复数相等的充要条件是“化虚为实”的主要依据,多用来求解参数.解决复数相等问题的步骤是:分别分离出两个复数的实部和虚部,利用实部与实部相等、虚部与虚部相等列方程(组)求解.[注意] 在两个复数相等的充要条件中,注意前提条件是a ,b ,c ,d ∈R ,即当a ,b ,c ,d ∈R 时,a +b i =c +d i ⇔a =c 且b =d .若忽略前提条件,则结论不能成立.7.1.2 复数的几何意义1.复平面建立直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴.实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.2.复数的两种几何意义(1)复数z =a +b i(a ,b ∈R )←――→一一对应复平面内的点Z (a ,b ). (2)复数z =a +b i(a ,b ∈R ) ←――→一一对应平面向量OZ →. ■名师点拨(1)复平面内的点Z 的坐标是(a ,b ),而不是(a ,b i).也就是说,复平面内的虚轴上的单位长度是1,而不是i.(2)当a =0,b ≠0时,a +b i =0+b i =b i 是纯虚数,所以虚轴上的点(0,b )(b ≠0)都表示纯虚数.(3)复数z =a +b i(a ,b ∈R )中的z ,书写时应小写;复平面内的点Z (a ,b )中的Z ,书写时应大写.3.复数的模复数z =a +b i(a ,b ∈R )对应的向量为OZ →,则OZ →的模叫做复数z 的模或绝对值,记作|z |或|a +b i|,即|z |=|a +b i|■名师点拨如果b =0,那么z =a +b i 是一个实数a ,它的模等于|a |(a 的绝对值). 4.共轭复数(1)一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数.(2)虚部不等于0的两个共轭复数也叫做共轭虚数.(3)复数z 的共轭复数用z -表示,即如果z =a +b i ,那么z -=a -b i . ■名师点拨复数z =a +b i 在复平面内对应的点为(a ,b ),复数z -=a -b i 在复平面内对应的点为(a ,-b ),所以两个互为共轭复数的复数,它们所对应的点关于x 轴对称.典型应用1复数与复平面内的点已知复数z =(a 2-1)+(2a -1)i ,其中a ∈R .当复数z 在复平面内对应的点Z 满足下列条件时,求a 的值(或取值范围).(1)在实轴上; (2)在第三象限.【解】 (1)若z 对应的点在实轴上,则有 2a -1=0,解得a =12.(2)若z 对应的点在第三象限,则有 ⎩⎨⎧a 2-1<0,2a -1<0,解得-1<a <12. 故a 的取值范围是⎝ ⎛⎭⎪⎫-1,12.[变条件]本例中复数z 不变,若点Z 在抛物线y 2=4x 上,求a 的值. 解:若z 对应的点(a 2-1,2a -1)在抛物线y 2=4x 上,则有(2a -1)2=4(a 2-1),即4a 2-4a +1=4a 2-4,解得a =54.利用复数与点的对应解题的步骤(1)找对应关系:复数的几何表示法即复数z =a +b i(a ,b ∈R )可以用复平面内的点Z (a ,b )来表示,是解决此类问题的根据.(2)列出方程:此类问题可建立复数的实部与虚部应满足的条件,通过解方程(组)或不等式(组)求解.典型应用2复数与复平面内的向量在复平面内,复数i ,1,4+2i 对应的点分别是A ,B ,C .求平行四边形ABCD 的顶点D 所对应的复数.【解】 法一:由复数的几何意义得A (0,1),B (1,0),C (4,2),则AC 的中点为⎝ ⎛⎭⎪⎫2,32,由平行四边形的性质知该点也是BD 的中点,设D (x ,y ),则⎩⎪⎨⎪⎧x +12=2,y +02=32,所以⎩⎨⎧x =3,y =3,即点D 的坐标为(3,3),所以点D 对应的复数为3+3i. 法二:由已知得OA→=(0,1),OB →=(1,0),OC →=(4,2), 所以BA→=(-1,1),BC →=(3,2), 所以BD→=BA →+BC →=(2,3),所以OD →=OB →+BD →=(3,3), 即点D 对应的复数为3+3i.复数与平面向量的对应关系(1)根据复数与平面向量的对应关系,可知当平面向量的起点在原点时,向量的终点对应的复数即为向量对应的复数,反之复数对应的点确定后,从原点引出的指向该点的有向线段,即为复数对应的向量.(2)解决复数与平面向量一一对应的问题时,一般以复数与复平面内的点一一对应为工具,实现复数、复平面内的点、向量之间的转化.典型应用3 复数的模(1)设复数z 1=a +2i ,z 2=-2+i 且|z 1|<|z 2|,则实数a 的取值范围是( )A .-1<a <1B .a <-1或a >1C .a >1D .a >0(2)(2019·贵州遵义贵龙中学期中测试)已知复数z 满足|z |2-2|z |-3=0,则复数z 在复平面内对应点的集合是( )A .1个圆B .线段C .2个点D .2个圆。

新教材高中数学全书要点速记学案含解析新人教A版必修第二册

新教材高中数学全书要点速记学案含解析新人教A版必修第二册

新教材高中数学全书要点速记学案:全书要点速记第六章平面向量及其应用一、平面向量的线性运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c)减法向量a加上向量b的相反向量叫做a与b的差,即a+(-b)=a-ba-b=a+(-b)数乘实数λ与向量a的积是一个向量,记作λa(1)模:|λa|=|λ|·|a|;(2)方向:当λ>0时,λa与a的方向相同;当λ<0时,λa与a的方向相反;当λ=0时,λa=0设λ,μ是实数.(1)λ(μ a)=(λμ)a;(2)(λ+μ)a=λa+μa;(3)λ(a+b)=λa+λb向量a(a≠0)与b共线的充要条件是:存在唯一一个实数λ,使b=λa.三、平面向量基本定理如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.若e1,e2不共线,我们把{e1,e2}叫做表示这一平面内所有向量的一个基底.四、平面向量的数量积及坐标表示设a=(x1,y1),b=(x2,y2),则a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa=(λx1,λy1),|a|=x21+y21,a·b=|a|·|b|·cos〈a,b〉=x1x2+y1y2.五、余弦定理及其推论 1.余弦定理三角形中任何一边的平方,等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C .2.推论cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab .六、正弦定理及其常见变形 1.正弦定理在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =b sin B =csin C =2R (R 为△ABC外接圆半径).2.常见变形a =2R sin A ,b =2R sin B ,c =2R sin C , sin A =a 2R ,sin B =b 2R ,sin C =c2R ,a ∶b ∶c =sin A ∶sin B ∶sin C , a +b +csin A +sin B +sin C=2R .第七章 复数一、复数的有关概念及代数表示 1.复数把形如a +b i(a ,b ∈R )的数叫做复数,其中i 叫做虚数单位,a 叫做复数的实部,b 叫做复数的虚部.把z =a +b i(a ,b ∈R )这一表示形式叫做复数的代数形式.2.复数集全体复数所构成的集合叫做复数集,即复数集C ={a +b i|a ,b ∈R }. 3.复数相等在复数集C ={a +b i|a ,b ∈R }中任取两个数a +b i ,c +d i(a ,b ,c ,d ∈R ), 我们规定:a +b i 与c +d i 相等当且仅当a =c 且b =d . 4.复数的分类二、复数的几何意义三、复数的四则运算设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则 (1)z 1±z 2=(a ±c )+(b ±d )i ;(2)z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ; (3)z 1z 2=a +b i c +d i =ac +bd c 2+d 2+bc -ad c 2+d 2i(z 2≠0). 对任意z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3),z 1z 2=z 2z 1,(z 1z 2)z 3=z 1(z 2z 3),z 1(z 2+z 3)=z 1z 2+z 1z 3.第八章 立体几何初步一、常见几何体的面积多面体的表面积为各个面的面积的和,即展开图的面积. 圆柱的侧面积S 侧=2πrl ,表面积S =2πr (r +l ). 圆锥的侧面积S 侧=πrl ,表面积S =πr (r +l ).圆台的侧面积S 侧=π(r ′+r )l ,表面积S =π(r ′2+r 2+r ′l +rl ). 球的表面积S =4πR 2.其中r ′,r 分别为上、下底面半径,l 为母线长,R 为球的半径. 二、常见几何体的体积 柱体的体积V =Sh ; 锥体的体积V =13Sh ;台体的体积V =13(S ′+S ′S +S )h ;球的体积V =43πR 3.其中S ′,S 分别为上、下底面面积,h 为高,R 为球的半径. 三、平面的基本事实基本事实1:过不在一条直线上的三个点,有且只有一个平面.基本事实2:如果一条直线上的两个点在一个平面内,那么这条直线在这个平面内. 推论1:经过一条直线和这条直线外一点,有且只有一个平面. 推论2:经过两条相交直线,有且只有一个平面. 推论3:经过两条平行直线,有且只有一个平面.基本事实3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.基本事实4:平行于同一条直线的两条直线平行. 四、空间点、直线、平面之间的位置关系 1.空间中直线与直线的位置关系⎩⎪⎨⎪⎧共面直线⎩⎪⎨⎪⎧ 相交直线:在同一平面内,有且只有 一个公共点平行直线:在同一平面内,没有公共点异面直线:不同在任何一个平面内,没有公共点2.空间中直线与平面的位置关系 (1)直线在平面内——有无数个公共点; (2)直线与平面相交——有且只有一个公共点; (3)直线与平面平行——没有公共点.当直线与平面相交或平行时,直线不在平面内,也称为直线在平面外. 3.空间中平面与平面的位置关系 (1)两个平面平行——没有公共点; (2)两个平面相交——有一条公共直线. 五、空间平行关系的判定及性质1.直线与平面平行的判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.2.直线与平面平行的性质定理:一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行.3.平面与平面平行的判定定理:如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行.4.平面与平面平行的性质定理:两个平面平行,如果另一个平面与这两个平面相交,那么两条交线平行.六、空间垂直关系的判定及性质1.直线与平面垂直的判定定理:如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直.2.直线与平面垂直的性质定理:垂直于同一个平面的两条直线平行.3.平面与平面垂直的判定定理:如果一个平面过另一个平面的垂线,那么这两个平面垂直.4.平面与平面垂直的性质定理:两个平面垂直,如果一个平面内有一直线垂直于这两个平面的交线,那么这条直线与另一个平面垂直.第九章 统计一、随机抽样 简单随机抽样 从总体中逐个抽取样本的方法,分为放回简单随机抽样和不放回简单随机抽样分层随机抽样将总体分层,按照比例从各层中独立抽取样本的方法频率分布样本中某个数据(范围)在总体中占有的比例称为这个数据(范围)的频率,使用频率分布表、频率分布直方图表达样本数据的频率分布样本的数字特征百分位数 一组数据的第p 百分位数是使得这组数据中至少有p %的数据小于或等于这个值,且至少有(100-p )%的数据大小或等于这个值 众数从小到大排序后,中间的数或者中间两数的平均数 中位数 样本数据中出现次数最多的数据平均数x 1,x 2,…,x n 的平均数是x -=1n(x 1+x 2+…+x n )方差、标准差1.各个小矩形的面积和为1.2.纵轴的含义为频率组距,矩形的面积=组距×频率组距=频率.3.样本数据的平均数的估计值等于各个小矩形的面积乘该矩形底边中点横坐标之和. 4.众数为最高矩形的底边中点的横坐标.第十章 概率一、有限样本空间与随机事件1.随机试验:把对随机现象的实现和对它的观察称为随机试验,简称试验. 2.样本点:把随机试验的每个可能的基本结果称为样本点. 3.样本空间:全体样本点的集合称为试验的样本空间.4.有限样本空间:样本空间为有限集时,称样本空间Ω={ω1,ω2,…,ωn }为有限样本空间.5.随机事件:把样本空间的子集称为随机事件,只包含一个样本点的事件称为基本事件. 6.必然事件:Ω作为自身的子集,包含了所有的样本点,在每次试验中总有一个样本点发生,所以Ω总会发生,我们称Ω为必然事件.7.不可能事件:空集∅不包含任何样本点,在每次试验中都不会发生,我们称∅为不可能事件.二、事件的关系和运算1.特征(1)有限性:样本空间的样本点只有有限个;(2)等可能性:每个样本点发生的可能性相等.2.概率公式设试验E是古典概型,样本空间Ω包含n个样本点,事件A包含其中的k个样本点,则定义事件A的概率P(A)=kn=n(A)n(Ω).四、概率的基本性质性质1:对任意的事件A,都有P(A)≥0.性质2:必然事件的概率为1,不可能事件的概率为0,即P(Ω)=1,P(∅)=0.性质3:如果事件A与事件B互斥,那么P(A∪B)=P(A)+P(B).推广:如果事件A1,A2,…,A m两两互斥,那么事件A1∪A2∪…∪A m发生的概率等于这m个事件分别发生的概率之和,即P(A1∪A2∪…∪A m)=P(A1)+P(A2)+…+P(A m).性质4:如果事件A与事件B互为对立事件,那么P(B)=1-P(A),P(A)=1-P(B).性质5:如果A⊆B,那么P(A) ≤P(B).性质6:设A,B是一个随机试验中的两个事件,我们有P(A∪B)=P(A)+P(B)-P(A∩B).五、事件的相互独立1.概念对任意两个事件A与B,如果P(AB)=P(A)P(B),则称事件A与事件B相互独立,简称为独立.2.性质A与B是相互独立事件,则A与B,B与A,A与B也相互独立.六、频率与概率1.频率与概率的关系(1)频率是概率的近似值,概率是频率的稳定值.(2)频率是随机的,概率是确定的,可以用频率f n(A)来估计概率P(A).2.随机模拟利用计算器或计算机软件产生随机数做模拟试验,由模拟试验得到频率来估计概率,这种用计算器或计算机软件模拟试验的方法称为随机模拟方法或蒙特卡洛方法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教A 版必修第二册全册知识点汇总第六章 平面向量及其应用 (1)6.1 平面向量的概念 ...................................................................................................... 1 6.2 平面向量的运算 ........................................................................................................ 5 6.3 平面向量基本定理及坐标表示 .............................................................................. 22 6.4.平面向量的应用 ....................................................................................................... 37 第七章 复数 (51)7.1 复数的概念 .............................................................................................................. 51 7.2复数的四则运算 ....................................................................................................... 58 7.3* 复数的三角表示 .................................................................................................. 64 第八章 立体几何初步 .. (69)8.1 基本立体图形 ........................................................................................................ 69 8.2 立体图形的直观图 ................................................................................................ 80 8.3 简单几何体的表面积与体积 .................................................................................. 83 8.4 空间点、直线、平面之间的位置关系 .................................................................. 93 8.5 空间直线、平面的平行 ........................................................................................ 104 8.6 空间直线、平面的垂直 ........................................................................................ 114 第九章 统计 . (132)9.1 随机抽样 .............................................................................................................. 132 9.2 用样本估计总体 .................................................................................................. 138 9.3 统计案例 公司员工的肥胖情况调查分析 ...................................................... 145 第十章 概率 . (150)10.1 随机事件与概率 .................................................................................................. 150 10.2 事件的相互独立性 ............................................................................................ 161 10.3 频率与概率 .. (165)第六章 平面向量及其应用6.1 平面向量的概念1.向量的概念及表示(1)概念:既有大小又有方向的量. (2)有向线段①定义:具有方向的线段. ②三个要素:起点、方向、长度.③表示:在有向线段的终点处画上箭头表示它的方向.以A 为起点、B 为终点的有向线段记作AB→.④长度:线段AB 的长度也叫做有向线段AB →的长度,记作|AB →|. (3)向量的表示■名师点拨(1)判断一个量是否为向量,就要看它是否具备大小和方向两个因素. (2)用有向线段表示向量时,要注意AB →的方向是由点A 指向点B ,点A 是向量的起点,点B 是向量的终点.2.向量的有关概念(1)向量的模(长度):向量AB →的大小,称为向量AB →的长度(或称模),记作|AB →|.(2)零向量:长度为0的向量,记作0.(3)单位向量:长度等于1个单位长度的向量. 3.两个向量间的关系(1)平行向量:方向相同或相反的非零向量,也叫做共线向量.若a ,b 是平行向量,记作a ∥b .规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(2)相等向量:长度相等且方向相同的向量,若a ,b 是相等向量,记作a =b .■名师点拨(1)平行向量也称为共线向量,两个概念没有区别. (2)共线向量所在直线可以平行,与平面几何中的共线不同. (3)平行向量可以共线,与平面几何中的直线平行不同.典型应用1 向量的相关概念给出下列命题:①若AB →=DC →,则A ,B ,C ,D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有AB →=DC →;③若a =b ,b =c ,则a =c .其中所有正确命题的序号为________.【解析】 AB→=DC →,A ,B ,C ,D 四点可能在同一条直线上,故①不正确;在▱ABCD 中,|AB→|=|DC →|,AB →与DC →平行且方向相同,故AB →=DC →,故②正确;a=b ,则|a |=|b |,且a 与b 的方向相同;b =c ,则|b |=|c |,且b 与c 的方向相同,则a 与c 长度相等且方向相同,故a =c ,故③正确.【答案】 ②③(1)判断一个量是否为向量的两个关键条件 ①有大小;②有方向.两个条件缺一不可. (2)理解零向量和单位向量应注意的问题①零向量的方向是任意的,所有的零向量都相等; ②单位向量不一定相等,易忽略向量的方向. 典型应用2 向量的表示在如图所示的坐标纸上(每个小方格的边长为1),用直尺和圆规画出下列向量:(1)OA→,使|OA →|=42,点A 在点O 北偏东45°方向上; (2)AB→,使|AB →|=4,点B 在点A 正东方向上; (3)BC→,使|BC →|=6,点C 在点B 北偏东30°方向上. 【解】 (1)由于点A 在点O 北偏东45°方向上,所以在坐标纸上点A 距点O 的横向小方格数与纵向小方格数相等.又|OA →|=42,小方格的边长为1,所以点A 距点O 的横向小方格数与纵向小方格数都为4,于是点A 的位置可以确定,画出向量OA→,如图所示.(2)由于点B 在点A 正东方向上,且|AB→|=4,所以在坐标纸上点B 距点A 的横向小方格数为4,纵向小方格数为0,于是点B 的位置可以确定,画出向量AB →,如图所示.(3)由于点C 在点B 北偏东30°方向上,且|BC→|=6,依据勾股定理可得,在坐标纸上点C 距点B 的横向小方格数为3,纵向小方格数为33≈5.2,于是点C 的位置可以确定,画出向量BC→,如图所示.用有向线段表示向量的步骤典型应用3共线向量与相等向量如图所示,O 是正六边形ABCDEF 的中心,且OA→=a ,OB →=b ,在每两点所确定的向量中.(1)与a 的长度相等、方向相反的向量有哪些?(2)与a 共线的向量有哪些?【解】 (1)与a 的长度相等、方向相反的向量有OD→,BC →,AO →,FE →.(2)与a 共线的向量有EF→,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →.1.[变条件、变问法]本例中若OC →=c ,其他条件不变,试分别写出与a ,b ,c 相等的向量.解:与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,F A →;与c 相等的向量有FO→,ED →,AB →. 2.[变问法]本例条件不变,与AD→共线的向量有哪些?解:与AD →共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,OA →.共线向量与相等向量的判断(1)如果两个向量所在的直线平行或重合,那么这两个向量是共线向量. (2)共线向量不一定是相等向量,但相等向量一定是共线向量.(3)非零向量的共线具有传递性,即向量a ,b ,c 为非零向量,若a ∥b ,b ∥c ,则可推出a ∥c .[注意] 对于共线向量所在直线的位置关系的判断,要注意直线平行或重合两种情况.6.2 平面向量的运算6.2.1 向量的加法运算1.向量加法的定义及运算法则(1)两个法则的使用条件不同.三角形法则适用于任意两个非零向量求和,平行四边形法则只适用于两个不共线的向量求和.(2)在使用三角形法则时,应注意“首尾连接”;在使用平行四边形法则时应注意范围的限制及和向量与两向量起点相同.(3)位移的合成可以看作向量加法三角形法则的物理模型.力的合成可以看作向量加法平行四边形法则的物理模型.2.|a+b|,|a|,|b|之间的关系一般地,|a+b|≤|a|+|b|,当且仅当a,b方向相同时等号成立.3.向量加法的运算律典型应用1平面向量的加法及其几何意义如图,已知向量a ,b ,c ,求作和向量a +b +c .【解】 法一:可先作a +c ,再作(a +c )+b ,即a +b +c .如图,首先在平面内任取一点O ,作向量OA →=a ,接着作向量AB →=c ,则得向量OB→=a +c ,然后作向量BC →=b ,则向量OC→=a +b +c 为所求.法二:三个向量不共线,用平行四边形法则来作.如图,(1)在平面内任取一点O ,作OA→=a ,OB →=b ;(2)作平行四边形AOBC ,则OC →=a +b ;(3)再作向量OD→=c ;(4)作平行四边形CODE ,则OE→=OC →+c =a +b +c .OE →即为所求.(1)应用三角形法则求向量和的基本步骤①平移向量使之“首尾相接”,即第一个向量的终点与第二个向量的起点重合;②以第一个向量的起点为起点,并以第二个向量的终点为终点的向量,即为两个向量的和.(2)应用平行四边形法则求向量和的基本步骤 ①平移两个不共线的向量使之共起点;②以这两个已知向量为邻边作平行四边形;③平行四边形中,与两向量共起点的对角线表示的向量为两个向量的和. 典型应用2平面向量的加法运算化简: (1)BC→+AB →; (2)DB→+CD →+BC →; (3)AB →+DF →+CD →+BC →+F A →.【解】 (1)BC →+AB →=AB →+BC →=AC →. (2)DB→+CD →+BC → =BC→+CD →+DB → =(BC→+CD →)+DB → =BD→+DB →=0. (3)AB →+DF →+CD →+BC →+F A → =AB →+BC →+CD →+DF →+F A → =AC →+CD →+DF →+F A → =AD →+DF →+F A →=AF →+F A →=0.向量加法运算中化简的两种方法(1)代数法:借助向量加法的交换律和结合律,将向量转化为“首尾相接”,向量的和即为第一个向量的起点指向最后一个向量终点的向量.(2)几何法:通过作图,根据三角形法则或平行四边形法则化简. 典型应用3向量加法的实际应用某人在静水中游泳,速度为43千米/小时,他在水流速度为4千米/小时的河中游泳.若他垂直游向河对岸,则他实际沿什么方向前进?实际前进的速度大小为多少?【解】 如图,设此人游泳的速度为OB →,水流的速度为OA →,以OA→,OB →为邻边作▱OACB ,则此人的实际速度为OA →+OB →=OC →. 由勾股定理知|OC→|=8,且在Rt △ACO 中,∠COA =60°,故此人沿与河岸成60°的夹角顺着水流的方向前进,速度大小为8千米/小时.应用向量解决平面几何和物理学问题的基本步骤(1)表示:用向量表示有关量,将所要解答的问题转化为向量问题. (2)运算:应用向量加法的平行四边形法则和三角形法则,将相关向量进行运算,解答向量问题.(3)还原:根据向量的运算结果,结合向量共线、相等等概念回答原问题.6.2.2 向量的减法运算1.相反向量(1)定义:与a 长度相等,方向相反的向量,叫做a 的相反向差,记作-a ,并且规定,零向量的相反向量仍是零向量.(2)结论①-(-a )=a ,a +(-a )=(-a )+a =0;②如果a 与b 互为相反向量,那么a =-b ,b =-a ,a +b =0. ■名师点拨相反向量与相等向量一样,从“长度”和“方向”两方面进行定义,相反向量必为平行向量.2.向量的减法(1)向量a 加上b 的相反向量,叫做a 与b 的差,即a -b =a +(-b ).求两个向量差的运算叫做向量的减法.(2)作法:在平面内任取一点O ,作OA →=a ,OB →=b ,则向量BA →=a -b ,如图所示.(3)几何意义:a -b 可以表示为从向量b 的终点指向向量a 的终点的向量. ■名师点拨(1)减去一个向量相当于加上这个向量的相反向量.(2)在用三角形法则作向量减法时,只要记住“连接向量终点,箭头指向被减向量”即可.(3)对于任意两个向量a ,b ,都有||a |-|b ||≤|a +b |≤|a |+|b |. 典型应用1 向量的减法运算化简下列各式: (1)(AB→+MB →)+(-OB →-MO →); (2)AB→-AD →-DC →. 【解】 (1)法一:原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB→=AB →. 法二:原式=AB→+MB →+BO →+OM →=AB →+(MB →+BO →)+OM →=AB →+MO →+OM →=AB →+0 =AB→. (2)法一:原式=DB→-DC →=CB →.法二:原式=AB→-(AD →+DC →)=AB →-AC →=CB →.向量减法运算的常用方法典型应用2向量的减法及其几何意义如图,已知向量a ,b ,c 不共线,求作向量a +b -c . 【解】 法一:如图①,在平面内任取一点O ,作OA →=a ,OB →=b ,OC→=c ,连接BC , 则CB→=b -c . 过点A 作AD 綊BC ,连接OD , 则AD→=b -c , 所以OD→=OA →+AD →=a +b -c . 法二:如图②,在平面内任取一点O ,作OA →=a ,AB →=b ,连接OB ,则OB →=a +b ,再作OC →=c ,连接CB ,则CB→=a +b -c . 法三:如图③,在平面内任取一点O , 作OA→=a ,AB →=b ,连接OB , 则OB→=a +b ,再作CB →=c ,连接OC , 则OC→=a +b -c .求作两个向量的差向量的两种思路(1)可以转化为向量的加法来进行,如a -b ,可以先作-b ,然后作a +(-b )即可.(2)可以直接用向量减法的三角形法则,即把两向量的起点重合,则差向量为连接两个向量的终点,指向被减向量的终点的向量.典型应用3用已知向量表示其他向量如图所示,四边形ACDE 是平行四边形,点B 是该平行四边形外一点,且AB→=a ,AC →=b ,AE →=c ,试用向量a ,b ,c 表示向量CD →,BC →,BD →.【解】 因为四边形ACDE 是平行四边形, 所以CD→=AE →=c ,BC →=AC →-AB →=b -a , 故BD→=BC →+CD →=b -a +c .用已知向量表示其他向量的三个关注点(1)搞清楚图形中的相等向量、相反向量、共线向量以及构成三角形的三个向量之间的关系,确定已知向量与被表示向量的转化渠道.(2)注意综合应用向量加法、减法的几何意义以及向量加法的结合律、交换律来分析解决问题.(3)注意在封闭图形中利用向量加法的多边形法则. 例如,在四边形ABCD 中,AB →+BC →+CD →+DA →=0.6.2.3 向量的数乘运算1.向量的数乘的定义一般地,规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:(1)|λa |=|λ||a |.(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0.■名师点拨λ是实数,a 是向量,它们的积λa 仍然是向量.实数与向量可以相乘,但是不能相加减,如λ+a ,λ-a 均没有意义.2.向量数乘的运算律 设λ,μ为实数,那么: (1)λ(μa )=(λμ)a . (2)(λ+μ)a =λa +μa . (3)λ(a +b )=λa +λb .3.向量的线性运算及向量共线定理(1)向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b .(2)向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa . ■名师点拨若将定理中的条件a ≠0去掉,即当a =0时,显然a 与b 共线. (1)若b ≠0,则不存在实数λ,使b =λa . (2)若b =0,则对任意实数λ,都有b =λa . 典型应用1 向量的线性运算(1)计算:①4(a +b )-3(a -b )-8a ; ②(5a -4b +c )-2(3a -2b +c ); ③23⎣⎢⎡⎦⎥⎤(4a -3b )+13b -14(6a -7b ).(2)设向量a =3i +2j ,b =2i -j ,求⎝ ⎛⎭⎪⎫13a -b -⎝ ⎛⎭⎪⎫a -23b +(2b -a ). 【解】 (1)①原式=4a +4b -3a +3b -8a =-7a +7b .②原式=5a -4b +c -6a +4b -2c =-a -c .③原式=23⎝ ⎛⎭⎪⎫4a -3b +13b -32a +74b=23⎝ ⎛⎭⎪⎫52a -1112b=53a -1118b .(2)原式=13a -b -a +23b +2b -a =⎝ ⎛⎭⎪⎫13-1-1a +⎝ ⎛⎭⎪⎫-1+23+2b =-53a +53b =-53(3i +2j )+53(2i -j ) =⎝ ⎛⎭⎪⎫-5+103i +⎝ ⎛⎭⎪⎫-103-53j =-53i -5j .向量线性运算的基本方法(1)类比方法:向量的数乘运算可类似于代数多项式的运算.例如,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在数与向量的乘积中同样适用,但是在这里的“同类项”“公因式”指向量,实数看作是向量的系数.(2)方程方法:向量也可以通过列方程来解,把所求向量当作未知数,利用代数方程的方法求解,同时在运算过程中要多注意观察,恰当运用运算律,简化运算.典型应用2向量共线定理及其应用已知非零向量e 1,e 2不共线.(1)如果AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A 、B 、D 三点共线;(2)欲使k e 1+e 2和e 1+k e 2共线,试确定实数k 的值.【解】 (1)证明:因为AB →=e 1+e 2,BD →=BC →+CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB→. 所以AB→,BD →共线,且有公共点B , 所以A 、B 、D 三点共线.(2)因为k e 1+e 2与e 1+k e 2共线,所以存在实数λ,使k e 1+e 2=λ(e 1+k e 2), 则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线,只能有⎩⎨⎧k -λ=0,λk -1=0,所以k =±1.向量共线定理的应用(1)若b =λa (a ≠0),且b 与a 所在的直线无公共点,则这两条直线平行. (2)若b =λa (a ≠0),且b 与a 所在的直线有公共点,则这两条直线重合.例如,若AB→=λAC →,则AB →与AC →共线,又AB →与AC →有公共点A ,从而A ,B ,C 三点共线,这是证明三点共线的重要方法.典型应用3用已知向量表示其他向量如图,ABCD 是一个梯形,AB→∥CD →且|AB →|=2|CD →|,M ,N 分别是DC ,AB 的中点,已知AB →=e 1,AD →=e 2,试用e 1,e 2表示下列向量.(1)AC→=________; (2)MN→=________. 【解析】 因为AB →∥CD →,|AB →|=2|CD →|,所以AB→=2DC →,DC →=12AB →. (1)AC →=AD →+DC →=e 2+12e 1. (2)MN→=MD →+DA →+AN → =-12DC →-AD →+12AB → =-14e 1-e 2+12e 1=14e 1-e 2.【答案】 (1)e 2+12e 1 (2)14e 1-e 2[变条件]在本例中,若条件改为BC →=e 1,AD →=e 2,试用e 1,e 2表示向量MN →.解:因为MN→=MD →+DA →+AN →, MN→=MC →+CB →+BN →, 所以2MN→=(MD →+MC →)+DA →+CB →+(AN →+BN →).又因为M ,N 分别是DC ,AB 的中点, 所以MD→+MC →=0,AN →+BN →=0. 所以2MN→=DA →+CB →,所以MN→=12(-AD →-BC →)=-12e 2-12e 1.用已知向量表示其他向量的两种方法(1)直接法(2)方程法当直接表示比较困难时,可以首先利用三角形法则和平行四边形法则建立关于所求向量和已知向量的等量关系,然后解关于所求向量的方程.6.2.4 向量的数量积1.两向量的夹角(1)定义:已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角.(2)特例:①当θ=0时,向量a 与b 同向;②当θ=π2时,向量a 与b 垂直,记作a ⊥b ; ③当θ=π时,向量a 与b 反向. ■名师点拨按照向量夹角的定义,只有两个向量的起点重合时所对应的角才是两向量的夹角,如图所示,∠BAC 不是向量CA →与AB →的夹角.作AD→=CA →,则∠BAD 才是向量CA →与AB →的夹角.2.向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,把数量|a ||b |cos__θ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos__θ.规定零向量与任一向量的数量积为0. ■名师点拨(1)两向量的数量积,其结果是数量,而不是向量,它的值等于两向量的模与两向量夹角余弦值的乘积,其符号由夹角的余弦值来决定.(2)两个向量的数量积记作a ·b ,千万不能写成a ×b 的形式. 3.投影向量如图(1),设a ,b 是两个非零向量,AB→=a ,CD →=b ,我们考虑如下变换:过AB →的起点A 和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1→,我们称上述变换为向量a 向向量b 投影(project),A 1B 1→叫做向量a 在向量b 上的投影向量.如图(2),在平面内任取一点O ,作OM→=a ,ON →=b ,过点M作直线ON 的垂线,垂足为M 1,则OM 1→就是向量a 在向量b 上的投影向量.(2)若与b 方向相同的单位向量为e ,a 与b 的夹角为θ,则OM 1→=|a |cos θ e .■名师点拨当θ=0时,OM 1→=|a |e ;当θ=π2时,OM 1→=0;当θ∈⎣⎢⎡⎭⎪⎫0,π2时,OM 1→与b方向相同;当θ∈⎝ ⎛⎦⎥⎤π2,π时,OM 1→与b 方向相反;当θ=π时,OM 1→=-|a |e .4.向量数量积的性质设a ,b 是非零向量,它们的夹角是θ,e 是与b 方向相同的单位向量,则 (1)a ·e =e ·a =|a |cos θ. (2)a ⊥b ⇔a·b =0.(3)当a 与b 同向时,a·b =|a ||b |;当a 与b 反向时,a·b =-|a ||b |.特别地,a·a =|a |2或|a |=a·a . (4)|a·b |≤|a ||b |. ■名师点拨对于性质(2),可以用来解决有关垂直的问题,即若要证明某两个非零向量垂直,只需判定它们的数量积为0即可;若两个非零向量的数量积为0,则它们互相垂直.5.向量数量积的运算律 (1)a·b =b·a (交换律).(2)(λa )·b =λ(a·b )=a ·(λb )(结合律). (3)(a +b )·c =a·c +b·c (分配律). ■名师点拨(1)向量的数量积不满足消去律;若a ,b ,c 均为非零向量,且a·c =b·c ,但得不到a =b .(2)(a·b )·c ≠a·(b·c ),因为a·b ,b·c 是数量积,是实数,不是向量,所以(a·b )·c 与向量c 共线,a·(b·c )与向量a 共线,因此,(a·b )·c =a·(b·c )在一般情况下不成立.(3)(a ±b )2=a 2±2a ·b +b 2. 典型应用1平面向量的数量积运算(1)已知|a |=6,|b |=4,a 与b 的夹角为60°,求(a +2b )·(a +3b ).(2)如图,在▱ABCD 中,|AB →|=4,|AD →|=3,∠DAB =60°,求:①AD→·BC →;②AB →·DA →.【解】 (1)(a +2b )·(a +3b ) =a·a +5a·b +6b·b =|a |2+5a·b +6|b |2=|a |2+5|a ||b |cos 60°+6|b |2=62+5×6×4×cos 60°+6×42=192. (2)①因为AD→∥BC →,且方向相同,所以AD→与BC →的夹角是0°, 所以AD→·BC →=|AD →||BC →|·cos 0°=3×3×1=9. ②因为AB→与AD →的夹角为60°,所以AB→与DA →的夹角为120°, 所以AB→·DA →=|AB →||DA →|·cos 120° =4×3×⎝ ⎛⎭⎪⎫-12=-6.[变问法]若本例(2)的条件不变,求AC →·BD →.解:因为AC→=AB →+AD →,BD →=AD →-AB →,所以AC→·BD →=(AB →+AD →)·(AD →-AB →) =AD→2-AB →2=9-16=-7.向量数量积的求法(1)求两个向量的数量积,首先确定两个向量的模及向量的夹角,其中准确求出两向量的夹角是求数量积的关键.(2)根据数量积的运算律,向量的加、减与数量积的混合运算类似于多项式的乘法运算.典型应用2 向量模的有关计算(1)已知平面向量a 与b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=( )A.3B.23 C.4 D.12(2)向量a,b满足|a|=1,|a-b|=32,a与b的夹角为60°,则|b|=()A.13 B.12C.15 D.14【解析】(1)|a+2b|=(a+2b)2=a2+4a·b+4b2=|a|2+4|a||b|cos 60°+4|b|2=4+4×2×1×12+4=2 3.(2)由题意得|a-b|2=|a|2+|b|2-2|a||b|·cos 60°=34,即1+|b|2-|b|=34,解得|b|=12.【答案】(1)B(2)B求向量的模的常见思路及方法(1)求模问题一般转化为求模的平方,与向量数量积联系,并灵活应用a2=|a|2,勿忘记开方.(2)a·a=a2=|a|2或|a|=a2,可以实现实数运算与向量运算的相互转化.典型应用3向量的夹角与垂直命题角度一:求两向量的夹角(1)已知|a|=6,|b|=4,(a+2b)·(a-3b)=-72,则a与b的夹角为________;(2)(2019·高考全国卷Ⅰ改编)已知非零向量a,b满足|a|=2|b|,且(a-b)⊥b,则a与b的夹角为______.【解析】(1)设a与b的夹角为θ,(a+2b)·(a-3b)=a·a-3a·b+2b·a-6b·b =|a|2-a·b-6|b|2=|a|2-|a||b|cos θ-6|b|2=62-6×4×cos θ-6×42=-72, 所以24cos θ=36+72-96=12, 所以cos θ=12.又因为θ∈[]0,π,所以θ=π3.(2)设a 与b 的夹角为θ,由(a -b )⊥b ,得(a -b )·b =0,所以a ·b =b 2,所以cos θ=b 2|a ||b |.又因为|a |=2|b |,所以cos θ=|b |22|b |2=12.又因为θ∈[0,π],所以θ=π3. 【答案】 (1)π3 (2)π3 命题角度二:证明两向量垂直已知a ,b 是非零向量,当a +t b (t ∈R )的模取最小值时,求证:b ⊥(a+t b ).【证明】 因为|a +t b |=(a +t b )2=a 2+t 2b 2+2t a ·b =|b |2t 2+2a ·b t +|a |2,所以当t =-2a ·b 2|b |2=-a·b|b |2时,|a +t b |有最小值. 此时b ·(a +t b )=b·a +t b 2=a·b +⎝ ⎛⎭⎪⎫-a·b |b |2·|b |2=a·b -a·b =0.所以b ⊥(a +t b ). 命题角度三:利用夹角和垂直求参数(1)已知a ⊥b ,|a |=2,|b |=3且向量3a +2b 与k a -b 互相垂直,则k的值为( )A .-32 B .32 C .±32D .1(2)已知a ,b ,c 为单位向量,且满足3a +λb +7c =0,a 与b 的夹角为π3,则实数λ=________.【解析】(1)因为3a+2b与k a-b互相垂直,所以(3a+2b)·(k a-b)=0,所以3k a2+(2k-3)a·b-2b2=0.因为a⊥b,所以a·b=0,又|a|=2,|b|=3,所以12k-18=0,k=3 2.(2)由3a+λb+7c=0,可得7c=-(3a+λb),即49c2=9a2+λ2b2+6λa·b,而a,b,c为单位向量,则a2=b2=c2=1,则49=9+λ2+6λcos π3,即λ2+3λ-40=0,解得λ=-8或λ=5.【答案】(1)B(2)-8或5求向量a与b夹角的思路(1)求向量a与b夹角的关键是计算a·b及|a||b|,在此基础上结合数量积的定义或性质计算cos θ=a·b|a||b|,最后借助θ∈[0,π],求出θ的值.(2)在个别含有|a|,|b|与a·b的等量关系中,常利用消元思想计算cos θ的值.6.3 平面向量基本定理及坐标表示6.3.1平面向量基本定理平面向量基本定理(1)e 1,e 2是同一平面内的两个不共线的向量,{e 1,e 2}的选取不唯一,即一个平面可以有多个基底.(2)基底{e 1,e 2}确定后,实数λ1,λ2是唯一确定的. 典型应用1平面向量基本定理的理解设e 1,e 2是不共线的两个向量,给出下列四组向量:①e 1与e 1+e 2;②e 1-2e 2与e 2-2e 1;③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中,不能作为平面内所有向量的一组基底的是________(写出满足条件的序号).【解析】 ①设e 1+e 2=λe 1,则⎩⎨⎧λ=1,1=0,无解,所以e 1+e 2与e 1不共线,即e 1与e 1+e 2能作为一组基底. ②设e 1-2e 2=λ(e 2-2e 1),则(1+2λ)e 1-(2+λ)e 2=0,则⎩⎨⎧1+2λ=0,2+λ=0,无解,所以e 1-2e 2与e 2-2e 1不共线,即e 1-2e 2与e 2-2e 1能作为一组基底.③因为e 1-2e 2=-12(4e 2-2e 1), 所以e 1-2e 2与4e 2-2e 1共线,即e 1-2e 2与4e 2-2e 1不能作为一组基底.④设e 1+e 2=λ(e 1-e 2),则(1-λ)e 1+(1+λ)e 2=0,则⎩⎨⎧1-λ=0,1+λ=0,无解,所以e 1+e 2与e 1-e 2不共线,即e 1+e 2与e 1-e 2能作为一组基底.【答案】 ③对基底的理解(1)两个向量能否作为一个基底,关键是看这两个向量是否共线.若共线,则不能作基底,反之,则可作基底.(2)一个平面的基底一旦确定,那么平面上任意一个向量都可以用这个基底唯一线性表示出来.设向量a 与b 是平面内两个不共线的向量,若x 1a +y 1b =x 2a +y 2b ,则⎩⎨⎧x 1=x 2,y 1=y 2.[提醒] 一个平面的基底不是唯一的,同一个向量用不同的基底表示,表达式不一样.典型应用2用基底表示平面向量如图所示,在▱ABCD 中,点E ,F 分别为BC ,DC 边上的中点,DE与BF 交于点G ,若AB→=a ,AD →=b ,试用基底{a ,b }表示向量DE →,BF →.【解】 DE →=DA →+AB →+BE →=-AD→+AB →+12BC → =-AD→+AB →+12AD →=a -12b . BF→=BA →+AD →+DF →=-AB→+AD →+12AB →=b -12a .1.[变问法]本例条件不变,试用基底{a ,b }表示AG →.解:由平面几何知识知BG =23BF , 故AG→=AB →+BG →=AB →+23BF → =a +23⎝ ⎛⎭⎪⎫b -12a=a +23b -13a =23a +23b .2.[变条件]若将本例中的向量“AB →,AD →”换为“CE →,CF →”,即若CE →=a ,CF →=b ,试用基底{a ,b }表示向量DE→,BF →. 解:DE→=DC →+CE →=2FC →+CE →=-2CF →+CE →=-2b +a . BF→=BC →+CF →=2EC →+CF → =-2CE→+CF →=-2a +b .用基底表示向量的两种方法(1)运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止.(2)通过列向量方程或方程组的形式,利用基底表示向量的唯一性求解. 典型应用3平面向量基本定理的应用如图,在△ABC 中,点M 是BC 的中点,点N 在AC 上,且AN =2NC ,AM 与BN 相交于点P ,求AP ∶PM 与BP ∶PN .【解】 设BM →=e 1,CN →=e 2, 则AM →=AC →+CM →=-3e 2-e 1,BN →=BC →+CN →=2e 1+e 2. 因为A ,P ,M 和B ,P ,N 分别共线,所以存在实数λ,μ使得AP →=λAM →=-λe 1-3λe 2, BP →=μBN →=2μe 1+μe 2. 故BA →=BP →+P A →=BP →-AP →=(λ+2μ)e 1+(3λ+μ)e 2. 而BA →=BC →+CA →=2e 1+3e 2,由平面向量基本定理, 得⎩⎨⎧λ+2μ=2,3λ+μ=3,解得⎩⎪⎨μ=35.所以AP →=45AM →,BP →=35BN →,所以AP ∶PM =4∶1,BP ∶PN =3∶2.1.[变问法]在本例条件下,若CM→=a ,CN →=b ,试用a ,b 表示CP →.解:由本例解析知BP ∶PN =3∶2,则NP →=25NB →, CP→=CN →+NP →=CN →+25NB →=b +25(CB →-CN →) =b +45a -25b =35b +45a .2.[变条件]若本例中的点N 为AC 的中点,其他条件不变,求AP ∶PM 与BP ∶PN .解:如图,设BM →=e 1,CN →=e 2,则AM →=AC →+CM →=-2e 2-e 1,BN →=BC →+CN →=2e 1+e 2. 因为A ,P ,M 和B ,P ,N 分别共线,所以存在实数λ,μ使得AP →=λAM →=-λe 1-2λe 2, BP →=μBN →=2μe 1+μe 2. 故BA →=BP →+P A →=BP →-AP →=(λ+2μ)e 1+(2λ+μ)e 2. 而BA →=BC →+CA →=2e 1+2e 2,由平面向量基本定理, 得⎩⎨⎧λ+2μ=2,2λ+μ=2,解得⎩⎪⎨μ=23.所以AP →=23AM →,BP →=23BN →, 所以AP ∶PM =2,BP ∶PN =2.若直接利用基底表示向量比较困难,可设出目标向量并建立其与基底之间满足的二元关系式,然后利用已知条件及相关结论,从不同方向和角度表示出目标向量(一般需建立两个不同的向量表达式),再根据待定系数法确定系数,建立方程或方程组,解方程或方程组即得.6.3.2 平面向量的正交分解及坐标表示 6.3.3 平面向量加、减运算的坐标表示 6.3.4 平面向量数乘运算的坐标表示第1课时 平面向量的分解及加、减、数乘运算的坐标表示1.平面向量坐标的相关概念■名师点拨(1)平面向量的正交分解实质上是平面向量基本定理的一种应用形式,只是两个基向量e 1和e 2互相垂直.(2)由向量坐标的定义知,两向量相等的充要条件是它们的横、纵坐标对应相等,即a =b ⇔x 1=x 2且y 1=y 2,其中a =(x 1,y 1),b =(x 2,y 2).2.平面向量的坐标运算(1)若a =(x 1,y 1),b =(x 2,y 2),λ∈R ,则 ①a +b =(x 1+x 2,y 1+y 2); ②a -b =(x 1-x 2,y 1-y 2); ③λa =(λx 1,λy 1).(2)一个向量的坐标等于表示此向量的有向线段的终点坐标减去起点坐标. ■名师点拨(1)向量的坐标只与起点、终点的相对位置有关,而与它们的具体位置无关. (2)已知向量AB →的起点A (x 1,y 1),终点B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1). 典型应用1平面向量的坐标表示已知O 是坐标原点,点A 在第一象限,|OA →|=43,∠xOA =60°,(1)求向量OA→的坐标;(2)若B (3,-1),求BA→的坐标.【解】 (1)设点A (x ,y ),则x =|OA →|cos 60°=43cos 60°=23,y =|OA →|sin60°=43sin 60°=6,即A (23,6),所以OA→=(23,6). (2)BA→=(23,6)-(3,-1)=(3,7).求点和向量坐标的常用方法(1)求一个点的坐标,可以转化为求该点相对于坐标原点的位置的坐标. (2)求一个向量的坐标时,可以首先求出这个向量的始点坐标和终点坐标,再运用终点坐标减去始点坐标得到该向量的坐标.典型应用2平面向量的坐标运算(1)已知向量a =(5,2),b =(-4,-3),若c 满足3a -2b +c =0,则c =( )A .(-23,-12)B .(23,12)C .(7,0)D .(-7,0)(2)已知A (-2,4),B (3,-1),C (-3,-4),且CM →=3 CA →,CN →=2 CB →,求点M ,N 的坐标.【解】 (1)选A.因为a =(5,2),b =(-4,-3),且c 满足3a -2b +c =0,所以c =2b -3a =2(-4,-3)-3(5,2)=(-8-15,-6-6)=(-23,-12).(2)法一:因为A (-2,4),B (3,-1),C (-3,-4), 所以CA→=(-2,4)-(-3,-4)=(1,8), CB→=(3,-1)-(-3,-4)=(6,3). 因为CM→=3 CA →,CN →=2 CB →, 所以CM→=3(1,8)=(3,24),CN →=2(6,3)=(12,6). 设M (x 1,y 1),N (x 2,y 2),所以CM →=(x 1+3,y 1+4)=(3,24), CN →=(x 2+3,y 2+4)=(12,6), 所以⎩⎨⎧x 1+3=3,y 1+4=24,⎩⎨⎧x 2+3=12,y 2+4=6.解得⎩⎨⎧x 1=0,y 1=20,⎩⎨⎧x 2=9,y 2=2. 所以M (0,20),N (9,2).法二:设O 为坐标原点,则由CM→=3 CA →,CN →=2 CB →, 可得OM→-OC →=3(OA →-OC →),ON →-OC →=2(OB →-OC →), 所以OM→=3 OA →-2 OC →,ON →=2 OB →-OC →. 所以OM→=3(-2,4)-2(-3,-4)=(0,20), ON→=2(3,-1)-(-3,-4)=(9,2). 所以M (0,20),N (9,2).平面向量坐标(线性)运算的方法(1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则进行.(2)若已知有向线段两端点的坐标,则必须先求出向量的坐标,然后再进行向量的坐标运算.(3)向量的线性坐标运算可类比数的运算进行. 典型应用3向量坐标运算的综合应用已知点O (0,0),A (1,2),B (4,5),及OP→=OA →+tAB →.(1)t 为何值时,点P 在x 轴上?点P 在y 轴上?点P 在第二象限? (2)四边形OABP 能为平行四边形吗?若能,求出t 的值;若不能,请说明理由.【解】 (1)OP →=OA →+tAB →=(1,2)+t (3,3)=(1+3t ,2+3t ).若点P 在x 轴上,则2+3t =0,所以t =-23. 若点P 在y 轴上,则1+3t =0,所以t =-13. 若点P 在第二象限,则⎩⎨⎧1+3t <0,2+3t >0,所以-23<t <-13.(2)OA→=(1,2),PB →=(3-3t ,3-3t ).若四边形OABP 为平行四边形, 则OA →=PB →,所以⎩⎨⎧3-3t =1,3-3t =2,该方程组无解.故四边形OABP 不能为平行四边形.[变问法]若保持本例条件不变,问t 为何值时,B 为线段AP 的中点? 解:由OP→=OA →+tAB →,得AP →=tAB →.所以当t =2时,AP→=2AB →,B 为线段AP 的中点.向量中含参数问题的求解策略(1)向量的坐标含有两个量:横坐标和纵坐标,如果纵坐标或横坐标是一个变量,则表示向量的点的坐标的位置会随之改变.(2)解答这类由参数决定点的位置的题目,关键是列出满足条件的含参数的方程(组),解这个方程(组),就能达到解题的目的.第2课时 两向量共线的充要条件及应用两向量共线的充要条件设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.则a ,b (b ≠0)共线的充要条件是x 1y 2-x 2y 1=0.■名师点拨(1)两个向量共线的坐标表示还可以写成x 1x 2=y 1y 2(x 2≠0,y 2≠0),即两个不平行于坐标轴的共线向量的对应坐标成比例.(2)当a ≠0,b =0时,a ∥b ,此时x 1y 2-x 2y 1=0也成立,即对任意向量a ,b 都有x 1y 2-x 2y 1=0⇔a ∥b .典型应用1 向量共线的判定(1)已知向量a =(1,-2),b =(3,4).若(3a -b )∥(a +k b ),则k =________.(2)已知A (-1,-1),B (1,3),C (2,5),判断AB →与AC →是否共线?如果共线,它们的方向相同还是相反?【解】 (1)3a -b =(0,-10),a +k b =(1+3k ,-2+4k ), 因为(3a -b )∥(a +k b ),所以0-(-10-30k )=0, 所以k =-13.故填-13.(2)因为AB→=(1-(-1),3-(-1))=(2,4),AC→=(2-(-1),5-(-1))=(3,6), 因为2×6-3×4=0,所以AB→∥AC →,所以AB →与AC →共线. 又AB→=23AC →,所以AB →与AC →的方向相同.[变问法]若本例(1)条件不变,判断向量(3a -b )与(a +k b )是反向还是同向? 解:由向量(3a -b )与(a +k b )共线,得k =-13, 所以3a -b =(3,-6)-(3,4)=(0,-10), a +k b =a -13b =(1,-2)-13(3,4)=⎝ ⎛⎭⎪⎫0,-103=13(0,-10), 所以向量(3a -b )与(a +k b )同向.向量共线的判定方法典型应用2 三点共线问题(1)已知OA→=(3,4),OB →=(7,12),OC →=(9,16),求证:点A ,B ,C 共线;(2)设向量OA →=(k ,12),OB →=(4,5),OC →=(10,k ),求当k 为何值时,A ,B ,C 三点共线.【解】 (1)证明:由题意知AB→=OB →-OA →=(4,8),AC →=OC →-OA →=(6,12),所以AC →=32AB →, 即AB→与AC →共线. 又因为AB→与AC →有公共点A ,所以点A ,B ,C 共线.(2)法一:因为A ,B ,C 三点共线,即AB →与AC →共线,所以存在实数λ(λ∈R ),使得AB→=λAC →.因为AB→=OB →-OA →=(4-k ,-7),AC →=OC →-OA →=(10-k ,k -12), 所以(4-k ,-7)=λ(10-k ,k -12), 即⎩⎨⎧4-k =λ(10-k ),-7=λ(k -12),解得k =-2或k =11. 所以当k =-2或k =11时,A ,B ,C 三点共线. 法二:由已知得AB→与AC →共线,因为AB→=OB →-OA →=(4-k ,-7),AC →=OC →-OA →=(10-k ,k -12),。

相关文档
最新文档