线性代数试题及答案

合集下载

线性代数试题及答案

线性代数试题及答案

04184线性代数(经管类)一、二、单选题1、B:—1 A:—3C:1 D:3做题结果:A 参考答案:D 2、B:dA:abcdC:6 D:0做题结果:A 参考答案:D 3、B:15A:18C:12 D:24做题结果:A 参考答案:B 4、B:—1A:-3C:1 D:3做题结果:A 参考答案:D 6、B:15A:18C:12 D:24做题结果:A 参考答案:B 20、B:kA:k—1C:1 D:k+1做题结果:A 参考答案:B 21、行列式D如果按照第n列展开是【】A。

,B。

,C。

,D。

做题结果:A 参考答案:A22、关于n个方程的n元齐次线性方程组的克拉默法则,说法正确的是【】A:如果行列式不等于0,则方程组必有无穷多解B:如果行列式不等于0,则方程组只有零解C:如果行列式等于0,则方程组必有唯一解D:如果行列式等于0,则方程组必有零解做题结果:A 参考答案:B23、已知三阶行列D中的第二列元素依次为1、2、3,它们的余子式分别为-1、1、2,则D的值为. 【】A:—3B:—7C:3 D:7做题结果:A 参考答案:A24、A:0B:1C:-2 D:2做题结果:A 参考答案:C25、B:dA:abcdC:6 D:0做题结果:A 参考答案:D26、B:a≠0A:a≠2C:a≠2或a≠0 D:a≠2且a≠0做题结果:A 参考答案:D27、A.,B.,C.,D。

做题结果:B 参考答案:B 28、B:16|A|A:—2|A|C:2|A|D:|A|做题结果:A 参考答案:B29、下面结论正确的是【】A:含有零元素的矩阵是零矩阵B:零矩阵都是方阵C:所有元素都是零的矩阵是零矩阵D:若A,B都是零矩阵,则A=B做题结果:A 参考答案:C30、设A是n阶方程,λ为实数,下列各式成立的是【】C.,D.做题结果:C 参考答案:C31、A。

,B。

,C.,D.做题结果:B 参考答案:B32、设A是4×5矩阵,r(A)=3,则▁▁▁▁▁.【】B:A中存在不为0的4阶子式A:A中的4阶子式都不为0C:A中的3阶子式都不为0 D:A中存在不为0的3阶子式做题结果:A 参考答案:D33、B:a=-1,b=3,c=1,d=3A:a=3,b=-1,c=1,d=3C:a=3,b=—1,c=0,d=3 D:a=—1,b=3,c=0,d=3做题结果:A 参考答案:C34、设A是m×n矩阵,B是s×t矩阵,且ABC有意义,则C是▁▁矩阵. 【】B:m×tA:n×sC:t×m D:s×n做题结果:A 参考答案:A35、含有零向量的向量组▁▁▁【】B:必线性相关A:可能线性相关C:可能线性无关D:必线性无关做题结果:A 参考答案:B36、对于齐次线性方程组的系数矩阵化为阶梯形时▁▁▁. 【】B:只能进行列变换A:只能进行行变换C:不能进行行变换D:可以进行行和列变换做题结果:B 参考答案:A37、非齐次线性方程组中,系数矩阵A和增广矩阵(A,b)的秩都等于4,A是()4×6矩阵,则▁▁。

线性代数试题与答案

线性代数试题与答案

04184线性代数(经管类)一、二、单选题1、B:-1A:-3C:1 D:3做题结果:A 参考答案:D 2、B:dA:abcdC:6 D:0做题结果:A 参考答案:D 3、B:15A:18C:12 D:24做题结果:A 参考答案:B 4、B:-1A:-3C:1 D:3做题结果:A 参考答案:D 6、B:15A:18C:12 D:24做题结果:A 参考答案:B 20、B:kA:k-1C:1 D:k+1做题结果:A 参考答案:B 21、行列式D如果按照第n列展开是【】A.,B.,C.,D.做题结果:A 参考答案:A22、关于n个方程的n元齐次线性方程组的克拉默法则,说法正确的是【】A:如果行列式不等于0,则方程组必有无穷多解B:如果行列式不等于0,则方程组只有零解C:如果行列式等于0,则方程组必有唯一解D:如果行列式等于0,则方程组必有零解做题结果:A 参考答案:B23、已知三阶行列D中的第二列元素依次为1、2、3,它们的余子式分别为-1、1、2,则D的值为。

【】A:-3B:-7C:3 D:7做题结果:A 参考答案:A24、A:0B:1C:-2 D:2做题结果:A 参考答案:C25、B:dA:abcdC:6 D:0做题结果:A 参考答案:D26、B:a≠0A:a≠2C:a≠2或a≠0 D:a≠2且a≠0做题结果:A 参考答案:D27、A.,B.,C.,D.做题结果:B 参考答案:B 28、A:-2|A|B:16|A|C:2|A| D:|A|做题结果:A 参考答案:B29、下面结论正确的是【】A:含有零元素的矩阵是零矩阵B:零矩阵都是方阵C:所有元素都是零的矩阵是零矩阵D:若A,B都是零矩阵,则A=B做题结果:A 参考答案:C30、设A是n阶方程,λ为实数,下列各式成立的是【】C.,D.做题结果:C 参考答案:C31、A.,B.,C.,D.做题结果:B 参考答案:B32、设A是4×5矩阵,r(A)=3,则▁▁▁▁▁。

线性代数试题及答案

线性代数试题及答案

(试卷一)一、填空题(本题总计20分,每小题2分)1. 排列7623451的逆序数是_______。

2. 若122211211=a a a a ,则=16030322211211a a a a 3. 已知n 阶矩阵A 、B 和C 满足E ABC =,其中E 为n 阶单位矩阵,则CAB =-1。

4. 若A 为n m ⨯矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是_________ 5. 设A 为86⨯的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为__2___________。

6. 设A 为三阶可逆阵,⎪⎪⎪⎭⎫ ⎝⎛=-1230120011A,则=*A 7.若A 为n m ⨯矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是8.已知五阶行列式1234532011111112140354321=D ,则=++++4544434241A A A A A 9. 向量α=(2,1,0,2)T-的模(范数)______________。

10.若()Tk 11=α与()T121-=β正交,则=k二、选择题(本题总计10分,每小题2分) 1. 向量组r ααα,,,21 线性相关且秩为s ,则(D)A.s r=B.s r ≤C.r s≤D.r s <2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A (A)A.8 B.8-C.34D.34-3.设向量组A 能由向量组B 线性表示,则( d )A.)()(A R B R ≤ B.)()(A R B R <C.)()(A R B R = D.)()(A R B R ≥4. 设n 阶矩阵A 的行列式等于D ,则()*kA 等于_____。

c)(A *kA )(B *A k n )(C *-A k n 1 )(D *A5. 设n 阶矩阵A ,B 和C ,则下列说法正确的是_____。

(完整版)线性代数试题和答案精选版

(完整版)线性代数试题和答案精选版

线性代数习题和答案第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出の四个选项中只有一个是符合题目要求の,请将其代码填在题后の括号内.错选或未选均无分。

1。

设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于( )A. m+n B。

—(m+n) C。

n—m D. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A。

130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C。

13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是Aの伴随矩阵,则A *中位于(1,2)の元素是( )A。

–6 B。

6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有( )A. A =0B。

B≠C时A=0C. A≠0时B=C D。

|A|≠0时B=C5.已知3×4矩阵Aの行向量组线性无关,则秩(A T)等于( )A. 1B. 2C. 3D. 46。

设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A。

有不全为0の数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0の数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C。

有不全为0の数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0の数λ1,λ2,…,λs和不全为0の数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵Aの秩为r,则A中()A。

所有r-1阶子式都不为0 B。

线性代数试题及答案

线性代数试题及答案

线性代数试题及答案一、选择题(每题2分,共20分)1. 以下哪个矩阵是可逆的?A. [1 0; 0 0]B. [1 2; 3 4]C. [1 0; 0 1]D. [0 1; 1 0]2. 矩阵的秩是指什么?A. 矩阵的行数B. 矩阵的列数C. 矩阵中线性无关的行或列的最大数目D. 矩阵的对角线元素的个数3. 线性方程组有唯一解的条件是什么?A. 方程个数等于未知数个数B. 方程组是齐次的C. 方程组的系数矩阵是可逆的D. 方程组的系数矩阵的秩等于增广矩阵的秩4. 向量空间的基具有什么性质?A. 基向量的数量必须为1B. 基向量必须是正交的C. 基向量必须是线性无关的D. 基向量必须是单位向量5. 特征值和特征向量的定义是什么?A. 对于矩阵A,如果存在非零向量v,使得Av=λv,则λ是A的特征值,v是A的特征向量B. 对于矩阵A,如果存在非零向量v,使得A^Tv=λv,则λ是A 的特征值,v是A的特征向量C. 对于矩阵A,如果存在非零向量v,使得A^-1v=λv,则λ是A 的特征值,v是A的特征向量D. 对于矩阵A,如果存在非零向量v,使得Av=v,则λ是A的特征值,v是A的特征向量6. 线性变换的矩阵表示是什么?A. 线性变换的逆矩阵B. 线性变换的转置矩阵C. 线性变换的雅可比矩阵D. 线性变换的对角矩阵7. 以下哪个不是线性代数中的基本概念?A. 向量B. 矩阵C. 行列式D. 微积分8. 什么是线性方程组的齐次解?A. 方程组的所有解B. 方程组的特解C. 方程组的零解D. 方程组的非平凡解9. 矩阵的迹是什么?A. 矩阵的对角线元素的和B. 矩阵的行列式C. 矩阵的秩D. 矩阵的逆10. 什么是正交矩阵?A. 矩阵的转置等于其逆矩阵B. 矩阵的所有行向量都是单位向量C. 矩阵的所有列向量都是单位向量D. 矩阵的所有行向量都是正交的答案:1-5 C C C C A;6-10 D D C A A二、简答题(每题10分,共20分)11. 请简述线性代数中的向量空间(Vector Space)的定义。

线性代数试题及答案

线性代数试题及答案

线性代数试题及答案 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】04184线性代数(经管类)2一、二、单选题1、A:-3 B:-1C:1 D:3做题结果:A 参考答案:D2、A:abcd B:dC:6 D:0做题结果:A 参考答案:D3、A:18 B:15C:12 D:24做题结果:A 参考答案:B4、A:-3 B:-1C:1 D:3做题结果:A 参考答案:D6、A:18 B:15C:12 D:24做题结果:A 参考答案:B20、A:k-1 B:kC:1 D:k+1做题结果:A 参考答案:B21、行列式D如果按照第n列展开是【】A.,B.,C.做题结果:A22、关于n个方程的n元齐次线性方程组的克拉默法则,说法正确的是【】A:如果行列式不等于0,则方程组必有无穷多解B:如果行列式不等于0,则方程组只有零解C:如果行列式等于0,则方程组必有唯一解D:如果行列式等于0,则方程组必有零解做题结果:A 参考答案:B23、已知三阶行列D中的第二列元素依次为1、2、3,它们的余子式分别为-1、1、2,则D的值为。

【】A:-3 B:-7C:3 D:7做题结果:A 参考答案:A24、A:0 B:1C:-2 D:2做题结果:A 参考答案:C25、A:abcd B:dC:6 D:0做题结果:A 参考答案:D26、A:a≠2 B:a≠0C:a≠2或a≠0 D:a≠2且a≠0做题结果:A 参考答案:D27、A.,B.,C.,D.做题结果:B 参考答案:B28、A:-2|A| B:16|A|C:2|A| D:|A|做题结果:A 参考答案:B29、下面结论正确的是【】A:含有零元素的矩阵是零矩阵B:零矩阵都是方阵C:所有元素都是零的矩阵是零矩阵D:若A,B都是零矩阵,则A=B做题结果:A 参考答案:C30、设A是n阶方程,λ为实数,下列各式成立的是【】C.,D.做题结果:C 参考答案:C31、A.,B.,C.,D.做题结果:B 参考答案:B 32、设A是4×5矩阵,r(A)=3,则▁▁▁▁▁。

线性代数试题(完整试题与详细答案)

线性代数试题(完整试题与详细答案)

线性代数试题(完整试题与详细答案)一、单项选择题(本大题共10小题,每小题2分,共20分)1.行列式111101111011110------第二行第一列元素的代数余子式21A =( )A .-2B .-1C .1D .22.设A 为2阶矩阵,若A 3=3,则=A 2( ) A .21 B .1 C .34 D .23.设n 阶矩阵A 、B 、C 满足E ABC =,则=-1C ( ) A .AB B .BA C .11--B AD .11--A B4.已知2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 的行列式1-=A ,则=-1*)(A ( ) A .⎪⎪⎭⎫⎝⎛----d c b aB .⎪⎪⎭⎫⎝⎛--a c b dC .⎪⎪⎭⎫ ⎝⎛--a cb d D .⎪⎪⎭⎫ ⎝⎛d c b a5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( ) A .s ααα,,,21 中没有线性相关的部分组 B .s ααα,,,21 中至少有一个非零向量 C .s ααα,,,21 全是非零向量D .s ααα,,,21 全是零向量6.设A 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 有非零解的充分必要条件是( )A .n r =)(AB .m r =)(AC .n r <)(AD .m r <)(A 7.已知3阶矩阵A 的特征值为-1,0,1,则下列矩阵中可逆的是( ) A .A B .AE - C .A E -- D .A E -2 8.下列矩阵中不是..初等矩阵的为( )A .⎪⎪⎪⎭⎫ ⎝⎛101010001B .⎪⎪⎪⎭⎫⎝⎛-101010001C .⎪⎪⎪⎭⎫⎝⎛100020001D .⎪⎪⎪⎭⎫⎝⎛1010110019.4元二次型4332412143212222),,,(x x x x x x x x x x x x f +++=的秩为( ) A .1B .2C .3D .410.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=001010100A ,则二次型Ax x T 的规范形为( )A .232221z z z ++ B .232221z z z ---C .232221z z z --D .232221z z z -+二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

大学线性代数练习试题及答案

大学线性代数练习试题及答案

第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个就是符合题目要求的,请将其代码填在题后的括号内。

错选或未选均无分。

1、设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于( )A、m+nB、-(m+n)C、n-mD、m-n2、设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于( )A、130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B、100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C、13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D、120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3、设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*就是A的伴随矩阵,则A *中位于(1,2)的元素就是( )A、–6B、6C、2D、–24、设A就是方阵,如有矩阵关系式AB=AC,则必有( )A、A =0B、B≠C时A=0C、A≠0时B=CD、|A|≠0时B=C5、已知3×4矩阵A的行向量组线性无关,则秩(A T)等于( )A、1B、2C、3D、46、设两个向量组α1,α2,…,αs与β1,β2,…,βs均线性相关,则( )A、有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0与λ1β1+λ2β2+…λsβs=0B、有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C、有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D、有不全为0的数λ1,λ2,…,λs与不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0与μ1β1+μ2β2+…+μsβs=07、设矩阵A的秩为r,则A中( )A、所有r-1阶子式都不为0B、所有r-1阶子式全为0C、至少有一个r阶子式不等于0D、所有r阶子式都不为08、设Ax=b就是一非齐次线性方程组,η1,η2就是其任意2个解,则下列结论错误的就是( )A、η1+η2就是Ax=0的一个解B、12η1+12η2就是Ax=b的一个解C、η1-η2就是Ax=0的一个解D、2η1-η2就是Ax=b的一个解9、设n阶方阵A不可逆,则必有( )A、秩(A)<nB、秩(A)=n-1C、A=0D、方程组Ax=0只有零解10、设A就是一个n(≥3)阶方阵,下列陈述中正确的就是( )A、如存在数λ与向量α使Aα=λα,则α就是A的属于特征值λ的特征向量B、如存在数λ与非零向量α,使(λE-A)α=0,则λ就是A的特征值C、A的2个不同的特征值可以有同一个特征向量D、如λ1,λ2,λ3就是A的3个互不相同的特征值,α1,α2,α3依次就是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11、设λ0就是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有( )A、k≤3B、k<3C、k=3D、k>312、设A就是正交矩阵,则下列结论错误的就是( )A、|A|2必为1B、|A|必为1C、A-1=A TD、A的行(列)向量组就是正交单位向量组13、设A就是实对称矩阵,C就是实可逆矩阵,B=C T AC、则( )A、A与B相似B、A与B不等价C、A与B有相同的特征值D、A与B合同14、下列矩阵中就是正定矩阵的为( )A、2334⎛⎝⎫⎭⎪B、3426⎛⎝⎫⎭⎪C、100023035--⎛⎝⎫⎭⎪⎪⎪D、111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。

大学线性代数试题及答案

大学线性代数试题及答案

线性代数(试卷一)一、 填空题(本题总计20分,每小题2分) 1. 排列7623451的逆序数是_______。

2. 若122211211=a a a a ,则=16030322211211a a a a 3. 已知n 阶矩阵A 、B 和C 满足E ABC=,其中E 为n 阶单位矩阵,则CAB =-1。

4. 若A 为n m ⨯矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是 _________5. 设A 为86⨯的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为_____________。

6. 设A 为三阶可逆阵,⎪⎪⎪⎭⎫⎝⎛=-1230120011A ,则=*A 7.若A 为n m ⨯矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是8.已知五阶行列式1234532011111112140354321=D ,则=++++4544434241A A A A A9. 向量α=(2,1,0,2)T-的模(范数)______________。

10.若()T k 11=α与()T 121-=β正交,则=k二、选择题(本题总计10分,每小题2分) 1. 向量组r ααα,,,21 线性相关且秩为s ,则(D) A.s r = B.s r ≤ C.r s ≤ D.r s <2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A (A)A.8 B.8- C.34D.34- 3.设向量组A 能由向量组B 线性表示,则( d )A.)()(A R B R ≤ B.)()(A R B R < C.)()(A R B R = D.)()(A R B R ≥ 4. 设n 阶矩阵A 的行列式等于D ,则()*kA 等于_____。

c)(A *kA)(B *A k n )(C *-A k n 1)(D *A5. 设n 阶矩阵A ,B 和C ,则下列说法正确的是_____。

线性代数试题及答案

线性代数试题及答案

线性代数习题和答案第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。

错选或未选均无分。

1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A.130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C.13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D.120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为()A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪C.100023035--⎛⎝⎫⎭⎪⎪⎪D.111120102⎛⎝⎫⎭⎪⎪⎪第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。

线性代数试题及答案

线性代数试题及答案

2 04184 线性代数(经管类)一、二、单选题1、A:-3B:-1C:1D:3做题结果: A 参考答案: D2、A:abcd B:dC:6D:0做题结果: A 参考答案: D3、A:18B:15C:12D:24做题结果: A 参考答案: B4、A:-3B:-1C:1D:3做题结果: A 参考答案: D6、A:18B:15C:12D:24做题结果: A 参考答案: B20、A:k-1B:kC:1D:k+1做题结果: A 参考答案: B21、行列式 D 如果按照第 n 列展开是【】A.,B.,C.,D.参考答做题结果: A案: A 22、关于 n 个方程的 n 元齐次线性方程组的克拉默法则,说法正确的是【】A:如果行列式不等于 0,则方程组必有 B: 如果行列式不等于 0,则方程组只无穷多解有零解C: 如果行列式等于0,则方程组必有唯D:如果行列式等于0,则方程组必有一解零解做题结果: A参考答案:B23、已知三阶行列D中的第二列元素依次为1、2、3,它们的余子式分别为-1 、1、2,则 D 的值为。

【】A:-3B:-7C:3D:7做题结果: A 参考答案: A24、A:0B:1C:-2D:2做题结果: A 参考答案: C25、A:abcd B:dC:6D:0做题结果: A 参考答案: D26、A:a≠2B:a≠0C:a≠2或 a≠0 D:a≠2且 a≠0做题结果: A参考答案:D27、A.,B.,C.,D.做题结果: B参考答案:B28、A:-2|A|B:16|A|C:2|A|D:|A|做题结果: A 参考答案: B29、下面结论正确的是【】A: 含有零元素的矩阵是零矩阵B: 零矩阵都是方阵C:所有元素都是零的矩阵是零矩阵 D: 若 A, B 都是零矩阵,则 A=B 做题结果: A参考答案:C30、设 A 是 n 阶方程,λ为实数,下列各式成立的是【】C.,D.做题结果: C参考答案:C31、A.,B.,C.,D.做题结果: B参考答案:B 32、设 A 是 4×5 矩阵, r (A) =3,则▁▁▁▁▁。

线性代数试题及答案

线性代数试题及答案

(试卷一)一、 填空题(本题总计20分,每小题2分)1. 排列7623451的逆序数是_______。

2. 若122211211=a aa a,则=16030322211211a aa a3. 已知n 阶矩阵A 、B 和C 满足E ABC =,其中E 为n阶单位矩阵,则CAB =-1。

4. 若A 为n m ⨯矩阵,则非齐次线性方程组AX b=有唯一解的充分要条件是_________5.设A 为86⨯的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为__2___________。

6. 设A 为三阶可逆阵,⎪⎪⎪⎭⎫ ⎝⎛=-1230120011A,则=*A7.若A 为n m ⨯矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是 8.已知五阶行列式1234532011111112140354321=D ,则=++++4544434241A A A A A9. 向量α=(2,1,0,2)T-的模(范数)______________。

10.若()Tk 11=α与()T121-=β正交,则=k二、选择题(本题总计10分,每小题2分) 1. 向量组rααα,,,21Λ线性相关且秩为s ,则(D)A.s r = B.s r ≤ C.r s ≤ D.r s <2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A (A)A.8 B.8-C.34 D.34- 3.设向量组A 能由向量组B 线性表示,则( d )A.)()(A R B R ≤ B.)()(A R B R < C.)()(A R B R = D.)()(A R B R ≥ 4. 设n 阶矩阵A 的行列式等于D ,则()*kA 等于_____。

c)(A *kA )(B *A k n)(C*-A k n 1)(D *A5. 设n 阶矩阵A ,B 和C ,则下列说法正确的是_____。

线性代数试题及答案

线性代数试题及答案

线性代数试题及答案 线性代数是数学的重点知识,多进⾏试题练习提⾼⾃⼰的能⼒。

以下是由店铺整理线性代数试题及答案,希望⼤家喜欢! 线性代数试题及答案(⼀) 说明:在本卷中,AT表⽰矩阵A的转置矩阵,A*表⽰矩阵A的伴随矩阵,E表⽰单位矩阵。

表⽰⽅阵A的⾏列式,r(A)表⽰矩阵A的秩。

⼀、单项选择题(本⼤题共10⼩题,每⼩题2分,共20分) 在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将其代码填写在题后的括号内。

错癣多选或未选均⽆分。

1.设3阶⽅阵A的⾏列式为2,则 ( )A.-1B. C. D.1 2.设则⽅程的根的个数为( )A.0B.1C.2D.3 3.设A为n阶⽅阵,将A的第1列与第2列交换得到⽅阵B,若则必有( ) A. B. C. D. 4.设A,B是任意的n阶⽅阵,下列命题中正确的是( ) A. B. C. D. 5.设其中则矩阵A的秩为( )A.0B.1C.2D.3 6.设6阶⽅阵A的秩为4,则A的伴随矩阵A*的秩为( )A.0B.2C.3D.4 7.设向量α=(1,-2,3)与β=(2,k,6)正交,则数k为( )A.-10B.-4C.3D.10 8.已知线性⽅程组⽆解,则数a=( ) A. B.0 C. D.1 9.设3阶⽅阵A的特征多项式为则 ( )A.-18B.-6C.6D.18 10.若3阶实对称矩阵是正定矩阵,则A的3个特征值可能为( )A.-1,-2,-3B.-1,-2,3C.-1,2,3D.1,2,3 ⼆、填空题(本⼤题共10⼩题,每⼩题2分,共20分) 请在每⼩题的空格中填上正确答案。

错填、不填均⽆分。

11.设⾏列式其第3⾏各元素的代数余⼦式之和为__________. 12.设则 __________. 13.设A是4×3矩阵且则 __________. 14.向量组(1,2),(2,3)(3,4)的'秩为__________. 15.设线性⽆关的向量组α1,α2,…,αr可由向量组β1,β2,…,βs线性表⽰,则r与s的关系为__________. 16.设⽅程组有⾮零解,且数则 __________. 17.设4元线性⽅程组的三个解α1,α2,α3,已知则⽅程组的通解是__________. 18.设3阶⽅阵A的秩为2,且则A的全部特征值为__________. 19.设矩阵有⼀个特征值对应的特征向量为则数a=__________. 20.设实⼆次型已知A的特征值为-1,1,2,则该⼆次型的规范形为__________. 三、计算题(本⼤题共6⼩题,每⼩题9分,共54分) 21.设矩阵其中均为3维列向量,且求 22.解矩阵⽅程 23.设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,p+2)T,α4=(3,2,-1,p+2)T问p为何值时,该向量组线性相关?并在此时求出它的秩和⼀个极⼤⽆关组. 24.设3元线性⽅程组 , (1)确定当λ取何值时,⽅程组有惟⼀解、⽆解、有⽆穷多解? (2)当⽅程组有⽆穷多解时,求出该⽅程组的通解(要求⽤其⼀个特解和导出组的基础解系表⽰). 25.已知2阶⽅阵A的特征值为及⽅阵 (1)求B的特征值; (2)求B的⾏列式. 26.⽤配⽅法化⼆次型为标准形,并写出所作的可逆线性变换. 四、证明题(本题6分) 27.设A是3阶反对称矩阵,证明|A|=0. 线性代数试题及答案(⼆)【线性代数试题及答案】。

线性代数试题及答案

线性代数试题及答案

1线性代数试题及答案一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设行列式333231232221131211a a a a a a a a a =4,则行列式333231232221131211333222a a a a a a a a a =( ) A.12 B.24 C.36D.482.设矩阵A ,B ,C ,X 为同阶方阵,且A ,B 可逆,AXB =C ,则矩阵X =( ) A.A -1CB -1 B.CA -1B -1 C.B -1A -1CD.CB -1A -13.已知A 2+A -E =0,则矩阵A -1=( ) A.A -E B.-A -E C.A +ED.-A +E4.设54321,,,,ααααα是四维向量,则( )A.54321,,,,ααααα一定线性无关B.54321,,,,ααααα一定线性相关C.5α一定可以由4321,,,αααα线性表示D.1α一定可以由5432,,,αααα线性表出 5.设A 是n 阶方阵,若对任意的n 维向量x 均满足Ax =0,则( ) A.A =0 B.A =E C.r (A )=nD.0<r (A )<(n )6.设A 为n 阶方阵,r (A )<n ,下列关于齐次线性方程组Ax =0的叙述正确的是( ) A.Ax =0只有零解B.Ax =0的基础解系含r (A )个解向量C.Ax =0的基础解系含n -r (A )个解向量D.Ax =0没有解7.设21,ηη是非齐次线性方程组Ax =b 的两个不同的解,则( ) A.21ηη+是Ax =b 的解 B.21ηη-是Ax =b 的解 C.2123ηη-是Ax =b 的解D.2132ηη-是Ax =b 的解8.设1λ,2λ,3λ为矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200540093的三个特征值,则321λλλ=( )2A.20B.24C.28D.309.设P 为正交矩阵,向量βα,的内积为(βα,)=2,则(βαP P ,)=( ) A.21 B.1 C.23 D.210.二次型f (x 1,x 2,x 3)=323121232221222x x x x x x x x x +++++的秩为( )A.1B.2C.3D.4二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

《线性代数》练习题库参考答案

《线性代数》练习题库参考答案

《线性代数》练习测试题库一.选择题1、=-0000000000121nn a a a a ( B )A. n n a a a 21)1(-B. n n a a a 211)1(+-C. n a a a 212、n 阶行列式0000000000a a a a= ( B )A.na B. (1)2(1)n n n a -- C. (1)n n a -3、n21= ( B )A. (1)!nn - B. (1)2(1)!n n n -- C. 1(1)!n n +-4、 A 是n 阶方阵,m, l 是非负整数,以下说法不正确的是 ( C ). A. ()m l mlA A = B. mlm lA A A+⋅= C. m m mB A AB =)(5、A 、B 分别为m n ⨯、s t ⨯矩阵, ACB 有意义的条件是 ( C ) A. C 为m t ⨯矩阵; B. C 为n t ⨯矩阵; C. C 为n s ⨯矩阵6、下面不一定为方阵的是 (C )A.对称矩阵.B.可逆矩阵.C. 线性方程组的系数矩阵.7、 ⎥⎦⎤⎢⎣⎡-1021 的伴随矩阵是 (A ) A. ⎥⎦⎤⎢⎣⎡1021 B. ⎥⎦⎤⎢⎣⎡-1201 C. ⎥⎦⎤⎢⎣⎡-1021 8、 分块矩阵 00A B ⎡⎤⎢⎥⎣⎦(其中A 、B 为可逆矩阵)的逆矩阵是 ( A )A. 1100A B --⎡⎤⎢⎥⎣⎦ B. 00BA ⎡⎤⎢⎥⎣⎦ C. 1100B A --⎡⎤⎢⎥⎣⎦9、线性方程组Ax b = 有唯一解的条件是 ( A )A.()()r A r A b A ==的列数B.()()r A r A b = .C.()()r A r A b A ==的行数10、线性方程组 ⎪⎩⎪⎨⎧=++=++=++23213213211a ax x x a x ax x x x ax 有唯一解的条件是 (A )A. 2,1-≠aB. 21-==a a 或.C. 1≠a11、 的是则下面向量组线性无关),,,=(),,,=()6,2,4(054312--=--γβα(B )A. 0,,βα B. γβ, C. γα, 12、设A 为正交矩阵,下面结论中错误的是 ( C )A. A T 也为正交矩阵.B. A -1也为正交矩阵.C. 总有 1A =-13、二次型()233221214321342,,,,x x x x x x x x x x f --+=的矩阵为 ( C )A 、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---340402021B 、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---320201011 C 、⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---0000032002010011 14、设r 是实二次型),,,(21n x x x f 的秩,p 是二次型的正惯性指数,q 是二次型的负惯性指数,s 是二次型的符号差,那么 ( B )A. q p r -=;B. q p r +=;C. q p s +=; 15、下面二次型中正定的是 ( B )A. 21321),,(x x x x x f =B.2322213212),,(x x x x x x f ++= C.22213212),,(x x x x x f +=二、判断题1、若行列式主对角线上的元素全为0,则此行列式为0. ( ⨯ )2、A 与B 都是3×2矩阵,则A 与B 的乘积也是3×2矩阵。

线性代数试题及答案

线性代数试题及答案

线性代数试题及答案1. 题目:矩阵运算题目描述:给定两个矩阵A和B,计算它们的乘积AB。

答案解析:矩阵A的维度为m x n,矩阵B的维度为n x p,则矩阵AB的维度为m x p。

矩阵AB中的每个元素都可以通过矩阵A的第i行与矩阵B的第j列的内积来计算,即AB(i,j) =∑_{k=1}^{n}A(i,k)B(k,j)。

2. 题目:矩阵转置题目描述:给定一个矩阵A,求其转置矩阵AT。

答案解析:如果矩阵A的维度为m x n,则转置矩阵AT的维度为n x m。

转置矩阵AT中的每个元素都可以通过矩阵A的第i行第j列的元素来计算,即AT(j,i) = A(i,j)。

3. 题目:线性方程组求解题目描述:给定一个线性方程组Ax = b,其中A是一个m x n的矩阵,x和b是n维向量,求解x的取值。

答案解析:假设矩阵A的秩为r,则根据线性代数的理论,线性方程组有解的条件是r = rank(A) = rank([A | b])。

若方程组有解,则可以通过高斯消元法、LU分解等方法求解。

4. 题目:特征值与特征向量题目描述:给定一个矩阵A,求其特征值和对应的特征向量。

答案解析:设λ为矩阵A的特征值,若存在非零向量x,满足Ax = λx,则x为矩阵A对应于特征值λ的特征向量。

特征值可以通过解特征方程det(A - λI) = 0求得,其中I为单位矩阵。

5. 题目:行列式计算题目描述:给定一个方阵A,求其行列式det(A)的值。

答案解析:行列式是一个方阵的一个标量值。

行列式的计算可以通过Laplace展开、初等行变换等方法来进行。

其中,Laplace展开是将行列式按矩阵的某一行或某一列展开成若干个代数余子式的和。

6. 题目:向量空间与子空间题目描述:给定一个向量空间V和它的子集U,判断U是否为V的子空间。

答案解析:子空间U必须满足三个条件:(1)零向量属于U;(2)对于U中任意两个向量u和v,它们的线性组合u+v仍然属于U;(3)对于U中的任意向量u和标量c,它们的数乘cu仍然属于U。

线性代数试题及答案

线性代数试题及答案

线性代数试题和答案一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。

错选或未选均无分。

1.设行列式=m,=n,则行列式等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=,则A-1等于()A. B.C. D.3.设矩阵A=,A*是A的伴随矩阵,则A*中位于(1,2)的元素是()A. –6B. 6C. 2D. –24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. BC时A=0C. A0时B=CD. |A|0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解B.η1+η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<nB.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同14.下列矩阵中是正定矩阵的为()A. B.C. D.二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。

线性代数试题及答案

线性代数试题及答案

线性代数试题及答案一、选择题1. 线性代数是数学的一个分支,主要研究向量空间、线性变换以及它们之间的关系。

以下哪个选项不是向量空间的基本性质?A. 封闭性B. 结合律C. 交换律D. 单位元存在性答案:C2. 设A是一个3级方阵,且det(A) = 2,那么det(2A)等于多少?A. 4B. 6C. 8D. 10答案:C3. 在线性代数中,线性变换可以通过什么来表示?A. 矩阵B. 行列式C. 特征值D. 坐标答案:A4. 特征值和特征向量在描述线性变换时具有重要意义。

一个矩阵的特征值和特征向量分别表示什么?A. 变换后矩阵的行列式,变换前矩阵的行列式B. 变换后矩阵的行列式,变换前向量的方向C. 变换前矩阵的行列式,变换后向量的方向D. 变换前矩阵的行列式,变换后向量的方向答案:B5. 线性代数中的欧几里得空间是一个完备的度量空间,它满足哪些性质?A. 可数性B. 完备性C. 可加性D. 所有上述性质答案:D二、填空题1. 在线性代数中,若一个向量空间的基包含n个向量,则该向空间的维数为______。

2. 设矩阵A = [a_ij],其中i表示行索引,j表示列索引。

如果A的逆矩阵存在,则A的行列式det(A)不等于______。

3. 对于一个n级方阵A,若存在一个非零向量v,使得Av=λv,其中λ为一个标量,则称λ为A的______,v为对应于λ的______。

三、计算题1. 给定矩阵B = [1 2 3; 4 5 6; 7 8 9],求矩阵B的秩。

2. 设线性方程组如下:a_1 + 2a_2 + 3a_3 = 64a_1 + 5a_2 + 6a_3 = 127a_1 + 8a_3 + 9a_3 = 18求该方程组的解。

3. 给定一个3级方阵C,其特征值为1,-2和3,求矩阵C。

四、论述题1. 讨论线性变换在几何上的意义,并给出一个具体的例子来说明其作用。

2. 解释何为线性空间,以及线性空间的同构关系是如何定义的。

线性代数试题及答案

线性代数试题及答案

线性代数(试卷一)1、 填空题(本题总计20分,每小题2分)1. 排列7623451的逆序数是。

2. 若,则3. 已知阶矩阵、和满足,其中为阶单位矩阵,则。

4. 若为矩阵,则非齐次线性方程组有唯一解的充分要条件是_________5. 设为的矩阵,已知它的秩为4,则以为系数矩阵的齐次线性方程组的解空间维数为__2___________。

6. 设A为三阶可逆阵,,则7.若A为矩阵,则齐次线性方程组有非零解的充分必要条件是8.已知五阶行列式,则9. 向量的模(范数)。

10.若与正交,则二、选择题(本题总计10分,每小题2分)1. 向量组线性相关且秩为s,则(D)A. B.C. D.2. 若A为三阶方阵,且,则(A)A. B.C. D.3.设向量组A能由向量组B线性表示,则( d )A. B.C. D.4. 设阶矩阵的行列式等于,则等于。

c5. 设阶矩阵,和,则下列说法正确的是。

则 ,则或三、计算题(本题总计60分。

1-3每小题8分,4-7每小题9分)1. 计算阶行列式。

2.设A为三阶矩阵,为A的伴随矩阵,且,求.3.求矩阵的逆4. 讨论为何值时,非齐次线性方程组①有唯一解;②有无穷多解;③无解。

5. 求下非齐次线性方程组所对应的齐次线性方程组的基础解系和此方程组的通解。

6.已知向量组、、、、,求此向量组的一个最大无关组,并把其余向量用该最大无关组线性表示.7. 求矩阵的特征值和特征向量.四、证明题(本题总计10分)设为的一个解,为对应齐次线性方程组的基础解系,证明线性无关。

(答案一)、填空题(本题总计20分,每小题 2 分)15;2、3;3、;4、;5、2;6、;7、;8、0;9、3;10、1。

.二、选择题(本总计 10 分,每小题 2分 1、D;2、A;3、D;4、C;5、B、计算题(本题总计60分,1-3每小题8分,4-7他每小题9分)1、解: ------3分-------6分----------8分此题的方法不唯一,可以酌情给分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

04184线性代数(经管类)一、二、单选题1、A:-3 B:-1C:1 D:3做题结果:A 参考答案:D2、A:abcd B:dC:6 D:0做题结果:A 参考答案:D3、A:18 B:15C:12 D:24做题结果:A 参考答案:B4、A:-3 B:-1C:1 D:3做题结果:A 参考答案:D6、A:18 B:15C:12 D:24做题结果:A 参考答案:B20、A:k-1 B:kC:1 D:k+1做题结果:A 参考答案:B21、行列式D如果按照第n列展开是????????????????????????????????????????【?????】A.,B.,C.,D.做题结果:A 参考答案:A22、关于n个方程的n元齐次线性方程组的克拉默法则,说法正确的是??????????【?????】A:如果行列式不等于0,则方程组必有无穷多解B:如果行列式不等于0,则方程组只有零解C:如果行列式等于0,则方程组必有唯一解D:如果行列式等于0,则方程组必有零解做题结果:A 参考答案:B23、已知三阶行列D中的第二列元素依次为1、2、3,它们的余子式分别为?-1、1、2,则D的值为。

?? 【?????】A:-3 B:-7C:3 D:7做题结果:A 参考答案:A24、A:0 B:1C:-2 D:2做题结果:A 参考答案:C25、A:abcd B:dC:6 D:0做题结果:A 参考答案:D26、A:a≠2 B:a≠0C:a≠2或a≠0 D:a≠2且a≠0做题结果:A 参考答案:D27、A.,B.,C.,D.做题结果:B 参考答案:B28、A:-2|A| B:16|A|C:2|A| D:|A|做题结果:A 参考答案:B29、下面结论正确的是???????????????????????????????????????????????????【?????】A:含有零元素的矩阵是零矩阵B:零矩阵都是方阵C:所有元素都是零的矩阵是零矩阵D:若A,B都是零矩阵,则A=B 做题结果:A 参考答案:C30、设A是n阶方程,λ为实数,下列各式成立的是?????? ??【?? ?】C.,D.做题结果:C 参考答案:C31、A.,B.,C.,D.做题结果:B 参考答案:B32、设A是4×5矩阵,r(A)=3,则▁▁▁▁▁。

【?????】A:A中的4阶子式都不为0 B:A中存在不为0的4阶子式C:A中的3阶子式都不为0 D:A中存在不为0的3阶子式做题结果:A 参考答案:D33、A:a=3,b=-1,c=1,d=3 B:a=-1,b=3,c=1,d=3C:a=3,b=-1,c=0,d=3 D:a=-1,b=3,c=0,d=3做题结果:A 参考答案:C34、设A是m×n矩阵,B是s×t矩阵,且ABC有意义,则C是▁▁矩阵。

? ?【?? 】A:n×s B:m×tC:t×m D:s×n做题结果:A 参考答案:A35、含有零向量的向量组▁▁▁???????????????????????【?????】A:可能线性相关B:必线性相关C:可能线性无关D:必线性无关做题结果:A 参考答案:B36、对于齐次线性方程组的系数矩阵化为阶梯形时▁▁▁。

??????【?????】A:只能进行行变换B:只能进行列变换C:不能进行行变换D:可以进行行和列变换做题结果:B 参考答案:A37、非齐次线性方程组中,系数矩阵A和增广矩阵(A,b)的秩都等于4,A是()4×6矩阵,则▁▁。

??????????【?????】A:无法确定方程组是否有解B:方程组有无穷多解C:方程组有唯一解D:方程组无解做题结果:B 参考答案:B38、n元非齐次线性方程组Ax=b有两个解a、c,则a-c是▁▁▁的解。

?? 【?? ?】A:2Ax=b B:Ax=0C:Ax=a D:Ax=c做题结果:B 参考答案:B39、设A是m行n列的矩阵,r(A)=r,则下列正确的是?????????【?????】A:Ax=0的基础解系中的解向量的个数可能为n-r B:Ax=0的基础解系中的解向量的个数不可能为n-rC:Ax=0的基础解系中的解向量的个数一定为n-r D:Ax-0的基础解系中的解向量的个数不确定做题结果:C 参考答案:C40、向量组A的任何一个部分组▁▁由该向量组线性表示。

???????????????【?????】A:都能B:一定不能C:不一定能D:不确定做题结果:A 参考答案:A41、(-1,1)能否表示成(1,0)和(2,0)的线性组合?若能则表出系数为▁▁。

【?????】A:能,1、1 B:不能C:能,-1、1 D:能,1、-1做题结果:A 参考答案:B42、若m×n矩阵C中n个列向量线性无关,则C的秩▁▁▁。

??? ??【?????】A:大于m B:大于nC:等于n D:等于m做题结果:C 参考答案:C43、?下列矩阵中不是二次型的矩阵的是???????????????【?????】 ? ? ? ? ? ? ? ? ? ? ?A.,B.,C.,D.做题结果:A 参考答案:C 44、A.,B.,C.,D.做题结果:C 参考答案:C45、A:x=2.5 B:x=1C:x=-2.5 D:x=0做题结果:D 参考答案:A46、A:(2,1,1)B:(-3,0,2)C:(1,1,0)D:(0,-1,0)做题结果:B 参考答案:B47、下列矩阵中不是阶梯形矩阵的是??????????【?????】A.,B.,C.,D.做题结果:D 参考答案:B 48、A:14 B:15C:10 D:24做题结果:D 参考答案:A49、? ? ? ? ? ? ? ? ? ? ?A:-3 B:-1C:1 D:3做题结果:D 参考答案:C50、A:k-1 B:-2kC:2k D:k+1做题结果:B 参考答案:C51、A:k-1 B:-2kC:2k D:k+1做题结果:B 参考答案:C52、关于n个方程的n元非齐次线性方程组的克拉默法则,下列说法正确的是????【?????】A:如果行列式等于0,则方程组必有无穷多解B:如果行列式等于0,则方程组只有零解C:如果行列式不等于0,则方程组必有唯一解D:如果行列式不等于0,则方程组必有零解做题结果:A 参考答案:C53、已知三阶行列D中的第二行元素依次为1、2、3,它们的余子式分别为 -1、1、-2,则D的值为▁▁。

【】A:9 B:-7C:-9 D:7做题结果:A 参考答案:A54、A:-1 B:1C:-8 D:8做题结果:A 参考答案:C55、A:a=2 B:a=0C:a=2或a=0 D:a=2且a=0做题结果:A 参考答案:C56、A.,B.,C.,D.做题结果:B 参考答案:A 57、已知A是三阶矩阵,则|-2A|=▁▁。

????????????????????【?????】A:-2|A| B:8|A|C:2|A| D:-8|A|做题结果:B 参考答案:D58、下面结论不正确的是?????????????????????????????????????????????????【?????】C.做题结果:C 参考答案:A59、设A是n阶方阵,λ为实数,下列各式成立的是?????????【?????】B.,C.,D.做题结果:C 参考答案:C 60、A.,B.,C.,D.做题结果:C 参考答案:A 61、设A是3×4矩阵,r(A)=3,则▁▁▁。

????????????????????【?????】A:A中的4阶子式都不为0 B:A中存在不为0的3阶子式C:A中的3阶子式都不为0 D:A中存在不为0的4阶子式做题结果:B 参考答案:B62、A:a=2,b=-1,c=0,d=-2 B:a=-2,b=1,c=0,d=-2C:a=2,b=-1,c=0,d=2 D:a=2,b=1,c=0,d=2做题结果:B 参考答案:D63、两个向量线性相关,则▁▁▁。

??????????????????????????????????【?????】A:对应分量不成比例B:其中一个为零向量C:对应分量成比例D:两个都不是零向量做题结果:B 参考答案:C64、若矩阵A是行最简形矩阵,则▁▁▁。

???????????????????????????【?????】A:矩阵A必没有零行B:矩阵A不一定是阶梯形矩阵C:矩阵A必有零行D:矩阵A的非零行中第一个不等于零的元素都是1 做题结果:B 参考答案:D65、非齐次线性方程组Ax=b中,系数矩阵A和增广矩阵(A? b)的秩都等于3,A是3×4矩阵,则▁▁▁。

?? 【?? 】????A:方程组有无穷多解B:无法确定方程组是否有解C:方程组有唯一解D:方程组无解做题结果:B 参考答案:A66、A.,C.,D.做题结果:D 参考答案:B 67、A:Ax=0的基础解系中的解向量的个数可能为2 B:Ax=0的基础解系中的解向量的个数不可能为2C:Ax=0的基础解系中的解向量的个数一定为2 D:Ax=0的基础解系中的解向量的个数不确定做题结果:D 参考答案:C68、(3,-2)能否表示成(1,0)和(0,1)的线性组合?若能则表出系数为???? 。

A:能,2、-3 B:不能C: 能,-3、2 D:能,3、-2做题结果:B 参考答案:D69、A:等于m B:大于nC:等于n D:大于m做题结果:D 参考答案:A70、下列矩阵中是二次型的矩阵的是A.,B.,C.,D.做题结果:D 参考答案:B71、A:a=2 B:a=-4C:a=-2 D:a=4做题结果:D 参考答案:A72、A:(-2,0,1) B:(-3,0,2)C:(1,1,0) D:(0,-1,3)做题结果:D 参考答案:D74、A:-3 B:-1C:1 D:3做题结果:B 参考答案:A75、A:k-1 B:3kC:-3k D:k+1做题结果:D 参考答案:B76、关于n个方程的n元非齐次线性方程组的克拉默法则,下列说法不正确的是??【?????】A:如果行列式等于0,则方程组可能有无穷多解B:如果行列式等于0,则方程组可能无解C:如果行列式不等于0,则方程组必有唯一解D:如果行列式不等于0,则方程组必有零解做题结果:A 参考答案:D77、已知三阶行列D中的第二列元素依次为-1、3、2,它们的余子式分别为?1、-1、2,则D的值为??????????????????????? 【?????? 】A:6 B:-7C:-6 D:7做题结果:A 参考答案:C78、当a=?????????时,行列式的值为零。

????????????????????????【?????】A:-6 B:6C:-2 D:2做题结果:A 参考答案:A79、行列式的值等于????????????。

相关文档
最新文档