1.2.1_任意角的三角函数(2)
2014年人教A版必修四教案 1.2.1任意角的三角函数(2)
课 题:1.2.1 任意角的三角函数(二)教学目标:(1)掌握三角函数的符号;(2)根据定义理解与运用公式一,把求任意角的三角函数值转化为求0°~360°间的三角函数值.(3)初步应用定义分析与解决与三角函数值有关的一些简单问题. 教学重点:三种三角函数的定义域和函数值在各象限的符号;终边相同的角的同一三角函数值相等(公式一).教学难点: 理解转化,灵活运用诱导公式(一). 教学设想: 一、复习回顾:任意角的三角函数定义是什么? 二、探究新知:1.探究:请根据任意角的三角函数定义,将正弦、余弦和正切函数的定义域填入下表;再将这三种函数的值在各个象限的符号填入表格中:例1.求证:当且仅当不等式组sin 0{tan 0θθ<>成立时,角θ为第三象限角.练习:书P15练习42.提问:角的终边落在坐标轴上三个三角函数值是多少? 完成书上P15练习33.思考:根据三角函数的定义,终边相同的角的同一三角函数值有和关系? 显然: 终边相同的角的同一三角函数值相等.即有公式一:sin(2)sin k απα+=, cos(2)cos k απα+=,tan(2)tan k απα+= (其中k Z ∈)利用公式一,可以把求任意角的三角函数值, 转化为求0到2π(或0︒到360︒)角的三角函数值.例2.确定下列三角函数值的符号:(1)cos250︒; (2)sin()4π-; (3)tan(672)︒-; (4)tan 3π练习: tan(-666°36’)、tan113π例3.求下列三角函数值:(1)9cos4π; (2)11tan()6π-三、学习小结(1)你能准确判断三角函数值在各象限内的符号吗?(2)请写出各三角函数的定义域;(3)终边相同的角的同一三角函数值有什么关系?你在解题时会准确熟练应用公式一吗?。
1.2.1任意角的三角函数
0
tan 0 0 cos0 1 (2)因为当 时,x r y 0 ,所以 , sin 0 cos 1 tan 0 3 (3)因为当 时, x 0, y r ,所以 2
3 sin 1 2
3 cos 0 2
sin 0 0
( (
k , k Z 2
R R
[ 1,1] [ 1,1] R
(
(
值域
)
y
2.三角函数值在各象限的符号
(
x )
sin
o )(
)( ) cos
o )( x )
y
) ( )
tan
o ) ( x )
y
(
例3 求证:当且仅当下列不等式组成立时,
12,5
52 13
,
的三个三角函数值.
2 2
解:由已知可得:
r x y
y 5 于是,sin r 13 y 5 tan x 12
12
2
x 12 cos r 13
探究:
1.三角函数的定义域和值域 三角函数 定义域
sin cos tan
Y
单位圆.
P(a,b)
MP sin OP
OM cos OP
b
O M X
a b MP tan OM a
2.任意角的三角函数定义(二)
设 是一个任意角,它的终边与单位圆交于点P( x, y )
那么:(1)y 叫做
α的终边
的正弦,记作 sin ,即 sin y ; (2)x 叫做 的余弦,记作 cos ,即 cos x ; y y tan (3) 叫做 的正切,记作 ,即 tan ( x 0)
人教版数学必修四:1.2.1任意角的三角函数(2)(作业纸)
课题:§1.2任意角的三角函数(二)作业 总第____课时班级_______________姓名_______________一、填空题:1.如果角α的顶点在原点,始边与x 轴的正半轴重合,终边在函数5y x =- (0)x <的 图象上,那么cos α的值为 .2.若点P 在3π的终边上,且2OP =,则点P 的坐标 . 3.角α的终边终过点(3,5)P a a -,那么2sin 3cos αα-的值是 . 4.已知点(cos ,tan )p θθ在第三象限 ,则在区间[0,2)π内θ的取值范围是 . 5. 已知角α的终边上一点P 与点(3,2)A -关于y 轴对称,角β的终边上一点Q 与点A 关 于原点对称,则2sin 3sin αβ+的值为 .6.角α(0<α<2π)的正、余弦线的长度相等,且正、余弦符号相异.则α的值为 . 7.若π4 <α < π2,则 sinα、cosα、tanα的大小关系为 < <________.8.若-2π3 ≤θ≤π6 ,利用三角函数线,可得sin θ的取值范围是 .9.在(0,2)π内使sin cos x x >成立的x 的取值范围是 .10.若0 < α < 2π,且sinα<23,cosα> 12 .利用三角函数线,得到α的取值范围是 .二、解答题:11.试作出角(1)πα43-=,(2)314π的正弦线、余弦线、正切线.12. 若α为锐角(单位为弧度),试利用单位圆及三角函数线,比较α,sin α,tan α之间 的大小关系。
13、利用三角函数线,写出满足下列条件的角x 的集合.⑴ sin x ≥22; ⑵ cos x ≤ 12 ; ⑶ tan x ≥-1 ;三、作业错误分析及订正:1.填空题错误分析:[错误类型分四类:①审题错误;②计算错误;③规范错误;④知识_____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________ _____________________________________________________________________________ 3.解答题订正:。
1.2.1任意角的三角函数(二)
茅盾中学 沈晓强
茅盾中学
新课
首页 例2、若0 , 试比较 sin , tan ,的 2 教学过程 大小.
引入 进行 小结 作业
G S P
EXIT
2014年7月7日星期一
茅盾中学小结 作业
教学过程
EXIT
2014年7月7日星期一
茅盾中学 沈晓强
茅盾中学
作业
首页
引入 进行 小结 作业
教学过程
EXIT
2014年7月7日星期一
茅盾中学 沈晓强
茅盾中学
结束
首页
引入 进行 小结 作业
教学过程
EXIT
2014年7月7日星期一
2014年7月7日星期一
茅盾中学 沈晓强
茅盾中学
新课
首页 例1、作出下列各角的正弦线, 余弦线, 正 切线 : 教学过程 5 (1) ; ( 2) ; 引入 3 6 进行 2 13 小结 (3) ; ( 4) ; 3 6 作业
EXIT
2014年7月7日星期一
引入 进行 小结 作业
2、求下列三角函数值 :
(1) sin( 1050 );
0
19 ( 2 ) tan . EXIT 3
2014年7月7日星期一
茅盾中学 沈晓强
茅盾中学
新课
首页 三角函数的几何意义 :
引入 进行 小结 作业
教学过程
三角函数线
G S P G S P
EXIT
茅盾中学 沈晓强
茅盾中学
首页
首页
引入 进行 小结 作业
教学过程
§ 1.2.1 任意角的三角函数 (二)
1.2.1任意角的三角函数(2)
kz
利用公式一,可以把求任意角的三角函数值,转化为 求 0到2
或0到360 角的三角函数值 .
例1 确定下列三角函数值的符号:
解: (1)因为 250 是第三象限角,所以cos 250 0 ;
(2)因为 tan(672 ) = tan(48 2 360 ) tan 48, 而 48是第一象限角,所以 tan(672 ) 0 ; sin 0 . (3)因为 是第四象限角,所以 4 4
y
T M O P
α的终边
y
A(1, 0) x
M A(1, 0) O PT
x
α的终边
因 P(x,y),所以线段OM的长度为 | x | , 线段MP的长度为 | y | .
|MP|=|y|=|sinα|;
|OM|=|x|=|cosα|
思考:为了去掉上述等式中的绝对值符号,能否 给线段OM,MP规定一个适当的方向,使他们的 取值与P点的坐标一致? 以坐标轴的方向来规定OM,MP的方向,以 使他们与P点的坐标联系起来。
p15练习(7)题
11 练习:求值 cos 3
71 sin 6
19 tan 3
11 解: cos 3
71 sin 6
19 tan 3
由正弦、余弦、正切函数的定义有:
y y sin y MP r 1
p17练习(2)题
cos x x x OM r 1
y MP AT tan AT x OM OA
我们把这三条与单位圆有关的有向线段 MP、OM、 AT,分别叫做角α的正弦线、余弦线 、正切线.
1.2.1 任意角的三角函数(2)
例1.作出下列各角的正弦线、余弦线、正切线 .
(1)
3
;
(2)
2
3
.
解:
y
的终边
T3
y
T
P
O M A(1, 0) x
M
O A(1, 0) x
2 的终边 P
3
(1)
3
正弦线是
MP,
(2)
2
3
正弦线是 MP,
余弦线是 OM,
余弦线是 OM,
正切线是 AT .
正切线是 AT .
例2. 求证:当 为锐角时,sin tan .
3 ,y),且sin
2 4
y,
求cos、tan 的值。
解:由已知得 r ( 3)2 y2 3 y2
sin y y ,又 sin 2 y
r 3 y2
4
y 3 y2
2y 4
即
y 0或
3 y2 2 2
解得 y 0 或 y 5.
(1) 当 y 0时,P( 3 ,0),r 3 ,
作 业:
1. 教材 P22 习题4.3 1 ~ 2 2. 步步高:P9~12
高活页:§4.3 任意角的三角函数第一课时
练习1:若角α的终边落在射线 y 3x (x 0) 上,
求 sin ,cos ,tan .
解:在 射线 y 3x (x 0) 上取一点 P(1,3),
则 r 12 32 10 ,
α的终边
y
P
y
T α的终边 P
MO
A(1, 0) x
T
O M A(1, 0) x
y
y
T
α的终边
M O
P
A(1, 0) x
人教版数学必修四:1.2.1任意角的三角函数(2)(学生版)
学习重点:三角函数线的定义
学习难点:利用三角函数线解决问题
【学习过程】
一、自主学习与交流反馈
问题1:研究任意角的三角函数定义时,将角放置在平面直角坐标系内有何规定?若角的终边上任意一点P(x,y),到原点的距离为r,则角的正弦、余弦、正切值如何表示?它们在四个象限内的符号有何规律?
问题2:何为有向线段?有向线段MO与OM相同吗?若有向线段MO= - 2,则有向线段
cos=OM,tan=AT ?
二、知识建构与应用:
1.(1)有向线段:。
有向线段的数量:。
(2)单位圆:。
2.请在下边作出终边在不同象限时的三角函数线:
三、例题
例1作出下列各角的三角函数线
(1) (2)
例2利用三角函数线比较下列各组数的大小:
(1) 与 (2)tan 与tan
例3利用单位圆寻找适合下列条件的0到360的角的范围。
(ቤተ መጻሕፍቲ ባይዱ)sinα=,(2)sin≥;(3)tan
思考:
1.根据单位圆上的三角函数线,探究:
(1)正弦函数、余弦函数、正切函数的值域;
(2)正弦函数、余弦函数在 上的单调性;
(3)正切函数在区间 上的单调性。
2.当角 , 满足什么条件时有sin =sin ?
3.若sin >cos ,则 的取值范围是.
四、巩固练习
OM=,有向线段的数值由什么来确定,其中的负号意味着什么?
问题3:什么是单位圆?设任意角的终边与单位圆交于点P(x,y),则OP=;过点P作x轴的垂线,垂足为M,过点A(1,0)作单位圆的切线,这条切线必然与y轴平行,设它与角的终边或其反向延长线相交于点T,请说明为什么OM = x,MP = y ?为什么sin=MP,
1.2.1 任意角的三角函数重难点题型(举一反三)(解析版)
1.2.1任意角的三角函数重难点题型【举一反三系列】【知识点1 三角函数的定义】1.任意角的三角函数定义2.三角函数的定义域:【知识点2 三角函数值的符号】第一象限角的各三角函数值都为正;第二象限角的正弦值为正,其余均为负;第三象限角的正切值为正,其余均为负;第四象限角的余弦值为正,其余均为负.注:一全正,二正弦,三正切,四余弦.【知识点3 诱导公式一】由三角函数的定义,可以知道:终边相同的角的同一三角函数的值相等,由此得到诱导公式一:【知识点4 单位圆的三角函数线定义】如图(1)PM表示α角的正弦值,叫做正弦线.OM表示α角的余弦值,叫做余弦线.如图(2)AT表示α角的正切值,叫做正切线.注:线段长度表示三角函数值大小,线段方向表示三角函数值正负.【考点1 三角函数的定义】【分析】根据三角函数的定义,列方程求出m的值.【答案】解:角α的终边上一点(1,)P m,所以0m>,故选:B.【点睛】本题考查了三角函数的定义与应用问题,是基础题.A .4B .4±C .3D .3±【分析】由题意利用任意角的三角函数的定义,求得m 的值.故选:D .【点睛】本题主要考查任意角的三角函数的定义,属于基础题.)【分析】由题意利用任意角的三角函数的定义,求得tan α的值.【答案】解:角故选:C .【点睛】本题主要考查任意角的三角函数的定义,属于基础题.【变式1-3】(2019春•牡丹江期末)角α的终边上一点(P a ,2)(0)a a ≠,则2sin cos (αα-= )【分析】由题意利用任意角的三角函数的定义,分类讨论求得结果. 【答案】解:α的终边上一点(P a ,2)(0)a a ≠, 555a a =,22555a a =,555a a=-,2555a a=-故选:D .【点睛】本题主要考查任意角的三角函数的定义,属于基础题. 【考点2 利用象限角判断三角函数的符号】【例2】(2019春•湖北期中)下列命题成立的是( ) A .若θ是第二象限角,则cos tan 0θθ< B .若θ是第三象限角,则cos tan 0θθ> C .若θ是第四象限角,则sin tan 0θθ< D .若θ是第三象限角,则sin cos 0θθ>【分析】根据角所在的象限判断三角函数值的符号进行判断即可.【答案】解:若θ是第二象限角,则cos 0θ<,tan 0θ<,则cos tan 0θθ>,故A 错误, 若θ是第三象限角,则cos 0θ<,tan 0θ>,则cos tan 0θθ<,故B 错误, 若θ是第四象限角,则sin 0θ<,tan 0θ<,则sin tan 0θθ>,故C 错误, 若θ是第三象限角,则sin 0θ<,cos 0θ<,则sin cos 0θθ>,故D 正确, 故选:D .【点睛】本题主要考查三角函数值符号的判断,结合角的象限与三角函数值符号的关系是解决本题的关键. 【变式2-1】(2019春•珠海期末)已知点(sin ,tan )M θθ在第三象限,则角θ在( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】由题意可得sin 0θ<且tan 0θ<,分别求得θ的范围,取交集得答案. 【答案】解:由题意,00sin tan θθ<⎧⎨<⎩①②,由①知,θ为第三、第四或y 轴负半轴上的角; 由②知,θ为第二或第四象限角. 则角θ在第四象限. 故选:D .【点睛】本题考查三角函数的象限符号,是基础题.【变式2-2】(2019春•玉山县校级月考)若sin cos 0θθ<,则θ在( ) A .第一、二象限B .第一、三象限C .第一、四象限D .第二、四象限【分析】判断三角函数的符号,然后判断角所在象限即可.【答案】解:sin cos 0θθ<,可知sin θ与cos θ异号,说明θ在第或第四象限. 故选:D .【点睛】本题考查三角函数的符号的判断,角所在象限,是基本知识的考查. 【变式2-3】(2018秋•安庆期末)式子sin1cos2tan4的符号为( )A.正B.负C.零D.不能确定【分析】由1,2,4分别表示第一、二、三象限的角,由此可得答案.【答案】解:1,2,4分别表示第一、二、三象限的角,<,tan40>.∴>,cos20sin10故选:B.【点睛】本题考查三角函数值的符号,是基础题.【考点3 利用诱导公式一判断三角函数的符号】【例3】(2019秋•武邑县校级期中)下列三角函数值的符号判断正确的是()【分析】根据角所在的象限、诱导公式、三角函数值的符号逐项判断即可.【答案】解:A、因为156︒在第二象限,所以sin1560︒>,故A错误;︒=︒+︒=︒,且196︒在第三象限,D、因为tan556tan(360196)tan196所以tan5560︒>,故D错误;故选:C.【点睛】本题考查了三角函数的诱导公式,及三角函数在各象限的符号的应用,属于基础题.【变式3-1】(2019秋•西陵区校级期末)下列三角函数值的符号判断错误的是() A.sin1650︒<︒>D.tan3100︒>B.cos2800︒>C.tan1700【分析】直接利用诱导公式化简,判断符号即可.【答案】解:sin1650︒=︒>,正确;︒>,正确;cos280cos800tan1700︒=-︒<,正确;︒>,错误;tan310tan500故选:C.【点睛】本题考查诱导公式的应用,三角函数值的符号的判断,是基础题.【变式3-2】(2019春•武功县期中)下列值①sin(1000)-︒;④sin2是负值-︒;②cos(2200)-︒;③tan(10)的为()A.①B.②C.③D.④【分析】根据终边相同的角的三角函数值相同,利用三角函数符号判断方法,即可得出结论.【答案】解:①sin(1000)sin1000sin 2800-︒=-︒=-︒>; ②cos(2200)cos2200cos400-︒=︒=︒>; ③tan(10)tan100-︒=-︒<;综上,是负值的序号为③. 故选:C .【点睛】本题考查了终边相同的角与三角函数符号判断问题,是基础题.【变式3-3】(2019秋•夷陵区校级月考)给出下列各函数值:①sin(1- 000)︒;②cos(2- 200)︒;③tan(10)-;A .①④B .②③C .③⑤D .④⑤【分析】利用诱导公式分别对五个选项进行化简整理,进而根据三角函数的性质判断正负. 【答案】解:①,sin(1000)sin(2360280)sin 280cos100-︒=-⨯︒-︒=-︒=︒>; ②,cos(2200)cos(636040)cos400-︒=-⨯︒-︒=︒>; ③,tan(10)tan(30.58)tan(0.58)0π-=-+=-<;,πsin2cos3tan40∴<.∴其中符号为负的是:③⑤.故选:C .【点睛】本题主要考查了运用诱导公式化简求值,解题时应正确把握好函数值正负号的判定,是基础题. 【考点4 三角函数定义域】【分析】列出使函数有意义的不等式组,即由被开方数不小于零,得三角不等式组,分别利用正弦函数和余弦函数图象解三角不等式组即可【答案】解:要使函数有意义,需解得: (k ∈Z )即2k π+≤x ≤2k π+π (k ∈Z )故答案为Z )【点睛】本题考查了函数定义域的求法,三角函数的图象和性质,解简单的三角不等式的方法 可.【答案】解:函数【点睛】本题考查了函数的概念,三角函数的定义域,解三角函数的不等式,属于中档题. 【分析】由绝对值的特点得到sin α-和0的关系,由正弦曲线和角的正弦值可以得到角的范围,写出角的范围后注意加上k 的取值. 【答案】解:|sin |sin αα=-,sin 0α∴-, sin 0α∴,由正弦曲线可以得到[2k αππ∈-,2]k π,k Z ∈, 故答案为:[2k ππ-,2]k π,k Z ∈【点睛】本题主要考查三角函数不等式,解题时最关键的是要掌握三角函数的图象,通过数形结合得到要求的角的范围,这个知识点应用非常广泛,可以和其他知识结合来考查.【变式4-3】求下列函数的定义域:(2)(2sin1)=-;y lg x【分析】利用函数的定义域以及三角函数线化简求解即可.【答案】解:(1)要使y=有意义,可得cos x≥0,解得{x|﹣,k∈Z};(2)要使y=lg(2sin x﹣1)有意义,可得2sin x﹣1>0,即:sin x,解得{x|,k∈Z};(3)要使y=有意义,可得sin x≠﹣1.所以函数的定义域为:{x|x=﹣+2kπ,k∈Z}.【点睛】本题考查三角函数的定义域的求法,三角函数线的应用,考查计算能力.【考点5 利用诱导公式一化简求值】【例5】(2019春•娄星区期中)求下列各式的值:(2)sin1170cos1440tan1845︒+︒-︒【分析】(1)利用诱导公式进行恒等变形,再利用特殊角的三角函数值计算即可求出值;(1)利用诱导公式进行恒等变形,再利用特殊角的三角函数值计算即可求出值;【答案】(本题满分10分)(2)sin1170cos1440tan1845︒+︒-︒sin(336090)cos(43600)tan(536045)=⨯︒+︒+⨯︒+︒-⨯︒+︒ sin90cos0tan45=︒+︒-︒1=.【点睛】此题考查了运用诱导公式化简求值,以及特殊角的三角函数值,熟练掌握诱导公式是解本题的关键.【变式5-1】求下列各式的值(2)9cos2708cos03tan011sin180︒+︒+︒+︒.【分析】由特殊角的三角函数值即可计算得解.1(1)(1)=+-+-1=-.(2)9cos2708cos03tan011sin180︒+︒+︒+︒ 08100=+⨯++ 8=.【点睛】本题主要考查了特殊角的三角函数值在三角函数化简求值中的应用,属于基础题. 【变式5-2】(2019春•船营区校级月考)计算下列各式的值: (1)sin(1395)cos1140cos(1020)sin750-︒︒+-︒︒; tan 4ππ; 【分析】(1)原式中的角度变形后,利用诱导公式化简,再利用特殊角的三角函数值计算即可得到结果. (2)利用诱导公式即可计算得解.【答案】解:(1)原式sin(144045)cos(108060)cos(108060)sin(72030)=-︒+︒︒+︒+-︒+︒︒+︒ sin45cos60cos60sin30=︒︒+︒︒tan 4ππ )0【点睛】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键,属于基础题. 【变式5-3】(2019春•平罗县校级期中)求下列各式的值 )cos(570)cos(1140)tan(210)sin(690)︒-︒-︒-︒-︒【分析】(1)利用诱导公式以及特殊角的三角函数化简求值即可. (2)利用诱导公式以及特殊角的三角函数化简求值即可. )cos(570)cos(1140)tan(210)sin(690)-︒-︒=-︒-︒25)sin cos tan 463πππ=+-【点睛】本题考查诱导公式的应用,三角函数化简求值,考查计算能力. 【考点6 利用三角函数线解不等式】【例6】(2019春•泗县校级月考)利用单位圆,求适合下列条件的角的集合:【分析】在单位圆中画出三角函数线. (1)由[0,2π)内,,结合正弦线得的解集;(2)由[0,2π)内,,结合余弦线得的解集.【答案】解:在单位圆内作三角函数线如图:(1)∵在[0,2π)内,,OA,OB分别为的终边,由正弦线可知,满足的角的终边在劣弧AB内,∴的解集为{α|};(2))∵在[0,2π)内,,OC,OD分别为的终边,由余弦线可知,满足的终边在劣弧CD内,∴的解集为{α|}.【点睛】本题考查了三角函数线,考查了三角不等式的解法,训练了数形结合的解题思想方法,是中低档题.【变式6-1】求下列不等式的解集:【分析】作出单元圆,利用三角函数线进行求解即可.【答案】解:(1)正弦线大于0的角为x轴的上方,对应的角为2kπ<x<2kπ+π,k∈Z,则不等式的解集为(2kπ,2kπ+π),k∈Z.(2)余弦线小于0的角为y轴的左侧,对应的角为2kπ+<x<2kπ+,k∈Z,则不等式的解集为(2kπ+,2kπ+),k∈Z.(3)sin x>对应的区域在阴影部分,对应角的范围为2kπ+<x<2kπ+,k∈Z,则不等式的解集为(2kπ+,2kπ+),k∈Z.(4)cos x≤﹣对应的区域在阴影部分,对应角的范围为2kπ+≤x≤2kπ+,k∈Z,则不等式的解集为[2kπ+,2kπ+],k∈Z.【点睛】本题主要考查三角不等式的求解,利用三角函数的三角函数线是解决本题的关键.【变式6-2】利用三角函数线,写出满足下列条件的角x的集合:(2)tan x≥﹣1.【分析】根据三角函数线分别进行求解即可.【答案】解:(1)作出y=﹣,交单位圆于B,C,则sin x>﹣对应的区域为阴影部分,作出x=,交单位圆于E,D,则cos x>对应的区域为阴影部分OD,OE之间,则sin x>﹣且cos x>对应的区域为OC到OE之间,其中OC对应的角为﹣,OE对应的角为,则阴影部分对应的范围是2kπ﹣<x<2kπ+,k∈Z,即sin x>﹣且cos x>对应的范围是{x|2kπ﹣<x<2kπ+,k∈Z}(2)作出正切函数线AT=﹣1,则tan x≥﹣1对应的区域为阴影部分,OT对应的角为﹣,则阴影部分对应的角的范围是kπ﹣≤x<kπ+,即不等式的解集为{x|kπ﹣≤x<kπ+,k∈Z}【点睛】本题主要考查三角函数对应不等式的求解,利用三角函数线是解决本题的关键.【变式6-3】利用三角函数线,写出满足下列条件的角x的集合.(3)tan x≥﹣1;【分析】作出单位圆,由三角函数值先求出角在[0,2π]内的取值范围,再由终边相同的角的概念加上周期,由此能求出满足条件的角x的集合.【答案】解:(1)由sin x,作出单位圆,如下图,∵sin x,∴,∴满足sin x≥的角x的集合为{x|2kπ+,k∈Z}.(2)由cos x≤,作出单位圆,如下图,∵cos x≤,∴,∴满足cos x≤的角x的集合为{x|2kπ+≤x≤2kπ+,k∈Z}.(3)由tan x≥﹣1,作出单位圆,如下图,∵tan x ≥﹣1,∴﹣≤x <, ∴满足tan x ≥﹣1的角x 的集合为{x |k π﹣,k ∈Z }. (4)由sin x >且cos x >,作出单位圆,如下图,∵sin x >且cos x >,∴,∴满足sin x >且cos x >x 的集合为{x |2k π+,k ∈Z }. 【点睛】本题考查角的取值范围的求法,是基础题,解题时要注意单位圆和三角函数线的合理运用.【考点7 利用三角函数线比较大小】【例7】比较下列各组数的大小:【分析】(1)根据余弦函数单调性的大小进行比较(2)利用三角函数的诱导公式以及作差法进行比较即可.704π<-cos(π∴-02πα<<则0sin(cos <cos(sin )α222ππ-<【点睛】本题主要考查三角函数值的大小比较,结合三角函数的诱导公式以及三角函数的单调性是解决本题的关键.【变式7-1】利用三角函数线比较下列各组三角函数值的大小:【分析】根据题意,依次作出各个角的三角函数值对应的三角函数线,进而比较大小即可得答案.【点睛】本题考查的知识点是三角函数线,三角函数值的大小比较,关键是掌握三角函数线的定义.【变式7-2】比较大小:可知:21AT AT >,可知:BD BC >,【点睛】本题考察了诱导公式的化简运用,正切线的画法,属于三角函数线的基础题目.【变式7-3】比较下列各组数的大小:【分析】根据三角函数线进行比较即可.)5 cos7π=在单位圆中作出对应的三角函数线如图,则余弦线为OM,正弦线为MP,(2)在单位圆中作出对应的三角函数线如图,则正切线为AT,正弦线为MP,则AT MP>,【点睛】本题主要考查三角函数值的大小比较,根据三角函数线是解决本题的关键.。
§1.2.1-2 任意角的三角函数(二)
O P=1
在 O M P中 , O M +M P>O P
y
P M x
o
即 : s in + c o s > 1
2013-1-11
重庆市万州高级中学 曾国荣 wzzxzgr@
12
§1.2.1-2 任意角的三角函数(二)
4
MP是正弦线 OM是余弦线
P
y
o
AT是正切线
重庆市万州高级中学 曾国荣 wzzxzgr@
o M
A x T
8
2013-1-11
§1.2.1-2 任意角的三角函数(二)
练习: 不查表,比较大小
(1) sin 2 3 和 sin 4 5 (2) cos 2 3 和 cos 4 5 (3) ta n 2 3 和 ta n 4 5
2013-1-11
§1.2.1-2 任意角的三角函数(二)
例 1 .作 出 下 列 各 角 的 三 角 正 弦 线 , 余 弦 线 , 正 切 线 , 并 根 据 三 角 函 数 线 求 它 的 正 弦 值 ,余 弦 值 ,正 切 值 . (1)
4
(2)
4 3
y
T P A M x
4 3
2
s in 1 cos
1 cos s in
证 明 : 如 图 连 接 AP 在 直 角 CPA中 ,
PCA APM
y
P x MA
2
C
2
o
在 直 角 AM P中 , MA OA OM 1 cos ta n A P M MP MP s in
1.2.1任意角的三角函数(2)
例2 在单位圆中作出符合下列条件的角的终边: 1 ⑴ sin ; ⑵ tan 2. 2
角的终边
y 1 y
P
1
O 1
1 y 2
1 角的终边 x
P
1
M1
O
- P 1
1
A
x
T
1 变题: 写出满足条件 ≤cosα< 2 2 的集合. y
3 的角α 2
3
Q
1
P
6
x
-1
4 3
引入:角是一个几何概念,同时角的大小也具有数量特 征.我们从数的观点定义了三角函数,如果能从图形上找 出三角函数的几何意义,就能实现数与形的完美统一.
[探索]
三角函数线
三种三角函数能否找到一种几何表示呢?
y MP sin MP (正弦线) r OP x OM cos OM (余弦线) r OP
课后完成《世纪金榜》P8~P10
预习下节内容:同角三角函数的基本关系
O R -1
S1
11 6
2 |2k <α≤ 2k ,或 6 3 4 11 2k ,k Z ≤α< 2k 3 6
1. 求函数 f (x ) = 2 cos x - 1 的定义域.
解:如右图所示
探究:当0<α<π/2时,总有 sinα<α<tanα. S△POA<S扇形AOP<S△AOT
y AT tan AT (正切线) x OA
三角函数线
α的终边 P A M o y y P α的终边 T
x T
o
M A x
(Ⅱ) y
y (Ⅰ)
T M o P
M A A x
1.2.1任意角三角函数2
y r P(x,y)
α
o M
x
例:作出角 的正弦线、余弦线、正切线. 3
分层训练
• 必做题 P15 练习:7(2) 选做题 • P15 练习:8 P23 习题:17 • 作业 P22 :习题:2(1)(3)、3
y MP AT tan AT x OM OA
y r
T
P(x,y)
A
α
o MxΒιβλιοθήκη 这几条与单位圆有关的有向线段 MP 、OM 、AT 叫做角 的正弦线、余弦线、正切线.
当角 的终边在 x 轴上时, 正弦线、正切线分别变成一个点;
当角 的终边在 y 轴上时, 弦线变成一个点,正切线不存在.
有向线段
• 规定了方向(即规定了起点和终点)的线段称 为有向线段。 • 有向直线:规定正方向的直线称为有向直线。 • 有向线段的数量
当角 的终边不在坐标轴上时,我们把 OM , 都看 MP 成带有方向的线段,这种带方向的线段叫有向线段.由正 弦、余弦、正切函数的定义有:
y y sin y MP r 1 x x cos x OM r 1
任意角的三角函数(2)
学习目标
• 会用角α的正弦线、余弦线、正切线分别 表示α的正弦、余弦、正切函数值; • 了解有向线段的含义。
自学指导
• 什么叫三角函数线?它们有方向性吗? • 当α角终边分别Y轴的左、右两侧及在X轴、Y 轴上时,正弦线、余弦线、正切线各有什么 特点?
自主检测:P15 练习题7(1)
(浙江专用版)高中数学第一章三角函数1.2.1任意角的三角函数(二)课件新人教A版必修2
任意角的三角函数
1.2.1 任意Biblioteka 的三角函数(二)学习目标1.掌握正弦、余弦、正切函数的定义域. 2.了解三角函数线的意义,能用三角函数线表示一个角的正弦、 余弦和正切. 3.能利用三角函数线解决一些简单的三角函数问题.
内容索引
问题导学 题型探究
达标检测
问题导学
知识点一
思考
三角函数的定义域
答案
π 正切函数 y=tan x 为什么规定 x∈R 且 x≠kπ+2,k∈Z? π 当 x=kπ+2,k∈Z 时,角 x 的终边在 y 轴上,此时任取终边上一
yP 点 P(0,yP),因为 0 无意义,因而 x 的正切值不存在.所以对正切函数 y π =tan x,必须要求 x∈R 且 x≠kπ+2,k∈Z.
解答
反思与感悟 线段的正负.
利用三角函数线比较三角函数值的大小时,一般分三步:
(1) 角的位置要 “ 对号入座 ” ; (2) 比较三角函数线的长度; (3) 确定有向
跟踪训练2 比较sin 1 155°与sin(-1 654°)的大小. 解 sin 1 155°=sin(3×360°+75°)=sin 75°,
点,然后过此交点作x轴的垂线,得到垂足,从而得到正弦线和余弦线. (2)作正切线时,应从点A(1,0)引单位圆的切线交角的终边或终边的反向 延长线于一点T,即可得到正切线AT.
跟踪训练1
集合.
1 在单位圆中画出满足sin α= 的角α的终边,并求角α的取值 2
1 解 已知角 α 的正弦值,可知 P 点纵坐标为2. 1 所以在 y 轴上取点0,2, 过这点作 x 轴的平行线,
梳理
正弦函数y=sin x的定义域是 R ;余弦函数y=cos x的定义域是 R; π xx∈R且x≠kπ+ ,k∈Z 2 正切函数y=tan x的定义域是___________________________.
1.2.1 任意角的三角函数2ppt
P(x,y)
y
rห้องสมุดไป่ตู้
P 1
O
x
复习巩固
2.三个三角函数的定义域
三角函数 定义域
sin
cos
tan
{ | k , k Z } 2
R R
复习巩固
3.三角函数值的符号问题
y
正弦为正 正切为正
三角函数全为正
x
o
余弦为正
Ⅰ全正,Ⅱ正弦,Ⅲ正切,Ⅳ余弦
新知探究 终边相同的角的三角函数
9 ; (5)cos 4
11 tan( ;(6) ) 6
.
3.写出角的终边在图中阴影区域内 的角的集合(不包括边界).
作业:
P20-21:4,7,
9:(1)(2)
《学海导航》第三课时
3.在求任意角的三角函数值时,上述公 式有何功能作用?
例1. 求证:当且仅当不等式组
sin 0 成立时,角θ 为第三象限角. tan 0
例2.确定下列三角函数值的符号. (1)cos 250 ;(2)sin( ) ;(3)tan(672 ) ;
4
(4) tan3
1.终边相同的角的同名三角函数值相等.
k Z
sin( 2k ) sin
公式一:
cos( 2k ) cos
tan( 2k ) tan
k Z
2p
新知探究
1.若sinα =sinβ ,则角α 与β 一定相 同吗?
2p
2.函数的对应形式有一对一和多对一两 种,三角函数是哪一种对应形式?
【湖南师大附中内部资 料】高一数学必修4课件: 1.2.1 任意角的三角函数 2(新人教A版)
【同步练习】必修四 1.2.1 任意角的三角函数-高一数学人教版(必修4)(解析版)
第一章 三角函数1.2.1 任意角的三角函数一、选择题1.已知sin α+cos α=–15,α∈(0,π),则tan α的值为A .–43或–34B .–43C .–34D .34【答案】C【解析】∵sin α+cos α=–15,α∈(0,π),∴α为钝角,结合sin 2α+cos 2α=1,∴sin α=35,cos α=–45,则tan α=sin cos αα=–34,故选C . 2.若点5π5πsin cos 66⎛⎫ ⎪⎝⎭,在角α的终边上,则sin α的值为A .12-B .12C .3D 3 【答案】C【解析】因为点5π5πsin cos 66⎛⎫ ⎪⎝⎭,在角α的终边上,即点132⎛- ⎝⎭,在角α的终边上,则3sin α=,故选C .3.若角α的终边过点P (3,–4),则cos α等于A .35B .34-C .45-D .45【答案】A【解析】∵角α的终边过点P (3,–4),∴r =5,∴cos α=35,故选A .4.如果角θ的终边经过点(3,–4),那么sin θ的值是A .35B .35-C .45D .45-【答案】D【解析】∵角θ的终边经过点(3,–4),∴x =3,y =–4,r 22x y +,∴sin θ=y r=–45,故选D .5.若sinαtanα<0,且costanαα<0,则角α是A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】∵sinαtanα<0,可知α是第二或第三象限角,又costanαα<0,可知α是第三或第四象限角.∴角α是第三象限角.故选C.6.已知点P(x,3)是角θ终边上一点,且cosθ=–45,则x的值为A.5 B.–5 C.4 D.–4 【答案】D【解析】∵P(x,3)是角θ终边上一点,且cosθ=–45,∴cosθ=29x+=–45,∴x=–4.故选D.7.若点P(sinα,tanα)在第三象限,则角α是A.第一象限角B.第二象限角C.第三象限角D.第四象限角【答案】D【解析】∵点P(sinα,tanα)在第三象限,∴sinα<0,tanα<0.∴角α是第四象限角.故选D.8.如果角α的终边过点(2sin60°,–2cos60°),则sinα的值等于A.12B.–12C.–3D.–3【答案】B【解析】角α的终边过点(2sin60°,–2cos60°),即(31-,),由任意角的三角函数的定义可知:sinα=()()221 231=-+-.故选B.9.若角120°的终边上有一点(–4,a),则a的值是A.43B.43-C.43±D.310.已知4sin5α=,并且P(–1,m)是α终边上一点,那么tanα的值等于A .43-B .34-C .34D .43【答案】A 【解析】∵4sin5α=,并且P (–1,m )是α45=,∴m =43,那么tan α=1m-= –m =–43,故选A . 11.已知sin α<0,且tan α>0,则α的终边所在的象限是A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】∵sin α<0,∴α的终边在第三、第四象限或在y 轴负半轴上,∵tan α>0,∴α的终边在第一或第三象限,取交集可得,α的终边所在的象限是第三象限角.故选C . 12.若角α终边经过点P (sin2π2πcos 33,),则sin α=A .12BC .12-D . 【答案】C【解析】∵角α终边经过点P (sin 2π2πcos 33,),即点P ,–12),∴x ,y =–12,r =|OP |=1,则sin α=y r=y =–12,故选C .13.已知角α的终边过点12P ⎛ ⎝⎭,,则sin α=A .12B C D . 【答案】C【解析】由题意可得,x =12,y ,r =|OP |=1,∴sin α=y r,故选C .14.已知角α的终点经过点(–3,4),则–cos α=A .35B .–35C .45D .–45【答案】A【解析】∵角α的终点经过点(–3,4),∴x =–3,y =4,r =|OP |=5,则–cos α=–35x r =,故选A . 二、填空题15.若角α的终边与单位圆交于P (–35,45),则sin α=45;cos α=___________;tan α=___________.【答案】45;35-;43- 【解析】∵角α的终边与单位圆交于P (–35,45),|OP |=223455⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭=1,∴由任意角的三角函数的定义可知:sin α=44515=,同理可得cos α=35-;tan α=445335=--;故答案为:45;35-;43-.16.已知23cos 4a x a-=-,x 是第二、三象限角,则a 的取值范围是__________.17.已知角α的终边经过点P (–2,4),则sin α–cos α的值等于__________.35【解析】∵角α的终边经过点P (–2,4),∴x =–2,y =4,r =|OP 5,∴sin α=25y r =,cos α=xr= 5,则sin α–cos α3535. 18.适合条件|sin α|=–sin α的角α是__________.【答案】[2k π–π,2k π],k ∈Z【解析】∵|sin α|=–sin α,∴–sin α≥0,∴sin α≤0,由正弦曲线可以得到α∈[2k π–π,2k π],k ∈Z ,故答案为:[2k π–π,2k π],k ∈Z .19.若角α的终边经过点(–1,–2),则tan α=___________.【答案】2【解析】∵角α的终边经过点(–1,–2),∴由三角函数定义得tan α=21--=2.故答案为:2. 20.已知角θ的终边经过点P (x ,2),且1cos 3θ=,则x =___________.2 【解析】∵角θ的终边经过点P (x ,2),且21cos 34x θ==+,解得x 22.21.若sinθ<0,cosθ>0,则θ在第___________象限.【答案】四【解析】由sinθ<0,可知θ为第三、第四象限角或终边在y轴负半轴上的角.由cosθ<0,可知θ为第一、第四象限角或终边在x轴正半轴上的角.取交集可得,θ在第四象限.故答案为:四.三、解答题22.已知点P(3m,–2m)(m<0)在角α的终边上,求sinα,cosα,tanα.【解析】因为点P(3m,–2m)(m<0)在角α的终边上,所以x=3m,y=–2m,r=–13m,sinα=21313yr==,cosα=31313xr=-=-,tanα=32yx=-.23.确定下列各式的符号:(1)sin 103°·cos 220°;(2)cos 6°·tan 6.24.已知角α的终边在直线y=2x上,分别求出sinα,cosα及tanα的值.【解析】当角α的终边在第一象限时,在角α的终边上任意取一点P(1,2),则x=1,y=2,r=|OP5,∴sinα=255yr==cosα=55xr=,tanα=yx=2;当角α的终边在第三象限时,在角α的终边上任意取一点P(–1,–2),则x=–1,y=–2,r=|OP|=5,∴sinα=yr=5=25,cosα=xr=5=5,tanα=yx=2.25.已知角α的终边上一点P (m )(m ≠0),且sin α=4,求cos α,tan α的值.【解析】设P (x ,y ).由题设知x=y=m ,所以r 2=|OP|2=(2+m 2(O 为原点),,所以sin α=mr =4,所以=,3+m 2=8,解得当r=,x=所以cos =,tan当m=r=,x=y=所以cos =,tan26.已知角α终边上一点P (m ,1),cos α=–13.(1)求实数m 的值; (2)求tan α的值.【解析】(1)角α终边上一点P (m ,1),∴x =m ,y =1,r =|OP∴cos α=–13,解得m =.(2)由(1)可知tan α=1m。
1.2.1.1任意角三角函数
第1课时 任意角的三角函数(一)任意角的三角函数的定义sin α,即sin α=y cos α,即cos α=x ,即tan α=yx(x ≠0) 正弦、余弦、正切都是以角为自变量,以单位圆上的点的坐标或坐标的比值为函数值的函数,将它们统称为三角函数到一个比值的集合的函数.三角函数值实质是一个比值,因此分母不能为零,所以正切函数的定义域就是使分母不为零的角的集合.Z }三角函数值在各象限的符号口诀:一全正,二正弦,三正切,四余弦状元随笔 对三角函数值符号的理解三角函数值的符号是根据三角函数定义和各象限内坐标符号导出的.从原点到角的终边上任意一点的距离总是正值.根据三角函数定义知:正弦值符号取决于纵坐标y 的符号;.sin 750°=________.类型一三角函数的定义及应用1(1)若角α的终边经过点P(5,-12),则sin α=________,cos α=________,tan α=________ 2x”其他条件不变,结果又如何?的值为;(1)将本例中条件“x>0”改为“x<0”,结果如何?(2)将本例中条件“x>0”改为“x≠0”,结果又怎样?(3)将本例中“P(x,3)”改为“P(x,3x)”,且把“cos θ=10x10”去掉,结果又怎样?A.第一象限B.第二象限C.第三象限D.第四象限(2)判断下列各式的符号:①sin 145°cos(-210°);②sin 3·cos 4·tan 5.方法归纳判断三角函数值正负的两个步骤(1)定象限:确定角α所在的象限.(2)定符号:利用三角函数值的符号规律,即“一全正,二正弦,三正切,四余弦”来判断.注意:若sin α>0,则α的终边不一定落在第一象限或第二象限内,有可能终边落在y 轴的非负半轴上. 跟踪训练1 判断下列各式的符号:(1)sin 145°cos(-210°);(2)sin 3·cos 4·tan 5.2.已知角α的终边过点(3a -9,a +2)且cos α≤0,sin α>0,则实数a 的取值范围是 . 3.设角α是第三象限角,且⎪⎪⎪⎪sin α2=-sin α2,则角α2是第 象限角.(2)sin ⎝⎛⎭⎫-11π6+cos 125π·tan 4π.7.当α为第二象限角时,|sin α|sin α-cos α|cos α|的值是________.8.已知角α的终边经过点P (3,4t ),且sin(2k π+α)=-35(k ∈Z ),则t =________.三、解答题(每小题10分,共20分)9.已知角α的终边为射线y =-34x (x ≥0),求角α的正弦、余弦和正切值.10.判断下列各式的符号:(1)sin 105°·cos 230°;(2)cos 3·tan ⎝⎛⎭⎫-2π3.11.若α是第一象限角,则-α2是( )A .第一象限角B .第四象限角C .第二或第三象限角D .第二或第四象限角 12.若角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是α终边上一点,且|OP |=10,则m -n =________. 13.计算:(1)sin 390°+cos(-660°)+3tan 405°-cos 540°;(2)sin ⎝⎛⎭⎫-7π2+tan π-2cos 0+tan 9π4-sin 7π3.14.已知角α的终边过点(a,2a )(a ≠0),求角α的正弦、余弦和正切值.第2课时 任意角的三角函数(二)1.相关概念(1)单位圆:以原点O 为圆心,以单位长度为半径的圆. (2)有向线段:带有方向(规定了起点和终点)的线段.规定:方向与x 轴或y 轴的正方向一致的为正值,反之为负值. 2.三角函数线状元随笔 (1)三角函数线的方向.正弦线由垂足指向角α的终边与单位圆的交点,余弦线由原点指向垂足,正切线由切点指向切线与角α的终边或其反向延长线的交点.(2)三角函数线的正负:三条有向线段凡与x 轴或y 轴同向的,为正值,与x 轴或y 轴反向的,为负值. (1)角的三角函数线是直线.( )(2)角的三角函数值等于三角函数线的长度.( )(3)第二象限的角没有正切线.( )2.有下列四个说法:①α一定时,单位圆中的正弦线一定;②单位圆中,有相同正弦线的角相等; ③α和α+π有相同的正切线;④具有相同正切线的两个角终边相同. 不正确说法的个数是( ) A .0个 B .1个 C .2个 D .3个 3.如图所示,在单位圆中角α的正弦线、正切线完全正确的是( )A .正弦线PM ,正切线A ′T ′B .正弦线MP ,正切线A ′T ′C .正弦线MP ,正切线ATD .正弦线PM ,正切线AT 4.已知sin α>0,tan α<0,则α的( )A .余弦线方向向右,正切线方向向下B .余弦线方向向右,正切线方向向上C .余弦线方向向左,正切线方向向下D .余弦线方向向上,正切线方向向左类型一 三角函数线的作法【例1】 作出下列各角的正弦线、余弦线、正切线.(1)-π4;(2)17π6;(3)10π3.类型二 利用三角函数线比较大小【例2】 (1)已知A .若α、β是第一象限角,则sin α>sin β B .若α、β是第二象限角,则tan α>tan β C .若α、β是第三象限角,则sin α>sin β D .若α、β是第四象限角,则tan α>tan β (2)利用三角函数线比较sin2π3和sin 4π5,cos 2π3和cos 4π5,tan 2π3和tan 4π5的大小.方法归纳利用三角函数线比较大小的步骤利用三角函数线比较三角函数值的大小时,一般分三步:①角的位置要“对号入座”;②比较三角函数线的长度;③确定有向线段的正负.跟踪训练1.已知a =sin 2π7,b =cos 2π7,c =tan 2π7,则( )A .a <b <cB .a <c <bC .b <c <aD .b <a <c2 设π4<α<π2,试比较角α的正弦线、余弦线和正切线的长度.如果π2<α<3π4,上述长度关系又如何?类型三 利用三角函数线解不等式(1)cos α>-22;(2)tan α≤33;(3)|sin α|≤12.1.将本例(1)的不等式改为“cos α<22”,求α的取值范围 2.将本例(3)的不等式改为“-12≤sin θ<32”,求α的取值范围3.利用本例的方法,求函数y =2sin x -1的定义域.方法归纳利用三角函数线解三角不等式的方法利用三角函数线求解不等式,通常采用数形结合的方法,求解关键是恰当地寻求点.一般来说,对于sin x ≥b ,cos x ≥a (或sin x ≤b ,cos x ≤a ),只需作直线y =b ,x =a 与单位圆相交,连接原点和交点即得角的终边所在的位置,此时再根据方向即可确定相应的x 的范围;对于tan x ≥c (或tan x ≤c ),则取点(1,c ),连接该点和原点即得角的终边所在的位置,并反向延长,结合图象可得.跟踪训练3 在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合.(1) sin α≥32;(2)cos α≤-12.一、选择题(每小题5分,共25分)1.对三角函数线,下列说法正确的是( ) A .对任意角都能作出正弦线、余弦线和正切线 B .有的角的正弦线、余弦线和正切线都不存在C .任意角的正弦线、正切线总是存在的,但余弦线不一定存在D .任意角的正弦线、余弦线总是存在的,但正切线不一定存在2.如果MP 和OM 分别是角α=7π8的正弦线和余弦线,那么下列结论正确的是( )A .MP <OM <0B .OM >0>MPC .OM <MP <0D .MP >0>OM3.有三个命题:①π6和5π6的正弦线长度相等;②π3和4π3的正切线相同;③π4和5π4的余弦线长度相等.其中正确说法的个数为( ) A .1 B .2 C .3 D .04.使sin x ≤cos x 成立的x 的一个区间是( ) A.⎣⎡⎦⎤-3π4,π4 B.⎣⎡⎦⎤-π2,π2 C.⎣⎡⎦⎤-π4,3π4 D.[]0,π5.如果π4<θ<π2,那么下列各式中正确的是( )A .cos θ<tan θ<sin θB .sin θ<cos θ<tan θC .tan θ<sin θ<cos θD .cos θ<sin θ<tan θ二、填空题(每小题5分,共15分)6.比较大小:sin 1________sin π3(填“>”或“<”).7.不等式tan α+33>0的解集是________________________.8.用三角函数线比较sin 1与cos 1的大小,结果是________.三、解答题(每小题10分,共20分)9.做出下列各角的正弦线、余弦线、正切线.(1)5π6;(2)-2π3.10.利用三角函数线,求满足下列条件的角α的集合:(1)tan α=-1;(2)sin α≤-22.11.已知角α的正弦线和余弦线的方向相反、长度相等,则α的终边在( )A .第一象限的角平分线上B .第四象限的角平分线上C .第二、第四象限的角平分线上D .第一、第三象限的角平分线上12.若cos θ>sin 7π3,利用三角函数线得角θ的取值范围是________.13.若α∈⎝⎛⎭⎫0,π2,试利用三角函数线证明sin α+cos α>1.。
高中数学人教A版必修四课时训练:第一章三角函数1-2任意角的三角函数
图1
作直线 y= 23交单位圆于 A、B,连结 OA、OB,则 OA 与 OB 围成的区域(图 1 阴影部分), 即为角 α 的终边的范围. 故满足条件的角 α 的集合为 {α|2kπ+π3≤α≤2kπ+23π,k∈Z}. (2)
∴sin 2cos 3tan 4<0.
10.2
解析 ∵y=3x,sin α<0,∴点 P(m,n)位于 y=3x 在第三象限的图象上,且 m<0,n<0,
n=3m.
∴|OP|= m2+n2= 10|m|=- 10m= 10.
∴m=-1,n=-3,∴m-n=2.
11.解 (1)原式=cosπ3+-4×2π+tanπ4+2×2π=cos π3+tan π4=12+1=32.
3.诱导公式一的实质是说终边相同的角的三角函数值相等. 作用是把求任意角的三角函数值转化为求 0~2π(或 0°~360°)角的三角函数值.
答案
知识梳理
y 1.r
x r
y x
3.相等
sinα
cosα
tanα
作业设计
1.A 2.B
3.C [∵sinα<0,∴α 是第三、四象限角.又 tanα>0,
∴α 是第一、三象限角,故 α 是第三象限角.]
4.C [∵1,1.2,1.5 均在0,π2内,正弦线在0,π2内随 α 的增大而逐渐增大,
∴sin1.5>sin1.2>sin1.] 5.D [在同一单位圆中,利用三角函数线可得 D 正确.] 6.A [
如图所示,在单位圆中分别作出 α 的正弦线 MP、余弦线 OM、正切线 AT,很容易地观察出
OM<MP<AT,即 cosα<sinα<tanα.]
课时作业29:1.2.1 任意角的三角函数(二)
1.2.1 任意角的三角函数(二)一、选择题1.函数y =tan ⎝⎛⎭⎫x -π3的定义域为( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π3,x ∈R B.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π+π6,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π+5π6,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π-5π6,k ∈Z 考点 单位圆与三角函数线 题点 利用三角函数线解不等式 答案 C解析 ∵x -π3≠k π+π2,k ∈Z ,∴x ≠k π+5π6,k ∈Z .2.角α=π5和角β=6π5有相同的( )A .正弦线B .余弦线C .正切线D .不能确定考点 单位圆与三角函数线 题点 三角函数线的作法 答案 C3.sin 1,sin 1.2,sin 1.5三者的大小关系是( ) A .sin 1>sin 1.2>sin 1.5 B .sin 1>sin 1.5>sin 1.2 C .sin 1.5>sin 1.2>sin 1 D .sin 1.2>sin 1>sin 1.5 考点 单位圆与三角函数线 题点 利用三角函数线比较大小 答案 C4.若α是第一象限角,则sin α+cos α的值与1的大小关系是( ) A .sin α+cos α>1 B .sin α+cos α=1 C .sin α+cos α<1 D .不能确定 考点 单位圆与三角函数线题点 利用三角函数线比较大小 答案 A解析 如图所示,设角α的终边与单位圆交于点P ,作PM ⊥x 轴,垂足为M ,则sin α=MP ,cos α=OM . 在△OMP 中,∵OM +MP >OP , ∴cos α+sin α>1.5.sin 1°,sin 1,sin π°的大小顺序是( ) A .sin 1°<sin 1<sin π° B .sin 1°<sin π°<sin 1 C .sin π°<sin 1°<sin 1 D .sin 1<sin 1°<sin π° 考点 单位圆与三角函数线 题点 利用三角函数线比较大小 答案 B 6.设a =sin 2π7,b =cos 2π7,c =tan 2π7,则( ) A .a <b <c B .a <c <b C .b <c <aD .b <a <c考点 单位圆与三角函数线 题点 利用三角函数线比较大小 答案 D解析 ∵π4<2π7<π2,作2π7的三角函数线如图,则sin2π7=MP ,cos 2π7=OM ,tan 2π7=AT , ∴OM <MP <AT , ∴b <a <c ,故选D.7.已知sin α>sin β,那么下列命题成立的是( )A .若α,β是第一象限角,则cos α>cos βB .若α,β是第二象限角,则tan α>tan βC .若α,β是第三象限角,则cos α>cos βD .若α,β是第四象限角,则tan α>tan β 考点 单位圆与三角函数线 题点 利用三角函数线比较大小 答案 D解析 如图(1),α,β的终边分别为OP ,OQ ,sin α=MP >NQ =sin β,此时OM <ON ,所以cos α<cos β,故A 错;如图(2),OP ,OQ 分别为角α,β的终边,MP >NQ ,即sin α>sin β,所以AC <AB ,即tan α<tan β,故B 错;如图(3),角α,β的终边分别为OP ,OQ ,MP >NQ ,即sin α>sin β,所以OM <ON ,即cos α<cos β,故C 错,若α,β为第四象限的角,结合单位圆,可知tan α>tan β,故选D.二、填空题 8.不等式tan α+33>0的解集为________. 考点 单位圆与三角函数线 题点 利用三角函数线解不等式答案 ⎩⎨⎧⎭⎬⎫α⎪⎪k π-π6<α<k π+π2,k ∈Z 解析 不等式的解集如图阴影部分所示(不含边界).9.不等式cos x >12在区间[-π,π]上的解集为________.考点 单位圆与三角函数线 题点 利用三角函数线解不等式答案 ⎝⎛⎭⎫-π3,π3 10. sin2π5,cos 6π5,tan 2π5从小到大的排列顺序是________________________. 考点 单位圆与三角函数线 题点 利用三角函数线比较大小 答案 cos6π5<sin 2π5<tan 2π5解析 由图可知,cos6π5<0,tan 2π5>0,sin 2π5>0. 因为|MP |<|AT |, 所以sin 2π5<tan 2π5. 故cos6π5<sin 2π5<tan 2π5. 11.若cos θ>sin7π3,利用三角函数线得角θ的取值范围是________________. 考点 单位圆与三角函数线 题点 利用三角函数线解不等式 答案 ⎝⎛⎭⎫2k π-π6,2k π+π6(k ∈Z ) 解析 因为cos θ>sin7π3, 所以cos θ>sin ⎝⎛⎭⎫π3+2π=sin π3=32, 易知角θ的取值范围是⎝⎛⎭⎫2k π-π6,2k π+π6(k ∈Z ). 三、解答题12.求下列函数的定义域. (1)y =lg ⎝⎛⎭⎫22-sin x ;(2)y =3tan x - 3.考点 单位圆与三角函数线 题点 利用三角函数线解不等式 解 (1)为使y =lg ⎝⎛⎭⎫22-sin x 有意义, 则22-sin x >0, 所以sin x <22, 所以角x 终边所在区域如图中阴影部分(不含边界)所示,所以2k π-5π4<x <2k π+π4,k ∈Z .所以原函数的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪2k π-5π4<x <2k π+π4,k ∈Z . (2)为使y =3tan x -3有意义, 则3tan x -3≥0, 所以tan x ≥33, 所以角x 终边所在区域如图中阴影部分所示(含边界,不含y 轴),所以k π+π6≤x <k π+π2,k ∈Z ,所以原函数的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪k π+π6≤x <k π+π2,k ∈Z . 13.已知-12≤cos θ<32,利用单位圆中的三角函数线,确定角θ的取值范围.考点 单位圆与三角函数线 题点 利用三角函数线解不等式解 图中阴影部分就是满足条件的角θ的范围,即⎩⎨⎧⎭⎬⎫θ⎪⎪2k π-23π≤θ<2k π-π6或2k π+π6<θ≤2k π+23π,k ∈Z .14.函数y =log sin x (2cos x +1)的定义域为____________. 考点 单位圆与三角函数线 题点 利用三角函数线解不等式答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪2k π<x <2k π+π2或2k π+π2<x <2k π+23π,k ∈Z 解析 由题意可知,要使函数有意义,则需⎩⎪⎨⎪⎧sin x >0且sin x ≠1,2cos x +1>0,如图所示,阴影部分(不含边界与y 轴)即为所求.所以所求函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2k π<x <2k π+π2或2k π+π2<x <2k π+23π,k ∈Z . 15.已知tan x =3,求x 的取值集合.解 因为π3与4π3的终边互为反向延长线,所以两角的正切线相同(如图所示),所以tan 4π3=tan π3=3,若tan x =3,则角x 的终边落在角π3的终边上或落在角4π3的终边上,所以x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪ x =2k π+4π3,k ∈Z ∪⎩⎨⎧⎭⎬⎫x ⎪⎪x =2k π+π3,k ∈Z=⎩⎨⎧⎭⎬⎫x ⎪⎪ x =(2k +1)π+π3,k ∈Z ∪⎩⎨⎧⎭⎬⎫x ⎪⎪x =2k π+π3,k ∈Z =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π+π3,k ∈Z .。
高中数学 1.2.1任意角的三角函数的定义及应用练习(含解析)苏教版必修4-苏教版高一必修4数学试题
1.2 任意角的三角函数1.2.1 任意角的三角函数的定义及应用在初中我们已经学了锐角三角函数,知道它们都是以锐角为自变量、边的比值为函数值的三角函数.你能用平面直角坐标系中角的终边上的点的坐标来表示锐角三角函数吗?改变终边上的点的位置,这个比值会改变吗?把角扩充为任意角,结论成立吗?一、任意角的三角函数1.单位圆:在平面直角坐标系中,以原点O 为圆心,以单位长度为半径的圆称为________.2.三角函数的定义:设角α的顶点与原点重合,始边与x 轴非负半轴重合.在平面直角坐标系中,角α终边与单位圆交于一点P (x ,y ),则r =|OP |=1.那么:(1)y 叫做________,记作sin α,即y =sin α; (2)x 叫做________,记作cos α,即x =cos α; (3)y x 叫做________,记作tan α,即y x=tan α(x ≠0).正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们把它们统称为________.答案:1.单位圆2.(1)α的正弦 (2)α的余弦 (3)α的正切 三角函数二、三角函数值在各个象限内的符号1.由三角函数的定义,以及各象限内的点的坐标的符号,可以确定三角函数在各象限的符号.sin α=y r,其中r >0,于是sin α的符号与y 的符号相同,即:当α是第________象限角时,sin α>0;当α是第________象限角时,sin α<0.cos α=x r,其中r >0,于是cos α的符号与x 的符号相同,即:当α是第__________象限角时,cos α>0;当α是第________象限角时,cos α<0.tan α=y x,当x 与y 同号时,它们的比值为正,当x 与y 异号时,它们的比值为负,即:当α是第________象限角时,tan α>0;当α是第 ________象限角时,tan α<0.2.根据终边所在位置总结出形象的识记口诀1:“sin α=yr :上正下负横为0;cos α=x r :左负右正纵为0;tan α=y x:交叉正负.” 形象的识记口诀2:“一全正、二正弦、三正切、四余弦.” 答案:1.一、二 三、四 一、四 二、三 一、三 二、四三、诱导公式一由定义可知,三角函数值是由角的终边的位置确定的,因此,终边相同的角的同一三角函数的值________,这样就有下面的一组公式(诱导公式一):sin(2k π+α)=sin α,cos(2k π+α)=cos α,tan(2k π+α)=tan α,k ∈Z. 答案:相等四、三角函数线1.有向线段:有向线段是规定了方向(即起点、终点)的线段,它是________、 ________的.在平面直角坐标系中,和坐标轴同向的有向线段为正,反向的为负.2.正弦线、余弦线、正切线:三角函数线是用来形象地表示三角函数值的有向线段.有向线段的________表示三角函数值的________,有向线段的________表示三角函数值的绝对值的________.三角函数线的作法如下:设角α的终边与单位圆的交点为P ,过点P 作x 轴的垂线,垂足为M ,则有向线段MP ,OM 就分别是角α的正弦线与余弦线,即MP =y =sin α,OM =x =cos α.过点A (1,0)作单位圆的切线,设这条切线与角α的终边(或终边的反向延长线)交于点T ,则有向线段AT 就是角α的正切线,即AT =tan α.3.填写下表中三角函数的定义域、值域:函数定义域值域 y =sin α y =cos α y =tan α答案:1.有长度 有正负 2.方向 正负 长度 大小 3.函 数定 义 域值 域 y =sin α R [-1,1] y =cos α R[-1,1]y =tan α⎩⎨⎧⎭⎬⎫α⎪⎪⎪α≠π2+k π,k ∈ZR任意角的三角函数的定义1.正弦、余弦、正切可分别看成是从一个角的集合到一个比值的集合的映射,它们都是以角为自变量,以比值为函数值的函数.2.三角函数值是比值,是一个实数.这个实数的大小和点P (x ,y )在终边上的位置无关,而是由角α的终边位置所决定.对于确定的角α,其终边的位置也是唯一确定的.因此,三角函数是角的函数.(1)三角函数值只与角α的终边所在的位置有关,与点P 在终边上的位置无关. (2)三角函数值是一个比值,没有单位.三角函数值的符号三角函数值在各象限的符号取决于终边所在的位置,具体说取决于x,y的符号,记忆时结合三角函数定义式记,也可用口诀只记正的“一全正、二正弦、三正切、四余弦”.三角函数线对于三角函数线,须明确以下几点:(1)当角α的终边在y轴上时,余弦线变成一个点,正切线不存在.(2)当角α的终边在x轴上时,正弦线、正切线都变成点.(3)正弦线、余弦线、正切线都是与单位圆有关的有向线段,所以作某角的三角函数线时,一定要先作单位圆.(4)线段有两个端点,在用字母表示正弦线、余弦线、正切线时,要先写起点字母,再写终点字母,不能颠倒;或者说,含原点的线段,以原点为起点,不含原点的线段,以此线段与x轴的公共点为起点.(5)三种有向线段的正负与坐标轴正负方向一致,三种有向线段的长度与三种三角函数值相同.三角函数的定义域1.由三角函数的定义式可以知道,无论角α终边落在哪里,sin α,cos α都有唯一的值与之对应,但对正切则要求α终边不能落在y轴上,否则正切将无意义.2.角和实数建立了一一对应关系,三角函数就可以看成是以实数为自变量的函数,所以就可以借助单位圆,利用终边相同的角的概念求出任意角的三角函数.基础巩固1.sin 810°+tan 765°+tan 1125°+cos 360°=________.答案:42.若α的终边过点P(2sin 30°,-2cos 30°),则sin α的值为________.答案:-3 23.若角α的终边过点P (3cos θ,-4cos θ)(θ为第二象限角),则sin α=________.答案:454.cos θ·tan θ<0,则角θ是________象限角. 答案:第三或第四5.已知点P (tan α,cos α)在第三象限,则角α的终边在第________象限. 答案:二6.角α的正弦线与余弦线长度相等,且符号相同,那么α(0<α<2π)的值为________.答案:π4或54π7.sin 1,sin 1.2,sin 1.5三者的大小关系是________. 答案:sin 1.5>sin 1.2>sin 1能力升级8.函数y =sin x +-cos x 的定义域是________.解析:∵⎩⎪⎨⎪⎧sin x ≥0,-cos x ≥0,∴⎩⎪⎨⎪⎧sin x ≥0,cos x ≤0,即角x 的终边落在第二象限内和两个半轴上.∴2k π+π2≤x ≤2k π+π,k ∈Z.答案:⎣⎢⎡⎦⎥⎤2k π+π2,2k π+π(k ∈Z)9.已知角α的终边在直线y =kx 上,若sin α=-255,cos α<0,则k =________.解析:∵sin α=-255,cos α<0,∴α的终边在第三象限.令角α的终边上一点的坐标为(a ,ka ),a <0,则r =-1+k 2·a ,sin α=-ka 1+k 2a=-255,∴k =2. 答案:210.在(0,2π)内,满足tan 2α=-tan α的α的取值X 围是________. 解析:由tan 2α=-tan α,知tan α≤0,在单位圆中作出角α的正切线,知π2<α≤π或3π2<α<2π. 答案:⎝ ⎛⎦⎥⎤π2,π∪⎝ ⎛⎭⎪⎫3π2,2π11.解不等式2+2cos x ≥0. 解析:2+2cos x ≥0⇔cos x ≥-22,利用单位圆,借助三角函数线(如图)可得出解集是⎣⎢⎡⎦⎥⎤2k π-34π,2k π+34π(k ∈Z).12.若π4<θ<π2,则下列不等式中成立的是( )A .sin θ>cos θ>tan θB .cos θ>tan θ>sin θC .sin θ>tan θ>cos θD .tan θ>sin θ>cos θ解析:作出角θ的三角函数线(如图),数形结合得AT >MP >OM ,即tan θ>sin θ>cosθ.答案:D13.函数y =sin x |sin x |+cos x |cos x |+tan x|tan x |的值域是( C )A .{-1,0,1,3}B .{-1,0,3}C .{-1,3}D .{-1,1}14.若0<α<π2,证明:(1)sin α+cos α>1; (2)sin α<α<tan α.证明:(1)在如图所示单位圆中, ∵0<α<π2,|OP |=1,∴sin α=MP ,cos α=OM . 又在△OPM 中,有 |MP |+|OM |>|OP |=1. ∴sin α+cos α>1.(2)如图所示,连接AP ,设△OAP 的面积为S △OAP ,扇形OAP 的面积为S 扇形OAP ,△OAT 的面积为S △OAT .∵S △OAP <S 扇形OAP <S △OAT , ∴12OA ·MP <12AP ︵·OA <12OA ·AT .∴MP <AP ︵<AT ,即sin α<α<tan α.15.已知f (n )=cosn π5(n ∈Z),求f (1)+f (2)+f (3)+…+f (2 014)的值.解析:角n5π(n =1,2,…,10)表示10个不同终边的角,这10条终边分成五组,每组互为反向延长线.∴f (1)+f (2)+…+f (10)=0,f (11)+f (12)+…+f (20)=0,…f (2 001)+f (2 002)+…+f (2 010)=0.∴f (1)+f (2)+…+f (2 010)=0.∴f (1)+f (2)+…+f (2 014)=f (2 011)+f (2 012)+f (2 013)+f (2 014)=cos π5+cos 2π5+cos 3π5+cos 4π5.由定义知cos π5与cos 4π5,cos 2π5与cos 3π5互为相反数,故f (1)+f (2)+…+f (2 014)=0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
+
x
_
o
+ _
+
+
sin
cos
tan
有向线段:带有方向的线段(或规定了起点 和终点的线段) 有向线段的符号:规定与x轴y轴正方向一致的 有向线段为正,与x轴y轴正方向相反的有向线 段为负.
有向线段的数量:有向线段的长度加符号.
过点P作x轴的垂线,垂足为M,显然,有向 线段OM的长度为|x|.如果x>0,有向线段 OM 与x轴同向,其数量为x;如果x<0,有向 线段OM与x轴反向,其数量也为x.故总有OM =x.同理可知MP=y.所以,sinα=MP,cosα =OM.有向线段MP,OM分别叫做角α的正弦 y 线、余弦线. 1 P (x , y )
例3.分别写出满足下列条件的集合.
(1)tanθ≥-1;
动画
(2) -
1 ≤sinθ< 2
3 . 2
析:利用三角函数线.
动画
1 1 (1) {|k k , k Z } 4 2 1 1 2 7 (2) {|2k 2k 或2k 2k , k Z } 6 3 3 6
思考:怎样运 用有向线段表 示x,y?
-1
O M1 x
-1
先研究当角α终边在y轴的右侧时, 在角α终边上取点T(1,y′), 则tanα=y′=AT; y 1 T(1,y′)
-1
O
-1
A(1,0) 1 x
思考:怎样运用有向线段表示tanα?
如果角α的终边在y轴的左侧呢? 在角α终边的反向延长线上取点T(1,y′), 由于它关于原点的对称点Q(-1,-y′)在角α 终边上, 故有tanα=y′=AT. 即总有tanα=AT.因此,我们把有向线段 y AT叫做角α的正切线. 1 T(1,y′)
例4. (1)若-2π/3≤θ≤π/6, 试确定sinθ的取值范 围. (2)若30°≤θ≤120°且θ≠90°, 试确定tanθ的 取值范围. 析:⑴观察-2π/3≤θ≤π/6时的正弦线. ⑵观察30°≤θ≤120°时的正切线.
动画1 动画2
1 (1) 1 sin 2
3 (2) tan 3或 tan 3
sinα<α<tanα
利用三角函数线判断下列数值的大小关系并证明.
(1)若为锐角,比较sin+cos与1; (2)若为任意角,比较|sin|+|cos|与1; (3)若为锐角,比较 , sin,tan.
探究拓展
1. 利用三角函数线探究正弦函数、余弦 函数、正切函数的值域. 2. 利用三角函数线探究正弦函数、余弦 函数在[0,2π]的单调性.
3. 利用三角函数线探究正切函数在
(-π/2,π/2)上的单调性.
1.利用单位圆中的三角函数线比较大小:
⑴ sin25°__________sin1 <
⑵ cos2π/3_________cos4π/5 >
⑶ tan2π/3_________tan4π/5 <
2. 利用单位圆写出符合下列条件的角α. ⑴ sinθ>-1/2
1 7 {|2k 2k , k Z } 6 6
⑵ cosθ>-1/2 ⑶ tanθ>1
2 2 {|2k 2k , k Z } 3 3
思考:怎样运用有向 线段表示tanα? -1
O
A(1,0) 1 x
Q(-1,-y′)
有向线段MP,OM,AT都称为三角 函数线. 当角α终边在不同象限时,其三角函 数线如动画所示: 动画
注:当角α的终边在x 轴上时,正弦线、正 切线分别变成一个点; 当角α的终边在y轴上 时,余弦线变成一个 点,正切线不存在.
例1.作出下列各角的正弦线, 余弦线、
正切线. (1) 11π/6 ; (2) -2π/3.
1 y M -1 O 1 y
T
-1
M A(1,0) O 1 x P T -1
A(1,0) 1 x
P
-1
例2. 在单位圆中作出符合下列条件的 角的终边: (1) cosx=1/4; (2) tanx=-1/2; (3) sinx=0.75
Байду номын сангаас
1 1 {|k k , k Z } 4 2
3
利用三角函数线解方程:
(2)cos x=1/2.
(1)sin x=1/2;
4
利用三角函数线解不等式
(1)sin x<1/2;
(2)sin x>cos x.
5. 当α为锐角时(单位为弧度), 试利用单位圆
及三角函数线比较α, sinα, tanα的大关系.
任意角的三角函数(2)
1. 任意角三角函数的定义 2. 三角函数的定义域
函数
P(x,y)
sin
cos
o x
y sin r
x cos R r
定义域 R
y tan x
tan
{ |
2
k , k Z }
3. 三角函数值的符号
y
y
y
+ _
o
+ _
x
_ _