2014-2015年四川省蓬溪县大石中学华师大九年级上数学期末模拟试题及答案【华师大版】
2014~2015学年度九年级数学上册期末考试
2014~2015学年度九年级数学上册期末考试一、选择题(每小题3分,共45分)1、若已知m 是方程 012=--x x 的一个根,则代数式m m -2的值等于( ) A、-1 B、0 C、1 D、22、下列方程中,是关于x 的一元二次方程的是( )A、)1(2)1(2+=+x x B、05112=-+xx C、0)1(2=++-c bx x a D、1222-=+x x x3、若关于x 的方程0)1(222=+-+k x k x 有实数根,则k 的取值范围是( )21<k A 、 21≤k B 、 21>k C、 21≥k D、 4、方程0252=+-x x 的两个实数根为1x 和2x ,则21x x +-21x x 的值是( )7-、A 3-、B 7C、 3D、5、若关于x 的方程的两个根为11=x ,22=x ,则这个方程是( )0232=-+x x A 、 0232=--x x B 、0322=+-x x C、 0322=++x x D、 6、用换元法解方程716)1(222=+++x x x x 时,如果设xx y 12+=,那么将原方程化为关于y 的一元二次方程的一般形式是( )06722=+-y y A 、 06722=++y y B 、0672=+-y y C、 0672=++y y D、7、若一元二次方程022=--m x x 无实数根,则一次函数1)1(-++=m x m y 图像不经过( )A、第一像限 B、第二像限 C、第三像限 D、第四像限8、某超市一月份的营业额是100万元,第一季度的营业额共800万元,如果平均每月的增涨率为x ,那么所列的方程应为( ) 800)1(1002=+x A 、 8002100100=⨯+x B 、8003100100=⨯+x C、 []800)1()1(11002=++++x x D、 9、二次函数322+-=x x y 化为k h x y +-=2)(的形式,的结果是( )4)1(2++=x y A 、 4)1(2+-=x y B 、2)1(2++=x y C 、 2)1(2+-=x y D 、10、下列四个函数中,y 随x 增大而增大的是( )11、如图24-2所示, o 是△ABC 的外接圆,已知∠B=60º,则∠CAO=( ) A、15º B、30º C、45º D、60º 12、如图24-3所示,⊙o 的外切梯形ABCD 中,若AD ∥BC,则∠DOC=( ) A、45º B、60º C、70º D、90º13、函数b ax y +=与函数c bx ax y ++=2,在同一平面坐标系里面的图像是( )14、如图24-4所示,O是△ABC 的内心,过点O作EF ∥AB,与AC,BC 交于E,F,则( ) A、EF>AE+BF B、EF<AE+BF C、EF=AE+BF D、EF ≤AE+BF15、如图24-5所示,在⊙o 中有拆线OABC,其中OA=8,AB=12, ∠A=∠B=60º,则弦BC的长为( )A、19 B、16 C、18 D、20二、填空题(每空4分,共28分) 16、方程01)1()1(22=-++-x m x m ,当m 满足 时,方程为关于x 的一元二次方程,当m 满足 时,方程为一元一次方程。
2014~2015第一学年度初三数学上期末测试卷 含答案
BC2014-2015学年度第一学期期末初三数学试卷 2015.1一、选择题 (本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..选项是符合题意的. 1. 已知34m n=,那么下列式子中一定成立的是 A .43m n = B .34m n = C .4m n = D . 12mn =2. 如图,△ABC 中,DE ∥BC ,13AD AB =,2cm AE =, 则AC 的长是X k B 1 . c o m A .2cmB .4cmC .6cmD .8cm3. 如图,⊙O 是ABC ∆的外接圆,50A ∠=︒ ,则BOC ∠的度数为A .40︒B .50︒C .80︒D .100︒4. 将抛物线22y x =向右平移1个单位,再向上平移3个单位,得到的抛物线是A .22(1)3y x =++B .22(1)3y x =-+C .22(1)3y x =+- D .22(1)3y x =--5.如图,在Rt ABC ∆ ,90C ∠=︒ ,8AC =,6BC =,则sin B 的值等于A .34B . 34C .45D . 356. 如图,AB 是O 的直径,C D 、是圆上两点,70CBA ∠=︒,则D ∠的度数为A .10︒B .20︒C .70︒D .90︒7. 在平面直角坐标系xOy 中,以(3,4)M 为圆心,半径为5的圆与x 轴的位置关系是A .相离B .相交C .相切D .无法确定 8. 如图,ABC ∆ 中,4AB AC ==,120BAC ∠=︒. 点O 是BC 中点,点D 沿B →A →C 方向从B 运动 到C .设点D 经过的路径长为x ,OD 长为y .则函数y 的图象大致为A ABDCBADCBA二、填空题(本题共16分,每小题4分)9. 若两个相似三角形对应边的比是3:2,那么这两个相似三角形面积的比是 . 10. 若反比例函数1m y x-=的图象分布在第二、四象限,则m 的取值范围是______. 11. 若扇形的圆心角为120°,半径为3cm ,那么扇形的面积是____2cm . 12. 如图,边长为1的正方形ABCD 放置在平面直角坐标系中,顶点A 与坐标原点O 重合,点B 在x 轴上.将正方形ABCD 沿x 轴正方向作无滑动滚动,当点D 第一次落在x 轴上时,D 点的坐标是________,D 点经过的路径的总长度是________;当点D 第2014次落在x 轴上时,D 点经过的路径的总长度是_______.三、解答题(本题共50分,每小题5分) 13. 计算:sin 60cos3045tan 45︒︒+︒-︒14. 如图,在ABC ∆中,点D 在边AB 上,ACD ABC ∠=∠,1,3AD AB ==.求AC 的长.15. 已知二次函数243y x x =-+ .(1)求二次函数与x 轴的交点坐标; (2)求二次函数的对称轴和顶点坐标;(3)写出y 随x 增大而减小时自变量x 的取值范围.16. 如图,在DEF ∆中,2,4,120EF DE DEF ==∠=︒,EOD CBA17. 如图,AB 是⊙O 的弦,CD 是⊙O 的直径,CD AB ⊥,垂足为E .1,3CE ED == ,求AB 长.18. 如图,某数学兴趣小组想测量一棵树CD 的高度,他们先在点A 处测得树顶C 的仰角为30︒,然后沿AD 方向前行10m ,到达B 点,在B 处测得树顶C 的仰角高度为60︒ (A 、B 、D 三点在同一直线上)。
2014-2015学年九年级上数学期末试卷及答案解析
2014-2015九年级第一学期数学期末测试卷一.选择题(共10小题)1.已知实数a ,b 分别满足a 2﹣6a+4=0,b 2﹣6b+4=0,且a ≠b ,则的值是( )23.已知m ,n 是关于x 的一元二次方程x 2﹣3x+a=0的两个解,若(m ﹣1)(n ﹣1)4.如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD 的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有( )D . 7种5.如图,在△ABC 中,AC=BC ,点D 、E 分别是边AB 、AC 的中点,将△ADE 绕点E 旋转180°得△CFE ,则四边形ADCF 一定是( )4个黑球和若干个白球,它们除颜色外没有任何(m 为常数)的图象与x 轴的一个交点为(1,0),8.如图,二次函数y=ax 2+bx+c 的图象经过点(0,﹣2),与x 轴交点的横坐标分别为x 1,x 2,且﹣1<x 1<0,1<x 2<2,下列结论正确的是( )﹣9.如图,在平行四边形ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于E ,交DC 的延长线于F ,BG ⊥AE 于G ,BG=,则△EFC 的周长为( )D.810.如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是()二.填空题(共8小题)11.如果(2x+2y+1)(2x+2y﹣1)=63,那么x+y的值是_________.12.若,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是_________.13.如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2013的坐标为_________.14.一副扑克牌52张(不含鬼牌),分为黑桃、红心、方块、及梅花4种花色,每种花色各有13张,分别标有字母A、K、Q、J和数字10、9、8、7、6、5、4、3、2.从这副牌中任意抽取一张,则这张牌是标有字母的概率是_________.15.二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第16.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是_________.17.如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是_________.18.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF =4.其中正确的是_________(写出所有正确结论的序号).三.解答题(共10小题)19.随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)20如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.21.如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.22.如图,AD是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O 于点C,连接AC,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若AB=9,BC=6.求PC的长.23.如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B 两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.24.)为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的(1)设A产品的采购数量为x(件),采购单价为y1(元/件),求y1与x的关系式;(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的,且A产品采购单价不低于1200元,求该商家共有几种进货方案;(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B 两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.25.如图①,若二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(3,0)两点,点A关于正比例函数y=x的图象的对称点为C.(1)求b、c的值;(2)证明:点C在所求的二次函数的图象上;(3)如图②,过点B作DB⊥x轴交正比例函数y=x的图象于点D,连结AC,交正比例函数y=x的图象于点E,连结AD、CD.如果动点P从点A沿线段AD方向以每秒2个单位的速度向点D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动.当其中一个点到达终点时,另一个点随之停止运动,连结PQ、QE、PE.设运动时间为t秒,是否存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC?若存在,求出t的值;若不存在,请说明理由.26.在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.27.如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x 轴的正半轴上,且长分别为m、4m(m>0),D为边AB的中点,一抛物线l经过点A、D及点M(﹣1,﹣1﹣m).(1)求抛物线l的解析式(用含m的式子表示);(2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC 的延长线交于点E,若抛物线l与线段CE相交,求实数m的取值范围;(3)在满足(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标.28.如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=﹣4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.(1)求点A的坐标;(2)若△OBC是等腰三角形,求此抛物线的函数关系式.2014-2015学年九年级[上]数学期末测试卷参考答案与试题解析一.选择题(共10小题)1.(2013•烟台)已知实数a ,b 分别满足a 2﹣6a+4=0,b 2﹣6b+4=0,且a ≠b ,则=此题考查了一元二次方程根与系数的关系,熟练掌握根与系数的关系是解本题的关键. 2.(2013•咸宁)关于x 的一元二次方程(a ﹣1)x 2﹣2x+3=0有实数根,则整数a D . ﹣1 ,3.(2013•鄂州)已知m ,n 是关于x 的一元二次方程x 2﹣3x+a=0的两个解,若(m的关键.6.(2013•资阳)在一个不透明的盒子里,装有色外没有任何其他区别,÷8.(2013•济南)如图,二次函数y=ax +bx+c 的图象经过点(0,﹣2),与x 轴交点的横坐标分别为x 1,x 2,且﹣1<x 1<0,1<x 2<2,下列结论正确的是( )﹣<最小值:<﹣9.(2013•自贡)如图,在平行四边形ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于E ,交DC 的延长线于F ,BG ⊥AE 于G ,BG=,则△EFC 的周长为( ),AG=10.(2013•日照)如图,在△ABC 中,以BC 为直径的圆分别交边AC 、AB 于D 、E 两点,连接BD 、DE .若BD 平分∠ABC ,则下列结论不一定成立的是( ) ∴===二.填空题(共8小题) 11.如果(2x+2y+1)(2x+2y ﹣1)=63,那么x+y 的值是 4或﹣4 .兰州)若,且一元二次方程解:∵,13.(2013•威海)如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2013的坐标为(0,﹣2).∵=335从这副牌中任意抽取一张,则这张牌是标有字母的概率是=.故答案为:..15.(2013•营口)二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第四象限.x <联立消掉k=时,抛物线与的坐标为(,))时,×y=.17.(2011•湖州)如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的轴的交点的坐标特点是解此题的关=,连接E=.,根据垂径定理可得:,由,E=∴=,∵=,AG=== E=AD=,××=3∴(∴,,;足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,个月,则乙队施工个月,则乙队施工y≤20.(2013•潍坊)如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD 绕点C顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;,=135﹣垂直于OC ,OB=OC ,利用为公共边,利用SAS ,即可得证;OA=OC 的长,即可确定出AE=CE=AF=AE=AC=2AE=.BC=3,根据等AM=6;r=6r=,则CE=2r=OM=6﹣BE=2OM=然后判断Rt △PCM BM=CM=BC=3=6,r=6﹣r=CE=2r=OM=6=BE=2OM=∠MCP ,∴=,=PC=.求出二次函数的解析式为的方程,解方程),则D 点坐标为(x ,长度的最大值.两点,∴∴××,解得),时,有最大值,且的值,函数关系式即可求>=11,y=xxy=y=CEQ ,根据y=∴﹣x ,FOB=,∴C 作CK y=x ×,×,﹣y=﹣,当AC===.y=xCD=AD=2,∠AC=∴,即:﹣t=或t=,故舍去)t=本题是二次函数压轴题,考查了二次函数的图象与性质、正比例函数的图象与性质、待定系数法、对称、解直角三角形、相似三角形的判定与性质、解一元二次方程等知识点.试题的难点在于第(3)问,图形中:EQ=BE AE 在△ACD 与△BEF 中,,:B==EQ=AEH==,EH=BE::DM=OM=x 点坐标,运用待定系数法得到直,解得,m N=N=m ON==m m x ﹣×解得≤,,)﹣当时,m=)=,到达最高位置时的坐标为(,)考点:二次函数综合题.分析:(1)过点D作DF⊥x轴于点根据相似三角形对应边成比例得出=,即AF=1,进而得到点A(2)先由抛物线过原点((﹣2,0),求出对称轴为直线可知当△OBC是等腰三角形时,可分两种情况讨论:①求出y1的值,将A,设C(2,y2),列出方程,解方程求出抛物线的解析式.∴====362)代入,解得x=36(负值舍去))代入,解得xx x y=x。
2014-2015学年九年级上期数学期末试卷及答案
1.在4-,0,2-,1这四个数中,最小的数是( )A.4-B.2-C.0D.1 2.计算()234x -的结果是( )A.616x -B.516xC.64x -D.616x 3.如图,直线AB //CD ,直线EF 分别交直线AB 、CD 于 点E 、F ,EG 平分∠AEF 交CD 于点G ,若∠1=36°, 则∠2的大小是( )A.72°B.67°C.70°D.68°4.在函数1-=x y 中,自变量x 的取值范围是( )A.1>xB.1≠xC.1≤xD.1≥x 5.若点A (2-,m )在正比例函数x y 21-=的图像上,则m 的值是( ) A.41 B.41- C.1 D.1- 6.如图,AB 与⊙O 相切于点A ,AC 为⊙O 的直径,点D 在圆上,且满足∠BAD =40°,则 ∠ACD 的大小是( )A.50°B.45°C.40°D.42°7.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,AC =8,BD =6,点E 为AB 中点,连 接OE ,则OE 的长是( ) A.5 B.512 C.4 D.25 8.重庆一中初三年级某班10名同学的一次体考成绩如下表,则下列说法错误的是( )3题图xy12题图① ② ③A.这10名同学的平均成绩为45.5B.这10名同学成绩的中位数是45C.这10名同学成绩的众数为50D.这10名同学成绩的极差为2 9.分式方程0112=--x x 的解是( ) A.2-=x B.2=x C.32=x D.1=x 10.上周周末,小江进行了一次“惊心动魄”的自行车之旅,小江匀速行驶一段路程后,发 现了一处“世外桃源”,便停车享受美景,当小江准备拿手机拍照留影时,发现手机掉 了,于是小江沿原路原速返回,在路途中幸运地找到了手机(停车捡手机的时间忽略不 计),再掉头沿原计划路线以比原速大的速度行驶,则小江离出发点的距离s 与时间t 的 函数关系的大致图象是( )11.如图,下列一束束“鲜花”都是由一定数量形状相同且边长为1的菱形按照一定规律组 成,其中第①个图形含边长为1的菱形3个,第②个图形含边长为1的菱形6个,第③ 个图形含边长为1的菱形10个,... ...,按此规律,则第⑦个图形中含边长为1的菱形的 个数为( )A.36B.38C.34D.28 12.如图,∆ABC 是等腰直角三角形,∠ACB=90°,点A 在 反比例函数xy 4-=的图像上,点B 、C 都在反比例函数 xy 2-=的图像上,AB //x 轴,则点A 的坐标为( ) A.(32,332-) B.(3,334-) C.(334,3-) D.(332,32-)二、填空题 (本大题6个小题,每小题4分,共24分)在每小题中,请将你认为正确的答成绩(分) 39 42 44 45 4850 人数 1 2 1 2 1 3案填在答题卡相应位置的横线上. 13.实数2015-的相反数是 .14.新年第一天,我市大约有13000名市民涌上仙女山、金佛山、巫溪红池坝的滑雪场玩雪. 将13000这个数字用科学记数法表示是 .15.如图,在□ABCD 中,点E 是AD 的中点,连接CE 、BD 相交于点F ,则∆DEF 的周长 与∆BCF 的周长之比=∆∆F D EF :BC C C .16.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,AO =AD =2,以A 为圆心,AO 为半径作弧,则图中阴影部分的面积为 . 17.从-1,0,1,2,3这五个数中,随机抽取一个数记为m ,则使关于x 的不等式组122x mx m+⎧⎨-⎩≤≤有解,并且使函数()2212+++-=m mx x m y 与x 轴有交点的概率为 .18.如图,在ABC ∆中,2AB =3AC ,AD 为∆BAC 的角平分线,点H 在线段AC 上,且CH=2AH ,E 为BC 延长线上的一点,连接EH 并延长交AD 于点G ,使EG=ED ,过点E 作 EF ⊥AD 于点F ,则FG AG := . 三、解答题 (本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算 过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.计算:() 45tan 22731221322--⎪⎭⎫ ⎝⎛-+-⨯-+--π20.今年四月份将举行体考,重庆一中为了解初三学生目前体育训练成果,于1月16日举行 了体育模拟考试,现从参加了考试的同学中随机抽取了50名了解他们的跳绳成绩,并根 据成绩等级(优:20分;良:18-19分;中:小于18分)绘制出如下两幅不完整的统计 图.(1)请补全条形统计图;(2)在此次考试中,被抽取的获优秀成绩的有3人来自同一班级,这3人中有2男1女,该班班主任为让班上其他同学在练习跳绳的过程中效果更好,现打算从这3人中随机抽取2人到前排示范,请用画树状图或列表的方法求出所选同学是一男一女的概率.四、解答题 (本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算 过程或推理步骤,请将解答书写在答题卡中对应的位置上.16题图成绩扇形统计图成绩条形统计图 15题图 18题图l21.先化简,再求值:34433922+++÷⎪⎭⎫ ⎝⎛-+++x x x x x x ,其中x 是方程374=+x 的解.22.如图,在笔直的公路l 上有一检查站A ,在观测点B 的南偏西53°方向,且与观测点B 的距离为7.5千米.一辆自行车从位于点B 南偏西 76°方向的点C 处,沿公路自西向东行驶, 2小时后到达检查站A .(1)求观测点B 与公路l 的距离;(2)求自行车行驶的平均速度. (参考数据:252476sin ≈,25676cos ≈ ,476tan ≈,5453s ≈ in ,5353cos ≈ ,3453tan ≈ )23.重庆一中后勤部门每年都要更新一定数量的书桌和椅子.已知2012年采购的书桌价格为 120元/张,椅子价格为40元/张,总支出费用34000元;2013年采购的书桌价格上涨为 130元/张,椅子价格保持不变,且采购的书桌和椅子的数量与2012年分别相同,总支出 费用比2012年多2000元.(1)求2012年采购的书桌和椅子分别是多少张?(2)与2012年相比,2014年书桌的价格上涨了%a (其中500<<a ),椅子的价格上涨了%10,但采购的书桌的数量减少了%21a ,椅子的数量减少了50张,且2014 年学校桌子和椅子的总支出费用为34720元,求a 的值.24. 如图,在□ABCD 中,CE ⊥AD 于点E ,且CB=CE ,点F 为CD 边上的一点,CB=CF, 连接BF 交CE 于点G.(1)若60=∠D ,CF =32,求C G 的长; (2)求证:AB=ED+CG五、解答题:(本大题2个小题,每小题各12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.25.如图,抛物线223y x x =--与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于C 点,点D 是抛物线的顶点. (1)求B 、C 、D 三点的坐标;(2)连接BC,BD,CD ,若点P 为抛物线上一动点,设点P 的横坐标为m ,当PBC BCD S S ∆∆=时,求m 的值(点P 不与点D 重合);(3) 连接AC ,将∆AOC 沿x 轴正方向平移,设移动距离为a ,当点A 和点B 重合时,停止运动,设运动过程中∆AOC 与∆OBC重叠部分的面积为S ,请直接写出S 与a 之间的函数关系式,并写出相应自变量a 的取值范围.26.如图(1),抛物线)0(52≠++=a bx ax y 与x 轴交于A 、B 两点,与y 轴交于点C , 直线AC 的解析式为5+=x y ,抛物线的对称轴与x 轴交于点E ,点D (2-,3-)在 对称轴上.(1)求此抛物线的解析式;备用图 备用图(2)如图(1),若点M 是线段OE 上一点(点M 不与点O 、E 重合),过点M 作MN ⊥x 轴,交抛物线于点N ,记点N 关于抛物线对称轴的对称点为点F ,点P 是线段MN上一点,且满足MN =4MP ,连接FN 、FP ,作QP ⊥PF 交x 轴于点Q ,且满足PF =PQ , 求点Q 的坐标;(3)如图(2),过点B 作BK ⊥x 轴交直线AC 于点K ,连接DK 、AD ,点H 是DK 的中点,点G 是线段AK 上任意一点,将∆DGH 沿GH 边翻折得GH D '∆,求当KG 为何值时,GH D '∆与KGH ∆重叠部分的面积是∆DGK 面积的41.数 学 试 卷(答案)一、 选择题:备用图图(1)图(2)二.填空题 题号13 1415 答案 2015 4103.1⨯1:2 题号 161718答案 332-π 52 7:4三.解答题20.解:(1)…………………………………………………… 2分 (2)将男生分别标记为21,A A ,女生标记为1B一1A2A 1B1A()21,A A()11,B A 2A ()12,A A()12,B A1B()11,A B()21,A B……………………………………………………………………………… 5分3264(==一男一女)P …………………………… ……………………… 7分 二lH22.解:(1) 过点B 作l ⊥BH 交l 于点H ………………………………1分 在中在ABH Rt ∆km BH AB AB BH ABH 5.45.753cos =∴===∠, ………………4分(2)在中H A Rt B ∆, km AH AB AB AH BH 65.7,54A sin =∴===∠∴………………………6分 在中在BCH Rt ∆ km CH BH BH CH CBH 185.414tan =∴===∠∴, …………………8分 hkm kmAH CH CA /621212=∴=-=∴速度为: ………………………10分 答:观测点B 与公路l 的距离是4.5km ,自行车行驶的平均速度是6h km /. 23.解:(1)设2012年采购的书桌为x 张,椅子为y 张. ⎩⎨⎧=+=+36000401303400040120y x y x 解得⎩⎨⎧==250200y x ………… …………4分(2)()()34720)50250%10140%211200%1120=-++⎪⎭⎫⎝⎛-+(a a …7分 令t a =%,则原方程可化简为:0425252=+-t t解得=1a 0.2 ,=2a 0.8 (舍) ………………………9分 答:2013年采购书桌和椅子分别是200张和250张. ………………10分 24.解:(1) 四边形ABCD 是平行四边形 ∴AD//BCCE ⊥AD∴ECB CED ∠==∠9090,60=∠=∠DEC D∴ 120,30D =∠=∠CF EC BBC=CF 30=∠∴GBC在Rt ∆BCG 中,90=∠GCB∴tan 3233GCBC GC GBC ===∠ ∴GC=2 ……………4分(2)延长EC 到点H ,使得ED =CH ,连接BH ……………5分CGED DC GH BH GBH GBH CF BC CDBH DCE HBC BC EC HCB DEC HCDE DCE HBC +=∴=∴∠=∠∴∠+∠=∠∠+∠=∠∠=∠∴==∠=∠∴∆≅∆∴⎪⎩⎪⎨⎧=∠=∠=∆∆4534,1252,31 中和在…………………………………………………………………10分(2)设b kx y BC +=:将代入得:)3,0(),0,3(-C B⎩⎨⎧-==∴⎩⎨⎧=-+=31330b k b b k 3-=∴x y ,过点D 作y //DE 轴,交BC 于点E 21-=∴==E E D y x x3=+=∴∆∆∆CD E BED BCD S S S ……………4分过点P 作y //PQ 轴,交直线BC 于点Q)3,(),32,(2---m m Q m m m P 设①当P 是BC 下方抛物线上一点时,329232=+-=+=∴∆∆∆m m S S S PQC PBQ PCB 2)(121=-=∴m m ,舍…………………………………………………… ……………6分②32923)30(2C =-=-=><∆∆∆m m S S S m m BC P PQB PQ PBC 或上方抛物线上一点时是当 2173,217321-=+=m m 解得 ……………8分综上:=m 22173,2173,-+ (3)⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤<+-≤<+-=)43(6383)31(2381)10(3813222a a a a a a a a S ……………12分 25.解:(2)PF QP FN QM ⊥⊥⊥,MN MN ,∴ 9062=∠=∠, 90539031=∠+∠=∠+∠,51∠=∠∴又PQ F =P ,PNF MP ∆≅∆∴Q NF MP NP ==∴,MQ ………4分 设)0,(M m (02<<-m ),则54)54,(N 22+--=+--m m MN m m m , )54,4(F 2+----∴m m m ,42)4(+=---=m m m FND 'D ' 图(1) 图(2) 备用图)42(4542+=+--∴m m m ,解得:)(111舍或-=-=m m )0,7(643)0,1(,8MN -∴===∴-=∴Q MN NP MQ M ,, …………7分 (3))0,1(,15,0542B x x x x ∴=-==+--或得令)6,1(K ∴ [][]103)3(6)2(1DK 22=--+--=①若翻折后,点D '在直线GK 上方,记H D '与GK 交于点L ,连接K D ' D GH GHK DGK GHL 212141'∆∆∆∆===∴S S S S ,即KHL G L D G HL ∆'∆∆==S S S L D HL LK '==∴,GL ,是平行四边形四边形GHK D '∴, 102321D ==='=∴KD KH G D G ,又3,6BK ====AE DE BA AED ABK ∆∆∴和都是等腰直角三角形,23AD =904545DAG =+=∠∴,由勾股定理得:223AG 22=-=AD DG 22922326KG =-=-=∴AG KA ……………9分。
2014-2015学年度上学期期末联考试卷九年级数学(含答案)
座位号:2014-2015学年度上学期期末联考试卷九年级数学(全卷共23题,满分100分,时间120分钟)一、选择题(本题8个小题,每小题3分,共24分) 1、下列图形既是轴对称图形又是中心对称图形的是( )2、对于二次函数2)1(22-+=x y 的描述正确的是( ) A 、对称轴是直线1=x B 、顶点坐标)2,1(-- C 、顶点坐标)2,1(- D 、开口向下,有最大值-23、方程02092=+-x x 的两根分别是⊙1O 和⊙2O 的半径,且两圆相切,则圆心距21O O 为( )A 、 1B 、9C 、4或5D 、1或9 4、下列叙述正确的是( )A 、口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球B 、“如果b a ,是实数,那么a b b a +=+”是不确定事件C 、为了了解一批炮弹的杀伤力,采用普查的方式比较合适D 、两个相似图形一定是位似图形5、⊙O 的半径为5cm ,弦AB//CD ,且AB=8cm,CD=6cm,则AB 与CD 之间的距离为( ) A 、 1 cm B 、 7cm C 、 3 cm 或4 cm D 、 1cm 或7cm6、如图,在ABC ∆中,点D 、E 、F 分别是边AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB ,且AD :DB=3:5,那么CF :CB 等于( ) A 、3:8 B 、3:5 C 、5:8 D 、2:57、如图,直线b x y +-=与双曲线xky =交于点A 、B ,则不等式组0≥+->b x x k 的解集为( )A 、x <﹣1或x >2B 、﹣1<x ≤1C 、﹣1<x <0D 、﹣1<x <1 8、某种手机经过四、五月份连续两次降价,每部手机由3200元降到2500元。
设平均每月降价的百分率为x ,则根据题意列出的方程是( ) A 、 2500)1(32002=-x B 、2500)1(32002=+xC 、2500)21(3200=-xD 、250032002=-x二、填空题(本题6个小题,每小题3分,共18分)9、如图,在△ABC 中,∠C=120°,AB=4cm ,两等圆⊙A 与⊙B 外切,则图中两个扇形的面积之和(即阴影部分)为 cm 2(结果保留π)。
2014-2015学年度九年级上学期期末考试数学试卷(1)
2014-2015学年度九年级上学期期末考试数学试卷(1)
17.如图,点A、D、G、M在半圆O上,四边形ABOC、DEOF、HMNO均为矩形,设BC=a,EF=b,NH=c,则a、b、c
的大小是(). A. a>b>c B. b>c>a C. c>a>b D. a=b=c
18..抛物线y=-x2+bx+c的部分图象如图所示,若函数值y>0时,则x的取值范围是_______.
19.
20.
21.如图12,在平面直角坐标系xOy中,AB⊥x轴于点B,点A为(-4,3),将△OAB绕着原点O逆时针旋转90o,得到△OA1B1;再将△OA1B1绕着线段OB1的中点旋转180o,得到△OA2B1,抛物线y=ax2+bx+c(a≠0)经过点B、B1、A2。
(1)求抛物线的解析式;
(2)在第三象限内,抛物线上的点P在什么位置时,△PBB1的面积最大?求出这时点P的坐标;
(3)在第三象限内,抛物线上是否存在点Q,使得△PBB1为以BB1为直角边的直角三角形?若存在,
求出点Q的坐标;若不存在,请说明理由。
2014-2015学年度第一学期九年级数学期末综合试卷
(第7题) 2014-2015学年度第一学期九年级数学期末综合试题学校: 班级: 姓名:一.选择题:(本大题共10小题,每小题3分,共30分.) 1.下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D. 2.下列事件中,必然发生的是( )A .某射击运动射击一次,命中靶心B .掷一次骰子,向上的一面是6点C .通常情况下,水加热到100℃时沸腾D .抛一枚硬币,落地后正面朝上 3.下列关系式中,y 是x 反比例函数的是( )A . 2xy -= B. x y 5=C. 2x y =D. 11+=x y 4.把抛物线 的图象向右平移3个单位,再向下平移2个单位,所得图象的 函数关系式是 ( )A.2)3(2--=x yB. 2)3(2-+=x yC.2)3(2+-=x yD. 2)3(2++=x y 5.方程022=+x x 的解是( )A.2,021==x xB.2=xC.2,021-==x xD.0=x6.圆锥的底面直径是8㎝,母线长为9㎝,则它的侧面积是( )A . 72πB .64πC .36πD .18π 7.如图,△OAB 绕点O 逆时针旋转︒80到△OCD 的位置,已知︒=∠45AOB ,则AOD ∠等于( ).A .︒55B .︒45C .︒40D .︒358. 直线l 与半径为r 的⊙O 相交,且点O 到直线l 的距离为5,则r 的取值是( ) A .r >5;B .r =5;C .r <5;D .r ≤5;9.如图,在△ABC 中,D 、E 分别是边AB 、AC 的中点,则△ADE 的 面积与四边形DBCE 的面积比为( ).A .21 B. 31 C. 41 D. 3210.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O )20米的A 处,则小明的影子AM 长为( )A. 10 mB.8 mC. 5 mD.4 m二.填空题:(共6小题,每小题3分,共18分.) 11. 二次函数2)(2+-=x y 的最小值是_____________.第9题第10题12. 小明第一次抛一枚质地均匀的硬币时,正面向上,他第二次再抛这枚硬币时,正面向上的概率是 .13. 已知函数xm y 1-=的图象在每个象限内,y 随x 的增大而减小,则m 的取值范围是___________. 14. 若1x 、2x 是一元二次方程0652=+-x x 的两个根,则21x x +的值是_______.15. 如图,添加一个条件:____________________,使△ADE ∽△ACB ,(写出一个即可)16. 如图,AB 、AC 与⊙O 相切于点B 、C ,∠A=50゜,P 为⊙O 上异于B 、C 的一个动点,则∠BPC 的度数为 .圆锥的侧面积三.解答题:(9题,共102分.)17. (9分)解一元二次方程:0322=-+x x18. (9分) 已知:如图,AB,CD 相交于点O ,且∠A=∠B ;求证:⑴△AOC ∽△BOD⑵OA OD OB OC ⋅=⋅19. (10分)如图,AB 是⊙O 的一条弦,OD ⊥AB ,垂足为C ,交⊙O 于点D ,点E 在⊙O 上.∠AOD=60°;OA=6,⑴求DEB ∠的度数; ⑵求弦AB 的长;⑶求扇形OAD 的面积.20. (10分) 已知:△ABC 在直角坐标平面内,三个顶点的坐标分别为A (0,3)、B (3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度). ⑴画出△ABC 关于点O 成中心对称的△A 1B 1C 1; ⑵以点B 为位似中心,在网格内画出△A 2B 2C 2, 使△A 2B 2C 2与△ABC 位似,且位似比为2:1;, ⑶点C 1的坐标是 _________ ; 点C 2的坐标是 _________ ;第18题 CDOBA 第16题EB DCA O第19题图21. (12分) 在一个口袋中有4个小球,其中有1个是白球,其余为红球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,从袋中随机地取出一个球。
2014-2015学年九年级上下学期数学期末测试题(含答案)
人教版2014-2015学年九年级上下学期测试数学试卷注:(1)全卷共三个大题,23个小题,共4页;满分:100分;考试时间:120分钟。
(2)答题内容一定要做在答卷..上,且不能超过密封线答题,否则视为无效。
一、选择:(每小题3分,共24分)1. 在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A .B .C .D . 2.如图是某个几何体的三视图,该几何体是( )A. 正方体B. 圆柱C. 圆锥D. 球3.某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每4.已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为( ) A .B . 2πC . 3πD . 12π5.若ab >0,则一次函数y=ax+b 与反比例函数y=在同一坐标系数中的大致图象是( )A .B .C .D .6.如图,在Rt △ABC 中,∠C=90°,BC=3,AC=4, 那么cosA 的值等于( ) 3A.4 4B.3 3C.5 4.5D 7.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示, 则下列结论中正确的是( )A .a >0B .3是方程ax 2+bx+c=0的一个根C .a+b+c=0D .当x <1时,y 随x 的增大而减小 8.如图,CD 是⊙O 的直径,弦AB ⊥CD 于E ,连接 = 二、填空:(每小题3分,共18分)9.方程22x x =的根为 .10.抛物线213y x =(﹣)﹣的对称轴是 .11.已知3,a b ab b+==则 . 12.如图,在△ABC 中,D 是AB 的中点, DE ∥BC.则:ADE ABC S S ∆∆= . 13.直径为10cm 的⊙O 中,弦AB=5cm ,则弦AB 所对的圆周角是 .14.为了求1+2+22+23+…+2100的值,可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S ﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+…+2100=2101﹣1,仿照以上推理计算1+3+32+33+…+32014的值是 三、解答:(共58分)15.(5分)计算:0201511(21)(1)()2sin 303-+-+-.16.(5分)化简求值:•(),其中x =.17.(8分)已知:如图,AB 是⊙O 的直径,AB =6,延长AB 到点C ,使BC =AB ,D 是⊙O 上一点,DC =26. 求证:(1)△CDB ∽△CAD ;(2)CD 是⊙O 的切线. 18.(4分)在平面直角坐标系中,△ABC 的三个顶点坐标分别为A(﹣2,1),B (﹣4,5), C (﹣5,2).(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)画出△ABC 关于原点O 成中心对称的△A 2B 2C 2. 19.(6分)如图,△ABC是一块锐角三角形余料,边BC=120mm ,高AD=80mm ,要把它加工成长方形零件PQMN ,使长方形PQMN 的边QM在BC上,其余两个项点P,N 分别在AB,AC 上.求这个长方形零件PQMN 面积S 的最大值。
最新华东师大版九年级上学期期末模拟数学试题1及答案解析.docx
最新华东师大版九年级上学期期末模拟试题一、选择题1. 计算:=︒-︒30cos 230cot ( ) A .332-B. 63- C. 0 D.332. 用配方法解方程0522=--x x 时,原方程应变形为( )A .6)2(2=+x B .9)2(2=+x C .6)1(2=-x D .9)1(2=-x3. 在ABC ∆中,A 、B 为锐角,且有B SinA cos =,则这个三角形是( ) A. 等腰三角形 B. 直角三角形 C. 钝角三角形 D. 锐角三角形4. 关于x 的方程01)2(2=++-+m x m x 有两个相等的实数根,则=m ( )A .0B .8C .224±D .0或85.如图,D 是BC 上的点,BAC ADC ∠=∠,则下列结论正确的是A. ABC ∆∽DAB ∆B. ABC ∆∽DAC ∆C. ABD ∆∽ACD ∆D. 以上都不对 6. 已知关于x 的方程02=++a bx x 的一个根是a -)0(≠a ,则=-b a ( ) A .1- B .0 C .1 D .27. 当0<a 时,=-|4|2a a ( ) A .a B. a - C. a 3 D. a 3-8. 如图,在ABC Rt ∆中,︒=∠90ACB ,︒=∠30A ,AB CD ⊥于点D . 则BCD ∆与ABC ∆的周长之比为( )DCABA .2:1B .3:1C .4:1D .5:19. 已知ABC ∆中,高2=AD ,2=BD ,32=CD ,则=∠BAC ( )A. ︒105B. ︒15C. ︒105或︒15D. ︒6010. 抛物线c bx x y ++=2的图象如图所示,若0<y ,则x 的取值范围是( )A .41<<-xB .31<<-xC .1-<x 或4>xD .1-<x 或3>x11. 如图,直线1l ∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sin α=( )A .21B.23C.25D.5512.如图4,在梯形ABCD 中,AD ∥BC ,∠BCD=90°,BC=2AD ,F ,E 分别是 AB ,BC 的中点,则下列结论不一定正确的是( ) A.△ABC 是等腰三角形 B.四边形EFAM 是菱形 C.S △BEF=0.5 S △ACD D.DE 平分∠CDF 二、填空题(共24分,每小题3分)13.方程022=-x x 的解为 .14.等腰三角形的腰长为3,底边长为2,则底角的余弦值为 .15.若关于x 的方程062=-+mx x 的一个根为2,则=m ______,另一根是 ______.16.如图,ABC ∆中,过AB 的中点F 作BC DE ⊥,垂足为E ,交CA 的延长线于点D . 若3=EF ,4=BE ,3lCDABDEF BCAxyx=1–2–1o︒=∠45C ,则=FE DF : .17. 若120132012-=m ,则=--23420122m m m ________.18. 已知菱形ABCD 的边长是8,点E 在直线AD 上,若3=DE ,连接BE 与对角线AC 相交于点F ,则=AF FC :________. 19. 已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,下列结论:①042>-ac b ;②0<abc ;③08>+c a ;④039<++c b a . 请你将正确结论的番号都写出来 (写错一个不得分).20. 如图,等边ABC ∆的边长为1.取BC 中点E ,作ED ∥AB ,EF ∥AC ,得到四边形EDAF ,它的面积记作1S ;取BE 中点1E ,作11D E ∥FB ,11F E ∥EF , 得到四边形111FF D E ,它的面积记作2S ;……;照此规律作 下去,则=2013S ______.三、(共24分,每小题8分)21.计算:344832714122--+ (2)计算:6cos60°-(sin21°-1)0×5tan45°;22.先化简,再计算:)12(122x x x xx x --÷+-,其中x 是方程0222=--x x 的正数根.111F D FE DBCAE23.如图,路灯)(P 距地面8米,身高6.1米的小明从距路灯的底部)(C 20米的A 点,沿AC 所在的 直线行走14米到达B 点,此时小明在路灯下身影的长度是变长了还是变短了?变长或变短了多少米?四、(共40分,每小题10分)24.如图,某船由西向东航行,在点A 测得小岛P 在北偏东600,船行了10海里后到达点B ,这时测得小岛P 在北偏东450. 由于以小岛P 为圆心,16海里为半径的范围内有暗礁,如果该船不改变航向继续航行,请你通过计算,说明有没有触礁的危险?(供选用数据:414.12=,732.13=)25.已知关于x 的方程0)1(222=+--k x k x 有两个实数根1x 、2x .(1)求k 的取值范围;(2)若1||2121-=+x x x x ,求k 的值.F EB A CP26.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利44元,为了扩大销售,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出5件. (1)若商场平均每天要盈利1600元,每件衬衫应降价多少元?(2)若该商场要每天盈利最大,每件衬衫应降价多少元?盈利最大是多少元?五、(共26分,第1小题12分,第2小题14分)27. 如图,ABC ∆是等边三角形,CE 是外角平分线,点D 在AC 上,连接BD 并延长交CE 于点E .(1)求证:ABD ∆∽CED ∆;(2)若6=AB ,CD AD 2=,求BE 的长.DC ABFE28.如图, 已知抛物线c bx x y ++=221与y 轴相交于C ,与x 轴相交于A 、B ,点A 的坐标为2(,)0,点C 的坐标为0(,)1-.(1)求抛物线的解析式;(2)点E 是线段AC 上一动点,过点E 作⊥DE x 轴于点D ,连结DC ,当D C E ∆的面积最大时,求点D 的坐标;(3)在直线BC 上是否存在一点P ,使ACP ∆是以C 为顶角的等腰三角形,若存在,求点P 的坐标;若不存在,说明理由.22)解:= (1)1-x (4分),方程的正根为31+(6分),…33(8分)23)解:…BF BF +=66.18,5.1=BF (3分),AEAE+=206.18,5=AE (6分),身影缩短了3.5米(8分)xyBACOE D24. 25. 26.(2)利润为y ,)44)(520(x x y -+=,当20=x 时,利润最大2880(10分)五、(共26分) 27)解:(1)证明略(5分),(2)作H BF CH 于⊥,…3=CE (7分), 233603=︒=Sin EH ,2360cos 3=︒=CH (9分),…73=BE (12分)28)解:(1)121212--=x x y (4分),(2)设点D 的坐标为(m ,0) (0<m <2) 由OC DE AO AD ::=,得2/)2(m DE -=, 41)1(412+--=m s ,)0,1(D (9分)(3)存在,得点B (-1,0),C (0,-1),BC 的解析式为1--=x y (11分)…)1210,210(1--P ,)1210,210(2--P (14分)。
四川省蓬溪县大石中学2014-2015年华师大九年级上数学期末模拟试题及答案
3a 2 5a 5
) a6
C、 a
2
a3 a5
D、 5a
2
1 5a 4 2 a
3、世界上因为有圆,万物才显得富有生机,请观察下列生活中美丽和谐的图案:
其中既是轴对称图形又是中心对称图形的个数有( (A)1 个 4、若关于 x 的分式方程 A、 m (B)2 个 (C)3 个
D F O
C E
A
G
B
第 14 小题图
15、 (本题 12 分)如图,某校教学楼后面紧邻着一个土山坡,坡上面是一块平地,如图所示, BC∥AD, 5 斜坡 AB 长 106 m,坡度 i=9:5,为了防止山体滑坡,保障安全,学校决定对该土坡进行 2 改造.经地质人员勘测,当坡角不超过 45°时,可确保山体不滑 坡. ⑴ 求改造前坡顶 B 与地面的距离 BE 的长; ⑵ 为确保安全,学校计划改造时保持坡脚 A 不动,坡顶 B 沿 BC 削 进到 F 点处,问 BF 至少是多少米?y CN NhomakorabeaB
P
O
M
A
x
第 17 小题图
18、 (本题 12 分)如图,在平面直角坐标系中,以点 0′(-2,-3)为圆心,5 为半径的圆交 x 轴于 A、B 两点,过点 B 作⊙0′的切线,交 y 轴于点 C,过点 0′作 x 轴的垂线 MN,垂足为 D,一条抛物线(对称轴与 y 轴平行)经过 A、B 两点,且顶点在直线 BC 上. (1)求直线 BC 的解析式. (2)求抛物线的解析式. (3)设抛物线与 y 轴交于点 P,在抛物线上是否存在一点 Q,使四边形 DBPQ 为平行四边 形?若存在,请求出点 Q 的坐标;若不存在,请说明理由.
n m 的值等于 m n
华师大九年级数学上册期末综合检测试卷(有答案)
【专题突破训练】华师大版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.若关于x的一元二次方程x2﹣4x+c=0有两个相等的实数根,则常数c的值为()A. ±4B.4C. ±16D.162.如图所示,边长为2的正三角形ABO的边OB在x轴上,将△ABO绕原点O逆时针旋转30°得到三角形OA1B1,则点A1的坐标为()A.(,1)B.(,-1)C.(1,- )D.(2,-1)3.点P(﹣1,4)关于x轴对称的点P′的坐标是()A.(﹣1,﹣4)B.(﹣1,4)C.(1,﹣4)D.(1,4)4.已知=,则=()A.6B.C.D.-5.已知三角形的两边分别为5和8,则此三角形的第三边可能是()A.2B.3C.5D.136.如图,在△ABC中,∠ACB=90°,∠B=15°,DE垂直平分AB,交BC于点E,垂足为D,若BE=6 cm,则AC等于( )A.6cmB.5cmC.4cmD.3cm7.如图,某游乐场一山顶滑梯的高为h,滑梯的坡角为α,那么滑梯长l为()A.ℎB.ℎC.ℎD.h•sinα8.如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC的中点,AE与BD相交于点F.若BC=4,∠CBD=30°,则DF的长为()A. B. C. D.9.某农户种植花生,原来种植的花生亩产量为200千克,出油率为50%(即每100千克花生可加工成花生油50千克).现在种植新品种花生后,每亩收获的花生可加工成花生油132千克,其中花生出油率的增长率是亩产量的增长率的.则新品种花生亩产量的增长率为()A.20%B.30%C.50%D.120%10.如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE2+DC2=DE2,其中正确的有()个.A.1B.2C.3D.4二、填空题(共10题;共30分)11.已知一个三角形的三边长分别是a+4,a+5和a+6,则a的取值范围是________.12.当x________时,在实数范围内有意义.13.化简 =________.14.在草稿纸上计算:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值 =________.15.如图,在△ABC中,M、N分别是AB、AC的中点,且∠A+∠B=136°,则∠ANM=________°.16.如图,已知点A(2,2)关于直线(k>0)的对称点恰好落在x轴的正半轴上,则k的值是________.17.在△ABC中,点D,E分别在边AB,AC上,如果 = ,AE=4,那么当EC的长是________时,DE∥BC.18.如图,矩形ABCD的对角线AC、BD相交于点O,AB=4,BC=8,过点O作OE⊥AC交AD于点E,则AE的长为________.19.如图∠AOP=∠BOP=15°,PC∥OA , PD⊥OA ,若PC=6,则PD等于________.三、解答题(共9题;共60分)20.若a=1﹣,先化简再求+的值.21.如图,△ABC中,∠ACB=90°,∠B=15°,AB的垂直平分线交AB于E,交BC于D.若BD=7,求AC的长.22.甲、乙两船同时从港口A出发,甲船以12海里/时的速度向北偏东35°航行,乙船向南偏东55°航行,2小时后,甲船到达C岛,乙船到达B岛,若C、B两船相距30海里,问乙船的速度是每小时多少海里?23.阅读下列材料,然后回答问题.在进行二次根式的化简运算时,我们有时会碰上形如的式子,其实我们还可以将其进一步简化:= = =﹣1.以上这种化简的步骤叫做分母有理化.请用上面的方法化简:.24.如图,点C,D在线段AB上,△PCD是等边三角形,且△ACP∽△PDB,求∠APB的度数.25.超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在A处,离益阳大道的距离(AC)为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B处行驶到C处所用的时间为8秒,∠BAC=75°.(1)求B、C两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin 75°≈0.965 9,cos 75°≈0.258 8,tan 75°≈3.732,≈1.732,60千米/小时≈16.7米/秒)26.如图,在△ABC中,AB=AC,点D、E分别在BC、AB上,且∠BDE=∠CAD.求证:△ADE∽△ABD.27.动物学家通过大量的调查估计出,某种动物活到20岁的概率为0.8,活到25岁的概率是0.5,活到30岁的概率是0.3.现年20岁的这种动物活到25岁的概率为多少?现年25岁的这种动物活到30岁的概率为多少?28.如图,小平为了测量学校教学楼的高度,她先在A处利用测角仪测得楼顶C的仰角为30°,再向楼的方向直行50米到达B处,又测得楼顶C的仰角为60度.已知测角仪的高度是1.2米,请你帮助小平计算出学校教学楼的高度CO.()答案解析部分一、单选题1.【答案】B2.【答案】B3.【答案】A4.【答案】B5.【答案】C6.【答案】D7.【答案】A8.【答案】D9.【答案】A10.【答案】C二、填空题11.【答案】12.【答案】≥313.【答案】14.【答案】40615.【答案】4416.【答案】17.【答案】618.【答案】519.【答案】3三、解答题20.【答案】解:+=+.∵a=1﹣<1,∴原式=+=.把a=1﹣代入得:===(1+)2=3+2.21.【答案】解:连接AD,∵AB的垂直平分线交AB于E,∴AD=BD,∴∠DAB=∠B,∵BD=7,∴AD=7,∵∠B=15°,∴∠DAB=15°,∴∠ADC=30°,∵∠C=90°,∴AC= AD=3.5.22.【答案】解:根据题意得:AC=12×2=24,BC=30,∠BAC=90°.∴AC2+AB2=BC2.∴AB2=BC2-AC2=302-242=324∴AB=18.∴乙船的航速是:18÷2=9海里/时.23.【答案】解:原式= =2+.24.【答案】解:∵△PCD是等边三角形,∴∠PCD=60°,∴∠ACP=120°,∵△ACP∽△PDB,∴∠APC=∠B,又∠A=∠A,∴△ACP∽△ABP,∴∠APB=∠ACP=120°25.【答案】解:(1)在Rt△ABC中,∠ACB=90°,∠BAC=75°,AC=30,∴BC=AC·tan ∠BAC=30×tan 75°≈30×3.732≈112(米).(2)∵此车速度=112÷8=14(米/秒)<16.7(米/秒)=60(千米/小时) ∴此车没有超过限制速度.26.【答案】证明:∵AB=AC,∴∠B=∠C,∵∠ADB=∠C+∠CAD=∠BDE+∠ADE,∠BDE=∠CAD,∴∠ADE=∠C,∴∠B=∠ADE,∵∠DAE=∠BAD,∴△ADE∽△ABD27.【答案】现年20岁的这种动物活到25岁的概率为=0.625,现年25岁的这种动物活到30岁的概率为=0.6,答:现年20岁的这种动物活到25岁的概率为0.625,现年25岁的这种动物活到30岁的概率为0.6.28.【答案】解:设CM=x米∵∠CEM=30°,∴tan30°=,∴EM=x.∵∠CFM=60°,∴tan60°=,∴MF=,∴x﹣=50.解得x=25≈42.5,∴CO=42.5+1.2=43.7.答:学校教学楼的高度CO是43.7米.。
2014—2015学年度第一学期期末学业质量评估九年级数学试题(含答案)
2014—2015学年度第⼀学期期末学业质量评估九年级数学试题(含答案)九年级数学试题注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷2页,为选择题,共36分.第Ⅱ卷2页,为⾮选择题,共84分.全卷满分120分,考试时间120分钟.2.答卷前,务必将答题卡上⾯的项⽬填涂清楚.所有答案都必须涂、写在答题卡相应的位置,答在本试卷上⼀律⽆效.第Ⅰ卷⼀、选择题(本题共12⼩题,在每⼩题给出的四个选项中,只有⼀个是正确的,请把正确的选项选出来,每⼩题选对得3分,多选、不选、错选均记零分.)1. 下列说法中正确的是()A. 平分弦的直径垂直于弦,并且平分弦所对的两条弧;B. 圆是轴对称图形,每⼀条直径都是它的对称轴;C. 弦的垂直平分线过圆⼼;D. 相等的圆⼼⾓所对的弧也相等.2. 如图,A、B、P是⊙O上的三点,∠APB=40°,则弧AB的度数为()A.50°B.80°C.280°D.80°或280°3. 如图,在直径为AB的半圆O上有⼀动点P从O点出发,以相同的速度沿O-A-B-O的路线运动,线段OP的长度d与运动时间t之间的函数关系⽤图象描述⼤致是()4. 下列命题中的假命题是()A. 正⽅形的半径等于正⽅形的边⼼距的2倍;B. 三⾓形任意两边的垂直平分线的交点是三⾓形的外⼼;C. ⽤反证法证明命题“三⾓形中⾄少有⼀个内⾓不⼩于60°”时,第⼀步应该“假设每⼀个内⾓都⼩于60°”;D. 过三点能且只能作⼀个圆.5. 如图,⊙O的半径是4,点P是弦AB延长线上的⼀点,连接OP,若OP=6,∠APO=30°,则弦AB的长为()A .27B .7C .5D .526. 如图所⽰,在△ABC 中D 为AC 边上⼀点,若∠DBC =∠A ,BC =3,AC =6,则CD 的长为() A .1 B .2 C .23 D .25 7. 下列⽅程中:①x 2-2x -1=0, ②2x 2-7x +2=0, ③x 2-x +1=0 两根互为倒数有() A. 0个 B. 1个 C. 2个 D. 3个8. ⼀次函数y 1=3x +3与y 2=-2x +8在同⼀直⾓坐标系内的交点坐标为(1,6).则当y 1>y 2时,x 的取值范围是()A. x ≥1B. x =1C. x <1D. x >1 9. 在△ABC 中,若()21cosA 1tanB 02-+-=,则∠C 的度数是() A. 45° B. 60° C. 75° D. 105°10. 如图,热⽓球的探测器显⽰,从热⽓球A 看⼀栋⾼楼顶部B 的仰⾓为30°,看这栋⾼楼底部C 的俯⾓为60°,热⽓球A 与⾼楼的⽔平距离为120m ,这栋⾼楼BC 的⾼度为() A .1603m B .803 m C .()12031- m D .()12031+m11. 已知反⽐例函数y =xk的图像经过点P (-1,2),则这个函数图像位于() A .第⼆、三象限 B .第⼀、三象限 C .第三、四象限 D .第⼆、四象限 12. 已知⼆次函数y =ax 2+bx +c (a ≠0)的图象如图所⽰,有下列4个结论:①abc <0;②b >a +c ;③2a -b =0;④b 2-4ac <0.其中正确的结论个数是() A.1个 B.2个 C.3个 D.4个第Ⅱ卷⼆、填空题(本题共6⼩题,要求将每⼩题的最后结果填写在横线上. 每⼩题3分,满分18分) 13. 已知⼀元⼆次⽅程ax 2+bx +c =0的两根为x 1=2,x 2=-3,则⼆次三项式ax 2+bx +c 可分解因式为 .14. ⊙O 的半径为10cm ,AB ,CD 是⊙O 的两条弦,且AB ∥CD ,AB =16cm ,CD =12cm .则AB 与CD 之间的距离是 cm .15. 如图所⽰,△ABC 中,E 、F 、D 分别是边AB 、AC 、BC 上的点,且满⾜12AE AF EB FC ==,则△EFD 与△ABC 的⾯积⽐为.16. 如图,M 是Rt △ABC 的斜边BC 上异于B 、C 的⼀定点,过M 点作直线MN 截△ABC交AC 于点N ,使截得的△CMN 与△ABC 相似. 已知AB =6,AC =8,CM =4,则CN = .17. ⼀个⾜球从地⾯上被踢出,它距地⾯⾼度y (⽶)可以⽤⼆次函数x x y 6.199.42+-=刻画,其中x (秒)表⽰⾜球被踢出后经过的时间. 则⾜球被踢出后到离开地⾯达到最⾼点所⽤的时间是秒. 18. 在△ABC 中,AB =AC =5,tanB =34.若⊙O 的半径为10,且⊙O 经过点B 、C ,那么线段OA 的长等于 .三、解答题(本题共6⼩题,解答应写出⽂字说明、证明过程或推演步骤. 共66分) 19. (本题满分10分)市某楼盘准备以每平⽅⽶6 000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资⾦周转,对价格经过两次下调后,决定以每平⽅⽶4 860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某⼈准备以开盘价均价购买⼀套100平⽅⽶的住房,开发商给予以下两种优惠⽅案以供选择:①打9.8折销售;②不打折,⼀次性送装修费每平⽅⽶80元,试问哪种⽅案更优惠?如图,晚上⼩明站在路灯P的底下观察⾃⼰的影⼦时发现,当他站在F点的位置时,在地⾯上的影⼦为BF,⼩明向前⾛2⽶到D 点时,在地⾯上的影⼦为AD,若AB=4⽶,∠PBF=60°,∠PAB=30°,通过计算,求出⼩明的⾝⾼.(结果保留根号).21. (本题满分11分)如图,四边形ABCD内接于⊙O,BC是直径,∠BAD=120°,AB=AD.(1)求证:四边形ABCD是等腰梯形;(2)已知AC=6,求阴影部分的⾯积.如图,在平⾏四边形ABCD 中,过点A 作AE ⊥BC ,垂⾜为E ,连接DE ,F 为线段DE 上⼀点,且∠AFE =∠B .(1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =63,AF =43,求sinB 的值.23. (本题满分12分)已知关于x 的⼀元⼆次⽅程()2kx 4k 1x 3k 30-+++=. (1)试说明:⽆论k 取何值,⽅程总有两个实数根;(2)若△ABC 的两边AB 、AC 的长是⽅程的两个实数根,第三边BC 的长为5. 当△ABC 是等腰三⾓形时,求k 的值.AB是⊙O的直径,AD与⊙O相交,点C是⊙O上⼀点,经过点C的直线交AD于点E.⑴如图1 ,若AC平分∠BAD,CE⊥AD于点E,求证:CE是⊙O的切线;⑵如图2,若CE是⊙O的切线,CE⊥AD于点E,AC是∠BAD的平分线吗?说明理由;⑶如图3,若CE是⊙O的切线,AC平分∠BAD,AB=8,AC=6,求AE的长度.试题答案及评分标准⼀、选择题(每⼩题选对得3分,满分36分. 多选、不选、错选均记零分.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CBBDACBDCADB⼆、填空题(每⼩题3分,满分18分)13. a (x -2)(x +3) 14. 214或 15. 2:9 16. 1655或17.2 18. 3或5 三、解答题(本题共6⼩题,解答应写出⽂字说明、证明过程或推演步骤.共66分) 19. (本题满分10分)解:解:(1)设平均每次下调的百分率为x ,则6000(1-x )2=4860,解得:x 1=0.1=10%, x 2=1.9(舍).故平均每周下调的百分率为10%.……………………6分(2)⽅案1优惠:4860×100×(1-0.98)=9720(元);⽅案2可优惠:80×100=8000(元). 故⽅案1优惠.…………………………10分20. (本题满分10分)解:设⼩明的⾝⾼为x ⽶,则CD =EF =x ⽶.在Rt △ACD 中,∠ADC =90°,tan ∠CAD =ADCD,即tan 30°=x /AD ,AD =3x --2分在Rt △BEF 中,∠BFE =90°,tan ∠EBF =EF /BF ,即tan 60°=x /BF ,BF =x 33---4分由题意得DF =2,∴BD =DF -BF =2-x 33,∵AB =AD +BD =4,∴3x +2-x 33=4 --8分即x =3.答:⼩明的⾝⾼为3⽶.------------------------------------------------------------------------10分 21. (本题满分11分)⑴证明:∵∠BAD =120°,AB =AD ∴∠ABD =∠ADB =30°∴弧AB 和弧AD 的度数都等于60°⼜∵BC 是直径∴弧CD 的度数也是60° ------------------ --------------2分∴AB =CD 且∠CAD =∠ACB =30° ∴BC ∥AD∴四边形ABCD 是等腰梯形. --------------------------------------------------5分⑵∵BC 是直径∴∠BAC =90°∵∠ACB =30°,AC =6 ∴06433cos 230AC BC === 23R = ∵弧AB 和弧AD 的度数都等于60° ∴∠BOD =120° ---------------------------6分连接OA 交BD 于点E ,则OA ⊥BD 在Rt △BOE 中:0sin330OE OB =?=,0cos 330BE OB =?=,BD =2BE =6----------------------------------------------------8分∴()21201-63=4-33360223BOD BOD S S S ??=-=阴影扇形ππ ----------------------------------------------------11分 22. (本题满分11分)⑴证明:∵∠AFE =∠B ,∠AFE 与∠AFD 互补,∠B 与∠C 互补∴∠AFD =∠C --------------------------------------------------2分∵AD ∥BC ∴∠ADF =∠DEC -------------------------------------------4分∴△ADF ∽△DEC ----------------------------------------------------5分⑵解:∵△ADF ∽△DEC ∴AD AFDE CD= ∴63438DE = 解得:DE =12 ----------------------------------------------------7分∵AE ⊥BC , AD ∥BC ∴AE ⊥AD ∴221441086AE DEAD =-=-=----9分在Rt △ABE 中,63sin 84AE B AB === -------------------------------------------------11分 23. (本题满分12分)解:⑴△=()()243341k k k -++ =2216181212k k k k ++--=2441k k -+ =()221k -≥0 --------------------------------------------------4分∴⽆论k 取何值,⽅程总有两个实数根. -------------------------------------------------5分⑵若AB =AC 则⽅程()2kx 4k 1x 3k 30-+++=有两个相等的实数根此时△=0,即:()221k -=0 解得:12k =当12k =时,AB =AC =3,此时AB 、AC 、BC 满⾜三边关系. -------------------------8分若BC =5为△ABC 的⼀腰,则⽅程()2kx 4k 1x 3k 30-+++=有⼀根是5,将5x =代⼊⽅程()2kx 4k 1x 3k 30-+++=解得:14k = 当14k =时,解得⽅程两根为5和3,此时AB 、AC 、BC 满⾜三边关系. ----------11分综上:当△ABC 是等腰三⾓形时,k 的值为1124或. -----------------------------12分24. (本题满分12分)⑴证明:连接OC∵OA =OC ∴∠OAC =∠OCA ∵AC 平分∠BAD ∴∠OCA =∠CAD ∴OC ∥AD∵CE ⊥AD ∴CE ⊥OC -----------------------------------------------3分⼜OC 是半径∴CE 是⊙O 的切线。
2014-2015学年华师大版九年级数学上期末检测题及答案解析
期末检测题(本检测题满分:120分,时间:120分钟)一、选择题(每小题2分,共24分)1.已知3y , 则2xy 的值为( ) A.15- B.15 C.152- D.1522.一个正偶数的算术平方根是那么与这个正偶数相邻的下一个正偶数的算术平方根是( )A. B. C. D.3.在ABC △中,90C =︒∠,如果2,1AB BC ==,那么sin A 的值是( ) A.21 B.55 C.33 D.23 4.(2013·山东潍坊中考)已知关于x 的方程2(1)10kx k x +--=,下列说法正确的是( ) A.当0k =时,方程无解B.当1k =时,方程有一个实数解C.当1k =-时,方程有两个相等的实数解D.当0k ≠时,方程总有两个不相等的实数解5.从分别写有数字4-,3-,2-,1-,0,1,2,3,4的九张卡片中,任意抽取一张,则所抽卡片上数字的绝对值小于2的概率是( ) A .19 B .13 C .12 D .236.已知一个直角三角形的两条直角边的长恰好是方程22870x x -+=的两个根,则这个直角三角形的斜边长是( )7.(2013·湖北孝感中考)如图,在△ABC 中,AB AC a ==, BC b =(a b >).在△ABC 内依次作∠CBD =∠A ,∠DCE = ∠CBD ,∠EDF =∠DCE ,则EF 等于( ) A.32b a B.32a b C.43b a D.43a b8.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现从中摸到红色球、黑色球的频率稳定在和,则口袋中白色球的个数可能是( )A.24B.18C.16D.69.(2013•山东潍坊中考)一渔船在海岛A 南偏东20︒方向的B 处遇险,测得海岛A 与B 的距离为20海里,渔船将险情报告给位于A 处的救援船后,沿北偏西80︒方向向海岛C 靠近,同时,从A 处出发的救援船沿南偏西10︒方向匀速航行,20分钟后,救援船在海岛C 处恰好追上渔船,那么救援船航行的速度为( )A./时B.30海里/时C./时D./时10.如图,在△中,∠的垂直平分线交AB 于点D ,交的延长线于点,则的长为( )A.B.C.D.11.周末,身高都为1.6 m 的小芳、小丽来到溪江公园,准备用她们所学的知识测算南塔的高度.如图,小芳站在处测得她看塔顶的仰角为,小丽站在处测得她看塔顶的仰角为30°.她们又测出A,B 两点的距离为30 m.假设她们的眼睛离头顶都为,则可计算出塔高约为(结果精确到,参考数据:2,3)( ) A.36.21 m B.37.71 m C.40.98 mD.42.48 m12.如图,菱形ABCD 的周长为40cm ,DE AB ⊥,垂足为E ,3sin5A =,则下列结论正确的有( )①6cm DE =;②2cm BE=;③菱形面积为260cm ;④410cm BD =.A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共18分)13.(2013·陕西中考)一元二次方程230x x -=的根是 . 14.(2013·江西中考)若一个一元二次方程的两个根分别是Rt ABC △的两条直角边长,且3ABC S =△,请写出一个符合题意的一元二次方程 .15.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是________.16.若k x y z x z y z y x =+=+=+,则k = .17. 如图,在Rt △中,斜边上的高,,则________.18.如图,小明在时测得某树的影长为3米, 时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_______米.第18题图A 时B 时第12题图 ADE AD BC第10题图三、解答题(共78分)19.(8分)已知0045x=,其中a是实数,将式子20.(8分)计算下列各题:(1)222sin45sin35sin55︒︒+︒;(2()03tan30π4-︒+-+121-⎪⎭⎫⎝⎛-.21.(10分)随着人们节能意识的增强,节能产品的销售量逐年增加.某地区高效节能灯的年销售量2010年为10万只,预计2012年将达到14.4万只.求该地区2010年到2012年高效节能灯年销售量的平均增长率.22.(10分)已知线段OA OB⊥,C为OB的中点,D为AO上一点,连接,AC BD交于P点.(1)如图①,当OA OB=且D为AO中点时,求APPC的值;(2)如图②,当OA OB=,ADAO=14时,求tan∠BPC.23.(10分)某校九年级数学兴趣小组的同学开展了测量东江宽度的活动.如图,他们在河东岸边的点测得河西岸边的标志物B在它的正西方向,然后从A点出发沿河岸向正北方向行进200米到点C处,测得B在点C的南偏西60︒的方向上,他们测得东江的宽度是多少米?(结果保留整数,参考数据: )24.(10分)在数学活动课上,九年级(1)班数学兴趣小组的同学们测量校园内一棵大树的高度,设计的方案及测量数据如下:(1)在大树前的平地上选择一点A,测得由点A看大树顶端C的仰角为35°;(2)在点A和大树之间选择一点B(A,B,D在同一条直线上),测得由点B看大树顶端C的第22题图②ODAPB C①ODAPB C仰角恰好为45°;..(3)量出A,B两点间的距离为45 m请你根据以上数据求出大树CD的高度.(结果保留3个有效数字)25.(10分)(2014·北京中考)阅读下面材料:小腾遇到这样一个问题:如下图①,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC第25题图小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如上图②).请回答:∠ACE的度数为____,AC的长为____.参考小腾思考问题的方法,解决问题:如下图③,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于第25题图26.(12分) 把一副扑克牌中的三张黑桃牌(它们正面的数字分别为3,4,5)洗匀后正面朝下放在桌面上.小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽取一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽取一张牌,记下牌面数字.当两张牌的牌面数字相同时,小王赢;当两张牌的牌面数字不同时,小李赢.现请你利用画树状图或列表的方法分析游戏规则对双方是否公平,并说明理由.期末检测题参考答案1.A 解析:由题意,知250x -≥,520x -≥,所以52x =,3y =-,所以215xy =-. 2.C 解析:一个正偶数的算术平方根是,则这个正偶数是与这个正偶数相邻的下一个正偶数是,算术平方根是.3.A 解析:4.C 解析:本题主要考查了一元二次方程根的判别式的应用.当0k =时,原方程变为一元一次方程10x -=,该方程的解是1x =,故A 项错误;当1k =时,原方程变为一元二次方程210x -=,方程有两个不相等的实数解:121,1x x ==-,故B 项错误;当0k ≠时,原方程为一元二次方程,2224(1)4(1)0b ac k k k ∆=-=-+=+≥,方程总有两个实数解,当且仅当1k =-时,方程有两个相等的实数解,故C 项正确,D 项错误.5.B 解析:绝对值小于的卡片有1-,0,1,共3张,故所求概率为3193=. 6.B 解析:方法1:∵()22287484278a ,b ,c ,b ac ==-==-=--⨯⨯=∆,∴,∴∴ 这个直角三角形的斜边长是3,故选B.方法2:设1x 和2x 是方程22870x x -+=的两个根,由一元二次方程根与系数的关系可得:⎪⎩⎪⎨⎧==+,,2742121x x x x ∴ 22221212127()24292x x x x x x +=+-=-⨯=,∴ 这个直角三角形的斜边长是3,故选B.7.C8.C 解析:∵ 摸到红色球、黑色球的频率稳定在和,∴ 摸到白色球的频率为,故口袋中白色球的个数可能是.9.D 解析:如图,过点C 作CD AB ⊥于点D .设AC x =海里. 在△ACD 中,∠90ADC =︒,∠102030CAD =︒+︒=︒,AC x =海里,∴ C D =12AC =12x 海里,AD =3CD =3x 海里.在△BCD 中,∠90BDC =︒,∠802060CBD =︒-︒=︒,∴ BD =3CD =3x 海里. ∵ AD BD AB +=,∴33x 20=,解得103x =∴救援船航行的速度为2010330360=/时). 10. B 解析:在△中,∠由勾股定理得因为所以.又因为所以第9题答图△∽△所以,所以所以 11.D 解析:如图, m ,m ,∠90︒,∠45︒,∠30︒.设m ,在Rt△中,tan∠=DGDF ,即tan 30︒=3=xDF,∴3x .在Rt△中,∵ ∠90°,∠45°,∴ m .根据题意,得,解得31-.∴(m).12.C 解析:由菱形ABCD 的周长为40cm ,知10cm AB BC CD AD ====.因为3sin 5A =,所以6cm DE =.再由勾股定理可得8cm AE =,所以2cm BE =,所以菱形的面积()()2222210660cm 62210cm S AB DE ,BD BE DE =⋅=⨯==+=+= .13.0x =或3x =2560x x -+=(答案不唯一)15.45解析:在圆、等腰三角形、矩形、菱形、正方形中,只有等腰三角形不是中心对称图形,所以抽到有中心对称图案的卡片的概率是45.16. 12-或 解析: 当时,()22=++=+=+=+z y x x y x z z y ;当时,所以()1-=++-=+=zy z y z y x k . 17. 解析:在Rt △中,∵ ,∴ sin ,.在Rt △中,∵ ,sin ,∴.在Rt △中,∵,∴.18.6 解析:如图,因为,90,90CFD DFE DCF DFC +=︒+=︒∠∠∠∠,所以, 所以△∽△,所以,所以所以19.解:原式=22+2(1)242x x x ++=+.∵5x ,∴ 200820 -≥a 且10040- ≥a , 解得1004 a =, ∴ 5x =, ∴. 20.解:(1)222sin 45sin 35sin 55 ︒+︒+︒=2221)sin 35cos 35+︒+︒112+=.(2)12︒-30tan 3+()0π4-+121-⎪⎭⎫ ⎝⎛-2133332-+⨯-=13-=.21.解:设该地区年到年高效节能灯年销售量的平均增长率为.依据题意,列出方程化简,得解这个方程,得∴.∵ 该地区年到年高效节能灯年销售量的平均增长率不能为负数,∴舍去,∴. 答:该地区年到年高效节能灯年销售量的平均增长率为 22.解:(1)过点C 作CE ∥OA 交BD 于点E ,则△BCE ∽△BOD .又C 为OB 的中点,所以BC OC =,所以1122CE OD AD ==.再由CE ∥OA 得△ECP ∽△DAP ,所以2==CEAD PC AP . (2)过点C 作CE ∥OA 交BD 于点E ,设AD x =,则4OA OB x ==,3OD x =.由△BCE ∽△BOD ,得1322CE OD x ==.再由△ECP ∽△DAP ,得32==CE AD PE PD . 由勾股定理可知5BD x =,52DE x =,则32=-PD DE PD ,可得PD x AD ==, 则∠BPC =∠DPA =∠A ,所以tan ∠BPC =tan ∠A =21=AO CO . 23.解:在Rt △中,∠BAC =90°,,A 时B 时第18题答图CDEF∵ACAB,∴ (米). 故测得东江的宽度约为346米.24.解:∵ ∠90°, ∠45°,∴∵ ,∴ 设树高CD 为m x ,则 m ,()45m AD x .=+. ∵ ∠35°,∴ tan ∠tan 35°5.4+x x. 整理,得 4.5tan 351tan 35⨯=-x ≈10.5.故大树的高度约为10.525.解:∠ACE 的度数为75°,AC 的长为3.∵ ∠BAC =90°,∴ AB ∥DF ,∴ △ABE ∽△FDE .∴ 2.AB AE BE DF EF ED===∴ EF =1,AB =2DF .∵ 在△ACD 中,∠CAD =30°,∠ADC =75°,∴ ∠ACD =75°,∴ AC =AD .∵ DF ⊥AC ,∴ ∠AFD =90°. 在△AFD 中,AF =2+1=3,∴ DF =AF tan 30°2AD DF == AC AB ==∴BC ∴26. 解:游戏规则不公平.理由如下: 5 故P (牌面数字相同)3193==, P (牌面数字不同)3296==. ∵ 31<32,∴ 此游戏规则不公平,小李赢的可能性大.。
2014年九年级数学上册期末考试卷(有答案华东师大版)
2014年九年级数学上册期末考试卷(有答案华东师大版) 一.选择题(共8小题,每小题3分,共24分)) 1。
与是同类二次根式的是( ). A . B . C . D . 2。
方程的解是() A 、x=0。
B 、x= 2 C 、x=0或x= 2 D 、x= 3、从1,2,3,4这四个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是() A .B .C .D . 4、在△ABC 中,∠C=90°,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,则下列各式成立的是( ) A 。
b=a ·sinB B 。
a=b ·cosB C. a=b ·tanB D. b=a ·tanB 5、如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA ′B ′C ′与矩形OABC 关于点O 位似,且矩形OA ′B ′C ′的面积等于矩形OABC 面积的,那么点B ′的坐标是( ) A .(3,2)B .(-2,-3) C .(2,3)或(-2,-3) D .(3,2)或(-3,-2) 6。
已知关于的方程,下列说法正确的是( ) A 。
当时,方程无解 B 。
当时,方程有一个实数解 C 。
当时,方程有两个相等的实数解 D.当时,方程总有两个不相等的实数解 7。
如图,菱形的周长为,,垂足为,,则下列结论正确的有( ) ①;②;③菱形面积为; ④。
A.个 B.个 C。
个 D。
个 8. 直角三角形纸片的两直角边长分别为6、8,为DE ,则 S △BCE :S △BDE 等于( ) A 。
2:5 B 。
14:25 C 。
16:25 D 。
4:25 二.填空题(共7小题,每小题3分,共21分) 9.当x 时, 在实数范围内有意义.[来源: 10。
已知四条线段a ,b ,c ,d 成比例,并且a=2,b=,c=,则d= _________ . 11。
最新华东师大版九年级上学期数学期末模拟测试及答案解析.doc
九年级数学(上)期末模拟测试题(总分:120分) 姓名: 成绩: 一、填空题:(耐心填一填,你一定能填好!每空2分,共24分) 1、(21-)0= ;(31-)-2= 。
2、函数y=15+-x x中自变量x 的取值范围是 。
3、当m= 时,方程05)3()2(852=+-+-+-x m x m m m 是一元二次方程。
4、如果方程3x 2+x+a=0有实数根,则a 的取值范是 。
5、方程x 2+5x-m=0的一个根是2,则m= ;另一个根是 。
6、等腰梯形ABCD 中,AB ∥CD,对角线AC 与BD 相交与O,请写出图中一对相等的线段。
D C7、正方形ABCD 的边长是2cm,以直线AB 为轴旋转一周,所得 O 到的圆柱的侧面积为 cm 2. A B8、如图、AB 是⊙O 的直径,弦CD ⊥AB,垂足为P ,如AP ∶PB=1∶4,CD=8,则AB= .CA P O B(8题)(9) D9、如图,在⊙O 中,AB 是⊙O 的直径,∠D =40°,则∠AOC 的度数为_____ _10、如图,已知AC=BD,则再添加条件 ,可证出△ABC ≌△BAD.二、选择题:(精心选一选,你一定能选准!3×10=30分) 1、下列运算正确的是( )A 、 422a a a =+B 、 1243)(a a =C 、 36)32(2-=⨯-D 、yx y x 22)(=- 2、计算44212-++m m 的结果是( ) (A)2+m (B)2-m (C)21+m (D)21-m3、关于x 的一元二次方程01)1(22=-++-a x x a 的一个根是0,则a 的ACDB第10题值为( )(A )1 (B )1- (C )1或1- (D )0.54、如图,两个标有数字的轮子可以分别绕轮子中心旋转,旋转停止时,每个轮子上方的箭头各指着轮子上的一个数字,这两个数字和为偶数的概率是( )(A )21 (B )61 (C )125 (D )435、下列说法正确的是( )(A )每个命题都有逆命题 (B )每个定理都有逆定理 (C )真命题的逆命题必真 (D )假命题的逆命题必假6、关于x 的方程210x +-=有两个不相等的实数根,则k 的取值范围是( )A .0k ≥B .0k >C .1k ≥-D .1k >- 7、下列五个命题:(1)若直角三角形的两条边长为5和12,则第三边长是13; (2)()2a =a (a ≥0);(3)若点P (a ,b )在第三象限,则点P '(-a ,-b+1)在一象限;(4)对角线互相垂直且相等的四边形是正方形;(5)两边及第三边上的中线对应相等的两个三角形全等。
最新华东师大版数学九年级上学期期末模拟试卷及答案解析.doc
上学期华师大九年级期末模拟考试卷数 学 试 题(满分150分,时间120分钟)亲爱的同学们,准备好了吗?让我们一起对初三所学的数学知识做个小结吧!我们希望通过这次测试,了解你们对初三数学的掌握程度,相信你能认.....真解答好....! 一,认真填一填:(每题3分,共39分) 1、31-+(1-2)0 = .2、一种细菌的半径是0.00004米,用科学计数法表示是_________. 3、如果分式方程2+x x =2+x m无解,则m= 。
4、已知m 是方程x 2-x-2=0的一个根,则代数式m 2-m 的值是 。
5、“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题: “今有圆材,埋在壁中,不知大小以锯锯之,深一寸, 锯道长一尺,间径几何?”用数学语言可表述为: “如图,CD 为⊙O 的直径,弦AB ⊥CD 于E ,CE =1寸,AB =10寸,则直径CD 的长为 。
6、若一个等腰三角形的两边长满足方程0862=+-x x ,则此三角形的周长为 ;7、小洪和小斌两人参加体育项目训练,近期的5次测试成绩如图1所示,根据分析,你认为他们中成绩较为稳定的是 .8、如图2,在⊙O 中,已知∠ACB=∠CDB=60°,AC=4,则△ABC 的周长是 .图12468101214161812345体育项目测试成绩次数 得分图29、一个布袋里装有大小一样的2个红球,3个黄球,4个白球,将它们搅匀后,闭上眼睛随机地从布袋中取出一个球,则P(黄球)= . 10、我们学过正比例函数。
例如,当时间t一定时,路程s与速度v的关系成正比例的关系.其关系式可以写成为:s=vt(t为常数),请你仿照上例另举出一个在日常生活、生产或学习中具有正比例关系的量的实例,并写出它的函数关系式:。
11、请你写出一个开口向下且顶点坐标是(2,-3)的抛物线解析式: 。
12如图,当半径为18cm的转动轮转过150 角时,传送带上的物体A平移的距离为cm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大石中学九年级数学第 3 页共计 11 页
17、 (本题 12 分)如图,平面直角坐标系中,四边形 OABC 为 矩形,点 A、B 的坐标分别为(6,0),(6,8) 、动点 M、N 分别从 O、B 同时出发,都以每秒 1 个单位的速度运动、其 中,点 M 沿 OA 向终点 A 运动,点 N 沿 BC 向终点 C 运动、过 点 N 作 NP⊥BC,交 AC 于 P,连结 MP、已知动点运动了 t 秒、 (1)P 点的坐标为( , ) (用含 t 的代数式表示); (2)试求 △MPA 面积的最大值,并求此时 t 的值; (3) 请你探索: 当 t 为何值时, △MPA 是一个等腰三角形?
四川省蓬溪县大石中学 2014-2015 年九年级 数学期末模拟试题
考试时间 120 分钟,总分 150 分
一、选择题(本大题共 8 个小题,每小题 4 分,共 32 分,直接答在题后括号内) 1、 9的算术平方根是( A、3 B、 3 2、下列运算错误的是( A、 2a
3
) C、±3 ) B、 (a
y C
N
B
P
O
M
A
x
第 17 小题图
18、 (本题 12 分)如图,在平面直角坐标系中,以点 0′(-2,-3)为圆心,5 为半径的圆交 x 轴于 A、B 两点,过点 B 作⊙0′的切线,交 y 轴于点 C,过点 0′作 x 轴的垂线 MN,垂足为 D,一条抛 物线(对称轴与 y 轴平行)经过 A、B 两点,且顶点在直线 BC 上. (1)求直线 BC 的解析式. (2)求抛物线的解析式. (3)设抛物线与 y 轴交于点 P, 在抛物线上是否存在一点 Q, 使四边形 DBPQ 为平行四边形?若存 y 在,请求出点 Q 的坐标;若不存在,请说明理由. M
) (D)4 个 )
m 1 2 的解为正数,则 m 的取值范围是( x 1
A、 m 1 B、 m 1 C、 m 1 且 m 1 D、 m 1 且 m 1 5、如图,A 是半径为 1 的⊙O 外的一点, OA 2, AB 是⊙O 的切线,B 是切点,弦 BC // OA ,连 接 AC ,则阴影部分的面积等于( A、 ) C、
D F O
C E
大石中学九年级数学第 2 页共计 11 页
A
G
B
第 14 小题图
15、 (本题 12 分) 如图, 某校教学楼后面紧邻着一个土山坡, 坡上面是一块平地, 如图所示, BC∥AD, 5 斜坡 AB 长 106 m,坡度 i=9:5,为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经 2 地质人员勘测,当坡角不超过 45°时,可确保山体不滑坡. ⑴ 求改造前坡顶 B 与地面的距离 BE 的长; ⑵ 为确保安全,学校计划改造时保持坡脚 A 不动,坡顶 B 沿 BC 削 进到 F 点处,问 BF 至少是多少米?
(第 12 题)
x2 - 4 x 4 4 ( x ) ,其中 x= (2) (6 分)先化简再求值 x2 - 2 x x
2 2.
14、 (本题 12 分)如图,在平行四边形 ABCD 中,对角线 AC、 BD 相交于 O,BD=2AD,E、F、G 分别为 OC、OD、AB 的中点, 求证:(1) BE⊥AC; (2) EG=EF
2 9
C
B、
B
6
6
3 8
工作量
D、
4
3 8
O5 小题图
16 时间(小时) 图7 第 6 小题图
5
6、一件工作,甲、乙两人合作 5 小时后,甲被调走,剩余的部分由乙继续完成,设这件工作的全 大石中学九年级数学第 1 页共计 11 页
部工作量为 1,工作量与工作时间之间的函数关系如图 6 所示,那么甲、乙两人单独完成这件工 作,下列说法正确的是 ( ) A、甲的效率高 B、乙的效率高 C、两人的效率相等 D、两人的效率不能确定 7、下列命题:① 若 a>b>0,则以 2 ab, a b, a b 为三边的三角形是直角三角形;②两条弧的 长度相等,它们是等弧;③ 等边三角形是轴对称图形,但不是中心对称图形;④ 有两边和第三边 上的高对应相等的两个三角形全等。其中假命题的个数是 ( ) A、1 个 B、2 个 C、3 个 D、4 个 8、下列说法中,正确的是( ) A、抛一枚硬币,正面一定朝上; B、掷一颗普通的正方体骰子,点数一定不大于 6; C、为了解一种灯泡的使用寿命,宜采用普查的方法; D、“明天的降水概率为 80%”,表示明天会有 80%的地方下雨. 二、填空题(本大题共 4 个小题,每小题 4 分,共 16 分) 9、我国的陆地面积居世界第三位,约为 9597000 平方千米,用科学记数法表示为 平方千米(保留三个有效数字) 。 10、一次函数 y=ax+4(a 为常数),当 x 增加 2 时,y 的值减少了 3,则 a= ; 11、已知 m、n 满足 m 2 3m 1 0, n 2 3n 1 0 ,则 12、 如图, POA 1 1、 在函数 y 上,则点
第 15 小题图
16、 (本题 12 分)现计划把甲种货物 1240 吨和乙种货物 880 吨用一列货车运往某地,已知这列货 车挂有 A、B 两种不同规格的货车厢共 40 节,使用 A 型车厢每节费用为 6000 元,B 型车厢每节费 用为 8000 元. (1) 设运送这批货物的总费用为 y 万元,这列货车挂 A 型车厢 x 节,试写出 y 与 x 之间的关 系式. (3 分) (2) 如果每节 A 型车厢最多能装甲种货物 35 吨和乙种货物 15 吨,每节 B 型车厢最多能装甲 种货物 25 吨和乙种货物 35 吨,那么共有哪几种安排车厢的方案?(7 分) (3)上述方案中,哪个方案运费最省?最少运费为多少元?(2 分)
n m 的值等于 m n
.
P2 A1 A2 是等腰直角三角形, 点P 1 、P 2
4 ( x 0) 的图象上, 斜边 OA1 、A 1 A2 都在 x
。
x轴
A2 的坐标是
三、解答题 13.计算或化简 (1) (6 分)计算:
1 ( ) 2 ( 3 2)0 2sin 30 3 2
2 3
D、± 3
3a 2 5a 5
) a6
C、 a
2
a3 a5
D、 5a
2
1 5a 4 2 a
3、世界上因为有圆,万物才显得富有生机,请观察下列生活中美丽和谐的图案:
其中既是轴对称图形又是中心对称图形的个数有( (A)1 个 (B)2 个 (C)3 个 4、若关于 x 的分式方程